WorldWideScience

Sample records for plastic-bonded high explosive

  1. Microstructural Characterization of Plastic Bonded Explosives

    Science.gov (United States)

    Yeager, John; Hooks, Daniel; Bahr, David

    2010-03-01

    Plastic bonded explosives (PBX), a mixture of hard, anisotropic grains in a compliant matrix, represent an interesting case for understanding composite mechanical response and failure. PBX 9501 (0.95 cyclotetramethylene tetranitramine [HMX], 0.05 polymer binder) is relatively safe formulation of HMX, which is thought to be due to the high compliance of the binder. Crack formation between the crystals and the binder has been observed in this and many other systems and is usually the failure mechanism of PBX materials under mechanical strain. Thus the properties of the crystal-binder interface are important for development of failure models. The interfacial properties of PBX 9501 as well as an inert simulant have been characterized using several methods. Surface energies of several polymer binders and various crystallographic faces of HMX have been determined with a contact angle measurement technique, allowing for thermodynamic work of adhesion at the interface to be calculated. Surface roughness of the crystal faces has been measured with atomic force microscopy (AFM). PBX formulation methods are suspected to lead to a diffuse interface, but the nature of this interface has not previously been characterized in detail. Here, the coherence of the interface has been studied using tapping mode AFM for modulus contrast, and these findings are correlated with results from diffraction techniques.

  2. Autonomous characterization of plastic-bonded explosives

    Science.gov (United States)

    Linder, Kim Dalton; DeRego, Paul; Gomez, Antonio; Baumgart, Chris

    2006-08-01

    Plastic-Bonded Explosives (PBXs) are a newer generation of explosive compositions developed at Los Alamos National Laboratory (LANL). Understanding the micromechanical behavior of these materials is critical. The size of the crystal particles and porosity within the PBX influences their shock sensitivity. Current methods to characterize the prominent structural characteristics include manual examination by scientists and attempts to use commercially available image processing packages. Both methods are time consuming and tedious. LANL personnel, recognizing this as a manually intensive process, have worked with the Kansas City Plant / Kirtland Operations to develop a system which utilizes image processing and pattern recognition techniques to characterize PBX material. System hardware consists of a CCD camera, zoom lens, two-dimensional, motorized stage, and coaxial, cross-polarized light. System integration of this hardware with the custom software is at the core of the machine vision system. Fundamental processing steps involve capturing images from the PBX specimen, and extraction of void, crystal, and binder regions. For crystal extraction, a Quadtree decomposition segmentation technique is employed. Benefits of this system include: (1) reduction of the overall characterization time; (2) a process which is quantifiable and repeatable; (3) utilization of personnel for intelligent review rather than manual processing; and (4) significantly enhanced characterization accuracy.

  3. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives

    NARCIS (Netherlands)

    Heijden, A.E.D.M. van der; Creyghton, Y.L.M.; Marino, E.; Bouma, R.H.B.; Scholtes, G.J.H.G.; Duvalois, W.; Roelands, C.P.M.

    2008-01-01

    The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive contain

  4. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives

    NARCIS (Netherlands)

    Heijden, A.E.D.M. van der; Creyghton, Y.L.M.; Marino, E.; Bouma, R.H.B.; Scholtes, G.J.H.G.; Duvalois, W.; Roelands, C.P.M.

    2008-01-01

    The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive

  5. Specific heat and thermal conductivity of explosives, mixtures, and plastic-bonded explosives determined experimentally

    Energy Technology Data Exchange (ETDEWEB)

    Baytos, J.F.

    1979-09-01

    The specific heat and thermal conductivity of explosives and plastic-bonded explosives of interest to WX operations, determined experimentally, are reported in three tables. Specific heat was determined by differential scanning calorimetry against sapphire standards. Thermal conductivity was determined by two means: the guarded hot-plate method or the differential scanning calorimeter comparative method on miniature samples.

  6. Experimental investigation of the reaction-build-up for plastic bonded explosive JOB-9003

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-05-01

    Full Text Available In order to measure the shock initiation behavior of JOB-9003 explosives, Al-based embedded multiple electromagnetic particle velocity gauge technique has been developed. In addition, a gauge element called the shock tracker has been used to monitor the progress of the shock front as a function of time, thus providing a position–time trajectory of the wave front as it moves through the explosive sample. The data is used to determine the position and time for shock to detonation transition. All the experimental results show that the rising-up time of Al-based electromagnetic particle velocity gauge is very short (<20 ns; the reaction-build-up velocity profiles and the position–time for shock to detonation transition of HMX-based plastic bonded explosive (PBX JOB-9003 with 1–8 mm depth from the origin of the impact plane under different initiation pressures were obtained with high accuracy.

  7. Pilot-scale base hydrolysis processing of HMX-based plastic-bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Flesner, R.L.; Dell`Orco, P.C.; Spontarelli, T.; Bishop, R.L.; Skidmore, C.B.; Uher, K.; Kramer, J.F.

    1997-10-01

    Los Alamos National Laboratory has demonstrated that many energetic materials can be rendered non-energetic via reaction with sodium hydroxide or ammonia. This process is known as base hydrolysis. A pilot scale reactor has been developed to process up to 20 kg of plastic bonded explosive in a single batch operation. In this report, we discuss the design and operation of the pilot scale reactor for the processing of PBX 9404, a standard Department of Energy plastic bonded explosive containing HMX and nitrocellulose. Products from base hydrolysis, although non-energetic, still require additional processing before release to the environment. Decomposition products, destruction efficiencies, and rates of reaction for base hydrolysis will be presented. Hydrothermal processing, previously known as supercritical water oxidation, has been proposed for converting organic products from hydrolysis to carbon dioxide, nitrogen, and nitrous oxide. Base hydrolysis in combination with hydrothermal processing may yield a viable alternative to open burning/open detonation for destruction of many energetic materials.

  8. Pilot-scale base hydrolysis processing of HMX-based plastic-bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Flesner, R.L.; Dell`orco, P.C.; Spontarelli, T.; Bishop, R.L.; Skidmore, C.; Uher, K.J.; Kramer, J.F.

    1996-07-01

    Los Alamos National Laboratory has demonstrated that many energetic materials can be rendered non-energetic via reaction with sodium hydroxide or ammonia. This process is known as base hydrolysis. A pilot scale reactor has been developed to process up to 20 kg of plastic bonded explosive in a single batch operation. In this report, we discuss the design and operation of the pilot scale reactor for the processing of PBX 9404, a standard Department of Energy plastic bonded explosive containing HMX and nitrocellulose. Products from base hydrolysis, although non-energetic, still require additional processing before release to the environment Decomposition products, destruction efficiencies, and rates of reaction for base hydrolysis will be presented. Hydrothermal processing, previously known as supercritical water oxidation, has been proposed for converting organic products from hydrolysis to carbon dioxide, nitrogen, and nitrous oxide. Base hydrolysis in combination with hydrothermal processing may yield a viable alternative to open burning/open detonation for destruction of many energetic materials.

  9. Shock induced shear strength in an HMX based plastic bonded explosive

    Science.gov (United States)

    Millett, J. C. F.; Taylor, P.; Appleby-Thomas, G.

    2017-01-01

    The shock induced mechanical response of an HMX based plastic bonded explosive (PBX) has been investigated in terms of the shear strength. Results show that shear strength increases with impact stress. However comparison with the calculated elastic response of both the PBX and pure HMX suggests that the overall mechanical response is controlled by the HMX crystals, with the near liquid like nature of the binder phase having a minimal contribution.

  10. Experimental Studies on Improved Plastic Bonded Explosives Materials (PBXs for Controlled Fragmentation Warheads

    Directory of Open Access Journals (Sweden)

    Elsharkawy Karim

    2017-01-01

    Full Text Available This paper describes formulations of plastic bonded explosives (PBXs based on three highly brisant explosives, namely 1,3,5-trinitro-1,3,5-triazinane (RDX, 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX and pentaerythritoltetranitrate (PETN with polyurethane (PU based on Glycidyl azide polymer (GAP as an energetic binder in comparison with composition-B, which used in the fragmentation warheads. The sensitivity and performance properties of different types of PBXs were evaluated by experimental results of prepared selected PBX compositions. Casting technique was used to prepare the selected compositions containing 14% PU based on GAP. It has been observed that the brisance of the PBX based on HMX was higher than that of comp-B by 21.3 %, the detonation velocity showed a remarkable increase of the order of 8480 (m/s while that of comp-B was 7638 (m/s. A controlled fragmentation warhead with an outer grooving warhead case of dimensions 100x35x4 mm was used and arena test was carried out to determine the lethal zone of the fragmentation warhead. The lethal zone obtained from arena test for PBX composition based on HMX named PBXHG4 was higher than that based on RDX or PETN, and than that of comp-B by 40%.

  11. In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling

    Directory of Open Access Journals (Sweden)

    Virginia W. Manner

    2017-06-01

    Full Text Available The microstructure of plastic bonded explosives (PBXs is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB or glycidyl azide polymer (GAP cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowing for excellent contrast using in situ X-ray computed tomography (CT imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.

  12. Thermal expansion of PBX 9501 and PBX 9502 plastic-bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Darla Graff [Los Alamos National Laboratory; Brown, Geoff W [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Giambra, Anna [Los Alamos National Laboratory; Sandstrom, Mary [Los Alamos National Laboratory

    2009-01-01

    Two applications of thermal expansion measurements on plastic-bonded explosive (PBX) composites are described. In the first dilatometer application, thermal expansion properties of HMX-based PBX 9501 are measured over a broad thermal range that includes glass and domain-restructuring transitions in the polymeric binder. Results are consistent with other thermal measurements and analyses performed on the composite, as well as on the binder itself. The second application used the dilatometer to distinguish the reversible and irreversible components of thermal expansion in PBX 9502, a TATB-based explosive. Irreversible expansion of the composite is believed to derive from the highly-anisotropic coefficient of thermal expansion (CTE) values measured on single T A TB crystals, although the mechanism is not well understood. Effects of specimen density, thermal ramp rate, and thermal range variation (warm first or cold first) were explored, and the results are presented and discussed. Dilatometer measurements are ongoing towards gaining insight into the mechanism(s) responsible for PBX 9502 irreversible thermal expansion.

  13. Studies on Physico-Mechanical and Explosive Characteristics of RDX/HMX-Based Castable Plastic-Bonded Explosives

    Directory of Open Access Journals (Sweden)

    J. S. Gharia

    1998-01-01

    Full Text Available Conventional cast explosives (RDX/TNT have major drawbacks of poor mechanical properties,shrinkages and higher sensitivity .These properties can be improved by applying plastic bindersystems. The plastic-bonded explosive (PBX is a composite material in which solid explosive particles are dispersed in a polymer matrix. The present paper describes the development of anitramine/hydroxy-terminated polybutadiene (HTPB-based castable PBX. The PBXs were processed as per standard procedures. Bimodal/trimodal particle size system was selected to reach asolid loading of 88 wt per cent. High solid loading was made possible through proper combination ofcoarse/fine ratio of solid ingredients, which was based on a number of tap density experiments.Processability of the binder system was studied by using various wetting agents as well as by selectingbinder/plasticizer ratios. Mechanical properties of the PBXs were enhanced by different crosslinkingagents. The explosive properties ofPBXs including detonation velocity , processability and sensitivityto different types of stimuli, were studied. The results show that PBXs can be manufactured withdetonation properties better than those of composition B/octol with the added advantages of superiorthermal and sensitivity characteristics.

  14. Modeling shock responses of plastic bonded explosives using material point method

    Science.gov (United States)

    Shang, Hailin; Zhao, Feng; Fu, Hua

    2017-01-01

    Shock responses of plastic bonded explosives are modeled using material point method as implemented in the Uintah Computational Framework. Two-dimensional simulation model was established based on the micrograph of PBX9501. Shock loading for the explosive was performed by a piston moving at a constant velocity. Unreactive simulation results indicate that under shock loading serious plastic strain appears on the boundary of HMX grains. Simultaneously, the plastic strain energy transforms to thermal energy, causing the temperature to rise rapidly on grain boundary areas. The influence of shock strength on the responses of explosive was also investigated by increasing the piston velocity. And the results show that with increasing shock strength, the distribution of plastic strain and temperature does not have significant changes, but their values increase obviously. Namely, the higher the shock strength is, the higher the temperature rise will be.

  15. Literature review of the lifetime of DOE materials: Aging of plastic bonded explosives and the explosives and polymers contained therein

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.E.; Woodyard, J.D. [West Texas A and M Univ., Canyon, TX (United States); Rainwater, K.A. [Texas Tech Univ., Lubbock, TX (United States); Lightfoot, J.M. [Pantex Plant, Amarillo, TX (United States); Richardson, B.R. [Engineered Carbons, Inc., Borger, TX (United States)

    1998-09-01

    There are concerns about the lifetime of the nation`s stockpile of high explosives (HEs) and their components. The DOE`s Core Surveillance and Enhanced Surveillance programs specifically target degradation of HE, binders, and plastic-bonded explosives (PBXs) for determination of component lifetimes and handling procedures. The principal goal of this project is to identify the decomposition mechanisms of HEs, plasticizers, and plastic polymer binders resulting from exposure to ionizing radiation, heat, and humidity. The primary HEs of concern are 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 1,3,5,7-tetranitro-1,3,5,7-tetraazocyclooctane (HMX). Hexahydro-1,3,5-triazine (RDX) is closely related to these two compounds and is also included in the literature review. Both Kel-F 800 and Estane are polymers of interest. A stabilizer, Irganox 1010, and an energetic plasticizer that is a blend of acetaldehyde 2,2-dinitropropyl acetal, are also of interest, but the focus of this report will be on the explosives and polymers. This presents a literature review that provides background on the synthesis, degradation, and techniques to analyze TATB, HMX, RDX, Kel-F 800, Estane, and the PBXs of these compounds. As there are many factors that can influence degradation of materials, the degradation discussion will be divided into sections based on each factor and how it might affect the degradation mechanism. The factors reviewed that influence the degradation of these materials are exposure to heat, UV- and {gamma}-irradiation, and the chemistry of these compounds. The report presents a recently compiled accounting of the available literature. 80 refs., 7 figs.

  16. Aspects of the Tribology of the Plastic Bonded Explosive (PBX) 9404

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D M; Chandler, J B

    2004-07-08

    The coefficient of friction, {mu}, of the plastic bonded explosive (PBX) 9404 was measured on stainless steel, aluminum, Teflon and the explosive itself as a function of temperature between ambient and 135 C at a rotational speed of 0.0025 rad/sec{sup -1}. An optical profilometer was used to analyze the mean surface roughness, R{sub a}, of the various materials. PBX 9404 is a composite of the explosive 1,3,5,7-tetranitroazacyclooctane (HMX) chloroethyl phosphate (CEF) and nitrocellulose in an 96/3/3 weight ratio. The average roughness of the pressed explosive surface was R{sub a} = 1.37 {micro}m. The coefficient of friction for PBX 9404 on stainless steel of R{sub a} = 0.40 {micro}m increased from 0.22 at ambient to 0.34 at 95 C. Above this temperature {mu} decreased to about 0.23 at 125 C. Similar behavior was observed with aluminum with R{sub a} = 0.31 {micro}m. The coefficient of friction increased from about 0.08 at ambient to 0.48 at 115 C. Above this temperature, {mu} tended to decrease slightly. The coefficient of friction against Teflon of R{sub a} = 0.054 {micro}m was sigmoidal, increasing from about 0.3 at ambient to about at 0.49 {+-} 0.002 above 115 C. Against a PBX 9404 counter surface, the coefficient of friction averaged 0.54 over the entire test temperature range, but tended to increase during the measurement, probably due to adhesion of the nitrocellulose to itself.

  17. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives.

    Science.gov (United States)

    Zhu, Wei; Xiao, Jijun; Zhu, Weihua; Xiao, Heming

    2009-05-30

    Molecular dynamics simulations have been performed to investigate well-known energetic material cyclotrimethylene trinitramine (RDX) crystal and RDX-based plastic-bonded explosives (PBXs) with four typical fluorine-polymers, polyvinylidenedifluoride (PVDF), polychlorotri-fluoroethylene (PCTFE), fluorine rubber (F(2311)), and fluorine resin (F(2314)). The elastic coefficients, mechanical properties, binding energies, and detonation performances are obtained for the RDX crystal and RDX-based PBXs. The results indicate that the mechanical properties of RDX can be effectively improved by blending with a small amount of fluorine polymers and the overall effect of fluorine polymers on the mechanical properties of the PBXs along three crystalline surfaces is (001)>(010) approximately (100) and PVDF is regarded to best improve the mechanical properties of the PBXs on three surfaces. The order of the improvement in the ductibility made by the fluorine polymers on different surfaces is (001) approximately (010)>(100). The average binding energies between different RDX crystalline surfaces and different polymer binders are obtained, and the sequence of the binding energies of the PBXs with the four fluorine polymers on the three different surfaces is varied. Among the polymer binders, PVDF is considered as best one for RDX-based PBXs. The detonation performances of the PBXs decrease in comparison with the pure crystal but are superior to those of TNT.

  18. Effects of temperature and pressure on the glass transitions of plastic bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, M.S.; Garcia, D.; Idar, D.

    1998-12-31

    Various plastic bonded explosives (PBXs) contain about 5-wt% polymer, plasticizer, and stabilizer as binder. The glass-transition temperature (T{sub g}) determines, in part, if the binder will reduce or increase the sensitivity of the PBX to impact. A soft binder reduces the impact sensitivity; however, too soft a binder compromises the mechanical strength below that desirable for dimensional stability. Glass transitions were measured by temperature modulated DSC for PBXs before and after pressing. Pressing temperature was 90 C. The T{sub g} of Estane, a polyester/polyurethane used in some PBX binders, was investigated. Only small changes were observed in the low temperature T{sub g} of the soft segments but larger changes were seen in the higher temperature transitions due to the relaxation of the hard segments. The T{sub g} of Kel F 800, a binder used in insensitive PBX 9502, was observed near ambient temperature. The PBX 9502 had a lower T{sub g} than the neat polymer. Mechanical strength will be measured for the samples.

  19. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Richard L [Los Alamos National Laboratory; Bartram, Brian D [Los Alamos National Laboratory; Sanchez, Nathaniel (nate) J [Los Alamos National Laboratory

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.

  20. Detonation Wave Profiles Measured in Plastic Bonded Explosives Using 1550 nm Photon Doppler Velocimetry

    Science.gov (United States)

    Gustavsen, R. L.; Bartram, B. D.; Sanchez, N. J.

    2009-12-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was changed from shot to shot in order to produce varied distances to detonation. In this way, we tuned the support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of ≈3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of ≈6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55° C. The respective VN spike state was 2.25±0.05 km/s in EDC-35 and 2.4±0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (>2.6 km/s) nor the reaction zone length (≪50 ns) in the HMX based explosives.

  1. Implementation of strength and burn models for plastic-bonded explosives and propellants

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2009-05-07

    We have implemented the burn model in LS-DYNA. At present, the damage (porosity and specific surface area) is specified as initial conditions. However, history variables that are used by the strength model are reserved as placeholders for the next major revision, which will be a completely interactive model. We have implemented an improved strength model for explosives based on a model for concrete. The model exhibits peak strength and subsequent strain softening in uniaxial compression. The peak strength increases with increasing strain rate and/or reduced ambient temperature. Under triaxial compression compression, the strength continues to increase (or at least not decrease) with increasing strain. This behaviour is common to both concrete and polymer-bonded explosives (PBX) because the microstructure of these composites is similar. Both have aggregate material with a broad particle size distribution, although the length scale for concrete aggregate is two orders of magnitude larger than for PBX. The (cement or polymer) binder adheres to the aggregate, and is both pressure and rate sensitive. There is a larger bind binder content in concrete, compared to the explosive, and the aggregates have different hardness. As a result we expect the parameter values to differ, but the functional forms to be applicable to both. The models have been fit to data from tests on an AWE explosive that is HMX based. The decision to implement the models in LS-DYNA was based on three factors: LS-DYNA is used routinely by the AWE engineering analysis group and has a broad base of experienced users; models implemented in LS-DYNA can be transferred easily to LLNL's ALE 3D using a material model wrapper developed by Rich Becker; and LS-DYNA could accommodate the model requirements for a significant number of additional history variables without the significant time delay associated with code modification.

  2. Experimental Study of the Impact Damage of Composition B and Plastic Bonded Explosive

    Institute of Scientific and Technical Information of China (English)

    陈鹏万; 黄风雷; 丁雁生

    2003-01-01

    A long-pulse low-velocity gas gun with a gas buffer is used to induce impact damage in cast Composition B and hot pressed PBXN-5. To obtain different damage states, a range of projectile velocities are used by controlling the launching pressure of gas gun. The stress history during impact loading is recorded. Various methods are used to characterize the damage state of impacted explosive samples. The microstructure is examined by use of scanning electronic microscopy (SEM) and polarized light microscopy (PLM). The densities and ultrasonic attenuation are also measured. The results show that both Composition B and PBXN-5 exhibit some damage characteristics of brittle materials. However, due to the difference in compositions, PBXN-5 exhibits better resistance to impact loading than Composition B.

  3. ESTIMATIVA DE VIDA ÚTIL DO PBX (plastic-bonded explosive COM ENVELHECIMENTO ACELERADO

    Directory of Open Access Journals (Sweden)

    Edemar Kirchhof

    2016-07-01

    Full Text Available This article aims to estimate the shelf life of the PBX by thermal analysis estimated by the Arrhenius equation, equivalent to the time of storage at accelerated aging. The PBX was subjected to accelerated aging in an oven at controlled temperature 60 ºC for periods of 5, 10, 15 and 25 weeks, which are equivalent to 5, 10, 15 and 25 of natural aging, respectively, at a temperature of 25 ºC. The curves of thermal decomposition of the samples were obtained by the DSC (Differential Scanning Calorimetry technique. The kinetic parameters, such as the activation energy and pre-exponential factor, were determined by the Ozawa method and the Kissinger method. Initial results of this study indicated that, for a period of 25 years of storage in the cargo hold, the material did not change this aging significantly. To study the life of PBX analyzes, vacuum chemical stability were also conducted to verify the safety of explosive handling.

  4. Thermal decomposition and kinetics of plastic bonded explosives based on mixture of HMX and TATB with polymer matrices

    Directory of Open Access Journals (Sweden)

    Arjun Singh

    2017-02-01

    Full Text Available This work describes thermal decomposition behaviour of plastic bonded explosives (PBXs based on mixture of l,3,5,7-tetranitro- 1,3,5,7-tetrazocane (HMX and 2,4,6- triamino-1,3,5-trinitrobenzene (TATB with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis (STA and differential scanning calorimetry (DSC to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis (TGA indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn–Wall–Ozawa (FWO and Kissinger-Akahira-Sunose (KAS methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition.

  5. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    Energy Technology Data Exchange (ETDEWEB)

    Harrier, Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  6. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło

    2014-12-01

    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters

  7. High-nitrogen explosives

    Energy Technology Data Exchange (ETDEWEB)

    Naud, D. (Darren); Hiskey, M. A. (Michael A.); Kramer, J. F. (John F.); Bishop, R. L. (Robert L.); Harry, H. H. (Herbert H.); Son, S. F. (Steven F.); Sullivan, G. K. (Gregg K.)

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAz

  8. Sensitivity of once-shocked, weathered high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.L.; Harris, B.W.

    1998-07-01

    Effects caused by stimulating once-shocked, weathered high explosives (OSW-HE) are investigated. The sensitivity of OSW-HE to mechanical stimuli was determined using standard industry tests. Some initial results are given. Pieces of OSW-HE were collected from active and inactive firing sites and from an area surrounding a drop tower at Los Alamos where skid and spigot tests were done. Samples evaluated were cast explosives or plastic bonded explosive (PBX) formulations containing cyclotrimethylenetrinitramine (RDX), cyclotetramethylene tetranitramine (HMX), 2,4,6-trinitrotoluene (TNT), mock or inert HE [tris(beta-chloroethyl)phosphate (CEF)], barium nitrate, cyanuric acid, talc, and Kel-F. Once-shocked, weathered LX-10 Livermore explosive [HMX/Viton A, (95/5 wt %)], PBX 9011 [HMX/Estane, (90/10 wt %)], PBX 9404 [HMX/nitrocellulose, tris(beta-chloroethyl) phosphate, (94/3/3 wt %)], Composition B or cyclotol (TNT/RDX explosives), and PBX 9007 (90% RDX, 9.1% styrene, 0.5% dioctyl phthalate, and 0.45 resin) were subjected to the hammer test, the drop-weight impact sensitivity test, differential thermal analysis (DTA), the spark test, the Henkin`s critical temperature test, and the flame test. Samples were subjected to remote, wet cutting and drilling; remote, liquid-nitrogen-cooled grinding and crushing; and scanning electron microscope (SEM) surface analyses for morphological changes.

  9. Analysis of xRAGE and flag high explosive burn models with PBX 9404 cylinder tests

    Energy Technology Data Exchange (ETDEWEB)

    Harrier, Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersen, Kyle Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-05

    High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested using a copper cylinder expansion test. The test was based on a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results. This study validate

  10. Introduction to High Explosives Science

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, Cary Bradford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    These are a set of slides for educational outreach to children on high explosives science. It gives an introduction to the elements involved in this science: carbon, hydrogen, nitrogen, and oxygen. Combined, these form the molecule HMX. Many pictures are also included to illustrate explosions.

  11. Novel high explosive compositions

    Science.gov (United States)

    Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.

    1968-04-16

    This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)

  12. Detonation probabilities of high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, S.W.; Bott, T.F.; Bement, T.R.

    1995-07-01

    The probability of a high explosive violent reaction (HEVR) following various events is an extremely important aspect of estimating accident-sequence frequency for nuclear weapons dismantlement. In this paper, we describe the development of response curves for insults to PBX 9404, a conventional high-performance explosive used in US weapons. The insults during dismantlement include drops of high explosive (HE), strikes of tools and components on HE, and abrasion of the explosive. In the case of drops, we combine available test data on HEVRs and the results of flooring certification tests to estimate the HEVR probability. For other insults, it was necessary to use expert opinion. We describe the expert solicitation process and the methods used to consolidate the responses. The HEVR probabilities obtained from both approaches are compared.

  13. Handbook of HE (High Explosives) Explosive Effects

    Science.gov (United States)

    1986-04-11

    uPcup SI.B iPip P 3 [ xpI os i or ,tf fects, Lx’i Osions In Air,6 19 6T~lT’ Explosions, Airblast - 19 ABSTRAC.T ’Continuje on "uri~ee it neczessary and...AIR FORCE INSTITUTE OF TECHNOLOGY/EN ATTN: MAT 0323 ATTN- LIURARY/AFIT/LDEE NAVAL OCEAN SYSTEMS CENTER AIR FORCE LOGISTICS COMMAND ATTN: CODE 825

  14. Mechanisms of formation of trace decomposition products in complex high explosive mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Woodyard, J.D.; Burgess, C.E. [West Texas A and M Univ., Canyon, TX (United States); Rainwater, K.A. [Texas Tech Univ., Lubbock, TX (United States)

    1999-03-01

    A significant concern in the nation`s stockpile surveillance program in prediction of the lifetimes of the high explosives (HE) and their components as the weapons age. The Department of Energy`s Core Surveillance and Enhanced Surveillance programs specifically target issues of degradation of HE, binders, and plastic-bonded explosives (PBX) for determination of component lifetimes and handling procedures. These material science topics are being addressed at the DOE national laboratories and production plants, including Pantex. The principal goal of this project is to identify the mechanisms of decomposition of HE, plasticizers, plastic polymer binders, and radical stabilizers resulting from exposures to ionizing radiation, heat, and humidity. The following reports the work completed for 1998, including a comprehensive literature review about some of the materials examined and the laboratory work completed to date. The materials focused on in the laboratory are TATB, Estane 5301, and Irganox 1010.

  15. Analysis of Xrage and Flag High Explosive Burn Models with PBX 9404 Cylinder Tests

    Science.gov (United States)

    Harrier, Danielle; Fessenden, Julianna; Ramsey, Scott

    2016-11-01

    High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested, using a copper cylinder expansion test. The test was based off of a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained from the experimental velocity data collected using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results using the Jones-Wilkins-Lee (JWL) equation of state parameters that were determined and adjusted from the experimental tests. This study is important to validate the accuracy of our high explosive burn models and the calibrated EOS parameters, which are important for many research topics in physical sciences.

  16. High Explosives Research and Development (HERD) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to provide high explosive formulation, chemical analysis, safety and performance testing, processing, X-ray, quality control and loading support for...

  17. Particle characteristics of trace high explosives: RDX and PETN.

    Science.gov (United States)

    Verkouteren, Jennifer R

    2007-03-01

    The sizes of explosives particles in fingerprint residues produced from C-4 and Semtex-1A were investigated with respect to a fragmentation model. Particles produced by crushing crystals of RDX and PETN were sized by using scanning electron microscopy, combined with image analysis, and polarized light microscopy was used for imaging and identifying explosive particles in fingerprint residues. Crystals of RDX and PETN fragment in a manner that concentrates mass in the largest particles of the population, which is common for a fragmentation process. Based on the fingerprints studied, the particle size to target for improving mass detection in fingerprint residues by ion mobility spectrometry (IMS) is > or = 10 microm in diameter. Although particles smaller than 10 microm in diameter have a higher frequency, they constitute < 20% of the total mass. Efforts to improve collection efficiency of explosives particles for detection by IMS, or other techniques, must take into consideration that the mass may be concentrated in a relatively few particles that may not be homogeneously distributed over the fingerprint area. These results are based on plastic-bonded explosives such as C-4 that contain relatively large crystals of explosive, where fragmentation is the main process leading to the presence of particles in the fingerprint residues.

  18. On the Violence of High Explosive Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tarver, C M; Chidester, S K

    2004-02-09

    High explosive reactions can be caused by three general energy deposition processes: impact ignition by frictional and/or shear heating; bulk thermal heating; and shock compression. The violence of the subsequent reaction varies from benign slow combustion to catastrophic detonation of the entire charge. The degree of violence depends on many variables, including the rate of energy delivery, the physical and chemical properties of the explosive, and the strength of the confinement surrounding the explosive charge. The current state of experimental and computer modeling research on the violence of impact, thermal, and shock-induced reactions is reviewed.

  19. Highly explosive nanosilicon-based composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Clement, D.; Diener, J.; Gross, E.; Kuenzner, N.; Kovalev, D. [Technical University of Munich, Physics Department, James-Franck-Str., 85747 Garching (Germany); Timoshenko, V.Yu. [Moscow State M.V. Lomonosov University, Physics Department, 119899 Moscow (Russian Federation)

    2005-06-01

    We present a highly explosive binary system based on porous silicon layers with their pores filled with solid oxidizers. The porous layers are produced by a standard electrochemical etching process and exhibit properties that are different from other energetic materials. Its production is completely compatible with the standard silicon technology and full bulk silicon wafers can be processed and therefore a large number of explosive elements can be produced simultaneously. The application-relevant parameters: the efficiency and the long-term stability of various porous silicon/oxidizer systems have been studied in details. Structural properties of porous silicon, its surface termination, the atomic ratio of silicon to oxygen and the chosen oxidizers were optimized to achieve the highest efficiency of the explosive reaction. This explosive system reveals various possible applications in different industrial fields, e.g. as a novel, very fast airbag igniter. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Equation of state of insensitive high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ree, F H; Van Thiel, M; Viecelli, J A

    1998-08-12

    Detonation of an insensitive high explosive formulated with a fluorine containing binder produces a large amount of condensed carbon and gaseous HF product, which transforms into CF{sub 4} as the pressure is increased. The former (carbon condensation) is characterized by slow energy release, while the latter (HF) has no shockwave data. We have identified that these two items are the key factors, which make reliable prediction of the performance of an insensitive high explosive very difficult. This paper describes physical models to address these issues and apply the models to analyze experimental data of LX-17.

  1. Criticality safety in high explosives dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Troyer, S.D.

    1997-06-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig.

  2. Securing Infrastructure from High Explosive Threats

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, L; Noble, C; Reynolds, J; Kuhl, A; Morris, J

    2009-03-20

    Lawrence Livermore National Laboratory (LLNL) is working with the Department of Homeland Security's Science and Technology Directorate, the Transportation Security Administration, and several infrastructure partners to characterize and help mitigate principal structural vulnerabilities to explosive threats. Given the importance of infrastructure to the nation's security and economy, there is a clear need for applied research and analyses (1) to improve understanding of the vulnerabilities of these systems to explosive threats and (2) to provide decision makers with time-critical technical assistance concerning countermeasure and mitigation options. Fully-coupled high performance calculations of structural response to ideal and non-ideal explosives help bound and quantify specific critical vulnerabilities, and help identify possible corrective schemes. Experimental validation of modeling approaches and methodologies builds confidence in the prediction, while advanced stochastic techniques allow for optimal use of scarce computational resources to efficiently provide infrastructure owners and decision makers with timely analyses.

  3. On beyond the standard model for high explosives: challenges & obstacles to surmount

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph Ds [Los Alamos National Laboratory

    2009-01-01

    Plastic-bonded explosives (PBX) are heterogeneous materials. Nevertheless, current explosive models treat them as homogeneous materials. To compensate, an empirically determined effective burn rate is used in place of a chemical reaction rate. A significant limitation of these models is that different burn parameters are needed for applications in different regimes; for example, shock initiation of a PBX at different initial temperatures or different initial densities. This is due to temperature fluctuations generated when a heterogeneous material is shock compressed. Localized regions of high temperatures are called hot spots. They dominate the reaction for shock initiation. The understanding of hot spot generation and their subsequent evolution has been limited by the inability to measure transients on small spatial ({approx} 1 {micro}m) and small temporal ({approx} 1 ns) scales in the harsh environment of a detonation. With the advances in computing power, it is natural to try and gain an understanding of hot-spot initiation with numerical experiments based on meso-scale simulations that resolve material heterogeneities and utilize realistic chemical reaction rates. However, to capture the underlying physics correctly, such high resolution simulations will require more than fast computers with a large amount of memory. Here we discuss some of the issues that need to be addressed. These include dissipative mechanisms that generate hot spots, accurate thermal propceties for the equations of state of the reactants and products, and controlling numerical entropy error from shock impedance mismatches at material interfaces. The later can generate artificial hot spots and lead to premature reaction. Eliminating numerical hot spots is critical for shock initiation simulations due to the positive feedback between the energy release from reaction and the hydrodynamic flow.

  4. High Voltage Applications of Explosively Formed Fuses

    Science.gov (United States)

    Tasker, D. G.; Goforth, J. H.; Fowler, C. M.; Herrera, D. H.; King, J. C.; Lopez, E. A.; Martinez, E. C.; Oona, H.; Marsh, S. P.; Reinovsky, R. E.; Stokes, J.; Tabaka, L. J.; Torres, D. T.; Sena, F. C.; Kiuttu, G.; Degnan, J.

    2004-11-01

    At Los Alamos, we have primarily applied Explosively Formed Fuse (EFF) techniques to high current systems. In these systems, the EFF has interrupted currents from 19-25 MA, thus diverting the current to low inductance loads. The transferred current magnitude is determined by the ratio of storage inductance to load inductance and, with dynamic loads, the current has ranged from 12-20 MA. In a system with 18 MJ stored energy, the switch operates at a power of up to 6 TW. We are now investigating the use of the EFF technique to apply high voltages to high impedance loads in systems that are more compact. In these systems we are exploring circuits with EFF lengths from 43-100 cm, which have storage inductances large enough to apply 300-500 kV across high impedance loads. Experimental results and design considerations are presented. Using cylindrical EFF switches of 10 cm diameter and 43 cm length, currents of approximately 3 MA were interrupted producing ~200 kV. This indicates the switch had an effective resistance of ~100 mΩ where 150-200 mΩ was expected. To understand the lower performance, several parameters were studied including electrical conduction through the explosive products; current density; explosive initiation; insulator type and conductor thickness. The results show a number of interesting features, most notably that the primary mechanism of switch operation is mechanical and not electrical fusing of the conductor. Switches opening on a 1-10 μs time scale with resistances starting at 50 μΩ and increasing to perhaps 1 Ω now seem possible to construct using explosive charges as small as a few pounds.

  5. High pressure-resistant nonincendive emulsion explosive

    Science.gov (United States)

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  6. Recent Advances in the Synthesis of High Explosive Materials

    Directory of Open Access Journals (Sweden)

    Jesse J. Sabatini

    2015-12-01

    Full Text Available This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials, processing improvement and formulating aspects using these ingredients, where applicable, are discussed in detail.

  7. Recent Advances in the Synthesis of High Explosive Materials

    OpenAIRE

    Jesse J. Sabatini; Karl D. Oyler

    2015-01-01

    This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials, processing improvement and formulating aspects using these ingredients, where applicable, are discussed in detail.

  8. Motivation for a High Explosive Testing Program in South Africa

    Science.gov (United States)

    2015-12-04

    1~7JJ!i 5a. DATE: 6a. DATE: 7a. DATE: 8. TITLE: Motivation for a High Explosive Testing Program in South Africa 9. CONTRACT NUMBER: 10...00-00-2015 4. TITLE AND SUBTITLE Motivation for a High Explosive Testing Program in South Africa 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...600 Raleigh, NC 27605 Contract Number: HDTRA2-11-D-0001 Motivation for a High Explosive Testing Program in South Africa 4

  9. High-Explosives Applications Facility (HEAF)

    Science.gov (United States)

    Morse, J. L.; Weingart, R. C.

    1989-03-01

    This Safety Analysis Report (SAR) reviews the safety and environmental aspects of the High Explosives Applications Facility (HEAF). Topics covered include the site selected for the HEAF, safety design criteria, operations planned within the facility, and the safety and environmental analyses performed on this project to date. Provided in the Summary section is a review of hazards and the analyses, conclusions, and operating limits developed in this SAR. Appendices provide supporting documents relating to this SAR. This SAR is required by the LLNL Health and Safety Manual and DOE Order 5481.1B(2) to document the safety analysis efforts. The SAR was assembled by the Hazards Control Department, B-Division, and HEAF project personnel. This document was reviewed by B Division, the Chemistry Department, the Hazards Control Department, the Laboratory Associate Director for Administration and Operations, and the Associate Directors ultimately responsible for HEAF operations.

  10. Mesoscale modeling of metal-loaded high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS

    2010-01-01

    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  11. Color camera pyrometry for high explosive detonations

    Science.gov (United States)

    Densmore, John; Biss, Matthew; Homan, Barrie; McNesby, Kevin

    2011-06-01

    Temperature measurements of high-explosive and combustion processes are difficult because of the speed and environment of the events. We have characterized and calibrated a digital high-speed color camera that may be used as an optical pyrometer to overcome these challenges. The camera provides both high temporal and spatial resolution. The color filter array of the sensor uses three color filters to measure the spectral distribution of the imaged light. A two-color ratio method is used to calculate a temperature using the color filter array raw image data and a gray-body assumption. If the raw image data is not available, temperatures may be calculated from processed images or movies depending on proper analysis of the digital color imaging pipeline. We analyze three transformations within the pipeline (demosaicing, white balance, and gamma-correction) to determine their effect on the calculated temperature. Using this technique with a Vision Research Phantom color camera, we have measured the temperature of exploded C-4 charges. The surface temperature of the resulting fireball rapidly increases after detonation and then decayed to a constant value of approximately 1980 K. Processed images indicates that the temperature remains constant until the light intensity decreased below the background value.

  12. Energetic nanocomposites for detonation initiation in high explosives without primary explosives

    Science.gov (United States)

    Comet, Marc; Martin, Cédric; Klaumünzer, Martin; Schnell, Fabien; Spitzer, Denis

    2015-12-01

    The mixing of aluminum nanoparticles with a metal containing oxidizer (here, WO3 or Bi2(SO4)3) gives reactive materials called nanothermites. In this research, nanothermites were combined with high explosive nanoparticles (RDX) to prepare energetic nanocomposites. These smart nanomaterials have higher performances and are much less hazardous than primary explosives. Their flame propagation velocity can be tuned from 0.2 to 3.5 km/s, through their explosive content. They were used to initiate the detonation of a high explosive, the pentaerythritol tetranitrate. The pyrotechnic transduction of combustion into detonation was achieved with short length systems (<2 cm) and small amounts of energetic nanocomposites (˜100 mg) in semi-confined systems.

  13. Some analytical methods for explosives: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Selig, W.

    1965-12-08

    This report is the second compilation of methods for analyzing explosives. All the methods were developed for routine performance by techniques, and an attempt has therefore been made to keep them as simple as possible. Methods are presented for analyzing plastic-bonded explosives based on sym-cyclomethylenetetra-nitramine (HMX), based on viton in addition to HMX, and based on pentraerythritol tetranitrate (PETN).

  14. Equation of state of unreacted high explosives at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, C-S

    1998-08-14

    Isotherms of unreacted high explosives (HMX, RDX, and PETN) have been determined to quasi-hydrostatic high pressures below 45 GPa, by using a diamond-anvil cell angle-resolved synchrotron x-ray diffraction method. The equation-of-state parameters (bulk modulus Bo, and its derivatives B' ) are presented for the 3rd-order Birch-Murnaghan formula based on the measured isotherms. The results are also used to retrieve unreacted Hugoniots in these high explosives and to develop the equations of state and kinetic models for composite high explolsivcs such as XTX-8003 and LX-04. The evidence of shear-induced chemistry of HMX in non-hydrostatic conditions is also presented.

  15. Effect of Center High Explosive in Dispersion of Fuel

    Institute of Scientific and Technical Information of China (English)

    张奇; 林大超; 白春华; 郭彦懿

    2004-01-01

    The dispersion of the fuel due to the center high explosive, including several different physical stages, is analyzed by means of experimental results observed with a high speed motion analysis system, and the effect of center high explosive charge is suggested. The process of the fuel dispersion process can be divided into three main stages, acceleration, deceleration and turbulence. Within a certain scope, the radius of the final fuel cloud dispersed is independent of the center explosive charge mass in an FAE (fuel air explosive) device, while only dependent both on the duration of acceleration stage and on that of the deceleration. In these two stages, the dispersion of the fuel dust mainly occurs along the radial direction. There is a close relation between the fuel dispersion process and the center explosive charge mass. To describe the motion of fuel for different stages of dispersion, different mechanical models should be applied.

  16. High explosive programmed burn in the FLAG code

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, D.; Burton, D.; Lund, C.

    1998-02-01

    The models used to calculate the programmed burn high-explosive lighting times for two- and three-dimensions in the FLAG code are described. FLAG uses an unstructured polyhedra grid. The calculations were compared to exact solutions for a square in two dimensions and for a cube in three dimensions. The maximum error was 3.95 percent in two dimensions and 4.84 percent in three dimensions. The high explosive lighting time model described has the advantage that only one cell at a time needs to be considered.

  17. Are amino groups advantageous to insensitive high explosives (IHEs)?

    Science.gov (United States)

    Cao, Xia; Wen, Yushi; Xiang, Bin; Long, Xinping; Zhang, Chaoyang

    2012-10-01

    There is usually a contradiction between increasing energy densities and reducing sensitivities of explosives. The explosives with both high energy densities and low sensitivities, or the so-called insensitive high explosives (IHEs), are desirable in most cases. It seems from applied explosives that amino groups are advantageous to IHE but the amount of amino groups contained IHEs is very limited. To make this clear, we present systemic examinations of the effects on the two properties stressed in IHEs after introducing amino groups to different molecular skeletons. As a result, the amino groups on resonant sites to nitro groups in conjugated systems can improve distinctly sensitivities and change energy densities in terms of oxygen balance; while the amino groups in unconjugated systems can hardly increase energy densities and usually cause increased sensitivities. It agrees well with a fact that almost all the molecules of applied amino group contained explosives possess conjugated skeletons. We therefore confirm that if amino groups are introduced resonantly to a nitro group in a conjugated system and the introduction improves OB, they are advantageous to IHEs.

  18. Investigation of hazards associated with plastic bonded starter mix manufacturing processes

    Science.gov (United States)

    1971-01-01

    An investigation to determine the hazards potential evaluation of plastic bonded starter mix (PBSM) production processes and the application to the M18 and M7A3 grenades is reported. The investigation indicated: (1) the materials with the greatest hazards characteristics, (2) process operating stations most likely to initiate hazardous conditions, (3) the test program required to examine ignition characteristics and process hazards, and (4) the method of handling the accumulated information from testing and safety analyses.

  19. Coating and Characterization of Mock and Explosive Materials

    Directory of Open Access Journals (Sweden)

    Emily M. Hunt

    2012-01-01

    Full Text Available This project develops a method of manufacturing plastic-bonded explosives by using use precision control of agglomeration and coating of energetic powders. The energetic material coating process entails suspending either wet or dry energetic powders in a stream of inert gas and contacting the energetic powder with atomized droplets of a lacquer composed of binder and organic solvent. By using a high-velocity air stream to pneumatically convey the energetic powders and droplets of lacquer, the energetic powders are efficiently wetted while agglomerate drying begins almost immediately. The result is an energetic powder uniformly coated with binder, that is, a PBX, with a high bulk density suitable for pressing. Experiments have been conducted using mock explosive materials to examine coating effectiveness and density. Energetic materials are now being coated and will be tested both mechanically and thermally. This allows for a comprehensive comparison of the morphology and reactivity of the newly coated materials to previously manufactured materials.

  20. On high explosive launching of projectiles for shock physics experiments.

    Science.gov (United States)

    Swift, Damian C; Forest, Charles A; Clark, David A; Buttler, William T; Marr-Lyon, Mark; Rightley, Paul

    2007-06-01

    The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure

  1. Shock response of the commercial high explosive Detasheet

    Science.gov (United States)

    Asay, B. W.; Ramsay, J. B.; Anderson, M. U.; Graham, R. A.

    1994-12-01

    The mechanical and chemical response of the flexible commercial high explosive DetasheetR is studied under controlled impact and plane-wave, high explosive loading. Results on nonreactive material behavior, sound speed, shock-initiation sensitivity and detonation pressure are presented. The material is found to respond in a viscous manner reminiscent of viscoelastic response of polymeric materials. Time-resolved pressure and pressure-rate measurements with PVDF piezoelectric polymer gauges are presented along with Manganin pressure and plate-dent test measurements of detonation pressure. Detonation pressures of 18GPa are indicated. Pressure measurements show initiation of reaction between 3 and 8 mm for an impact stress of 3.1 GPa. Plane wave loading wedge tests show run distances to detonation consistent with the pressure measurements, and with behavior like that of XTX8003 (80 % PETN/20 % Sylgard 182R).

  2. Study of high current commutation by explosive switch

    Science.gov (United States)

    Usuba, S.; Kakudate, Y.; Yoshida, M.; Fujiwara, S.; Miyamoto, M.; Morita, T.; Kubota, A.; den, M.

    1993-01-01

    The study presents the basic experimental data obtained with a large current opening switch for current commutation using explosives. It is shown that currents up to a maximum of 40 kA can be completely interrupted within 30 microsec. The mechanism of current interruption using a thin conductor plate and methods of measuring interrupting current with a pickup coil and taking photographs with a high-speed camera (one frame per microsec) are discussed.

  3. Characterization Of High Explosives Detonations Via Laser-Induced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    One objective of the Department of Energy’s National Security Administration is to develop technologies that can help the United States government to detect foreign nuclear weapons development activities. The realm of high explosive (HE) experiments is one of the key areas to assess the nuclear ambitions of a country. SRNL has participated in the collection of particulates from HE experiments and characterized the material with the purpose to correlate particulate matter with HE. Since these field campaigns are expensive, on-demand simulated laboratory-scale explosion experiments are needed to further our knowledge of the chemistry and particle formation in the process. Our goal is to develop an experimental test bed in the laboratory to test measurement concepts and correlate particle formation processes with the observables from the detonation fireball. The final objective is to use this knowledge to tailor our experimental setups in future field campaigns. The test bed uses pulsed laser-induced plasmas to simulate micro-explosions, with the intent to study the temporal behavior of the fireball observed in field tests. During FY15, a plan was prepared and executed which assembled two laser ablation systems, procured materials for study, and tested a Step-Scan Fourier Transform Infrared Spectrometer (SS-FTIR). Designs for a shadowgraph system for shock wave analysis, design for a micro-particulate collector from ablated pulse were accomplished. A novel spectroscopic system was conceived and a prototype system built for acquisition of spectral/temporal characterization of a high speed event such as from a high explosive detonation. Experiments and analyses will continue into FY16.

  4. Disposal of waste or excess high explosives. Final report. [Incineration

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The ''Disposal of Waste or Excess High Explosives'' project began January 1971. Various methods of disposal were investigated with the conclusion that incineration, at major ERDA facilities, would be the most feasible and safest method with the least cost and development time required. Two independent incinerator concepts were investigated: a rotary type for continuous processing and an enclosed pit type for batch processing. Both concepts are feasible; however, it is recommended that further investigations would be required to render them acceptable. It is felt that a larger effort would be required in the case of the rotary incinerator. The project was terminated (December 1976) prior to completion as a result of a grant of authority by the Texas Air Control Board allowing the ERDA Pantex Plant to continue indefinitely outdoor burning of explosives.

  5. Model of non-ideal detonation of condensed high explosives

    Science.gov (United States)

    Smirnov, E. B.; Kostitsin, O. V.; Koval, A. V.; Akhlyustin, I. A.

    2016-11-01

    The Zeldovich-Neumann-Doering theory of ideal detonation allows one to describe adequately the detonation of charges with near-critical diameter. For smaller diameters, detonation velocity can differ significantly from an ideal value expected based on equilibrium chemical thermodynamics. This difference is quite evident when using non-ideal explosives; in certain cases, this value can be up to one third of ideal detonation velocity. Numerical simulation of these systems is a very labor-consuming process because one needs to compute the states inside the chemical reaction zone, as well as to obtain data on the equation of state of high-explosive detonation products mixture and on the velocity of chemical reaction; however, these characteristics are poorly studied today. For practical purposes, one can use the detonation shock dynamics model based on interrelation between local velocity of the front and its local curvature. This interrelation depends on both the equation of state of explosion products, and the reaction velocity; but the explicit definition of these characteristics is not needed. In this paper, experimental results are analyzed. They demonstrate interrelation between the local curvature of detonation front and the detonation velocity. Equation of detonation front shape is found. This equation allows us to predict detonation velocity and shape of detonation wave front in arbitrary geometry by integrating ordinary differential equation for the front shape with a boundary condition at the charge edge. The results confirm that the model of detonation shock dynamics can be used to describe detonation processes in non-ideal explosives.

  6. Laser impingement on bare and encased high explosives: safety limits

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, F

    1999-03-15

    During the course of experiments involving high explosives, (HE), alignment lasers are often employed where the laser beam impinges upon a metal encased HE sample or on the bare HE itself during manned operations. While most alignment lasers are of low enough power so as not to be of concern, safety questions arise when considering the maximum credible power output of the laser in a failure mode, or when multiple laser spots are focused onto the experiment simultaneously. Safety questions also arise when the focused laser spot size becomes very small, on the order of 100 {micro}m or less. This paper addresses these concerns by describing a methodology for determining safety margins for laser impingement on metal encased HE as well as one for bare HE. A variety of explosives encased in Al, Cu, Ta and stainless steel were tested using the first of these techniques. Additional experiments were performed using the second method where the laser beam was focused directly on eight different samples of pressed-powder HE.

  7. Impulsive Loading of Armour by High Explosive Squash Head Munition

    Directory of Open Access Journals (Sweden)

    P.U. Deshpande

    2003-10-01

    Full Text Available Results obtained by theoretical modelling studies involving classical stress-strain theories, duly validated by experimental investigation in understanding the mechanism of impulsive loading (scabbing and blast under dynamic and static conditions, are discussed. This concept has been used in designing a high explosive squash head ammunition being effective in defeating monolithic armour. Efforts have been made to carry out an in-depth study in understanding the mechanism of scabbing under static and dynamic (live firing conditions. For this purpose, a one-dimensional computer code has been used to predict the spread of explosive against time on the target. The simulations were carried out using a 2-D Lagrangian hydrodynamic code for scabbing effect. The blast effect that follows under static and dynamic conditions has also been studied. Blast parameters have been computed in terms of TNT equivalent and compared with experimental results. The events occurring during impulsive loading of 135 mm monolithic rolled homogenous armour have been illustrated.

  8. High Resolution Digital Elevation Models of Pristine Explosion Craters

    Science.gov (United States)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  9. High level triggers for explosive mafic volcanism: Albano Maar, Italy

    Science.gov (United States)

    Cross, J. K.; Tomlinson, E. L.; Giordano, G.; Smith, V. C.; De Benedetti, A. A.; Roberge, J.; Manning, C. J.; Wulf, S.; Menzies, M. A.

    2014-03-01

    Colli Albani is a quiescent caldera complex located within the Roman Magmatic Province (RMP), Italy. The recent Via dei Laghi phreatomagmatic eruptions led to the formation of nested maars. Albano Maar is the largest and has erupted seven times between ca 69-33 ka. The highly explosive nature of the Albano Maar eruptions is at odds with the predominant relatively mafic (SiO2 = 48-52 wt.%) foiditic (K2O = 9 wt.%) composition of the magma. The deposits have been previously interpreted as phreatomagmatic, however they contain large amounts (up to 30%vol) of deep seated xenoliths, skarns and all pre-volcanic subsurface units. All of the xenoliths have been excavated from depths of up to 6 km, rather than being limited to the depth at which magma and water interaction is likely to have occurred, suggesting an alternative trigger for eruption. High precision geochemical glass and mineral data of fresh juvenile (magmatic) clasts from the small volume explosive deposits indicate that the magmas have evolved along one of two evolutionary paths towards foidite or phonolite. The foiditic melts record ca. 50% mixing between the most primitive magma and Ca-rich melt, late stage prior to eruption. A major result of our study is finding that the generation of Ca-rich melts via assimilation of limestone, may provide storage for significant amounts of CO2 that can be released during a mixing event with silicate magma. Differences in melt evolution are inferred as having been controlled by variations in storage conditions: residence time and magma volume.

  10. Moderate Velocity Ball Impact of a Mock High-Explosive

    Energy Technology Data Exchange (ETDEWEB)

    Furmanski, Jevan [Los Alamos National Laboratory; Rae, Philip [Los Alamos National Laboratory; Clements, Bradford E. [Los Alamos National Laboratory

    2012-06-05

    Modeling of thermal and mechanical events in high-explosive materials is complicated by the composite nature of the material, which experiences viscoelastic and plastic deformations and sustains damage in the form of microcracks that can dominate its overall behavior. A mechanical event of interest is projectile interaction with the material, which leads to extreme local deformation and adiabatic heating, which can potentially lead to adverse outcomes in an energetic material. Simulations of such an event predicted large local temperature rises near the path of a spherical projectile, but these were experimentally unconfirmed and hence potentially non-physical. This work concerns the experimental verification of local temperatures both at the surface and in the wake of a spherical projectile penetrating a mock (unreactive) high-explosive at {approx}700 m/s. Fast response thermocouples were embedded radially in a mid-plane of a cylindrical target, which was bonded around the thermocouples with epoxy and recorded by an oscilloscope through a low-pass filter with a bandwidth of 500 Hz. A peak temperature rise of 70 K was measured both at the equator of the projectile and in its wake, in good agreement with the temperature predicted in the minimally distorted elements at those locations by a finite element model in ABAQUS employing the ViscoSCRAM constitutive model. Further work is needed to elucidate the extreme temperature rises in material undergoing crushing or fragmentation, which is difficult to predict with meshed finite element methods due to element distortion, and also challenging to quantify experimentally.

  11. Acoustic Methods for Evaluation of High Energy Explosions

    CERN Document Server

    Lobanovsky, Yury I

    2013-01-01

    Two independent acoustic methods were used to verify the results of earlier explosion energy calculations of Chelyabinsk meteoroid. They are: estimations through a path length of infrasound wave and through maximum concentration of the wave energy. The energy of this explosion turned out the same as in earlier calculations, and it is close to 58 Mt of TNT. The first method, as well as evaluations through seismic signals and barograms, have confirmed the energy of Tunguska meteoroid explosion at 14.0 - 14.5 Mt level. Moreover, there is a good agreement between acoustic estimations and other data for the explosion energy of another meteoroid that was ended its flight over the southern part of Indian Ocean, and for two catastrophic volcanoes explosions - Bezymyanny and Krakatoa.

  12. Mechanisms of shock-induced reactions in high explosives

    Science.gov (United States)

    Kay, Jeffrey J.

    2017-01-01

    Understanding the mechanisms by which shock waves initiate chemical reactions in explosives is key to understanding their unique and defining property: the ability to undergo rapid explosive decomposition in response to mechanical stimulus. Although shock-induced reactions in explosives have been studied experimentally and computationally for decades, the nature of even the first chemical reactions that occur in response to shock remain elusive. To predictively understand how explosives respond to shock, the detailed sequence of events that occurs - mechanical deformation, energy transfer, bond breakage, and first chemical reactions - must be understood at the quantum-mechanical level. This paper reviews recent work in this field and ongoing experimental and theoretical work at Sandia National Laboratories in this important area of explosive science.

  13. DMSO/base hydrolysis method for the disposal of high explosives and related energetic materials

    Science.gov (United States)

    Desmare, Gabriel W.; Cates, Dillard M.

    2002-05-14

    High explosives and related energetic materials are treated via a DMSO/base hydrolysis method which renders them non-explosive and/or non-energetic. For example, high explosives such as 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX), 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX), 2,4,6-trinitrotoluene (TNT), or mixtures thereof, may be dissolved in a polar, aprotic solvent and subsequently hydrolyzed by adding the explosive-containing solution to concentrated aqueous base. Major hydrolysis products typically include nitrite, formate, and nitrous oxide.

  14. Computer simulation of metal wire explosion under high rate heating

    Science.gov (United States)

    Zolnikov, K. P.; Kryzhevich, D. S.; Korchuganov, A. V.

    2017-05-01

    Synchronous electric explosion of metal wires and synthesis of bicomponent nanoparticles were investigated on the base of molecular dynamics method. Copper and nickel nanosized crystallites of cylindrical shape were chosen as conductors for explosion. The embedded atom approximation was used for calculation of the interatomic interactions. The agglomeration process after explosion metal wires was the main mechanism for particle synthesis. The distribution of chemical elements was non-uniform over the cross section of the bicomponent particles. The copper concentration in the surface region was higher than in the bulk of the synthesized particle. By varying the loading parameters (heating temperature, the distance between the wires) one can control the size and internal structure of the synthesized bicomponent nanoparticles. The obtained results showed that the method of molecular dynamics can be effectively used to determine the optimal technological mode of nanoparticle synthesis on the base of electric explosion of metal wires.

  15. Systematic approach to verification and validation: High explosive burn models

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Laboratory; Scovel, Christina A. [Los Alamos National Laboratory

    2012-04-16

    Most material models used in numerical simulations are based on heuristics and empirically calibrated to experimental data. For a specific model, key questions are determining its domain of applicability and assessing its relative merits compared to other models. Answering these questions should be a part of model verification and validation (V and V). Here, we focus on V and V of high explosive models. Typically, model developers implemented their model in their own hydro code and use different sets of experiments to calibrate model parameters. Rarely can one find in the literature simulation results for different models of the same experiment. Consequently, it is difficult to assess objectively the relative merits of different models. This situation results in part from the fact that experimental data is scattered through the literature (articles in journals and conference proceedings) and that the printed literature does not allow the reader to obtain data from a figure in electronic form needed to make detailed comparisons among experiments and simulations. In addition, it is very time consuming to set up and run simulations to compare different models over sufficiently many experiments to cover the range of phenomena of interest. The first difficulty could be overcome if the research community were to support an online web based database. The second difficulty can be greatly reduced by automating procedures to set up and run simulations of similar types of experiments. Moreover, automated testing would be greatly facilitated if the data files obtained from a database were in a standard format that contained key experimental parameters as meta-data in a header to the data file. To illustrate our approach to V and V, we have developed a high explosive database (HED) at LANL. It now contains a large number of shock initiation experiments. Utilizing the header information in a data file from HED, we have written scripts to generate an input file for a hydro code

  16. Experimental Comparison of Shock and Bubble Heave Energies from Underwater Explosion of Ideal HE and Explosive Composite Mixtures Highly Enriched with Aluminum

    Science.gov (United States)

    Komissarov, P. V.; Borisov, A. A.; Sokolov, G. N.; Lavrov, V. V.

    Experimental data on shock wave and bubble heave energies at underwater explosion of charges based on highly enriched with aluminium explosive mixtures are reported. Al/O ratios of the mixtures used are varied from 1.31 to 2.36. Al-rich charges up to 30 g were exploded in basin of 2 m in diameter and 5 m in depth. As a result, Al-rich mixtures used are demonstrates overall specific energies of underwater explosion up to twice higher than conventional high explosives.

  17. The analysis of high explosives by liquid chromatography/electrospray ionization mass spectrometry: multiplexed detection of negative ion adducts.

    Science.gov (United States)

    Mathis, John A; McCord, Bruce R

    2005-01-01

    The negative ion electrospray ionization mass spectrometric (ESI-MS) detection of adducts of high explosives with chloride, formate, acetate, and nitrate was used to demonstrate the gas-phase interaction of neutral explosives with these anions. The relative intensities of the adduct species were determined to compare the competitive formation of the selected high explosives and anions. The relative stability of the adduct species varies, yielding preferential formation of certain anionic adducts with different high explosives. To exploit this effect, an isocratic high-performance liquid chromatography (HPLC)/ESI-MS method was developed and used for the simultaneous analysis of high explosives using two different techniques for the addition of the anionic additives; pre- and post-column. The results show that the pre-column approach provides similar results with improved selectivity for specific explosives. By detecting characteristic adduct species for each explosive, this method provides a qualitative and quantitative approach for the analysis and identification of high explosives.

  18. iVCJ: A tool for Interactive Visualization of high explosives CJ states

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aslam, Tariq Dennis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von Howard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-12

    A graphical user interface (GUI) tool has been developed that facilitates the visualization and analysis of the Chapman-Jouguet state for high explosives gaseous products using the Jones- Wilkins-Lee equation of state.

  19. An explicit model of expanding cylindrical shells subjected to high explosive detonations

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, R.L.; Prime, M.B.; Anderson, C.A. [Los Alamos National Lab., NM (United States); Smith, F.W. [Colorado State Univ., Fort Collins, CO (United States)

    1999-04-01

    A viscoplastic constitutive model was formulated to model the high strain-rate expansion of thin cylindrical shells subjected to internal explosive detonations. This model provides insight into the development of plastic instabilities, which occur on the surface of the shells prior to failure. The effects of shock heating and damage in the form of microvoid nucleation, growth, and coalescence were incorporated using the Johnson-Cook strength model with the Mie-Grueneisen equation of state and a modified Gurson yield surface. This model was implemented into ABAQUS/Explicit as a user material subroutine. A cylindrical copper shell was modeled using both axisymmetric and plane strain elements. The high explosive material inside of the cylinder was simulated using the high explosive burn model in ABAQUS/Explicit. Two experiments were conducted involving explosive-filled, copper cylinders and good agreement was obtained between the numerical results and experimental data.

  20. Role of explosive instabilities in high-$\\beta$ disruptions in tokamaks

    CERN Document Server

    Aydemir, A Y; Lee, S G; Seol, J; Park, B H; In, Y K

    2016-01-01

    Intrinsically explosive growth of a ballooning finger is demonstrated in nonlinear magnetohydrodynamic calculations of high-$\\beta$ disruptions in tokamaks. The explosive finger is formed by an ideally unstable n=1 mode, dominated by an m/n=2/1 component. The quadrupole geometry of the 2/1 perturbed pressure field provides a generic mechanism for the formation of the initial ballooning finger and its subsequent transition from exponential to explosive growth, without relying on secondary processes. The explosive ejection of the hot plasma from the core and stochastization of the magnetic field occur in Alfv\\'enic time scales, accounting for the extremely fast growth of the precursor oscillations and the rapidity of the thermal quench in some high-$\\beta$ disruptions.

  1. Cladding of High Mn Steel on Low C Steel by Explosive Welding

    OpenAIRE

    ACARER, Mustafa

    2014-01-01

    High Mn steel containing about 16% Mn was cladded to a low C steel by explosive welding. The experimental results showed that the bonding interface has a wavy morphology; the welding interface has the characteristics of both sharp transition and local melted zones between 2 metals. Hardness increased near the welding interface due to excess plastic deformation in the explosion area and phase transformation from g (f.c.c.) to a (b.c.c.).

  2. Explosives in the Cage: Metal-Organic Frameworks for High-Energy Materials Sensing and Desensitization.

    Science.gov (United States)

    Wang, Shan; Wang, Qianyou; Feng, Xiao; Wang, Bo; Yang, Li

    2017-07-21

    An overview of the current status of coordination polymers and metal-organic frameworks (MOFs) pertaining to the field of energetic materials is provided. The explosive applications of MOFs are discussed from two aspects: one for detection of explosives, and the other for explosive desensitization. By virtue of their adjustable pore/cage sizes, high surface area, tunable functional sites, and rich host-guest chemistry, MOFs have emerged as promising candidates for both explosive sensing and desensitization. The challenges and perspectives in these two areas are thoroughly discussed, and the processing methods for practical applications are also discussed briefly. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Computer code to predict the heat of explosion of high energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Muthurajan, H. [Armament Research and Development Establishment, Pashan, Pune 411021 (India)], E-mail: muthurajan_h@rediffmail.com; Sivabalan, R.; Pon Saravanan, N.; Talawar, M.B. [High Energy Materials Research Laboratory, Sutarwadi, Pune 411 021 (India)

    2009-01-30

    The computational approach to the thermochemical changes involved in the process of explosion of a high energy materials (HEMs) vis-a-vis its molecular structure aids a HEMs chemist/engineers to predict the important thermodynamic parameters such as heat of explosion of the HEMs. Such a computer-aided design will be useful in predicting the performance of a given HEM as well as in conceiving futuristic high energy molecules that have significant potential in the field of explosives and propellants. The software code viz., LOTUSES developed by authors predicts various characteristics of HEMs such as explosion products including balanced explosion reactions, density of HEMs, velocity of detonation, CJ pressure, etc. The new computational approach described in this paper allows the prediction of heat of explosion ({delta}H{sub e}) without any experimental data for different HEMs, which are comparable with experimental results reported in literature. The new algorithm which does not require any complex input parameter is incorporated in LOTUSES (version 1.5) and the results are presented in this paper. The linear regression analysis of all data point yields the correlation coefficient R{sup 2} = 0.9721 with a linear equation y = 0.9262x + 101.45. The correlation coefficient value 0.9721 reveals that the computed values are in good agreement with experimental values and useful for rapid hazard assessment of energetic materials.

  4. Computer code to predict the heat of explosion of high energy materials.

    Science.gov (United States)

    Muthurajan, H; Sivabalan, R; Pon Saravanan, N; Talawar, M B

    2009-01-30

    The computational approach to the thermochemical changes involved in the process of explosion of a high energy materials (HEMs) vis-à-vis its molecular structure aids a HEMs chemist/engineers to predict the important thermodynamic parameters such as heat of explosion of the HEMs. Such a computer-aided design will be useful in predicting the performance of a given HEM as well as in conceiving futuristic high energy molecules that have significant potential in the field of explosives and propellants. The software code viz., LOTUSES developed by authors predicts various characteristics of HEMs such as explosion products including balanced explosion reactions, density of HEMs, velocity of detonation, CJ pressure, etc. The new computational approach described in this paper allows the prediction of heat of explosion (DeltaH(e)) without any experimental data for different HEMs, which are comparable with experimental results reported in literature. The new algorithm which does not require any complex input parameter is incorporated in LOTUSES (version 1.5) and the results are presented in this paper. The linear regression analysis of all data point yields the correlation coefficient R(2)=0.9721 with a linear equation y=0.9262x+101.45. The correlation coefficient value 0.9721 reveals that the computed values are in good agreement with experimental values and useful for rapid hazard assessment of energetic materials.

  5. Research of explosives in an environment of high pressure and temperature using a new test stand

    Directory of Open Access Journals (Sweden)

    Jan Drzewiecki

    2015-01-01

    Full Text Available In this article the test stand for determining the blast abilities of explosives in high pressure and temperature conditions as well as the initial results of the research are presented. Explosives are used in rock burst and methane prevention to destroy precisely defined fragments of the rock mass where energy and methane are accumulated. Using this preventive method for fracturing the structure of the rocks which accumulate the energy or coal of the methane seam very often does not bring the anticipated results. It is because of the short range of destructive action of the post-blast gases around the blast hole. Evaluation of the blast dynamics of explosives in a test chamber, i.e. in the pressure and temperature conditions comparable to those found “in situ”, will enable evaluation of their real usefulness in commonly used mining hazard preventive methods. At the same time, it will enable the development of new designs of the explosive charges used for precisely determined mining hazards. In order to test the explosives for their use in difficult environmental conditions and to determine the characteristics of their explosion, a test chamber has been built. It is equipped with a system of sensors and a high-frequency recording system of pressure and temperature during a controlled explosion of an explosive charge. The results of the research will enable the development of new technologies for rock burst and methane prevention which will significantly increase workplace health and safety level. This paper presented results constitute the initial phase of research started in the middle of 2014.

  6. A novel method for the measurement of the von Neumann spike in detonating high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Sollier, A., E-mail: arnaud.sollier@cea.fr [CEA, DAM, DIF, 91297 Arpajon (France); Bouyer, V.; Hébert, P.; Doucet, M. [CEA, DAM, Le Ripault, 37260 Monts (France)

    2016-06-28

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressure lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.

  7. High methane natural gas/air explosion characteristics in confined vessel.

    Science.gov (United States)

    Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing

    2014-08-15

    The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen.

  8. 高含铝炸药爆炸过程中的能量分析%Energy Analysis in the Explosion Process of High Aluminized Explosive

    Institute of Scientific and Technical Information of China (English)

    李静; 王伯良; 赵新颖; 滕婉婷

    2013-01-01

    在野外静爆实验中,利用高分辨率、高精度冲击波超压系统分别测试了高含铝炸药和TNT的爆炸场冲击波超压,根据试验数据,计算该含铝炸药的爆炸场冲击波超压的TNT当量,利用TNT当量评价该高含铝炸药的威力,用能量反演方法分析该含铝炸药中可燃组分的反应程度和可能的反应模式,计算可得该含铝炸药爆炸反应释放能量的有效利用率为65.41%,为高含铝炸药配方优化设计提供新的研究方法.%The shock wave overpressures were measured in explosion field tests for high aluminized explosive and TNT with high resolution and precision. Based on the experimental data and explosion law, the TNT equivalence of shock wave overpressure in explosion field for high aluminized explosive was calculated. The power of aluminized explosive was estimated by TNT equivalence, and the energy inversion principle was applied to assess the reaction extent of combustible components and possible reaction patterns of metal component. It is obtained by calculation that the effective utilization of energy in the aluminized explosive is 65. 41% , which provides a new approach for aluminized explosive optimization design.

  9. Modeling of Cooling and Solidification of TNT based Cast High Explosive Charges

    Directory of Open Access Journals (Sweden)

    A. Srinivas Kumar

    2014-07-01

    Full Text Available Cast trinitrotoluene (TNT based high explosive charges suffer from different defects such as cracks, voids, etc. One of the quality control measures is to cool the castings gradually, so that the entire charge solidifies without a large temperature gradient from core to the periphery of the cast charge. The fact that the solidification of high explosive casting starts from the periphery (cooler side and travels towards the center enables us to predict the solidification profile of TNT based explosive castings. Growth of solidification thickness and cooling temperature profiles of TNT based cast high explosive charges are predicted as functions of time and space using unsteady state heat transfer principles, associated with heat balance at solid to liquid interface as a moving boundary of solidification. This will enable adoption of proper quality control during solidification of the molten TNT to eliminate inherent drawbacks of cast high explosive charges. The solidification profiles of TNT based cast charges under controlled and natural conditions are predicted and the model is validated against 145 mm diameter TNT cast charge which is found to be in broad agreement with experiments.Defence Science Journal, Vol. 64, No. 4, July 2014, pp.339-343, DOI:http://dx.doi.org/10.14429/dsj.64.4673

  10. Identification of high explosive RDX using terahertz imaging and spectral fingerprints

    Science.gov (United States)

    Liu, Jia; Fan, Wen-Hui; Chen, Xu; Xie, Jun

    2016-01-01

    We experimentally investigated the spectral fingerprints of high explosive cyclo-1,3,5- trimethylene-2,4,6-trinitramine (RDX) in terahertz frequency region. A home-made terahertz time-domain spectroscopy ranging from 0.2 THz∼ 3.4 THz was deployed. Furthermore, two sample pellets (RDX pellet and polyethylene pellet), which were concealed in an opaque envelop, could be identified by using terahertz pulse imaging system. For the purpose of distinguishing the RDX between two pellets, we further calculated the THz frequency -domain map using its spectral fingerprints. It is demonstrated that the high explosive RDX could similarly be identified using terahertz frequency-domain imaging.

  11. Comparison Between Surf and Multi-Shock Forest Fire High Explosive Burn Models

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Nicholas Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-18

    PAGOSA1 has several different burn models used to model high explosive detonation. Two of these, Multi-Shock Forest Fire and Surf, are capable of modeling shock initiation. Accurately calculating shock initiation of a high explosive is important because it is a mechanism for detonation in many accident scenarios (i.e. fragment impact). Comparing the models to pop-plot data give confidence that the models are accurately calculating detonation or lack thereof. To compare the performance of these models, pop-plots2 were created from simulations where one two cm block of PBX 9502 collides with another block of PBX 9502.

  12. Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Kevin B [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, Otis R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benjamin, Russ [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlop, William H [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-29

    A computational study was performed to examine the differences in near-surface ground-waves and air-blast waves generated by high-explosive energy sources and those generated by much higher energy - density low - yield nuclear sources. The study examined the effect of explosive-source emplacement (i.e., height-of-burst, HOB, or depth-of-burial, DOB) over a range from depths of -35m to heights of 20m, for explosions with an explosive yield of 1-kt . The chemical explosive was modeled by a JWL equation-of-state model for a ~14m diameter sphere of ANFO (~1,200,000kg – 1 k t equivalent yield ), and the high-energy-density source was modeled as a one tonne (1000 kg) plasma of ‘Iron-gas’ (utilizing LLNL’s tabular equation-of-state database, LEOS) in a 2m diameter sphere, with a total internal-energy content equivalent to 1 k t . A consistent equivalent-yield coupling-factor approach was developed to compare the behavior of the two sources. The results indicate that the equivalent-yield coupling-factor for air-blasts from 1 k t ANFO explosions varies monotonically and continuously from a nearly perfec t reflected wave off of the ground surface for a HOB ≈ 20m, to a coupling factor of nearly zero at DOB ≈ -25m. The nuclear air - blast coupling curve, on the other hand, remained nearly equal to a perfectly reflected wave all the way down to HOB’s very near zero, and then quickly dropped to a value near zero for explosions with a DOB ≈ -10m. The near - surface ground - wave traveling horizontally out from the explosive source region to distances of 100’s of meters exhibited equivalent - yield coupling - factors t hat varied nearly linearly with HOB/DOB for the simulated ANFO explosive source, going from a value near zero at HOB ≈ 5m to nearly one at DOB ≈ -25m. The nuclear-source generated near-surface ground wave coupling-factor remained near zero for almost all HOB’s greater than zero, and then appeared to vary nearly - linearly with depth

  13. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2011-11-22

    performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same

  14. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2011-11-22

    performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same

  15. High explosive spot test analyses of samples from Operable Unit (OU) 1111

    Energy Technology Data Exchange (ETDEWEB)

    McRae, D.; Haywood, W.; Powell, J.; Harris, B.

    1995-01-01

    A preliminary evaluation has been completed of environmental contaminants at selected sites within the Group DX-10 (formally Group M-7) area. Soil samples taken from specific locations at this detonator facility were analyzed for harmful metals and screened for explosives. A sanitary outflow, a burn pit, a pentaerythritol tetranitrate (PETN) production outflow field, an active firing chamber, an inactive firing chamber, and a leach field were sampled. Energy dispersive x-ray fluorescence (EDXRF) was used to obtain semi-quantitative concentrations of metals in the soil. Two field spot-test kits for explosives were used to assess the presence of energetic materials in the soil and in items found at the areas tested. PETN is the major explosive in detonators manufactured and destroyed at Los Alamos. No measurable amounts of PETN or other explosives were detected in the soil, but items taken from the burn area and a high-energy explosive (HE)/chemical sump were contaminated. The concentrations of lead, mercury, and uranium are given.

  16. Why not only electric discharge but even a minimum charge on the surface of highly sensitive explosives can catalyze their gradual exothermic decomposition and how a cloud of unipolar charged explosive particles turns into ball lightning

    CERN Document Server

    Meshcheryakov, Oleg

    2014-01-01

    Even a single excess electron or ion migrating on the surface of sensitive explosives can catalyze their gradual exothermic decomposition. Mechanisms underlying such a charge-induced gradual thermal decomposition of highly sensitive explosives can be different. If sensitive explosive is a polar liquid, intense charge-dipole attraction between excess surface charges and surrounding explosive molecules can result in repetitive attempts of solvation of these charges by polar explosive molecules. Every attempt of such uncompleted nonequilibrium solvation causes local exothermic decomposition of thermolabile polar molecules accompanied by further thermal jumping unsolvated excess charges to new surface sites. Thus, ionized mobile hot spots emerge on charged explosive surface. Stochastic migration of ionized hot spots on explosive surface causes gradual exothermic decomposition of the whole mass of the polar explosive. The similar gradual charge-catalyzed exothermic decomposition of both polar and nonpolar highly s...

  17. Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds

    Energy Technology Data Exchange (ETDEWEB)

    Yoh, J J; McClelland, M A

    2003-07-16

    We present an overview of computational techniques for simulating the thermal cookoff of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the response of energetic materials systems exposed to extreme thermal environments, such as fires. We consider an idealized model process for a confined explosive involving the transition from slow heating to rapid deflagration in which the time scale changes from days to hundreds of microseconds. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics.

  18. Transmission electron microscopy and x-ray diffraction studies of the detonation soot of high explosives

    Science.gov (United States)

    Kashkarov, A. O.; Pruuel, E. R.; Ten, K. A.; Rubtsov, I. A.; Gerasimov, E. Yu; Zubkov, P. I.

    2016-11-01

    This paper presents the results of electron microscopy and x-ray diffraction studies of the recovered carbonaceous residue (soot) from the detonation of some high explosives: TNT, a mixture of TNT and RDX (50/50), benzotrifuroxane, and triaminotrinitrobenzene. The use of the same experimental setup allowed a qualitative and quantitative comparison of the detonation products formed under similar conditions. The results clearly show differences in the morphology of graphite-like and diamond inclusions and in the quantitative content of nanodiamonds for the explosives used in this study.

  19. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    Science.gov (United States)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  20. The Influence of Thermal Conditions on the Thermomechanics of Particulate-Composite, Mock Explosive Samples under Near-Resonant Excitation

    OpenAIRE

    2016-01-01

    Vapor detection is one of the most effective ways to find hidden plastic-bonded explosives in the field today. In recent years, it has been demonstrated that providing near-resonant vibratory excitation to explosives dramatically increases their vapor pressure, allowing for easier detection. Unfortunately, there currently exists a limited understanding of the thermomechanics of energetic material. This study seeks to help fill this technical void by exploring the thermomechanics of mock plast...

  1. Recent Advances in the Synthesis of High Explosive Materials

    Science.gov (United States)

    2016-05-09

    resistant to oxidation than lead azide when subjected to thermal cycling conditions (i.e., high temperature and high humidity). DBX-1 is known to... high thermal stability [29]. Unlike the blue copper (II) nitrotetrazole octahedral complex reported by Huynh [30], DBX-1 is the copper (I) salt that...applications as well. DBX-1 has been shown to be more resistant to oxidation than lead azide when subjected to thermal cycling conditions (i.e., high

  2. MEKC-UV as an effective tool for the separation and identification of explosives, high explosives, and their degradation products in environmental samples.

    Science.gov (United States)

    Copper, Christine; Brensinger, Karen; Rollman, Christopher; Clark, Alexis; Perez, Marlene; Genzman, Ashton; Rine, Jacqueline; Moini, Mehdi

    2016-10-01

    MEKC has been used in conjunction with UV detection for identification and quantitation of high explosives in environmental samples. To ensure the compatibility of the technique with ESI-MS, perfluorooctanoic acid (PFOA), a volatile micelle, was used. Separation of EPA Method 8330 Mixes A and B using various concentrations of the micelle showed that the 80 mM solution of PFOA was the optimum concentration for the separation of the explosives. MEKC analysis of explosives with ESI-MS under optimum micelle concentration provided excellent results indicating the compatibility of the method with ESI-MS. Finally, the MEKC-UV method was applied to the detection and quantitation of explosives in various environmental samples including water, sand, and soil. The results demonstrate that the MEKC method described herein is a viable technique for detection of explosives in environmental samples using UV detection, while maintaining the compatibility of the technique with MS detection without any modification to the separation method, if laboratories decided to pursue this route in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Calculating the dynamics of High Explosive Violent Response (HEVR) after ignition

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2008-10-15

    We are developing models to describe the circumstances when molecular and composite explosives undergo a rapid release of energy without detonating, and to describe the evolution of the energy release. The models also apply to the behavior of rocket propellants subject to mechanical insult, whether for accidents (Hazards) or the suite of standardized tests used to assess whether the system can be designated an Insensitive Munition (IM). In the applications described here, we are studying a UK-developed HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) explosive, which is 91% by weight HMX and 9% binder-plasticizer. Most explosives and propellants, when subjected to a mechanical insult such as a drop or impact that is well below the threshold for detonation, have been observed to react. In some circumstances the reaction can be violent. This behavior is known as High Explosive Violent Response (HEVR). Fundamental to our model is the observation that the mechanical insult produces damage in a volume of the explosive near the trajectory of the impactor. The damage is manifest as surface area through the creation of cracks and fragments, and also as porosity through the separation of crack faces and isolation of the fragments. Open porosity permits a flame to spread easily and so ignite the newly formed surface area. The additional surface area leads to a direct increase in the mass-burning rate. As the kinetic energy and power of the insult increases, the degree of damage and the volume of damage both increase. Upon a localized ignition, the flame spreads to envelop the damaged volume, and the pressure rises at an accelerated rate until neither mechanical strength nor inertial confinement can successfully contain the pressure. The confining structure begins to expand. This reduces the pressure and may even extinguish the flame. Both the mass of explosive involved and the rate at which the gas is produced contribute to each of several different measures of violence

  4. Ion Mobility Spectrometry - High Resolution LTQ-Orbitrap Mass Spectrometry for Analysis of Homemade Explosives

    Science.gov (United States)

    Hagan, Nathan; Goldberg, Ilana; Graichen, Adam; St. Jean, Amanda; Wu, Ching; Lawrence, David; Demirev, Plamen

    2017-08-01

    The detailed chemical characterization of homemade explosives (HMEs) and other chemicals that can mimic or mask the presence of explosives is important for understanding and improving the performance of commercial instrumentation used for explosive detection. To that end, an atmospheric-pressure drift tube ion mobility spectrometry (IMS) instrument has been successfully coupled to a commercial tandem mass spectrometry (MS) system. The tandem MS system is comprised of a linear ion trap and a high resolution Orbitrap analyzer. This IMS-MS combination allows extensive characterization of threat chemical compounds, including HMEs, and complex real-world background chemicals that can interfere with detection. Here, the composition of ion species originating from a specific HME, erythritol tetranitrate, has been elucidated using accurate mass measurements, isotopic ratios, and tandem MS. Gated IMS-MS and high-resolution MS have been used to identify minor impurities that can be indicative of the HME source and/or synthesis route. Comparison between data obtained on the IMS/MS system and on commercial stand-alone IMS instruments used as explosive trace detectors (ETDs) has also been performed. Such analysis allows better signature assignments of threat compounds, modified detection algorithms, and improved overall ETD performance.

  5. The High-Metallicity Explosion Environment of the Relativistic Supernova 2009bb

    CERN Document Server

    Levesque, E M; Foley, R J; Berger, E; Kewley, L J; Chakraborty, S; Ray, A; Torres, M A P; Challis, P; Kirshner, R P; Barthelmy, S D; Bietenholz, M F; Chandra, P; Chaplin, V; Chevalier, R A; Chugai, N; Connaughton, V; Copete, A; Fox, O; Fransson, C; Grindlay, J E; Hamuy, M A; Milne, P A; Pignata, G; Stritzinger, M D; Wieringa, M H

    2009-01-01

    We investigate the environment of the nearby (d ~ 40Mpc) broad-lined Type Ic supernova SN 2009bb. This event was observed to produce a relativistic outflow likely powered by a central accreting compact object. While such a phenomenon was previously observed only in long-duration gamma-ray bursts (LGRBs), no LGRB was detected in association with SN 2009bb. Using an optical spectrum of the SN 2009bb explosion site, we determine a variety of ISM properties for the host environment, including metallicity, young stellar population age, and star formation rate. We compare the SN explosion site properties to observations of LGRB and broad-lined SN Ic host environments on optical emission line ratio diagnostic diagrams. Based on these analyses, we find that the SN 2009bb explosion site has a very high metallicity of ~2x solar, in agreement with other broad-lined SN Ic host environments and at odds with the low-redshift LGRB host environments and recently proposed maximum metallicity limits for relativistic explosions...

  6. Oblique Plate Impact Experiments to Study the Compression-Shear Behavior of the HMX Based Explosive PBX 9501

    Science.gov (United States)

    Reinhart, William; Gustavsen, Rick; Vogler, Tracy; Alexander, Scott; Thornhill, Tom; Clements, Brad; Bartram, Brian; SNL/LANL Collaboration

    2013-06-01

    HMX (cyclotetramethylene-tetranitramine) based explosive, PBX 9501, is a conventional high explosive formulation composed of 95% wt. of HMX and 5% binders. A series of experiments were performed to investigate one-dimensional combined pressure-shear waves in PBX-9501. This study is thought to be the first to estimate shear stress and strength in a plastic bonded high explosive. Experiments were conducted using Sandia National Laboratories oblique launcher at the Shock Thermodynamics Applied Research (STAR) facility. A projectile is keyed to a slot in the launcher barrel in order to prevent rotation. The projectile is faced with a titanium alloy plate inclined at 20 degrees to the launcher axis. The target consists of a 1 mm thick PBX 9501 disk sandwiched between two titanium alloy plates. Measurements of shear and longitudinal particle velocities were used to determine stresses and infer strength. Longitudinal stresses from 1.4 to 3.1 GPa were applied which presented corresponding shear stresses of 0.1 to 0.23 GPa at high shearing strain rates up to 0.4 x 105s-1. This experimental data now provides for the first time, relevant information for model development.

  7. Equation of state formulation for unreacted solid high explosive PETN

    Science.gov (United States)

    Nagayama, K.; Kubota, S.

    2017-01-01

    In this paper, a generalized procedure of providing p-v-ɛ equation of state (EOS) is developed based on the hydrostatic compression data with Birch-Murnaghan form of the isotherm. Obtained formula can be used to calculate Grüneisen EOS with arbitrary specific heat as a function of entropy, Cv(S), and arbitrary Grüneisen volume function, γ(v). It is found that different Grüneisen function gives only slight effects on EOS and p-v shock Hugoniot. On the contrary, T-v shock Hugoniot strongly depends on Cv(S) function. Constant Cv(S) gives overestimated high shock temperature TH, while linear Cv(S) gives much lower value, and intermediate function may give appropriate TH values.

  8. Progress in model development to quantify High Explosive Violent Response (HEVR) to mechancial insult

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2008-07-29

    The rapid release of chemical energy has found application for industrial and military purposes since the invention of gunpowder. Black powder, smokeless powder of various compositions, and pyrotechnics all exhibit the rapid release of energy without detonation when they are being used as designed. The rapidity of energy release for these materials is controlled by adjustments to the particle surface area (propellant grain configuration or powder particle size) in conjunction with the measured pressure-dependent burning rate, which is very subsonic. In this way a manufacturing process can be used to engineer the desired violence of the explosion. Detonations in molecular explosives, in contrast, propagate with a supersonic velocity that depends on the loading density, but is independent of the surface area. In ideal detonations, the reaction is complete within a small distance of the propagating shock front. Non-ideal detonations in molecular and composite explosives proceed with a slower velocity, and the reaction may continue well behind the shock front. We are developing models to describe the circumstances when molecular and composite explosives undergo a rapid release of energy without detonating. The models also apply to the behavior of rocket propellants subject to mechanical insult, whether for accidents (Hazards) or the suite of standardized tests used to assess whether the system can be designated an Insensitive Munition (IM). In the application described here, we are studying an HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) explosive developed in the UK, which is 91% by weight HMX and 9% binder-plasticizer. Most explosives and propellants, when subjected to a mechanical insult, drop or impact that is well below the threshold for detonation have been observed to react violently. This behavior is known as High Explosive Violent Reaction (HEVR). The basis of our model is the observation that the mechanical insult produces damage in a volume of the

  9. Single and multiple impact ignition of new and aged high explosives in the Steven Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, S K; DePiero, A H; Garza, R G; Tarver, C M

    1999-06-01

    Threshold impact velocities for ignition of exothermic reaction were determined for several new and aged HMX-based solid high explosives using three types of projectiles in the Steven Test. Multiple impact threshold velocities were found to be approximately 10% lower in damaged charges that did not react in one or more prior impacts. Projectiles with protrusions that concentrate the friction work in a small volume of explosive reduced the threshold velocities by approximately 30%. Flat projectiles required nearly twice as high velocities for ignition as rounded projectiles. Blast overpressure gauges were used for both pristine and damaged charges to quantitatively measure reaction violence. Reactive flow calculations of single and multiple impacts with various projectiles suggest that the ignition rates double in damaged charges.

  10. Determination of the Chapman- Jouguet Pressure of a High Explosive from One Single Test

    Directory of Open Access Journals (Sweden)

    Manfred Held

    1987-01-01

    Full Text Available Instead of evaluating the data of the surface velocities of adjacent metal foils of different thicknesses with reference to the high explosive charge, the shock wave velocity in a plexiglass block from one firing for one charge type was measured as a function of distance. If the high explosive charge is large enough, for example 64 mm diameter and 100 mm long, then the shock wave induced in the plexiglass gives, over the first 15 mm, a shock velocity which correlates with the detonation pressure or Chapman-Jouguet pressure. With the resolution inherent in this technique, an enhanced velocity over the first few millimeters, which would correspond to a von Neumann spike, could not be detected.

  11. Can dissipation prevent explosive decomposition in high-energy heavy ion collisions?

    CERN Document Server

    Fraga, E S; Fraga, Eduardo S.

    2005-01-01

    We discuss the role of dissipation in the explosive spinodal decomposition scenario of hadron production during the chiral transition after a high-energy heavy ion collision. We use a Langevin description inspired by microscopic nonequilibrium field theory results to perform real-time lattice simulations of the behavior of the chiral fields. We show that the effect of dissipation can be dramatic. Analytic results for the short-time dynamics are also presented.

  12. Water Temperature and Concentration Measurements Within the Expanding Blast Wave of a High Explosive

    Science.gov (United States)

    2011-03-15

    housing was made of 1018 steel , and the gauge roof was extended to shield the opto- mechanical components from the primary blast wave. The input fiber...regions of each image indicate the steel frame and support crossbars of the gauge. This set of images provides a sense of the speed with which the shock was...University Press) [3] Peuker J M, Lynch P, Krier H and Glumac N 2009 Optical depth measurements of fireballs from aluminized high explosives Opt

  13. Identification of Explosives from Porous Materials: Applications Using Reverse Phase High Performance Liquid Chromatography and Gas Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Miller; G. Elias; N.C. Schmitt; C. Rae

    2010-06-01

    High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to specifically identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol using no sample cleanup prior to analysis. The methanol extracts were injected directly into several different column types and analyzed by HPLC-UV and/or GC-ECD. This paper describes general screening methods that were used to determine the presence of explosives in unknown samples and techniques that have been optimized for quantification of each explosive from the substrate extracts.

  14. Transmission and Reflection Terahertz Spectroscopy of Insensitive Melt-Cast High-Explosive Materials

    Science.gov (United States)

    Palka, Norbert; Szala, Mateusz

    2016-10-01

    Currently, artillery shells and grenades that are introduced into the market are based on melt-castable insensitive high explosives (IHEs), which do not explode while they run a risk of impact, heat or shrapnel. Particles of explosives (such as hexogen, nitroguanidine and nitrotriazolone) are suspended in different proportions in a matrix of 2.4-dinitroanisole. In this paper, we investigated samples of commonly used IHEs: PAX-41, IMX-104 and IMX-101, whose internal structures were determined by a scanning electron microscope. Terahertz time domain spectroscopy was applied in both transmission and reflection configurations. At first, the complex refraction indices of four pure constituents creating IHEs were determined and became the basis of further calculations. Next, the experimentally determined transmission and reflection spectra of IHEs and pure constituents were compared with theoretical considerations. The influence of the grain size of constituent material and scattering on the reflection spectra was analysed, and good agreement between the experimental and theoretical data was achieved.

  15. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    Energy Technology Data Exchange (ETDEWEB)

    Chipman, V D

    2011-09-20

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

  16. 3-D high-speed imaging of volcanic bomb trajectory in basaltic explosive eruptions

    Science.gov (United States)

    Gaudin, D.; Taddeucci, J.; Houghton, B. F.; Orr, T. R.; Andronico, D.; Del Bello, E.; Kueppers, U.; Ricci, T.; Scarlato, P.

    2016-10-01

    Imaging, in general, and high speed imaging in particular are important emerging tools for the study of explosive volcanic eruptions. However, traditional 2-D video observations cannot measure volcanic ejecta motion toward and away from the camera, strongly hindering our capability to fully determine crucial hazard-related parameters such as explosion directionality and pyroclasts' absolute velocity. In this paper, we use up to three synchronized high-speed cameras to reconstruct pyroclasts trajectories in three dimensions. Classical stereographic techniques are adapted to overcome the difficult observation conditions of active volcanic vents, including the large number of overlapping pyroclasts which may change shape in flight, variable lighting and clouding conditions, and lack of direct access to the target. In particular, we use a laser rangefinder to measure the geometry of the filming setup and manually track pyroclasts on the videos. This method reduces uncertainties to 10° in azimuth and dip angle of the pyroclasts, and down to 20% in the absolute velocity estimation. We demonstrate the potential of this approach by three examples: the development of an explosion at Stromboli, a bubble burst at Halema'uma'u lava lake, and an in-flight collision between two bombs at Stromboli.

  17. Micro- and nano- second time scale, high power electrical wire explosions in water.

    Science.gov (United States)

    Grinenko, Alon; Efimov, Sergey; Sayapin, Arkadii; Fedotov, Alexander; Gurovich, Viktor; Krasik, Yakov

    2006-10-01

    Experimental and magneto-hydro-dynamic simulation results of micro- and nanosecond time scale underwater electrical Al, Cu and W wires explosions are presented. A capacitor bank with stored energy up to 6 kJ (discharge current up to 80 kA with 2.5 μs quarter period) was used in microsecond time scale experiments and water forming line generator with current amplitude up to 100 kA and pulse duration of 100 ns were used in nanosecond time scale experiments. Extremely high energy deposition of up to 60 times the atomization enthalpy was registered in nanosecond time scale explosions. A discharge channel evolution and surface temperature were analyzed by streak shadow imaging and using fast photo-diode with a set of interference filters, respectively. Microsecond time scale electrical explosion of cylindrical wire array showed extremely high pressure of converging shock waves at the axis, up to 0.2 MBar. A 1D and 2D magneto-hydro-dynamic simulation demonstrated good agreement with such experimental parameters as discharge channel current, voltage, radius, and temperature.

  18. 3-D high-speed imaging of volcanic bomb trajectory in basaltic explosive eruptions

    Science.gov (United States)

    Gaudin, D.; Taddeucci, J; Houghton, B. F.; Orr, Tim R.; Andronico, D.; Del Bello, E.; Kueppers, U.; Ricci, T.; Scarlato, P.

    2016-01-01

    Imaging, in general, and high speed imaging in particular are important emerging tools for the study of explosive volcanic eruptions. However, traditional 2-D video observations cannot measure volcanic ejecta motion toward and away from the camera, strongly hindering our capability to fully determine crucial hazard-related parameters such as explosion directionality and pyroclasts' absolute velocity. In this paper, we use up to three synchronized high-speed cameras to reconstruct pyroclasts trajectories in three dimensions. Classical stereographic techniques are adapted to overcome the difficult observation conditions of active volcanic vents, including the large number of overlapping pyroclasts which may change shape in flight, variable lighting and clouding conditions, and lack of direct access to the target. In particular, we use a laser rangefinder to measure the geometry of the filming setup and manually track pyroclasts on the videos. This method reduces uncertainties to 10° in azimuth and dip angle of the pyroclasts, and down to 20% in the absolute velocity estimation. We demonstrate the potential of this approach by three examples: the development of an explosion at Stromboli, a bubble burst at Halema'uma'u lava lake, and an in-flight collision between two bombs at Stromboli.

  19. Generation of High-Frequency P and S Wave Energy by Rock Fracture During a Buried Explosion

    Science.gov (United States)

    2015-07-20

    AFRL-RV -PS- TR-2015-0145 AFRL-RV -PS- TR-2015-0145 GENERATION OF HIGH-FREQUENCY P AND S WAVE ENERGY BY ROCK FRACTURE DURING A BURIED EXPLOSION ...SUBTITLE Generation of High-Frequency P and S Wave Energy by Rock Fracture During a Buried Explosion 5a. CONTRACT NUMBER FA9453-12-C-0210 5b...underground nuclear explosions . This model predicts the generation of strong S wave radiation in the non-linear source region whenever spherical

  20. High-current electron gun with a planar magnetron integrated with an explosive-emission cathode

    Science.gov (United States)

    Kiziridi, P. P.; Ozur, G. E.

    2017-05-01

    A new high-current electron gun with plasma anode and explosive-emission cathode integrated with planar pulsed powered magnetron is described. Five hundred twelve copper wires 1 mm in diameter and 15 mm in height serve as emitters. These emitters are installed on stainless steel disc (substrate) with 3-mm distance between them. Magnetron discharge plasma provides increased ion density on the periphery of plasma anode formed by high-current Penning discharge ignited within several milliseconds after starting of the magnetron discharge. The increased on the periphery ion density improves the uniformity of high-current electron beam produced in such an electron gun.

  1. VISAR Validation Test Series at the Light Initiated High Explosive (LIHE) facility.

    Energy Technology Data Exchange (ETDEWEB)

    Covert, Timothy Todd

    2007-02-01

    A velocity interferometer system for any reflector (VISAR) was recently deployed at the light initiated high explosive facility (LIHE) to measure the velocity of an explosively accelerated flyer plate. The velocity data from the flyer plate experiments, using the vendor's fringe constant of 100m/s/fringe, were consistently lower than model predictions. The goal of the VISAR validation test series was to confirm the VISAR system fringe constant. A low velocity gas gun was utilized to impact and accelerate a target at the LIHE facility. VISAR velocity data from the accelerated target was compared against an independent velocity measurement. The data from this test series did in fact reveal the fringe constant was significantly higher than the vendor's specification. The correct fringe constant for the LIHE VISAR system has been determined to be 123 m/s/fringe. The Light Initiated High Explosive (LIHE) facility recently completed a Phase I test series to develop an explosively accelerated flyer plate (X-Flyer). The X-Flyer impulse technique consists of first spraying a thin layer of silver acetylide silver nitrate explosive onto a thin flyer plate. The explosive is then initiated using an intense flash of light. The explosive detonation accelerates the flyer across a small air gap towards the test item. The impact of the flyer with the test item creates a shock pulse and an impulsive load in the test unit. The goal of Phase I of the X-Flyer development series was to validate the technique theory and design process. One of the key parameters that control the shock pulse and impulsive load is the velocity of the flyer at impact. To measure this key parameter, a velocity interferometer system for any reflector (VISAR) was deployed at the LIHE facility. The VISAR system was assembled by Sandia personnel from the Explosive Projects and Diagnostics department. The VISAR was a three leg, push-pull system using a fixed delay cavity. The primary optical components

  2. Numerical simulation and experiment analysis of improving permeability by deep-hole presplitting explosion in high gassy and low permeability coal seam

    Institute of Scientific and Technical Information of China (English)

    CAI Feng; LIU Ze-gong; LIN Bai-quan; LI Wei

    2009-01-01

    Created a new damage model for explosive for LS-DYNA3D, taking advantage of the Taylor method aimed at the high gassy and low permeability coal seam, and nu-merically simulated and analyzed the deep-hole presplitting explosion. The entire process of explosion was represented, including cracks caused by dynamic pressure, transmission and vibration superposition of stress waves, as well as cracks growth driven by gas gen-erated by explosion. The influence of the cracks generated in the process of explosion and the performance of improving permeability caused by the difference of interval between explosive holes were analyzed. A reasonable interval between explosive holes of deep-hole presplitting explosions in high gassy and low permeability coal seams was proposed, and the resolution of gas drainage in high gassy and low permeability coal seam was put forward.

  3. COMPARATIVE STUDY ON STRENGTH PROPERTIES OF WOOD PLASTIC BONDED BOARDS PRODUCED FROM COFFEE CHAFF AND CEIBA PENTANDRA SAWDUST

    Directory of Open Access Journals (Sweden)

    Kehinde Sesan AINA

    2016-03-01

    Full Text Available Strength properties of Wood Plastic-bonded Boards (WPBB of 10mm in thickness were produced in this study from two lignocellulosic materials coffee and recycled low density polyethylene (rLDPE as a binder. WPBB were produced from particles of coffee chaff and Ceiba pentandra, at three levels of mixing ratio (1:1, 2:1 and 3:1, and at three levels of board density (500, 600 and 700kgm-3 given the total treatment combinations of 18 respectively. Effects of lignocelluloses particles, mixing ratio (MR and board density (BD on flexural strength properties of the WPBB were investigated. The flexural strength of the WPBB range from 0.25 to 4.79N/mm2 and 891.00 to 16415.87N/mm2 for modulus of rupture (MOR and modulus of elasticity (MOE respectively. The statistically results shows that the main factor and interaction factors were significantly different at P≤0.05 level of probability. It was observed in this study that as the plastic content with density increased, flexural strength of the boards increases. The study showed that WPBB made from coffee chaff particles are stiffer and stronger than WPBBs made from Ceiba pentandra particles. Based on the outcome of the results in this study, coffee chaff could as well be used as filler in the polymer industry to produce stronger biopolymer composite for structural applications. This study would form a baseline strategy for further research efforts on production of composite from agro-residues wastes.

  4. Photographic study of channel effect in emulsion explosives using a high-speed framing camera

    Science.gov (United States)

    Sumiya, Fumihiko; Hirosaki, Yoshikazu; Kato, Yukio; Ogata, Yuji; Wada, Yuji; Katsuyama, Kunihisa

    1997-12-01

    The precursor air shock wave (PAS), which is propagating ahead of the detonation front in air channel, precompresses and desensitizes the unreacted explosive charges. In some conditions, the PAS causes detonation failure. This phenomenon is known as the channel effect. To investigate the mechanism of the channel effect in emulsion explosives, some experimental works have been carried out using high-speed framing camera. The results of photographic observation at the first experiments demonstrated that the difference between PAS velocity and detonation velocity was the primary factor for the channel effect. It is assumed that the decrease of the PAS velocity can prevent the channel effect. The increase of surface roughness of inner wall was adopted to decrease the PAS velocity. Some experiments were conducted to investigate the effects of surface roughness on the PAS velocity and the detonation propagation. Photographic observations were performed using rectangular tubes with sandpaper on inner ceiling wall to simulate surface roughness under various conditions. The experimental results indicate that the increase of surface roughness reduces the PAS velocity and prevents detonation failure. It is concluded that the surface roughness of wall has a great influence on detonation propagation in emulsion explosive.

  5. Explosive Line Wave Generators

    Science.gov (United States)

    2013-12-01

    curvature produced by each line wave generator. Piezoelectric pins were used for an additional assessment of the explosive lens design...to a visual assessment of the wave curvature from the high speed camera images, the explosive lens design was also evaluated using piezoelectric pins...High Explosive Firing Complex (HEFC). The various explosive line wave generators were taped vertically on a supporting board and the detonation wave

  6. High-order shock-fitted detonation propagation in high explosives

    Science.gov (United States)

    Romick, Christopher M.; Aslam, Tariq D.

    2017-03-01

    A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting

  7. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for

  8. NEW EXPLOSIVE WELDING TECHNIQUES

    OpenAIRE

    Lotous, V.; Dragobetskii, V.

    2015-01-01

    Purpose - analysis of the variety of factors of the physical phenomena accompanying the process of the power explosive effect for development of new processes of metal treatment: explosive film coating of hardening and updating of a superficial layer of an item. Industrial approbation of cladding techniques by explosion of item surfaces of complex configuration and determination of parameters of the process of the explosive welding of high-strength pig-iron (graphite of the spherical form) wi...

  9. Initial characterization of a highly contaminated high explosives outfall in preparation for in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Betty A. Strietelmeier; Patrick J. Coyne; Patricia A. Leonard; W. Lamar Miller; Jerry R. Brian

    1999-12-01

    In situ bioremediation is a viable, cost-effective treatment for environmental contamination of many kinds. The feasibility of using biological techniques to remediate soils contaminated with high explosives (HE) requires laboratory evaluation before proceeding to a larger scale field operation. Laboratory investigations have been conducted at pilot scale which indicate that an anaerobic process could be successful at reducing levels of HE, primarily HMX, RDX and TNT, in contaminated soils. A field demonstration project has been designed to create an anaerobic environment for the degradation of HE materials. The first step in this project, initial characterization of the test area, was conducted and is the subject of this report. The levels of HE compounds found in the samples from the test area were higher than the EPA Method 8330 was able to extract without subsequent re-precipitation; therefore, a new method was developed using a superior extractant system. The test area sampling design was relatively simple as one might expect in an initial characterization. A total of 60 samples were each removed to a depth of 4 inches using a 1 inch diameter corer. The samples were spaced at relatively even intervals across a 20 foot cross-section through the middle of four 7-foot-long adjacent plots which are designed to be a part of an in situ bioremediation experiment. Duplicate cores were taken from each location for HE extraction and analysis in order to demonstrate and measure the heterogeneity of the contamination. Each soil sample was air dried and ball-milled to provide a homogeneous solid for extraction and analysis. Several samples had large consolidated pieces of what appeared to be solid HE. These were not ball-milled due to safety concerns, but were dissolved and the solutions were analyzed. The new extraction method was superior in that results obtained for several of the contaminants were up to 20 times those obtained with the EPA extraction method. The

  10. Study on Heat Dissipater for High-Power Thyristors in Explosion-Proof Shell

    Institute of Scientific and Technical Information of China (English)

    SONG Zheng-chang; LI Chuan-tong

    2003-01-01

    A new type water-cooled heat dissipater for multiple high-power thyristors in explosion-proof shell used in coal mine was designed, and then, the numerical computation of the three-dimensional steady-state temperature distributions under different working conditions for cooling core was conducted in order to understand in detail the heat transfer performance. Based on the computation results, the temperature differences and the maximum heat transfer rates were given. These results of the study on the heat dissipater lay a basis for optimising its structure design and guiding its operation.

  11. Dynamics of the formation of the condensed phase particles at detonation of high explosives

    CERN Document Server

    Evdokov, O V; Kulipanov, G N; Luckjanchikov, L A; Lyakhov, N Z; Mishnev, S I; Sharafutdinov, M R; Sheromov, M A; Ten, K A; Titov, V M; Tolochko, B P; Zubkov, P I

    2001-01-01

    The article presents the results of the experimental study SAXS on condensed carbon particles that appear at the detonation of a high explosive. It was shown that the SAXS signal rises for 1.5-4 mu s after the detonation front passing. The SAXS signal in trotyl and its alloys with hexogen starts just after the compression of the material in the detonation wave. In octogen, hexogen and PETN, the SAXS signal appears in 0.5 mu s and is much smaller than the signal at the detonation of trotyl and its alloys with hexogen.

  12. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I.

    Science.gov (United States)

    Keshavarz, Mohammad Hossein; Motamedoshariati, Hadi; Moghayadnia, Reza; Nazari, Hamid Reza; Azarniamehraban, Jamshid

    2009-12-30

    In this paper a new simple user-friendly computer code, in Visual Basic, has been introduced to evaluate detonation performance of high explosives and their thermochemical properties. The code is based on recently developed methods to obtain thermochemical and performance parameters of energetic materials, which can complement the computer outputs of the other thermodynamic chemical equilibrium codes. It can predict various important properties of high explosive including velocity of detonation, detonation pressure, heat of detonation, detonation temperature, Gurney velocity, adiabatic exponent and specific impulse of high explosives. It can also predict detonation performance of aluminized explosives that can have non-ideal behaviors. This code has been validated with well-known and standard explosives and compared the predicted results, where the predictions of desired properties were possible, with outputs of some computer codes. A large amount of data for detonation performance on different classes of explosives from C-NO(2), O-NO(2) and N-NO(2) energetic groups have also been generated and compared with well-known complex code BKW.

  13. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz, Mohammad Hossein, E-mail: mhkeshavarz@mut-es.ac.ir [Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115 (Iran, Islamic Republic of); Motamedoshariati, Hadi; Moghayadnia, Reza; Nazari, Hamid Reza; Azarniamehraban, Jamshid [Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115 (Iran, Islamic Republic of)

    2009-12-30

    In this paper a new simple user-friendly computer code, in Visual Basic, has been introduced to evaluate detonation performance of high explosives and their thermochemical properties. The code is based on recently developed methods to obtain thermochemical and performance parameters of energetic materials, which can complement the computer outputs of the other thermodynamic chemical equilibrium codes. It can predict various important properties of high explosive including velocity of detonation, detonation pressure, heat of detonation, detonation temperature, Gurney velocity, adiabatic exponent and specific impulse of high explosives. It can also predict detonation performance of aluminized explosives that can have non-ideal behaviors. This code has been validated with well-known and standard explosives and compared the predicted results, where the predictions of desired properties were possible, with outputs of some computer codes. A large amount of data for detonation performance on different classes of explosives from C-NO{sub 2}, O-NO{sub 2} and N-NO{sub 2} energetic groups have also been generated and compared with well-known complex code BKW.

  14. The Use of the Propellant Specific Impulse for the Prediction of the Prompt and Terminal Gurney Velocity of High Explosives

    Science.gov (United States)

    Frem, Dany

    2016-10-01

    Simple relationships are presented for the calculation of both prompt and terminal Gurney velocity of chemical high explosives. By considering that a given explosive behaves like a propellant, its specific impulse ? was calculated using Mader's ISPBKW code; it was found that the density impulse (?where ? is the explosive density and ? is an empirically optimized variable) performance factor correlates well with the terminal Gurney velocity of both ideal and nonideal explosives. Furthermore, the cylinder wall energy can be computed from (?from which the prompt Gurney velocity can be obtained through the application of the Gurney's cylinder equation. It was concluded that (? is a powerful factor for the prediction of the Gurney velocities, especially for nonideal compositions.

  15. Characterization of hypervelocity metal fragments for explosive initiation

    Science.gov (United States)

    Yeager, John D.; Bowden, Patrick R.; Guildenbecher, Daniel R.; Olles, Joseph D.

    2017-07-01

    The fragment impact response of two plastic-bonded explosive (PBX) formulations was studied using explosively driven aluminum fragments. A generic aluminum-capped detonator generated sub-mm aluminum particles moving at hypersonic velocities. The ability of these fragments to initiate reaction or otherwise damage two PBX materials was assessed using go/no-go experiments at standoff distances of up to 160 mm. Lower density PBX 9407 (RDX-based) was initiable at up to 115 mm, while higher density PBX 9501 (HMX-based) was only initiable at up to 6 mm. Several techniques were used to characterize the size, distribution, and velocity of the particles. Witness plate materials, including copper and polycarbonate, and backlit high speed video were used to characterize the distribution of particles, finding that the aluminum cap did not fragment homogeneously but rather with larger particles in a ring surrounding finer particles. Finally, precise digital holography experiments were conducted to measure the three-dimensional shape and size of the fastest-moving fragments, which ranged between 100 and 700 μm and traveled between 2.2 and 3.2 km/s. Crucially, these experiments showed variability in the fragmentation in terms of the number of fragments at the leading edge of the fragment field, indicating that both single and multiple shock impacts could be imparted to the target material. These types of data are critical for safety experiments and hydrocode simulations to quantify shock-to-detonation transition mechanisms and the associated risk-margins for these materials.

  16. Deflagration Behavior of HMX-Based Explosives at High Temperatures and Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L; Wardell, J F

    2003-11-20

    We report the deflagration behavior of several HMX-based explosives at pressure from 10-600 MPa and temperatures from 20-180 C. We have made laminar burn rate measurements with the LLNL High Pressure Strand Burner, in which burn wires are used to record the time-of-arrival of the burn front in the cylindrical sample as a function of pressure. The explosive samples are 6.4 mm in diameter and 63 mm long, with ten burn wires embedded at different positions in the sample. Burning on the cylindrical surface is inhibited with an epoxy layer. With this direct measurement we do not have to account for product gas equation of state or heat losses in the system, and the burn wires allow detection of irregular burning. We find that formulation details are very important to overall deflagration behavior - the presence of 10% or less by weight of binder leads to physical deconsolidation and rapid deflagration at high pressures, and a larger particle size distribution leads to slower deflagration. High temperatures have a relatively minor effect on the deflagration rate until the beta-to-delta phase transition temperature is reached, beyond which the deflagration rate increases approximately 40-fold.

  17. Deflagration of HMX-Based Explosives at High Temperatures and Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L; Wardell, J F; DeHaven, M R; Black, C K

    2004-05-12

    We measure the deflagration behavior of energetic materials at extreme conditions (up to 520K and 1 GPa) in the LLNL High Pressure Strand Burner, thereby obtaining reaction rate data for prediction of violence of thermal explosions. The apparatus provides both temporal pressure history and flame time-of-arrival information during deflagration, allowing direct calculation of deflagration rate as a function of pressure. Samples may be heated before testing. Here we report the deflagration behavior of several HMX-based explosives at pressures of 10-600 MPa and temperatures of 300-460 K. We find that formulation details are very important to overall deflagration behavior. Formulations with high binder content (>15 wt%) deflagrate smoothly over the entire pressure range regardless of particle size, with a larger particle size distribution leading to a slower reaction. The deflagration follows a power law function with the pressure exponent being unity. Formulations with lower binder content ({le} 10% or less by weight) show physical deconsolidation at pressures over 100-200 MPA, with transition to a rapid erratic deflagration 10-100 times faster. High temperatures have a relatively minor effect on the deflagration rate until the HMX {beta} {yields} {delta} phase transition occurs, after which the deflagration rate increases by more than a factor of 10.

  18. Optically powered firing system for the Procyon high explosive pulse power system

    Energy Technology Data Exchange (ETDEWEB)

    Earley, L.; Paul, J.; Rohlev, L.; Goforth, J.; Hall, C.R.

    1995-10-01

    An optically powered fireset has been developed for the Procyon high explosive pulsed-power generator at Los Alamos National Laboratory. The fireset was located inside this flux compression experiment where large magnetic fields are generated. No energy sources were allowed inside the experiment and no wire connections can penetrate through the wall, of the experiment because of the high magnetic fields. The flux compression was achieved with high explosives in the experiment. The fireset was used to remotely charge a 1.2 {micro}f capacitor to 6,500V and to provide a readout of the voltage on the capacitor at the control room. The capacitor was charged by using two 7W fiber coupled GaAlAs laser diodes to illuminate two fiber coupled 12V solar cells. The solar cell outputs were connected in parallel to the input of a DC-DC converter which step up a 12V to 6,500V. A voltmeter, powered by illuminating a third 12V solar cell with 1W laser diode, was used to monitor the charge on the capacitor. The voltage was measured with a divider circuit, then converted to frequency in a V-F converter and transmitted to the control room over a fiber optic link. A fiducial circuit measured the capacitor firing current and provided an optical output timing pulse.

  19. Producing high sugar concentrations from loblolly pine using wet explosion pretreatment.

    Science.gov (United States)

    Rana, Diwakar; Rana, Vandana; Ahring, Birgitte K

    2012-10-01

    We present quantitative analysis of pretreatment for obtaining high conversion and release of sugars from loblolly pine. We use wet explosion (WEx): wet oxidation followed by steam explosion and enzymatic hydrolysis (EH) at high dry matter to solubilize sugars. WEx was conducted at 25% (w/w) solids in presence of oxygen at pressures 6.5-7.2 bar, temperatures 170-175°C and residence time from 20 to 22.5 min. EH of pretreated samples was performed by Cellic® Ctec2 (60 mg protein/g cellulose) and Cellic® Htec2 enzymes (10% of Ctec2) at 50°C for 72 h. At the optimal WEx condition 96% cellulose and nearly 100% hemicellulose yield were obtained. The final concentrations of monomeric sugars were 152 g/L of glucose, 67 g/L of xylose, and 67 g/L of minor sugars (galactose, arabinose and mannose). Compared to previous work WEx seems to be superior for releasing high concentrations of monomeric sugars.

  20. Deflagration Behavior of HMX-Based Explosives at High Temperatures and Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L; Wardell, J F

    2003-11-20

    We report the deflagration behavior of several HMX-based explosives at pressure from 10-600 MPa and temperatures from 20-180 C. We have made laminar burn rate measurements with the LLNL High Pressure Strand Burner, in which burn wires are used to record the time-of-arrival of the burn front in the cylindrical sample as a function of pressure. The explosive samples are 6.4 mm in diameter and 63 mm long, with ten burn wires embedded at different positions in the sample. Burning on the cylindrical surface is inhibited with an epoxy layer. With this direct measurement we do not have to account for product gas equation of state or heat losses in the system, and the burn wires allow detection of irregular burning. We find that formulation details are very important to overall deflagration behavior - the presence of 10% or less by weight of binder leads to physical deconsolidation and rapid deflagration at high pressures, and a larger particle size distribution leads to slower deflagration. High temperatures have a relatively minor effect on the deflagration rate until the beta-to-delta phase transition temperature is reached, beyond which the deflagration rate increases approximately 40-fold.

  1. Deflagration of HMX-Based Explosives at High Temperatures and Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L; Wardell, J F; DeHaven, M R; Black, C K

    2004-05-12

    We measure the deflagration behavior of energetic materials at extreme conditions (up to 520K and 1 GPa) in the LLNL High Pressure Strand Burner, thereby obtaining reaction rate data for prediction of violence of thermal explosions. The apparatus provides both temporal pressure history and flame time-of-arrival information during deflagration, allowing direct calculation of deflagration rate as a function of pressure. Samples may be heated before testing. Here we report the deflagration behavior of several HMX-based explosives at pressures of 10-600 MPa and temperatures of 300-460 K. We find that formulation details are very important to overall deflagration behavior. Formulations with high binder content (>15 wt%) deflagrate smoothly over the entire pressure range regardless of particle size, with a larger particle size distribution leading to a slower reaction. The deflagration follows a power law function with the pressure exponent being unity. Formulations with lower binder content ({le} 10% or less by weight) show physical deconsolidation at pressures over 100-200 MPA, with transition to a rapid erratic deflagration 10-100 times faster. High temperatures have a relatively minor effect on the deflagration rate until the HMX {beta} {yields} {delta} phase transition occurs, after which the deflagration rate increases by more than a factor of 10.

  2. 金属加速炸药/高爆热炸药复合装药爆炸特性研究%Explosion Characteristics of Metal Accelerating Explosive/High Detonation Heat Explosive Composite Charge

    Institute of Scientific and Technical Information of China (English)

    尹俊婷; 蔚红建; 栗宝华; 付伟

    2015-01-01

    Energy output characteristics of composite charge, as well as the influence to fragment and shock wave overpressure were studied by theoretical analysis and simulation calculation. Fragmentation warheads were made with three kinds of explosive composite charge structure, fragment driving capability and shock wave overpressure characteristics of metal accelerating explosive/ high detonation heat explosive composite charge was verified by test, and compared with that of the metal accelerating explosive charge. The results show that the theoretical analysis and simulation calculation is consistent with experiment, detonation velocity and explosion heat of composite charge were between the limit parameters of composite charge explosive composition, the fragments and blast wave overpressure comprehensive energy optimal matching was got by adjusting the ratio of composite charge, the result can be applied to the optimization design of warhead.%通过理论分析和仿真计算研究金属加速炸药/高爆热炸药复合装药的能量输出特性,以及对破片驱动和冲击波超压性能的影响;选择3种炸药组成复合装药结构,制备全预制破片战斗部样弹,采用试验方法验证复合装药的破片驱动能力和冲击波超压特性,并与金属加速炸药单一装药进行比较。结果表明,理论分析及仿真计算与试验结果吻合较好,复合装药的爆速及爆热值在组成复合装药的炸药的极限参数之间;通过复合装药配比调整可以达到破片与冲击波超压综合能量最佳匹配,可应用于杀爆战斗部优化设计。

  3. Identification of Explosives from Porous Materials: Applications Using Reverse Phase High Performance Liquid Chromatography and Gas Chromatography

    Science.gov (United States)

    Miller, C. J.; Elias, G.; Schmitt, N. C.; Rae, C.

    2010-06-01

    High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify trace levels of the military explosives, RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol and filtered using no additional sample cleanup of the sample extract prior to analysis. The filtered methanol extracts were injected directly into several different column types and analyzed by high performance liquid chromatography using ultraviolet detection and/or gas chromatography using electron capture detection. This paper describes general screening methods that were used to determine the presence of explosives (RDX, TNT, and PETN) in unknown samples of denim, colored flannel, vinyl and canvas in addition to techniques that have been optimized for quantification of each explosive from the substrate extracts.

  4. The application of single particle aerosol mass spectrometry for the detection and identification of high explosives and chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Audrey Noreen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2006-01-01

    Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle (~1 pg) without the need for consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.

  5. In-situ Raman spectroscopy and high-speed photography of a shocked triaminotrinitrobenzene based explosive

    Science.gov (United States)

    Saint-Amans, C.; Hébert, P.; Doucet, M.; de Resseguier, T.

    2015-01-01

    We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  6. A link between high-speed solar wind streams and explosive extratropical cyclones

    Science.gov (United States)

    Prikryl, Paul; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Bruntz, Robert

    2016-11-01

    A link between solar wind magnetic sector boundary (heliospheric current sheet) crossings by the Earth and the upper-level tropospheric vorticity was discovered in the 1970s. These results have been later confirmed but the proposed mechanisms remain controversial. Extratropical-cyclone tracks obtained from two meteorological reanalysis datasets are used in superposed epoch analysis of time series of solar wind plasma parameters and green coronal emission line intensity. The time series are keyed to times of maximum growth of explosively developing extratropical cyclones in the winter season. The new statistical evidence corroborates the previously published results (Prikryl et al., 2009). This evidence shows that explosive extratropical cyclones tend to occur after arrivals of solar wind disturbances such as high-speed solar wind streams from coronal holes when large amplitude magneto-hydrodynamic waves couple to the magnetosphere-ionosphere system. These MHD waves modulate Joule heating and/or Lorentz forcing of the high-latitude thermosphere generating medium-scale atmospheric gravity waves that propagate energy upward and downward from auroral zone through the atmosphere. At the tropospheric level, in spite of significantly reduced amplitudes, these gravity waves can provide a lift of unstable air to release the moist symmetric instability thus initiating slantwise convection and forming cloud/precipitation bands. The release of latent heat is known to provide energy for rapid development and intensification of extratropical cyclones.

  7. Niche explosion.

    Science.gov (United States)

    Normark, Benjamin B; Johnson, Norman A

    2011-05-01

    The following syndrome of features occurs in several groups of phytophagous insects: (1) wingless females, (2) dispersal by larvae, (3) woody hosts, (4) extreme polyphagy, (5) high abundance, resulting in status as economic pests, (6) invasiveness, and (7) obligate parthenogenesis in some populations. If extreme polyphagy is defined as feeding on 20 or more families of hostplants, this syndrome is found convergently in several species of bagworm moths, tussock moths, root weevils, and 5 families of scale insects. We hypothesize that extreme polyphagy in these taxa results from "niche explosion", a positive feedback loop connecting large population size to broad host range. The niche explosion has a demographic component (sometimes called the "amplification effect" in studies of pathogens) as well as a population-genetic component, due mainly to the increased effectiveness of natural selection in larger populations. The frequent origins of parthenogenesis in extreme polyphages are, in our interpretation, a consequence of this increased effectiveness of natural selection and consequent reduced importance of sexuality. The niche explosion hypothesis makes detailed predictions about the comparative genomics and population genetics of extreme polyphages and related specialists. It has a number of potentially important implications, including an explanation for the lack of observed trade-offs between generalists and specialists, a re-interpretation of the ecological correlates of parthenogenesis, and a general expectation that Malthusian population explosions may be amplified by Darwinian effects.

  8. Modeling cookoff of HMX based PBX explosives

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Michael L.

    2017-03-01

    We have previously developed a PBX 9501 cookoff model for the plastic bonded explosive PBX 9501 consisting of 95 wt% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoncine (HMX), 2.5 wt% Estane® 5703 (a polyurethane thermoplastic), and 2.5 wt% of a nitroplasticizer (NP): BDNPA/F, a 50/50 wt% eutectic mixture bis(2,2-dinitropropyl)-acetal (BDNPA) and bis(2,2-dinitropropyl)-formal (BDNPF). This fivestep model includes desorption of water, decomposition of the NP to form NO2, reaction of the NO2 with Estane and HMX, and decomposition of HMX [1]. This model has been successfully validated with data from six laboratories with scales ranging from 2 g to more than 2.5 kg of explosive. We have determined, that the PBX 9501 model can be used to predict cookoff of other plastic bonded explosives containing HMX and an inert binder, such as LX-04 consisting of 85 wt% HMX and 15 wt% Viton A (vinylidine fluoride/hexafluoropropylene copolymer), LX-07 (90 wt% HMX and 10 wt% Viton A), LX- 10-0 (95 wt% HMX and 5 wt% Viton A), and LX-14 consisting of 95.5 wt % HMX and 4.5 wt% Estane® 5702-F1 (a polyurethane thermoplastic). Normally our cookoff models are verified using Sandia’s Instrumented Thermal Initiation (SITI) experiment. However, SITI data for LX-04, LX-07, LX-10-0, and LX-14 are not available at pressed density; although, some molding powder SITI data on LX-10-0 and LX-14 exists. Tarver and Tran [2] provide some one-dimensional time-to-explosion (ODTX) data for these explosives. The applicability of the PBX 9501 model to LX-04, LX-07, LX-10-0, AND LX-14 was made using this ODTX data [2]. The PBX 9501 model is applied to these other explosives by accounting for the correct amount of HMX in the explosive and limiting the NP reaction. We have found the PBX 9501 model to be useful for predicting the response of these PBXs to abnormal thermal environments such as fire.

  9. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jong Hyun [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 ~ 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, vapor bubbles can grow spontaneously resulting in a violent ejection of liquid droplets from the superheated volume. The effects of an induced transparency, i.e. of liquid silicon turning into an optically transparent liquid dielectric medium, are also introduced. The estimated time for a bubble to reach the critical size is in agreement with the delay time measured for the initiation of large mass ejection. Also, the thickness of the superheated liquid layer that is close to the critical temperature at the time of the beginning of the large mass ejection is representative of the crater depth at the threshold irradiance. These results suggest that phase explosion is a plausible thermal

  10. Intensive evaporation and boiling of a heterogeneous liquid droplet with an explosive disintegration in high-temperature gas area

    Directory of Open Access Journals (Sweden)

    Piskunov Maxim V.

    2016-01-01

    Full Text Available The using of the high-speed (not less than 105 frames per second video recording tools (“Phantom” and the software package ("TEMA Automotive" allowed carrying out an experimental research of laws of intensive vaporization with an explosive disintegration of heterogeneous (with a single solid nontransparent inclusion liquid droplet (by the example of water in high-temperature (500-800 K gases (combustion products. Times of the processes under consideration and stages (liquid heat-up, evaporation from an external surface, bubble boiling at internal interfaces, growth of bubble sizes, explosive droplet breakup were established. Necessary conditions of an explosive vaporization of a heterogeneous droplet were found out. Mechanisms of this process and an influence of properties of liquid and inclusion material on them were determined.

  11. Explosives tester

    Science.gov (United States)

    Haas, Jeffrey S [San Ramon, CA; Howard, Douglas E [Livermore, CA; Eckels, Joel D [Livermore, CA; Nunes, Peter J [Danville, CA

    2011-01-11

    An explosives tester that can be used anywhere as a screening tool by non-technical personnel to determine whether a surface contains explosives. First and second explosives detecting reagent holders and dispensers are provided. A heater is provided for receiving the first and second explosives detecting reagent holders and dispensers.

  12. Deflagration Rate Measurements of Three Insensitive High Explosives: LLM-105, TATB, and DAAF

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E A; Maienschein, J L; Lorenz, K T; Tan, N; Koerner, J G

    2010-03-08

    The pressure dependent deflagration rates of LLM-105, DAAF and TATB based formulations were measured in the LLNL high pressure strand burner. The role of binder amount, explosive type, and thermal damage and their effects on the deflagration rate will be discussed. One DAAF formulation, two different formulations of LLM-105, and four formulations of TATB were studied; results indicate that binder amount and type play a minor role in the deflagration behavior. This is in sharp contrast to the HMX based formulations which strongly depend on binder amount and type. The effect of preheating these samples was considerably more dramatic. In the case of LLM-105, preheating the sample appears to have little effect on the deflagration rate. In contrast, preheating DAAF and TATB formulations causes the deflagration rate to accelerate. The thermal and mechanical properties of these formulations will be discussed in the context of their pressure and temperature dependent deflagration rates.

  13. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Crow, N.B.; Lamarre, A.L.

    1990-08-01

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  14. Fine Tuning the CJ Detonation Speed of a High Explosive products Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-12

    For high explosive (HE) simulations, inaccuracies of a per cent or two in the detonation wave speed can result from not suficiently resolving the reaction zone width or from small inaccuracies in calibrating the products equation of state (EOS) or from variation of HE lots. More accurate detonation speeds can be obtained by ne tuning the equation of state to compensate. Here we show that two simple EOS transformations can be used to adjust the CJ detonation speed by a couple of per cent with minimal effect on the CJ release isentrope. The two transformations are (1) a shift in the energy origin and (2) a linear scaling of the speci c volume. The effectiveness of the transformations is demonstrated with simulations of the cylinder test for PBX 9502 starting with a products EOS for which the CJ detonation speed is 1 per cent too low.

  15. Modeling Integrated High-Yield IFE Target Explosions in Xenon Filled Chambers

    Science.gov (United States)

    Fatenejad, Milad; Moses, Gregory

    2010-11-01

    We will present the results of several radiation-hydrodynamics simulations which model the aftermath of an exploding high yield (200 MJ) indirect drive target in a xenon filled reactor chamber. The goal is to determine the radial extent to which debris from the target and hohlraum expands into the target chamber. The 1D radiation-hydrodynamics code BUCKY is used to perform integrated simulations of the target explosion beginning from ignition and includes interactions between the chamber gas and tungsten first wall. The 3D radiation-hydrodynamics code Cooper will be used to model the growth of fluid instabilities as the target material expands into the xenon gas. Cooper will also be used to investigate the early-time interaction between the burning target and hohlraum shortly after ignition.

  16. Thermal decomposition and kinetics of 2,4-dinitroimidazole: An insensitive high explosive

    Energy Technology Data Exchange (ETDEWEB)

    Anniyappan, M., E-mail: anniorganic@rediffmail.com; Sonawane, S.H.; Pawar, S.J.; Sikder, A.K.

    2015-08-20

    Highlights: • Pure 2,4-dinitroimidazole was prepared by re-crystallization from hot methanol. • A detailed thermal analysis of 2,4-DNI by DSC, TGA, GC–MS and ignition temperature. • Activation energy was calculated for thermal decomposition of 2,4-DNI • Effect of polymeric binder on thermal decomposition of 2,4-DNI were also studied. • Decomposition mechanisms of 2,4-DNI based on EI mass spectra were also described. - Abstract: 2,4-Dinitroimidazole (2,4-DNI) is a novel energetic material with much less sensitive and potential for use as a propellant/insensitive munition (IM) formulations. 2,4-DNI possess high thermal stability and less sensitivity as compared to RDX and HMX which are high explosives extensively used at present. This paper reports a detailed thermal study of 2,4-DNI using various instrumental techniques. The activation energy (E = 205 ± 15 kJ/mol) was calculated from thermal decomposition of 2,4-DNI using DSC at different heating rate. The ignition temperature of pure 2,4-DNI was measured and showed at 285 °C. The TGA experiments demonstrate that 2,4-DNI decomposes in three steps with 92% total weight lose. Moreover, the effect of thermal energy on decomposition of 2,4-DNI in presence of polymeric binders like GAP and HTPB were investigated. Further, decomposition mechanisms of 2,4-DNI based on Electron Impact mass spectra analysis were also reported along with its explosive properties.

  17. Measuring the Energy Release of Low Amplitude Impact of High Explosive Events

    Science.gov (United States)

    Straight, J. W.; Idar, D. J.; Smith, L.; Osborn, M. A.; Viramontes, L. E.; Chavez, P. J.

    2004-07-01

    Predicting the degree of violence of high explosive (HE) reactions for a given event is desirable for risk assessments and a goal for computational models. Historically, different types of low amplitude impact tests on HE specimens have been performed to determine the critical impact-velocity threshold for high explosive violent reactions (HEVR). Additionally, the energy release relative to a steady-state detonation is also desirable for assessing the potential outcome of an accidental event. Traditionally, blast gauge measurements have been used to measure the overpressure of the HEVR event at a defined distance. This paper summarizes the use of this active technique coupled with a passive technique to derive average energy release curves for Modified Steven tests. A classic ballistic pendulum design was employed with the traditional blast gauge method. Calibration of the ballistic pendulum involved three elements. First, two mechanical measurements were related to the actual peak swing of the pendulum. Second, the general nature of the swing versus energy release curve was estimated. Two different approaches were used to estimate the momenta as a function of HE energy release using the Gurney relationships for an unsymmetrical sandwich. Finally, both techniques were simultaneously benchmarked with PBX 9501 calibration charges. Test results demonstrate the utility of using coupled diagnostic methods for low amplitude insult testing. Each set of data was fit to derive a working curve for the determination of the average energy release for HEVR event based on mass relative to a steady-state detonation. These tests results and working curve derivations are presented.

  18. Study of nanometric thin pyrolytic carbon films for explosive electron emission cathode in high-voltage planar diode

    Energy Technology Data Exchange (ETDEWEB)

    Baryshevsky, Vladimir; Belous, Nikolai; Gurinovich, Alexandra; Gurnevich, Evgeny [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); Kuzhir, Polina, E-mail: polina.kuzhir@gmail.com [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050 (Russian Federation); Maksimenko, Sergey [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050 (Russian Federation); Molchanov, Pavel; Shuba, Mikhail [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); Roddatis, Vladimir [CIC energiGUNE, Albert Einstein 48, 01510 Minano, Alava (Spain); Institut für Materialphysik of Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Kaplas, Tommi; Svirko, Yuri [Institute of Photonics, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101 (Finland)

    2015-04-30

    We report on an experimental study of explosive electron emission properties of cathode made by nanometric thin pyrolytic carbon (PyC) films (2–150 nm) deposited on Cu substrate via methane-based chemical vapor deposition. High current density at level of 300 A/cm{sup 2} in 5 · 10{sup −5} Pa vacuum has been observed together with very stable explosive emission from the planar cathode. The Raman spectroscopy investigation proves that the PyC films remain the same after seven shots. According to the optical image analysis of the cathode before and after one and seven shots, we conclude that the most unusual and interesting feature of using the PyC films/Cu cathode for explosive emission is that the PyC layer on the top of the copper target prevents its evaporation and oxidation, which leads to higher emission stability compared to conventional graphitic/Cu cathodes, and therefore results in longer working life. - Highlights: • Explosive electron emission from pyrolytic carbon (PyC) cathode is reported. • We observe high current density, 300 A/cm{sup 2}, and stable emission parameters. • PyC integrity ensures a high application potential for high current electronics.

  19. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    Science.gov (United States)

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  20. Simulation of changes in temperature and pressure fields during high speed projectiles forming by explosion

    Directory of Open Access Journals (Sweden)

    Marković Miloš D.

    2016-01-01

    Full Text Available The Research in this paper considered the temperatures fields as the consequently influenced effects appeared by plastic deformation, in the explosively forming process aimed to design Explosively Formed Projectiles (henceforth EFP. As the special payloads of the missiles, used projectiles are packaged as the metal liners, joined with explosive charges, to design explosive propulsion effect. Their final form and velocity during shaping depend on distributed temperatures in explosively driven plastic deformation process. Developed simulation model consider forming process without metal cover of explosive charge, in aim to discover liner’s dynamical correlations of effective plastic strains and temperatures in the unconstrained detonation environment made by payload construction. The temperature fields of the liner’s copper material are considered in time, as the consequence of strain/stress displacements driven by explosion environmental thermodynamically fields of pressures and temperatures. Achieved final velocities and mass loses as the expected EFP performances are estimated regarding their dynamical shaping and thermal gradients behavior vs. effective plastic strains. Performances and parameters are presented vs. process time, numerically simulated by the Autodyne software package. [Projekat Ministarstva nauke Republike Srbije, br. III-47029

  1. Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High Explosive PBX 9501

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, F; Forbes, J W; Tarver, C M; Urtiew, P A; Greenwood, D W; Vandersall, K S

    2001-05-31

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  2. Pressure wave measurements from thermal cook-off of an HMX based high explosive

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, J W; Tarver, C M; Urtiew, P A; Garcia, F; Greenwood, D W; Vandersall, K S

    2000-10-10

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  3. Quantum chemical studies on three novel 1,2,4-triazole N-oxides as potential insensitive high explosives.

    Science.gov (United States)

    Wu, Qiong; Zhu, Weihua; Xiao, Heming

    2014-09-01

    Three novel explosives were designed by introducing N-oxides into 1,2,4-triazole: 1-amino-3,5-dinitro-1,2,4-triazole-2 N-oxide (ADT2NO), 1-amino-2,5-dinitro-1,2,4-triazole-3 N-oxide (ADT3NO), and 1-amino-3,5-dinitro-1,2,4-triazole-4 N-oxide (ADT4NO). Their detonation performance and sensitivity were estimated by using density functional theory and compared with some famous explosives like 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and 1-methyl-2,4,6-trinitrobenzene (TNT). All three designed molecules are more powerful than HMX and less sensitive than TNT, indicating that ADT2NO, ADT3NO, and ADT4NO have high detonation performance as HMX and low sensitivity as TNT, making them being very valuable and may be considered as the potential candidates of insensitive high explosives. Properly introducing N-oxides into the energetic triazole derivatives can generate some superior energetic compounds with both high explosive performance and reduced sensitivity.

  4. Demonstration of submersible high-throughput microfluidic immunosensors for underwater explosives detection.

    Science.gov (United States)

    Adams, André A; Charles, Paul T; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2011-11-15

    Significant security threats posed by highly energetic nitroaromatic compounds in aquatic environments and the demilitarization and pending cleanup of areas previously used for munitions manufacture and storage represent a challenge for less expensive, faster, and more sensitive systems capable of analyzing groundwater and seawater samples for trace levels of explosive materials. Presented here is an inexpensive high throughput microfluidic immunosensor (HTMI) platform intended for the rapid, highly selective quantitation of nitroaromatic compounds in the field. Immunoaffinity and fluorescence detection schemes were implemented in tandem on a novel microfluidic device containing 39 parallel microchannels that were 500 μm tall, 250 μm wide, and 2.54 cm long with covalently tethered antibodies that was engineered for high-throughput high-volume sample processing. The devices were produced via a combination of high precision micromilling and hot embossing. Mass transfer limitations were found in conventional microsystems and were minimized due to higher surface area to volume ratios that exceeded those possessed by conventional microdevices and capillaries. Until now, these assays were limited to maximum total volume flow rates of ~1 mL/min due in part to kinetics and high head pressures of single microchannels. In the design demonstrated here, highly parallelized microchannels afforded up to a 100-fold increase in total volume flow rate while maintaining favorable kinetic constraints for efficient antigen-antibody interaction. The assay employed total volume throughput of up to 6 mL/min while yielding signal-to-noise ratios of >15 in all cases. In addition to samples being processed up to 60 times faster than in conventional displacement-based immunoassays, the current system was capable of quantitating 0.01 ng/mL TNT samples without implementing offline preconcentration, thereby, demonstrating the ability to improve sensitivity by as much as 2 orders of magnitude

  5. A highly stable dynamic fluorescent metal-organic framework for selective sensing of nitroaromatic explosives.

    Science.gov (United States)

    Gong, Yun-Nan; Jiang, Long; Lu, Tong-Bu

    2013-12-07

    A dynamic fluorescent metal-organic framework has been constructed using triphenylene-2,6,10-tricarboxylate and Tb(3+) as building blocks, which exhibits guest-responsive structural dynamism and selective sensing of nitroaromatic explosives.

  6. Tailoring Wet Explosion Process Parameters for the Pretreatment of Cocksfoot Grass for High Sugar Yields

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2013-01-01

    The pretreatment of lignocellulosic biomass is crucial for efficient subsequent enzymatic hydrolysis and ethanol fermentation. In this study, wet explosion (WEx) pretreatment was applied to cocksfoot grass and pretreatment conditions were tailored for maximizing the sugar yields using response...

  7. Detonation Propagation in 180°Ribs of an Insensitive High Energy Explosive

    Institute of Scientific and Technical Information of China (English)

    S. N. Lubyatinsky; A. Yu. Garmashev; V. G. Israelyan; O. V. Kostitsin; B. G. Loboiko; V. A. Pashentsev; V. A. Sibilev; E. B. Smirnov; V. P. Filin

    2004-01-01

    @@ Steady detonation regimes, such as the detonation of explosive rate sticks, are of particular interest in studies of explosive reaction kinetics. If this is the case the detonation front shape as well as the fields of particle velocity, pressure etc. are steady in the system of coordinates linked to the detonation front. This facilitates the analysis of the experimental data obtained to verify or calibrate various detonation models.

  8. Application of high-frame-rate neutron radiography to steam explosion research

    Science.gov (United States)

    Saito, Y.; Mishima, K.; Hibiki, T.; Yamamoto, A.; Sugimoto, J.; Moriyama, K.

    1999-11-01

    To understand the behavior of dispersed molten metal particles dropped into water during the premixing process of steam explosion, experiments were performed by using heated stainless-steel particles simulating dispersed molten metal particles. High-frame-rate neutron radiography was successfully employed for visualization and void fraction measurement. Visualization was conducted by dropping heated stainless-steel particle into heavy water filled in a rectangular tank with the particle diameter (6, 9, and 12 mm) and temperature (600°C, 700°C, 800°C, and 1000°C) as parameters. Steam generation due to direct contact of heated particle and heavy water was successfully visualized by the high-frame-rate neutron radiography at the recording speed of 500 frames/s. From void fraction measurement it was revealed that the amount of generated steam was in proportion to the particle size and temperature. It is suggested that the ambient liquid might be superheated by the particle-liquid contact.

  9. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover.

    Science.gov (United States)

    Katsimpouras, Constantinos; Zacharopoulou, Maria; Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul; Topakas, Evangelos

    2017-11-01

    The present work investigates the suitability of pretreated corn stover (CS) to serve as feedstock for high gravity (HG) ethanol production at solids-content of 24wt%. Steam explosion, with and without the addition of H2SO4, and organosolv pretreated CS samples underwent a liquefaction/saccharification step followed by simultaneous saccharification and fermentation (SSF). Maximum ethanol concentration of ca. 76g/L (78.3% ethanol yield) was obtained from steam exploded CS (SECS) with 0.2% H2SO4. Organosolv pretreated CS (OCS) also resulted in high ethanol concentration of ca. 65g/L (62.3% ethanol yield). Moreover, methane production through anaerobic digestion (AD) was conducted from fermentation residues and resulted in maximum methane yields of ca. 120 and 69mL/g volatile solids (VS) for SECS and OCS samples, respectively. The results indicated that the implementation of a liquefaction/saccharification step before SSF employing a liquefaction reactor seemed to handle HG conditions adequately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Highly explosive 2010 Merapi eruption: Evidence for shallow-level crustal assimilation and hybrid fluid

    Science.gov (United States)

    Borisova, Anastassia Y.; Martel, Caroline; Gouy, Sophie; Pratomo, Indyo; Sumarti, Sri; Toutain, Jean-Paul; Bindeman, Ilya N.; de Parseval, Philippe; Metaxian, Jean-Philippe; Surono

    2013-07-01

    The processes responsible for the highly explosive events at Merapi, Central Java, Indonesia have been investigated through a petrological, mineralogical and geochemical study of the first-stage tephra and pyroclastic flows sampled in October and November 2010, and second-stage ash sampled shortly after the 5-6th November 2010 paroxysmal subplinian eruption. Several chemical and physical parameters suggest that the magma assimilated calc-silicate xenoliths derived from the surrounding carbonate-bearing crust (Javanese limestone). The bulk volcanic samples have highly radiogenic 87Sr/86Sr (0.70571-0.70598) ratios that approach the compositional field of material similar to the calc-silicate xenoliths. The 2010 plagioclase phenocrysts from the pyroclastic flow and tephra reveal anorthite cores (up to An94-97) with low FeO contents (≤ 0.8 wt.%), and 18O enrichment (6.5‰ δ18O). The major and trace elements of the silicic glasses and phenocrysts (plagioclase, low-Al augite and titanomagnetite), the Sr-isotopic compositions of the bulk samples and plagioclases erupted in 2010 can be explained by complete digestion of the 1998 and 2006 calc-silicate xenoliths. The bulk assimilation proceeded through binary mixing between a calcic melt (representing Crustal Assimilant, CaO up to 10.5 wt.% and CaO/Al2O3 up to 1.2) and the deep source hydrous K-rich melt. Similarly to the 1998 and 2006 calc-silicate xenolith composition, the 2010 Crustal Assimilant is enriched in Mn (MnO up to 0.5 wt.%), Zn, V, and Sc contents. In contrast, the hydrous K-rich melt is enriched in volatiles (Cl up to 0.37 wt.% and bulk H2O + CO2 up to 5 ± 1 wt.%), Al2O3, TiO2 and REE contents, consistent with its derivation from deep source. This hydrous K-rich melt may have been saturated with an aqueous Cl-rich fluid at about 200 MPa, a pressure consistent with the level of the crustal assimilation. We estimated that the pre-eruptive basaltic andesite magma assimilated from 15 to 40 wt.% of the calc

  11. The evolution of microstructural changes in pressed HMX explosives

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, C.B.; Phillips, D.S.; Howe, P.M.; Mang, J.T.; Romero, J.A.

    1998-12-31

    Recently developed techniques for investigating the microstructure of plastic-bonded explosives have been applied to HMX explosives pressed to various levels of porosity. Microstructural changes in PBX 9501 area followed from the early stages of prill consolidation through typical density to very low porosity (0.6%). As porosity is reduced, the following sequence is observed. Large inter- and intra-prill voids are eliminated with first damage to HMX crystals occurring at prill boundaries. This is followed by increased incidence of crystal twinning and cracking. At the lowest porosities, spall pullout artifacts are observed, cracks associated with particle contact points are more obvious, and the results of intercrystalline indentation or intergrowth migration processes are apparent. A comparison is made, at lowest porosities achieved, with PX 9404 and X-0242 (a formulation like PBX 9501 with higher binder volume). Possible implications on porosity trends in shock sensitivity data are discussed.

  12. Neutralization of improvised explosive devices by high-power lasers: research results from the FP7 project ENCOUNTER

    Science.gov (United States)

    Osterholz, J.; Lueck, M.; Lexow, B.; Wickert, M.

    2016-10-01

    The development of reliable techniques for the safe neutralization of improvised explosive devices (IEDs) is an active field of research. Recently, innovative approaches for the neutralization of IEDs were developed and tested within the FP7 project ENCOUNTER ("Explosive Neutralisation and Mitigation Countermeasures for IEDs in Urban/Civil Environment") and were compared to existing, established technologies. Here, the ENCOUNTER project is presented with a special focus on the neutralization of IEDs by high-power lasers. The working principle of the application of high-power lasers for the neutralization of explosive devices is based on thermal effects. Heating of the IEDs main charge may occur either by direct irradiation of the explosive material or by heat transfer through the main charge's confinement. The aim of the application of the laser is to achieve a low order burning reaction of the explosive charge and thus a controlled neutralization of the IED. Since laser beams allow for the directed transport of energy, this technique can be applied over long stand-off distances and has thus potential for an increase of the safety of clearing forces and population in the case of terroristic attacks in a civilian environment. Within the ENCOUNTER project, a laboratory environment has been set up which allows for the irradiation of IEDs with a laser power of up to 10 kW. Experiments have been carried out on a broad spectrum of different types of IEDs. The processes during neutralization were studied in detail with high-speed diagnostics. On the basis of these experimental data, the safety and the reliability of the application of the laser was analyzed, and recommendations to end users were given. In addition to the results of the ENCOUNTER project, approaches for the numerical simulation of the neutralization of IEDs are discussed.

  13. The force-field derivation and application of explosive/additive interfaces

    Science.gov (United States)

    Long, Yao; Chen, Jun

    2016-10-01

    The inter-molecular force-field across RDX/(paraffin, fluoropolymer) interfaces are derived from first-principles calculated energies under the GGA+vdW functional. Based on the force-field, the polycrystal structures of mixture explosives are obtained, and a set of thermodynamic properties are calculated, including the elastic constants, thermal expansion coefficient, heat capacity, isothermal curve and the Hugoniot curve. The results are in good agreement with the available experiments, and provide a reasonable prediction about the properties of plastic bonded explosives. We find that the thermal expansion coefficient of a multi-component explosive is not only determined by the properties of the components, but is also affected by the thermal stress at the explosive/additive interfaces.

  14. Underground Explosions

    Science.gov (United States)

    2015-09-09

    underground explosions has led to significant progress in the development of geomechanics a science studying mechanical properties of rocks and rock...mining industry. One way to improve methods of fragmentation by explosives involves utilizing the geomechanical properties of the rock massif, in...Geomekhanika krupnomasshtabnykh vzryvov ( Geomechanics of large explosions), Nedra, Moscow, 319 pp. [This book in available in electronic format

  15. Performance evaluation of diaminoazoxyfurazan (DAAF) as a booster material for insensitive high explosives using the onionskin test

    Energy Technology Data Exchange (ETDEWEB)

    Morris, John S [Los Alamos National Laboratory; Francois, Elizabeth G [Los Alamos National Laboratory; Hooks, Daniel E [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Harry, Herbert H [Los Alamos National Laboratory

    2010-11-09

    Initiation of insensitive high explosive (IHE) formulations requires the use of a booster explosive in the initiation train. Booster material selection is crucial, as the initiation must reliably function across some spectrum of physical parameters. The interest in DAAF for this application stems from the fact that it possesses many traits of an IHE but is shock sensitive enough to serve as an explosive booster. A hemispherical wave breakout test, termed the onionskin test, is one of the methods used to evaluate the performance of a booster material. The wave breakout time-position history at the surface of a hemisphericallHE charge is recorded and the relative uniformity of the breakout can be quantitatively compared between booster materials. A series of onionskin tests were performed to investigate breakout and propagation diaminoazoxyfurazan (DAAF) at low temperatures to evaluate ignition and detonation spreading in comparison to other explosives commonly used in booster applications. Some wave perturbation was observed with the DAAF booster in the onionskin tests presented. The results of these tests will be presented and discussed.

  16. Ecological surveys of the proposed high explosives wastewater treatment facility region

    Energy Technology Data Exchange (ETDEWEB)

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area.

  17. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Idar, D.J.; Lucht, R.A.; Straight, J.W.; Scammon, R.J.; Browning, R.V.; Middleditch, J.; Dienes, J.K.; Skidmore, C.B.; Buntain, G.A.

    1998-12-31

    The Modified Steven test geometry has been used with several different target designs to investigate the mechanical loading behavior of PBX 9501 to a low velocity impact. A 2 kg. mild steel spigot projectile is launched via a new powder driven gun design, from {approximately} 20 to 105 m/s, at lightly confined, steel targets. Brief descriptions of the gun design and operation are given. The threshold velocity to reaction for various target designs, different PBX 9501 lots, and different high explosive (HE) thicknesses are reported and compared. Various diagnostics have been employed to evaluate the pressure profile and timing, and target strain behavior relative to projectile impact. The violence of reaction, as measured by both passive and active techniques, is reported relative to a steady state detonation in PBX 9501. Experimental results suggest slightly different ignition mechanisms dominate based on (HE) thickness, resulting in delayed reactions from {approximately} 0.2- to 2.8-ms after impact. Post-test analyses of the PBX 9501 are briefly summarized.

  18. Sensitivity effects of void density and arrangements in a REBO high explosive

    Energy Technology Data Exchange (ETDEWEB)

    Herring, Stuart Davis [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Gronbech - Jensen, Niels [Los Alamos National Laboratory

    2010-09-28

    The shock response of two-dimensional model, high explosive crystals with various arrangements of circular voids is explored. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. In square lattices of voids all of one size, reducing that size or increasing the porosity while holding the other parameter fixed causes the hotspots to consume the material more quickly and detonation to occur sooner and at lower piston velocities. The early time behavior is seen to follow a very simple ignition and growth model. The hotspots are seen to collectively develop a broad pressure wave (a sonic, diffuse deflagration front) that, upon merging with the lead shock, transforms it into a detonation. The reaction yields produced by triangular lattices are not significantly different. With random void arrangements, the mean time to detonation is 15.5% larger than with the square lattice; the standard deviation of detonation delays is just 5.1%.

  19. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Idar, D.J.; Lucht, R.A.; Straight, J.W.; Scammon, R.J.; Browning, R.V.; Middleditch, J.; Dienes, J.K.; Skidmore, C.B.; Buntain, G.A.

    1998-12-31

    The Modified Steven test geometry has been used with several different target designs to investigate the mechanical loading behavior of PBX 9501 to a low velocity impact. A 2 kg. mild steel spigot projectile is launched via a new powder driven gun design, from {approximately} 20 to 105 m/s, at lightly confined, steel targets. Brief descriptions of the gun design and operation are given. The threshold velocity to reaction for various target designs, different PBX 9501 lots, and different high explosive (HE) thicknesses are reported and compared. Various diagnostics have been employed to evaluate the pressure profile and timing, and target strain behavior relative to projectile impact. The violence of reaction, as measured by both passive and active techniques, is reported relative to a steady state detonation in PBX 9501. Experimental results suggest slightly different ignition mechanisms dominate based on (HE) thickness, resulting in delayed reactions from {approximately} 0.2- to 2.8-ms after impact. Post-test analyses of the PBX 9501 are briefly summarized.

  20. Theoretical analysis of the terahertz spectrum of the high explosive PETN.

    Science.gov (United States)

    Allis, Damian G; Korter, Timothy M

    2006-11-13

    The experimental solid-state terahertz (THz) spectrum (3 to 120 cm(-1)) of the high explosive pentaerythritol tetranitrate (PETN, C(5)H(6)N(4)O(12)) has been modeled using solid-state density functional theory (DFT) calculations. Solid-state DFT, employing the BP density functional, is in best qualitative agreement with the features in the previously reported THz spectrum. The crystal environment of PETN includes numerous intermolecular hydrogen-bonding interactions that contribute to large (up to 80 cm(-1)) calculated shifts in molecular normal-mode positions in the solid state. Comparison of the isolated-molecule and solid-state normal-mode calculations for a series of density functionals reveals the extent to which the inclusion of crystal-packing interactions and the relative motions between molecules are required for correctly reproducing the vibrational structure of solid-state THz spectra. The THz structure below 120 cm(-1) is a combination of both intermolecular (relative rotations and translations) and intramolecular (torsions, large amplitude motions) vibrational motions. Vibrational-mode analyses indicate that the first major feature (67.2 cm(-1)) in the PETN THz spectrum contains all of the optical rotational and translational cell modes and no internal (molecular) vibrational modes.

  1. Reduction of steel-ball velocity using sand or water layer accelerated by high explosive

    Science.gov (United States)

    Homae, Tomotaka; Wakabayashi, Kunihiko; Matsumura, Tomoharu; Nakayama, Yoshio

    2007-06-01

    The reduction of steel-ball velocity using sand or water was studied. A steel ball, diameter of 9.525 mm, was accelerated using comp. C-4 explosive of 37-52 g. After free flight of about 500-750 mm, the steel ball passed through a sand layer in thickness of 30-125 mm, or a water layer in thickness of 75 or 150 mm. The velocities before and after passage of the layer were determined using a high-speed camera. Although the velocity before the passage was varied from about 300 m/s to about 750 m/s, the velocity after passage was almost constant. The velocity depended only on the kind of materials or thickness of the layer. Sand was more effective in reduction than water for same areal density. Moreover, the steel-ball was accelerated in contact with sand layer in thickness of 30-125 mm. The terminal velocity in such case was comparable to that experienced free fright described above.

  2. Critical velocities for deflagration and detonation triggered by voids in a REBO high explosive

    Energy Technology Data Exchange (ETDEWEB)

    Herring, Stuart Davis [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Jensen, Niels G [Los Alamos National Laboratory

    2010-01-01

    The effects of circular voids on the shock sensitivity of a two-dimensional model high explosive crystal are considered. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. The probability of initiating chemical reactions is found to rise more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void with radius as small as 10 nm reduces the minimum initiating velocity by a factor of 4. The transition at larger velocities to detonation is studied in a micron-long sample with a single void (and its periodic images). The reaction yield during the shock traversal increases rapidly with velocity, then becomes a prompt, reliable detonation. A void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal. A Pop plot of the time-to-detonation at higher velocities shows a characteristic pressure dependence.

  3. Particle size analysis of prepared solutions and fingerprint deposits of high explosive materials

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J.; Hembree, P.B.

    1998-03-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) managed and operated by Lockheed Martin Idaho Technologies Company (LMITCO) was tasked via the Federal Aviation Administration (FAA) and US Department of Energy (DOE) to conduct various studies involving the detection and measurement of explosive materials and their associated residues. This report details the results of an investigation to determine the particle size characteristics of the explosive materials used in the design, development, and testing of trace explosives detection systems. These materials, in the form of water suspensions of plastic explosives, are used to provide a quantitative means of monitoring the performance characteristics of the detection systems. The purpose of this investigation is to provide data that allows a comparison between the particles deposited using the suspension standards and the particles deposited from fingerprints. This information may support the development of quality control aids, measurement methods, or performance criteria specifications for the use of trace explosives detection systems. For this report, particle size analyses were completed on explosives standard suspensions/solutions for composition C-4, Semtex-H, and Detasheet and fingerprints for C-4, Detasheet, and pentolite. Because of the difficulty in collecting microscopic images of the particles in the suspensions from test protocol surfaces, this paper discusses the characteristics of the particles as they are found on metal, glass, and paper. The results of the particle characterization analyses indicate that the water suspensions contain particulate composed of binder materials and dissolved portions of the explosive compounds. Upon drying of the water suspensions, significant particle nucleation and growth is observed. The nucleated particulate is comparable to the particulate deposited by fingerprints.

  4. Explosive disintegration of the vapor film under influence of high heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Sinkevich, O.A.; Glazkov, V.V. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation); Ziegarnik, Yu.A.; Ivochkin, Yu.P. [Institute for High Temperatures RAS, Moscow (Russian Federation)

    2009-07-01

    The problem was formulated and solved on the stability of steady-state interface between a thin vapor film and a layer of liquid in the presence of a heat flux. Boundary conditions were derived for disturbances of the vapor-liquid interface, which generalize the known correlations on the free surface of liquid in the gravity field. These boundary conditions allow for the variation of the saturation pressure, for overheating of a liquid, its transition in the metastable area and explosive boiling, for the variation of the thickness of steady-state vapor film, and for generation of the mass flux on the vapor- liquid interface. the mode of explosive instability may arise in the nonlinear stage of development of instability because of a weak variation of the thickness of steady-state vapor film or due to overheating of a liquid and its transition in the metastable area. Due to nonlinear effects, specific solitons and the specific turbulence may arise on the vapor-liquid interface in the absence of gravity force. In the mode of explosive instability, the initially low wave amplitude rises to infinity during a finite period of time. Conditions were found in which the heat flux through the vapor-liquid interface leads to explosive instability: the initially low plane wave amplitude exhibits an explosive rise. (author)

  5. High-temperature explosive development for geothermal well stimulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.W.; Mars, J.E.; Wang, C.

    1978-03-31

    A two-component, temperature-resistant liquid explosive called HITEX has been developed which is capable of withstanding 561/sup 0/K (550/sup 0/F) for 24 hours in a geothermal environment. The explosive is intended for the stimulation of nonproducing or marginally producing geothermal (hot dry rock, vapor-dominated or hydrothermal) reservoirs by fracturing the strata in the vicinity of a borehole. The explosive is inherently safe because it is mixed below ground downhole from two nondetonable liquid components. Development and safety tests included differential scanning calorimetry, thermal stability, minerals compatibility, drop-weight sensitivity, adiabatic compression, electrostatic discharge sensitivity, friction sensitivity, detonation arrest capability, cook-off tests, detonability at ambient and elevated pressure, detonation velocity and thin film propagation in a wedge.

  6. Development of an air cleaning system for dissolving high explosives from nuclear warheads

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Wilson, K.; Staggs, K.; Wapman, D. [Lawrence Livermore National Lab., CA (United States)

    1997-08-01

    The Department of Energy (DOE) has a major effort underway in dismantling nuclear weapons. In support of this effort we have been developing a workstation for removing the high explosive (HE) from nuclear warheads using hot sprays of dimethyl sulfoxide (DMSO) solvent to dissolve the HE. An important component of the workstation is the air cleaning system that is used to contain DMSO aerosols and vapor and radioactive aerosols. The air cleaning system consists of a condenser to liquefy the hot DMSO vapor, a demister pad to remove most of the DMSO aerosols, a high efficiency particulate air (HEPA) filter to remove the remaining aerosols, an activated carbon filter to remove the DMSO vapor, and a final HEPA filter to meet the redundancy requirement for HEPA filters in radioactive applications. The demister pad is a 4{double_prime} thick mat of glass and steel fibers and was selected after conducting screening tests on promising candidates. We also conducted screening tests on various activated carbons and found that all had a similar performance. The carbon breakthrough curves were fitted to a modified Wheeler`s equation and gave excellent predictions for the effect of different flow rates. After all of the components were assembled, we ran a series of performance tests on the components and system to determine the particle capture efficiency as a function of size for dioctyl sebacate (DOS) and DMSO aerosols using laser particle counters and filter samples. The pad had an efficiency greater than 990% for 0.1 {mu}m DMSO particles. Test results on the prototype carbon filter showed only 70% efficiency, instead of the 99.9% in small scale laboratory tests. Thus further work will be required to develop the prototype carbon filter. 7 refs., 18 figs., 10 tabs.

  7. Potassium 1,1'-dinitramino-5,5'-bistetrazolate: a primary explosive with fast detonation and high initiation power.

    Science.gov (United States)

    Fischer, Dennis; Klapötke, Thomas M; Stierstorfer, Jörg

    2014-07-28

    Adequate primary explosives such as lead azide mostly contain toxic ingredients, which have to be replaced. A new candidate that shows high potential, potassium 1,1'-dinitramino-5,5'-bistetrazolate (K2DNABT), was synthesized by a sophisticated synthetic procedure based on dimethylcarbonate and glyoxal. It was intensively characterized for its chemical (X-ray diffraction, EA, NMR and vibrational spectroscopy) and physico-chemical properties (sensitivity towards impact, friction, and electrostatic, DSC). The obtained primary explosive combines good thermal stability with the desired mechanical stability. Owing to its high heat of formation (326 kJ mol(-1)) and density (2.11 g cm(-3)), impressive values for its detonation velocity (8330 m s(-1)) and pressure (311 kbar) were computed. Its superior calculated performance output was successfully confirmed and demonstrated by different convenient energetic test methods.

  8. Explosive Breakup of a Water Droplet with a Nontransparent Solid Inclusion Heated in a High-Temperature Gaseous Medium

    Directory of Open Access Journals (Sweden)

    Dmitrienko Margarita A.

    2015-01-01

    Full Text Available This paper investigates the evaporation of a water droplet with a comparably sized solid nontransparent inclusion in a high-temperature (500–800 K gas medium. Water evaporates from the free surface of the inclusion. During this process, intensive vapor formation occurs on the inner interface “water droplet – solid inclusion” with the subsequent explosive decay of the droplet. Experiments have been conducted using high-speed (up to 105 fps video cameras “Phantom” and software “Phantom Camera Control”. The conditions of the explosive vapor formation of the heterogeneous water droplet were found. The typical phase change mechanisms of the heterogeneous water droplet under the conditions of intensive heat exchange were determined.

  9. Practice of Fighting Fire and Suppressing Explosion for a Super-Large and Highly Gassy Mine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Baijigou Mine fire in Ningxia Province, which broke out on October 24, 2003, affected more than 108 m3 of the mine and was probably the largest underground fire in China in recent years.In addition to its size, the fire was also characterized by excessive air leakage and the potential for violent methane explosions.A series of new measures were taken to fight the fire, including sealing intake tunnels with water, injecting three-phase foam through boreholes, and flushing with a large volume of nitrogen.The fire was successfully extinguished and production resumed soon afterwards; not one single methane explosion occurred during fire-fighting and afterwards.

  10. New developments of the CARTE thermochemical code: Calculation of detonation properties of high explosives

    Science.gov (United States)

    Dubois, Vincent; Desbiens, Nicolas; Auroux, Eric

    2010-07-01

    We present the improvements of the CARTE thermochemical code which provides thermodynamic properties and chemical compositions of CHON systems over a large range of temperature and pressure with a very small computational cost. The detonation products are split in one or two fluid phase (s), treated with the MCRSR equation of state (EOS), and one condensed phase of carbon, modeled with a multiphase EOS which evolves with the chemical composition of the explosives. We have developed a new optimization procedure to obtain an accurate multicomponents EOS. We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and measured detonation properties for several explosives.

  11. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  12. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  13. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  14. Leidenfrost explosions

    CERN Document Server

    Moreau, F; Dorbolo, S

    2012-01-01

    We present a fluid dynamics video showing the behavior of Leidenfrost droplets composed by a mixture of water and surfactant (SDS, Sodium Dodecyl sulfate). When a droplet is released on a plate heated above a given temperature a thin layer of vapor isolates the droplet from the plate. The droplet levitates over the plate. This is called the Leidenfrost effect. In this work we study the influence of the addition of a surfactant on the Leidenfrost phenomenon. As the droplet evaporates the concentration of SDS rises up to two orders of magnitude over the Critical Micelle Concentration (CMC). An unexpected and violent explosive behavior is observed. The video presents several explosions taken with a high speed camera (IDT-N4 at 30000 fps). All the presented experiments were performed on a plate heated at 300{\\deg}C. On the other hand, the initial quantity of SDS was tuned in two ways: (i) by varying the initial concentration of SDS and (ii) by varying the initial size of the droplet. By measuring the volume of th...

  15. New Mix Explosives for Explosive Welding

    Science.gov (United States)

    Andreevskikh, Leonid

    2011-06-01

    Suggested and tested were some mix explosives--powder mixtures of a brisant high explosive (HE = RDX, PETN) and an inert diluent (baking soda)--for use in explosive welding. RDX and PETN were selected in view of their high throwing ability and low critical diameter. Since the decomposition of baking soda yields a huge amount of gaseous products, its presence ensures (even at a low HE percentage) a throwing speed that is sufficient for realization of explosive welding, at a reduced brisant action of charge. Mix chargers containing 30-70 wt % HE (the rest baking soda) have been tested experimentally and optimized. For study of possibility to reduce critical diameter of HE mixture, the mixture was prepared where HE crystal sizes did not exceed 10 μm. The tests, which were performed with this HE, revealed that the mixture detonated stably with the velocity D ~ 2 km/s, if the layer thickness was d = 2 mm. The above explosives afford to markedly diminish deformations within the oblique impact zone and thus to carry out explosive welding of hollow items and thin metallic foils.

  16. Relief of Residual Stresses in 800 MPa Grade High Strength Steel Weldments by Explosion Treatment and its Effect on Mechanical Properties

    Institute of Scientific and Technical Information of China (English)

    Changzhong WU; Huaining CHEN; Jing CHEN; Quanhong LIN; Jianjun GUAN

    2006-01-01

    The explosion treatment technique has been used in the relief of residual stresses in 800 MPa grade high strength steel manual welded joints. The residual stresses on surface and through thickness of the weldment were measured for both as-welded and explosion-treated sample, the mechanical properties of welded joints under different conditions were also tested. The effect of explosion treatment on the fracture toughness of materials with a residual defect was investigated by crack opening displacement (COD) test. The results show that explosion treatment can reduce not only the surface residual stress but also the residual stress through thickness in the welded joints. The effect of explosion treatment on the mechanical properties and a residual defect in welded joint were inconspicuous.

  17. A model for shear-band formation and high-explosive initiation in a hydrodynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Kerrisk, J.F.

    1996-03-01

    This report describes work in progress to develop a shear band model for MESA-2D. The object of this work is (1) to predict the formation of shear bands and their temperature in high explosive (HE) during a MESA-2D calculation, (2) to then assess whether the HE would initiate, and (3) to allow a detonation wave initiated from a shear band to propagate. This requires developing a model that uses average cell data to estimate the size and temperature of narrow region (generally much narrower than the cell size) that is undergoing shear within the cell. The shear band temperature (rather than the average cell temperature) can be used to calculate the flow stress of the material in the cell or to calculate heat generation from reactive materials. Modifications have been made to MESA-2D to calculate shear band size and temperature, and to initiate HE detonation when conditions warrant. Two models have been used for shear-band size and temperature calculation, one based on an independent estimate of the shear band width and a second based on the temperature distribution around the shear band. Both models have been tested for calculations in which shear band formation occurs in steel. A comparison of the measured and calculated local temperature rise in a shear band has been made. A model for estimating the time to initiation of the HE based on the type of HE and the temperature distribution in a shear band has also been added to MESA-2D. Calculations of conditions needed to initiate HE in projectile-impact tests have been done and compared with experimental data. Further work is d to test the model.

  18. Broad spectrum infrared thermal desorption of wipe-based explosive and narcotic samples for trace mass spectrometric detection.

    Science.gov (United States)

    Forbes, Thomas P; Staymates, Matthew; Sisco, Edward

    2017-08-07

    Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s(-1) with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.

  19. Molecular design and property prediction of high density polynitro[3.3.3]-propellane-derivatized frameworks as potential high explosives.

    Science.gov (United States)

    Zhang, Qinghua; Zhang, Jiaheng; Qi, Xiujuan; Shreeve, Jean'ne M

    2014-11-13

    Research in energetic materials is now heavily focused on the design and synthesis of novel insensitive high explosives (IHEs) for specialized applications. As an effective and time-saving tool for screening potential explosive structures, computer simulation has been widely used for the prediction of detonation properties of energetic molecules with relatively high precision. In this work, a series of new polynitrotetraoxopentaaza[3.3.3]-propellane molecules with tricyclic structures were designed. Their properties as potential high explosives including density, heats of formation, detonation properties, impact sensitivity, etc., have been extensively evaluated using volume-based thermodynamic calculations and density functional theory (DFT).These new energetic molecules exhibit high densities of >1.82 g cm(-3), in which 1 gives the highest density of 2.04 g cm(-3). Moreover, most new materials show good detonation properties and acceptable impact sensitivities, in which 5 displays much higher detonation velocity (9482 m s(-1)) and pressure (43.9 GPa) than HMX and has a h50 value of 11 cm. These results are expected to facilitate the experimental synthesis of new-generation nitramine-based high explosives.

  20. Compilation of Blast Parameters of Selected High Explosives, Propellants, and Pyrotechnics in Surface Burst Configurations.

    Science.gov (United States)

    1987-01-01

    Distance for Dextrinated Lead Azide ............. 212 90. Peak Pressure and Scaled Positive Impulse Versus Scaled Distance for Lead Styphnate...207 41. Summary of Results for Hemispherical Surface Bursts, Peak Pressure, and Scaled Positive Impulse Values for Dextrinated ...these values with standard hemispher- ical TNT data to determine TNT equivalency. MATERIAL Dextrinated lead azide a sensitive primary explosive, was

  1. The detonation parameters of high energy density explosive predicted with a new revised VLW EOS

    Energy Technology Data Exchange (ETDEWEB)

    Xinping, L.; Xiaohua, J. [Southwest Institut of Chemical Mat. Chengdu Sichuan (China); Xiong, W. [Xian Modern Chemistry Research Institute (China)

    1996-12-31

    Some new target explosive compounds whose detonation performance significantly exceeds that of HMX have been predicted with the new revised VLM equation of state, which includes up to the sixth viral term. The two different hypotheses have been used in the calculation; solid carbon exists in detonation products as graphite or as diamond. (authors) 10 refs.

  2. Liquid explosives

    CERN Document Server

    Liu, Jiping

    2015-01-01

    The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.

  3. Internet上高能炸药信息与资源的检索%Retrieval of High Explosive Information and Resources on Internet

    Institute of Scientific and Technical Information of China (English)

    刘永刚; 聂福德

    2003-01-01

      介绍了通过Internet获取高能炸药信息和资源的新趋势,着重介绍了部分重要的含有高能炸药信息和资源的网址,并提供了详细列表。%  This paper introduced the new trends of acquiring varieties of high explosive info and resources by Internet. We emphasized using general search engines to search various explosive info and resources. After all, parts of important Web sites of High Explosive info and resources are listed in detail.

  4. Cyclic Explosivity in High Elevation Phreatomagmatic Eruptions at Ocean Island Volcanoes: Implications for Aquifer Pressurization and Volcano Flank Destabilization.

    Science.gov (United States)

    Tarff, R.; Day, S. J.; Downes, H.; Seghedi, I.

    2015-12-01

    Groundwater heating and pressurization of aquifers trapped between dikes in ocean island volcanoes has been proposed as a mechanism for destabilizing and triggering large-volume flank collapses. Previous modelling has indicated that heat transfer from sustained magma flow through dikes during eruption has the potential to produce destabilizing levels of pressure on time scales of 4 to 400 days, if the aquifers remain confined. Here we revisit this proposal from a different perspective. We examine evidence for pressure variations in dike-confined aquifers during eruptions at high elevation vents on ocean island volcanoes. Initially magmatic, these eruptions change to mostly small-volume explosive phreatomagmatic activity. A recent example is the 1949 eruption on La Palma, Canary Islands. Some such eruptions involve sequences of larger-volume explosive phases or cycles, including production of voluminous low-temperature, pyroclastic density currents (PDC). Here we present and interpret data from the Cova de Paul crater eruption (Santo Antao, Cape Verde Islands). The phreatomagmatic part of this eruption formed two cycles, each culminating with eruption of PDCs. Compositional and textural variations in the products of both cycles indicate that the diatreme fill began as coarse-grained and permeable which allowed gas to escape. During the eruption, the fill evolved to a finer grained, poorly sorted, less permeable material, in which pore fluid pressures built up to produce violent explosive phases. This implies that aquifers adjacent to the feeder intrusion were not simply depressurized at the onset of phreatomagmatic explosivity but experienced fluctuations in pressure throughout the eruption as the vent repeatedly choked and emptied. In combination with fluctuations in magma supply rate, driving of aquifer pressurization by cyclical vent choking will further complicate the prediction of flank destabilization during comparable eruptions on ocean island volcanoes.

  5. Application of Solid Sorbent Collection Techniques and High Performance Liquid Chromatography with Electrochemical Detection to the Analysis of Explosives in Water Samples.

    Science.gov (United States)

    1986-11-01

    Methods were developed for the determination of several explosives components (nitro-organic compounds) in environmental waters. The methods are based on Porapak resin adsorption and Amberlite XAD-4 resin adsorption of the explosives are measured by high performance liquid chromatography with electrochemical detection. The technique provides a high degree of selectivity and sensitivity for these compounds in actual samples. Detection limits approach 1 microgram/l for many components.

  6. Phenomenological Model for Infrared Emissions from High-Explosive Detonation Fireballs

    Science.gov (United States)

    2007-09-01

    Beckstead, Merrill W., Karthik Puduppakkam, Piyush Thakre, and Vigor Yang. “Modeling of combus- tion and ignition of solid-propellant ingredients...244, 2005. 22. Cooper, Paul W. Explosives Engineering. VCH Publishers, New York, New York, 1996. 23. Crow , Dennis, Charles Coker, and Wayne Keen...Fast Line-of-sight Imagery for Target and Exhaust- plume Signatures (FLITES) scene generation program”. Proceedings of SPIE, 6208, 2006. 24. Crow , Dennis

  7. Qualitative Assessment of the Ignition of Highly Flammable Fuels by Primary Explosives,

    Science.gov (United States)

    1983-06-01

    primary explosives used in the investigation are listed below:- basic lead azide lead azide lead styphnate barium styphnate potassium picrate lead...in Bakelite Tubes Basic Lead Azide w Lead Styphnate LDNR Barium Styphnate I Flash Composition Potassium Picrate I TABLE 3 IGNITION OF HEXANE SOAKED...Flammability Nichrome Bridgewire in Aluminium Tube Potassium Picrate X LDVR X Barium Styphnate X Tetracene X 200 mq Lead Styphnate X 400 mq Lead

  8. Free-fillet flap harvested in 'severe, high-energy landmine explosion' injuries of lower extremity: a case report.

    Science.gov (United States)

    Keklikçi, Kenan; Uygur, Fatih; Cengiz Bayram, Fazli; Cilli, Feridun

    2010-01-01

    Fillet flaps harvested from the non-replantable or unsalvageable amputated segment can be used to cover tissue defects. We discuss the case of a patient who had suffered a severe high-energy landmine injury, including severe leg damage, resulting in a below-knee amputation and soft-tissue defect around the forearm region. We successfully harvested the fillet from the amputated part of the extremity to the forearm region. We conclude that harvesting of a fillet flap from severely injured lower extremity, resulting from a high-energy landmine explosion, is technically feasible.

  9. Friction and impact sensitivities of explosives: A comparative study. [HMX, CP, barium styphnate, RX26BB, RX26BH, PYX, BTF

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pu Sen; Hall, G.F.

    1988-01-01

    Impact and friction sensitivities of explosives were tested by the ''one-shot'' method. The Bruceton statistical method was used to derive 50% initiation levels. The materials tested include: PETN, HMX, CP, barium styphnate, TATB, RX26BB, RX26BH, PYX, BTF and various types of plastic bonded explosives (PBX). Some samples were investigated for aging effects, physical variables, and the effect of manufacturing parameters on these sensitivities. The results proved to have comparative values. CP and barium styphnate were found to be the most sensitive among the samples tested, while TATB was found to be relatively insensitive. 9 refs., 3 tabs.

  10. Modeling the Structural Response from a Propagating High Explosive Using Smooth Particle Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Margraf, J

    2012-06-12

    This report primarily concerns the use of two massively parallel finite element codes originally written and maintained at Lawrence Livermore National Laboratory. ALE3D is an explicit hydrodynamics code commonly employed to simulate wave propagation from high energy scenarios and the resulting interaction with nearby structures. This coupled response ensures that a structure is accurately applied with a blast loading varying both in space and time. Figure 1 illustrates the radial outward propagation of a pressure wave due to a center detonated spherical explosive originating from the lower left. The radial symmetry seen in this scenario is lost when instead a cylindrocal charge is detonated. Figure 2 indicates that a stronger, faster traveling pressure wave occurs in the direction of the normal axis to the cylinder. The ALE3D name is derived because of the use of arbitrary-Lagrange-Eulerian elements in which the mesh is allowed to advect; a process through which the mesh is modified to alleviate tanlging and general mesh distortion often cuased by high energy scenarios. The counterpart to an advecting element is a Lagrange element, whose mesh moves with the material. Ideally all structural components are kept Lagrange as long as possible to preserve accuracy of material variables and minimize advection related errors. Advection leads to mixed zoning, so using structural Lagrange elements also improves the visualization when post processing the results. A simplified representation of the advection process is shown in Figure 3. First the mesh is distorted due to material motion during the Lagrange step. The mesh is then shifted to an idealized and less distorted state to prevent irregular zones caused by the Lagrange motion. Lastly, the state variables are remapped to the elements of the newly constructed mesh. Note that Figure 3 represents a purely Eulerian mesh relaxation because the mesh is relocated back to the pre-Lagrange position. This is the case when the

  11. Development of ammonium nitrate based explosives to optimize explosive properties and explosive welding parameters used during explosion cladding

    Science.gov (United States)

    Hurley, Christoph

    The ability to accurately measure and predict the velocity of explosively driven flyer plates has been a subject of significant work by the explosives community for some time. The majority of this work has focused on the use of high-energy, ideal explosives that are of interest for defense applications. Several attempts have been made to modify the experimental methods developed for these ideal explosives for use in testing low-energy, non-ideal explosive compounds (including industrially useful mixtures of ammonium nitrate, fuels, and additives) with varying degrees of success. The detonation properties of non-ideal explosives are difficult to measure precisely due to the effect of physical, environmental, and geometric factors on the detonation of these materials. The work presented in this document attempts to mitigate the variability inherent in measurements of non-ideal, ammonium nitrate-based explosives by performing testing using charge geometry similar to that used in the industrial process of explosion welding. A method to measure flyer plate velocity with optical high-speed imaging using commercially available equipment is described. Flyer plate velocity data from both experimental measurements and numerical modeling is presented. A new formula for predicting explosive energy based on the detonation velocity of an ammonium nitrate based explosive in a planar geometry is proposed and applied to a theoretical explosive cladding scenario.

  12. Eruptions on the fast track: application of Particle Tracking Velocimetry algorithms to visual and thermal high-speed videos of Strombolian explosions

    Science.gov (United States)

    Gaudin, Damien; Monica, Moroni; Jacopo, Taddeucci; Luca, Shindler; Piergiorgio, Scarlato

    2013-04-01

    Strombolian eruptions are characterized by mild, frequent explosions that eject gas and ash- to bomb-sized pyroclasts into the atmosphere. Studying these explosions is crucial, both for direct hazard assessment and for understanding eruption dynamics. Conventional thermal and optical imaging already allows characterizing several eruptive processes, but the quantification of key parameters linked to magma properties and conduit processes requires acquiring images at higher frequency. For example, high speed imaging already demonstrated how the size and the pressure of the gas bubble are linked to the decay of the ejection velocity of the particles, and the origin of the bombs, either fresh or recycled material, could be linked to their thermal evolution. However, the manual processing of the images is time consuming. Consequently, it does not allows neither the routine monitoring nor averaged statistics, since only a few relevant particles - usually the fastest - of a few explosions can be taken into account. In order to understand the dynamics of strombolian eruption, and particularly their cyclic behavior, the quantification of the total mass, heat and energy discharge are a crucial point. In this study, we use a Particle Tracking Velocimetry (PTV) algorithm jointly to traditional images processing to automatically extract the above parameters from visible and thermal high-speed videos of individual Strombolian explosions. PTV is an analysis technique where each single particle is detected and tracked during a series of images. Velocity, acceleration, and temperature can then be deduced and time averaged to get an extensive overview of each explosion. The suitability of PTV and its potential limitations in term of detection and representativity is investigated in various explosions of Stromboli (Italy), Yasur (Vanuatu) and Fuego (Guatemala) volcanoes. On most event, multiple sub-explosion are visible. In each sub-explosion, trends are noticeable : (1) the ejection

  13. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  14. NUMERICAL SIMULATION FOR DYNAMIC INITIAL SHOCK PARAMETERS OF COUPLING CHARGE ON BOREHOLE WALL UNDER THE ACTION OF HIGH EXPLOSIVES

    Institute of Scientific and Technical Information of China (English)

    倪芝芳; 李玉民

    1996-01-01

    According to detonation theory and hydrodynamic principle, a physical model has been set up in this paper. Based on the model a methodology for calculating dynamic initial shock parameters such as shock pressure p,,, shock wave velosity Dm etc. of coupling charge on borehole wall has ben developed. The shock parameters have been calculated when high explosives works on granite, limestone and marble respectively. The magnitude of every parameter on borehole wall has been obtained from ignited dot to the end of borehole along axial direction. Some important conclusions are also gained.

  15. Xsense: using nanotechnology to combine detection methods for high sensitivity handheld explosives detectors

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbæk; Kostesha, Natalie; Bosco, Filippo

    2010-01-01

    In an effort to produce a handheld explosives sensor the Xsense project has been initiated at the Technical University of Denmark in collaboration with a number of partners. Using micro- and nano technological approaches it will be attempted to integrate four detection principles into a single de...... device. At the end of the project, the consortium aims at having delivered a sensor platform consisting of four independent detector principles capable of detecting concentrations of TNT at sub parts-per-billion (ppb) concentrations and with a false positive rate less than 1 parts...

  16. Promising New High-Explosives: Triaminoguanidinium (TAG) and Dinitramide (DN) Salts

    Science.gov (United States)

    2008-12-01

    thermal stability. Especially 4 shows a well- defined melting point in the range from 120 ° to 195 °C, which depends on the number of existing hydrogen...parameters (α, β, κ, θ) as stated below the equations and Xi being the mol fraction of i-th gaseous product, ki is the molar covolume of the i-th gaseous...ΔEUm° (J g -1) -5902 4888 −3699 -6168 -6360 6186 Explosion temp. (TE) (K) 3986 3210 2673 4710 4231 4657 Det. pressure (p) (kbar) 299 273 231

  17. High CO2 in MORB - a link to explosive submarine eruptions?

    Science.gov (United States)

    Helo, C.; Longpré, M.; Shimizu, N.; Clague, D. A.; Stix, J.

    2009-12-01

    We analyzed volatile (CO2, H2O, S, F, Cl), and other trace elements, using the Cameca IMS 1280 and the Cameca 3F secondary ion mass spectrometer, in carefully selected plagioclase-hosted melt inclusions and matrix glass from mid-ocean ridge basalt (MORB) hyaloclastite sequences erupted from Axial caldera, Juan de Fuca Ridge (JdFR). The hyaloclastites were sampled at 1400 m below sea-level, and are inferred to result from a series of small pyroclastic eruptions. The trace elements reveal variations from normal to transitional MORB for Axial caldera (e.g., Nb = 1.1-6.5 ppm, Zr/Nb = 9-39). The CO2 concentrations in the melt inclusions range from 260 to 9160 ppm, with 16 out of 47 analyzed inclusions reaching > 1000 ppm. Surface contamination was ruled out by very low CO2 concentrations measured in adjacent plagioclase hosts (Journal of Volcanology and Geothermal Research 98]. When plotted together, CO2 and H2O define a vertical trend suggesting decompression degassing, with apparent vapour saturation pressures ranging from 57 to > 600 MPa. We recognize two possible scenarios: (1) limited degassing during early stages of magma ascent, culminating in supersaturation and sudden, rapid bubble growth at shallower levels, or (2) open-system degassing accompanied by bubble growth and separation as magma rises. The close spatial occurrence of high- and low-CO2 inclusions (crystals may argue towards the first interpretation. Saturation pressures for low-CO2 inclusions are consistent with pressures expected within the present day magma reservoir beneath Axial (~ 70-160 MPa). The matrix glass is oversaturated with respect to the depth of eruption; CO2 concentrations vary from 87 to 248 ppm, yielding saturation pressures between 14 MPa and 54 MPa. Water concentrations in the inclusions range from 0.05 to 0.39 wt %. Such low concentrations will not be affected significantly by degassing. H2O does not covary with incompatible elements such as Nb, or Zr; we interpret the variability

  18. Simulation Analysis of Indoor Gas Explosion Damage

    Institute of Scientific and Technical Information of China (English)

    钱新明; 陈林顺; 冯长根

    2003-01-01

    The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simulator. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the venting pressure is, the more serious the hazard consequence will be. The ignition location has also evident effect on the gas explosion damage. The explosion static overpressure would not cause major injury to person and serious damage to structure in the case of low venting pressure (lower than 2 kPa). The high temperature combustion after the explosion is the major factor to person injury in indoor gas explosion accidents.

  19. Determining the TNT equivalence of gram-sized explosive charges using shock-wave shadowgraphy and high-speed video recording

    Science.gov (United States)

    Hargather, Michael

    2005-11-01

    Explosive materials are routinely characterized by their TNT equivalence. This can be determined by chemical composition calculations, measurements of shock wave overpressure, or measurements of the shock wave position vs. time. However, TNT equivalence is an imperfect criterion because it is only valid at a given radius from the explosion center (H. Kleine et al., Shock Waves 13(2):123-138, 2003). Here we use a large retroreflective shadowgraph system and a high-speed digital video camera to image the shock wave and record its location vs. time. Optical data obtained from different explosions can be combined to determine a characteristic shock wave x-t diagram, from which the overpressure and the TNT equivalent are determined at any radius. This method is applied to gram-sized triacetone triperoxide (TATP) charges. Such small charges can be used inexpensively and safely for explosives research.

  20. Numerical model investigation for potential methane explosion and benzene vapor intrusion associated with high-ethanol blend releases.

    Science.gov (United States)

    Ma, Jie; Luo, Hong; Devaull, George E; Rixey, William G; Alvarez, Pedro J J

    2014-01-01

    Ethanol-blended fuel releases usually stimulate methanogenesis in the subsurface, which could pose an explosion risk if methane accumulates in a confined space above the ground where ignitable conditions exist. Ethanol-derived methane may also increase the vapor intrusion potential of toxic fuel hydrocarbons by stimulating the depletion of oxygen by methanotrophs, and thus inhibiting aerobic biodegradation of hydrocarbon vapors. To assess these processes, a three-dimensional numerical vapor intrusion model was used to simulate the degradation, migration, and intrusion pathway of methane and benzene under different site conditions. Simulations show that methane is unlikely to build up to pose an explosion hazard (5% v/v) if diffusion is the only mass transport mechanism through the deeper vadose zone. However, if methanogenic activity near the source zone is sufficiently high to cause advective gas transport, then the methane indoor concentration may exceed the flammable threshold under simulated conditions. During subsurface migration, methane biodegradation could consume soil oxygen that would otherwise be available to support hydrocarbon degradation, and increase the vapor intrusion potential for benzene. Vapor intrusion would also be exacerbated if methanogenic activity results in sufficiently high pressure to cause advective gas transport in the unsaturated zone. Overall, our simulations show that current approaches to manage the vapor intrusion risk for conventional fuel released might need to be modified when dealing with some high ethanol blend fuel (i.e., E20 up to E95) releases.

  1. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  2. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  3. Nanosensors for trace explosive detection

    OpenAIRE

    2008-01-01

    Selective and sensitive detection of explosives is very important in countering terrorist threats. Detecting trace explosives has become a very complex and expensive endeavor because of a number of factors, such as the wide variety of materials that can be used as explosives, the lack of easily detectable signatures, the vast number of avenues by which these weapons can be deployed, and the lack of inexpensive sensors with high sensitivity and selectivity. High sensitivity and selectivity, co...

  4. Paroxysmal dome explosion during the Merapi 2010 eruption: Processes and facies relationships of associated high-energy pyroclastic density currents

    Science.gov (United States)

    Komorowski, Jean-Christophe; Jenkins, Susanna; Baxter, Peter J.; Picquout, Adrien; Lavigne, Franck; Charbonnier, Sylvain; Gertisser, Ralf; Preece, Katie; Cholik, Noer; Budi-Santoso, Agus; Surono

    2013-07-01

    An 11-minute sequence of laterally-directed explosions and retrogressive collapses on 5 November 2010 at Merapi (Indonesia) destroyed a rapidly-growing dome and generated high-energy pyroclastic density currents (PDCs) spreading over 22 km2 with a runout of 8.4 km while contemporaneous co-genetic valley-confined PDCs reached 15.5 km. This event formed Stage 4 of the multi-stage 2010 eruption, the most intense eruptive episode at Merapi since 1872. The deposits and the widespread devastating impact of associated high-energy PDCs on trees and buildings show striking similarities with those from historical volcanic blasts (Montagne Pelée, Martinique, Bezymianny, Russia, Mount St. Helens, USA, Soufrière Hills, Montserrat). We provide data from stratigraphic and sedimentologic analyses of 62 sections of the first unequivocal blast-like deposits in Merapi's recent history. We used high resolution satellite imagery to map eruptive units and flow direction from the pattern of extensive tree blowdown. The stratigraphy of Stage 4 consists of three depositional units (U0, U1, U2) that we correlate to the second, third and fourth explosions of the seismic record. Both U1 and U2 show a bi-partite layer stratigraphy consisting each of a lower L1 layer and an upper L2 layer. The lower L1 layer is typically very coarse-grained, fines-poor, poorly-sorted and massive, and was deposited by the erosive waxing flow head. The overlying L2 layer is much finer grained, fines-rich, moderately to well-sorted, with laminar to wavy stratification. L2 was deposited from the waning upper part and wake of the PDC. Field observations indicate that PDC height reached ~ 330 m with an internal velocity of ~ 100 m s- 1 within 3 km from the source. The summit's geometry and the terrain morphology formed by a major transversal ridge and a funneling deep canyon strongly focused PDC mass towards a major constriction, thereby limiting the loss of kinetic energy. This favored elevated PDC velocities and

  5. Innovative assistant extraction of flavonoids from pine (Larix olgensis Henry) needles by high-density steam flash-explosion.

    Science.gov (United States)

    Song, Hongdong; Yang, Ruijin; Zhao, Wei; Katiyo, Wendy; Hua, Xiao; Zhang, Wenbin

    2014-04-30

    High-density steam flash-explosion (HDSF) was first employed to extract flavonoids from pine needles. The HDSF treatment was performed at a steam pressure of 0.5-2.0 MPa for 20-120 s. Scanning electron microscopy and high-performance liquid chromatography combined with photodiode-array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) were used to characterize the morphological changes and analyze flavonoids of pine needles before and after HDSF treatment. Our results indicated that, after steam explosion at 1.5 MPa for 60 s, the flavonoids extracted reached 50.8 rutin equivalents mg/g dry weight, which was 2.54-fold as that of the untreated sample. HDSF pretreatment caused the formation of large micropores on the pine needles and production of particles, as well as the removal of wax layers. Compared to microwave-assisted, ultrasound-assisted, and solvent extraction, HDSF pretreatment took only 30 min to reach a maximum yield of 47.0 rutin equivalents mg/g flavonoids extract after pine needles were treated at 1.5 MPa for 80 s. In addition, after HDSF treatment, the aglycones were 3.17 times higher than that of untreated pine needles, while glycosides were lower by 57% (in HPLC-DAD individuals' sum) due to hydrolysis of flavonoids glycosides. It can be concluded that HDSF is a practical pretreatment for extraction of flavonoids and conversion in the healthy food and pharmaceutical industries.

  6. Single and double shock initiation modelling for high explosive materials in last three decades

    Science.gov (United States)

    Hussain, T.; Yan, Liu

    2016-08-01

    The explosives materials are normally in an energetically metastable state. These can undergo rapid chemical decomposition only if sufficient energy has first been added to get the process started. Such energy can be provided by shocks. To predict the response of these materials under impacts of shocks of different strengths and durations and at various conditions, mathematical models are used. During the last three decades, a lot of research has been carried out and several shock initiation models have been presented. The models can be divided into continuum based and physics based models. In this study the single and double shock initiation models presented in last three decades have been reviewed and the ranges of their application has been discussed.

  7. Development of highly sensitive and selective antibodies for the detection of the explosive pentaerythritol tetranitrate (PETN) by bioisosteric replacement.

    Science.gov (United States)

    Hesse, Almut; Biyikal, Mustafa; Rurack, Knut; Weller, Michael G

    2016-02-01

    An improved antibody against the explosive pentaerythritol tetranitrate (PETN) was developed. The immunogen was designed by the concept of bioisosteric replacement, which led to an excellent polyclonal antibody with extreme selectivity and immunoassays of very good sensitivity. Compounds such as nitroglycerine, 2,4,6-trinitrotoluene, 1,3,5-trinitrobenzene, hexogen (RDX), 2,4,6-trinitroaniline, 1,3-dinitrobenzene, octogen (HMX), triacetone triperoxide, ammonium nitrate, 2,4,6-trinitrophenol and nitrobenzene were tested for potential cross-reactivity. The detection limit of a competitive enzyme-linked immunosorbent assay was determined to be around 0.5 µg/l. The dynamic range of the assay was found to be between 1 and 1000 µg/l, covering a concentration range of three decades. This work shows the successful application of the bioisosteric concept in immunochemistry by exchange of a nitroester to a carbonate diester. The antiserum might be used for the development of quick tests, biosensors, microtitration plate immunoassays, microarrays and other analytical methods for the highly sensitive detection of PETN, an explosive frequently used by terrorists, exploiting the extreme difficulty of its detection. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    Energy Technology Data Exchange (ETDEWEB)

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; Bastea, S.; Fried, L.; Jones, A.; Buuren, T. van; Hansen, D.; Benterou, J.; May, C.; Willey, T. M., E-mail: willey1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Graber, T. [Washington State University, Pullman, Washington 99164 (United States); Jensen, B. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ilavsky, J. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-06-28

    The dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about −3, which is consistent with a complex disordered, irregular, or folded sp{sup 2} sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.

  9. Measurement of carbon condensation using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    Energy Technology Data Exchange (ETDEWEB)

    Bagge-Hansen, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lauderbach, L. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hodgin, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bastea, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fried, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); van Buuren, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hansen, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benterou, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graber, T. [Washington State Univ., Pullman, WA (United States); Jensen, B. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ilavsky, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Willey, T. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-24

    The dynamics of carboncondensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. As a result, the power-law slope is about –3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.

  10. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant.

    Science.gov (United States)

    Cyplik, Paweł; Marecik, Roman; Piotrowska-Cyplik, Agnieszka; Olejnik, Anna; Drożdżyńska, Agnieszka; Chrzanowski, Lukasz

    2012-05-01

    Wastewater samples originating from an explosives production plant (3,000 mg N l(-1) nitrate, 4.8 mg l(-1) nitroglycerin, 1.9 mg l(-1) nitroglycol and 1,200 mg l(-1) chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic conditions was used. Complete removal of nitrates with simultaneous elimination of nitroglycerin and ethylene glycol dinitrate (nitroglycol) was achieved as a result of the conducted research. Specific nitrate reduction rate was estimated at 12.3 mg N g(-1) VSS h(-1). Toxicity of wastewater samples during the denitrification process was studied by measuring the activity of dehydrogenases in the activated sludge. Mutagenicity was determined by employing the Ames test. The maximum mutagenic activity did not exceed 0.5. The obtained results suggest that the studied wastewater samples did not exhibit mutagenic properties.

  11. Equation of state formulation for unreacted solid high explosives, PETN and HMX

    Science.gov (United States)

    Nagayama, Kunihito

    2015-06-01

    Equation of state (EOS) for unreacted explosives has been formulated thermodynamically aiming at using with numerical code of SDT processes. A generalized form of EOS is given in terms of p-v-E from the available static isothermal compression curve with non-constant specific heat, and arbitrary Grüneisen volume function. In this paper, a procedure of providing p-v-E EOS is developed based on the specific heat at constant volume as a function of entropy, Grüneisen volume function, together with Birch-Murnagan form of the isotherm. Material function of EOS and shock Hugoniot for PETN and HMX has been calculated, which is compared with the experimental data of shock-particle velocity Hugoniot. Dependence of shock pressure and temperature on the Grüneisen volume function is discussed. Insensitivity of the shock-particle velocity relationship to functional form of Grüneisen volume function is also shown. Second author: Dr. Shiro Kubota (AIST Japan).

  12. [Peculiarities of forensic medical reconstruction of the mechanism of injuries in numerous victims of the explosion of a high-capacity blasting device].

    Science.gov (United States)

    Fradkina, N A; Kovalev, A V; Makarov, I Iu

    2013-01-01

    The systemic analysis of forensic medical practice in Moscow during the past 15 years has demonstrated the scientific, practical, and social significance of expertise of peace-time blast injuries resulting from many terrorist attacks with the use of improvised high-capacity explosive devices that caused multiple human victims. The authors emphasize the current lack of objective forensic medical criteria for the reconstruction of the mechanism of injuries in numerous victims of the explosion of a high-capacity blasting device. It dictates the necessity of their development and substantiation of their practical application.

  13. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Materiel and High Explosives

    Energy Technology Data Exchange (ETDEWEB)

    E.H. Seabury; D.L. Chichester; C.J. Wharton; A.J. Caffrey

    2008-08-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory’s PINS Chemical Assay System has traditionally used a Cf-252 isotopic neutron source, but recently a Deuterium-Tritium (DT) Electronic Neutron Generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  14. Explosive Start

    Institute of Scientific and Technical Information of China (English)

    FRANCISCO; LITTLE

    2006-01-01

    I ducked involuntarily as the first set of explosions went off and made my way in double time to the street corner, where I had spotted an arcade that could be used for shelter. Running quickly in a crouched, military maneuver while inhaling gunpowder fumes, I was totally oblivious to the laughter and head-shaking coming

  15. Explosive welding: Principles and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Brasher, D.G.; Butler, D.J. [Northwest Technical Industries, Inc., Sequim, WA (United States)

    1995-03-01

    Explosive welding is a solid-state process in which controlled explosive detonations force two or more metals together at high pressures. The resultant composite system is joined with a high-quality metallurgical bond. Explosive welding (or explosive bonding) is a high-pressure process in which contaminant surface films are plastically jetted off the base metals as a result of the collision of two metals. The time duration involved in the explosive welding event is so short that the reaction zone (or heat affected zone) between the constituent metals is microscopic. During the process, the first few atomic layers of each metal become plasma because of the high velocity of the impact (200 to 500 m/s, 660 to 1,640 ft/s.) The angle of collision causes the plasma to jet in front of the collision point, effectively scrub-cleaning both surfaces, and leaving clean metal behind.

  16. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-03

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL`s current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency`s (EPA`s) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL`s existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility.

  17. Study of nano-nitramine explosives: preparation, sensitivity and application

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-06-01

    Full Text Available Nano-nitramine explosives (RDX, HMX, CL-20 are produced on a bi-directional grinding mill. The scanning electron microscope (SEM observations show that the prepared particles are semi-spherical, and the narrow size distributions are characterized using the laser particle size analyzer. Compared with the micron-sized samples, the nano-products show obvious decrease in friction and impact sensitivities. In the case of shock sensitivities, nano-products have lower values by 59.9% (RDX, 56.4% (HMX, and 58.1% (CL-20, respectively. When nano-RDX and nano-HMX are used in plastic bonded explosives (PBX as alternative materials of micron-sized particles, their shock sensitivities are significantly decreased by 24.5% (RDX and 22.9% (HMX, and their detonation velocities are increased by about 1.7%. Therefore, it is expected to promote the application of nano-nitramine explosives in PBXs and composite modified double-based propellants (CMDBs so that some of their properties would be improved.

  18. Experimental measurements of the detonation wave profile in a TATB based explosive

    Directory of Open Access Journals (Sweden)

    Decaris L.

    2011-01-01

    Full Text Available We report results of the experimental measurements of the detonation wave profile of the TATB based plastic bonded explosive T2 (97 w. % of TATB using VISAR and Heterodyne Velocimetry (HV – same as Photon Doppler Velocimetry. The experiment consists in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. In order to obtain the particle velocity history in the reaction zone, we measure particle velocity at the interaction of the detonation front with an aluminized window or the free surface velocity of a metallic foil. Lithium Fluoride (LIF, PMMA and steel have been tested. Several shots have been performed for different lengths of explosive. We compare the VISAR and HV measurements. With LIF and steel, VISAR and HV diagnostics give very similar profiles. The ZND profile obtained on LIF is resolved with both techniques. With PMMA, HV gives a more accurate profile than VISAR in the reaction zone. There is no evidence of the influence of the explosive cylinder length.

  19. 高能炸药扫雷可行性计算分析%Calculation and Analysis on Feasibility of Clearing Mines Using High Energy Explosive

    Institute of Scientific and Technical Information of China (English)

    郭迎春; 侯吉忠

    2009-01-01

    炸药所能释放的能量多少通常取决于其密度和爆轰波速度,爆热的大小直接影响炸药对地雷的扫雷效果,针对多种高能炸药的不同特点,以扫雷需求为牵引,进行了炸药的扫雷原理分析和扫雷应用的计算,为扫雷试验研究和新型扫雷器材的开发提供参考.%The quantity of energy that explosive can release usually depends on the density and the speed of detonation wave. The blasting heat will directly influence the mineclearing effect of explosive. Aiming at different characteristics of various high energy explosive, and on the basis of mineclearing requirements, the mineclearing principle of explosive is analyzed and the mineclearing application of explosive is calculated. The results can be the reference for mineclearing test research and developing new mineclearing equipment.

  20. TOWARD END-TO-END MODELING FOR NUCLEAR EXPLOSION MONITORING: SIMULATION OF UNDERGROUND NUCLEAR EXPLOSIONS AND EARTHQUAKES USING HYDRODYNAMIC AND ANELASTIC SIMULATIONS, HIGH-PERFORMANCE COMPUTING AND THREE-DIMENSIONAL EARTH MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A; Vorobiev, O; Petersson, A; Sjogreen, B

    2009-07-06

    This paper describes new research being performed to improve understanding of seismic waves generated by underground nuclear explosions (UNE) by using full waveform simulation, high-performance computing and three-dimensional (3D) earth models. The goal of this effort is to develop an end-to-end modeling capability to cover the range of wave propagation required for nuclear explosion monitoring (NEM) from the buried nuclear device to the seismic sensor. The goal of this work is to improve understanding of the physical basis and prediction capabilities of seismic observables for NEM including source and path-propagation effects. We are pursuing research along three main thrusts. Firstly, we are modeling the non-linear hydrodynamic response of geologic materials to underground explosions in order to better understand how source emplacement conditions impact the seismic waves that emerge from the source region and are ultimately observed hundreds or thousands of kilometers away. Empirical evidence shows that the amplitudes and frequency content of seismic waves at all distances are strongly impacted by the physical properties of the source region (e.g. density, strength, porosity). To model the near-source shock-wave motions of an UNE, we use GEODYN, an Eulerian Godunov (finite volume) code incorporating thermodynamically consistent non-linear constitutive relations, including cavity formation, yielding, porous compaction, tensile failure, bulking and damage. In order to propagate motions to seismic distances we are developing a one-way coupling method to pass motions to WPP (a Cartesian anelastic finite difference code). Preliminary investigations of UNE's in canonical materials (granite, tuff and alluvium) confirm that emplacement conditions have a strong effect on seismic amplitudes and the generation of shear waves. Specifically, we find that motions from an explosion in high-strength, low-porosity granite have high compressional wave amplitudes and weak

  1. Surface explosion cavities

    CERN Document Server

    Benusiglio, Adrien; Clanet, Christophe

    2012-01-01

    We present a fluid dynamics video on cavities created by explosions of firecrackers at the water free surface. We use three types of firecrackers containing 1, 1.3 and 5 g of flash powder. The firecrackers are held with their center at the surface of water in a cubic meter pool. The movies are recorded from the side with a high-speed video camera. Without confinement the explosion produces an hemispherical cavity. Right after the explosion this cavity grows isotropically, the bottom then stops while the sides continue to expand. In the next phase the bottom of the cavity accelerates backwards to the surface. During this phase the convergence of the flow creates a central jet that rises above the free surface. In the last part of the video the explosion is confined in a vertical open tube made of glass and of centimetric diameter. The explosion creates a cylindrical cavity that develops towards the free end of the tube. Depending on the charge, the cavity can either stop inside the tube or at its exit, but nev...

  2. Explosion containment device

    Science.gov (United States)

    Benedick, William B.; Daniel, Charles J.

    1977-01-01

    The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.

  3. Reactivity of highly confined explosives submitted to a slow heating; Reactivite d`explosifs fortement confines soumis a un chauffage lent

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine, D.; Cherin, H.; Letremy, R. [CEA Le Ripault, 37 - Tours (France)

    1996-12-31

    An experimental device is developed which allows to determine precisely the temperature increase (exothermic reaction) induced by the chemical decomposition inside an energetic material and to quantify the influence of confinement. This cook-off phenomenon can lead to the ignition of the material and greatly amplifies the violence of the explosive reaction. Tests were performed with a pressure cell filled with an octogene-based explosive compound under low and high confinement pressures. The pressure and temperature growths due to the generation of decomposition gases were measured simultaneously. (J.S.) 6 refs.

  4. The interaction of explosively generated plasma with explosives

    Science.gov (United States)

    Tasker, Douglas G.; Whitley, Von H.; Johnson, Carl E.

    2017-01-01

    It has been shown that the temperature of explosively generated plasma (EGP) is of the order of 1 eV and plasma ejecta can be focused to achieve velocities as high as 25 km/s. Proof-of-principle tests were performed to determine if EGP could be used for explosive ordnance demolition and other applications. The goals were: to benignly disable ordnance containing relatively sensitive high performance explosives (PBX-9501); and to investigate the possibility of interrupting an ongoing detonation in a powerful high explosive (again PBX-9501) with EGP. Experiments were performed to establish the optimum sizes of plasma generators for the benign deactivation of high explosives, i.e., the destruction of the ordnance without initiating a detonation or comparable violent event. These experiments were followed by attempts to interrupt an ongoing detonation by the benign disruption of the unreacted explosive in its path. The results were encouraging. First, it was demonstrated that high explosives could be destroyed without the initiation of a detonation or high order reaction. Second, ongoing detonations were successfully interrupted with EGP. [LA-UR-15-25350

  5. Relating pressure measurements to phenomena observed in high speed video recordings during tests of explosive charges in a semi-confined blast chamber

    CSIR Research Space (South Africa)

    Mostert, FJ

    2012-09-01

    Full Text Available Tests with explosive charges of 0.5 kg and 2 kg were conducted in the semi-confined blast chamber at the CSIR DBEL test range. Pressure measurements were obtained with side-on and face-on sensors mounted in the walls of the chamber and high speed...

  6. Luminescent metal-organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives

    Science.gov (United States)

    Lee, Ji Ha; Jaworski, Justyn; Jung, Jong Hwa

    2013-08-01

    Achieving both high specificity and sensitivity are essential for gas phase chemical detection systems. Recent implementation of Metal-Organic Frameworks (MOFs) have shown great success in separation and storage systems for specific gas molecules. By implementing a MOF structure comprised of Zn2+ coordinated trans-stilbene derivatives, a gas responsive material has been created which exhibits a high photoluminescence quantum yield, offering new opportunities for chemical sensors. Here, we reveal a nanocomposite material, assembled from azobenzene functionalized graphene oxide and stilbene-MOF, that is capable of luminescent quenching by explosive gases. This unique system displays selectivity to dinitrotoluene (71% quenching) over trinitrotoluene (20% quenching) with sub ppm sensitivity and response times of less than a minute. We show that this implementation of a graphene-based MOF composite provides a unique strategy in the development of molecularly well-defined materials having rapid, reversible, and gas selective fluorescent quenching capabilities. This opens the way for new advances in the assembly of low density frameworks using isomerization suppressed materials.Achieving both high specificity and sensitivity are essential for gas phase chemical detection systems. Recent implementation of Metal-Organic Frameworks (MOFs) have shown great success in separation and storage systems for specific gas molecules. By implementing a MOF structure comprised of Zn2+ coordinated trans-stilbene derivatives, a gas responsive material has been created which exhibits a high photoluminescence quantum yield, offering new opportunities for chemical sensors. Here, we reveal a nanocomposite material, assembled from azobenzene functionalized graphene oxide and stilbene-MOF, that is capable of luminescent quenching by explosive gases. This unique system displays selectivity to dinitrotoluene (71% quenching) over trinitrotoluene (20% quenching) with sub ppm sensitivity and

  7. Determination of Nanogram Microparticles from Explosives after Real Open-Air Explosions by Confocal Raman Microscopy.

    Science.gov (United States)

    Zapata, Félix; García-Ruiz, Carmen

    2016-07-05

    Explosives are increasingly being used for terrorist attacks to cause devastating explosions. The detection of their postblast residues after an explosion is a high challenge, which has been barely investigated, particularly using spectroscopic techniques. In this research, a novel methodology using confocal Raman microscopy has been developed for the analysis of postblast residues from 10 open-air explosions caused by 10 different explosives (TNT, RDX, PETN, TATP, HMTD, dynamite, black powder, ANFO, chloratite, and ammonal) commonly used in improvised explosive devices. The methodology for the determination of postblast particles from explosives consisted of examining the samples surfaces with both the naked eye, first, and microscopically (10× and 50×), immediately afterward; and finally, analyzing the selected residues by confocal Raman spectroscopy in order to identify the postblast particles from explosives. Interestingly, confocal Raman microscopy has demonstrated to be highly suitable to rapidly, selectively, and noninvasively analyze postblast microscopic particles from explosives up to the nanogram range.

  8. Explosive welding of undersea pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Stalker, A.W.

    1978-02-01

    The phenomenon of explosive welding has been known informally for many years. A number of investigations reported the occurerence of solid phase bonds as an incidental effect when using high explosives in association with adjacent metal surfaces and probably the earliest formal record was the observation by Carl in 1944 of a bond between two copper discs in contact with a detonator. In 1957 Philipchuk reported what is now recognized as an explosive weld between aluminium channel sections and a steel die when carrying out explosive forming trials. Since then a great deal of development work has resulted in explosive welding becoming a well established manufacturing technique, particularly in the fields of cladding and the joining of tube/tubeplates. In more recent years the process has been extended to the welding of large diameter line pipe materials.

  9. Explosive Pleuritis

    Directory of Open Access Journals (Sweden)

    Jasdeep K Sharma

    2001-01-01

    Full Text Available The objective of the present paper is to describe the clinical and computed tomography features of 'explosive pleuritis', an entity first named by Braman and Donat in 1986, and to propose a case definition. A case report of a previously healthy, 45-year-old man admitted to hospital with acute onset pleuritic chest pain is presented. The patient arrived at the emergency room at 15:00 in mild respiratory distress; the initial chest x-ray revealed a small right lower lobe effusion. The subsequent clinical course in hospital was dramatic. Within 18 h of admission, he developed severe respiratory distress with oxygen desaturation to 83% on room air and dullness of the right lung field. A repeat chest x-ray, taken the morning after admission, revealed complete opacification of the right hemithorax. A computed tomography scan of the thorax demonstrated a massive pleural effusion with compression of pulmonary tissue and mediastinal shift. Pleural fluid biochemical analysis revealed the following concentrations: glucose 3.5 mmol/L, lactate dehydrogenase 1550 U/L, protein 56.98 g/L, amylase 68 U/L and white blood cell count 600 cells/mL. The pleural fluid cultures demonstrated light growth of coagulase-negative staphylococcus and viridans streptococcus, and very light growth of Candida albicans. Cytology was negative for malignant cells. Thoracotomy was performed, which demonstrated a loculated parapneumonic effusion that required decortication. The patient responded favourably to the empirical administration of intravenous levofloxacin and ceftriaxone, and conservative surgical methods in the management of the empyema. This report also discusses the patient's rapidly progressing pleural effusion and offers a potential case definition for explosive pleuritis. Explosive pleuritis is a medical emergency defined by the rapid development of a pleural effusion involving more than 90% of the hemithorax over 24 h, which causes compression of pulmonary tissue and

  10. Explosive Pleuritis

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2012-01-01

    Full Text Available Pleural effusions associated with pneumonia (parapneumonic effusions are one of the most common causes of exudative pleural effusions in the world. Approximately 20 to 40% of patients hospitalized with pneumonia will have an accompanying pleural effusion. The term 'Explosive pleuritis' was originally described by Braman and Donat in 1986 as pleural effusions developing within hours of admission. We report a 38 years old male patient with minimal pleural effusion which progressed rapidly within one day to involve almost whole of the hemithorax. There were multiple loculations on ultrasonography of thorax. Pleural fluid was sero-sanguinous and revealed gram positive diplococcic. The patient improved with antibiotics and pigtail catheter drainage.

  11. NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

    2009-09-16

    A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

  12. 圆筒实验数据研究高能炸药的爆轰特性%Characteristics of High Explosives Obtained from Cylinder Test Data

    Institute of Scientific and Technical Information of China (English)

    Waldemar; A; Trzcinski; Stanistaw; Cudzito

    2006-01-01

    根据圆筒实验数据,采用新方法计算了HMX、RDX、PETN、TNT等炸药的爆轰能,研究了爆轰产物的加速能力,并与CHEETAH的计算结果进行了对比.通过爆轰波在柱壳水介质中传播的圆筒实验方法,预估了炸药的爆压.利用实验和热化学计算的结果推导了JWL状态方程的待定常数,并依据JWL等熵线计算了做功能力.%New methods to calculate the acceleration ability of detonation products and the detonation energy of explosives with the cylinder expansion test data were applied to determine the performance characteristics for some high explosives of military interest. The obtained results were also compared to the calculation results with CHEETAH code. Moreover, the detonation pressure for chosen explosives was evaluated on the basis of a variation of the cylinder test in which a cylindrical water layer was loaded by detonation wave propagating along an explosive charge confined by the water envelope.Results of the tests and thermochemical calculations were used to deduce constants of the JWL equation of state. Finally,the JWL isentropes obtained were applied to calculate the theoretical expansion work of detonation products.

  13. Coupled High Speed Imaging and Seismo-Acoustic Recordings of Strombolian Explosions at Etna, July 2014: Implications for Source Processes and Signal Inversions.

    Science.gov (United States)

    Taddeucci, J.; Del Bello, E.; Scarlato, P.; Ricci, T.; Andronico, D.; Kueppers, U.; Cannata, A.; Sesterhenn, J.; Spina, L.

    2015-12-01

    Seismic and acoustic surveillance is routinely performed at several persistent activity volcanoes worldwide. However, interpretation of the signals associated with explosive activity is still equivocal, due to both source variability and the intrinsically limited information carried by the waves. Comparison and cross-correlation of the geophysical quantities with other information in general and visual recording in particular is therefore actively sought. At Etna (Italy) in July 2014, short-lived Strombolian explosions ejected bomb- to lapilli-sized, molten pyroclasts at a remarkably repeatable time interval of about two seconds, offering a rare occasion to systematically investigate the seismic and acoustic fields radiated by this common volcanic source. We deployed FAMoUS (FAst, MUltiparametric Setup for the study of explosive activity) at 260 meters from the vents, recording more than 60 explosions in thermal and visible high-speed videos (50 to 500 frames per second) and broadband seismic and acoustic instruments (1 to 10000 Hz for the acoustic and from 0.01 to 30 Hz for the seismic). Analysis of this dataset highlights nonlinear relationships between the exit velocity and mass of ejecta and the amplitude and frequency of the acoustic signals. It also allows comparing different methods to estimate source depth, and to validate existing theory on the coupling of airwaves with ground motion.

  14. Self-similar approach to the explosion of droplets by a high energy laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Chitanvis, S.M.

    1987-09-25

    We have constructed a model in which a small droplet is exploded by the absorption of energy from a high energy laser beam. The beam flux is so high that we assume the formation of a plasma. We have a single-fluid model of a plasma droplet interacting with laser radiation. Selfsimilarity is invoked to reduce the spherically symmetric problem involving hydrodynamics and Maxwell's equations to quadrature. We show analytically that our model reproduces in a qualitative manner certain features observed experimentally by Eickmans et al.

  15. A flow integrated DSD hydrodynamics strategy for computing the motion of detonation of insensitive high explosives on an Eulerian grid

    Energy Technology Data Exchange (ETDEWEB)

    Short, Mark [Los Alamos National Laboratory; Aslam, Tariq D [Los Alamos National Laboratory

    2010-01-01

    The detonation structure in many insensitive high explosives consists of two temporally disparate zones of heat release. In PBX 9502, there is a fast reaction zone ({approx} 25 ns) during which reactants are converted to gaseous products and small carbon clusters, followed by a slower regime ({approx} 250 ns) of carbon coagulation. A hybrid approach for determining the propagation of two-stage heat release detonations has been developed that utilizes a detonation shock dynamics (DSD) based strategy for the fast reaction zone with a direct hydrodynamic simulation of the flow in the slow zone. Unlike a standard DSD/programmed bum formulation, the evolution of the fast zone DSD-like surface is coupled to the flow in the slow reaction zone. We have termed this formulation flow integrated detonation shock dynamics (FIDSD). The purpose of the present paper is to show how the FIDSD formulation can be applied to detonation propagation on an Eulerian grid using an algorithm based on level set interface tracking and a ghost fluid approach.

  16. RAPTOR observations of delayed explosive activity in the high-redshift gamma-ray burst GRB 060206

    CERN Document Server

    Wozniak, P R; Evans, S M; Vestrand, W T; White, R R; Wren, J A

    2006-01-01

    The RAPid Telescopes for Optical Response (RAPTOR) system at Los Alamos National Laboratory observed GRB 060206 starting 48.1 minutes after gamma-ray emission triggered the Burst Alert Telescope (BAT) on-board the Swift satellite. The afterglow light curve measured by RAPTOR shows a spectacular re-brightening by ~1 mag about 1 h after the trigger and peaks at R ~ 16.4 mag. Shortly after the onset of the explosive re-brightening the OT doubled its flux on a time-scale of about 4 minutes. The total R-band fluence received from GRB 060206 during this episode is 2.3e-9 erg/cm2. In the rest frame of the burst (z = 4.045) this yields an isotropic equivalent energy release of ~0.7e50 erg in just a narrow UV band 130 +/- 22 nm. We discuss the implications of RAPTOR observations for untriggered searches for fast optical transients and studies of GRB environments at high redshift.

  17. Unmanned Aerial Vehicle-Mounted High Sensitivity RF Receiver to Detect Improvised Explosive Devices

    Science.gov (United States)

    2007-09-01

    14 E. PICOSCOPE .........................................16 F. SINGLE BOARD COMPUTER .............................17 G. CONCLUSION...ICOM America)......15 Figure 8. Pico Scope 3205. (From Picotech)................16 Figure 9. Single Board Computer ...........................18...controlled by a PC. The High Sensitivity RF Receiver system used a single board computer onboard the TERN for this purpose. Figure 7

  18. Investigation of heat transfer in high-capacity power transformers having modifications preventing explosions

    Science.gov (United States)

    Aksenov, A. A.; Zhluktov, S. V.; Kudimov, N. F.; Son, E. E.; Savitskii, D. V.; Tretiyakova, O. N.; Shishaeva, A. S.

    2014-12-01

    Results of numerical simulation of complex conjugate heat transfer in a high power electric transformer are presented. Simulation of the flow and heat transfer inside a transformer with static blast protection was carried out. Analysis of test calculations performed in the FlowVision software suit was carried out. Comparison of the performance of created numerical model against the real experimental data from the thermal tests of the transformer was made.

  19. Explosive radiation in high Andean Hypericum – rates of diversification among New World lineages

    Directory of Open Access Journals (Sweden)

    Nicolai Matthias Nürk

    2013-09-01

    Full Text Available The páramos, high-elevation Andean grasslands ranging from ca. 2800 m to the snow line, harbor one of the fastest evolving biomes worldwide since their appearance in the northern Andes 3–5 million years (Ma ago. Hypericum (St. John’s wort, with over 65% of its Neotropical species, has a center of diversity in these high Mountain ecosystems. Using nuclear rDNA internal transcribed spacer (ITS sequences of a broad sample of New World Hypericum species we investigate phylogenetic patterns, estimate divergence times, and provide the first insights into diversification rates within the genus in the Neotropics. Two lineages appear to have independently dispersed into South America around 3.5 Ma ago, one of which has radiated in the páramos (Brathys. We find strong support for the polyphyly of section Trigynobrathys, several species of which group within Brathys, while others are found in temperate lowland South America (Trigynobrathys s.str.. All páramo species of Hypericum group in one clade. Within these páramo Hypericum species enormous phenotypic evolution has taken place (life forms from arborescent to prostrate shrubs evidently in a short time frame. We hypothesize multiple mechanisms to be responsible for the low differentiation in the ITS region contrary to the high morphological diversity found in Hypericum in the páramos. Amongst these may be ongoing hybridization and incomplete lineage sorting, as well as the putative adaptive radiation, which can explain the contrast between phenotypic diversity and the close phylogenetic relationships.

  20. Explosive radiation in high Andean Hypericum-rates of diversification among New World lineages.

    Science.gov (United States)

    Nürk, Nicolai M; Scheriau, Charlotte; Madriñán, Santiago

    2013-01-01

    The páramos, high-elevation Andean grasslands ranging from ca. 2800 m to the snow line, harbor one of the fastest evolving biomes worldwide since their appearance in the northern Andes 3-5 million years (Ma) ago. Hypericum (St. John's wort), with over 65% of its Neotropical species, has a center of diversity in these high Mountain ecosystems. Using nuclear rDNA internal transcribed spacer (ITS) sequences of a broad sample of New World Hypericum species we investigate phylogenetic patterns, estimate divergence times, and provide the first insights into diversification rates within the genus in the Neotropics. Two lineages appear to have independently dispersed into South America around 3.5 Ma ago, one of which has radiated in the páramos (Brathys). We find strong support for the polyphyly of section Trigynobrathys, several species of which group within Brathys, while others are found in temperate lowland South America (Trigynobrathys s.str.). All páramo species of Hypericum group in one clade. Within these páramo Hypericum species enormous phenotypic evolution has taken place (life forms from arborescent to prostrate shrubs) evidently in a short time frame. We hypothesize multiple mechanisms to be responsible for the low differentiation in the ITS region contrary to the high morphological diversity found in Hypericum in the páramos. Amongst these may be ongoing hybridization and incomplete lineage sorting, as well as the putative adaptive radiation, which can explain the contrast between phenotypic diversity and the close phylogenetic relationships.

  1. Explosive radiation in high Andean Hypericum—rates of diversification among New World lineages

    Science.gov (United States)

    Nürk, Nicolai M.; Scheriau, Charlotte; Madriñán, Santiago

    2013-01-01

    The páramos, high-elevation Andean grasslands ranging from ca. 2800 m to the snow line, harbor one of the fastest evolving biomes worldwide since their appearance in the northern Andes 3–5 million years (Ma) ago. Hypericum (St. John's wort), with over 65% of its Neotropical species, has a center of diversity in these high Mountain ecosystems. Using nuclear rDNA internal transcribed spacer (ITS) sequences of a broad sample of New World Hypericum species we investigate phylogenetic patterns, estimate divergence times, and provide the first insights into diversification rates within the genus in the Neotropics. Two lineages appear to have independently dispersed into South America around 3.5 Ma ago, one of which has radiated in the páramos (Brathys). We find strong support for the polyphyly of section Trigynobrathys, several species of which group within Brathys, while others are found in temperate lowland South America (Trigynobrathys s.str.). All páramo species of Hypericum group in one clade. Within these páramo Hypericum species enormous phenotypic evolution has taken place (life forms from arborescent to prostrate shrubs) evidently in a short time frame. We hypothesize multiple mechanisms to be responsible for the low differentiation in the ITS region contrary to the high morphological diversity found in Hypericum in the páramos. Amongst these may be ongoing hybridization and incomplete lineage sorting, as well as the putative adaptive radiation, which can explain the contrast between phenotypic diversity and the close phylogenetic relationships. PMID:24062764

  2. Tailoring Wet Explosion Process Parameters for the Pretreatment of Cocksfoot Grass for High Sugar Yields

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2013-01-01

    surface methodology. The WEx process parameters studied were temperature (160–210 °C), retention time (5–20 min), and dilute sulfuric acid concentration (0.2–0.5 %). The pretreatment parameter set E, applying 210 °C for 5 min and 0.5 % dilute sulfuric acid, was found most suitable for achieving a high...... when applying less severe pretreatment conditions C (160 °C, 5 min, 0.2 % dilute sulfuric acid). Therefore, the choice of the most suitable pretreatment conditions is depending on the main target product, i.e., hexose or pentose sugars....

  3. Explosive Formulation Pilot Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Pilot Plant for Explosive Formulation supports the development of new explosives that are comprised of several components. This system is particularly beneficial...

  4. Freeze frame analysis on high speed cinematography of Nd/YAG laser explosions in ocular tissues.

    Science.gov (United States)

    Vernon, S A; Cheng, H

    1986-05-01

    High speed colour cinematography at 400 frames per second was used to photograph both single and train burst Nd/YAG laser applications in ox eyes at threshold energy levels. Measurements of the extent and speed of particle scatter and tissue distortion from the acoustic transient were made from a sequential freeze frame analysis of the films. Particles were observed to travel over 8 mm from the site of Nd/YAG application 20 milliseconds after a single pulse at initial speeds in excess of 20 km/h. The use of train bursts of pulses was seen to increase the number of particles scattered and project the wavefront of particles further from the point of laser application.

  5. Pretreatment of bamboo by ultra-high pressure explosion with a high-pressure homogenizer for enzymatic hydrolysis and ethanol fermentation.

    Science.gov (United States)

    Jiang, Zehui; Fei, Benhua; Li, Zhiqiang

    2016-08-01

    Bamboo shoots, 2- and 5-year-old bamboo were treated by using a homogenizer in a constant suspended state, a process termed as ultra-high pressure explosion (UHPE). The bamboo powder was heated in 2% NaOH solution at 121°C, and then 100MPa UHPE-treated through a homogenizer. The results verified that UHPE changed the suspension solution of powder into a stick fluid. The contents of lignin were decreased significantly. The bamboo shoots and 2-year-old bamboo were completely hydrolyzed to glucose within 48h by enzymes loading of 15 FPU of cellulase and 30IU of β-glucosidase per gram glucan. Fermentation of enzymatic hydrolyzates with Saccharomyces cerevisiae resulted in about 89.7-95.1% of the theoretical ethanol yield after 24h. Therefore, NaOH+UHPE is argued to be a potential alternative technology for pretreatment of bamboo.

  6. Chaotic Explosions

    CERN Document Server

    Altmann, Eduardo G; Tél, Tamás

    2015-01-01

    We investigate chaotic dynamical systems for which the intensity of trajectories might grow unlimited in time. We show that (i) the intensity grows exponentially in time and is distributed spatially according to a fractal measure with an information dimension smaller than that of the phase space,(ii) such exploding cases can be described by an operator formalism similar to the one applied to chaotic systems with absorption (decaying intensities), but (iii) the invariant quantities characterizing explosion and absorption are typically not directly related to each other, e.g., the decay rate and fractal dimensions of absorbing maps typically differ from the ones computed in the corresponding inverse (exploding) maps. We illustrate our general results through numerical simulation in the cardioid billiard mimicking a lasing optical cavity, and through analytical calculations in the baker map.

  7. The propagation of detonation waves in non-ideal condensed-phase explosives confined by high sound-speed materials

    Science.gov (United States)

    Schoch, Stefan; Nikiforakis, Nikolaos; Lee, Bok Jik

    2013-08-01

    Highly non-ideal condensed-phase explosives used by the mining industry have a strong detonation velocity dependence on the charge dimension. Detonation velocities can be as low as one third of the theoretically calculated ideal detonation velocity in charge radii close to the failure radius. Under these detonation conditions the flow in the confiner can become subsonic, a flow condition under which classical shock-polar analysis is not applicable. This restriction prohibits the use of popular engineering models like detonation shock dynamics and Wood-Kirkwood type models under these confinement conditions. In addition, it has been found in the literature that subsonic flow in the confiner will increase the influence of the confining material on the detonation performance. In this work, we use a multi-phase model coupled to an elastic-plastic model (for the representation of a confiner) to explore the interaction of detonations under these confiner conditions. An ammonium nitrate based mining emulsion is investigated in aluminium and steel confinement of finite and infinite thickness representing the confiner as either a fluid or an elastic-plastic material. It is found that the presence of elastic waves is negligible close to ideal detonation conditions, but is important close to the failure radius and in detonation conditions with subsonic flow in the confiner. High sound-speed confiners support the detonation through energy transport ahead of the detonation front if desensitisation effects are negligible. The detonation front profiles are found to remain convex even in the most non-ideal detonation conditions, and the detonation front curvature only becomes concave in a localised region close to the confiner edge.

  8. Micro-solid-phase extraction coupled to desorption electrospray ionization-high-resolution mass spectrometry for the analysis of explosives in soil.

    Science.gov (United States)

    Bianchi, Federica; Gregori, Adolfo; Braun, Gabriele; Crescenzi, Carlo; Careri, Maria

    2015-01-01

    Home-made micro-solid-phase extraction (SPE) cartridges using different adsorbent materials were tested for the desorption electrospray ionization-high-resolution mass spectrometry (DESI-HRMS) determination of explosives like 2,4,6-trinitrotoluene, cyclotrimethylene-trinitramine, cyclotetramethylene-tetranitramine, pentaerythritol tetranitrate, and trinitrophenylmethylnitramine in soil samples. Quantitation limits in the low nanogram per kilogram range proved the reliability of the method for the detection of explosives at ultra-trace levels. The reduced sample preparation allowed for low costs and high-throughput analyses. Finally, the superior extraction capability of the method was proved by obtaining DESI-HRMS responses at least five times higher than those achieved by performing DESI-HRMS analyses of solid-liquid extracts spotted onto commercial polytetrafluoroethylene slides.

  9. Corrosion and high temperature resistant coatings for molybdenum, made out of iron and nickel alloys and applied by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Pruemmer, R.; Henne, R.

    1980-04-01

    The impact parameters of the explosive welding of molybdenum with Inconel 601 were determined. The combination Mo and Inconel 601 was considered as nonweldable. It can be applied in solar radiation concentrating devices, allowing a higher operating temperature and higher energy conversion efficiency. The usual velocities of the explosive welding process (collision velocities of 2200 m/sec) lead at best to samples affected by cracks, due to the insufficient workability of molybdenum. At higher velocities cracks no longer occur, molybdenum being a strain rate sensitive material. Layer composite materials can be manufactured in flat as well as in tube form. (ESA)

  10. Shock desensitizing of solid explosive

    Energy Technology Data Exchange (ETDEWEB)

    Davis, William C [Los Alamos National Laboratory

    2010-01-01

    Solid explosive can be desensitized by a shock wave too weak to initiate it promptly, and desensitized explosive does not react although its chemical composition is almost unchanged. A strong second shock does not cause reaction until it overtakes the first shock. The first shock, if it is strong enough, accelerates very slowly at first, and then more rapidly as detonation approaches. These facts suggest that there are two competing reactions. One is the usual explosive goes to products with the release of energy, and the other is explosive goes to dead explosive with no chemical change and no energy release. The first reaction rate is very sensitive to the local state, and the second is only weakly so. At low pressure very little energy is released and the change to dead explosive dominates. At high pressure, quite the other way, most of the explosive goes to products. Numerous experiments in both the initiation and the full detonation regimes are discussed and compared in testing these ideas.

  11. A working man`s analysis of incidents and accidents with explosives at the Los Alamos National Laboratory, 1946--1997

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, J.B.; Goldie, R.H.

    1998-12-31

    At the inception of the Laboratory hectic and intense work was the norm during the development of the atomic bombs. After the war the development of other weapons for the Cold War again contributed to an intense work environment. Formal Standard Operating Procedures (SOPs) were not required at that time. However, the occurrence of six fatalities in 1959 during the development of a new high-energy plastic bonded explosive (94% HMX) forced the introduction SOPs. After an accident at the Department of Energy (DOE) plant at Amarillo, TX in 1977, the DOE promulgated the Department wide DOE Explosives Safety Manual. Table 1 outlines the history of the introduction of SOPs and the DOE Explosives Safety Manual. Many of the rules and guidelines presented in these documents were developed and introduced as the result of an incident or accident. However, many of the current staff are not familiar with the background of the development. To preserve as much of this knowledge as possible, they are collecting documentation on incidents and accidents involving energetic materials at Los Alamos. Formal investigations of serious accidents elucidate the multiple causes that contributed to accidents. These reports are generally buried in a file and, and are not read by more recent workers. Reports involving fatalities at Los Alamos before 1974 were withheld from the general employee. Also, these documents contain much detail and analysis that is not of interest to the field worker. The authors have collected the documents describing 116 incidents and have analyzed the contributing factors as viewed from the standpoint of the individual operator. All the incidents occurred at the Los Alamos National Laboratory and involved energetic materials in some manner, though not all occurred within the explosive handling groups. Most accidents are caused by multiple contributing factors. They have attempted to select the one or two factors that they consider as the most important relative to the

  12. DEVELOPMENT OF ANTI-PERSONNEL MINE CLEARANCE ROBOT WITH HIGH SERVICEABILITY AND MANOEUVRABILITY FOR DETECTION AND DISACTIVATION OF EXPLOSIVE OBJECTS

    Directory of Open Access Journals (Sweden)

    D. Mironov

    2012-01-01

    Full Text Available A team of the BNTU researchers has developed an anti-personnel mine clearance robot that makes it possible to detect, disactivate or transport explosive objects to safe places excluding any danger to  human life. Performance characteristics of the anti-personnel mine clearance robot  surpass foreign analogues. 

  13. Chemical profiling of explosives

    NARCIS (Netherlands)

    Brust, G.M.H.

    2014-01-01

    The primary goal of this thesis is to develop analytical methods for the chemical profiling of explosives. Current methodologies for the forensic analysis of explosives focus on identification of the explosive material. However, chemical profiling of explosives becomes increasingly important, as

  14. Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy): Volatile stocking, gas fluxing, and the shift from low-energy to highly-explosive basaltic eruptions

    Science.gov (United States)

    Moretti, Roberto; Métrich, Nicole; Di Renzo, Valeria; Aiuppa, Alessandro; Allard, Patrick; Arienzo, Ilenia

    2017-04-01

    Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable degassing paths throughout the composite Etnean plumbing system. The combined influence of i) crystallization, ii) deep degassing and iii) CO2 gas fluxing can explain the evolution of H2O, CO2, S and Cl in products from such a spectrum of activity. Deep crystallization produces the CO2-rich gas fluxing the upward magma portions, which will become buoyant and easily mobilized in small gas-rich batches stored within the plumbing system. When reaching gas dominated conditions (i.e., a gas/melt mass ratio of 0.3 and CO2,gas/H2Ogas molar ratio 5 ), these will erupt effusively or mildly explosively, whilst in case of the 122 BC Plinian eruption, open-system degassing conditions took place within the plumbing system, such that continuous CO2-fluxing determined gas accumulation on top of the magmatic system. The emission of such a cap in the early eruptive phase triggered the arrival of deep H2O-rich whose fast decompression and bubble nucleation lead to the highly explosive character, enhanced by abundant microlite crystallization and consequent increase of magma effective viscosity. This could explain why open system basaltic systems like Etna may experience highly explosive or even Plinian episodes during eruptions that start with effusive to mildly explosive phases. The proposed mechanism also determines a

  15. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  16. Explosion of Leidenfrost Droplets

    Science.gov (United States)

    Moreau, Florian; Colinet, Pierre; Dorbolo, Stephane

    2012-11-01

    When a drop is released on a plate heated above a given temperature, a thin layer of vapour can isolate the droplet so that it levitates over the plate. This effect was first reported by Leidenfrost in 1756. However, this fascinating subject remains an active field of research in both fundamental and applied researches. In this work, we focus on what happens when surfactant is added to the drop. The aim is to study the influence of a decrease of the surface tension. Surprisingly, as the droplet evaporates, suddenly it explodes. The evolution of the droplet and the resulting explosion are followed using a high speed camera. We show that when a critical concentration of surfactant is reached inside the drop, a shell of surfactant is formed leading to the explosion. The authors would like to thank FNRS for financial support. This work is financially supported by ODILE project (Contract No. FRFC 2.4623.11).

  17. Explosive Blast Neuropathology and Seizures

    Directory of Open Access Journals (Sweden)

    S. Krisztian eKovacs

    2014-04-01

    Full Text Available Traumatic brain injury (TBI due to explosive blast exposure is a leading combat casualty. It is also implicated as a key contributor to war related mental health diseases. A clinically important consequence of all types of TBI is a high risk for development of seizures and epilepsy. Seizures have been reported in patients who have suffered blast injuries in the Global War on Terror but the exact prevalence is unknown. The occurrence of seizures supports the contention that explosive blast leads to both cellular and structural brain pathology. Unfortunately, the exact mechanism by which explosions cause brain injury is unclear, which complicates development of meaningful therapies and mitigation strategies. To help improve understanding, detailed neuropathological analysis is needed. For this, histopathological techniques are extremely valuable and indispensable. In the following we will review the pathological results, including those from immunohistochemical and special staining approaches, from recent preclinical explosive blast studies.

  18. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  19. Mechanical and microstructural characterization of a HMX-based pressed explosive: Effects of combined high pressure and strain rate

    Directory of Open Access Journals (Sweden)

    Biessy M.

    2012-08-01

    Full Text Available The paper presents a study of the combined effects of strain rate and confining pressure on the behaviour and microstructure evolutions of a HMX-based explosive. Hopkinson bar compression experiments are carried-out on samples confined with a brass sleeve. The latter is instrumented in order to determine the confining pressure on the explosive sample, directly function of the sleeve thickness and yield strength. A sample confined at 75 MPa and deformed at 250s−1 is recovered, cross-sectioned and studied using optical microscopy. Distributed microplasticity and microcracking appear similar to those induced by confined quasi-static experiments, indicating that stress triaxiality is the most important loading parameter. The sample also displays a large shear macrocrack, resulting from the formation of an adiabatic shear band. Shear banding seems to proceed by strong plastic strain gradients, followed by dynamic re-crystallization. Further strong thermal effects are observed, resulting in local reactive melting.

  20. 新型高威力含铝硝铵炸药的研究%A New High Strength Ammonium Nitrate Powdery Explosive Containing Aluminium

    Institute of Scientific and Technical Information of China (English)

    陆明; 吕春绪; 刘祖亮

    2001-01-01

    A new type high strength ammonium nitrate powdery explosive containing aluminium is manufactured by mixing oxidizer, a kind of expanded ammonium nitrate, which possesses many microholes and self-sensitivity, with reducing agent, which is the mixture of wood powder, composite fuel oil and aluminium powder. By mathematical model for prescription design and optimization of the industrial explosive which contains chemical elements such as C,H,O,N,Al and experimental research, a good prescription of powdery ammonium nitrate explosive containing aluminium powder is obtained, the formulation is expanded ammonium nitrate 85.5 %~89.5 %, wood powder 3.5 %~4.5 %,composite fuel oil 2.0 %~3.0 %,aluminium powder 5.0 %~7.0 %. The explosion property parameters of this kind of commercial explosive are detonation velocity (32 mm)3 600~3 800 m/s,brisance 16.00~17.00 mm, sensitivity to initial detonation 12~14 cm, strength 370~390 mL,charge density 0.92~0.95 g/cm3. The relation between the amount of aluminium power in explosive and explosion property is also discussed in this paper, when the amount of aluminium power in ammonium nitrate explosive is 6.5 %~7.0 %,the strength arrives maximum.%该文以一种含有大量微气泡、自身敏化的膨化硝酸铵为氧化剂,以木粉、燃料油和铝粉为还原剂,制成新型高威力含铝硝铵炸药。通过建构含C、H、O、N、Al元素工业炸药配方设计及最优化的数学模型,计算得到含铝硝铵炸药的较佳配方为硝酸铵85.5 %~89.5 %、木粉3.5 %~4.5 %、复合油相2.0 %~3.0 %、铝粉5.0 %~7.0 %。该炸药的爆炸性能为:装药密度0.91~95 g/cm3,爆速3 600~3 800 m/s,殉爆距离12~14 cm,猛度16~17 mm,作功能力370~390 mL。文中还讨论了含铝硝铵炸药中铝粉含量与爆炸性能的关系

  1. Observations of a bromine explosion event coincident with the arrival of Arctic haze in the Canadian high Arctic

    Science.gov (United States)

    Bognar, Kristof; Zhao, Xiaoyi; Strong, Kimberly; Hayes, Patrick L.; Tremblay, Samantha; Chang, Rachel Y.-W.

    2017-04-01

    Exponential build-up of bromine in the polar troposphere is linked to severe multi-day ozone depletion events in springtime. The exact origins of, and the meteorological conditions required for these 'bromine explosions' are, however, not well understood. On March 19-21, 2016, a bromine explosion was detected at Eureka, Nunavut, Canada (80.1°N, 86.4°W). BrO slant column densities were retrieved from measurements made by a Multi-Axis Differential Optical Absorption Spectroscopy spectrometer. Ozonesonde data indicate that a compete depletion of near-surface ozone also took place in the same period. The bromine explosion was initiated by strong winds and blowing snow, while a stable boundary layer returned for the last day of the event. It is likely that bromine release was localized near Eureka, and both the snowpack and aerosols contributed. Scanning Mobility Particle Sizer data show that the bromine enhancement coincided with the onset of an Arctic haze event. This work investigates whether acidification from the haze contributed to the local release of bromine.

  2. Comparative outcome of bomb explosion injuries versus high-powered gunshot injuries of the upper extremity in a civilian setting.

    Science.gov (United States)

    Luria, Shai; Rivkin, Gurion; Avitzour, Malka; Liebergall, Meir; Mintz, Yoav; Mosheiff, Ram

    2013-03-01

    Explosion injuries to the upper extremity have specific clinical characteristics that differ from injuries due to other mechanisms. To evaluate the upper extremity injury pattern of attacks on civilian targets, comparing bomb explosion injuries to gunshot injuries and their functional recovery using standard outcome measures. Of 157 patients admitted to the hospital between 2000 and 2004, 72 (46%) sustained explosion injuries and 85 (54%) gunshot injuries. The trauma registry files were reviewed and the patients completed the DASH Questionnaire (Disabilities of Arm, Shoulder and Hand) and SF-12 (Short Form-12) after a minimum period of 1 year. Of the 157 patients, 72 (46%) had blast injuries and 85 (54%) had shooting injuries. The blast casualties had higher Injury Severity Scores (47% vs. 22% with a score of > 16, P = 0.02) and higher percent of patients treated in intensive care units (47% vs. 28%, P = 0.02). Although the Abbreviated Injury Scale score of the upper extremity injury was similar in the two groups, the blast casualties were found to have more bilateral and complex soft tissue injuries and were treated surgically more often. No difference was found in the SF-12 or DASH scores between the groups at follow up. The casualties with upper extremity blast injuries were more severely injured and sustained more bilateral and complex soft tissue injuries to the upper extremity. However, the rating of the local injury to the isolated limb is similar, as was the subjective functional recovery.

  3. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  4. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Science.gov (United States)

    2013-10-28

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms, and Explosives Commerce in Explosives; List of Explosives Materials AGENCY: Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF); Department of Justice. ACTION:...

  5. Numerical computations of explosions in gases

    Science.gov (United States)

    Chushkin, P. I.; Shurshalov, L. V.

    The development and the present-day state of the problem on numerical computations of explosions in gases are reviewed. In the first part, different one-dimensional cases are discussed: point explosion with counterpressure, blast-like expansion of volumes filled with a compressed hot gas, blast of charges of condensed explosive, explosion processes in real high-temperature air, in combustible detonating media and under action of other physical-chemical factors. In the second part devoted to two-dimensional flows, we consider explosion in the non-homogeneous atmosphere, blast of asymmetric charges, detonation in gas, explosion modelling of some cosmic phenomena (solar flares, the Tunguska meteorite). The survey includes about 110 works beginning with the first publications on the subject.

  6. Guest-induced SC-SC transformation within the first K/Cd heterodimetallic triazole complex: a luminescent sensor for high-explosives and cyano molecules.

    Science.gov (United States)

    Wang, Ying; Jia, Wei; Chen, Ran; Zhao, Xiao-Jun; Wang, Zhong-Liang

    2017-01-03

    The first K/Cd heterodimetallic complex {[Cd1.5(TTPE)1.5Cl3K(H2O)3]·3H2O}n (1b) based on triazole has been generated from {[Cd(TTPE)(HCOO)](NO3)·3DMAC·H2O}n (1) during the ion- and solvent-exchange experiment in an irreversible SC-SC transformation. Based on its luminescence properties, we have, for the first time, demonstrated that 1b is a heterodimetallic sensor for detection of high-explosives and cyano molecules.

  7. Comparing oxidative and dilute acid wet explosion pretreatment of Cocksfoot grass at high dry matter concentration for cellulosic ethanol production

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2013-01-01

    was investigated for cellulosic ethanol production. The biomass raw materials were pretreated using wet explosion (WEx) at 25% dry matter concentration with addition of oxygen or dilute sulfuric acid. The enzymatic hydrolysis of cellulose was significantly improved after pretreatment. The highest conversion...... into cellulose monomeric C6 sugars was achieved for WEx condition AC-E (180°C, 15 min, and 0.2% sulfuric acid). For that condition, the highest ethanol yield of 197 g/kg DM (97% of theoretical maximum value) was achieved for SSF process by Saccharomyces cerevisiae. However, the highest concentration...

  8. Assessment of SERS activity and enhancement factors for highly sensitive gold coated substrates probed with explosive molecules

    Science.gov (United States)

    Botti, Sabina; Cantarini, Luciano; Almaviva, Salvatore; Puiu, Adriana; Rufoloni, Alessandro

    2014-01-01

    The surface enhanced Raman spectroscopy (SERS) is one of the most sensitive tools for trace analysis and the fabrication of effective and robust SERS substrates is the subject of intensive research in view of their possible applications. In this Letter, the SERS activity of an ordered structure of inverted pyramids (Klarite, Ltd) was examined by using nitro-based explosives, as Raman probe molecules. Enhancement factors up to 106 and detection limits of tens of pg were measured with an excellent run to run reproducibility. These findings provide new opportunities for the utilization of SERS for analytical detection at trace level.

  9. Method and apparatus for detecting explosives

    Science.gov (United States)

    Moore, David Steven [Santa Fe, NM

    2011-05-10

    A method and apparatus is provided for detecting explosives by thermal imaging. The explosive material is subjected to a high energy wave which can be either a sound wave or an electromagnetic wave which will initiate a chemical reaction in the explosive material which chemical reaction will produce heat. The heat is then sensed by a thermal imaging device which will provide a signal to a computing device which will alert a user of the apparatus to the possibility of an explosive device being present.

  10. Totally confined explosive welding

    Science.gov (United States)

    Bement, L. J. (Inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  11. Cell phone explosion.

    Science.gov (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging.

  12. Photoacoustic Sensing of Explosives

    Science.gov (United States)

    2013-11-01

    NOV 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Photoacoustic Sensing of Explosives 5a. CONTRACT NUMBER...2013www.ll.mit.edu Photoacoustic Sensing of Explosives (PHASE) is a promising new technology that detects trace explosive residues from significant... photoacoustic phenomena resulting from ultraviolet laser excitation. Exposed explosives are excited up to 100 meters away by using PHASE’s

  13. Inspection tester for explosives

    Science.gov (United States)

    Haas, Jeffrey S.; Simpson, Randall L.; Satcher, Joe H.

    2007-11-13

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  14. Dynamics of explosive paroxysms at open andesitic systems: high-resolution mass distribution analyses of 2006 tephra from Tungurahua volcano (Ecuador)

    Science.gov (United States)

    Le Pennec, J.; Eychenne, J.; Ramon, P.; Yepes, H.

    2012-12-01

    Many andesitic volcanoes at subduction plate margins can experience in the course of their evolution periods of sub-continuous eruption during years, decades, or centuries. Such long-lived periods may embrace more or less intense outgassing events, extrusion of viscous lava flows and domes (e.g. Colima in Mexico, Merapi in Indonesia, Arenal in Costa Rica), and explosive activity of uneven intensity (e.g. Semeru in Indonesia, Sakurajima in Japan, Sangay in Ecuador). In addition, strong explosive events of short duration may occur, with potential generation of pyroclastic flows on the flanks and beyond, which can pose significant hazards in populated regions. The origin and dynamics of such violent eruptions remain poorly known and may involve a combination of different factors. Tungurahua volcano, Ecuador, reawaken in 1999 and is an example of such open-system behaviour that experienced a strong and deadly andesitic pyroclastic flow-forming event in August 2006. Inspection of the deposits suggested that the event could have been triggered by magma mixing (silicic pumices in the tephra), magma-water interaction (presence of xenolithic clasts) or deep andesitic magma reinjection (based on mineral chemistry). Here we investigate these options by performing a high-resolution mass budget analysis of the scoria fall deposit. This is achieved by analysing componentry compositions and their mass distribution pattern in the layer, which allow us to document and integrate exponential and power laws mass decay rates over wide areas. The results yield a total mass for the tephra layer of ~2 x 1010kg. The pumice mass fraction is far too small (< 0.4 %) to account for the high explosivity of the 2006 event. Similarly, the xenoclastic mass fraction is small (0.2%) and suggests limited magma-water interaction. Instead, we interpret these xenoclasts as a result of upper conduit erosion at a rate of ~30 cm/hour during the paroxysm. Altogether our results support an explosive event

  15. Exploring the Physical, Chemical and Thermal Characteristics of a New Potentially Insensitive High Explosive: RX-55-AE-5

    Energy Technology Data Exchange (ETDEWEB)

    Weese, R K; Burnham, A K; Turner, H C; Tran, T D

    2006-06-05

    Current work at the Energetic Materials Center, EMC, at Lawrence Livermore National Laboratory (LLNL) includes both understanding properties of old explosives and measuring properties of new ones [1]. The necessity to know and understand the properties of energetic materials is driven by the need to improve performance and enhance stability to various stimuli, such as thermal, friction and impact insult. This review will concentrate on the physical properties of RX-55-AE-5, which is formulated from heterocyclic explosive, 2,6-diamino-3,5-dinitropyrazine-1-oxide, LLM-105, and 2.5% Viton A. Differential scanning calorimetry (DSC) was used to measure a specific heat capacity, C{sub p}, of {approx} 0.950 J/g{center_dot} C and a thermal conductivity, {kappa}, of {approx} 0.475 W/m{center_dot} C. The LLNL kinetics modeling code Kinetics05 and the Advanced Kinetics and Technology Solutions (AKTS) code Thermokinetics were both used to calculate Arrhenius kinetics for decomposition of LLM-105. Both obtained an activation energy barrier E {approx} 180 kJ mol{sup -1} for mass loss in an open pan. Thermal mechanical analysis, TMA, was used to measure the coefficient of thermal expansion (CTE). The CTE for this formulation was calculated to be {approx} 61 {micro}m/m{center_dot} C. Impact, spark, friction are also reported.

  16. Influence of Small Change of Porosity on Shock Initiation of an HMX/TATB/Viton Explosive and Ignition and Growth Modeling

    Science.gov (United States)

    Liu, Yan; Hussain, Tariq; Huang, Fenglei; Duan, Zhuoping

    2016-07-01

    All solid explosives in practical use are more or less porous. Although it is known that the change in porosity affects the shock sensitivity of solid explosives, the effect of small changes in porosity on the sensitivity needs to be determined for safe and efficient use of explosive materials. In this study, the influence of a small change in porosity on shock initiation and the subsequent detonation growth process of a plastic-bonded explosive PBXC03, composed of 87% cyclotetramethylene-tetranitramine (HMX), 7% triaminotrinitrobenzene (TATB), and 6% Viton by weight, are investigated by shock to detonation transition experiments. Two explosive formulations of PBXC03 having the same initial grain sizes pressed to 98 and 99% of theoretical mass density (1.873 g/cm3) respectively are tested using the in situ manganin piezoresistive pressure gauge technique. Numerical modeling of the experiments is performed using an ignition and growth reactive flow model. Reasonable agreement with the experimental results is obtained by increasing the growth term coefficient in the Lee-Tarver ignition and growth model with porosity. Combining the experimental and simulation results shows that the shock sensitivity increases with porosity for PBXC03 having the same explosive initial grain sizes for the pressures (about 3.1 GPa) applied in the experiments.

  17. Explosion and explosives. Volume 32, Number 5, 1971

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The following topics are discussed: CMDB propellants with high pressure exponent; the thermal decomposition of phenylnitromethane in 2-propanol; double exposed flash x-ray photographic observation on detonation of coal mining explosions; detonation of condensed multiple components about detonation characteristics of three liquid explosives; synthesis of N,N'-bis (2,4,6-trinitro-3-glycidoxyphenyl)-ethylene dinitramine; resistance characteristics of electric primer containing conductive particles; and formation of Meisenheimer's complex by adding an aqueous sodium hydroxide to the reaction product of epoxy compound with picric acid.

  18. Analysis on explosive welded Al/Mg plates in as-received state and after heat treatment using the in situ high-energy X-ray diffraction

    Science.gov (United States)

    Zhou, Qiang; Chen, Pengwan; Nie, Zhihua; Lan, Yazhu

    2015-06-01

    The synchrotron-based HEXRD method has a much better angular resolution in the reciprocal space than neutron or traditional laboratory XRD, which creates an opportunity that could precisely study the crystal structure and parameter from the XRD pattern. Due to the high penetration depth of high-energy X-ray, the micro-strain and phase distribution could be determined precisely. In this work, the explosive welded 2024 Al/AZ31 Mg plates, both in as-received state and after heat treatment, were investigated by HEXRD method. The XRD patterns were taken shot-by-shot, going from Al to Mg with step width of 0.1mm. The micro-strain, phase distribution and grain size of each step were estimated and analyzed within the general mechanism of explosive welding. It is interesting to find that the intense texture observed in both cladded and base materials disappeared at the welded interface. Residual stress, which was obviously detected at the interface for the as-received sample, was eliminated after heat treatment. For the as-received sample, the strain of Mg along the path from interface to free surface was different for different Azimuth angle and different crystal orientation; but such variations didn't occur for Al.

  19. Performance evaluation of granular activated carbon system at Pantex: Rapid small-scale column tests to simulate removal of high explosives from contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Henke, J.L.; Speitel, G.E. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1998-08-01

    A granular activated carbon (GAC) system is now in operation at Pantex to treat groundwater from the perched aquifer that is contaminated with high explosives. The main chemicals of concern are RDX and HMX. The system consists of two GAC columns in series. Each column is charged with 10,000 pounds of Northwestern LB-830 GAC. At the design flow rate of 325 gpm, the hydraulic loading is 6.47 gpm/ft{sup 2}, and the empty bed contact time is 8.2 minutes per column. Currently, the system is operating at less than 10% of its design flow rate, although flow rate increases are expected in the relatively near future. This study had several objectives: Estimate the service life of the GAC now in use at Pantex; Screen several GACs to provide a recommendation on the best GAC for use at Pantex when the current GAC is exhausted and is replaced; Determine the extent to which natural organic matter in the Pantex groundwater fouls GAC adsorption sites, thereby decreasing the adsorption capacity for high explosives; and Determine if computer simulation models could match the experimental results, thereby providing another tool to follow system performance.

  20. Application of continuous wave nuclear magnetic resonance to the quantitative analysis of some high explosives and propellants

    Science.gov (United States)

    Smart, R. P.

    The principles and techniques of CW NMR chemical characterization of explosives and propellants are reviewed, and some typical results are summarized. The instrument design and adjustment parameters are discussed; the need to determine the RF saturation values by trial and error for each sample is indicated; the practical steps for a typical analysis are listed; and four basic approaches (analysis vs a standard, analysis via standard additions, signal/gram measurements, and solvent extraction) are described. Results are presented for water in RDX, in nitrocellulose (NC), and in nitroglycerine-NC (NG-NC); NG in NG-NC paste and in propellant; oil in PE4 plasticizer grease; wax in RDX waxes; NG in damp NG-NC pastes; plasticizer in PE4; and TNT in chloroform solutions.

  1. Coulomb explosion of "hot spot"

    CERN Document Server

    Oreshkin, V I; Chaikovsky, S A; Artyomov, A P

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed and estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  2. NQR Stimulation Technique for Explosives Detection System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A method of customization stimulation signal based on direct digital frequency synthesis (DDS) for Nuclear Quadrapole Resonance Explosives Detection System is presented. DDS has many advantages, such as high frequency resolution, high convert speed,

  3. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    Broek, van den D.M.; Elwenspoek, M.

    2008-01-01

    Explosive evaporation occurs when a liquid is exposed to extremely high heat-fluxes. Within a few microseconds a bubble in the form vapour film is generated, followed by rapid growth due to the pressure impulse and finally the bubbles collapse. This effect, which already has proven its use in curren

  4. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    Broek, van den D.M.; Elwenspoek, M.C.

    2007-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a very high temperature in a very short time. At these temperatures homogeneous nucleation takes place. The nucleated bubbles almost instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse and fina

  5. Lead-free primary explosives

    Science.gov (United States)

    Huynh, My Hang V.

    2010-06-22

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  6. Optical Pressure Measurements of Explosions

    Science.gov (United States)

    2013-09-01

    Explosive Shocks in Air, 2nd ed.; Springer-Verlag: Berlin , Germany, 1985. 7. Anderson, J. D. Hypersonic and High Temperature Gas Dynamics, 2nd Ed...PDF) RDRL CIO LA T LANDFRIED RDRL WML M ZOLTOSKI RDRL WML A F DE LUCIA W OBERLE RDRL WML B J GOTTFRIED J CIEZAK

  7. Laser machining of explosives

    Science.gov (United States)

    Perry, Michael D.; Stuart, Brent C.; Banks, Paul S.; Myers, Booth R.; Sefcik, Joseph A.

    2000-01-01

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  8. Research on Initiation Sensitivity of Solid Explosive and Planer Initiation System

    Directory of Open Access Journals (Sweden)

    N Matsuo

    2016-09-01

    Full Text Available Firstly, recently, there are a lot of techniques being demanded for complex process, various explosive initiation method and highly accurate control of detonation are needed. In this research, the metal foil explosion using high current is focused attention on the method to obtain linear or planate initiation easily, and the main evaluation of metal foil explosion to initiate explosive was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metal foil explosion. Secondly, in high energy explosive processing, there are several applications, such as shock compaction, explosive welding, food processing and explosive forming. In these explosive applications, a high sensitive explosive has been mainly used. The high sensitive explosive is so dangerous, since it can lead to explosion suddenly. So, for developing explosives, the safety is the most important thing as well as low manufacturing cost and explosive characteristics. In this work, we have focused on the initiation sensitivity of a solid explosive and performed numerical analysis of sympathetic detonation. The numerical analysis is calculated by LS-DYNA 3D (commercial code. To understand the initiation reaction of an explosive, Lee-Tarver equation was used and impact detonation process was analyzed by ALE code. Configuration of simulation model is a quarter of circular cylinder. The donor type of explosive (SEP was used as initiation explosive. When the donor explosive is exploded, a shock wave is generated and it propagates into PMMA, air and metallic layers in order. During passing through the layers, the shock wave is attenuated and finally, it has influence on the acceptor explosive, Comp. B. Here, we evaluate the initiation of acceptor explosive and discuss about detonation pressure, reactive rate of acceptor explosive and attenuation of impact pressure.

  9. Controlled by Distant Explosions

    Science.gov (United States)

    2007-03-01

    VLT Automatically Takes Detailed Spectra of Gamma-Ray Burst Afterglows Only Minutes After Discovery A time-series of high-resolution spectra in the optical and ultraviolet has twice been obtained just a few minutes after the detection of a gamma-ray bust explosion in a distant galaxy. The international team of astronomers responsible for these observations derived new conclusive evidence about the nature of the surroundings of these powerful explosions linked to the death of massive stars. At 11:08 pm on 17 April 2006, an alarm rang in the Control Room of ESO's Very Large Telescope on Paranal, Chile. Fortunately, it did not announce any catastrophe on the mountain, nor with one of the world's largest telescopes. Instead, it signalled the doom of a massive star, 9.3 billion light-years away, whose final scream of agony - a powerful burst of gamma rays - had been recorded by the Swift satellite only two minutes earlier. The alarm was triggered by the activation of the VLT Rapid Response Mode, a novel system that allows for robotic observations without any human intervention, except for the alignment of the spectrograph slit. ESO PR Photo 17a/07 ESO PR Photo 17a/07 Triggered by an Explosion Starting less than 10 minutes after the Swift detection, a series of spectra of increasing integration times (3, 5, 10, 20, 40 and 80 minutes) were taken with the Ultraviolet and Visual Echelle Spectrograph (UVES), mounted on Kueyen, the second Unit Telescope of the VLT. "With the Rapid Response Mode, the VLT is directly controlled by a distant explosion," said ESO astronomer Paul Vreeswijk, who requested the observations and is lead-author of the paper reporting the results. "All I really had to do, once I was informed of the gamma-ray burst detection, was to phone the staff astronomers at the Paranal Observatory, Stefano Bagnulo and Stan Stefl, to check that everything was fine." The first spectrum of this time series was the quickest ever taken of a gamma-ray burst afterglow

  10. Explosives tester with heater

    Science.gov (United States)

    Del Eckels, Joel [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Whipple, Richard E [Livermore, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  11. Explosive Technology Group

    Data.gov (United States)

    Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...

  12. The Effect of Nano-Aluminumpowder on the Characteristic of RDX based Aluminized Explosives Underwater Close-Filed Explosion

    Directory of Open Access Journals (Sweden)

    Junting Yin

    2017-01-01

    Full Text Available In order to investigate the effect of nano-aluminum powder on the characteristic of RDX based aluminized explosives underwater closed-filed explosions, the scanning photographs along the radial of the charges were gained by a high speed scanning camera. The photographs of two different aluminized explosives underwater explosion have been analyzed, the shock wave curves and expand curves of detonation products were obtained, furthermore the change rules of shock waves propagation velocity, shock front pressure and expansion of detonation products of two aluminized explosives were investigated, and also the parameters of two aluminized explosives were contrasted. The results show that the aluminized explosive which with nano-aluminum whose initial shock waves pressure propagation velocity, shock front pressure are smaller than the aluminized explosive without nano-aluminum and has lower decrease rate attenuation of energy.

  13. Active explosion barrier performance against methane and coal dust explosions

    National Research Council Canada - National Science Library

    J. J. L. du Plessis

    2015-01-01

    Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines...

  14. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of (239)Pu due to non-nuclear detonation of high explosive

    Science.gov (United States)

    Edwards, L. L.; Harvey, T. F.; Freis, R. P.; Pitovranov, S. E.; Chernokozhin, E. V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of (239)Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal 'coupling coefficient' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of (239)Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported.

  15. Highly ordered binary assembly of silica mesochannels and surfactant micelles for extraction and electrochemical analysis of trace nitroaromatic explosives and pesticides.

    Science.gov (United States)

    Yan, Fei; He, Yayun; Ding, Longhua; Su, Bin

    2015-04-21

    The rapid and sensitive detection of nitroaromatic compounds is of great significance for human health, the environment, and public security. The present work reports on the extraction and electrochemical analysis of trace nitroaromatic compounds, such as explosives and organophosphate pesticides (OPs), using the indium tin oxide (ITO) electrodes modified with a highly ordered and aligned binary assembly of silica mesochannels and micelles (BASMM). With a pore diameter of ca. 2-3 nm, silica mesochannels (SMs) perpendicularly oriented to the ITO electrode surface can provide hard and robust supports to confine the soft cylindrical micelles formed by the aggregation of cationic surfactants, namely, cetyltrimethylammonium bromide (CTAB). Due to the organized self-assembly of hydrocarbon tails of CTAB surfactants, each micelle has a hydrophobic core, which acts as an excellent adsorbent for rapid extraction and preconcentration of trace nitroaromatic compounds from aqueous solutions via the hydrophobic effect. Furthermore, the cylindrical micelles are directly in contact with the underlying electrode surface, to which extracted compounds can freely diffuse and then be reduced therein, thus allowing their determination by means of voltammetry. Using the BASMM/ITO sensor, electrochemical analysis of trace nitroaromatic explosives, including 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenol, 2,6-dinitrotoluene, 3-nitrophenol, and nitrobenzene, and OPs, such as paraoxon, methyl parathion, and fenitrothion, was achieved with a fast response, wide linear range, high sensitivity, and low detection limit at the ppb level. TNT and paraoxon in real apple, tea, and water samples were also determined. By combining the heterogeneous extraction and determination in one ordered binary nanostructure, the BASMM sensor provides a very simple, rapid, and cost-effective way for analysis of nitroaromatic compounds and can be extended to a wide range of lipophilic yet redox-active analytes.

  16. Explosion risks from nanomaterials

    Science.gov (United States)

    Bouillard, Jacques; Vignes, Alexis; Dufaud, Olivier; Perrin, Laurent; Thomas, Dominique

    2009-05-01

    Emerging nanomanufactured products are being incorporated in a variety of consumer products ranging from closer body contact products (i.e. cosmetics, sunscreens, toothpastes, pharmaceuticals, clothing) to more remote body-contact products (electronics, plastics, tires, automotive and aeronautical), hence posing potential health and environmental risks. The new field of nanosafety has emerged and needs to be explored now rather than after problems becomes so ubiquitous and difficult to treat that their trend become irreversible. Such endeavour necessitates a transdisciplinary approach. A commonly forgotten and/or misunderstood risk is that of explosion/detonation of nanopowders, due to their high specific active surface areas. Such risk is emphasized and illustrated with the present development of an appropriate risk analysis. For this particular risk, a review of characterization methods and their limitations with regard to nanopowders is presented and illustrated for a few organic and metallic nanopowders.

  17. Effect of Explosive Sources on the Elastic Wave Field of Explosions in Soils

    Directory of Open Access Journals (Sweden)

    Chun Hua Bai

    2013-07-01

    Full Text Available A seismic wave is essentially an elastic wave, which propagates in the soil medium, with the strength of initial elastic wave being created by an explosion source that has a significant effect on seismic wave energy. In order to explore the explosive energy effect on output characteristics of the elastic wave field, four explosives with different work capacity (i.e., TNT, 8701, composition B and THL were used to study the effects of elastic wave pressure and rise time of stress wave to the peak value of explosions in soils. All the experimental data was measured under the same geological conditions using a self-designed pressure measuring system. This study was based on the analysis of the initial pressure of elastic waves from the energy output characteristics of the explosives. The results show that this system is feasible for underground pressure tests, and the addition of aluminum powder increases the pressure of elastic waves and energy release of explosions in soils. The explosive used as a seismic energy source in petroleum and gas exploration should have properties of high explosion heat and low volume of explosion gas products.Defence Science Journal, 2013, 63(4, pp.376-380, DOI:http://dx.doi.org/10.14429/dsj.63.2770

  18. Effect of Explosive Sources on the Elastic Wave Field of Explosions in Soils

    Directory of Open Access Journals (Sweden)

    Chun-Hua Bai

    2013-07-01

    Full Text Available A seismic wave is essentially an elastic wave, which propagates in the soil medium, with the strength of initial elastic wave being created by an explosion source that has a significant effect on seismic wave energy. In order to explore the explosive energy effect on output characteristics of the elastic wave field, four explosives with different work capacity (i.e., TNT, 8701, composition B and THL were used to study the effects of elastic wave pressure and rise time of stress wave to the peak value of explosions in soils. All the experimental data was measured under the same geological conditions using a self-designed pressure measuring system. This study was based on the analysis of the initial pressure of elastic waves from the energy output characteristics of the explosives. The results show that this system is feasible for underground pressure tests, and the addition of aluminum powder increases the pressure of elastic waves and energy release of explosions in soils. The explosive used as a seismic energy source in petroleum and gas exploration should have properties of high explosion heat and low volume of explosion gas products.

  19. Turbulent Combustion in SDF Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  20. Imaging Detonations of Explosives

    Science.gov (United States)

    2016-04-01

    14. ABSTRACT The techniques and instrumentation presented in this report allow for mapping of temperature, pressure , chemical species, and...measurement in the explosive near- to far-field (0–500 charge diameters) of surface temperatures, peak air-shock pressures , some chemical species...15. SUBJECT TERMS imaging, explosions, temperature, pressure , chemical species 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU

  1. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1995-01-01

    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  2. Study on Computational Method of Safe Evaluation for Test House of High Pressure Gases Vessel Explosion Hazards%高压容器试验仓安全评估计算方法研究

    Institute of Scientific and Technical Information of China (English)

    史长根; 尤峻; 周祥; 姜鹏飞

    2011-01-01

    Three hazard models on the test house are analyzed and studied when the explosion of the high pressure vessel by replacing high pressure gases vessel explosion with equivalent weight of TNT. The results of living example simulate and numerical compute are given about explosion hazards of the high pressure vessel by building compute model. These provide a kind of compute method of safe evaluation and construction design for test house of high pressure gases vessel explosion.%文章分析了高压容器爆炸对试验仓产生的三种危害模式,并采用等效TNT药量爆炸替代高压容器气体爆炸,对这三种危害模式的计算方法进行了研究.通过计算模型的建立和计算结果分析,对高压容器的爆炸危害安全评估进行了实例模拟和数值计算,为高压容器气体密封试验仓的结构设计和材料选择提供了一种计算方法.

  3. Experimental Study on High Power Class 3 Permissible Water Gel Explosive%高威力三级煤矿许用水胶炸药的试验研究

    Institute of Scientific and Technical Information of China (English)

    汪海波; 郭子如; 宗琦

    2014-01-01

    In order to solve the problems of class 3 permissible explosive for rock roadway excavation in coalmine,such as low explosion energy,short footage and low utilization rate of blast hole,through a large number of laboratory test and plant test,a new explosive composition,the high power class 3 coal mine water gel explosive to improve blasting power was developed,and detected by the authority department. Results show that after 6 months storage,detonation velocity of new explosive is 3600 m·s-1 ,power 239 mL,toxic gas composition 20 L·kg-1 ,which is better than class 2 coal mine water gel explosive. And its fuel gas safety,sen-sitiveness,anti-deflagration reach standard of class 3 coal mine water gel explosive. On-site rock roadway test was carried out for study the validation of explosive blasting power from the parameters including the footage,utilization rate of blast hole,hole depth,waste rock fragmentation,thrown distance,around forming and explosive consumption. Results show that under the same conditions and blasting material consumption,the rock breakage capability of new high power class 3 coal mine water gel explo-sive is near that of the class 2 coal mine water gel explosive,higher than that of class 3 coal mine water gel explosive.%针对煤矿井下岩巷掘进爆破三级煤矿许用炸药爆炸能量低、循环进尺少、炮孔利用率低的问题,通过实验室试验和工厂中间试验,研制了提高炸药爆破威力的新配方,采用煤矿许用炸药抗爆燃性能测试方法及判定( GBT20061-2006)、煤矿许用炸药可燃气安全度试验方法及判定(GB18097-2000),对送检水胶炸药样品进行可燃气安全度检验、爆轰速度、做功能力测试,测试结果表明,储存6个月后高威力三级煤矿许用水胶炸药的爆速3600 m·s-1、做功能力239 mL、有毒气体含量20 L·kg-1,优于现有的二级煤矿许用水胶炸药,可燃气安全度、抗爆燃性均达到三级煤

  4. Reworked pyroclastic beds in the early Miocene of Patagonia: Reaction in response to high sediment supply during explosive volcanic events

    Science.gov (United States)

    Cuitiño, José I.; Scasso, Roberto A.

    2013-05-01

    disregarded. This, together with the lenticular shape and the alluvial plain origin of the encasing sediments, suggests accumulation within fluvial channels. Cycles of upper-flow-regime parallel lamination, current-ripple lamination and mud drapes at the lower portion, suggest short-lived turbulent flows that initially filled semi-abandoned channels. They were followed by sheet floods and channel reactivation, expressed by large-scale cross-bedding. The low degree of particle mixing observed in both levels is explained by the inability of streams to erode the substrate as they are suddenly over-saturated with pyroclastic sediments during and after the eruption. The grain-size distribution of the LPL and geochemical data indicate a contemporaneous volcanic source located to the west/southwest in the Andean ranges, where the South Patagonian Batholith is presently located. Explosive volcanism deeply modifies "normal" sedimentary dynamics.

  5. RANCHERO explosive pulsed power experiments

    CERN Document Server

    Goforth, J H; Armijo, E V; Atchison, W L; Bartos, Yu; Clark, D A; Day, R D; Deninger, W J; Faehl, R J; Fowler, C M; García, F P; García, O F; Herrera, D H; Herrera, T J; Keinigs, R K; King, J C; Lindemuth, I R; López, E; Martínez, E C; Martínez, D; McGuire, J A; Morgan, D; Oona, H; Oro, D M; Parker, J V; Randolph, R B; Reinovsky, R E; Rodríguez, G; Stokes, J L; Sena, F C; Tabaka, L J; Tasker, D G; Taylor, A J; Torres, D T; Anderson, H D; Broste, W B; Johnson, J B; Kirbie, H C

    1999-01-01

    The authors are developing the RANCHERO high explosive pulsed power (HEPP) system to power cylindrically imploding solid-density liners for hydrodynamics experiments. Their near-term goal is to conduct experiments in the regime pertinent to the Atlas capacitor bank. That is, they will attempt to implode liners of ~50 g mass at velocities approaching 15 km/sec. The basic building block of the HEPP system is a coaxial generator with a 304.8 mm diameter stator, and an initial armature diameter of 152 mm. The armature is expanded by a high explosive (HE) charge detonated simultaneously along its axis. The authors have reported a variety of experiments conducted with generator modules 43 cm long and have presented an initial design for hydrodynamic liner experiments. In this paper, they give a synopsis of their first system test, and a status report on the development of a generator module that is 1.4 m long. (6 refs).

  6. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity

    Science.gov (United States)

    Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung

    2016-05-01

    In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

  7. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.

    Science.gov (United States)

    Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung

    2016-05-20

    In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

  8. Weapons Experiments Division Explosives Operations Overview

    Energy Technology Data Exchange (ETDEWEB)

    Laintz, Kenneth E. [Los Alamos National Laboratory

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  9. Weapons Experiments Division Explosives Operations Overview

    Energy Technology Data Exchange (ETDEWEB)

    Laintz, Kenneth E. [Los Alamos National Laboratory

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  10. Fuze for explosive magnetohydrodynamic generator

    Energy Technology Data Exchange (ETDEWEB)

    Webb, G.

    1976-12-23

    An apparatus is examined by which high explosive charges are propelled into and detonated at the center of an MHD-X generator. The high explosive charge units are engaged and propelled by a reciprocating ram device. Detonating in each instance is achieved by striking with a firing pin a detonator charge that is in register with a booster charge, the booster charge being in detonating communication with the high explosive charge. Various safety requirements are satisfied by a spring loaded slider operating in a channel transverse and adjacent to the booster charge. The slide retains the detonator charge out of register with the booster charge until a safety pin that holds the slider in place is pulled by a lanyard attached between the reciprocating ram and the safety pin. Removal of the safety pin permits the detonator charge to slide into alignment with the booster charge. Firing pin actuation is initiated by the slider at the instant the detonator charge and the booster charge come into register.

  11. Influence of the parameters of a high-frequency acoustic wave on the structure, properties, and plastic flow of metal in the zone of a joint of materials welded by ultrasound-assisted explosive welding

    Science.gov (United States)

    Peev, A. P.; Kuz'min, S. V.; Lysak, V. I.; Kuz'min, E. V.; Dorodnikov, A. N.

    2017-05-01

    The results of an investigation of the influence of the parameters of high-frequency acoustic wave on the structure and properties of the zone of joint of homogeneous metals bonded by explosive welding under the action of ultrasound have been presented. The influence of the frequency and amplitude of ultrasonic vibrations on the structure and properties of the explosively welded joints compared with the samples welded without the application of ultrasound has been established. The action of high-frequency acoustic waves on the metal leads to a reduction in the dynamic yield stress, which changes the properties of the surface layers of the metal and the conditions of the formation of the joint of the colliding plates upon the explosive welding. It has been shown that the changes in the length and amplitude of waves that arise in the weld joint upon the explosive welding with the simultaneous action of ultrasonic vibrations are connected with a decrease in the magnitude of the deforming pulse and time of action of the compressive stresses that exceed the dynamic yield stress beyond the point of contact.

  12. Improvement of High-Power Three-Level Explosion-Proof Inverters Using Soft Switching Control Based on Optimized Power-Loss Algorithm

    Directory of Open Access Journals (Sweden)

    Shi-Zhou Xu

    2015-01-01

    Full Text Available The high-power three-level explosion-proof inverters demand high thermal stability of power devices, and a set of theories and methods is needed to achieve an accurate power-loss calculation of power devices, to establish heat dissipation model, and ultimately to reduce the power loss to improve thermal stability of system. In this paper, the principle of neutral point clamped three-level (NPC3L inverter is elaborated firstly, and a fourth-order RC equivalent circuit of IGBT is derived, on which basis the power-loss model of IGBT and the optimized maternal power-loss thermal model, using an optimized power-loss algorithm, are established. Secondly, in accordance with the optimized maternal power-loss thermal model, the generic formulas of power-loss calculation are deduced to calculate the power-loss modification values of NPC3L and soft switching three-level (S3L inverters, which will be the thermal sources during thermal analysis for maternal power-loss thermal models. Finally, the experiment conducted on the 2.1 MW experimental platform shows that S3L inverter has the same excellent output characteristics with NPC3L inverter, reduces the power loss significantly by 213 W in each half-bridge, and decreases the temperature by 10°C, coinciding with the theoretical calculation, which verifies the accuracy of optimized power-loss algorithm and the effectiveness of the improvement.

  13. Aging of civil explosives (Poster)

    NARCIS (Netherlands)

    Krabbendam-La Haye, E.L.M.; Klerk, W.P.C. de; Hoen, C. 't; Krämer, R.E.

    2014-01-01

    For the Dutch MoD and police, TNO composed sets with different kinds of civil explosives to train their detection dogs. The manufacturer of these explosives guarantees several years of stability of these explosives. These sets of explosives are used under different conditions, like temperature and

  14. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  15. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  16. 75 FR 5545 - Explosives

    Science.gov (United States)

    2010-02-03

    ....gov . This Federal Register notice, as well as news releases and other relevant information, are also..., Tobacco, Firearms and Explosives (ATF) regulates the import, manufacture, distribution, and storage of...

  17. Explosion suppression system

    Science.gov (United States)

    Sapko, Michael J.; Cortese, Robert A.

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  18. Explosive Welding with Nitroguanidine.

    Science.gov (United States)

    Sadwin, L D

    1964-03-13

    By using the explosive nitroguanidine, continuous welds can be made between similar and dissimilar metals. Since low detonation pressures are attainable, pressure transfer media are not required between the explosive and the metal surface. The need for either a space or an angle between the metals is eliminated, and very low atmospheric pressures are not required. Successful welds have been made between tantalum and 4140 steel, 3003H14 aluminum and 4140 steel, and 304 stainless steel and 3003H14 aluminum.

  19. Overview of Explosive Initiators

    Science.gov (United States)

    2015-11-01

    important characteristics of an effective primary explosive is an extremely swift deflagration to detonation transition, meaning that once the... Taylor , G. W. C., Napier, S. E., "Preparation of Explosive Substances Containing Carboxymethyl Cellulose," U.S. Patent 3,291,664, 1966. 8 Perich, A...Rinkenbach, W. H., "Study of the Action of Lead Azide on Copper," U.S. Army ARDEC, Picatinny Arsenal, NJ, Technical Report No. 1152, 1942. 11 Taylor , G. W

  20. Applying NASA's explosive seam welding

    Science.gov (United States)

    Bement, Laurence J.

    1991-01-01

    The status of an explosive seam welding process, which was developed and evaluated for a wide range of metal joining opportunities, is summarized. The process employs very small quantities of explosive in a ribbon configuration to accelerate a long-length, narrow area of sheet stock into a high-velocity, angular impact against a second sheet. At impact, the oxide films of both surface are broken up and ejected by the closing angle to allow atoms to bond through the sharing of valence electrons. This cold-working process produces joints having parent metal properties, allowing a variety of joints to be fabricated that achieve full strength of the metals employed. Successful joining was accomplished in all aluminum alloys, a wide variety of iron and steel alloys, copper, brass, titanium, tantalum, zirconium, niobium, telerium, and columbium. Safety issues were addressed and are as manageable as many currently accepted joining processes.

  1. Numerical Simulation of Underwater Explosion Loads

    Institute of Scientific and Technical Information of China (English)

    XIN Chunliang; XU Gengguang; LIU Kezhong

    2008-01-01

    Numerical simulation of TNT underwater explosion was carried out with AUTODYN software.Influences of artificial viscosity and mesh density on simulation results were discussed.Detonation waves in explosive and shock wave in water during early time of explosion are high frequency waves.Fine meshes (less than 1 mm) in explosive and water nearby,and small linear viscosity coefficients and quadratic viscosity coefficients (0.02 and 0.1 respectively,1/10 of default values) are needed in numerical simulation model.According to these rules,numerical computing pressure profiles can match well with those calculated by Zamyshlyayev empirical formula.Otherwise peak pressure would be smeared off and upstream relative errors would be cumulated downstream to make downstream peak pressure lower.

  2. Explosive compaction of CuCr alloys

    Institute of Scientific and Technical Information of China (English)

    李金平; 罗守靖; 龚朝晖; 牛玮; 纪松

    2002-01-01

    The production of CuCr alloys utilizing explosive compaction was studied. Mixture powders of CuCr alloys placed in tubes with a dimension of d14.0mm×21.4mm can be compacted using explosive pads of 16.5mm or 22.5mm. Thicker pads of explosive make the compacts more porous. The effects of the ratio of me/mp, ratio of me/(mp+mt) and impact energy on the density of compacts were similar, they were chosen to control explosive compaction, respectively. When adequate value of the parameters me/mp, me/(mt+mp) and impact energy of unit area of tube was chosen, high density(7.858g/cm3), high hardness(HB189) and low conductance (13.6MS/m) of CuCr alloys could be made by explosive compaction. The general properties of CuCr alloys by explosive compaction are similar to those of CuCr alloys by traditional process.

  3. Solid Rocket Launch Vehicle Explosion Environments

    Science.gov (United States)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  4. Charging Technology Application of High Power Insensitive Melt-Pour Explosive Based on DNAN%DNAN基高威力钝感熔铸炸药装药工艺应用

    Institute of Scientific and Technical Information of China (English)

    王春光; 魏敏; 刘学柱; 刘永峰

    2013-01-01

    A charge process of insensitive melt-pour explosive based on 2,4-Dinitroanisole (DNAN) was proposed, due to TNT based melt-pour explosive can't meet the standard of insensitive ammunition. Based on the research results at home and abroad, first, the main advantages of DNAN based explosive was analyzed compared to TNT based explosive. Then, the feasibility, safety, process route and key technology were researched. At last, the application performance of charge technology was tested. The test and application results show that the charge density of trial-produced RBUL-2 high power melt-pour explosive is high. The underwater explosion energy is greater than 2 times TNT equivalent. The warhead explosion load and damaged power is improved, and it has been used to the XX product development.%  针对TNT熔铸炸药不能满足钝感弹药标准的问题,提出一种以2.4-二硝基苯甲醚(DNAN)为熔融介质配制钝感熔铸炸药的装药工艺.基于国内外的研究成果,分析 DNAN 基炸药相比于 TNT 基炸药的主要优点,从可行性、安全性、工艺路线及关键技术出发进行研究,并进行了装药工艺应用性能指标检测试验.试验及应用结果表明:试制的RBUL-2高威力熔铸炸药装药密度高,水下爆炸能量大于2倍TNT当量,提高了战斗部爆炸载荷和毁损威力,并已在××新型产品研制中得到应用.

  5. Influence of spectral resolution, spectral range and signal-to-noise ratio of Fourier transform infra-red spectra on identification of high explosive substances.

    Science.gov (United States)

    Banas, Krzysztof; Banas, Agnieszka M; Heussler, Sascha P; Breese, Mark B H

    2018-01-05

    In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra-small-angle neutron scattering with contrast variation

    Energy Technology Data Exchange (ETDEWEB)

    Mang, Joseph Thomas [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory; Francois, Elizabeth G [Los Alamos National Laboratory

    2009-01-01

    We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity (voids and binder-filled regions) in a composite high explosive, PBX 9501, formulated with a deuterated binder. Little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 10,000 and 29,000 psi at 90 C. Five samples were prepared at each pressure that differed in the fraction of deuterated binder, facilitating variation of the neutron scattering length density contrast ({Delta}{rho}) and thus, the resolution of microstructural details. The sample composition was determined by calculation of the Porod Invariant as a function of {Delta}{rho} and compared with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, at different levels of contrast, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. A decrease in the mean diameter of binder-filled regions was found with increasing pressing intensity, while the mean void diameter showed no significant change.

  7. Explosive Welding in the 1990's

    Science.gov (United States)

    Lalwaney, N. S.; Linse, V. D.

    1985-01-01

    Explosive bonding is a unique joining process with the serious potential to produce composite materials capable of fulfilling many of the high performance materials capable of fulfilling many of the high performance materials needs of the 1990's. The process has the technological versatility to provide a true high quality metallurgical compatible and incompatible systems. Metals routinely explosively bonded include a wide variety of combinations of reactive and refractory metals, low and high density metals and their alloys, corrosion resistant and high strength alloys, and common steels. The major advantage of the process is its ability to custom design and engineer composites with physical and/or mechanical properties that meet a specific or unusual performance requirement. Explosive bonding offers the designer unique opportunities in materials selection with unique combinations of properties and high integrity bonds that cannot be achieved by any other metal joining process. The process and some applications are discussed.

  8. 49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3...

  9. Simulating thermal explosion of cyclotrimethylenetrinitramine-based explosives: Model comparison with experiment

    Science.gov (United States)

    Yoh, Jack J.; McClelland, Matthew A.; Maienschein, Jon L.; Wardell, Jeffrey F.; Tarver, Craig M.

    2005-04-01

    We compare two-dimensional model results with measurements for the thermal, chemical, and mechanical behavior in a thermal explosion experiment. Confined high explosives (HEs) are heated at a rate of 1°C/h until an explosion is observed. The heating, ignition, and deflagration phases are modeled using an Arbitrarily Lagrangian-Eulerian code (ALE3D) that can handle a wide range of time scales that vary from a structural to a dynamic hydrotime scale. During the preignition phase, quasistatic mechanics and diffusive thermal transfer from a heat source to the HE are coupled with the finite chemical reactions that include both endothermic and exothermic processes. Once the HE ignites, a hydrodynamic calculation is performed as a burn front propagates through the HE. Two cyclotrimethylenetrinitramine-based explosives, C-4 and PBXN-109, are considered, whose chemical-thermal-mechanical models are constructed based on measurements of thermal and mechanical properties along with small scale thermal explosion measurements. The simulated dynamic response of HE confinement during the explosive phase is compared to measurements in larger scale thermal explosion tests. The explosion temperatures for both HEs are predicted to within 5°C. Calculated and measured wall strains provide an indication of vessel pressurization during the heating phase and violence during the explosive phase. During the heating phase, simulated wall strains provide only an approximate representation of measured values indicating a better numerical treatment is needed to provide accurate results. The results also show that more numerical accuracy is needed for vessels with lesser confinement strength. For PBXN-109, the measured wall strains during the explosion are well represented by the ALE3D calculations.

  10. Simulating thermal explosion of RDX-based explosives: Model comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yoh, J J; McClelland, M A; Maienschein, J L; Wardell, J F; Tarver, C M

    2004-10-11

    We compare two-dimensional model results with measurements for the thermal, chemical and mechanical behavior in a thermal explosion experiment. Confined high explosives are heated at a rate of 1 C per hour until an explosion is observed. The heating, ignition, and deflagration phases are modeled using an Arbitrarily Lagrangian-Eulerian code (ALE3D) that can handle a wide range of time scales that vary from a structural to a dynamic hydro time scale. During the pre-ignition phase, quasi-static mechanics and diffusive thermal transfer from a heat source to the HE are coupled with the finite chemical reactions that include both endothermic and exothermic processes. Once the HE ignites, a hydro dynamic calculation is performed as a burn front propagates through the HE. Two RDX-based explosives, C-4 and PBXN-109, are considered, whose chemical-thermal-mechanical models are constructed based on measurements of thermal and mechanical properties along with small scale thermal explosion measurements. The simulated dynamic response of HE confinement during the explosive phase is compared to measurements in large scale thermal explosion tests. The explosion temperatures for both HE's are predicted to within 5 C. Calculated and measured wall strains provide an indication of vessel pressurization during the heating phase and violence during the explosive phase. During the heating phase, simulated wall strains provide only an approximate representation of measured values indicating a better numerical treatment is needed to provide accurate results. The results also show that more numerical accuracy is needed for vessels with lesser confinement strength. For PBXN-109, the measured wall strains during the explosion are well represented by the ALE3D calculations.

  11. Risk Assessment Study for Storage Explosive

    Directory of Open Access Journals (Sweden)

    S. S. Azhar

    2006-01-01

    Full Text Available In Malaysia, there has been rapidly increasing usage in amount of explosives due to widely expansion in quarrying and mining industries. The explosives are usually stored in the storage where the safety precaution had given high attention. As the storage of large quantity of explosive can be hazardous to workers and nearby residents in the events of accidental denotation of explosives, a risk assessment study for storage explosive (magazine had been carried out. Risk assessment study had been conducted in Kimanis Quarry Sdn. Bhd, located in Sabah. Risk assessment study had been carried out with the identification of hazards and failure scenarios and estimation of the failure frequency of occurrence. Analysis of possible consequences of failure and the effects of blast waves due to the explosion was evaluated. The risk had been estimated in term of fatalities and eardrum rupture to the workers and public. The average individual voluntary risk for fatality to the workers at the quarry is calculated to be 5.75 x 10-6 per person per year, which is much lower than the acceptable level. Eardrum rupture risk calculated to be 3.15 x 10-6 per person per year for voluntary risk. There is no involuntary risk found for fatality but for eardrum rupture it was calculated to be 6.98 x 10-8 per person per year, as given by Asian Development Bank.

  12. Directional Explosive Demolition of 61-meter-high Building%61m高楼定向爆破拆除

    Institute of Scientific and Technical Information of China (English)

    游力克; 陈德志; 丁帮勤

    2011-01-01

    论述了在临近长江堤防的条件下,定向爆破拆除1座17层高61 m的框架剪力墙结构大楼的情况.通过预处理、开挖多条减振沟、用柔性材料铺缓冲垫层等防范措施,该复杂环境中高楼控制爆破拆除取得成功.%A 17-storey 61 m building of frame structure was demolished by directional blasting near the Yangtze River embankment. Through some precautionary measures, pretreatment, vibration damping ditches and cushion layers of flexible material,the high building was safely demolished in complex environment.

  13. Explosive welding of pipes

    Energy Technology Data Exchange (ETDEWEB)

    Drennov, O.; Burtseva, O.; Kitin, A. [Russian Federal Nuclear Center, Sarov (Russian Federation)

    2006-08-15

    Arrangement of pipelines for the transportation of oil and gas is a complicated problem. In this paper it is suggested to use the explosive welding method to weld pipes together. This method is rather new. This method can be advantageous (saving material and physical resources) comparing to its static analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. We suggest to perform explosive welding according to the following scheme: the ends of the 2 pipes are connected, the external surfaces are kept at a similar level. A cylindrical steel layer of diameter larger than the pipe diameter is set around the pipe joint and an explosive charge is placed on its external surface. The basic problem is the elimination of strains and reduction of pipe diameter in the area of the dynamic effect. The suggestion is to use water as filler: the volume of pipes in the area adjacent to the zone of explosive welding is totally filled with water. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gas dynamic and elastic-plastic calculations we determined non-deformed mass of water. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler.

  14. Steam Explosion Technology Applied to High-Value Utilization of Herb Medicine Resources%汽爆技术促进中药资源高值化利用

    Institute of Scientific and Technical Information of China (English)

    陈洪章; 彭小伟

    2012-01-01

    汽爆技术在中药资源高值化利用中发挥的作用正在逐渐体现:汽爆处理打破中药植物细胞壁的屏障结构,有利于有效成分的分离提取;汽爆过程物料自体水解发生去糖苷化作用使天然植物中的苷元与糖基分离,提高苷类物质提取和分离效率;汽爆应用于中药炮制和中药脱毒有高效、快速和避免有效成分流失等优点;汽爆处理有利于中药非药用组分如纤维素、半纤维素等的有效分离和利用,联产乙醇、丁醇等能源和化工产品。本文对汽爆技术在中药资源高值化利用中的研究进展进行了综述。%Utilization of herb medicine requires combination of modern and traditional methods to develop new medicines which are high quality, safe, stable and convenient. At the same time, herb medicine resource is an important biomass resources, can be used to replace petroleum, gas and coal resources for energy, materials and chemicals production. Application of modern technology to enhance the value of the herb medicine resources is an important development direction for herb medicine research. The roles of steam explosion technology for high-value utilization of herb medicine resources are gradually exhibiting: steam explosion treatment can break the barriers of herb medicine plant cell wall structure, as a result, it is conducive to separation and extraction of active ingredients from medicine plant; steam explosion is contributed to the deglycosylation of glycosides in the natural plants and improves the efficiency of extraction and separation of aglyeone; steam explosion is used in herb medicine processing and detoxification with several advantages such as efficient, fast, avoiding the loss of active ingredients, etc; steam explosion process is conducive to effective separation and utilization of non-medicinal components such as cellulose and hemieellulose for the production of ethanol, butanol and other energy and chemical products

  15. A real explosion: the requirement of steam explosion pretreatment.

    Science.gov (United States)

    Yu, Zhengdao; Zhang, Bailiang; Yu, Fuqiang; Xu, Guizhuan; Song, Andong

    2012-10-01

    The severity factor is a common term used in steam explosion (SE) pretreatment that describes the combined effects of the temperature and duration of the pretreatment. However, it ignores the duration of the explosion process. This paper describes a new parameter, the explosion power density (EPD), which is independent of the severity factor. Furthermore, we present the adoption of a 5m(3) SE model for a catapult explosion mode, which completes the explosion within 0.0875 s. The explosion duration ratio of this model to a conventional model of the same volume is 1:123. The comparison between the two modes revealed a qualitative change by explosion speed, demonstrating that this real explosion satisfied the two requirements of consistency, and suggested a guiding mechanism for the design of SE devices.

  16. Explosion protection in electric plants. Questions and answers. 3. rev. ed.; Explosionsschutz elektrischer Anlagen. Fragen und Antworten

    Energy Technology Data Exchange (ETDEWEB)

    Pester, J.

    2008-07-01

    Subjects: Recent legislation, especially the Explosion Protection Ordinance and the amended Ordinance on Electric Systems in Areas with High Explosion Hazard (ElexV), and interim regulations. - Responsibilities of electricity specialists and their customers. - Physical fundamentals of explosion protection and classification of areas with high explosion hazards. - Types of ignition protection and classification of electric explosion protection, with classification codes and goals. - Types and selection of explosion-protected electric systems. - Special aspects of projecting, construction, maintenance and testing of electric systems in areas with high explosion hazard. (GL)

  17. High speed imaging, lightning mapping arrays and thermal imaging: a synergy for the monitoring of electrical discharges at the onset of volcanic explosions

    Science.gov (United States)

    Gaudin, Damien; Cimarelli, Corrado; Behnke, Sonja; Cigala, Valeria; Edens, Harald; McNutt, Stefen; Smith, Cassandra; Thomas, Ronald; Van Eaton, Alexa

    2017-04-01

    Volcanic lightning is being increasingly studied, due to its great potential for the detection and monitoring of ash plumes. Indeed, it is observed in a large number of ash-rich volcanic eruptions and it produces electromagnetic waves that can be detected remotely in all weather conditions. Electrical discharges in volcanic plume can also significantly change the structural, chemical and reactivity properties of the erupted material. Although electrical discharges are detected in various regions of the plume, those happening at the onset of an explosion are of particular relevance for the early warning and the study of volcanic jet dynamics. In order to better constrain the electrical activity of young volcanic plumes, we deployed at Sakurajima (Japan) in 2015 a multiparametric set-up including: i) a lightning mapping array (LMA) of 10 VHF antennas recording the electromagnetic waves produced by lightning at a sample rate of 25 Msps; ii) a visible-light high speed camera (5000 frames per second, 0.5 m pixel size, 300 m field of view) shooting short movies (approx. duration 1 s) at different stages of the plume evolution, showing the location of discharges in relation to the plume; and iii) a thermal camera (25 fps, 1.5 m pixel size, 800 m field of view) continuously recording the plume and allowing the estimation of its main source parameters (volume, rise velocity, mass eruption rate). The complementarity of these three setups is demonstrated by comparing and aggregating the data at various stages of the plume development. In the earliest stages, the high speed camera spots discrete small discharges, that appear on the LMA data as peaks superimposed to the continuous radio frequency (CRF) signal. At later stages, flashes happen less frequently and increase in length. The correspondence between high speed camera and LMA data allows to define a direct correlation between the length of the flash and the intensity of the electromagnetic signal. Such correlation is

  18. Application of explosive welding to heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, G.

    1983-10-01

    The subject is discussed under the headings: advantages of explosive welding; principle of explosive welding; explosive welding of tubes; metallurgy of explosive welds (micrographs; microhardness); tubular heat exchangers; plugging; sleeving; retubing; construction of new heat exchangers; thermal sleeves.

  19. The gas dynamics of explosions

    CERN Document Server

    Lee,\tJohn H S

    2016-01-01

    Explosions, and the non-steady shock propagation associated with them, continue to interest researchers working in different fields of physics and engineering (such as astrophysics and fusion). Based on the author's course in shock dynamics, this book describes the various analytical methods developed to determine non-steady shock propagation. These methods offer a simple alternative to the direct numerical integration of the Euler equations and offer a better insight into the physics of the problem. Professor Lee presents the subject systematically and in a style that is accessible to graduate students and researchers working in shock dynamics, combustion, high-speed aerodynamics, propulsion and related topics.

  20. The Information Explosion.

    Science.gov (United States)

    Kuhns, William

    Three facets of the media--events, myths, and sales pitches--constitute the most important lines of force taken by the information bombardment which all of us encounter and are influenced by every day. The focus of this book is on the changes created and hastened by this information explosion of the media bombardment: how we can live with them,…

  1. Conventional Weapons Underwater Explosions

    Science.gov (United States)

    1988-12-01

    te that the heat of detonation (the energy available per mass of explosive) is an increasing function of the aluminum content. As shown in Table 2...the heat of detonation of RDX is 6.15 MJ/kg; addition of 30 wt % Al increases this to 10.12 - a factor of 1.64. Fig. 12 indicates a bubble energy

  2. Explosives Safety Competency Study

    Science.gov (United States)

    2010-07-13

    Munitions Systems Journeyman CDC—AFSC 2W051 Combat Ammunition Planning and Production—AFCOMAC Munitions Systems Craftsman Course—AFSC 2W071 Combat...Ammunition Planning and Production—AFCOMAC Munitions Systems Craftsman Course—AFSC 2W071 Navy Basics of Naval Explosives Hazard Control—AMMO-18 b

  3. Explosions during galaxy formation

    Directory of Open Access Journals (Sweden)

    Hugo Martel

    2001-01-01

    Full Text Available As an idealized model of the e ects of energy release by supernovae during galaxy formation, we consider an explosion at the center of a halo which forms at the intersection of laments in the plane of a cosmological pancake by gravitational instability during pancake collapse. Such halos resemble the virialized objects found in N{body simulations in a CDM universe and, therefore, serve as a convenient, scale{free test{bed model for galaxy formation. ASPH=P3M simulations reveal that such explosions are anisotropic. The energy and metals are channeled into the low density regions, away from the pancake plane. The pancake remains essentially undisturbed, even if the explosion is strong enough to blow away all the gas lo- cated inside the halo at the onset of the explosion and reheat the IGM surrounding the pancake. Infall quickly replenishes this ejected gas and gradually restores the gas fraction as the halo mass continues to grow. Estimates of the collapse epoch and SN energy{release for galaxies of di erent mass in the CDM model can re- late these results to scale{dependent questions of blow{out and blow{away and their implication for early IGM heating and metal enrichment and the creation of dark{matter{dominated dwarf galaxies.

  4. Portable raman explosives detection

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Steven [Los Alamos National Laboratory; Scharff, Robert J [Los Alamos National Laboratory

    2008-01-01

    Recent advances in portable Raman instruments have dramatically increased their application to emergency response and forensics, as well as homeland defense. This paper reviews the relevant attributes and disadvantages of portable Raman spectroscopy, both essentially and instrumentally, to the task of explosives detection in the field.

  5. Expansion of Metallic Cylinders under Explosive Loading

    Directory of Open Access Journals (Sweden)

    M.S. Bola

    1992-07-01

    Full Text Available The behaviour of expanding metallic cylinders under explosive loading was studied. Using ultra high speed photography, the expansion characteristics of aluminium and copper metallic cylinders have been evaluated with different c/m ratio, and by changing the nature of high explosive. The results obtained are comparable to those predicted by the Gurney's energy and momentum balance equations. A cylinder test has been established for comparative to the metal by octol, TNT, PEK-1, baratol and composition B are calculated. The results are in close agreement with those calculated by Kury et al.

  6. New explosive seam welding concepts

    Science.gov (United States)

    Bement, L. J.

    1973-01-01

    Recently developed techniques provide totally-confined linear explosive seam welding and produce scarf joint with linear explosive seam welding. Linear ribbon explosives are utilized in making narrow, continuous, airtight joints in variety of aluminum alloys, titanium, copper, brass, and stainless steel.

  7. Effect of Magnetic Fields on Explosive Welding of Metals and Explosive Compaction of Powders

    Science.gov (United States)

    Shvetsov, G. A.; Mali, V. I.; Bashkatov, Yu. L.; Anisimov, A. G.; Matrosov, A. D.; Teslenko, T. S.

    2005-07-01

    Explosive welding and explosive compaction of powders are new technologies for producing composite materials, which have been actively studied in recent decades. Considerable experience has been accumulated in producing composite materials with new physical properties, and these materials have been widely used in industry. At the same time, these technologies have certain limitations for high-temperature materials. The present research into the influence of magnetic fields on the explosive welding of metals and the explosive compaction of powders seeks to extend the possibilities of the indicated technologies. The results of the first experiments have shown that the use of magnetic fields holds promise for extending the possibilities of material welding and powder compaction.

  8. Infrared hyperspectral standoff detection of explosives

    Science.gov (United States)

    Fuchs, F.; Hugger, S.; Jarvis, J.; Blattmann, V.; Kinzer, M.; Yang, Q. K.; Ostendorf, R.; Bronner, W.; Driad, R.; Aidam, R.; Wagner, J.

    2013-05-01

    In this work we demonstrate imaging standoff detection of solid traces of explosives using infrared laser backscattering spectroscopy. Our system relies on active laser illumination in the 7 μm-10 μm spectral range at fully eye-safe power levels. This spectral region comprises many characteristic absorption features of common explosives, and the atmospheric transmission is sufficiently high for stand-off detection. The key component of our system is an external cavity quantum cascade laser with a tuning range of 300 cm-1 that enables us to scan the illumination wavelength over several of the characteristic spectral features of a large number of different explosives using a single source. We employ advanced hyperspectral image analysis to obtain fully automated detection and identification of the target substances even on substrates that interfere with the fingerprint spectrum of the explosive to be detected due to their own wavelength-dependent scattering contributions to the measured backscattering spectrum. Only the pure target spectra of the explosives have to be provided to the detection routine that nevertheless accomplishes reliable background suppression without any a-priory-information about the substrate.

  9. Effect of particle size and particle size distribution on physical characteristics, morphology and crystal structure of explosively compacted high-T(sub c) superconductors

    Science.gov (United States)

    Kotsis, I.; Enisz, M.; Oravetz, D.; Szalay, A.

    1995-01-01

    A superconductor, of composition Y(Ba,K,Na)2Cu3O(x)/F(y) and a composite of composition Y(Ba,K,Na)2Cu3O(x)/F(y) + Ag, with changing K, Na and F content but a constant silver content (Ag = 10 mass%) was prepared using a single heat treatment. the resulting material was ground in a corundum lined mill, separated to particle size fractions of 0-40 micron, 0-63 micron and 63-900 micron and explosively compacted, using an explosive pressure of 10(exp 4) MPa and a subsequent heat treatment. Best results were obtained with the 63-900 micron fraction of composition Y(Ba(1.95) K(0.01)Cu3O(x)F(0),(05)/Ag: porosity less than 0.01 cu cm/g and current density 2800 A/sq cm at 77K.

  10. High-speed imaging and small-scale explosive characterization techniques to understand effects of primary blast-induced injury on nerve cell structure and function

    Science.gov (United States)

    Piehler, T.; Banton, R.; Zander, N.; Duckworth, J.; Benjamin, R.; Sparks, R.

    2017-08-01

    Traumatic brain injury (TBI) is often associated with blast exposure. Even in the absence of penetrating injury or evidence of tissue injury on imaging, blast TBI may trigger a series of neural/glial cellular and functional changes. Unfortunately, the diagnosis and proper treatment of mild traumatic brain injury (mTBI) caused by explosive blast is challenging, as it is not easy to clinically distinguish blast from non-blast TBI on the basis of patient symptoms. Damage to brain tissue, cell, and subcellular structures continues to occur slowly and in a manner undetectable by conventional imaging techniques. The threshold shock impulse levels required to induce damage and the cumulative effects upon multiple exposures are not well characterized. Understanding how functional and structural damage from realistic blast impact at cellular and tissue levels at variable timescales after mTBI events may be vital for understanding this injury phenomenon and for linking mechanically induced structural changes with measurable effects on the nervous system. Our working hypothesis is that there is some transient physiological dysfunction occurring at cellular and subcellular levels within the central nervous system due to primary blast exposure. We have developed a novel in vitro indoor experimental system that uses real military explosive charges to more accurately represent military blast exposure and to probe the effects of primary explosive blast on dissociated neurons. We believe this system offers a controlled experimental method to analyze and characterize primary explosive blast-induced cellular injury and to understand threshold injury phenomenon. This paper will also focus on the modeling aspect of our work and how it relates to the experimental work.

  11. ACUTE EFFECTS OF TWO DIFFERENT WARM-UP PROTOCOLS ON FLEXIBILITY AND LOWER LIMB EXPLOSIVE PERFORMANCE IN MALE AND FEMALE HIGH LEVEL ATHLETES

    Directory of Open Access Journals (Sweden)

    Charilaos Tsolakis

    2012-12-01

    Full Text Available This study examined the effects of two different warm-up protocols on lower limb power and flexibility in high level athletes. Twenty international level fencers (10 males and 10 females performed two warm-up protocols that included 5-min light jogging and either short (15s or long (45s static stretching exercises for each of the main leg muscle groups (quadriceps, hamstrings and triceps surae, followed by either 3 sets of 3 (short stretching treatment, or 3 sets of 5 tuck jumps (long stretching treatment, in a randomized crossover design with one week between treatments. Hip joint flexion was measured with a Lafayette goniometer before and after the 5-min warm-up, after stretching and 8 min after the tuck jumps, while counter movement jump (CMJ performance was evaluated by an Ergojump contact platform, before and after the stretching treatment, as well as immediately after and 8 minutes after the tuck jumps. Three way ANOVA (condition, time, gender revealed significant time (p < 0.001 and gender (p < 0.001 main effects for hip joint flexion, with no interaction between factors. Flexibility increased by 6. 8 ± 1.1% (p < 0.01 after warm-up and by another 5.8 ± 1.6% (p < 0.01 after stretching, while it remained increased 8 min after the tuck jumps. Women had greater ROM compared with men at all time points (125 ± 8° vs. 94 ± 4° p<0.01 at baseline, but the pattern of change in hip flexibility was not different between genders. CMJ performance was greater in men compared with women at all time points (38.2 ± 1.9 cm vs. 29.8 ± 1.2 cm p < 0.01 at baseline, but the percentage of change CMJ performance was not different between genders. CMJ performance remained unchanged throughout the short stretching protocol, while it decreased by 5.5 ± 0.9% (p < 0.01 after stretching in the long stretching protocol However, 8 min after the tuck jumps, CMJ performance was not different from the baseline value (p = 0.075. In conclusion, lower limb power may

  12. Characteristic Research on Evaporated Explosive Film

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The evaporation source of evaporated explosive was designed and improved based on the inherent specialties of explosive. The compatibility of explosives and addition agent with evaporation vessels was analyzed. The influence of substrate temperature on explosive was analyzed, the control method of substrate temperature was suggested. The influences of evaporation rate on formation of explosive film and mixed explosive film were confirmed. Optimum evaporation rate for evaporation explosive and the better method for evaporating mixed explosive were presented. The necessary characteristics of the evaporated explosive film were obtained by the research of the differences between the evaporated explosive and other materials.

  13. Viscoelastic models for explosive binder materials

    Energy Technology Data Exchange (ETDEWEB)

    Bardenhagen, S.G.; Harstad, E.N.; Maudlin, P.J.; Gray, G.T. [Los Alamos National Lab., NM (United States); Foster, J.C. Jr. [Wright Lab., Eglin AFB, FL (United States)

    1997-07-01

    An improved model of the mechanical properties of the explosive contained in conventional munitions is needed to accurately simulate performance and accident scenarios in weapons storage facilities. A specific class of explosives can he idealized as a mixture of two components: energetic crystals randomly suspended in a polymeric matrix (binder). Strength characteristics of each component material are important in the macroscopic behavior of the composite (explosive). Of interest here is the determination of an appropriate constitutive law for a polyurethane binder material. This paper is a continuation of previous work in modeling polyurethane at moderately high strain rates and for large deformations. Simulation of a large deformation (strains in excess of 100%) Taylor Anvil experiment revealed numerical difficulties which have been addressed. Additional experimental data have been obtained including improved resolution Taylor Anvil data, and stress relaxation data at various strain rates. A thorough evaluation of the candidate viscoelastic constitutive model is made and possible improvements discussed.

  14. Explosive bulk charge

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  15. Explosive welding underwater

    Energy Technology Data Exchange (ETDEWEB)

    Sim, T.; Allen, K.; Lowes, J.M.

    1980-06-11

    Explosive welding underwater is described. First and second underwater tubular members are assembled together so that the outer surface of the first tubular member and the inner surface of the second tubular member are spaced apart to form an annular cavity. The cavity is closed by seals accommodated in portions of the second tubular member, and is then cleaned and dried and filled with a gas at a pressure greater than the surrounding water pressure. The pressure in the cavity is reduced prior to detonating an explosive charge within the first tubular member to weld the members together. The second tubular member may include portions for receiving further seals so as to subdivide the cavity into a number of zones. The pressures in the zones then can be separately adjusted so as to be able to control the pressure difference a cross each seal. 9 claims.

  16. Explosive Turbulent Magnetic Reconnection

    OpenAIRE

    Higashimori, Katsuaki; Yokoi, Nobumitsu; Hoshino, Masahiro

    2013-01-01

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This ...

  17. Super eruption environments make for "super" hydrothermal explosions: Extreme hydrothermal explosions in Yellowstone National Park

    Science.gov (United States)

    Morgan, L. A.; Shanks, W. P.; Pierce, K. L.

    2006-12-01

    Hydrothermal explosions are violent events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments over areas that range from a few meters in diameter up to several kilometers in diameter. Hydrothermal explosions occur where shallow interconnected reservoirs of steam-saturated fluids underlie thermal fields. Sudden reduction in pressure causes the fluids to flash to steam resulting in significant expansion, rock fragmentation, and debris ejection. In Yellowstone, at least 20 large (>100 meters in diameter) hydrothermal explosions have been identified, and the scale of the individual events dwarfs similar features in other hydrothermal and geothermal areas of the world. Large explosions in Yellowstone have occurred over the past 16 ka at an interval of ~1 per every 700 yrs and similar events are likely to occur in the future. Our studies of hydrothermal explosive events indicate: 1) none are associated with magmatic or volcanic events; 2) several have been triggered by seismic events coupled with other processes; 3) lithic clasts and matrix from explosion deposits are extensively altered, indicating long-term, extensive hydrothermal mineralization in areas that were incorporated into the explosion deposit; 4) many lithic clasts in explosion breccia deposits contain evidence of repeated fracturing and cementation; and 4) dimensions of many documented large hydrothermal explosion craters in Yellowstone are similar to the dimensions of currently active geyser basins or thermal areas in Yellowstone. The vast majority of active thermal areas in Yellowstone are characterized by 1) high-temperature hot-water systems in areas of high heat-flow, 2) extensive systems of hot springs, fumaroles, geysers, sinter terraces, mud pots, and, in places, small hydrothermal explosion craters, 3) widespread alteration of host rocks, 4) large areal dimensions (>several 100 m) and 5) intermittent but long-lived activity (40,000 to 300,000 years). Critical

  18. Explosive Welding of Pipes

    Science.gov (United States)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  19. Explosion of Ultrahigh Pressure Minerals in Mantle

    Institute of Scientific and Technical Information of China (English)

    BAI Wenji; YANG Jingsui; FANG Qingsong; YAN Binggang; ZHANG Zhongming

    2001-01-01

    @@ The microexplosion stucture of ultrahigh pressure minerals was found for the first time in podform chromitites within the mantle peridotite facies of Luobusa ophiolite along the Yarlung Zangbo suture zone.The explosion stuctures of high-energy silicate inclusions are commonly seen in thin sections (see figure).

  20. Incremental Pressing Technique in Explosive Charge

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A pressing technique has become available that might be useful for compressing granular explosives. If the height-diameter ratio of the charge is unfavorable,the high quality charge can not be obtained with the common single-action pressing. This paper presents incremental pressing technique, which can obtain the charge with higher overall density and more uniform density.

  1. Relationship between pressure and reaction violence in thermal explosions

    Science.gov (United States)

    Smilowitz, L.; Henson, B. F.; Rodriguez, G.; Remelius, D.; Baca, E.; Oschwald, D.; Suvorova, N.

    2017-01-01

    Reaction violence of a thermal explosion is determined by the energy release rate of the explosive and the coupling of that energy to the case and surroundings. For the HMX and TATB based secondary high explosives studied, we have observed that temperature controls the time to explosion and pressure controls the final energy release rate subsequent to ignition. Pressure measurements in the thermal explosion regime have been notoriously difficult to make due to the extreme rise in temperature which is also occurring during a thermal explosion. We have utilized several different pressure measurement techniques for several different secondary high explosives. These techniques include commercially available piezoelectric and piezoresistive sensors which we have utilized in the low pressure (sub 30 MPa) range of PBX 9502 thermal explosions, and fiber Bragg grating sensors for the higher pressure range (up to GPa) for PBX9501 experiments. In this talk, we will compare the measurement techniques and discuss the pressures measured for the different formulations studied. Simultaneous x-ray radiography measurements of burn velocity will also be shown and correlations between pressure, burn velocity, and reaction violence will be discussed.

  2. Biotransformation of explosives by Reticulitermes flavipes--associated termite Endosymbionts.

    Science.gov (United States)

    Indest, Karl J; Eaton, Hillary L; Jung, Carina M; Lounds, Caly B

    2014-01-01

    Termites have an important role in the carbon and nitrogen cycles despite their reputation as destructive pests. With the assistance of microbial endosymbionts, termites are responsible for the conversion of complex biopolymers into simple carbon substrates. Termites also rely on endosymbionts for fixing and recycling nitrogen. As a result, we hypothesize that termite bacterial endosymbionts are a novel source of metabolic pathways for the transformation of nitrogen-rich compounds like explosives. Explosives transformation capability of termite (Reticulitermes flavipes)-derived endosymbionts was determined in media containing the chemical constituents nitrotriazolone (NTO) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) that comprise new insensitive explosive formulations. Media dosed with 40 µg/ml of explosive was inoculated with surface-sterilized, macerated termites. Bacterial isolates capable of explosives transformation were characterized by 16S rRNA sequencing. Termite-derived enrichment cultures demonstrated degradation activity towards the explosives NTO, RDX, as well as the legacy explosive 2,4,6-trinitrotoluene (TNT). Three isolates with high similarity to the Enterobacteriaceae(Enterobacter, Klebsiella) were able to transform TNT and NTO within 2 days, while isolates with high similarity to Serratia marcescens and Lactococcus lactis were able to transform RDX. Termite endosymbionts harbor a range of metabolic activities and possess unique abilities to transform nitrogen-rich explosives. © 2014 S. Karger AG, Basel.

  3. Liquid explosives. The threat to civil aviation and the European response

    NARCIS (Netherlands)

    Ruiter, C.J. de; Lemmens, O.M.E.J.

    2008-01-01

    This paper deals with the specific group of homemade liquid high explosives in relation to aviation security. The sudden and irrefutable focus on homemade explosives and liquid explosives in particular after the 2006 defeated attacks in London, made the aviation security community realize that the

  4. Liquid explosives. The threat to civil aviation and the European response

    NARCIS (Netherlands)

    Ruiter, C.J. de; Lemmens, O.M.E.J.

    2008-01-01

    This paper deals with the specific group of homemade liquid high explosives in relation to aviation security. The sudden and irrefutable focus on homemade explosives and liquid explosives in particular after the 2006 defeated attacks in London, made the aviation security community realize that the s

  5. Experimental study on the explosive boiling in saturated liquid nitrogen

    Institute of Scientific and Technical Information of China (English)

    DONG Zhaoyi; HUAI Xiulan; LIU Dengying

    2005-01-01

    Studies on the heat-transfer characteristics of liquid nitrogen (LN2) have received increasing attention. When there is a transient high heatflux input to the LN2, explosive boiling may take place. In this paper, using the high-power short-duration pulsed laser heating method and the high-speed photography technology, the experimental result of explosive boiling in saturated LN2 is illustrated; and the two exclusive characteristics of explosive boiling in LN2: changeover time and the relative long-time adherence of the bubble cluster to the surface, are investigated.

  6. Explosive fragmentation of liquids in spherical geometry

    Science.gov (United States)

    Milne, A.; Longbottom, A.; Frost, D. L.; Loiseau, J.; Goroshin, S.; Petel, O.

    2016-07-01

    Rapid acceleration of a spherical shell of liquid following central detonation of a high explosive causes the liquid to form fine jets that are similar in appearance to the particle jets that are formed during explosive dispersal of a packed layer of solid particles. Of particular interest is determining the dependence of the scale of the jet-like structures on the physical parameters of the system, including the fluid properties (e.g., density, viscosity, and surface tension) and the ratio of the mass of the liquid to that of the explosive. The present paper presents computational results from a multi-material hydrocode describing the dynamics of the explosive dispersal process. The computations are used to track the overall features of the early stages of dispersal of the liquid layer, including the wave dynamics, and motion of the spall and accretion layers. The results are compared with new experimental results of spherical charges surrounded by a variety of different fluids, including water, glycerol, ethanol, and vegetable oil, which together encompass a significant range of fluid properties. The results show that the number of jet structures is not sensitive to the fluid properties, but primarily dependent on the mass ratio. Above a certain mass ratio of liquid fill-to-explosive burster (F / B), the number of jets is approximately constant and consistent with an empirical model based on the maximum thickness of the accretion layer. For small values of F / B, the number of liquid jets is reduced, in contrast with explosive powder dispersal, where small F / B yields a larger number of particle jets. A hypothetical explanation of these features based on the nucleation of cavitation is explored numerically.

  7. NUMERICAL MODEL FOR THE KRAKATOA HYDROVOLCANIC EXPLOSION AND TSUNAMI

    Directory of Open Access Journals (Sweden)

    Charles L. Mader

    2006-01-01

    Full Text Available Krakatoa exploded August 27, 1883 obliterating 5 square miles of land and leaving a crater 3.5 miles across and 200-300 meters deep. Thirty three feet high tsunami waves hit Anjer and Merak demolishing the towns and killing over 10,000 people. In Merak the wave rose to 135 feet above sea level and moved 100 ton coral blocks up on the shore.Tsunami waves swept over 300 coastal towns and villages killing 40,000 people. The sea withdrew at Bombay, India and killed one person in Sri Lanka.The tsunami was produced by a hydrovolcanic explosion and the associated shock wave and pyroclastic flows.A hydrovolcanic explosion is generated by the interaction of hot magma with ground water. It is called Surtseyan after the 1963 explosive eruption off Iceland. The water flashes to steam and expands explosively. Liquid water becoming water gas at constant volume generates a pressure of 30,000 atmospheres.The Krakatoa hydrovolcanic explosion was modeled using the full Navier-Stokes AMREulerian compressible hydrodynamic code called SAGE which includes the high pressure physics of explosions.The water in the hydrovolcanic explosion was described as liquid water heated by the magma to 1100 degree Kelvin or 19 kcal/mole. The high temperature water is an explosive with the hot liquid water going to a water gas. The BKW steady state detonation state has a peak pressure of 89 kilobars, a propagation velocity of 5900 meters/second and the water is compressed to 1.33 grams/cc.The observed Krakatoa tsunami had a period of less than 5 minutes and wavelength of less than 7 kilometers and thus rapidly decayed. The far field tsunami wave was negligible. The air shock generated by the hydrovolcanic explosion propagated around the world and coupled to the ocean resulting in the explosion being recorded on tide gauges around the world.

  8. The Quiet Explosion

    Science.gov (United States)

    2008-07-01

    weak and 'soft' [1], very different from a gamma-ray burst and more in line with what is expected from a normal supernova." So, after the supernova was discovered, the team rapidly observed it from the Asiago Observatory in Northern Italy and established that it was a Type Ic supernova. "These are supernovae produced by stars that have lost their hydrogen and helium-rich outermost layers before exploding, and are the only type of supernovae which are associated with (long) gamma-ray bursts," explains Mazzali. "The object thus became even more interesting!" Earlier this year, an independent team of astronomers reported in the journal Nature that SN 2008D is a rather normal supernova. The fact that X-rays were detected was, they said, because for the first time, astronomers were lucky enough to catch the star in the act of exploding. Mazzali and his team think otherwise. "Our observations and modeling show this to be a rather unusual event, to be better understood in terms of an object lying at the boundary between normal supernovae and gamma-ray bursts." The team set up an observational campaign to monitor the evolution of the supernova using both ESO and national telescopes, collecting a large quantity of data. The early behaviour of the supernova indicated that it was a highly energetic event, although not quite as powerful as a gamma-ray burst. After a few days, however, the spectra of the supernova began to change. In particular Helium lines appeared, showing that the progenitor star was not stripped as deeply as supernovae associated with gamma-ray bursts. Over the years, Mazzali and his group have developed theoretical models to analyse the properties of supernovae. When applied to SN2008D, their models indicated that the progenitor star was at birth as massive as 30 times the Sun, but had lost so much mass that at the time of the explosion the star had a mass of only 8-10 solar masses. The likely result of the collapse of such a massive star is a black hole

  9. Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players.

    Science.gov (United States)

    Ramírez-Campillo, Rodrigo; Meylan, César; Alvarez, Cristian; Henríquez-Olguín, Carlos; Martínez, Cristian; Cañas-Jamett, Rodrigo; Andrade, David C; Izquierdo, Mikel

    2014-05-01

    Integrating specific training methods to improve explosive actions and endurance in youth soccer is an essential part of players' development. This study investigated the efficiency of short-term vertical plyometric training program within soccer practice to improve both explosive actions and endurance in young soccer players. Seventy-six players were recruited and assigned either to a training group (TG; n = 38; 13.2 ± 1.8 years) or a control group (CG; n = 38; 13.2 ± 1.8 years) group. All players trained twice per week, but the TG followed a 7-week plyometric program implemented within soccer practice, whereas the CG followed regular practice. Twenty-meter sprint time (20-m), Illinois agility test time, countermovement jump (CMJ) height, 20- (RSI20) and 40- (RSI40) cm drop jump reactive strength index, multiple 5 bounds distance (MB5), maximal kicking test for distance (MKD), and 2.4-km time trial were measured before and after the 7-week period. Plyometric training induced significant (p ≤ 0.05) and small to moderate standardized effect (SE) improvement in the CMJ (4.3%; SE = 0.20), RSI20 (22%; SE = 0.57), RSI40 (16%; SE = 0.37), MB5 (4.1%; SE = 0.28), Illinois agility test time (-3.5%, SE = -0.26), MKD (14%; SE = 0.53), 2.4-km time trial (-1.9%; SE = -0.27) performances but had a trivial and nonsignificant effect on 20-m sprint time (-0.4%; SE = -0.03). No significant improvements were found in the CG. An integrated vertical plyometric program within the regular soccer practice can substitute soccer drills to improve most explosive actions and endurance, but horizontal exercises should also be included to enhance sprinting performance.

  10. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Akbari Mousavi, S.A.A. [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran (Iran, Islamic Republic of)], E-mail: akbarimusavi@ut.ac.ir; Farhadi Sartangi, P. [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran (Iran, Islamic Republic of)], E-mail: farhadi_pezhman@engmail.ut.ac.ir

    2009-03-15

    In explosive welding process, the controlled energy of explosives is used to create a metallurgical bond between two similar or dissimilar materials. This paper presents the analytical calculation for determination of weldability domain or welding window. The analytical calculations are in good agreement with experimental results. The welding conditions are tailored through parallel geometry route with different explosive loads. The study was also conducted to consider the effects of explosive loading on the bonding interface and the characterization of explosive welding experiments carried out under different conditions. Optical microscopy studies show that a transition from a smooth interface to a wavy one occurs with increase in explosive load. Scanning electron microscopy studies show that the interface was outlined by characteristic sharp transition between two materials, but local melted zones were also encountered in the front slope of waves in the interface at high explosive loads. XRD studies detected no intermetallic phases for specimen welded at low explosive load.

  11. 高中生短跑运动员下肢爆发力训练研究%The training of lower limb explosive force of sprint athletes in senior high school

    Institute of Scientific and Technical Information of China (English)

    赵萍

    2013-01-01

    高中生短跑运动员与成年人短跑运动员在生理上有很大差别,如对高中生短跑运动员采用成年人短跑运动员的下肢爆发力训练方法,不仅成绩不会提高而且会对高中生短跑运动员身体产生伤害。针对此情况,通过文献资料发及逻辑分析法,研究针对高中生短跑运动员下肢爆发力训练方法,为高中生短跑运动员训练提供参考。%Sprinters and the adult high school student athletes are very different in physiology, adults sprinters sprinter's explosive force training method, not only will not improve performance but also harm of sprinters on the high school students. In view of this situation, through literature and logic analysis, research on training for sprinters high school students’ explosive force, provide the reference for the training of the sprinter senior high school students.

  12. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  13. Explosion models, light curves, spectra and H$_{0}$

    CERN Document Server

    Höflich, P; Wheeler, J C; Nomoto, K; Thielemann, F K

    1996-01-01

    From the spectra and light curves it is clear that SNIa are thermonuclear explosions of white dwarfs. However, details of the explosion are highly under debate. Here, we present detailed models which are consistent with respect to the explosion mechanism, the optical and infrared light curves (LC), and the spectral evolution. This leaves the description of the burning front and the structure of the white dwarf as the only free parameters. The explosions are calculated using one-dimensional Lagrangian codes including nuclear networks. Subsequently, optical and IR-LCs are constructed. Detailed NLTE-spectra are computed for several instants of time using the density, chemical and luminosity structure resulting from the LCs. The general methods and critical tests are presented (sect. 2). Different models for the thermonuclear explosion are discussed including detonations deflagrations, delayed detonations, pulsating delayed detonations (PDD) and helium detonations (sect.3). Comparisons between theoretical and obs...

  14. The Full Function Test Explosive Generator

    Energy Technology Data Exchange (ETDEWEB)

    Reisman, D B; Javedani, J B; Griffith, L V; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-12-13

    We have conducted three tests of a new pulsed power device called the Full Function Test (FFT). These tests represented the culmination of an effort to establish a high energy pulsed power capability based on high explosive pulsed power (HEPP) technology. This involved an extensive computational modeling, engineering, fabrication, and fielding effort. The experiments were highly successful and a new US record for magnetic energy was obtained.

  15. Medusa: Nuclear explosive propulsion for interplanetary travel

    Science.gov (United States)

    Solem, Johndale C.

    1993-01-01

    Because of the deleterious effects of galactic cosmic radiation, solar flares, zero gravity and psychological stress, there is strong motivation to develop high-specific-impulse and high-thrust spacecraft for rapid transport of astronauts between planets. A novel spacecraft design is presented using a large lightweight sail (spinnaker) driven by pressure pulses from a series of nuclear explosions. The spacecraft appears to be a singularly competent and economical vehicle for high-speed interplanetary travel. The mass of the spinnaker is theoretically independent of the size of its canopy or the length of its tethers. Consequently, the canopy can be made very large to minimize radiation damage from the nuclear explosions and the tethers can be made very long to mitigate radiation hazard to the crew. The pressure from the nuclear explosion imparts a large impulsive acceleration to the lightweight spinnaker, which must be translated to a small smooth acceleration of the space capsule either by using the elasticity of the tethers or a servo winch in the space capsule, or a combination of the two. If elasticity alone is used, the maximum acceleration suffered by the space capsule is inversely propotional to the tether length. The use of very long tethers allows the spacecraft to achieve high velocities without using an exceedingly large number of bombs, a feature unavailable to previous forms of nuclear-explosive propulsion. Should the political questions connected with an unconventional use of nuclear explosives be favorably resolved, the proposal will be a good candidate for propulsion in the Mars mission.

  16. Explosive turbulent magnetic reconnection.

    Science.gov (United States)

    Higashimori, K; Yokoi, N; Hoshino, M

    2013-06-21

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence.

  17. Effect of particle size and particle size distribution on physical characteristics, morphology and crystal strucutre of explosively compacted high-Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kotsis, I.; Enisz, M.; Oravetz, D. [Univ. of Veszprem (Hungary)] [and others

    1994-12-31

    A superconductor, of composition Y(Ba,K,Na){sub 2}Cu{sub 3}O{sub x}/F{sub y} and a composite, of composition Y(Ba,K,Na){sub 2}Cu{sub 3}O{sub x}/F{sub y}+Ag, with changing K, Na and F content, but a constant silver content (Ag=10 mass per cent) was prepared using a single heat treatment. The resulting material was ground in a corundum lined mill, separated to particle size fractions of 0-40 {mu}m, 0-63 {mu}m and 63-900 {mu}m and explosively compacted, using an explosive pressure of 10{sup 4} MPa and a subsequent heat treatment. Best results were obtained with the 63-900 {mu}m fraction of composition Y(Ba{sub 1,95}K{sub 0,01})Cu{sub 3}O{sub x}F{sub 0,05}/Ag: porosity <0.01 cm{sup 3}/g and current density 2800 A/cm{sup 2} at 77 K.

  18. Mass extinctions and supernova explosions

    CERN Document Server

    Korschinek, Gunther

    2016-01-01

    A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation, or the direct exposure of lethal x-rays. Another indirect effect is cloud formation, induced by cosmic rays in the atmosphere which result in a drop in the Earth's temperature, causing major glaciations of the Earth. The discovery of highly intensive gamma ray bursts (GRBs), which could be connected to SNe, initiated further discussions on possible life-threatening events in Earth's history. The probability that GRBs hit the Earth is very low. Nevertheless, a past interaction of Earth with GRBs and/or SNe cannot be exclude...

  19. Development and validation of highly selective screening and confirmatory methods for the qualitative forensic analysis of organic explosive compounds with high performance liquid chromatography coupled with (photodiode array and) LTQ ion trap/Orbitrap mass spectrometric detections (HPLC-(PDA)-LTQOrbitrap).

    Science.gov (United States)

    Xu, Xiaoma; Koeberg, Mattijs; Kuijpers, Chris-Jan; Kok, Eric

    2014-01-01

    An LTQ-Orbitrap FTMS is a new (hybrid) mass spectrometric (MS) analyzer. It allows for the acquisition of full scan MS(n) (n-stage fragmentations, n=1-n) spectra with the linear ion trap detector (LTQ) at high speed and/or with the Fourier Transform-detector (Orbitrap) with ultra high mass resolution (>60,000 at m/zphoto diode array (PDA) detection. Two methods for the forensic screening and confirmation of all common trace explosives in post-blast residues have been developed on this instrument using atmospheric pressure chemical ionization (APCI). In one run, the nitrogen-containing explosives are analyzed with the combination of "LC-(PDA)-APCI(-)-LTQ MS(2)/Orbitrap FTMS" (Method 1). In another run, peroxide explosives are analyzed with "LC-APCI(+)-LTQ MS(2)/Orbitrap FTMS" (Method 2). The performance of both methods has been validated according to procedures defined in the EU COMMISSION DECISION implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (DC 2002/657/EC) and other standards (NEN 17025 and NEN 7777). The methods are highly selective due to the simultaneous utilization of the Orbitrap FTMS and LTQ MS(2), both of which are highly selective detectors Tested explosive compounds can be detected in the molecular ion form by the Orbitrap analyzer with minimal mass interference in different matrices when using an extremely narrow mass tolerance detection window (≤2ppm). The identification of a detected compound follows an identification point system. Experimental results show that almost all explosive compounds meet the confirmation criteria (minimum 4 points) required for the positive identification by the DC 2002/657/EC.

  20. Study on kinetics of drawing Al from high explosive of TNT/RDX/Al%梯黑铝混合装药提取铝的反应动力学研究

    Institute of Scientific and Technical Information of China (English)

    姬文苏; 丁玉奎; 李金明; 龚华雄

    2011-01-01

    The reaction kinetic of drawing Al from high explosive of TNT/RDX/Al was approached using shrinking unreacted core model. The effect of temperature,concentration and size of explosive on reaction speed was investigated. The results show that the leaching process of drawing Al meets kinetic equation g(x) = 1 - (1-x )1/3 =kt. The leaching kinetic is controlled by chemical reaction,and activation energy is 42. 392 kJ/mol. Regression analysis was applied based on theory model, finding that apparent reaction speed i8 linear with regards to the concentration of H2SO4 ( Co) and the size of explosive( 1/r02).%采用"颗粒不变收缩芯模型"研究了梯黑铝装药中Al的酸解反应动力学行为,考察了反应温度、硫酸浓度及炸药粒度对反应速率的影响.结果表明,Al的酸浸过程符合动力学方程g(x)=1-(1-x)1/3=kt,为化学反应控制类型,表观活化能为42.392KJ/mol.在此基础上,经线性回归分析,发现表观反应速率常数k与硫酸初始浓度C0及炸药粒径1/r02成正比例关系.

  1. Thermobimetals Mechanical Properties Produced by Explosive Welding with Rolling

    OpenAIRE

    Gulbin, V.; Kobelev, A.; Borissov, D.

    1997-01-01

    We used explosive welding with rolling to produce thermobimetals on the basis of beryllium bronze and alloys of nickel. It gave us possibility to obtain magnetic and non-magnetic thermobimetals possessing high physical and mechanical properties.

  2. Multiphase Instabilities in Explosive Dispersal of Particles

    Science.gov (United States)

    Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S. ``Bala''

    2015-11-01

    Explosive dispersal of particles is a complex multiphase phenomenon that can be observed in volcanic eruptions or in engineering applications such as multiphase explosives. As the layer of particles moves outward at high speed, it undergoes complex interactions with the blast-wave structure following the reaction of the energetic material. Particularly in this work, we are interested in the multiphase flow instabilities related to Richmyer-Meshkov (RM) and Rayleigh-Taylor (RM) instabilities (in the gas phase and particulate phase), which take place as the particle layer disperses. These types of instabilities are known to depend on initial conditions for a relatively long time of their evolution. Using a Eulerian-Lagrangian approach, we study the growth of these instabilities and their dependence on initial conditions related to the particulate phase - namely, (i) particle size, (ii) initial distribution, and (iii) mass ratio (particles to explosive). Additional complexities associated with compaction of the layer of particles are avoided here by limiting the simulations to modest initial volume fraction of particles. A detailed analysis of the initial conditions and its effects on multiphase RM/RT-like instabilities in the context of an explosive dispersal of particles is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  3. Calculating Contained Firing Facility (CFF) explosive

    Energy Technology Data Exchange (ETDEWEB)

    Lyle, J W.

    1998-10-20

    The University of California awarded LLNL contract No. B345381 for the design of the facility to Parsons Infrastructure Technology, Inc., of Pasadena, California. The Laboratory specified that the firing chamber be able to withstand repeated fxings of 60 Kg of explosive located in the center of the chamber, 4 feet above the floor, and repeated firings of 35 Kg of explosive at the same height and located anywhere within 2 feet of the edge of a region on the floor called the anvil. Other requirements were that the chamber be able to accommodate the penetrations of the existing bullnose of the Bunker 801 flash X-ray machine and the roof of the underground camera room. These requirements and provisions for blast-resistant doors formed the essential basis for the design. The design efforts resulted in a steel-reinforced concrete snucture measuring (on the inside) 55 x 5 1 feet by 30 feet high. The walls and ceiling are to be approximately 6 feet thick. Because the 60-Kg charge is not located in the geometric center of the volume and a 35-K:: charge could be located anywhere in a prescribed area, there will be different dynamic pressures and impulses on the various walls floor, and ceiling, depending upon the weights and locations of the charges. The detailed calculations and specifications to achieve the design criteria were performed by Parsons and are included in Reference 1. Reference 2, Structures to Resist the E xts of Accidental L%plosions (TMS- 1300>, is the primary design manual for structures of this type. It includes an analysis technique for the calculation of blast loadings within a cubicle or containment-type structure. Parsons used the TM5- 1300 methods to calculate the loadings on the various fling chamber surfaces for the design criteria explosive weights and locations. At LLNL the same methods were then used to determine the firing zones for other weights and elevations that would give the same or lesser loadings. Although very laborious, a hand

  4. Explosive Welding for Remote Applications

    Science.gov (United States)

    Bement, L. J.

    1985-01-01

    Explosive seam welding produces up to 100-percent joint strength. Ribbon explosive activated by remote energy source produces metallurgically sound joint. Success of technique verified for joints between like metals and joints between two different metals. Applications include structural assembly in toxic atmospheres and in radioactive or otherwise hazardous environments.

  5. Active Water Explosion Suppression System

    Science.gov (United States)

    2002-06-01

    efficient in eliminating the heat of detonation , thereby eliminating the heat of combustion and the associated burning of explosive by-products in the...efficiency in eliminating the heat of detonation . In any case, the net effect of the water absorbing the detonation energy of the explosive is a major

  6. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    Energy Technology Data Exchange (ETDEWEB)

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-07-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives.

  7. The Scaled Thermal Explosion Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wardell, J F; Maienschein, J L

    2002-07-05

    We have developed the Scaled Thermal Explosion Experiment (STEX) to provide a database of reaction violence from thermal explosion for explosives of interest. Such data are needed to develop, calibrate, and validate predictive capability for thermal explosions using simulation computer codes. A cylinder of explosive 25, 50 or 100 mm in diameter, is confined in a steel cylinder with heavy end caps, and heated under controlled conditions until reaction. Reaction violence is quantified through non-contact micropower impulse radar measurements of the cylinder wall velocity and by strain gauge data at reaction onset. Here we describe the test concept, design and diagnostic recording, and report results with HMX- and RDX-based energetic materials.

  8. Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, Paloma; Ballesteros, Ignacio; Negro, Maria Jose; Oliva, Jose Miguel; Gonzalez, Alberto; Ballesteros, Mercedes [Renewable Energy Department-CIEMAT, Biofuels Unit, Madrid (Spain)

    2012-06-15

    In this work, forage sorghum biomass was studied as feedstock for ethanol production by a biological conversion process comprising the steps of hydrothermal steam explosion pretreatment, enzymatic hydrolysis with commercial enzymes, and fermentation with the yeast Saccharomyces cerevisiae. Steam explosion conditions were optimized using a response surface methodology considering temperature (180-230 C) and time (2-10 min). Sugar recovery in the pretreatment and the enzymatic digestibility of the pretreated solid were used to determine the optimum conditions, i.e., 220 C and 7 min. At these conditions, saccharification efficiency attained 89 % of the theoretical and the recovery of xylose in the prehydrolyzate accounted for 35 % of the amount of xylose present in raw material. Then, a simultaneous hydrolysis and fermentation (SSF) process was tested at laboratory scale on the solid fraction of forage sorghum pretreated at optimum condition, in order to evaluate ethanol production. The effect of the enzyme dose and the supplementation with xylanase enzyme of the cellulolytic enzyme cocktail was studied at increasing solid concentration up to 18 % (w/w) in SSF media. Results show good performance of SSF in all consistencies tested with a significant effect of increasing enzyme load in SSF yield and final ethanol concentration. Xylanase supplementation allows increasing solid concentration up to 18 % (w/w) with good SSF performance and final ethanol content of 55 g/l after 4-5 days. Based on this result, about 190 l of ethanol could be obtained from 1 t of untreated forage sorghum, which means a transformation yield of 85 % of the glucose contained in the feedstock. (orig.)

  9. Wet explosion og wheat straw and codigestion with swine manure

    DEFF Research Database (Denmark)

    Wang, Guangtao; Gavala, Hariklia N.; Skiadas, Ioannis V.

    2009-01-01

    with wheat straw in a continuous operated system was investigated, as a method to increase the efficiency of biogas plants that are based on anaerobic digestion of swine manure. Also, the pretreatment of wheat straw with the wet explosion method was studied and the efficiency of the wet explosion process...... was evaluated based on (a) the sugars release and (b) the methane potential of the pretreated wheat straw compared to that of the raw biomass. It was found that, although a high release of soluble sugars was observed after wet explosion, the methane obtained from the wet-exploded wheat straw was slightly lower...

  10. Mixing in explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A.L.

    1993-12-01

    Explosions always contain embedded turbulent mixing regions, for example: boundary layers, shear layers, wall jets, and unstable interfaces. Described here is one particular example of the latter, namely, the turbulent mixing occurring in the fireball of an HE-driven blast wave. The evolution of the turbulent mixing was studied via two-dimensional numerical simulations of the convective mixing processes on an adaptive mesh. Vorticity was generated on the fireball interface by baroclinic effects. The interface was unstable, and rapidly evolved into a turbulent mixing layer. Four phases of mixing were observed: (1) a strong blast wave phase; (2) and implosion phase; (3) a reshocking phase; and (4) an asymptotic mixing phase. The flowfield was azimuthally averaged to evaluate the mean and r.m.s. fluctuation profiles across the mixing layer. The vorticity decayed due to a cascade process. This caused the corresponding enstrophy parameter to increase linearly with time -- in agreement with homogeneous turbulence calculations of G.K. Batchelor.

  11. Direct imaging of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, E.A.; Moler, R.B.; Saunders, A.W.; Trower, W.P. E-mail: trower@naxs.net

    2000-11-15

    Any technique that can detect nitrogen concentrations can screen for concealed explosives. However, such a technique would have to be insensitive to metal, both encasing and incidental. If images of the nitrogen concentrations could be captured, then, since form follows function, a robust screening technology could be developed. However these images would have to be sensitive to the surface densities at or below that of the nitrogen contained in buried anti-personnel mines or of the SEMTEX that brought down Pan Am 103, {approx}200 g. Although the ability to image in three-dimensions would somewhat reduce false positives, capturing collateral images of carbon and oxygen would virtually assure that nitrogenous non-explosive material like fertilizer, Melmac[reg] dinnerware, and salami could be eliminated. We are developing such an instrument, the Nitrogen Camera, which has met experimentally these criteria with the exception of providing oxygen images, which awaits the availability of a sufficiently energetic light source. Our Nitrogen Camera technique uses an electron accelerator to produce photonuclear reactions whose unique decays it registers. Clearly if our Nitrogen Camera is made mobile, it could be effective in detecting buried mines, either in an active battlefield situation or in the clearing of abandoned military munitions. Combat operations require that a swathe the width of an armored vehicle, 5 miles deep, be screened in an hour, which is within our camera's scanning speed. Detecting abandoned munitions is technically easier as it is free from the onerous speed requirement. We describe here our Nitrogen Camera and show its 180 pixel intensity images of elemental nitrogen in a 200 g mine simulant and in a 125 g stick of SEMTEX. We also report on our progress in creating a lorry transportable 70 MeV electron racetrack microtron, the principal enabling technology that will allow our Nitrogen Camera to be deployed in the field.

  12. Direct imaging of explosives.

    Science.gov (United States)

    Knapp, E A; Moler, R B; Saunders, A W; Trower, W P

    2000-01-01

    Any technique that can detect nitrogen concentrations can screen for concealed explosives. However, such a technique would have to be insensitive to metal, both encasing and incidental. If images of the nitrogen concentrations could be captured, then, since form follows function, a robust screening technology could be developed. However these images would have to be sensitive to the surface densities at or below that of the nitrogen contained in buried anti-personnel mines or of the SEMTEX that brought down Pan Am 103, approximately 200 g. Although the ability to image in three-dimensions would somewhat reduce false positives, capturing collateral images of carbon and oxygen would virtually assure that nitrogenous non-explosive material like fertilizer, Melmac dinnerware, and salami could be eliminated. We are developing such an instrument, the Nitrogen Camera, which has met experimentally these criteria with the exception of providing oxygen images, which awaits the availability of a sufficiently energetic light source. Our Nitrogen Camera technique uses an electron accelerator to produce photonuclear reactions whose unique decays it registers. Clearly if our Nitrogen Camera is made mobile, it could be effective in detecting buried mines, either in an active battlefield situation or in the clearing of abandoned military munitions. Combat operations require that a swathe the width of an armored vehicle, 5 miles deep, be screened in an hour, which is within our camera's scanning speed. Detecting abandoned munitions is technically easier as it is free from the onerous speed requirement. We describe here our Nitrogen Camera and show its 180 pixel intensity images of elemental nitrogen in a 200 g mine simulant and in a 125 g stick of SEMTEX. We also report on our progress in creating a lorry transportable 70 MeV electron racetrack microtron, the principal enabling technology that will allow our Nitrogen Camera to be deployed in the field.

  13. Phreatic and Hydrothermal Explosions: A Laboratory Approach

    Science.gov (United States)

    Scheu, B.; Dingwell, D. B.

    2010-12-01

    Phreatic eruptions are amongst the most common eruption types on earth. They might be precursory to another type of volcanic eruption but often they stand on their one. Despite being the most common eruption type, they also are one of the most diverse eruptions, in appearance as well as on eruption mechanism. Yet steam is the common fuel behind all phreatic eruptions. The steam-driven explosions occur when water beneath the ground or on the surface is heated by magma, lava, hot rocks, or fresh volcanic deposits (such as ignimbrites, tephra and pyroclastic-flow deposits) and result in crater, tuff rings and debris avalanches. The intense heat of such material may cause water to boil and flash to steam, thereby generating an explosion of steam, water, ash, blocks, and bombs. Another wide and important field affected by phreatic explosions are hydrothermal areas; here phreatic explosions occur every few months creating explosion craters and resemble a significant hazard to hydrothermal power plants. Despite of their hazard potential, phreatic explosions have so far been overlooked by the field of experimental volcanology. A part of their hazard potential in owned by the fact that phreatic explosions are hardly predictable in occurrence time and size as they have manifold triggers (variances in groundwater and heat systems, earthquakes, material fatigue, water level, etc..) A new set of experiments has been designed to focus on this phreatic type of steam explosion, whereas classical phreatomagmatic experiments use molten fuel-coolant interaction (e.g., Zimanowski, et al., 1991). The violent transition of the superheated water to vapour adds another degree of explosivity to the dry magmatic fragmentation, driven mostly by vesicle bursting due to internal gas overpressure. At low water fractions the fragmentation is strongly enforced by the mixture of these two effects and a large fraction of fine pyroclasts are produced, whereas at high water fraction in the sample the

  14. Underwater Explosive Welding, Discussion Based on Weldable Window

    Science.gov (United States)

    Mori, A.; Tamaru, K.; Hokamoto, K.; Fujita, M.

    2006-07-01

    A new method of underwater explosive welding is introduced and its possibilities are suggested. In the underwater explosive welding, a high explosive with detonation velocity of 7km/s is placed at an initial inclined angle to decrease the horizontal collision point velocity, which is one of the important parameters to achieve welding. This method is effective to accelerate a thin metal plate rapidly. However, this arrangement makes a difference in the welding conditions with horizontal position when a constant thickness explosive is used, as the propagation distance of the underwater shock wave increases at the ends. Hence, a method of linearly increasing the thickness of explosive in proportion to the propagation distance is proposed. This investigation intends to clarify the welding conditions in using a constant thickness explosive and linearly increasing thickness explosive based on numerical analysis. Further, a method of designing the assembly is confirmed through numerical analysis and its validity with the experimental results is demonstrated based on the welding window.

  15. Full-scale alkaline hydrolysis of organic explosives in soil

    Energy Technology Data Exchange (ETDEWEB)

    Britto, R.; Nolin, J. [Tetra Tech Inc., Oakville, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed the remediation of explosives at defence sites in North America. Organic explosives and residues are prevalent at ordinance, ammunition, and range sites, as well as at federal explosives manufacturing and storage facilities. The predominant explosives residues include trinitrotoluene (TNT), dinitrotoluenes (DNTs), and royal demolition explosive (RDX). Chemical oxidation treatments for the residues can require several applications and are costly. Biological treatments are feasible, but can be slow and difficult to apply. An alkaline hydrolysis process was used to destroy contaminants at an army ammunition site. Soil pan studies were conducted to characterize the nucleophilic substitution processes under varying quantities of chemical amendments. Effectiveness sampling included pH and moisture content; nitrates and nitrites; and explosives SW8330B. The study showed that high levels of explosives can be rapidly treated using the alkaline hydrolytic agent, which produced nitrites as the largest identifiable end product. Citric acid was then used to treat elevated nitrate and nitrite concentrations in soil samples resulting from the chemical destruction of TNT and DNT. An analysis of the treated samples showed a substantial decrease in nitroaromatic compounds. Details of full-scale ex situ treatments conducted to further assess the remediation processes were included. tabs., figs.

  16. RDX基铝纤维炸药水下爆炸的能量分析%Analysis on Explosion Energy of Aluminum Fiber Explosive on Underwater Detonation

    Institute of Scientific and Technical Information of China (English)

    林谋金; 马宏昊; 沈兆武; 薛冰

    2013-01-01

    将RDX基铝纤维炸药和RDX基含铝炸药进行水下爆炸实验,得到两种炸药在不同位置的压力-时程曲线,经过计算得到两种炸药水下爆炸的能量,并以含铝炸药的能量为铝纤维炸药的参考能量,分析两者的差异及造成差异的原因.结果表明,与含铝炸药相比,铝纤维炸药的压力峰值与冲量降低,铝纤维炸药的比冲击波能降低11%~22%,比气泡能降低11%~15%,比爆炸能降低11%~18%.铝纤维炸药的比爆炸能占爆热的73%~82%,低于含铝粉炸药比爆炸能与爆热的比值(89%~94%).铝纤维炸药能量未达到其参考能量的主要原因是铝纤维直径较大导致反应不充分以及熔喷法制成的铝纤维中Al2O3含量较高.%Pressure-time curves were measured in different regions by underwater explosion experiments of aluminum fiber explosive based on RDX and traditional aluminized explosive base on RDX. Explosion energy of aluminum fiber explosive and aluminized explosive were obtained by analyzing the curves, and the difference between them was analyzed and explosion energy of aluminized explosive was regarded as reference values of explosion energy of aluminum fiber explosive. Compared to aluminized explosive, the peak pressure and the shock wave impulse of aluminum fiber explosive are decreased, the specific shock wave energy decreases by ll%-22% , the specific bubble energy decreases by 11%-15%, the specific explosion energy decreases by 11%-18%. The specific explosion energy is 73%-82% of explosion heat, which is lower than that of aluminized explosive(89%-94%). The results show that explosion energy of aluminum fiber explosive lower than the reference values because the diameter of aluminum fiber is too big to react fully and aluminum fiber which is made under high temperature contains high content of Al2 O3.

  17. On mechanism of explosive boiling in nanosecond regime

    Science.gov (United States)

    Çelen, Serap

    2016-06-01

    Today laser-based machining is used to manufacture vital parts for biomedical, aviation and aerospace industries. The aim of the paper is to report theoretical, numerical and experimental investigations of explosive boiling under nanosecond pulsed ytterbium fiber laser irradiation. Experiments were performed in an effective peak power density range between 1397 and 1450 MW/cm2 on pure titanium specimens. The threshold laser fluence for phase explosion, the pressure and temperature at the target surface and the velocity of the expulsed material were reported. A narrow transition zone was realized between the normal vaporization and phase explosion fields. The proof of heterogeneous boiling was given with detailed micrographs. A novel thermal model was proposed for laser-induced splashing at high fluences. Packaging factor and scattering arc radius terms were proposed to state the level of the melt ejection process. Results of the present investigation explain the explosive boiling during high-power laser interaction with metal.

  18. Pyroshock Prediction of Ridge-Cut Explosive Bolts Using Hydrocodes

    Directory of Open Access Journals (Sweden)

    Juho Lee

    2016-01-01

    Full Text Available Pyrotechnic release devices such as explosive bolts are prevalent for many applications due to their merits: high reliability, high power-to-weight ratio, reasonable cost, and more. However, pyroshock generated by an explosive event can cause failures in electric components. Although pyroshock propagations are relatively well understood through many numerical and experimental studies, the prediction of pyroshock generation is still a very difficult problem. This study proposes a numerical method for predicting the pyroshock of a ridge-cut explosive bolt using a commercial hydrocode (ANSYS AUTODYN. A numerical model is established by integrating fluid-structure interaction and complex material models for high explosives and metals, including high explosive detonation, shock wave transmission and propagation, and stress wave propagation. To verify the proposed numerical scheme, pyroshock measurement experiments of the ridge-cut explosive bolts with two types of surrounding structures are performed using laser Doppler vibrometers (LDVs. The numerical analysis results provide accurate prediction in both the time (acceleration and frequency domains (maximax shock response spectra. In maximax shock response spectra, the peaks due to vibration modes of the structures are observed in both the experimental and numerical results. The numerical analysis also helps to identify the pyroshock generation source and the propagation routes.

  19. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    Science.gov (United States)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  20. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Carly W. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Goto, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  1. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  2. Novel signal-amplifying fluorescent nanofibers for naked-eye-based ultrasensitive detection of buried explosives and explosive vapors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; La, Anthony; Ding, Yu; Liu, Yixin; Lei, Yu [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, CT (United States)

    2012-09-11

    A novel electrospun fluorescent nanofiberous membrane with a function like ''molecular wires'' was developed via electrospinning for the detection of ultra-trace nitro explosive vapors and buried explosives by naked eye under UV excitation. The high binding affinity between the electron-deficient nitro explosives and the sensing film results in a rapid, dramatic quenching in its fluorescence emission. A wide spectrum of nitro explosives, in particular, TNT, Tetryl, RDX, PETN and HMX could be ''visually'' detected at their sub-equilibrium vapors (less than 10 ppb, 74 ppt, 5 ppt, 7 ppt and 0.1 ppt, respectively) released from 1 ng explosives residues. Such outstanding sensing performance could be attributed to the proposed ''sandwich-like'' conformation between pyrene and phenyl pendants of PS which may allow efficient long-range energy migration similar to ''molecular wire'', thus achieving amplified fluorescence quenching. Its application for the detection of buried explosives in soil by naked eye was also demonstrated, indicating its potential application for landmine mapping. To the best of our knowledge, this is the first report about the detection of buried explosives without the use of any advanced analytical instrumentation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Origin and Subsequent Modifications of Explosive Safety Quantity- Distance (ESQD) Standards for Mass Detonating Explosives with Special Reference to Naval Vessels. Volume 2. Appendices

    Science.gov (United States)

    1978-05-01

    1964. 7 Minutes of the Seventh Explosives Safety Seminar held at Cocoa Beach, Florida. AD 368 108. Aug 1965.. 8 Minutes of the Eighth Explosives Safety...ASSIGNMENT FOR CONVENTIONAL AMMUNITION SINGLETERRY, MR. C.C. SITE PLANS SMALL ARMS AMMUNITION AND EXPLOSIVES SMITH. mR: C.B. SMOKELESS POWDER SOLID...solution is considered highly desirable, and there are so sany situations needina improvenent, that benefits comparable to a signi- ficant new

  4. Active explosion barrier performance against methane and coal dust explosions

    Institute of Scientific and Technical Information of China (English)

    J J L du Plessis

    2015-01-01

    Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines. As part of the effort to develop better technologies to safeguard mines, the use of active barrier systems was investigated at Kloppersbos in South Africa. The system is designed to meet the requirements of the European Standard (EN 14591-4 2007) as well as the Mine Safety Standardisation in the Ministry of Coal Industry, Coal Industrial l Standard of the Peoples Republic of China (MT 694-1997). From the tests conducted, it can be concluded that the ExploSpot System was successful in stopping flame propagation for both methane and methane and coal dust hybrid explosions when ammonium phosphate powder was used as the suppression material. The use of this barrier will provide coal mine management with an additional explosion control close to the point of ignition and may find application within longwall faces further protecting mines against the risk of an explosion propagating throughout a mine.

  5. 32 CFR 234.9 - Explosives.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Explosives. 234.9 Section 234.9 National Defense... PENTAGON RESERVATION § 234.9 Explosives. (a) Using, possessing, storing, or transporting explosives, blasting agents or explosive materials is prohibited, except pursuant to the terms and conditions of a...

  6. 36 CFR 1002.38 - Explosives.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Explosives. 1002.38 Section... RECREATION § 1002.38 Explosives. (a) Using, possessing, storing, or transporting explosives, blasting agents or explosive materials is prohibited, except pursuant to the terms and conditions of a permit. When...

  7. 36 CFR 2.38 - Explosives.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Explosives. 2.38 Section 2.38... PROTECTION, PUBLIC USE AND RECREATION § 2.38 Explosives. (a) Using, possessing, storing, or transporting explosives, blasting agents or explosive materials is prohibited, except pursuant to the terms and conditions...

  8. 32 CFR 1903.9 - Explosives.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Explosives. 1903.9 Section 1903.9 National... INSTALLATIONS § 1903.9 Explosives. (a) Using, possessing, storing, or transporting explosives, blasting agents, ammunition or explosive materials is prohibited on any Agency installation, except as authorized by the...

  9. [Causation, prevention and treatment of dust explosion].

    Science.gov (United States)

    Dong, Maolong; Jia, Wenbin; Wang, Hongtao; Han, Fei; Li, Xiao-Qiang; Hu, Dahai

    2014-10-01

    With the development of industrial technology, dust explosion accidents have increased, causing serious losses of people's lives and property. With the development of economy, we should lay further emphasis on causation, prevention, and treatment of dust explosion. This article summarizes the background, mechanism, prevention, and treatment of dust explosion, which may provide some professional knowledge and reference for the treatment of dust explosion.

  10. Explosive welding finds uses offshore

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    This article discusses an explosive welding procedure for pipeline repair. Unlike fusion welding, explosive welding does not leave a brittle area behind and will stop axial or longitudinal cracking of a pipeline. The metals are joined by cold impact pressure, which actually liquifies the metal at the point of impact. In explosive welding, the force of the circular explosion drives the two metals together with such an impact that a bonded wave pattern is set up. All surface defects and oxides are pushed ahead of the collision front, resulting in a metal-to-metal seal. Two techniques are reviewed: the Exploweld method and the Norabel method. Both methods do not reduce or expand the internal diameter of the welded surface.

  11. Development of a non-propagating explosives storage cabinet

    Science.gov (United States)

    Couch, W. A.; Schneider, B. A.

    1991-08-01

    Sandia National Laboratories, Albuquerque (SNL) has completed the design of an Explosive Components Facility (ECF). Construction of the ECF is scheduled to begin in 1992 with completion in 1995. An integral part of the ECF will be on-site storage of explosives in six earth-covered service magazines. Each magazine will contain a non-propagating Explosives Storage Cabinet (ESC) system made up to twenty modular units. In addition to the secure storage of explosives, a primary purpose of the cabinet system is to prevent a sympathetic detonation of the explosives stored in the surrounding units as a result of an accidental detonation of up to 5.0 pounds of explosives (TNT equivalent) stored in a donor unit in the cabinet. Therefore, the maximum creditable event for each service magazine is 5.0 pounds, even though each magazine could contain up to 100 pounds of explosives stored in 5.0 pounds increments. A new material being developed at the New Mexico Engineering Research Institute (NMERI) known as SIFCON (Slurry Infiltrated Fiber CONcrete), had been shown to be highly resistant to back spall from blast loadings, and penetration by high velocity ballistic projectiles and fragments. These, and other characteristics unique to SIFCON, such as very high strength and ductility, appeared to make it an excellent candidate material for the modular units of the ESC. In 1989 SNL contracted with NMERI to develop a SIFCON modular unit for the ESC. Based upon the success of Phase 1 program, a more extensive Phase 2 program was undertaken in 1990 and has been successfully completed. This paper is a summary of the Phase 1 and Phase 2 work, which includes the design, fabrication, and explosive testing of the modular units.

  12. Furball Explosive Breakout Test

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Joshua David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-05

    For more than 30 years the Onionskin test has been the primary way to study the surface breakout of a detonation wave. Currently the Onionskin test allows for only a small, one dimensional, slice of the explosive in question to be observed. Asymmetrical features are not observable with the Onionskin test and its one dimensional view. As a result, in 2011, preliminary designs for the Hairball and Furball were developed then tested. The Hairball used shorting pins connected to an oscilloscope to determine the arrival time at 24 discrete points. This limited number of data points, caused by the limited number of oscilloscope channels, ultimately led to the Hairball’s demise. Following this, the Furball was developed to increase the number of data points collected. Instead of shorting pins the Furball uses fiber optics imaged by a streak camera to determine the detonation wave arrival time for each point. The original design was able to capture the detonation wave’s arrival time at 205 discrete points with the ability to increase the number of data points if necessary.

  13. Disaster management following explosion.

    Science.gov (United States)

    Sharma, B R

    2008-01-01

    Explosions and bombings remain the most common deliberate cause of disasters involving large numbers of casualties, especially as instruments of terrorism. These attacks are virtually always directed against the untrained and unsuspecting civilian population. Unlike the military, civilians are poorly equipped or prepared to handle the severe emotional, logistical, and medical burdens of a sudden large casualty load, and thus are completely vulnerable to terrorist aims. To address the problem to the maximum benefit of mass disaster victims, we must develop collective forethought and a broad-based consensus on triage and these decisions must reach beyond the hospital emergency department. It needs to be realized that physicians should never be placed in a position of individually deciding to deny treatment to patients without the guidance of a policy or protocol. Emergency physicians, however, may easily find themselves in a situation in which the demand for resources clearly exceeds supply and for this reason, emergency care providers, personnel, hospital administrators, religious leaders, and medical ethics committees need to engage in bioethical decision-making.

  14. Numerical simulation of gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, A.C.; Van Wingerden, J.M.; Verhagen, T.L.

    1989-08-01

    Recent developments in numerical fluid dynamics and computer technology enable detailed simulation of gas explosions. Prins Maurits Laboratory TNO of the Netherlands Organization for Applied Scientific Research developed the necessary software. This software is a useful tool to develop and evaluate explosion safe installations. One of the possible applications is the design of save offshore rigs. (f.i. to prevent Piper Alpha disasters). The two-dimensional blast model is described and an example is given. 4 figs., 6 refs.

  15. System for analysis of explosives

    Science.gov (United States)

    Haas, Jeffrey S [San Ramon, CA

    2010-06-29

    A system for analysis of explosives. Samples are spotted on a thin layer chromatography plate. Multi-component explosives standards are spotted on the thin layer chromatography plate. The thin layer chromatography plate is dipped in a solvent mixture and chromatography is allowed to proceed. The thin layer chromatography plate is dipped in reagent 1. The thin layer chromatography plate is heated. The thin layer chromatography plate is dipped in reagent 2.

  16. Lidar Detection of Explosives Traces

    Directory of Open Access Journals (Sweden)

    Bobrovnikov Sergei M.

    2016-01-01

    Full Text Available The possibility of remote detection of traces of explosives using laser fragmentation/laser-induced fluorescence (LF/LIF is studied. Experimental data on the remote visualization of traces of trinitrotoluene (TNT, hexogen (RDX, trotyl-hexogen (Comp B, octogen (HMX, and tetryl with a scanning lidar detector of traces of nitrogen-containing explosives at a distance of 5 m are presented.

  17. Intraperitoneal explosion following gastric perforation.

    Science.gov (United States)

    Mansfield, Scott K; Borrowdale, Roderick

    2014-04-01

    The object of this study is to report a rare case of explosion during laparotomy where diathermy ignited intraperitoneal gas from a spontaneous stomach perforation. Fortunately, the patient survived but the surgeon experienced a finger burn. A literature review demonstrates other examples of intraoperative explosion where gastrointestinal gases were the fuel source. Lessons learned from these cases provide recommendations to prevent this potentially lethal event from occurring.

  18. Seismic explosion sources on an ice cap

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...... crustal model can be modelled. A crucial challenge for applying the technique is to control the sources. Here, we present data that describe the efficiency of explosive sources in the ice cover. Analysis of the data shows, that the ice cap traps a significant amount of energy, which is observed...... as a strong ice wave. The ice cap leads to low transmission of energy into the crust such that charges need be larger than in conventional onshore experiments to obtain reliable seismic signals. The strong reflection coefficient at the base of the ice generates strong multiples which may mask for secondary...

  19. Contributed Review: Quantum cascade laser based photoacoustic detection of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. S., E-mail: jingsong-li@ahu.edu.cn; Yu, B. [Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei (China); Fischer, H. [Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz (Germany); Chen, W. [Laboratoire de Physicochimie de l’Atmosphére, Université du Littoral Côte d’Opale, Dunkerque (France); Yalin, A. P. [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523-1374 (United States)

    2015-03-15

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.

  20. Modeling violent reaction following low speed impact on confined explosives

    Science.gov (United States)

    Curtis, John Philip; Jones, Andrew; Hughes, Christopher; Reaugh, John

    2012-03-01

    To ensure the safe storage and deployment of explosives it is important to understand the mechanisms that give rise to ignition and reaction growth in low speed impacts. The High Explosive Response to Mechanical Stimulus (HERMES) material model, integrated in the Lagrangian code LSDYNA, has been developed to model the progress of the reaction after such an impact. The low speed impact characteristics of an HMX based formulation have been examined using the AWE Steven Test. Axisymmetric simulations of an HMX explosive in the AWE Steven Test have been performed. A sensitivity study included the influence of friction, mesh resolution, and confinement. By comparing the experimental and calculated results, key model parameters which determine the explosive's response in this configuration have been identified. The model qualitatively predicts the point of ignition within the vehicle. Future refinements are discussed.

  1. Dynamics of vapor emissions at wire explosion threshold.

    Science.gov (United States)

    Belony, Paul A; Kim, Yong W

    2010-10-01

    X-pinch plasmas have been actively studied in the recent years. Numerical simulation of the ramp-up of metallic vapor emissions from wire specimens shows that under impulsive Ohmic heating the wire core invariably reaches a supercritical state before explosion. The heating rate depends sensitively on the local wire resistance, leading to highly variable vapor emission flux along the wire. To examine the vapor emission process, we have visualized nickel wire explosions by means of shock formation in air. In a single explosion as captured by shadowgraphy, there usually appear several shocks with spherical or cylindrical wave front originating from different parts of the wire. Growth of various shock fronts in time is well characterized by a power-law scaling in one form or another. Continuum emission spectra are obtained and calibrated to measure temperature near the explosion threshold. Shock front structures and vapor plume temperature are examined.

  2. Copper Nanoparticle Synthesis By The Wire Explosion Technique

    Science.gov (United States)

    Lee, Y. S.; Tay, W. H.; Yap, S. L.; Wong, C. S.; Ahmad, Z.

    2009-07-01

    Wire explosion technique is performed by passing a high power pulsed current through a metallic wire to disintegrate it through Joule heating effect. In this work, the production of nanoparticles by the wire explosion technique has been investigated. Copper wires with a diameter of 125 μm and a length of 3.5 cm are exploded in air at two different pressures, namely, 1 bar and 10-2 mbar. Particles produced from the wire explosion are collected for characterization. The characterization of the particles is done by using field emission scanning electron microscope (FE-SEM) and energy dispersive analysis by X-rays (EDAX). The morphology and chemical composition of the particles produced at the two different pressures are compared. Discharge current and optical emission spectra of the wire explosion at the two pressures are also presented.

  3. Contributed review: quantum cascade laser based photoacoustic detection of explosives.

    Science.gov (United States)

    Li, J S; Yu, B; Fischer, H; Chen, W; Yalin, A P

    2015-03-01

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.

  4. Permanent wire splicing by an explosive joining process

    Science.gov (United States)

    Bement, Laurence J.; Kushnick, Anne C.

    1991-11-01

    The invention is an apparatus and method for wire splicing using an explosive joining process. The apparatus consists of a prebent, U-shaped strap of metal that slides over prepositioned wires. A standoff means separates the wires from the strap before joining. An adhesive means holds two ribbon explosives in position centered over the U-shaped strap. A detonating means connects to the ribbon explosives. The process involves spreading strands of each wire to be joined into a flat plane. The process then requires alternating each strand in alignment to form a mesh-like arrangement with an overlapped area. The strap slides over the strands of the wires, and the standoff means is positioned between the two surfaces. The detonating means then initiates the ribbon explosives that drive the strap to accomplish a high velocity, angular collision between the mating surfaces. This collision creates surface melts and collision bonding results in electron sharing linkups.

  5. The nature of glow arising in PETN monocrystals’ explosion initiated by a pulsed electron beam

    Science.gov (United States)

    Aduev, B. P.; Belokurov, G. M.; Grechin, S. S.; Liskov, I. Yu; Kalenskii, A. V.; Zvekov, A. A.

    2015-04-01

    The explosive decomposition of pentaerythritol tetranitrate monocrystals under the influence of a high-current electron beam (0.25 MeV, 20 ns, 15 J/cm2) was researched with the approach of high temporal resolution optic spectroscopy. We measured kinetics and emission spectra in real time scale. The thermal nature of the explosive glow was proven with the method of spectral pyrometry. The estimated temperature of the explosion is T ≈ 3000 K..

  6. Neutrino oscillations in magnetically driven supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Shio; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, Tomoya, E-mail: shio.k@nao.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: kkotake@th.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ{sub 13} (sin{sup 2} 2θ{sub 13} ∼> 10{sup −3}), we show that survival probabilities of ν-bar {sub e} and ν{sub e} seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of ν-bar {sub e} observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the ν{sub e} signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the ν-bar {sub e} and ν{sub e} signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  7. 浅水爆炸冲击荷载下高拱坝抗爆性能分析%Antiknock Performance of High Arch Dam Subjected to Shallow Water Explosion

    Institute of Scientific and Technical Information of China (English)

    张社荣; 王高辉

    2013-01-01

    Under underwater blasting shock load,the dynamic response of structures is much more complicated than that under other loadings such as static loading and earthquake loading.Strain rate effect of concrete dam is taken into consideration in the establishment of high arch dam fully coupled model.Numerical simulation method is used to study the dynamic response of the dam bearing strong underwater explosion shock loading.The response,possible failure mode and corresponding failure mechanism of high arch dam are discussed.The influence of blast center distance and amount of explosives on the blast resistance of the dam is also investigated.Numerical results indicate that arch dams,due to the mechanical characteristics of the arch,have a higher carrying capacity.In general,smaller equivalent explosive under impact loads only causes partial dehiscence of the dam.When large equivalent explosive explodes in shallow water,severe crushing and shear failure appear in the middle of the dam top.Crack extending-downwards to the half of dam height will cause severe damage of the dam.%水下爆炸冲击荷载作用下大坝动力响应较之静态荷载和地震荷载作用下要复杂得多.通过构建高拱坝水下爆炸大型数值全耦合模型,考虑混凝土材料的高应变率效应,采用三维非线性有限元法对近水面水下爆炸冲击荷载作用下的大坝动态响应进行了全性能数值仿真,探讨了高拱坝在浅水爆炸冲击荷载作用下的动力响应、潜在破坏模式及失事机理,研究了爆心距及炸药量对大坝抗爆性能的影响.研究结果表明:拱坝由于其拱形受力特点,具有较高的承压能力;在常规小当量炸药爆炸冲击荷载作用下,坝体仅产生局部开裂破坏;当大当量高能炸药在库区浅水近场爆炸时,上游面坝顸中部发生严重压碎和剪切破坏并形成上下游贯穿的裂缝,且裂缝向坝体下部扩展至1/2坝高处,导致坝体产生严重破坏.

  8. Explosive and pyrotechnic aging demonstration

    Science.gov (United States)

    Rouch, L. L., Jr.; Maycock, J. N.

    1976-01-01

    The survivability was experimentally verified of fine selected explosive and pyrotechnic propellant materials when subjected to sterilization, and prolonged exposure to space environments. This verification included thermal characterization, sterilization heat cycling, sublimation measurements, isothermal decomposition measurements, and accelerated aging at a preselected elevated temperature. Temperatures chosen for sublimation and isothermal decomposition measurements were those in which the decomposition processess occurring would be the same as those taking place in real-time aging. The elevated temperature selected (84 C) for accelerated aging was based upon the parameters calculated from the kinetic data obtained in the isothermal measurement tests and was such that one month of accelerated aging in the laboratory approximated one year of real-time aging at 66 C. Results indicate that HNS-IIA, pure PbN6, KDNBF, and Zr/KC10 are capable of withstanding sterilization. The accelerated aging tests indicated that unsterilized HNS-IIA and Zr/KC104 can withstand the 10 year, elevated temperature exposure, pure PbN6 and KDNBF exhibit small weight losses (less than 2 percent) and B/KC104 exhibits significant changes in its thermal characteristics. Accelerated aging tests after sterilization indicated that only HNS-IIA exhibited high stability.

  9. Explosive Materials Combustion by Heated Wires

    Directory of Open Access Journals (Sweden)

    I. V. Kondakov

    1999-07-01

    Full Text Available The knowledge of ignition parameters of explosive materials (EM presents both the definite scientific interest for developing the ignition kinetics models and the practical interest from the point of view of their danger assessment. The present investigations, as opposed to the known technique for EMs ignition temperature determination, have been performed by using the model explosive material samples of high density which have been produced on the basis of HMX and TATB. Applying the technique of firing ballistic powders by a heated wire, the EM ignition temperature depending on the time (rate of heating has been investigated. The technique makes it possible to calculate heat pulses and heat flows leading to ignition. By decreasing the heat flow, the time for the EM heating up to ignition increases and temperature falls thereby approaching the critical value, characterising the danger limit under accidents associated with heating. The ignition of EM based on HMX and TATB takes place in a different manner. With the EM on the basis of HMX and with great heat flows. The ignition beginning from the surface in the form of flash is typical but when achieving the critical parameters, the heated layer flash takes place that increases the probability of the explosion realisation. EM based on TATH always ignite in the form of combustion from the surface, independent of the heat flow that points to the higher extent of its safety. These data correlate well with the higher parameters of its ignition.

  10. Molecular Outflows: Explosive versus Protostellar

    Science.gov (United States)

    Zapata, Luis A.; Schmid-Burgk, Johannes; Rodríguez, Luis F.; Palau, Aina; Loinard, Laurent

    2017-02-01

    With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using 12CO(J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.

  11. Explosion propagation in inert porous media.

    Science.gov (United States)

    Ciccarelli, G

    2012-02-13

    Porous media are often used in flame arresters because of the high surface area to volume ratio that is required for flame quenching. However, if the flame is not quenched, the flow obstruction within the porous media can promote explosion escalation, which is a well-known phenomenon in obstacle-laden channels. There are many parallels between explosion propagation through porous media and obstacle-laden channels. In both cases, the obstructions play a duel role. On the one hand, the obstruction enhances explosion propagation through an early shear-driven turbulence production mechanism and then later by shock-flame interactions that occur from lead shock reflections. On the other hand, the presence of an obstruction can suppress explosion propagation through momentum and heat losses, which both impede the unburned gas flow and extract energy from the expanding combustion products. In obstacle-laden channels, there are well-defined propagation regimes that are easily distinguished by abrupt changes in velocity. In porous media, the propagation regimes are not as distinguishable. In porous media the entire flamefront is affected, and the effects of heat loss, turbulence and compressibility are smoothly blended over most of the propagation velocity range. At low subsonic propagation speeds, heat loss to the porous media dominates, whereas at higher supersonic speeds turbulence and compressibility are important. This blending of the important phenomena results in no clear transition in propagation mechanism that is characterized by an abrupt change in propagation velocity. This is especially true for propagation velocities above the speed of sound where many experiments performed with fuel-air mixtures show a smooth increase in the propagation velocity with mixture reactivity up to the theoretical detonation wave velocity.

  12. THE INFLUENCE OF BARRIERS ON FLAME AND EXPLOSION WAVE IN GAS EXPLOSION

    Institute of Scientific and Technical Information of China (English)

    林柏泉; 周世宁; 张仁贵

    1998-01-01

    This paper researches into the influence of barriers on flame and explosion wave in gasexplosion on the basis of experiment. The result shows that the barrier is very important to thetransmission of flame and explosion wave in gas explosion. When there are barriers, the speed oftransmission would be very fast and shock wave will appear in gas explosion, which would in-crease gas explosion power. The result of research is very important to prevent gas explosion anddecrease the power of it.

  13. Simulation of Enhanced-Explosive Devices in Chambers and Tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J B; Kuhl, A L; Beckner, V E

    2007-06-05

    Introduction: Shock-dispersed fuel (SDF) explosives use a small chemical charge to disperse a combustible fuel that burns in the post-detonation environment. The energy released in the combustion process has the potential for generating higher pressures and temperatures than conventional explosives. However, the development of these types of novel explosive systems requires a detailed understanding of all of the modes of energy release. Objective: The objective of this project is develop a simulation capability for predicting explosion and combustion phase of SDF charges and apply that capability to quantifying the behavior of these types of explosives. Methodology: We approximate the dynamics of an SDF charge using high Reynolds number, fast chemistry model that effectively captures the thermodynamic behavior of SDF charges and accurately models the key modes of energy release. The overall computational model is combined with Adaptive Mesh Refinement (AMR) , implemented in a parallel adaptive framework suited to the massively parallel computer systems. Results: We have developed a multiphase version of the model and used it to simulate an SDF charge in which the dispersed fuel is aluminum flakes. Flow visualizations show that the combustion field is turbulent for the chamber and tunnel cases studied. During the 3 milli-seconds of simulation, over 90% of the Al fuel was consumed for the chamber case, while about 40% was consumed in the tunnel case in agreement with Al-SDF experiments. Significance to DoD: DoD has a requirement to develop enhanced energetic materials to support future military systems. The SDF charges described here utilize the combustion mechanism to increase energy per gram of fuel by a factor of 7 to 10 over conventional (detonating) charges, and increase the temperature of the explosion cloud to 2,000-4,000 K (depending on the SDF fuel). Accurate numerical simulation of such SDF explosions allows one to understand the energy release mechanism

  14. Liquid explosions induced by X-ray laser pulses

    Science.gov (United States)

    Stan, Claudiu A.; Milathianaki, Despina; Laksmono, Hartawan; Sierra, Raymond G.; McQueen, Trevor A.; Messerschmidt, Marc; Williams, Garth J.; Koglin, Jason E.; Lane, Thomas J.; Hayes, Matt J.; Guillet, Serge A. H.; Liang, Mengning; Aquila, Andrew L.; Willmott, Philip R.; Robinson, Joseph S.; Gumerlock, Karl L.; Botha, Sabine; Nass, Karol; Schlichting, Ilme; Shoeman, Robert L.; Stone, Howard A.; Boutet, Sébastien

    2016-10-01

    Explosions are spectacular and intriguing phenomena that expose the dynamics of matter under extreme conditions. We investigated, using time-resolved imaging, explosions induced by ultraintense X-ray laser pulses in water drops and jets. Our observations revealed an explosive vaporization followed by high-velocity interacting flows of liquid and vapour, and by the generation of shock trains in the liquid jets. These flows are different from those previously observed in laser ablation, owing to a simpler spatial pattern of X-ray absorption. We show that the explosion dynamics in our experiments is consistent with a redistribution of absorbed energy, mediated by a pressure or shock wave in the liquid, and we model the effects of explosions, including their adverse impact on X-ray laser experiments. X-ray laser explosions have predictable dynamics that may prove useful for controlling the state of pure liquids over broad energy scales and timescales, and for triggering pressure-sensitive molecular dynamics in solutions.

  15. Classification of explosives transformation products in plant tissue

    Energy Technology Data Exchange (ETDEWEB)

    Larson, S.L.; Jones, R.P. (Army Corps of Engineers, Vicksburg, MI (United States). Waterways Experiment Station); Escalon, L.; Parker, D. (AScI Corp., McLean, VA (United States))

    1999-06-01

    Explosives contamination in surface or groundwater used for the irrigation of food crops and phytoremediation of explosives-contaminated soil or water using plant-assisted biodegradation have brought about concerns as to the fate of explosives in plants. Liquid scintillation counting, high-performance liquid chromatography, and gel permeation chromatography were utilized to characterize explosives (hexahydro-1,3,5-trinitro-1,3,5-triazine and trinitrotoluene) and their metabolites in plant tissues obtained from three separate studies. Analyzing tissues of yellow nutsedge (Cyperus esculentus), corn (Zea mays), lettuce (Lacuta sativa), tomato (Lyopersicum esculentum), radish (Raphanus sativus), and parrot feather (Myriophyllum aquaticum) from three studies where exposure to explosives at nontoxic levels occurred showed that extensive transformation of the explosive contaminant occurred, variations were noted in uptake and transformation between terrestrial and aquatic plants, the products had significantly higher polarity and water solubility than the parent compounds, and the molecular sizes of the transformation products were significantly greater than those of the parent compounds.

  16. The limit of detection for explosives in spectroscopic differential reflectometry

    Science.gov (United States)

    Dubroca, Thierry; Vishwanathan, Karthik; Hummel, Rolf E.

    2011-05-01

    In the wake of recent terrorist attacks, such as the 2008 Mumbai hotel explosion or the December 25th 2009 "underwear bomber", our group has developed a technique (US patent #7368292) to apply differential reflection spectroscopy to detect traces of explosives. Briefly, light (200-500 nm) is shone on a surface such as a piece of luggage at an airport. Upon reflection, the light is collected with a spectrometer combined with a CCD camera. A computer processes the data and produces in turn a differential reflection spectrum involving two adjacent areas of the surface. This differential technique is highly sensitive and provides spectroscopic data of explosives. As an example, 2,4,6, trinitrotoluene (TNT) displays strong and distinct features in differential reflectograms near 420 nm. Similar, but distinctly different features are observed for other explosives. One of the most important criteria for explosive detection techniques is the limit of detection. This limit is defined as the amount of explosive material necessary to produce a signal to noise ratio of three. We present here, a method to evaluate the limit of detection of our technique. Finally, we present our sample preparation method and experimental set-up specifically developed to measure the limit of detection for our technology. This results in a limit ranging from 100 nano-grams to 50 micro-grams depending on the method and the set-up parameters used, such as the detector-sample distance.

  17. Eulerian-Lagrangian Simulation of an Explosive Dispersal of Particles

    Science.gov (United States)

    Rollin, Bertrand; Ouellet, Frederick; Koneru, Rahul; Annamalai, Subramanian

    2016-11-01

    Explosive dispersal of solid particles can be observed in a wide variety of contexts, notably in natural phenomenon such as volcanic eruptions or in engineering applications such as detonation of multiphase explosives. As the initial blast wave crosses the surrounding layer of particles, compaction occurs shortly before particles disperse radially outward at high speed. During the dispersion phase, complex multiphase interactions occurs between particles and detonation products of the explosive. Using a Eulerian-Lagrangian approach, namely point particle simulations, we study the case of a bed of particles of cylindrical shape surrounding an explosive chord. Our interest lies in predicting the behavior of particles after detonation. In particular, capturing and describing the mechanisms responsible for late-time formation of stable particle jets is sought. Therefore, detonation of the explosive material is not simulated. Instead an equivalent energy source is used to initiate the simulation. We present a detailed description of our approach to solving this problem, and our most recent progress in the analysis of particles explosive dispersal. This work was supported by the U.S. DoE, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  18. Thermodynamic States in Explosion Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

  19. Explosion limits for combustible gases

    Institute of Scientific and Technical Information of China (English)

    TONG Min-ming; WU Guo-qing; HAO Ji-fei; DAI Xin-lian

    2009-01-01

    Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that these limits are related to the concentrations of different components in the mixture. With an increase of C4H10 and C6H14, the Lower ExplosionLimit (LEL) and Upper Explosion-Limit (UEL) of a combustible gas mixture will decrease clearly. For every 0.1% increase in C4H10 and C6H14, the LEL decreases by about 0.19% and the UEL by about 0.3%. The results also prove that, by increasing the amount of H2, the UEL of a combustible gas mixture will increase considerably. If the level of H2 increases by 0.1%, the UEL will increase by about 0.3%. However, H2 has only a small effect on the LEL of the combustible gas mixture. Our study provides a theoretical foundation for judging the explosion risk of an explosive gas mixture in mines.

  20. Numerical Studies on the Explosive Welding by Smoothed Particle Hydrodynamics (sph)

    Science.gov (United States)

    Tanaka, Katsumi

    2007-12-01

    A particular characteristic of an explosively produced weld is that the profile of the weld interface often has a regular wavy appearance. Effects of detached shock wave and jetting on the metal interface of explosive welding has been considered by SPH. Numerical results show wavy interface which is observed in several experiments. A high speed jet between interface and Karman vortex after oblique impact of a flyer plate to a parent plate were major mechanism of explosive welding.

  1. Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography: Environmental Analysis

    Science.gov (United States)

    2006-01-01

    results. Hibbs developed a detector based on nuclear quadrupole resonance ( NQR ) that was able to detect landmines filled with RDX explosive (Hibbs 2001...2000) and incorporated into the FIDO explosives detector by Cumming et al. (2001). The NQR sensors detect explosives through the NQR signal produced...grapher/mass spectrometer (GC/MS) or to an high pressure liquid chromato- graphy (HPLC) interface, where the fiber is extended again into the carrier

  2. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  3. Shock initiated reactions of reactive multi-phase blast explosives

    Science.gov (United States)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2017-01-01

    This paper describes a new class of non-ideal explosive compositions made of perfluoropolyether (PFPE), nanoaluminum, and a micron-size, high mass density, reactive metal. Unlike high explosives, these compositions release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Their reaction rates are shock dependent and they can be overdriven to change their energy release rate. These compositions are fuel rich and have an extended aerobic energy release phase. The term "reactive multiphase blast" refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts energy and momentum [1]; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. Tantalum-based RMBX formulations were tested in two spherical core-shell configurations - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  4. Solid state gas sensors for detection of explosives and explosive precursors

    Science.gov (United States)

    Chu, Yun

    The increased number of terrorist attacks using improvised explosive devices (IEDs) over the past few years has made the trace detection of explosives a priority for the Department of Homeland Security. Considerable advances in early detection of trace explosives employing spectroscopic detection systems and other sensing devices have been made and have demonstrated outstanding performance. However, modern IEDs are not easily detectable by conventional methods and terrorists have adapted to avoid using metallic or nitro groups in the manufacturing of IEDs. Instead, more powerful but smaller compounds, such as TATP are being more frequently used. In addition, conventional detection techniques usually require large capital investment, labor costs and energy input and are incapable of real-time identification, limiting their application. Thus, a low cost detection system which is capable of continuous online monitoring in a passive mode is needed for explosive detection. In this dissertation, a thermodynamic based thin film gas sensor which can reliably detect various explosive compounds was developed and demonstrated. The principle of the sensors is based on measuring the heat effect associated with the catalytic decomposition of explosive compounds present in the vapor phase. The decomposition mechanism is complicated and not well known, but it can be affected by many parameters including catalyst, reaction temperature and humidity. Explosives that have relatively high vapor pressure and readily sublime at room temperature, like TATP and 2, 6-DNT, are ideal candidate for vapor phase detection using the thermodynamic gas sensor. ZnO, W2O 3, V2O5 and SnO2 were employed as catalysts. This sensor exhibited promising sensitivity results for TATP, but poor selectivity among peroxide based compounds. In order to improve the sensitivity and selectivity of the thermodynamic sensor, a Pd:SnO2 nanocomposite was fabricated and tested as part of this dissertation. A

  5. Optimal dynamic detection of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Steven [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Greenfield, Margo T [Los Alamos National Laboratory; Scharff, R J [Los Alamos National Laboratory; Rabitz, Herschel A [PRINCETON UNIV; Roslund, J [PRINCETON UNIV

    2009-01-01

    The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.

  6. Instrument safety in explosive atmospheres.

    Science.gov (United States)

    Bossert, J A

    1975-01-01

    The current "Energy Crisis" has dramatically increased our potential need for coal, the worlds most abundant fossil fuel. This will probably lead to a greater use of automation and instrumentation in the coal mining industry. The presence of methane in coal mines and in the coal itself plus the presence of coal dust, both of which can form an explosive atmosphere in air, means that the possibility of a gas or coal dust ignition must be considered when designing, purchasing and installing new equipment in this industry. In addition, many metallurgical processes involve the use of potentially explosive substances against which similar safety precautions must be taken. This paper outlines the various methods of protection currently in use and proposed for electrical instruments in explosive atmospheres, with particular emphasis on the work of the International Electrotechnical Commission.

  7. Evidence for Nearby Supernova Explosions

    CERN Document Server

    Benítez, N; Canelles, M; Benitez, Narciso; Maiz-Apellaniz, Jesus; Canelles, Matilde

    2002-01-01

    Supernova explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. Scientists have speculated for decades about the possible consequences for life on Earth of a nearby supernova, but plausible candidates for such an event were lacking. Here we show that the Scorpius-Centaurus OB association, a group of young stars currently located at~130 parsecs from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. We find that the deposition on Earth of 60Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ~2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction.

  8. Degassing Processes at Persistently Active Explosive Volcanoes

    Science.gov (United States)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly generates a viscous plug, pressurizes the magma beneath the plug, and

  9. Explosively Joining Dissimilar Metal Tubes.

    Science.gov (United States)

    1979-11-01

    both steel, photograph (7), and the Ni-Cu specimen, photograph (8) , showed considerable pitting corrosion in the aluminum . 4. The paint was then...for 6061 -T6 aluminum and are: collision angle 5 - 200, collision velocity 270 - 350 m/sec, with an impact pressure of at least 27 Kbar (391 Kpsi...Welded Aluminum Alloy 1 .. 5 rn-i (P0 -I Op. 2si 11 6W TABLE I Explosive2 Cladder Metal Base Metal Explosive Loading (gins/in2 6061 -T6 Al 304 SS TSE- 1004

  10. Intravesical explosion during transurethral electrosurgery.

    Science.gov (United States)

    Georgios, Kallinikas; Evangelos, Boulinakis; Helai, Habib; Ioannis, Gerzelis

    2015-05-01

    Intravesical explosion is a very rare complication of transurethral resection of prostate and transurethral resection of bladder tumour operations. In vitro studies have shown that the gases produced during the procedure could result in a blast once they are mixed with air from the atmosphere. A 79-year-old male experienced an explosion in his bladder while undergoing a transurethral resection of bladder tumour. The case is presented as well as the way that it was treated as an emergency. Precautions of such events are finally suggested.

  11. Effects of thoracic explosive injury on blood gas and acid base balance in rabbits at high altitude%高原家兔胸部爆炸伤对血气及酸碱平衡的影响

    Institute of Scientific and Technical Information of China (English)

    陈忠东; 李素芝; 王洪亚; 吴前进; 肖嘉芳; 易映红

    2011-01-01

    Objective To study the changes of arterial blood gas and acid base balance in rabbits suffered from thoracic explosive injury at high altitude. Methods 24 rabbits were randomly divided into high - altitude injured group ( group A ), highaltitude control group ( group B ) and plain injured group ( group C ). In group A and C, a detonator was placed above the 5th right intercostal space of rabbit and exploded to cause the thoracic injury. In group B, animals were anesthetized and cannulated without thoracic injury. Blood samples were respectively collected before injury and at 1,3,6 h after injury for arterial blood gas analysis.Results After injury,each injured group showed persistent metabolic acidosis and lower blood gas parameters than those before injury ( P < 0.05 or P < 0.01 ). There were significant differences in each blood gas parameter between group A and C ( P < 0.05 or P <0.01 ). Conclusion Decreased blood gas parameters and persistent metabolic acidosis are the most characteristic changes in rabbits suffered from thoracic explosive injury at high altitude. These changes are of significant value in the early treatment of such injury.%目的 研究高原家兔胸部爆炸伤后动脉血气分析及酸碱平衡的变化特点.方法 将家兔随机分为高原致伤组、高原对照组和平原致伤组,分别于伤前和伤后1、3、6 h采集动脉血进行血气分析.结果 伤后各致伤组均表现为持续性的代谢性酸中毒,与伤前比较血气指标值明显下降(P<0.05或P<0.01),伤后各时点高原致伤组与平原致伤组血气指标比较均有显著差异(P<0.05或P<0.01).结论 伤后高原致伤组的血气指标降低以及持续性代谢性酸中毒是高原胸部爆炸伤的最主要特征性改变,对于及早救治具有重要意义.

  12. PUBLIC OPINION ON THE PEACEFUL NUCLEAR EXPLOSIONS IN THE PERM TERRITORY

    Directory of Open Access Journals (Sweden)

    S. A. Zelentsova

    2010-01-01

    Full Text Available The evaluation of public opinion on radiation hazard due to consequences of peaceful nuclear explosions “Taiga” in the Perm Territory is being done on the basis of results of polls done among the population opinion leading representative social groups. Respondents know about the peaceful nuclear explosions conducted near the place of their residence many years ago. Radiation hazard for health and level of territory contamination due to these explosions are estimated by them as sufficiently high. Rumors are the first main source of information about explosions for the population of the Perm Territory. Articles on the consequences of explosions published in the mass media are sporadic and contain unbiased information together with unverified information about serious consequences of explosions for the population health. 

  13. Do not underestimate danger of explosion; Even dust can destroy equipment and kill

    Directory of Open Access Journals (Sweden)

    P. Štroch

    2016-03-01

    Full Text Available Explosions never happen at random, they have their exact laws. And sometimes they need very little – high dust concentration, turbulence and ignition source, often spontaneous combustion. If these conditions are met, explosions always follow. It needs to be mentioned that all organic substances are explosive, for example starch, flour, dried milk, sugar, cocoa, pharmaceuticals, textiles, wood and coal dust and others. The highest risk of explosion primarily threatens factories, where they work with dust in any way. Explosions occur directly in pieces of technological equipment during milling, drying, pneumatic or mechanical transport, storage and filtration, and they usually have fatal consequences. Unfortunately organic substance explosion do not only destroy the equipment, they also often kill.

  14. What factors control the superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite

  15. Atmospheric emission of NOx from mining explosives: A critical review

    Science.gov (United States)

    Oluwoye, Ibukun; Dlugogorski, Bogdan Z.; Gore, Jeff; Oskierski, Hans C.; Altarawneh, Mohammednoor

    2017-10-01

    High-energy materials such as emulsions, slurries and ammonium-nitrate fuel-oil (ANFO) explosives play crucial roles in mining, quarrying, tunnelling and many other infrastructure activities, because of their excellent transport and blasting properties. These explosives engender environmental concerns, due to atmospheric pollution caused by emission of dust and nitrogen oxides (NOx) from blasts, the latter characterised by the average emission factor of 5 kg (t AN explosive)-1. This first-of-its-kind review provides a concise literature account of the formation of NOx during blasting of AN-based explosives, employed in surface operations. We estimate the total NOx emission rate from AN-based explosives as 0.05 Tg (i.e., 5 × 104 t) N per annum, compared to the total global annual anthropogenic NOx emissions of 41.3 × 106 t N y-1. Although minor in the global sense, the large localised plumes from blasting exhibit high NOx concentration (500 ppm) exceeding up to 3000 times the international standards. This emission has profound consequences at mining sites and for adjacent atmospheric environment, necessitating expensive management of exclusion zones. The review describes different types of AN energetic materials for civilian applications, and summarises the essential properties and terminologies pertaining to their use. Furthermore, we recapitulate the mechanisms that lead to the formation of the reactive nitrogen species in blasting of AN-based explosives, review their implications to atmospheric air pollution, and compare the mechanisms with those experienced in other thermal and combustion operations. We also examine the mitigation approaches, including guidelines and operational-control measures. The review discusses the abatement technologies such as the formulation of new explosive mixtures, comprising secondary fuels, spin traps and other additives, in light of their effectiveness and efficiency. We conclude the review with a summary of unresolved problems

  16. SUBJECTIVE ASSESSMENTS OF RADIATION RISK ON THE TERRITORIES ADJACENT TO THE PLACES OF PEACEFUL NUCLEAR EXPLOSIONS

    Directory of Open Access Journals (Sweden)

    G. V. Arkhangelskaya

    2009-01-01

    Full Text Available The article contains results of public opinion assessment of the radiation hazard due to consequences of two accidental peaceful nuclear explosions: Globus-1 in the Ivanovo region and Dnepr-1, Dnepr-2 in the Murmansk region. Results of query poll reveal that population knows about peaceful nuclear explosions that were done many years ago near their settlement. Radiation hazard and territory contamination due to these events is estimated by population as rather high. This public opinion is reflected in the information about consequences of peaceful nuclear explosions presented in the Internet and local printed mass media, especially due to consequences of accidental peaceful nuclear explosion Globus-1.

  17. Multivariate acoustic detection of small explosions using Fisher's combined probability test.

    Science.gov (United States)

    Arrowsmith, Stephen J; Taylor, Steven R

    2013-03-01

    A methodology for the combined acoustic detection and discrimination of explosions, which uses three discriminants, is developed for the purpose of identifying weak explosion signals embedded in complex background noise. By utilizing physical models for simple explosions that are formulated as statistical hypothesis tests, the detection/discrimination approach does not require a model for the background noise, which can be highly complex and variable in practice. Fisher's Combined Probability Test is used to combine the p-values from all multivariate discriminants. This framework is applied to acoustic data from a 400 g explosion conducted at Los Alamos National Laboratory.

  18. Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements

    Science.gov (United States)

    McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-01-01

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567

  19. 46 CFR 188.10-25 - Explosive.

    Science.gov (United States)

    2010-10-01

    ... mixture, the primary purpose of which is to function by explosion; i.e., with substantially instantaneous release of gas and heat. Explosives are discussed in more detail in 49 CFR parts 171-179....

  20. New Source Model for Chemical Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    With sophisticated inversion scheme, we recover characteristics of SPE explosions such as corner frequency fc and moment M0, which are used to develop a new source model for chemical explosions.

  1. Pulmonary contusion and hemothorax due to explosion

    National Research Council Canada - National Science Library

    Baeza-Herrera, Carlos; Sanjuán-Fabián, Héctor; Medellín-Sierra, Ulises Darío; Nájera-Garduño, Heladio; García-Cabello, Luis Manuel

    2006-01-01

    .... Such is the case of gunpowder explosive objects used during celebration holidays. We present a 14-year-old male who suffered a pulmonary contusion as a consequence of an explosion of "huevo de codorniz...

  2. Short-term seismic quiescence immediately preceding explosions during the 2011 eruption of Telica Volcano, Nicaragua

    Science.gov (United States)

    Rodgers, M.; Roman, D. C.; Geirsson, H.; La Femina, P. C.; Muñoz, A.; Tenorio, V.

    2013-12-01

    Telica Volcano, Nicaragua, experienced a VEI 2 eruptive episode from March-June 2011. The eruption consisted of numerous small to moderate ash explosions, many of which were observed visually and recorded by a local broadband seismic network (the TESAND network). Seismicity at Telica during both background and eruptive periods is characterized by generally high and variable rates of low-magnitude volcano-seismic events. Explosions at Telica are also detected seismically and distinguished from volcanic earthquakes by the length of the seismic signal, their emergent nature and 'cigar-shaped' envelope, and broadband spectral content. During the month of May 2011, we identified 16 explosion events on a seismometer located 0.5 km from the crater vent, some of which correlate with visually observed explosions. From May 1-12, ten explosions are apparent in continuous seismic data. During this period, the rate of volcano-seismic events is relatively low (0-20 events/hour with an average of 4 events per hour). Prior to eight of the 10 explosions, there were no detected seismic events within one hour of the explosion. From May 13-31, seven explosions were identified in the continuous seismic data. During this period, the rate of volcano-seismic events is relatively high (0-48 events per hour, with an average of 18 events per hour). In the hour preceding all seven explosions, there were no detected volcano-seismic events. Visual inspection of the continuous seismic data confirms that a strong decrease in the number of volcano-seismic events immediately preceded most of the 2011 explosions at Telica Volcano. We suggest that the apparent short-term decrease in seismicity before explosions at Telica is related to a cycle of pressure buildup and release in the shallow magmatic-hydrothermal system, with an increase in pressure prior to the explosions both resulting from and reflecting constriction of gas pathways.

  3. Behavioural and genetic evidence for C. elegans' ability to detect volatile chemicals associated with explosives.

    Science.gov (United States)

    Liao, Chunyan; Gock, Andrew; Michie, Michelle; Morton, Bethany; Anderson, Alisha; Trowell, Stephen

    2010-09-07

    Automated standoff detection and classification of explosives based on their characteristic vapours would be highly desirable. Biologically derived odorant receptors have potential as the explosive recognition element in novel biosensors. Caenorhabditis elegans' genome contains over 1,000 uncharacterised candidate chemosensory receptors. It was not known whether any of these respond to volatile chemicals derived from or associated with explosives. We assayed C. elegans for chemotactic responses to chemical vapours of explosives and compounds associated with explosives. C. elegans failed to respond to many of the explosive materials themselves but showed strong chemotaxis with a number of compounds associated with commercial or homemade explosives. Genetic mutant strains were used to identify the likely neuronal location of a putative receptor responding to cyclohexanone, which is a contaminant of some compounded explosives, and to identify the specific transduction pathway involved. Upper limits on the sensitivity of the nematode were calculated. A sensory adaptation protocol was used to estimate the receptive range of the receptor. The results suggest that C. elegans may be a convenient source of highly sensitive, narrowly tuned receptors to detect a range of explosive-associated volatiles.

  4. The behavior limestone under explosive load

    Science.gov (United States)

    Orlov, M. Yu; Orlova, Yu N.; Bogomolov, G. N.

    2016-11-01

    Limestone behavior under explosive loading was investigated. The behavior of the limestone by the action of the three types of explosives, including granular, ammonite and emulsion explosives was studied in detail. The shape and diameter of the explosion craters were obtained. The observed fragments after the blast have been classified as large, medium and small fragments. Three full-scale experiments were carried out. The research results can be used as a qualitative test for the approbation of numerical methods.

  5. Gas Explosions Mitigation by Ducted Venting

    OpenAIRE

    2007-01-01

    The mitigation of effects of gas and dust explosions within industrial equipment is effective if venting the combustion products to safe location. The presence of relief duct is however likely to increase the severity of the explosion with respect to equipment vented to open atmosphere, due to secondary explosions occurring in the initial sections of duct, frictional drag and inertia of the gas column, acoustic and Helmholtz oscillations. The weights of these phenomena on explosion e...

  6. Statistical estimation of loads from gas explosions

    OpenAIRE

    Høiset, Stian

    1998-01-01

    In the design of structures in the offshore and process industries, the possibility of a gas explosion must always be considered. This is usually incorporated by performing explosion simulations. However, estimations based on such calculations introduce uncertainties in the design process. The main uncertainties in explosion simulations are the assumption of the gas cloud,the location of the ignition point and the properties of the explosion simulator itself. In this thesis, we try to investi...

  7. 75 FR 70291 - Commerce in Explosives; List of Explosive Materials (2010R-27T)

    Science.gov (United States)

    2010-11-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms and Explosives Commerce in Explosives; List of Explosive Materials (2010R-27T) AGENCY: Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF), Department of...

  8. 77 FR 58410 - Commerce in Explosives; List of Explosive Materials (2012R-10T)

    Science.gov (United States)

    2012-09-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms, and Explosives Commerce in Explosives; List of Explosive Materials (2012R-10T) AGENCY: Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF), Department of...

  9. 76 FR 64974 - Commerce in Explosives; List of Explosive Materials (2011R-18T)

    Science.gov (United States)

    2011-10-19

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms and Explosives Commerce in Explosives; List of Explosive Materials (2011R-18T) AGENCY: Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF), Department of...

  10. Measuring explosive non-ideality

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P C

    1999-02-17

    The sonic reaction zone length may be measured by four methods: (1) size effect, (2) detonation front curvature, (3) crystal interface velocity and (4) in-situ gauges. The amount of data decreases exponentially from (1) to (4) with there being almost no gauge data for prompt detonation at steady state. The ease and clarity of obtaining the reaction zone length increases from (1) to (4). The method of getting the reaction zone length, , is described for the four methods. A measure of non-ideality is proposed: the reaction zone length divided by the cylinder radius. N = /R{sub o}. N = 0 for true ideality. It also decreases with increasing radius as it should. For N < 0.10, an equilibrium EOS like the JWL may be used. For N > 0.10, a time-dependent description is essential. The crystal experiment, which measures the particle velocity of an explosive-transparent material interface, is presently rising in importance. We examine the data from three experiments and apply: (1) an impedance correction that transfers the explosive C-J particle velocity to the corresponding value for the interface, and (2) multiplies the interface time by 3/4 to simulate the explosive speed of sound. The result is a reaction zone length comparable to those obtained by other means. A few explosives have reaction zones so small that the change of slope in the particle velocity is easily seen.

  11. Explosion mitigation by water mist

    NARCIS (Netherlands)

    Wal, R. van der; Cargill, S.; Longbottom, A.; Rhijnsburger, M.P.M.; Erkel, A.G. van

    2010-01-01

    The internal explosion of an anti-ship missile or stored ammunition is a potentially catastrophic threat for a navy vessel. These events generally cause heavy blast loading and fragments to perforate the ship structure. As a solution to reduce the blast loading, the compartment can be filled with

  12. MECHANISM OF EXPLOSIVE WELDING OF METALS

    OpenAIRE

    Sek, W.

    1988-01-01

    Mechanism of explosive welding is discussed. The experimental date indicate that the explosive bonding interface forms behind the collision point and the physical properties of metals affect considerably this process. The usefulness of hydrodynamic model for describing the explosive welding process is called in question.

  13. 14 CFR 420.63 - Explosive siting.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... site plan shall include: (1) A scaled map that shows the location of all proposed explosive hazard... explosive hazard facility and all other explosive hazard facilities and each public area, including...

  14. 30 CFR 77.1301 - Explosives; magazines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives; magazines. 77.1301 Section 77.1301... and Blasting § 77.1301 Explosives; magazines. (a) Detonators and explosives other than blasting agents shall be stored in magazines. (b) Detonators shall not be stored in the same magazine with...

  15. 49 CFR 173.54 - Forbidden explosives.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Forbidden explosives. 173.54 Section 173.54... SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.54 Forbidden explosives. Unless otherwise provided in this subchapter, the following explosives shall not be offered for...

  16. 46 CFR 147.95 - Explosives.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Explosives. 147.95 Section 147.95 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.95 Explosives. (a) Explosives—general. Except as provided for elsewhere in this subchapter, explosives, as defined in 49 CFR 173.50, which are hazardous...

  17. 46 CFR 153.921 - Explosives.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Explosives. 153.921 Section 153.921 Shipping COAST GUARD....921 Explosives. No person may load, off-load, or carry a cargo listed in this part on board a vessel that carries explosives unless he has the prior written permission of the Commandant (CG-522). ...

  18. Portable SERS Instrument for Explosives Monitoring

    Science.gov (United States)

    2008-01-01

    groundwater monitoring from a cone penetrometer (CPT) platform (5) Demonstrate improved capability for discriminating explosives versus colorimetry ...interference, and better discrimination of individual explosives compared to colorimetry • Applicability to virtually any environmental water...chemicals such as nitroaromatics or nitramines. While this makes colorimetry more generally applicable at explosive sites, it also limits the ability to

  19. Scientific Support for NQR Explosive Detection Development

    Science.gov (United States)

    2006-07-01

    Final 3. DATES COVERED (From - To) 8 March 2004 - 7 March 2006 4. TITLE AND SUBTITLE Scientific Support for NQR Explosive Detection Development...Laboratory (NRL) to improve explosive detection using nuclear quadrupole resonance ( NQR ) is summarized. The work includes studies of the effects...superconducting coils for explosive detection. Additional studies involving slowly rotating NQR measurements were also pursued. 15. SUBJECT TERMS Nuclear

  20. Micellar electrokinetic chromatography of organic and peroxide-based explosives.

    Science.gov (United States)

    Johns, Cameron; Hutchinson, Joseph P; Guijt, Rosanne M; Hilder, Emily F; Haddad, Paul R; Macka, Mirek; Nesterenko, Pavel N; Gaudry, Adam J; Dicinoski, Greg W; Breadmore, Michael C

    2015-05-30

    CE methods have been developed for the analysis of organic and peroxide-based explosives. These methods have been developed for deployment on portable, in-field instrumentation for rapid screening. Both classes of compounds are neutral and were separated using micellar electrokinetic chromatography (MEKC). The effects of sample composition, separation temperature, and background electrolyte composition were investigated. The optimised separation conditions (25 mM sodium tetraborate, 75 mM sodium dodecyl sulfate at 25°C, detection at 200 nm) were applied to the separation of 25 organic explosives in 17 min, with very high efficiency (typically greater than 300,000 plates m(-1)) and high sensitivity (LOD typically less than 0.5 mg L(-1); around 1-1.5 μM). A MEKC method was also developed for peroxide-based explosives (10 mM sodium tetraborate, 100 mM sodium dodecyl sulfate at 25°C, detection at 200 nm). UV detection provided LODs between 5.5 and 45.0 mg L(-1) (or 31.2-304 μM), which is comparable to results achieved using liquid chromatography. Importantly, no sample pre-treatment or post-column reaction was necessary and the peroxide-based explosives were not decomposed to hydrogen peroxide. Both MEKC methods have been applied to pre-blast analysis and for the detection of post-blast residues recovered from controlled, small scale detonations of organic and peroxide-based explosive devices.