WorldWideScience

Sample records for plastic wave speeds

  1. Shear wave speed recovery in sonoelastography using crawling wave data.

    Science.gov (United States)

    Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley

    2010-07-01

    The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane.

  2. Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data.

    Science.gov (United States)

    Lin, Kui; McLaughlin, Joyce R; Thomas, Ashley; Parker, Kevin; Castaneda, Benjamin; Rubens, Deborah J

    2011-07-01

    The crawling wave experiment was developed to capture a shear wave induced moving interference pattern that is created by two harmonic vibration sources oscillating at different but almost the same frequencies. Using the vibration sonoelastography technique, the spectral variance image reveals a moving interference pattern. It has been shown that the speed of the moving interference pattern, i.e., the crawling wave speed, is proportional to the shear wave speed with a nonlinear factor. This factor can generate high-speed artifacts in the crawling wave speed images that do not actually correspond to increased stiffness. In this paper, an inverse algorithm is developed to reconstruct both the crawling wave speed and the shear wave speed using the phases of the crawling wave and the shear wave. The feature for the data is the application to in vitro prostate data, while the features for the algorithm include the following: (1) A directional filter is implemented to obtain a wave moving in only one direction; and (2) an L(1) minimization technique with physics inspired constraints is employed to calculate the phase of the crawling wave and to eliminate jump discontinuities from the phase of the shear wave. The algorithm is tested on in vitro prostate data measured at the Rochester Center for Biomedical Ultrasound and University of Rochester. Each aspect of the algorithm is shown to yield image improvement. The results demonstrate that the shear wave speed images can have less artifacts than the crawling wave images. Examples are presented where the shear wave speed recoveries have excellent agreement with histology results on the size, shape, and location of cancerous tissues in the glands. © 2011 Acoustical Society of America

  3. Thermoelasticity with Finite Wave Speeds

    CERN Document Server

    Ignaczak, Józef

    2009-01-01

    Generalized dynamic thermoelasticity is a vital area of research in continuum mechanics, free of the classical paradox of infinite propagation speeds of thermal signals in Fourier-type heat conduction. Besides that paradox, the classical dynamic thermoelasticity theory offers either unsatisfactory or poor descriptions of a solid's response at low temperatures or to a fast transient loading (say, due to short laser pulses). Several models have been developed and intensively studiedover the past four decades, yet this book, which aims to provide a point of reference in the field, is the first mo

  4. Resonant speed meter for gravitational wave detection

    CERN Document Server

    Nishizawa, Atsushi; Sakagami, Masa-aki

    2008-01-01

    Gravitational-wave detectors have been well developed and operated with high sensitivity. However, they still suffer from mirror displacement noise. In this paper, we propose a resonant speed meter, as a displacement noise-canceled configuration based on a ring-shaped synchronous recycling interferometer. The remarkable feature of this interferometer is that, at certain frequencies, gravitational-wave signals are amplified, while displacement noises are not.

  5. Shear wave speed and dispersion measurements using crawling wave chirps.

    Science.gov (United States)

    Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J

    2014-10-01

    This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented.

  6. Estimation of wind speed and wave height during cyclones

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Mandal, S.; AshokKumar, K.

    reported by ships were comparable. Empirical expressions relating wind speed, wave height and wave period to storm parameters were derived. The design wave height for different return periods was obtained by fitting a two-parameter Weibull distribution...

  7. Seismic wave speed structure of the Ontong Java Plateau

    Science.gov (United States)

    Covellone, Brian M.; Savage, Brian; Shen, Yang

    2015-06-01

    The Ontong Java Plateau (OJP) represents the result of a significant event in the Earth's geologic history. Limited geophysical and geochemical data, as well as the plateau's relative isolation in the Pacific ocean, have made interpretation of the modern day geologic structure and its 120 Ma formation history difficult. Here we present the highest resolution image to date of the wave speed structure of the OJP region. We use a data set that combines Rayleigh waves extracted from both ambient noise and earthquake waveforms and an iterative finite-frequency tomography methodology. The combination of datasets allow us to best exploit the limited station distribution in the Pacific and image wave speed structures between 35 km and 300 km into the Earth. We image a region of fast shear wave speeds, greater than 4.75 km/s, that extends to greater than 100 km beneath the plateau. The wave speeds are similar to as observed in cratonic environments and are consistent with a compositional anomaly that resulted from the residuum of eclogite entrainment during the plateau's formation. The combination of our imaged wave speed structure and previous geochemical work suggest that a surfacing plume head entrained eclogite from the deep mantle and accounts for the anomalous buoyancy characteristics of the plateau and observed fast wave speeds.

  8. WAVE ATTENUATION OVER MUD BED: A PSEUDO-PLASTIC MODEL

    Institute of Scientific and Technical Information of China (English)

    Zhang Qing-he; Onyx W.H. Wai; Joseph H. W. Lee

    2003-01-01

    A two-layer model, with the upper layer being the perfect fluid and the lower layer being the pseudo-plastic fluid describing water wave attenuation over mud bed, was established. A simplified method based on the principle of equivalent work was applied to solve the boundary value problems. The computational results of the model show that the two-layer perfect fluid model and the perfect-viscous fluid model are all special cases of the present model. The complex nonlinear properties of wave attenuation over mud bed, can be explained by the present model, e.g., the wave dissipation rate decreases with the wave height in certain cases, while the small wave propagates over mud bed with less energy dissipation and large wave attenuates rapidly in other cases. Other factors influencing the wave attenuation were also discussed.

  9. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  10. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  11. Measuring Gravitational-Wave Propagation Speed with Multimessenger Observations

    OpenAIRE

    Nishizawa, Atsushi; Nakamura, Takashi

    2016-01-01

    A measurement of gravitational wave (GW) propagation speed is one of important tests of gravity in a dynamical regime. We report a method to measure the GW propagation speed by directly comparing arrival times of GWs, neutrinos from supernovae (SN), and photons from short gamma-ray bursts (SGRB). We found that the future multimessenger observations can test the GW propagation speed with the precision of ~ 10^(-16)-10^(-15), improving the previous suggestions by 9 — 10 orders of magnitude. We ...

  12. Wave speed in excitable random networks with spatially constrained connections.

    Directory of Open Access Journals (Sweden)

    Nikita Vladimirov

    Full Text Available Very fast oscillations (VFO in neocortex are widely observed before epileptic seizures, and there is growing evidence that they are caused by networks of pyramidal neurons connected by gap junctions between their axons. We are motivated by the spatio-temporal waves of activity recorded using electrocorticography (ECoG, and study the speed of activity propagation through a network of neurons axonally coupled by gap junctions. We simulate wave propagation by excitable cellular automata (CA on random (Erdös-Rényi networks of special type, with spatially constrained connections. From the cellular automaton model, we derive a mean field theory to predict wave propagation. The governing equation resolved by the Fisher-Kolmogorov PDE fails to describe wave speed. A new (hyperbolic PDE is suggested, which provides adequate wave speed v( that saturates with network degree , in agreement with intuitive expectations and CA simulations. We further show that the maximum length of connection is a much better predictor of the wave speed than the mean length. When tested in networks with various degree distributions, wave speeds are found to strongly depend on the ratio of network moments / rather than on mean degree , which is explained by general network theory. The wave speeds are strikingly similar in a diverse set of networks, including regular, Poisson, exponential and power law distributions, supporting our theory for various network topologies. Our results suggest practical predictions for networks of electrically coupled neurons, and our mean field method can be readily applied for a wide class of similar problems, such as spread of epidemics through spatial networks.

  13. Flow speed of the ablation vapors generated during laser drilling of CFRP with a continuous-wave laser beam

    Science.gov (United States)

    Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.

    2017-03-01

    The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.

  14. Measurements of wave speed and reflected waves in elastic tubes and bifurcations.

    Science.gov (United States)

    Khir, A W; Parker, K H

    2002-06-01

    Wave intensity analysis is a time domain method for studying waves in elastic tubes. Testing the ability of the method to extract information from complex pressure and velocity waveforms such as those generated by a wave passing through a mismatched elastic bifurcation is the primary aim of this research. The analysis provides a means for separating forward and backward waves, but the separation requires knowledge of the wave speed. The PU-loop method is a technique for determining the wave speed from measurements of pressure and velocity, and investigating the relative accuracy of this method is another aim of this research. We generated a single semi-sinusoidal wave in long elastic tubes and measured pressure and velocity at the inlet, and pressure at the exit of the tubes. In our experiments, the results of the PU-loop and the traditional foot-to-foot methods for determining the wave speed are comparable and the difference is on the order of 2.9+/-0.8%. A single semi-sinusoidal wave running through a mismatched elastic bifurcation generated complicated pressure and velocity waveforms. By using wave intensity analysis we have decomposed the complex waveforms into simple information of the times and magnitudes of waves passing by the observation site. We conclude that wave intensity analysis and the PU-loop method combined, provide a convenient, time-based technique for analysing waves in elastic tubes.

  15. Shear wave speeds at the base of the mantle

    NARCIS (Netherlands)

    Castle, John C.; Hilst, R.D. van der; Creager, K.C.; Winchester, John P.

    2006-01-01

    We inverted 4864 ScS-S and 1671 S(diff)-SKS residual travel times for shear wave speed anomalies at the base of the Earth's mantle. We applied ellipticity corrections, accounted for mantle structure outside of the basal layer using mantle tomography models, and employed finite size sensitivity kerne

  16. Wave speed structure of the eastern North American margin

    Science.gov (United States)

    Savage, B.; Covellone, B. M.; Shen, Y.

    2017-02-01

    The eastern North American margin (ENAM) is the result of nearly a billion years of continental collision and rifting. To the west of this margin lies thick continental lithosphere of the North American craton, and to the east is oceanic lithosphere in the Atlantic. The substantial changes in lithosphere thickness at this boundary are thought to drive asthenosphere upwelling along the edge of the continent. Through iterative, full-waveform, ambient noise tomography, we observe a heterogeneous low wave speed margin along the continent in the upper mantle. Multiple low wave speed features imaged within the margin are consistent with asthenospeheric upwelling due to edge-driven convection. Also within the margin are high wave speed anomalies that maybe the remnants of eclogitic delamination of the Appalachian crustal root, which contribute to convection at the margin. Edge driven, small-scale convection keeps the margin weak and thus controls the large scale plate tectonic patterns and the crustal deformation. The imaged mantle wave speed anomalies, interpreted as edge-driven convection, correlate with and may increase the likelihood of damaging earthquakes in the eastern portion of North America.

  17. Shear wave speeds at the base of the mantle

    NARCIS (Netherlands)

    Castle, John C.; Hilst, R.D. van der; Creager, K.C.; Winchester, John P.

    2000-01-01

    We inverted 4864 ScS-S and 1671 S(diff)-SKS residual travel times for shear wave speed anomalies at the base of the Earth's mantle. We applied ellipticity corrections, accounted for mantle structure outside of the basal layer using mantle tomography models, and employed finite size sensitivity

  18. Plastic-Flow Waves ("Slow-Waves") and Seismic Activity in Central-Eastern Asia

    Institute of Scientific and Technical Information of China (English)

    Wang Shengzu; Zhang Zongchun

    2005-01-01

    The results inferred from experiments with analogue models carried out previously have shown that two types of plastic-flow waves, "fast-waves" and "slow-waves", are induced in the lower lithosphere (including the lower crust and lithospheric mantle ) under driving at plate boundaries and both of them are viscous gravity waves formed by the superposition of major and subsidiary waves. The major waves are similar to solitary waves and the subsidiary waves are traveling waves. The plastic-flow waves in the lower lithosphere control seismic activities in the overlying seismogenic layer and result in the distribution of earthquakes along the wavecrest belts. "Fast-waves" propagated with velocities of orders of magnitude of 100 ~ 102km/a have been verified by wave-controlled earthquake migration, showing the "decade waves" and "century waves" with the average periods of 10.8 and 93.4 a, respectively, which originate from the Himalayan driving boundary. According to the recognition of the patterns of the beltlike distribution of strong earthquakes with Ms ≥ 7.0, it is indicated further in this paper that the "slow-waves" with velocities of orders of magnitude of 100 ~ 101 m/a also originated under compression from the Himalayan driving boundary. Strong earthquakes with Ms ≥ 7.0 are controlled mainly by subsidiary waves, because the major waves with a duration of up to 106 a for each disturbance cannot result in the accmnulation of enough energy for strong earthquakes due to the relaxation of the upper crust. The subsidiary waves propagate with an average wave length of 445 km, velocities of 0.81~2.80 m/a and periods of 0.16 ~ 0.55 Ma. The wavegenerating time at the Himalayan driving boundary is about 1.34 ~ 4.59 Ma before present for the "slow-waves", corresponding to the stage from the Mid Pliocene to the Mid EarlyPleistocene and being identical with one of the major tectonic episodes of the Himalayan tectonic movement. It is shown from the recognition of

  19. Neural rotational speed control for wave energy converters

    Science.gov (United States)

    Amundarain, M.; Alberdi, M.; Garrido, A. J.; Garrido, I.

    2011-02-01

    Among the benefits arising from an increasing use of renewable energy are: enhanced security of energy supply, stimulation of economic growth, job creation and protection of the environment. In this context, this study analyses the performance of an oscillating water column device for wave energy conversion in function of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose, a model of neural rotational speed control system is presented, simulated and implemented. This scheme is employed to appropriately adapt the speed of the doubly-fed induction generator coupled to the turbine according to the pressure drop entry, so as to avoid the undesired stalling behaviour. It is demonstrated that the proposed neural rotational speed control design adequately matches the desired relationship between the slip of the doubly-fed induction generator and the pressure drop input, improving the power generated by the turbine generator module.

  20. High-speed measurement of firearm primer blast waves

    CERN Document Server

    Courtney, Michael; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast pressure of 8.2-25.0%. 3) Combined with smaller blast waves, these large variations in peak blast pressure of DDNP-based primers led to delayed ignition and failure to fire in brief field tests.

  1. Shock Wave Speed and Transient Response of PE Pipe with Steel-Mesh Reinforcement

    OpenAIRE

    2016-01-01

    A steel mesh can improve the tensile strength and stability of a polyethylene (PE) pipe in a water supply pipeline system. However, it can also cause more severe water hammer hazard due to increasing wave speed. In order to analyze the influence of the steel mesh on the shock wave speed and transient response processes, an improved wave speed formula is proposed by incorporating the equivalent elastic modulus. A field measurement validates the wave speed formula. Moreover, the transient wave ...

  2. High-speed measurement of rifle primer blast waves

    CERN Document Server

    Courtney, Michael

    2011-01-01

    This article describes a method and results for direct high-speed measurements of rifle primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Our key findings are: 1) Most of the primer models tested show 5-12% standard deviation in the magnitudes of their peak pressure. 2) For most primer types tested, peak pressure magnitudes are well correlated with measured primer masses so that significant reductions in standard deviation are expected to result from sorting primers by mass. 3) A range of peak pressures from below 200 psi to above 500 psi is available in different primer types.

  3. Guided wave propagation in porous unidirectional carbon fiber reinforced plastic

    Science.gov (United States)

    Dobmann, Nicolas; Bach, Martin

    2017-02-01

    Networks of piezoelectric transducers mounted on aircraft structures for Acousto Ultrasonics (AU) purposes are designed to be applied during the service life of the aircraft. The approach to integrate these sensor networks already during the manufacture of carbon fiber reinforced plastic (CFRP) host structures prompts ideas to achieve an additional benefit by their application for cure monitoring, thus extending their use to the manufacturing chain. This benefit could be extended even further if guided waves generated by AU sensor networks could be used for porosity testing extensively applied for CFRP aircraft structures. In light of this, an experimental study was conducted to investigate effects of porosity on the propagation of guided waves in a basic configuration of unidirectional CFRP. Several samples were manufactured at different porosity levels by variation of the processing pressure. Wave fields were acquired using an ultrasonic scanning device. In the present work, phase velocities are chosen as best measurable and quantifiable propagation feature and the approach for the analysis of phase velocities in porosity samples is outlined. First results are presented and discussed regarding the influence of porosity on guided wave phase velocity and basic applicability for porosity testing of aircraft structures.

  4. High-speed traveling-wave electro-absorption modulators

    Science.gov (United States)

    Westergren, Urban; Yu, Yichuan; Thylén, Lars

    2006-07-01

    Electroabsorption modulators (EAM) based on quantum-confined Stark effect (QCSE) in multiplequantum wells (MQW) have been demonstrated to provide high-speed, low drive voltage, and high extinction ratio. They are compact in size and can be monolithically integrated with continuous-wave (CW) lasers. In order to achieve both high speed and low drive-voltage operation, travelling-wave (TW) electrode structures can be used for EAMs. The inherently low impedance of high-speed EAMs may be transformed to values close to the standard 50Ohm impedance using periodic microwave structures with a combination of passive transmission lines with high characteristic impedance and active modulator sections with low impedance. Modulation bandwidths of 100GHz (-3dBe) have been accomplished with electrical reflections lower than -10dB in a 50Ohm system. Transmission at 80Gbit/s with non-return-to-zero (NRZ) code has been demonstrated for InP-based TWEAMs using electronic time-domain multiplexing (ETDM), indicating the possibility of reaching speeds of 100Gbit/s and beyond.

  5. Plastic straw: future of high-speed signaling

    Science.gov (United States)

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-11-01

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.

  6. Asymptotic Speed of Wave Propagation for A Discrete Reaction-Diffusion Equation

    Institute of Scientific and Technical Information of China (English)

    Xiu-xiang Liu; Pei-xuan Weng

    2006-01-01

    We deal with asymptotic speed of wave propagation for a discrete reaction-diffusion equation. We find the minimal wave speed c* from the characteristic equation and show that c* is just the asymptotic speed of wave propagation. The isotropic property and the existence of solution of the initial value problem for the given equation are also discussed.

  7. THE ANALYSIS OF INTRASEASONAL LONG ROSSBY WAVE SPEED IN THE SUBTROPICAL PACIFIC OCEAN

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The analysis of the satellite altimeter data suggests that the propagating speed of intraseasonal long Rossby wave amplified in the subtropical Pacific Ocean is faster than that of first-mode baroclinic free Rossby wave predicted by the liner theory and the propagating speed of intraseasonal long Rossby wave reflected in the eastern boundary of Pacific Ocean agrees basically with the liner theory speed of first-mode baroclinic free Rossby wave. If we do not distinguish the two kinds of long Rossby waves and estimate the Rossby wave speed in the whole basin, the phase speed is merely 25% higher than the linear theory long Rossby wave speed. The acceleration of the propagating speed of intraseasonal long Rossby wave amplified in the subtropical Pacific Ocean is due to the existence of westward thermolcline mean flow.

  8. Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity

    Science.gov (United States)

    Bennett, James E. M.; Bair, Wyeth

    2015-01-01

    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli. PMID:26308406

  9. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.

    Science.gov (United States)

    Koyama, Daisuke; Kotera, Hironori; Kitazawa, Natsuko; Yoshida, Kenji; Nakamura, Kentaro; Watanabe, Yoshiaki

    2011-04-01

    Observation techniques for measuring the small vibration of a single microcapsule of tens of nanometers in an acoustic standing wave field are discussed. First, simultaneous optical observation of a microbubble vibration by two methods is investigated, using a high-speed video camera, which permits two-dimensional observation of the bubble vibration, and a laser Doppler vibrometer (LDV), which can observe small bubble vibration amplitudes at high frequency. Bubbles of tens of micrometers size were trapped at the antinode of an acoustic standing wave generated in an observational cell. Bubble vibration at 27 kHz could be observed and the experimental results for the two methods showed good agreement. The radial vibration of microcapsules with a hard plastic shell was observed using the LDV and the measurement of the capsule vibration with radial oscillation amplitude of tens of nanometers was successful. The acoustic radiation force acting on microcapsules in the acoustic standing wave was measured from the trapped position of the standing wave and the radial oscillation amplitude of the capsules was estimated from the theoretical equation of the acoustic radiation force, giving results in good agreement with the LDV measurements. The radial oscillation amplitude of a capsule was found to be proportional to the amplitude of the driving sound pressure. A larger expansion ratio was observed for capsules closer to the resonance condition under the same driving sound pressure and frequency.

  10. OPERA Collaboration have observed phase speed of neutrino wave function

    CERN Document Server

    Li, Shi-Yuan

    2011-01-01

    First we call the attention that velocity defined by ratio between some intervals of space and time respectively is sometimes ambiguous, in the framework of quantum theory. Velocity in general is not possible to be well defined as some generator of certain space-time symmetry operation. Then by analyzing the OPERA experiment we show that the OPERA Collaboration may have measured the phase speed of the neutrino wave function. Employing a very (maybe too) simple model which is just a reproduction from Brillouin's classical book, we demonstrate the phase velocity and group velocity. These are just a qualitative illustration rather than aiming to quantitively explain the OPERA data.

  11. Propagating speed of primordial gravitational waves and inflation

    CERN Document Server

    Cai, Yong; Piao, Yun-Song

    2016-01-01

    We show that if the propagating speed of gravitational waves (GWs) gradually diminishes during inflation, the power spectrum of primordial GWs will be strongly blue, while that of the primordial scalar perturbation may be unaffected. We also illustrate that such a scenario is actually a disformal dual to the superinflation, but has no the ghost instability. The blue tilt obtained is $0

  12. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Klein, Spencer

    2009-06-04

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  13. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Klein, Spencer

    2009-06-04

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  14. Different propagation speeds of recalled sequences in plastic spiking neural networks

    Science.gov (United States)

    Huang, Xuhui; Zheng, Zhigang; Hu, Gang; Wu, Si; Rasch, Malte J.

    2015-03-01

    Neural networks can generate spatiotemporal patterns of spike activity. Sequential activity learning and retrieval have been observed in many brain areas, and e.g. is crucial for coding of episodic memory in the hippocampus or generating temporal patterns during song production in birds. In a recent study, a sequential activity pattern was directly entrained onto the neural activity of the primary visual cortex (V1) of rats and subsequently successfully recalled by a local and transient trigger. It was observed that the speed of activity propagation in coordinates of the retinotopically organized neural tissue was constant during retrieval regardless how the speed of light stimulation sweeping across the visual field during training was varied. It is well known that spike-timing dependent plasticity (STDP) is a potential mechanism for embedding temporal sequences into neural network activity. How training and retrieval speeds relate to each other and how network and learning parameters influence retrieval speeds, however, is not well described. We here theoretically analyze sequential activity learning and retrieval in a recurrent neural network with realistic synaptic short-term dynamics and STDP. Testing multiple STDP rules, we confirm that sequence learning can be achieved by STDP. However, we found that a multiplicative nearest-neighbor (NN) weight update rule generated weight distributions and recall activities that best matched the experiments in V1. Using network simulations and mean-field analysis, we further investigated the learning mechanisms and the influence of network parameters on recall speeds. Our analysis suggests that a multiplicative STDP rule with dominant NN spike interaction might be implemented in V1 since recall speed was almost constant in an NMDA-dominant regime. Interestingly, in an AMPA-dominant regime, neural circuits might exhibit recall speeds that instead follow the change in stimulus speeds. This prediction could be tested in

  15. Observing seasonal variations of sea surface wind speed and significant wave height using TOPEX altimetry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    One year of ocean topography experiment (TOPEX) altimeter data are used to study the seasonal variations of global sea surface wind speed and significant wave height. The major wind and wave zones of the world oceans are precisely identified, their seasonal variability and characteristics are quantitatively analyzed, and the diversity of global wind speed seasonality and the variability of significant wave height in response to sea surface wind speed are also revealed.

  16. Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems

    CERN Document Server

    Wang, Haiyan

    2010-01-01

    Much has been studied on the spreading speed and traveling wave solutions for cooperative reaction-diffusion systems. In this paper, we shall establish the spreading speed for a large class of non-cooperative reaction-diffusion systems and characterize the spreading speed as the slowest speed of a family of non-constant traveling wave solutions. As an application, our results are applied to a partially cooperative system describing interactions between ungulates and grass.

  17. On the minimal speed and asymptotics of the wave solutions for the lotka volterra system

    CERN Document Server

    Hou, Xiaojie

    2010-01-01

    e study the minimal wave speed and the asymptotics of the traveling wave solutions of a competitive Lotka Volterra system. The existence of the traveling wave solutions is derived by monotone iteration. The asymptotic behaviors of the wave solutions are derived by comparison argument and the exponential dichotomy, which seems to be the key to understand the geometry and the stability of the wave solutions. Also the uniqueness and the monotonicity of the waves are investigated via a generalized sliding domain method.

  18. Reconstruction of the wave speed from transmission eigenvalues for the spherically symmetric variable-speed wave equation

    Science.gov (United States)

    Aktosun, Tuncay; Papanicolaou, Vassilis G.

    2013-06-01

    The unique reconstruction of a spherically symmetric wave speed v is considered in a bounded spherical region of radius b from the set of corresponding transmission eigenvalues for which the corresponding eigenfunctions are also spherically symmetric. If the integral of 1/v on the interval [0, b] is less than b, assuming that there exists at least one v corresponding to the data, then v is uniquely reconstructed from the data consisting of such transmission eigenvalues and their ‘multiplicities’, where the multiplicity is defined as the multiplicity of the transmission eigenvalue as a zero of a key quantity. When that integral is equal to b, the unique reconstruction is presented when the data set contains one additional piece of information. Some similar results are presented for the unique reconstruction of the potential from the transmission eigenvalues with multiplicities for a related Schrödinger equation.

  19. Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials

    Directory of Open Access Journals (Sweden)

    Liu Lang

    2016-05-01

    Full Text Available Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.

  20. Note: Lossless laser beam combiner employing a high-speed rotating half-wave plate

    Science.gov (United States)

    Yatsuka, E.; Yamamoto, T.; Hatae, T.; Torimoto, K.; Itami, K.

    2017-07-01

    We have developed a laser beam combiner employing a high-speed rotating half-wave plate based on the specific requirements of the Thomson scattering measurement systems in the ITER. The polarization extinction ratio of the output beam may exceed 1000 and was maintained for more than 1 h via feedback control of the half-wave plate rotation speed. The pointing fluctuations introduced by rotating the half-wave plate were in the order of microradians. The high-speed rotating half-wave plate provides a lossless means of combining laser beams together with stable beam pointing.

  1. Note: Lossless laser beam combiner employing a high-speed rotating half-wave plate.

    Science.gov (United States)

    Yatsuka, E; Yamamoto, T; Hatae, T; Torimoto, K; Itami, K

    2017-07-01

    We have developed a laser beam combiner employing a high-speed rotating half-wave plate based on the specific requirements of the Thomson scattering measurement systems in the ITER. The polarization extinction ratio of the output beam may exceed 1000 and was maintained for more than 1 h via feedback control of the half-wave plate rotation speed. The pointing fluctuations introduced by rotating the half-wave plate were in the order of microradians. The high-speed rotating half-wave plate provides a lossless means of combining laser beams together with stable beam pointing.

  2. Shock Wave Speed and Transient Response of PE Pipe with Steel-Mesh Reinforcement

    Directory of Open Access Journals (Sweden)

    Wuyi Wan

    2016-01-01

    Full Text Available A steel mesh can improve the tensile strength and stability of a polyethylene (PE pipe in a water supply pipeline system. However, it can also cause more severe water hammer hazard due to increasing wave speed. In order to analyze the influence of the steel mesh on the shock wave speed and transient response processes, an improved wave speed formula is proposed by incorporating the equivalent elastic modulus. A field measurement validates the wave speed formula. Moreover, the transient wave propagation and extreme pressures are simulated and compared by the method of characteristics (MOC for reinforced PE pipes with various steel-mesh densities. Results show that a steel mesh can significantly increase the shock wave speed in a PE pipe and thus can cause severe peak pressure and hydraulic surges in a water supply pipeline system. The proposed wave speed formula can more reasonably evaluate the wave speed and improve the transient simulation of steel-mesh-reinforced PE pipes.

  3. Desing And Implementation Of A Digitally Controlled Compact Speed Driver For Travelling Wave Ultrasonic Motor

    OpenAIRE

    Altan Gencer

    2013-01-01

    In this paper, a compact size digitally controlled speed driver for travelling wave ultrasonic motor was designed and implemented. Although the driver system is light in weight, simple, small in size, it is possible to enter speed and direction digitally as well as tracking the real motor speed, voltage and current on an LCD. The implemented system was tested in a laboratory for different speed and load cases and obtained results are presented.

  4. Desing And Implementation Of A Digitally Controlled Compact Speed Driver For Travelling Wave Ultrasonic Motor

    Directory of Open Access Journals (Sweden)

    Altan Gencer

    2013-05-01

    Full Text Available In this paper, a compact size digitally controlled speed driver for travelling wave ultrasonic motor was designed and implemented. Although the driver system is light in weight, simple, small in size, it is possible to enter speed and direction digitally as well as tracking the real motor speed, voltage and current on an LCD. The implemented system was tested in a laboratory for different speed and load cases and obtained results are presented.

  5. TRAVELING WAVE SPEED AND SOLUTION IN REACTION-DIFFUSION EQUATION IN ONE DIMENSION

    Institute of Scientific and Technical Information of China (English)

    周天寿; 张锁春

    2001-01-01

    By Painlevé analysis, traveling wave speed and solution of reaction-diffusion equations for the concentration of one species in one spatial dimension are in detail investigated. When the exponent of the creation term is larger than the one of the annihilation term, two typical cases are studied, one with the exact traveling wave solutions, yielding the values of speeds, the other with the series expansion solution, also yielding the value of speed. Conversely, when the exponent of creation term is smaller than the one of the annihilation term, two typical cases are also studied, but only for one of them, there is a series development solution, yielding the value of speed, and for the other, traveling wave solution cannot exist. Besides, the formula of calculating speeds and solutions of planar wave within the thin boundary layer are given for a class of typical excitable media.

  6. NUMERICAL AND EXPERIMENTAL INVESTIGATION OF WAVE DYNAMIC PROCESSES IN HIGH-SPEED TRAIN/TUNNELS

    Institute of Scientific and Technical Information of China (English)

    姜宗林; K.Matsuoka; A.Sasoh; K.Takayama

    2002-01-01

    Numerical and experimental investigation on wave dynamic processes induced by high-speed trains entering railway tunnels are presented. Experiments were conducted by using a 1:250 scaled train-tunnel simulator. Numerical simulations were carried out by solving the axisymmetric Euler equations with the dispersioncontrolled scheme implemented with moving boundary conditions. Pressure histories at various positions inside the train-tunnel simulator at different distance measured from the entrance of the simulator are recorded both numerically and experimentally,and then compared with each other for two train speeds. After the validation of nonlinear wave phenomena, detailed numerical simulations were then conducted to account for the generation of compression waves near the entrance, the propagation of these waves along the train tunnel, and their gradual development into a weak shock wave. Four wave dynamic processes observed are interpreted by combining numerical results with experiments. They are: high-speed trains moving over a free terrain before entering railway tunnels; the abrupt-entering of high-speed trains into railway tunnels; the abrupt-entering of the tail of high-speed trains into railway tunnels; and the interaction of compression and expansion waves ahead of high-speed trains. The effects of train-tunnel configurations, such as the train length and the train-tunnel blockage ratio, on these wave processes have been investigated as well.

  7. The acoustoelastic effect on Rayleigh waves in elastic-plastic deformed layered rocks

    Institute of Scientific and Technical Information of China (English)

    Liu Jin-Xia; Cui Zhi-Wen; Wang Ke-Xie

    2007-01-01

    On the basis of the acoustoelastic theory for elastic-plastic materials, the influence of statically deformed states including both the elastic and plastic deformations induced by applied uniaxial stresses on the Rayleigh wave in layered rocks is investigated by using a transfer matrix method. The acoustoelastic effects of elastic-plastic strains in rocks caused by static deformations, are discussed in detail. The Rayleigh-type and Sezawa modes exhibit similar trends in acoustoelastic effect: the acoustoelastic effect increasing rapidly with the frequency-thickness product and the phase velocity change approaching a constant value for thick layer and high frequency limit. Elastic-plastic deformations in the Castlegate layered rock obviously modify the phase velocity of the Rayleigh wave and the cutoff points for the Sezawa modes. The investigation may be useful for seismic exploration, geotechnical engineering and ultrasonic detection.

  8. Photoacoustic and thermoacoustic tomography with an uncertain wave speed

    OpenAIRE

    2013-01-01

    We consider the mathematical model of photoacoustic and thermoacoustic tomography in media with a variable sound speed. When the sound speed is known, the explicit reconstruction formula by P. Stefanov and G. Uhlmann (Inverse Problems, 25(7):075011, 16, 2009) can be used. We study how a modelling error in the sound speed affects the reconstruction formula and quantify the effect in terms of a stability estimate.

  9. Wave speed in human coronary arteries is not influenced by microvascular vasodilation: implications for wave intensity analysis.

    Science.gov (United States)

    Rolandi, M Cristina; De Silva, Kalpa; Lumley, Matthew; Lockie, Timothy P E; Clapp, Brian; Spaan, Jos A E; Perera, Divaka; Siebes, Maria

    2014-03-01

    Wave intensity analysis and wave separation are powerful tools for interrogating coronary, myocardial and microvascular physiology. Wave speed is integral to these calculations and is usually estimated by the single-point technique (SPc), a feasible but as yet unvalidated approach in coronary vessels. We aimed to directly measure wave speed in human coronary arteries and assess the impact of adenosine and nitrate administration. In 14 patients, the transit time Δt between two pressure signals was measured in angiographically normal coronary arteries using a microcatheter equipped with two high-fidelity pressure sensors located Δs = 5 cm apart. Simultaneously, intracoronary pressure and flow velocity were measured with a dual-sensor wire to derive SPc. Actual wave speed was calculated as DNc = Δs/Δt. Hemodynamic signals were recorded at baseline and during adenosine-induced hyperemia, before and after nitroglycerin administration. The energy of separated wave intensity components was assessed using SPc and DNc. At baseline, DNc equaled SPc (15.9 ± 1.8 vs. 16.6 ± 1.5 m/s). Adenosine-induced hyperemia lowered SPc by 40 % (p DNc remained unchanged, leading to marked differences in respective separated wave energies. Nitroglycerin did not affect DNc, whereas SPc transiently fell to 12.0 ± 1.2 m/s (p < 0.02). Human coronary wave speed is reliably estimated by SPc under resting conditions but not during adenosine-induced vasodilation. Since coronary wave speed is unaffected by microvascular dilation, the SPc estimate at rest can serve as surrogate for separating wave intensity signals obtained during hyperemia, thus greatly extending the scope of WIA to study coronary physiology in humans.

  10. Plastic damping of Alfv\\'en waves in magnetar flares and delayed afterglow emission

    CERN Document Server

    Li, Xinyu

    2015-01-01

    Magnetar flares generate Alfv\\'en waves bouncing in the closed magnetosphere with energy up to $\\sim 10^{46}$ erg. We show that on a 10-ms timescale the waves are transmitted into the star and form a compressed packet of high energy density. This packet strongly shears the stellar crust and initiates a plastic flow, heating the crust and melting it hundreds of meters below the surface. A fraction of the deposited plastic heat is eventually conducted to the stellar surface, contributing to the surface afterglow months to years after the flare. A large fraction of heat is lost to neutrino emission or conducted into the core of the neutron star.

  11. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals

    Science.gov (United States)

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-01

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 1 04 s . This uncertainty can be suppressed by a factor of ˜1 010, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ -ray bursts and fast radio bursts.

  12. Propagation Speed of the Maximum of the Fundamental Solution to the Fractional Diffusion-Wave Equation

    CERN Document Server

    Luchko, Yuri; Povstenko, Yuriy

    2012-01-01

    In this paper, the one-dimensional time-fractional diffusion-wave equation with the fractional derivative of order $1 \\le \\alpha \\le 2$ is revisited. This equation interpolates between the diffusion and the wave equations that behave quite differently regarding their response to a localized disturbance: whereas the diffusion equation describes a process, where a disturbance spreads infinitely fast, the propagation speed of the disturbance is a constant for the wave equation. For the time fractional diffusion-wave equation, the propagation speed of a disturbance is infinite, but its fundamental solution possesses a maximum that disperses with a finite speed. In this paper, the fundamental solution of the Cauchy problem for the time-fractional diffusion-wave equation, its maximum location, maximum value, and other important characteristics are investigated in detail. To illustrate analytical formulas, results of numerical calculations and plots are presented. Numerical algorithms and programs used to produce pl...

  13. Constraining the propagation speed of gravitational waves with compact binaries at cosmological distances

    OpenAIRE

    Nishizawa, Atsushi

    2016-01-01

    In testing gravity a model-independent way, one of crucial tests is measuring the propagation speed of a gravitational wave (GW). In general relativity, a GW propagates with the speed of light, while in the alternative theories of gravity the propagation speed could deviate from the speed of light due to the modification of gravity or spacetime structure at a quantum level. Previously we proposed the method measuring the GW speed by directly comparing the arrival times between a GW and a phot...

  14. High-speed imaging of dynamic shock wave reflection phenomena

    CSIR Research Space (South Africa)

    Naidoo, K

    2010-09-01

    Full Text Available Dynamic shock wave reflection generated by a rapidly pitching wedge in a steady supersonic free stream has been studied with numerical simulation previously. An experimental facility was developed for the investigation of these dynamic phenomena...

  15. Plasticity of brain wave network interactions and evolution across physiologic states

    Directory of Open Access Journals (Sweden)

    Kang K. L. Liu

    2015-10-01

    Full Text Available Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very

  16. Theoretical Studies of Laws Nanostructuring and Heterogeneous Hardening of Steel Samples by Wave Intensive Plastic Deformation

    Directory of Open Access Journals (Sweden)

    A.V. Kirichek

    2015-12-01

    Full Text Available Theoretical studies and calculations, allowing to define the required parameters of the wave deformation hardening, are performed in order to obtain heterogeneous hardened surface layer in steel samples. The conditions for the effective use of impact energy for elastic-plastic deformation of the processed material and the establishment of a deep hardened surface layer are revealed.

  17. Dynamic buckling of elastic-plastic cylindrical shells and axial stress waves

    Institute of Scientific and Technical Information of China (English)

    徐新生; 苏先樾; 王仁

    1995-01-01

    The mechanism for bifurcation of elastic-plastic buckling of the semi-infinite cylindrical shell under impacting axial loads is proposed based on the theory of stress wave. Numerical results on three kinds of end supports and step and impulse loads are given.

  18. Variable speed of light cosmology, primordial fluctuations and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, J.W. [Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, Ontario (Canada)

    2016-03-15

    A variable speed of light (VSL) cosmology is described in which the causal mechanism of generating primordial perturbations is achieved by varying the speed of light in a primordial epoch. This yields an alternative to inflation for explaining the formation of the cosmic microwave background (CMB) and the large scale structure (LSS) of the universe. The initial value horizon and flatness problems in cosmology are solved. The model predicts primordial scalar and tensor fluctuation spectral indices n{sub s} = 0.96 and n{sub t} = - 0.04, respectively. We make use of the δN formalism to identify signatures of primordial nonlinear fluctuations, and this allows the VSL model to be distinguished from inflationary models. In particular, we find that the parameter f{sub NL} = 5 in the variable speed of light cosmology. The value of the parameter g{sub NL} evolves during the primordial era and shows a running behavior. (orig.)

  19. A two-speed model for finite-strain elasto-plasticity

    OpenAIRE

    Rindler, Filip

    2015-01-01

    This work presents a new modeling approach to macroscopic, polycrystalline elasto-plasticity starting from first principles and a few well-defined structural assumptions, incorporating the mildly rate-dependent (viscous) nature of plastic flow and the microscopic origins of plastic deformations. For the global dynamics, we start from a two-stage time-stepping scheme, expressing the fact that in most real materials plastic flow is much slower than elastic deformations, and then perform a detai...

  20. On the relationship of radar backscatter to wind speed and fetch. [ocean wave generation

    Science.gov (United States)

    Ross, D.; Jones, W. L.

    1978-01-01

    The physics of the interaction of electromagnetic waves with the ocean surface has been an active area of research for a number of years. This paper contains the results of satellite and aircraft experiments to investigate the ability of active microwave radars to infer surface wind speeds remotely. Data obtained from the recent National Aeronautics and Space Administration (NASA) Skylab experiment are compared with surface wind speeds measured by low-flying aircraft and ships-of-opportunity and found to give useful estimates of the ocean wind field. Also investigated was the influence of varying wave height on radar measurements of wind speed by measuring the backscattering cross-section for constant wind speed but variable wave conditions. It is found that this effect is of little importance.

  1. SONIC SPEED AND SHOCK WAVE IN HIGH VELOCITY AERATED FLOWS FROM HIGH HEAD DISCHARGE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Dong Zhi-yong

    2003-01-01

    The compressible characteristics in aerated flows at the high velocity of about 50m/s were analyzed. Based on the theory of compressible the relations between the sonic speed and shock wave in high-velocity aerated flow were theoretically deduced. And comparisons with measured data were made. The theoretical and experimental results show the sonic speed in aerated flow is merely of the order of several-dozen meters per second, and its minimum value is only 20m/s, which is far much less than that in water or air alone. So high subsonic flow, supersonic flow and transonic flow as well as compression wave, shock wave and expansion wave similarly to aerodnamics may be produced in high velocity aerated flow at the speed of the order of 50m/s. Hence the influences of these compressible characteristics on high head discharge structures can not be neglected, especially on super high dams over 200m high.

  2. Speed ot travelling waves in reaction-diffusion equations

    CERN Document Server

    Benguria, R D; Méndez, V

    2002-01-01

    Reaction diffusion equations arise in several problems of population dynamics, flame propagation and others. In one dimensional cases the systems may evolve into travelling fronts. Here we concentrate on a reaction diffusion equation which arises as a simple model for chemotaxis and present results for the speed of the travelling fronts. (Author)

  3. Speed ot travelling waves in reaction-diffusion equations

    Energy Technology Data Exchange (ETDEWEB)

    Benguria, R.D.; Depassier, M.C. [Facultad de Fisica, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Santiago (Chile); Mendez, V. [Facultat de Ciencies de la Salut, Universidad Internacional de Catalunya, Gomera s/n 08190 Sant Cugat del Valles, Barcelona (Spain)

    2002-07-01

    Reaction diffusion equations arise in several problems of population dynamics, flame propagation and others. In one dimensional cases the systems may evolve into travelling fronts. Here we concentrate on a reaction diffusion equation which arises as a simple model for chemotaxis and present results for the speed of the travelling fronts. (Author)

  4. Effect of Disorder on Bulk Sound Wave Speed : A Multiscale Spectral Analysis.

    Science.gov (United States)

    Shrivastava, Rohit; Luding, Stefan

    2016-04-01

    Disorder in the form of size (polydispersity) and mass of discrete elements/particles in a disordered media (a granular matter like soil) have numerous effects on it's sound propagation characteristics [1,2]. The influence of disorder on the sound wave speed and it's frequency filtering characteristics is the subject of investigation. The study will assist in understanding the connection between particle-scale dynamics and system-scale behavior of wave propagation which can be further used for modeling during non-destructive testing, seismic exploration of buried objects (oil, mineral, etc.) or to study the internal structure of the Earth. Studying the wave propagation characteristics through Discrete Element Models with varying polydispersity and mass of discrete elements in real-time, frequency space as well as through dispersion curves (ω (frequency) v/s k (wavenumber)) can shed light on this aspect by providing better microscopic understanding. To isolate the P-wave from shear and rotational modes, a one-dimensional system of elements/particles is used to study the effect of mass disorder on bulk sound wave speed through ensemble averaging of signals. Increasing polydispersity/disorder decreases the sound wave speed because of decrease in the number of contacts between particles [2] but, in contrast, increasing mass disorder increases the sound wave speed (in 1 D chains). Thus we conclude that a competition exists between these two kinds of disorder for their influence on the bulk sound wave speed. References [1] Brian P. Lawney and Stefan Luding. Frequency filtering in disordered granular chains. Acta Mechanica, 225(8):2385-2407, 2014. [2] O. Mouraille and S. Luding. Sound wave propagation in weakly polydisperse granular materials. Ultrasonics, 48(6-7):498 - 505, 2008. Selected Papers from ICU 2007.

  5. Stationary waves in tubes and the speed of sound

    Science.gov (United States)

    Kasper, Lutz; Vogt, Patrik; Strohmeyer, Christine

    2015-01-01

    The opportunity to plot oscillograms and frequency spectra with smartphones creates many options for experiments in acoustics, including several that have been described in this column.1-3 The activities presented in this paper are intended to complement these applications, and include an approach to determine sound velocity in air by using standard drain pipes4 and an outline of an investigation of the temperature dependency of the speed of sound.

  6. Shear Wave Speed Measurements Using Crawling Wave Sonoelastography and Single Tracking Location Shear Wave Elasticity Imaging for Tissue Characterization.

    Science.gov (United States)

    Ormachea, Juvenal; Lavarello, Roberto J; McAleavey, Stephen A; Parker, Kevin J; Castaneda, Benjamin

    2016-09-01

    Elastography provides tissue stiffness information that attempts to characterize the elastic properties of tissue. However, there is still limited literature comparing elastographic modalities for tissue characterization. This study focuses on two quantitative techniques using different vibration sources that have not been compared to date: crawling wave sonoelastography (CWS) and single tracking location shear wave elasticity imaging (STL-SWEI). To understand each technique's performance, shear wave speed (SWS) was measured in homogeneous phantoms and ex vivo beef liver tissue. Then, the contrast, contrast-to-noise ratio (CNR), and lateral resolution were measured in an inclusion and two-layer phantoms. The SWS values obtained with both modalities were validated with mechanical measurements (MM) which serve as ground truth. The SWS results for the three different homogeneous phantoms (10%, 13%, and 16% gelatin concentrations) and ex vivo beef liver tissue showed good agreement between CWS, STL-SWEI, and MM as a function of frequency. For all gelatin phantoms, the maximum accuracy errors were 2.52% and 2.35% using CWS and STL-SWEI, respectively. For the ex vivo beef liver, the maximum accuracy errors were 9.40% and 7.93% using CWS and STL-SWEI, respectively. For lateral resolution, contrast, and CNR, both techniques obtained comparable measurements for vibration frequencies less than 300 Hz (CWS) and distances between the push beams ( ∆x ) between 3 mm and 5.31 mm (STL-SWEI). The results obtained in this study agree over an SWS range of 1-6 m/s. They are expected to agree in perfectly linear, homogeneous, and isotropic materials, but the SWS overlap is not guaranteed in all materials because each of the three methods have unique features.

  7. TO THE QUESTION OF THE SPEED OF WAVE PROPAGATION IN ELECTROMAGNETIC ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Alexandrov B. L.

    2016-01-01

    Full Text Available This question is about the speed of wave propagation in electromagnetic environment. Electromagnetic environment (field is the space that fills the whole Universe, occupied by the electromagnetic particles-photons. At the heart of the special relativity theory, the constancy of the speed of light in vacuum is affirmed. According to modern concepts, the speed of light in vacuum is the maximum speed of the particle motion and propagation of interactions. However, light is the narrow range of electromagnetic radiation – (4÷8·1014 Hz, therefore experimentally measured speed of light is referred to this frequency range. The fact that this speed of electromagnetic waves can theoretically be non permanent – physicists have pondered for a long time and this question is periodically excited in the scientific literature. The author of this article also had an impression that the speed of light, in which he understands distribution speed of waves of a wide range of frequencies in the electromagnetic environment, is not a constant. The article attempts to prove it. Many photons of different frequencies move simultaneously in different directions in a photonic electromagnetic field in environment. They are involved in the formation of a wave of compression – decompression in this field under the influence of the antenna radiated photons. It is approved that the speed of photons of different frequencies can change within a wide range from 1,285·103 m/s (ν = 1024 Hz to 1,285·1012 m/s (ν = 106 Hz and, therefore, the speed of wave propagation in the electromagnetic environments that are filled by photons of the same frequency or a narrow frequency range can change widely from 8,58·102 m/s to 8,58·1011 m/s and be significantly different from the experimentally discovered speed of light. Interplanetary space in different parts of the Universe can be represented by different spectra of photons and therefore they will have different speed of

  8. A typical wave wake from high-speed vessels: its group structure and run-up

    Directory of Open Access Journals (Sweden)

    I. Didenkulova

    2013-02-01

    Full Text Available High-amplitude water waves induced by high-speed vessels are regularly observed in Tallinn Bay, the Baltic Sea, causing intense beach erosion and disturbing marine habitants in the coastal zone. Such a strong impact on the coast may be a result of a certain group structure of the wave wake. In order to understand it, here we present an experimental study of the group structure of these wakes at Pikakari beach, Tallinn Bay. The most energetic vessel waves at this location (100 m from the coast at the water depth 2.7 m have amplitudes of about 1 m and periods of 8–10 s and cause maximum run-up heights on a beach up to 1.4 m. These waves represent frequency modulated packets where the largest and longest waves propagate ahead of other smaller amplitude and period waves. Sometimes the groups of different heights and periods can be separated even within one wave wake event. The wave heights within a wake are well described by the Weibull distribution, which has different parameters for wakes from different vessels. Wave run-up heights can also be described by Weibull distribution and its parameters can be connected to the parameters of the distribution of wave heights 100 m from the coast. Finally, the run-up of individual waves within a packet is studied. It is shown that the specific structure of frequency modulated wave packets, induced by high-speed vessels, leads to a sequence of high wave run-ups at the coast, even when the original wave heights are rather moderate. This feature can be a key to understanding the significant impact on coasts caused by fast vessels.

  9. Crawling Waves Speed Estimation Based on the Dominant Component Analysis Paradigm.

    Science.gov (United States)

    Rojas, Renán; Ormachea, Juvenal; Salo, Arthur; Rodríguez, Paul; Parker, Kevin J; Castaneda, Benjamin

    2015-10-01

    A novel method for estimating the shear wave speed from crawling waves based on the amplitude modulation-frequency modulation model is proposed. Our method consists of a two-step approach for estimating the stiffness parameter at the central region of the material of interest. First, narrowband signals are isolated in the time dimension to recover the locally strongest component and to reject distortions from the ultrasound data. Then, the shear wave speed is computed by the dominant component analysis approach and its spatial instantaneous frequency is estimated by the discrete quasi-eigenfunction approximations method. Experimental results on phantoms with different compositions and operating frequencies show coherent speed estimations and accurate inclusion locations.

  10. Shock Waves Propagation in Scope of the Nonlocal Theory of Dynamical Plasticity

    Science.gov (United States)

    Khantuleva, Tatyana A.

    2004-07-01

    From the point of view of the modern statistical mechanics the problems on shock compression of solids require a reformulation in terms of highly nonequilibrium effects arising inside the wave front. The self-organization during the multiscale and multistage momentum and energy exchange are originated by the correlation function. The theory of dynamic plasticity has been developed by the author on the base of the self-consistent nonlocal hydrodynamic approach had been applied to the shock wave propagation in solids. Nonlocal balance equations describe both the reversible wave type transport at the initial stage and the diffusive (dissipative) one in the end. The involved inverse influence of the mesoeffects on the wave propagation makes the formulation of problems self-consistent and involves a concept of the cybernetic control close-loop.

  11. A compact relativistic backward-wave oscillator with metallized plastic components

    Science.gov (United States)

    Ge, Xingjun; Zhang, Jun; Zhong, Huihuang; Qian, Baoliang

    2014-09-01

    This letter presents the mechanism and realization of a compact relativistic backward-wave oscillator with metallized plastic components. The physical idea, specific structure, and the main testing results are presented. The three periods slow-wave structures with both inner and outer ripples and the coaxial extractor are designed to reduce the volume and increase the efficiency of the device. The metallized plastic components replacing the stainless steel components in the high power microwave (HPM) sources are put forward to reduce the device weight. In the initial experiment, a microwave with frequency of 1.54 GHz, power of 1.97 GW, efficiency of 33.5%, and pulse duration above 47 ns is generated, which proves that this technical route is feasible. Undoubtedly, the technical route can provide a guide to design other types of HPM sources and be benefit to the practical application of the compact HPM systems.

  12. Traveling waves and spreading speed on a lattice model with age structure

    Directory of Open Access Journals (Sweden)

    Zongyi Wang

    2012-09-01

    Full Text Available In this article, we study a lattice differential model for a single species with distributed age-structure in an infinite patchy environment. Using method of approaches by Diekmann and Thieme, we develop a comparison principle and construct a suitable sub-solution to the given model, and show that there exists a spreading speed of the system which in fact coincides with the minimal wave speed.

  13. Experimental investigation of the dependence of radar backscattering on wind speed, wind stress and wave height

    Science.gov (United States)

    Gogineni, S. P.; Katsaros, K. B.

    1989-01-01

    During summer 1988, radar measurements were performed in conjunction with detailed environmental observations on Lake Washington at the University of Washington Sand Point field station. Radar data were collected at 5.3 and 10 GHz for incidence angles between 30 and 60 deg with VV-polarization. The environmental measurements included wind speed and direction, large-wave heights, the high-frequency portion of the wave spectrum, humidity, and air and water temperatures. The small-scale wave spectrum was measured using a resistance wire gauge. The results show that backscatter increased with wind speed as expected. However, little difference was observed in the scattering coefficient for upwind and crosswind directions. The results also indicated an increase in the amplitude of small waves with friction velocity.

  14. The dependence of wind stress on wave height and wind speed

    Science.gov (United States)

    Blake, Reginald A.

    1991-01-01

    Three near-neutral boundary layer data sets were investigated with the aim of finding a dependence of wind stress on both wind speed and significant wave height. The data set most representative of open-ocean wave height, wind speed, and momentum flux conditions, was selected and analyzed by means of the least-squares method to produce a new parameterization for the wind stress as a function of both wind speed and significant wave height. This study shows that the wind stress, and consequently the drag coefficient, decreases with increasing wave height for a fixed wind speed. The study also shows that the curvature of the wind profile decreases with increasing wave height and that the C(DN) = A + BU-bar(10) form for the drag coefficient parameterization is inadequate. A drag coefficient that applies to both smooth and rough flows is proposed. These results are more applicable for open-ocean deep-water conditions and less applicable for sheltered, closed, shallow water sites.

  15. GyPSuM: A Detailed Tomographic Model of Mantle Density and Seismic Wave Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, N A; Forte, A M; Boschi, L; Grand, S P

    2010-03-30

    GyPSuM is a tomographic model fo mantle seismic shear wave (S) speeds, compressional wave (P) speeds and detailed density anomalies that drive mantle flow. the model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while considering realistic mineral physics parameters linking the relative behavior of mantle properties (wave speeds and density). Geodynamic observations include the (up to degree 16) global free-air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow-induced excess ellipticity of the core-mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle; but are limited to very long-wavelength solutions. Alternatively, simply scaling higher resolution seismic images to density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides detailed density structures in the mantle while directly satisfying geodynamic observations through a joint seismic-geodynamic inversion process. Notable density field observations include high-density piles at the base of the superplume structures, supporting the fundamental results of past normal mode studies. However, these features are more localized and lower amplitude than past studies would suggest. When we consider all seismic anomalies in GyPSuM, we find that P and S-wave speeds are strongly correlated throughout the mantle. However, correlations between the high-velocity S zones in the deep mantle ({approx} 2000 km depth) and corresponding P-wave anomalies are very low suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. Nevertheless, they argue that temperature variations are

  16. Wave speed and reflections proximal to aneurism and stenosis of flexible tubes.

    Science.gov (United States)

    Hacham, Wisam S; Abdulla, Najdat N; Salam Al-Ammri, A; Khir, Ashraf W

    2015-08-01

    Arterial aneurism and stenosis are disorders that lead to circulation malfunction. Stenosis often leads to hypoxia of the organ depending on the affected artery, whilst aneurism can lead to dissection with known lethal consequences. On both cases, the pulse wave produced by the contracting heart is reflected at these discontinuities, and estimating the size of these reflected waves using wave intensity analysis (WIA) is the main aim of this work. We also aim to measure wave speed, or pulse wave velocity (PWV) as more commonly known within the discontinuities. We manufactured 4 stenosis and 4 aneurism silicon sections, connected one at a time to a mother tube, and tested in vitro. Pressure and flow were measured proximal to the discontinuity and were used to calculate WIA. PWV was calculated using the foot to foot technique and also the classical Moens-Korteweg and Bramwell-Hill equations. Wave speed in an aneurism decreases, whereas it increases in a stenosis, all compared to the values determined in a standard mother tube. Presence of aneurisms resulted in a backward expansion whilst the presence of stenosis resulted in a backward compression wave, which related linearly to the size of the discontinuity. Larger aneurisms and smaller stenosis cause an increase in wave reflection.

  17. Using high speed smartphone cameras and video analysis techniques to teach mechanical wave physics

    Science.gov (United States)

    Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano

    2017-07-01

    We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses along a spring and the period of transverse standing waves generated in the same spring. These experiments can be helpful in addressing several relevant concepts about the physics of mechanical waves and in overcoming some of the typical student misconceptions in this same field.

  18. Minimum Wave Speed Solution of Fisher's Equation by the Method of Least Squares - A Note

    Directory of Open Access Journals (Sweden)

    K. N. Mehta

    1989-04-01

    Full Text Available The paper presents a simple solution of travelling-wave type (corresponding to the minimum speed c=2 of Fisher's equation. which can be readily adapted for modelling neutron density in nuclear reactors, reaction-diffusion processes'in propulsion systems and growth of new advantageous gene in one-dimensional habitat

  19. Using High Speed Smartphone Cameras and Video Analysis Techniques to Teach Mechanical Wave Physics

    Science.gov (United States)

    Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano

    2017-01-01

    We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses…

  20. Swimming Speeds of Waving Cylindrical Tails in Viscous Fluids with Resistance

    CERN Document Server

    Ho, Nguyenho

    2015-01-01

    The mathematical analysis of swimming speeds for microorganisms in a 3D fluid is investigated by studying a cylinder propagating lateral or spiral waves of displacement at zero Reynolds number. Since many microorganisms swim in a highly heterogeneous environment with obstacles to swimming, we study swimming speeds of an infinite cylinder in a fluid governed by the Brinkman equation. This represents the effective flow due to a sparse, stationary network of obstructions (e.g. fibers or polymers) in a Newtonian fluid. For a fixed propagating wave of bending, we find that swimming speeds are enhanced due to the resistance from the obstructions. Additionally, we examine the work done per unit area on the surface of a cylindrical filament and recover the limit for the Stokes case as the resistance goes to zero.

  1. A Bingham-Plastic Model for Fluid Mud Transport Under Waves and Currents

    Institute of Scientific and Technical Information of China (English)

    刘春嵘; 吴博; 呼和敖德

    2014-01-01

    Simplified equations of fluid mud motion, which is described as Bingham-Plastic model under waves and currents, are presented by order analysis. The simplified equations are non-linear ordinary differential equations which are solved by hybrid numerical-analytical technique. As the computational cost is very low, the effects of wave current parameters and fluid mud properties on the transportation velocity of the fluid mud are studied systematically. It is found that the fluid mud can move toward one direction even if the shear stress acting on the fluid mud bed is much smaller than the fluid mud yield stress under the condition of wave and current coexistence. Experiments of the fluid mud motion under current with fluctuation water surface are carried out. The fluid mud transportation velocity predicted by the presented mathematical model can roughly match that measured in experiments.

  2. Testing the Speed of Gravitational Waves over Cosmological Distances with Strong Gravitational Lensing

    Science.gov (United States)

    Collett, Thomas E.; Bacon, David

    2017-03-01

    Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080, 10.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on cGW/cγ at the 10-7 level, if a high-energy EM counterpart is observed within the field of view of an observing γ -ray burst monitor.

  3. An iterative Rankine boundary element method for wave diffraction of a ship with forward speed

    Institute of Scientific and Technical Information of China (English)

    何广华

    2014-01-01

    A 3-D time-domain seakeeping analysis tool has been newly developed by using a higher-order boundary element method with the Rankine source as the kernel function. An iterative time-marching scheme for updating both kinematic and dynamic free-surface boundary conditions is adopted for achieving numerical accuracy and stability. A rectangular computational domain moving with the mean speed of ship is introduced. A damping beach at the outer portion of the truncated free surface is installed for satisfying the radiation condition. After numerical convergence checked, the diffraction unsteady problem of a Wigley hull traveling with a constant forward speed in waves is studied. Extensive results including wave exciting forces, wave patterns and pressure distributions on the hull are presented to validate the efficiency and accuracy of the proposed 3-D time-domain iterative Rankine BEM approach. Computed results are compared to be in good agreement with the corresponding experimental data and other published numerical solutions.

  4. Lunar Laser-Ranging Detection of Light-Speed Anisotropy and Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2010-04-01

    Full Text Available The Apache Point Lunar Laser-ranging Operation (APOLLO, in NM, can detect photon bounces from retroreflectors on the moon surface to 0.1ns timing resolution. This facility enables not only the detection of light speed anisotropy, which defines a local preferred frame of reference - only in that frame is the speed of light isotropic, but also fluctuations/turbulence (gravitational waves in the flow of the dynamical 3-space relative to local systems/observers. So the APOLLO facility can act as an effective "gravitational wave" detector. A recently published small data set from November 5, 2007, is analysed to characterise both the average anisotropy velocity and the wave/turbulence effects. The results are consistent with some 13 previous detections, with the last and most accurate being from the spacecraft earth-flyby Doppler-shift NASA data.

  5. Defect Detection on Carbon Fibre Reinforced Plastics (cfrp) with Laser Generated Lamb Waves

    Science.gov (United States)

    Focke, O.; Huke, P.; Hildebrandt, A.

    2011-06-01

    Standard ultrasound methods using a phased-array or a single transducer are commonly used for non-destructive evaluation (NDE) during manufacturing of carbon fiber reinforced plastics (CFRP) parts and certificated testing schemes were developed for individual parts and geometries. However, most testing methods need direct contact, matching gels and remain therefore time consuming. Laser-Ultrasonics is advantageous due to the contactless measurement technology and high accessibility even on complex parts. Despite the non-destructive testing with body waves, we show that the NDE can be expanded using two-dimensional surface (Lamb) waves for detection of delaminations close to the surface or small deteriorations caused by e.g. impacts. Lamb waves have been excited with a single transducer and with a short-pulse Laser with additionally producing A0-and S0-Lamb waves. The waves were detected with a shearography setup that allows for measuring two-dimensionally the displacement of a surface. Short integration times of the camera were realized using a pulsed ruby laser for illumination. As a consequence to the anisotropy the propagation in different directions exhibits individual characteristics like amplitude, damping and velocity. This has motivated to build up models for the propagation of Lamb waves and to compare them with experimental results.

  6. RANSE Simulation of High-speed Planning Craft in Regular Waves

    Institute of Scientific and Technical Information of China (English)

    Shuo Wang; Yumin Su; Xi Zhang; Jinglei Yang

    2012-01-01

    This paper presents a study on the numerical simulation of planing crafts sailing in regular waves.This allows an accurate estimate of the seas keeping performance of the high speed craft.The simulation set in six-degree of freedom motions is based on the Reynolds averaged Navier Stokes equations volume of fluid (RANSE VOF) solver.The trimming mesh technique and integral dynamic mesh method are used to guarantee the good accuracy of the hydrodynamic force and high efficiency of the numerical simulation.Incident head waves,oblique waves and beam waves are generated in the simulation with three different velocities (Fn =1.0,1.5,2.0).The motions and sea keeping performance of the planing craft with waves coming from different directions are indicated in the flow solver.The ship designer placed an emphasis on the effects of waves on sailing amplitude and pressure distribution of planing craft in the configuration of building high speed crafts.

  7. Ultrasonic Guided Wave Method For Crack Detection In Buried Plastic Pipe

    Directory of Open Access Journals (Sweden)

    Wan Hamat Wan Sofian

    2016-01-01

    Full Text Available Plastic pipe are widely used in many fields for the fluid or gaseous product conveyance but basic components of a plastic material made it very sensitive to damage, which requires techniques for detecting damage reliable and efficient. Ultrasonic guided wave is a sensitive method based on propagation of low-frequency excitation in solid structures for damage detection. Ultrasonic guided wave method are performed to investigate the effect of crack to the frequency signal using Fast Fourier Transform (FFT analysis. This paper researched to determine performance of ultrasonic guided wave method in order to detect crack in buried pipeline. It was found that for an uncrack pipe, FFT analysis shows one peak which is the operating frequency by the piezoelectric actuator itself while the FFT analysis for single cracked pipe shows two peak which is the operating frequency by the piezoelectric actuator itself and the resultant frequency from the crack. For multi cracked pipe, the frequency signal shows more than two peak depend the number of crack. The results presented here may facilitate improvements in the accuracy and precision of pipeline crack detection.

  8. Testing the speed of gravitational waves over cosmological distances with strong gravitational lensing

    CERN Document Server

    Collett, Thomas E

    2016-01-01

    Connaughton et al. report the discovery of a possible electromagnetic counterpart to the gravitational wave event GW150914 discovered by LIGO. Assuming that the EM and GW are emitted at the same instant, a constraint is placed on the ratio of the speeds of light and gravitational waves at the level of $10^{-17}$. The assumption that the electromagnetic and gravitational wave emissions are emitted at the same time is a strong one, so here we suggest a method that does not make such an assumption using a strongly lensed GW event and EM counterpart. Biesiada et al forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on the ratio of the speed of gravitational waves to the speed of light at the $10^{-7}$ level, if a high energy EM counterpart is observed within the field-of-view of an observing gamma ray burst monitor.

  9. Identification of Necessary Conditions for Super-shear Wave Rupture Speeds: The San Andreas Fault

    Science.gov (United States)

    Das, S.

    2007-12-01

    The 2001 Kunlun, Tibet earthquake taught us that the portion of a strike-slip fault most likely to propagate at super-shear speeds are the long straight portions. This is only a necessary (but not sufficient) condition. That is, once a fault accelerates to the maximum permissible speed, it can continue at this speed provided it is straight and there are no obstacles along the way, and provided the fault friction is low. For the Tibet earthquake, the 100 km region of highest rupture speed also had the highest slip rate, the highest slip and the highest stress drop (Robinson et al., JGR, 2006). Off-fault cracks due to the passage of the Mach cone exists in only that portion of the fault identified as travelling at super-shear speed and not in other places along the fault (Bhat et al., JGR, 2007). Re-examination of earlier reports of super-shear rupture speeds on the North Anatolian fault and the Denali fault show that such speeds did occur on the straight section of these faults. Of course all straight portions of faults will not reach super-shear speeds. So what can the Tibet earthquake teach us about the San Andreas fault? Both the 1906 and the 1857 have long, straight portions, the former having been identified by Song et al. (EOS, 2005) as having reached super-shear speeds to the north of San Francisco, the region of highest slip. If the repeat of the 1857 starts in the central valley, as it is believed to have done in 1857, it has the potential to propagate at super-shear speeds through the long, straight portion of the San Andread fault in the Carrizo Plain, the region believed to have had the largest displacement in 1857 based on paleoseismic studies. The resulting shock waves would strike the highly populated regions of Santa Barbara and the Los Angeles Basin (Das, Science, 2007).

  10. Constraining the propagation speed of gravitational waves with compact binaries at cosmological distances

    CERN Document Server

    Nishizawa, Atsushi

    2016-01-01

    In testing gravity a model-independent way, one of crucial tests is measuring the propagation speed of a gravitational wave (GW). In general relativity, a GW propagates with the speed of light, while in the alternative theories of gravity the propagation speed could deviate from the speed of light due to the modification of gravity or spacetime structure at a quantum level. Previously we proposed the method measuring the GW speed by directly comparing the arrival times between a GW and a photon from the binary merger of neutron stars or neutron star and black hole, assuming that it is associated with a short gamma-ray burst. The sensitivity is limited by the intrinsic time delay between a GW and a photon at the source. In this paper, we extend the method to distinguish the intrinsic time delay from the true signal caused by anomalous GW speed with multiple events at cosmological distances, also considering the redshift distribution of GW sources, redshift-dependent GW propagation speed, and the statistics of ...

  11. MATHEMATICAL FORMULATION OF PLASTIC CHARACTERISTICS OF WIRE OF STEEL 70 AT HIGH-SPEED WIRE DRAWING

    Directory of Open Access Journals (Sweden)

    Yu. L. Bobarikin

    2011-01-01

    Full Text Available The carried out numerical experiments subject to initial and boundary conditions indicate that mathematical model of elastic-plastic characteristics of steel 90 can be used for numerical calculations of wire drawing routes for this grade of steel.

  12. Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars

    Science.gov (United States)

    Beltrán Jiménez, Jose; Piazza, Federico; Velten, Hermano

    2016-02-01

    By using observations of the Hulse-Taylor pulsar, we constrain the gravitational wave (GW) speed to the level of 1 0-2 . We apply this result to scalar-tensor theories that generalize Galileon 4 and 5 models, which display anomalous propagation speed and coupling to matter for GWs. We argue that this effect survives conventional screening due to the persistence of a scalar field gradient inside virialized overdensities, which effectively "pierces" the Vainshtein screening. In specific branches of solutions, our result allows us to directly constrain the cosmological couplings in the effective field theory of dark energy formalism.

  13. Piecewise oblique boundary treatment for the elastic-plastic wave equation on a cartesian grid

    Science.gov (United States)

    Giese, Guido

    2009-11-01

    Numerical schemes for hyperbolic conservation laws in 2-D on a Cartesian grid usually have the advantage of being easy to implement and showing good computational performances, without allowing the simulation of “real-world” problems on arbitrarily shaped domains. In this paper a numerical treatment of boundary conditions for the elastic-plastic wave equation is developed, which allows the simulation of problems on an arbitrarily shaped physical domain surrounded by a piece-wise smooth boundary curve, but using a PDE solver on a rectangular Cartesian grid with the afore-mentioned advantages.

  14. Investigation of Instability Wave Dynamics in High-Speed Turbulent Jets Using LES

    Science.gov (United States)

    Ryu, Jaiyoung; Lele, Sanjiva K.

    2007-11-01

    Instability waves have been frequently invoked to explain the dominant noise from high-speed jets. Current methods for predicting jet noise do not, as of yet, use the instability wave formalism. We decompose the results of the large-eddy simulation of high-speed jets (Bodony and Lele, 2005) by Fourier, adjoint (Ryu, Lele and Viswanathan, 2007) and POD methods (Suzuki, 2007) to extract the instability wave contribution to the fluctuations. Three operating conditions are analyzed. Jet instability modes at different frequencies and azimuthal mode numbers as a function of downstream position are traced. The deduced instability wave amplitude and phase dynamics are compared with the predictions of the parabolized stability equations (Cheung, 2007). The least square method is used to provide the amplitude estimate for the linear PSE results. The decomposed LES database shows ``the physics of instability waves'' to a limited extent. The agreement is best for the lowest frequency considered (St=0.1) and for the first azimuthal mode (n=1). For higher St and other modes larger discrepancies are observed.

  15. Stress waves propagation in solids under high-speed liquid impact

    Institute of Scientific and Technical Information of China (English)

    SHI Honghui; J. E. Field

    2004-01-01

    An experiment of impact between 450 m/s water jets and polymethylme- thacrylate (PMMA) materials with complex surface geometry was conducted. The testing surfaces were a corner, step change, surface-breaking notch, inclined surface, etc. Stress waves propagation in the solid such as reflection, interference and diffraction was observed using polarized optics and an Imacon high speed camera (operating at both of 106 and 5×105 framing rates per second, fps). A damage test by the impact of the side jetting of an 850 m/s water jet was also carried out. It was found that stress waves propagation in solids depends not only on the surface geometry but also on the contact situation between liquid and solid. It was shown that the side jetting has sufficient damage potential although its head may consist of finer droplets. The results of this paper are useful to further analyze the dynamic stress state of solids under high-speed liquid impact.

  16. The Effect of Water on Seismic Wave Speeds of the Martian Mantle.

    Science.gov (United States)

    Martin, J. F.; Panero, W. R.

    2016-12-01

    We calculate the distribution of water between mineral phases of the Martian mantle, and the effects of water on the seismic wave speeds along realistic thermal profiles and compositions. We address a range of potential compositions and thermal profiles of the Martian mantle to reflect uncertainty in core heat-flux and mantle composition. We calculate the mantle mineralogy self-consistently along each potential profile and derive water partition coefficients for all phases from a suite of synthesis and mineralogical data to supplement ab initio calculations. Self-consistent water contents for each mineral phase are then calculated along a 1D profile using the derived coefficients and a range of bulk water contents. We present the change in seismic wave speeds due to water storage in the mantle for interpretation of seismic data returned by the NASA InSight Mission, set to land on Mars in November 2018.

  17. Lunar Laser-Ranging Detection of Light-Speed Anisotropy and Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2010-04-01

    Full Text Available The Apache Point Lunar Laser-ranging Operation (APOLLO, in NM, can detect pho- ton bounces from retroreflectors on the moon surface to 0.1ns timing resolution. This facility enables not only the detection of light speed anisotropy, which defines a local preferred frame of reference — only in that frame is the speed of light isotropic, but also fluctuations / turbulence (gravitational waves in the flow of the dynamical 3-space rela- tive to local systems / observers. So the APOLLO facility can act as an e ective “gravi- tational wave” detector. A recently published small data set from November 5, 2007, is analysed to characterise both the average anisotropy velocity and the wave / turbulence effects. The results are consistent with some 13 previous detections, with the last and most accurate being from the spacecraft earth-flyby Doppler-shift NASA data.

  18. A New Light-Speed Anisotropy Experiment: Absolute Motion and Gravitational Waves Detected

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available Data from a new experiment measuring the anisotropy of the one-way speed of EM waves in a coaxial cable, gives the speed of light as 300,000 +/- 400 (+/- 20 km/s in a measured direction RA=5.5 +/- 2 hrs, Dec=70 +/- 10 Deg S, is shown to be in excellent agreement with the results from seven previous anisotropy experiments, particularly those of Miller (1925/26, and even those of Michelson and Morley (1887. The Miller gas-mode interferometer results, and those from the RF coaxial cable experiments of Torr and Kolen (1983, De Witte (1991 and the new experiment all reveal the presence of gravitational waves, as indicated by the last +/- variations above, but of a kind different from those supposedly predicted by General Relativity. Miller repeated the Michelson-Morley 1887 gas-mode interferometer experiment and againdetected the anisotropy of the speed of light, primarily in the years 1925/1926 atop Mt.Wilson, California. The understanding of the operation of the Michelson interferometer in gas-mode was only achieved in 2002 and involved a calibration for the interferometer that necessarily involved Special Relativity effects and the refractive index of the gas in the light paths. The results demonstrate the reality of the Fitzgerald-Lorentz contraction as an observer independent relativistic effect. A common misunderstanding is that the anisotropy of the speed of light is necessarily in conflict with Special Relativity and Lorentz symmetry - this is explained. All eight experiments and theory show that we have both anisotropy of the speed of light and relativistic effects, and that a dynamical 3-space exists - that absolute motion through that space has been repeatedly observed since 1887. These developments completely change fundamental physics and our understanding of reality. Modern vacuum-mode Michelson interferometers, particularly the long baseline terrestrial versions, are, by design flaw, incapable of detecting the anisotropy effect and the

  19. Modeling of elastic and plastic waves for HCP single crystals in a 3D formulation based on zinc single crystal

    Science.gov (United States)

    Krivosheina, Marina; Kobenko, Sergey; Tuch, Elena; Kozlova, Maria

    2016-11-01

    This paper investigates elastic and plastic waves in HCP single crystals through the numerical simulation of strain processes in anisotropic materials based on a zinc single crystal. Velocity profiles for compression waves in the back surfaces of single-crystal zinc plates with impact loading oriented in 0001 and 10 1 ¯0 are presented in this work as a part of results obtained in numerical simulations. The mathematical model implemented in this study reflects the following characteristics of the mechanical properties inherent in anisotropic (transtropic) materials: varying degree of anisotropy of elastic and plastic properties, which includes reverse anisotropy, dependence of distribution of all types of waves on the velocity orientation, and the anisotropy of compressibility. Another feature of elastic and plastic waves in HCP single crystals is that the shock wave does not split into an elastic precursor and "plastic" compression shock wave, which is inherent in zinc single crystals with loading oriented in 0001. The study compares numerical results obtained in a three-dimensional formulation with the results of velocity profiles from the back surfaces of target plates obtained in real experiments. These results demonstrate that the mathematical model is capable of describing the properties of the above-mentioned anisotropic (transtropic) materials.

  20. Monitoring and analysis of thermal deformation waves with a high-speed phase measurement system.

    Science.gov (United States)

    Taylor, Lucas; Talghader, Joseph

    2015-10-20

    Thermal effects in optical substrates are vitally important in determining laser damage resistance in long-pulse and continuous-wave laser systems. Thermal deformation waves in a soda-lime-silica glass substrate have been measured using high-speed interferometry during a series of laser pulses incident on the surface. Two-dimensional images of the thermal waves were captured at a rate of up to six frames per thermal event using a quantitative phase measurement method. The system comprised a Mach-Zehnder interferometer, along with a high-speed camera capable of up to 20,000 frames-per-second. The sample was placed in the interferometer and irradiated with 100 ns, 2 kHz Q-switched pulses from a high-power Nd:YAG laser operating at 1064 nm. Phase measurements were converted to temperature using known values of thermal expansion and temperature-dependent refractive index for glass. The thermal decay at the center of the thermal wave was fit to a function derived from first principles with excellent agreement. Additionally, the spread of the thermal distribution over time was fit to the same function. Both the temporal decay fit and the spatial fit produced a thermal diffusivity of 5×10-7  m2/s.

  1. Determining the speed of sound in the air by sound wave interference

    Science.gov (United States)

    Silva, Abel A.

    2017-07-01

    Mechanical waves propagate through material media. Sound is an example of a mechanical wave. In fluids like air, sound waves propagate through successive longitudinal perturbations of compression and decompression. Audible sound frequencies for human ears range from 20 to 20 000 Hz. In this study, the speed of sound v in the air is determined using the identification of maxima of interference from two synchronous waves at frequency f. The values of v were correct to 0 °C. The experimental average value of {\\bar{ν }}\\exp =336 +/- 4 {{m}} {{{s}}}-1 was found. It is 1.5% larger than the reference value. The standard deviation of 4 m s-1 (1.2% of {\\bar{ν }}\\exp ) is an improved value by the use of the concept of the central limit theorem. The proposed procedure to determine the speed of sound in the air aims to be an academic activity for physics classes of scientific and technological courses in college.

  2. Phase speed of electrostatic waves: The critical parameter for efficient electron surfing acceleration

    CERN Document Server

    Dieckmann, M E; Parviainen, M; Shukla, P K; Sircombe, N J

    2006-01-01

    Particle acceleration by means of non-linear plasma wave interactions is of great topical interest. Accordingly, in this paper we focus on the electron surfing process. Self-consistent kinetic simulations, using both relativistic Vlasov and PIC (Particle In Cell) approaches, show here that electrons can be accelerated to highly relativistic energies (up to 100 m_e c^2) if the phase speed of the electrostatic wave is mildly relativistic (0.6c to 0.9c for the magnetic field strengths considered). The acceleration is strong because of relativistic stabilisation of the nonlinearly saturated electrostatic wave, seen in both relativistic Vlasov and PIC simulations. An inverse power law momentum distribution can arise for the most strongly accelerated electrons. These results are of relevance to observed rapid changes in the radio synchrotron emission intensities from microquasars, gamma ray bursts and other astrophysical objects that require rapid acceleration mechanisms for electrons.

  3. Phase speed of electrostatic waves: the critical parameter for efficient electron surfing acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Sircombe, N J [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Parviainen, M [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Shukla, P K [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Dendy, R O [UKAEA Culham Division, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2006-04-15

    Particle acceleration by means of nonlinear plasma wave interactions is of great topical interest. Accordingly, in this paper we focus on the electron surfing process. Self-consistent kinetic simulations, using both relativistic Vlasov and particle-in-cell (PIC) approaches, show here that electrons can be accelerated to highly relativistic energies (up to 100m{sub e}c{sup 2}) if the phase speed of the electrostatic wave is mildly relativistic (0.6c to 0.9c for the magnetic field strengths considered). The acceleration is strong because of relativistic stabilization of the nonlinearly saturated electrostatic wave, seen in both relativistic Vlasov and PIC simulations. An inverse power law momentum distribution can arise for the most strongly accelerated electrons. These results are of relevance to observed rapid changes in the radio synchrotron emission intensities from microquasars, gamma ray bursts and other astrophysical objects that require rapid acceleration mechanisms for electrons.

  4. The propagation of detonation waves in non-ideal condensed-phase explosives confined by high sound-speed materials

    Science.gov (United States)

    Schoch, Stefan; Nikiforakis, Nikolaos; Lee, Bok Jik

    2013-08-01

    Highly non-ideal condensed-phase explosives used by the mining industry have a strong detonation velocity dependence on the charge dimension. Detonation velocities can be as low as one third of the theoretically calculated ideal detonation velocity in charge radii close to the failure radius. Under these detonation conditions the flow in the confiner can become subsonic, a flow condition under which classical shock-polar analysis is not applicable. This restriction prohibits the use of popular engineering models like detonation shock dynamics and Wood-Kirkwood type models under these confinement conditions. In addition, it has been found in the literature that subsonic flow in the confiner will increase the influence of the confining material on the detonation performance. In this work, we use a multi-phase model coupled to an elastic-plastic model (for the representation of a confiner) to explore the interaction of detonations under these confiner conditions. An ammonium nitrate based mining emulsion is investigated in aluminium and steel confinement of finite and infinite thickness representing the confiner as either a fluid or an elastic-plastic material. It is found that the presence of elastic waves is negligible close to ideal detonation conditions, but is important close to the failure radius and in detonation conditions with subsonic flow in the confiner. High sound-speed confiners support the detonation through energy transport ahead of the detonation front if desensitisation effects are negligible. The detonation front profiles are found to remain convex even in the most non-ideal detonation conditions, and the detonation front curvature only becomes concave in a localised region close to the confiner edge.

  5. Speed of gravitational waves and the fate of scalar-tensor gravity

    Science.gov (United States)

    Bettoni, Dario; Ezquiaga, Jose María; Hinterbichler, Kurt; Zumalacárregui, Miguel

    2017-04-01

    The direct detection of gravitational waves (GWs) is an invaluable new tool to probe gravity and the nature of cosmic acceleration. A large class of scalar-tensor theories predicts that GWs propagate with velocity different than the speed of light, a difference that can be O (1 ) for many models of dark energy. We determine the conditions behind the anomalous GW speed, namely, that the scalar field spontaneously breaks Lorentz invariance and couples to the metric perturbations via the Weyl tensor. If these conditions are realized in nature, the delay between GW and electromagnetic signals from distant events will run beyond human time scales, making it impossible to measure the speed of GWs using neutron star mergers or other violent events. We present a robust strategy to exclude or confirm an anomalous speed of GWs using eclipsing binary systems, the electromagnetic phase of which can be exquisitely determined. The white dwarf binary J 0651 +2844 is a known example of such a system that can be used to probe deviations in the GW speed as small as cg/c -1 ≳2 ×10-12 when LISA comes online. This test will either eliminate many contender models for cosmic acceleration or wreck a fundamental pillar of general relativity.

  6. Spreading Speed, Traveling Waves, and Minimal Domain Size in Impulsive Reaction–Diffusion Models

    KAUST Repository

    Lewis, Mark A.

    2012-08-15

    How growth, mortality, and dispersal in a species affect the species\\' spread and persistence constitutes a central problem in spatial ecology. We propose impulsive reaction-diffusion equation models for species with distinct reproductive and dispersal stages. These models can describe a seasonal birth pulse plus nonlinear mortality and dispersal throughout the year. Alternatively, they can describe seasonal harvesting, plus nonlinear birth and mortality as well as dispersal throughout the year. The population dynamics in the seasonal pulse is described by a discrete map that gives the density of the population at the end of a pulse as a possibly nonmonotone function of the density of the population at the beginning of the pulse. The dynamics in the dispersal stage is governed by a nonlinear reaction-diffusion equation in a bounded or unbounded domain. We develop a spatially explicit theoretical framework that links species vital rates (mortality or fecundity) and dispersal characteristics with species\\' spreading speeds, traveling wave speeds, as well as minimal domain size for species persistence. We provide an explicit formula for the spreading speed in terms of model parameters, and show that the spreading speed can be characterized as the slowest speed of a class of traveling wave solutions. We also give an explicit formula for the minimal domain size using model parameters. Our results show how the diffusion coefficient, and the combination of discrete- and continuous-time growth and mortality determine the spread and persistence dynamics of the population in a wide variety of ecological scenarios. Numerical simulations are presented to demonstrate the theoretical results. © 2012 Society for Mathematical Biology.

  7. Damping of flexural vibration using low-density, low-wave-speed media

    Science.gov (United States)

    Varanasi, Kripa K.; Nayfeh, Samir A.

    2006-04-01

    Significant damping of structural vibration can be attained by coupling to the structure a low-density medium (such as a powder or foam) in which the speed of sound propagation is relatively low. We describe a set of experiments in which flexural vibration of aluminum beams over a broad frequency range is damped by introduction of a layer of lossy low-wave-speed foam. At frequencies high enough to set up standing waves through the thickness of the foam, loss factors as high as 0.05 can be obtained with a foam layer whose mass is 3.9% of that of the beam. We model the foam as a continuum in which waves of dilatation and distortion can propagate, obtain approximate solutions for the frequency response of the system by means of a modal expansion, and find that the predictions are in close agreement with the measured responses. Finally, we develop a simple approximation for the system loss factor based on the complex wavenumber associated with flexural vibration in an infinite beam.

  8. Analysis on shock wave speed of water hammer of lifting pipes for deep-sea mining

    Science.gov (United States)

    Zhou, Zhi-jin; Yang, Ning; Wang, Zhao

    2013-04-01

    Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.

  9. Analysis on Shock Wave Speed of Water Hammer of Lifting Pipes for Deep-Sea Mining

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-jin; YANG Ning; WANG Zhao

    2013-01-01

    Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes.In this work,the shock wave was proven to play an important role in changing pressures and periods,and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation.As volume concentrations were taken into account of shock wave speed,the experiment results about the pressure-time history,discharge-time history and period for the lifting pipe system showed that:as its concentrations rose up,the maximum transient pressure went down,so did its discharges; when its volume concentrations increased gradually,the period numbers of pressure decay were getting less and less,and the corresponding shock wave speed decreased.These results have highly coincided with simulation results.The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences,such as damage to components and equipment and risks to personnel.

  10. A stochastic collocation method for the second order wave equation with a discontinuous random speed

    KAUST Repository

    Motamed, Mohammad

    2012-08-31

    In this paper we propose and analyze a stochastic collocation method for solving the second order wave equation with a random wave speed and subjected to deterministic boundary and initial conditions. The speed is piecewise smooth in the physical space and depends on a finite number of random variables. The numerical scheme consists of a finite difference or finite element method in the physical space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space. This approach leads to the solution of uncoupled deterministic problems as in the Monte Carlo method. We consider both full and sparse tensor product spaces of orthogonal polynomials. We provide a rigorous convergence analysis and demonstrate different types of convergence of the probability error with respect to the number of collocation points for full and sparse tensor product spaces and under some regularity assumptions on the data. In particular, we show that, unlike in elliptic and parabolic problems, the solution to hyperbolic problems is not in general analytic with respect to the random variables. Therefore, the rate of convergence may only be algebraic. An exponential/fast rate of convergence is still possible for some quantities of interest and for the wave solution with particular types of data. We present numerical examples, which confirm the analysis and show that the collocation method is a valid alternative to the more traditional Monte Carlo method for this class of problems. © 2012 Springer-Verlag.

  11. High-speed noncontact acoustic inspection method for civil engineering structure using multitone burst wave

    Science.gov (United States)

    Sugimoto, Tsuneyoshi; Sugimoto, Kazuko; Kosuge, Nobuaki; Utagawa, Noriyuki; Katakura, Kageyoshi

    2017-07-01

    The noncontact acoustic inspection method focuses on the resonance phenomenon, and the target surface is measured by being vibrated with an airborne sound. It is possible to detect internal defects near the surface layer of a concrete structure from a long distance. However, it requires a fairly long measurement time to achieve the signal-to-noise (S/N) ratio just to find some resonance frequencies. In our method using the conventional waveform “single-tone burst wave”, only one frequency was used for one-sound-wave emission to achieve a high S/N ratio using a laser Doppler vibrometer (LDV) at a safe low power (e.g., He-Ne 1 mW). On the other hand, in terms of the difference in propagation velocity between laser light and sound waves, the waveform that can be used for high-speed measurement was devised using plural frequencies for one-sound-wave emission (“multitone burst wave”). The measurement time at 35 measurement points has been dramatically decreased from 210 to 28 s when using this waveform. Accordingly, 7.5-fold high-speed measurement became possible. By some demonstration experiments, we confirmed the effectiveness of our measurement technique.

  12. Focusing of Rayleigh waves generated by high-speed trains under the condition of ground vibration boom

    CERN Document Server

    Krylov, Victor V

    2015-01-01

    In the present paper, the effects of focusing of Rayleigh waves generated by high speed trains in the supporting ground under the condition of ground vibration boom are considered theoretically. These effects are similar to the effects of focusing of sound waves radiated by aircraft under the condition of sonic boom. In particular, if a railway track has a bend to provide the possibility of changing direction of train movement, the Rayleigh surface waves generated by high-speed trains under the condition of ground vibration boom may become focused. This results in concentration of their energy along a simple caustic line at one side of the track and in the corresponding increase in ground vibration amplitudes. The effect of focusing of Rayleigh waves may occur also if a train moves along a straight line with acceleration and its current speed is higher than Rayleigh wave velocity in the ground. The obtained results are illustrated by numerical calculations.

  13. Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow

    Science.gov (United States)

    Zhijian, Yang

    2006-01-01

    The paper studies the existence, both locally and globally in time, stability, decay estimates and blowup of solutions to the Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow. Under the assumption that the nonlinear term of the equations is of polynomial growth order, say [alpha], it proves that when [alpha]>1, the Cauchy problem admits a unique local solution, which is stable and can be continued to a global solution under rather mild conditions; when [alpha][greater-or-equal, slanted]5 and the initial data is small enough, the Cauchy problem admits a unique global solution and its norm in L1,p(R) decays at the rate for 2

  14. Ripples Make Waves: Binding Structured Activity and Plasticity in Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Josef H. L. P. Sadowski

    2011-01-01

    Full Text Available Establishing novel episodic memories and stable spatial representations depends on an exquisitely choreographed, multistage process involving the online encoding and offline consolidation of sensory information, a process that is largely dependent on the hippocampus. Each step is influenced by distinct neural network states that influence the pattern of activation across cellular assemblies. In recent years, the occurrence of hippocampal sharp wave ripple (SWR oscillations has emerged as a potentially vital network phenomenon mediating the steps between encoding and consolidation, both at a cellular and network level by promoting the rapid replay and reactivation of recent activity patterns. Such events facilitate memory formation by optimising the conditions for synaptic plasticity to occur between contingent neural elements. In this paper, we explore the ways in which SWRs and other network events can bridge the gap between spatiomnemonic processing at cellular/synaptic and network levels in the hippocampus.

  15. High speed video shooting with continuous-wave laser illumination in laboratory modeling of wind - wave interaction

    Science.gov (United States)

    Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Sergeev, Daniil; Vdovin, Maxim

    2014-05-01

    Three examples of usage of high-speed video filming in investigation of wind-wave interaction in laboratory conditions is described. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) and at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m, wind velocity up to 10 m/s). A combination of PIV-measurements, optical measurements of water surface form and wave gages were used for detailed investigation of the characteristics of the wind flow over the water surface. The modified PIV-method is based on the use of continuous-wave (CW) laser illumination of the airflow seeded by particles and high-speed video. During the experiments on the Wind - wave stratified flume of IAP RAS Green (532 nm) CW laser with 1.5 Wt output power was used as a source for light sheet. High speed digital camera Videosprint (VS-Fast) was used for taking visualized air flow images with the frame rate 2000 Hz. Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved using conditional in phase averaging like in [1]. In the experiments on the LASIF more powerful Argon laser (4 Wt, CW) was used as well as high-speed camera with higher sensitivity and resolution: Optronics Camrecord CR3000x2, frame rate 3571 Hz, frame size 259×1696 px. In both series of experiments spherical 0.02 mm polyamide particles with inertial time 7 ms were used for seeding airflow. New particle seeding system based on utilization of air pressure is capable of injecting 2 g of particles per second for 1.3 - 2.4 s without flow disturbance. Used in LASIF this system provided high particle density on PIV-images. In combination with high-resolution camera it allowed us to obtain momentum fluxes directly from

  16. Effect of scanning speed on continuous wave laser scribing of metal thin films: theory and experiment

    Science.gov (United States)

    Shahbazi, AmirHossein; Koohian, Ata; Madanipour, Khosro

    2017-01-01

    In this paper continuous wave laser scribing of the metal thin films have been investigated theoretically and experimentally. A formulation is presented based on parameters like beam power, spot size, scanning speed and fluence thresholds. The role of speed on the transient temperature and tracks width is studied numerically. By using two frameworks of pulsed laser ablation of thin films and laser printing on paper, the relation between ablation width and scanning speed has been derived. Furthermore, various speeds of the focused 450 nm continuous laser diode with an elliptical beam spot applied to a 290 nm copper thin film coated on glass, experimentally. The beam power was 150 mW after spatial filtering. By fitting the theoretical formulation to the experimental data, the threshold fluence and energy were obtained to be 13.2 J mm-2 and 414~μ J respectively. An anticipated theoretical parameter named equilibrium~border was verified experimentally. It shows that in the scribing of the 290 nm copper thin film, at a distance where the intensity reaches about 1/e of its maximum value, the absorbed fluence on the surface is equal to zero. Therefore the application of continuous laser in metal thin film ablation has different mechanism from pulsed laser drilling and beam scanning in printers.

  17. Characteristics of free-surface wave on high-speed liquid lithium jet for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Kanemura, Takuji, E-mail: kanemura@stu.nucl.eng.osaka-u.ac.jp [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Yoshihashi-Suzuki, Sachiko [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kondo, Hiroo [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Sugiura, Hirokazu; Yamaoka, Nobuo [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ida, Mizuho; Nakamura, Hiroo [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Matsushita, Izuru [Mitsubishi Heavy Industries Mechatronics Systems, Ltd., 1-16 5-chome, Komatsu-dori, Hyogo-ku, Kobe, Hyogo 652-0865 (Japan); Muroga, Takeo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Horiike, Hiroshi [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2011-10-01

    The characteristics of the surface waves on a high-speed liquid lithium wall jet were examined in a Li circulation loop at Osaka University for the International Fusion Materials Irradiation Facility (IFMIF). Surface fluctuations were measured by a contact-type liquid level sensor at 175 mm downstream from the nozzle exit, which corresponds to the deuteron beam's axis in the IFMIF, and observed with a high-speed video (HSV) camera. Both the observation and measurement results indicated that the surface fluctuations were composed of various scale turbulent fluctuations. The measurement results especially showed good agreement with the log-normal distribution which is one of the turbulent intermittency theories. The dominant wavelength was found to be shorter with increase in the flow velocity, and reached approximately 4 mm at the velocity of 15 m/s, which gave close agreement with the visually observed wavelength.

  18. Study on variation in ship's forward speed under regular waves depending on rudder controller

    Directory of Open Access Journals (Sweden)

    Kim Sung-Soo

    2015-06-01

    Full Text Available The purpose of this research is to compare and analyze the advanced speed of ships with different rudder controller in wavy condition by using a simulation. The commercial simulation tool named AQWA is used to develop the simulation of ship which has 3 degree of freedom. The nonlinear hydrodynamic force acting on hull, the propeller thrust and the rudder force are calculated by the additional subroutine which interlock with the commercial simulation tool, and the regular wave is used as the source of the external force for the simulation. Rudder rotational velocity and autopilot coefficients vary to make the different rudder controller. An advanced speed of ships depending on the rudder controller is analyzed after the autopilot simulations.

  19. Study on variation in ship's forward speed under regular waves depending on rudder controller

    Directory of Open Access Journals (Sweden)

    Sung-Soo Kim

    2015-03-01

    Full Text Available The purpose of this research is to compare and analyze the advanced speed of ships with different rudder controller in wavy condition by using a simulation. The commercial simulation tool named AQWA is used to develop the simulation of ship which has 3 degree of freedom. The nonlinear hydrodynamic force acting on hull, the propeller thrust and the rudder force are calculated by the additional subroutine which interlock with the commercial simulation tool, and the regular wave is used as the source of the external force for the simulation. Rudder rotational velocity and autopilot coefficients vary to make the different rudder controller. An advanced speed of ships depending on the rudder controller is analyzed after the autopilot simulations.

  20. Speeding up social waves. Propagation mechanisms of shimmering in giant honeybees.

    Directory of Open Access Journals (Sweden)

    Gerald Kastberger

    Full Text Available Shimmering is a defence behaviour in giant honeybees (Apis dorsata, whereby bees on the nest surface flip their abdomen upwards in a Mexican wave-like process. However, information spreads faster than can be ascribed to bucket bridging, which is the transfer of information from one individual to an adjacent one. We identified a saltatoric process that speeds up shimmering by the generation of daughter waves, which subsequently merge with the parental wave, producing a new wave front. Motion patterns of individual "focus" bees (n = 10,894 and their shimmering-active neighbours (n = 459,558 were measured with high-resolution video recording and stereoscopic imaging. Three types of shimmering-active surface bees were distinguished by their communication status, termed "agents": "Bucket-bridging" agents comprised 74.98% of all agents, affected 88.17% of their neighbours, and transferred information at a velocity of v = 0.317±0.015 m/s. "Chain-tail" agents comprised 9.20% of the agents, were activated by 6.35% of their neighbours, but did not motivate others to participate in the wave. "Generator agents" comprised 15.82% of agents, showed abdominal flipping before the arrival of the main wave front, and initiated daughter waves. They affected 6.75% of their neighbourhood and speeded up the compound shimmering process compared to bucket bridging alone by 41.5% to v = 0.514±0.019 m/s. The main direction of shimmering was reinforced by 35.82% of agents, whereas the contribution of the complementing agents was fuzzy. We discuss that the saltatoric process could enable the bees to instantly recruit larger cohorts to participate in shimmering and to respond rapidly to changes in flight direction of preying wasps. A third, non-exclusive explanation is that at a distance of up to three metres from the nest the acceleration of shimmering could notably contribute to the startle response in mammals and birds.

  1. In Vivo Measures of Shear Wave Speed as a Predictor of Tendon Elasticity and Strength.

    Science.gov (United States)

    Martin, Jack A; Biedrzycki, Adam H; Lee, Kenneth S; DeWall, Ryan J; Brounts, Sabrina H; Murphy, William L; Markel, Mark D; Thelen, Darryl G

    2015-10-01

    The purpose of this study was to assess the potential for ultrasound shear wave elastography (SWE) to measure tissue elasticity and ultimate stress in both intact and healing tendons. The lateral gastrocnemius (Achilles) tendons of 41 New Zealand white rabbits were surgically severed and repaired with growth factor coated sutures. SWE imaging was used to measure shear wave speed (SWS) in both the medial and lateral tendons pre-surgery, and at 2 and 4 wk post-surgery. Rabbits were euthanized at 4 wk, and both medial and lateral tendons underwent mechanical testing to failure. SWS significantly (p tendons. SWS was significantly (p tendon elastic modulus (r = 0.52) and ultimate stress (r = 0.58). Thus, ultrasound SWE is a potentially promising non-invasive technology for quantitatively assessing the mechanical integrity of pre-operative and post-operative tendons. Published by Elsevier Inc.

  2. The Influence of wave state and sea spray on drag coefficient from low to high wind speeds

    Science.gov (United States)

    Shi, Jian; Zhong, Zhong; Li, Xunqiang; Jiang, Guorong; Zeng, Wenhua; Li, Yan

    2016-02-01

    Ocean waves alter the roughness of sea surface, and sea spray droplets redistribute the momentum flux at the air-sea interface. Hence, both wave state and sea spray influence sea surface drag coefficient. Based on the new sea spray generation function which depends on sea surface wave, a wave-dependent sea spray stress is obtained. According to the relationship between sea spray stress and the total wind stress on the sea surface, a new formula of drag coefficient at high wind speed is acquired. With the analysis of the new drag coefficient, it is shown that the drag coefficient reduces at high wind speed, indicating that the sea spray droplets can limit the increase of drag coefficient. However, the value of high wind speed corresponding to the initial reduced drag coefficient is not fixed, and it depends on the wave state, which means the influence of wave cannot be ignored. Comparisons between the theoretical and measured sea surface drag coefficients in field and laboratory show that under different wave ages, the theoretical result of drag coefficient could include the measured data, and it means that the new drag coefficient can be used properly from low to high wind speeds under any wave state condition.

  3. A New Light-Speed Anisotropy Experiment: Absolute Motion and Gravitational Waves Detected

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available Data from a new experiment measuring the anisotropy of the one-way speed of EM waves in a coaxial cable, gives the speed of light as 300,000 ± 400 ± 20km/s in a measured direction RA = 5.5 ± 2 hrs, Dec = 70 ± 10 ◦ S, is shown to be in excellent agreement with the results from seven previous anisotropy experiments, particularly those of Miller (1925/26, and even those of Michelson and Morley (1887. The Miller gas-mode interferometer results, and those from the RF coaxial cable experiments of Torr and Kolen (1983, De Witte (1991 and the new experiment all reveal the presence of gravitational waves, as indicated by the last ± variations above, but of a kind different from those supposedly predicted by General Relativity. Miller repeated the Michelson-Morley 1887 gas-mode interferometer experiment and again detected the anisotropy of the speed of light, primarily in the years 1925/1926 atop Mt.Wilson, California. The understanding of the operation of the Michelson interferometer in gas-mode was only achieved in 2002 and involved a calibration for the interferometer that necessarily involved Special Relativity effects and the refractive index of the gas in the light paths. The results demonstrate the reality of the Fitzgerald-Lorentz contraction as an observer independent relativistic effect. A common misunderstanding is that the anisotropy of the speed of light is necessarily in conflict with Special Relativity and Lorentz symmetry — this is explained. All eight experiments and theory show that we have both anisotropy of the speed of light and relativistic effects, and that a dynamical 3-space exists — that absolute motion through that space has been repeatedly observed since 1887. These developments completely change fundamental physics and our understanding of reality. “Modern” vacuum-mode Michelson interferometers, particularly the long baseline terrestrial versions, are, by design flaw, incapable of detecting the anisotropy effect

  4. Comparison of ultrasonic wave speed measurements on wax at elevated temperatures to numerical method predictions

    Science.gov (United States)

    Moore, David G.; Stair, Sarah L.; Jack, David A.

    2017-02-01

    Ultrasonic stress wave amplitude and time-of-flight values may change as a media is heated. The measurement of relatively small variations in velocity and material attenuation can detect and quantify significant variations within a material's microstructure, such as a change in phase from solid to liquid. This paper discusses the experimental setup, ultrasonic wave speed tracking methods and signal analysis algorithms that are used in this study to document the changes within highly attenuative wax material as it is either being heated or cooled from 25°C to 90°C. The experimental set-up utilizes ultrasonic probes in a through-transmission configuration. The ultrasonic waveforms are recorded and analyzed during long duration thermal experiments. To complement the ultrasonic data, a Discontinuous-Galerkin Model (DGM) was also created, which uses unstructured meshes to determine how waves travel in this media and how the sound interacts with the prescribed boundary conditions. This numerical method solves particle motion travel using partial differential equations and outputs a wave trace per unit time. Both experimental and analytical data are presented and compared. The experimental and analytical data share some similarities; however, the differences between the two, including a high frequency component present in the analytical data that is not observed in the experimental data, are continuing to be studied and addressed in the model.

  5. High-Speed Optical Home Network Using Graded Index Plastic Optical Fibers for a Smart House

    Directory of Open Access Journals (Sweden)

    Tetsuya Toma

    2013-11-01

    Full Text Available In this paper, we propose a home monitoring, management, and communication system (HMMCS with high-seed optical home network for a smart house in a smart city to optimize the energy usage and to create a comfortable environment. The HMMCS monitors the interior environment and the electricity consumption of all electric appliances. It also records log data, shares information and movies/images, and cross-connects with web services. We assembled small-scale prototype HMMCS and developed application software with an original user interface. The results of a test run reveal that the HMMCS can monitor electricity consumption and interior environments in real time and can control different types of electric appliances including servers that play movies. The maximum data traffic load in a smart house has been calculated using the measured traffic data. Moreover, we found that a smart house with HMMCS inevitably requires a high-speed optical network for real-time, high-quality responses.

  6. High-speed Brillouin imaging via continuous-wave stimulated Brillouin scattering (Conference Presentation)

    Science.gov (United States)

    Remer, Itay; Bilenca, Alberto

    2017-02-01

    Brillouin spectroscopy is a noncontact technique for characterizing the mechanical properties of materials. Typically, Brillouin spectrometers have been realized using scanning Fabry-Perot spectrometers that measure, with long acquisition times, spontaneous Brillouin scattering from the samples. In the last few years, the use of virtually imaged phase array (VIPA) etalons for constructing Brillouin spectrometers has enabled to acquire spontaneous Brillouin spectra means for high-speed Brillouin analysis of materials. In this talk, we will present a different approach for high-speed Brillouin material analysis. The method uses continuous-wave stimulated Brillouin scattering (CW-SBS) to measure stimulated Brillouin gain (SBG) spectra of materials at filter and a lock-in detector, resulting in an improved signal-to-noise ratio that enables to significantly shorten acquisition times. We will show that this improvement, combined with micrometer-step-size spatial scanning of the sample, provides precise Brillouin profiles of layered liquids at 30-milliseconds pixel-dwell-time, facilitating Brillouin profilometry analysis of materials at high speed.

  7. Multifluid, Magnetohydrodynamic Shock Waves with Grain Dynamics II. Dust and the Critical Speed for C Shocks

    CERN Document Server

    Ciolek, G E; Mouschovias, T C

    2004-01-01

    This is the second in a series of papers on the effects of dust on multifluid, MHD shock waves in weakly ionized molecular gas. We investigate the influence of dust on the critical shock speed, v_crit, above which C shocks cease to exist. Chernoff showed that v_crit cannot exceed the grain magnetosound speed, v_gms, if dust grains are dynamically well coupled to the magnetic field. We present numerical simulations of steady shocks where the grains may be well- or poorly coupled to the field. We use a time-dependent, multifluid MHD code that models the plasma as a system of interacting fluids: neutral particles, ions, electrons, and various ``dust fluids'' comprised of grains with different sizes and charges. Our simulations include grain inertia and grain charge fluctuations but to highlight the essential physics we assume adiabatic flow, single-size grains, and neglect the effects of chemistry. We show that the existence of a phase speed v_phi does not necessarily mean that C shocks will form for all shock s...

  8. The influences of soil and nearby structures on dispersion characteristics of wave propagating along buried plastic pipes

    Science.gov (United States)

    Liu, Shuyong; Jiang, J.; Parr, Nicola

    2016-09-01

    Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.

  9. Convectively coupled Kelvin waves in aquachannel simulations: 1. Propagation speeds, composite structures, and comparison with aquaplanets

    Science.gov (United States)

    Blanco, Joaquín. E.; Nolan, David S.; Tulich, Stefan N.

    2016-10-01

    Convectively coupled Kelvin waves (CCKWs) represent a significant contribution to the total variability of the Intertropical Convergence Zone (ITCZ). This study analyzes the structure and propagation of CCKWs simulated by the Weather Research and Forecasting (WRF) model using two types of idealized domains. These are the "aquachannel," a flat rectangle on a beta plane with zonally periodic boundary conditions and length equal to the Earth's circumference at the equator, and the "aquapatch," a square domain with zonal extent equal to one third of the aquachannel's length. A series of simulations are performed, including a doubly nested aquapatch, in which convection is solved explicitly along the equator. The model intercomparison is carried out throughout the use of several techniques such as power spectra, filtering, wave tracking, and compositing, and it is extended to some simulations from the Aquaplanet Experiment (APE). Results show that despite the equatorial superrotation bias produced by the WRF simulations, the CCKWs simulated with this model propagate with similar phase speeds (relative to the low-level mean flow) as the corresponding waves from the APE simulations. Horizontal and vertical structures of the CCKWs simulated with aquachannels are also in overall good agreement with those from aquaplanet simulations and observations, although there is a distortion of the zonal extent of anomalies when the shorter aquapatch is used.

  10. Preliminary result of P-wave speed tomography beneath North Sumatera region

    Science.gov (United States)

    Jatnika, Jajat; Nugraha, Andri Dian; Wandono

    2015-04-01

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was set up of 30×30 km2 for inside the study area and 80×80 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5 km down to 100 km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80 km down to 100 km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.

  11. Preliminary result of P-wave speed tomography beneath North Sumatera region

    Energy Technology Data Exchange (ETDEWEB)

    Jatnika, Jajat [Earth Science Study Program, Institute of Technology Bandung (Indonesia); Indonesian Meteorological, Climatological and Geophysical Agency (MCGA), Jakarta (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Insitute of Technology Bandung (Indonesia); Wandono [Indonesian Meteorological, Climatological and Geophysical Agency (MCGA), Jakarta (Indonesia)

    2015-04-24

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was set up of 30×30 km2 for inside the study area and 80×80 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5 km down to 100 km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80 km down to 100 km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.

  12. Characteristics of a compression wave propagating over porous plate wall in a high-speed railway tunnel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A pressure wave is generated ahead of a high-speed train, while entering a tunnel. This pressure wave propagates to the tunnel exit and spouts as a micro-pressure wave, which causes an exploding sound. From the fact that the ballast track tunnel has smaller noise than the slab track tunnel, we have suggested a new inner tunnel model to decrease the noise of the micro-pressure wave, using the ballast effect. Experimental and numerical investigations are carried out to clarify the attenuation and distortion of propagating compression wave over porous plate wall in a model tunnel. Data shows that the strength of the compression wave and a maximum pressure gradient of the compression wave was weakened. These data shows the possibility of the present a11eviative method using the porous plate wall in a tunnel

  13. Unseeded Large Scale PIV measurements accounting for capillary-gravity waves phase speed

    CERN Document Server

    Benetazzo,; Gamba,; M.,; Barbariol,; F,

    2016-01-01

    Large Scale Particle Image Velocimetry (LSPIV) is widely recognized as a reliable method to measure water surface velocity field in open channels and rivers. LSPIV technique is based on a camera view that frames the water surface in a sequence, and image-processing methods to compute water surface displacements between consecutive frames. Using LSPIV, high flow velocities, as for example flood conditions, were accurately measured, whereas determinations of low flow velocities is more challenging, especially in absence of floating seeding transported by the flow velocity. In fact, in unseeded conditions, typical surface features dynamics must be taken into account: besides surface structures convected by the current, capillary-gravity waves travel in all directions, with their own dynamics. Discrimination between all these phenomena is here discussed, providing a new method to distinguish and to correct unseeded LSPIV measurements associated with wavy structures, accounting for their phase speed magnitude and ...

  14. Variational integrators for the dynamics of thermo-elastic solids with finite speed thermal waves

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Pablo [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4040 (United States); Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Conicyt Regional/CIEP R10C1003, Universidad Austral de Chile, Ignacio Serrrano 509, Coyhaique (Chile); Lew, Adrian J., E-mail: lewa@stanford.edu [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4040 (United States)

    2014-01-15

    This paper formulates variational integrators for finite element discretizations of deformable bodies with heat conduction in the form of finite speed thermal waves. The cornerstone of the construction consists in taking advantage of the fact that the Green–Naghdi theory of type II for thermo-elastic solids has a Hamiltonian structure. Thus, standard techniques to construct variational integrators can be applied to finite element discretizations of the problem. The resulting discrete-in-time trajectories are then consistent with the laws of thermodynamics for these systems: for an isolated system, they exactly conserve the total entropy, and nearly exactly conserve the total energy over exponentially long periods of time. Moreover, linear and angular momenta are also exactly conserved whenever the exact system does. For definiteness, we construct an explicit second-order accurate algorithm for affine tetrahedral elements in two and three dimensions, and demonstrate its performance with numerical examples.

  15. Learning-induced plasticity regulates hippocampal sharp wave-ripple drive.

    Science.gov (United States)

    Girardeau, Gabrielle; Cei, Anne; Zugaro, Michaël

    2014-04-01

    Hippocampal sharp wave-ripples (SPW-Rs) and associated place-cell reactivations are crucial for spatial memory consolidation during sleep and rest. However, it remains unclear how learning and consolidation requirements influence and regulate subsequent SPW-R activity. Indeed, SPW-R activity has been observed not only following complex behavioral tasks, but also after random foraging in familiar environments, despite markedly different learning requirements. Because transient increases in SPW-R rates have been reported following training on memory tasks, we hypothesized that SPW-R activity following learning (but not routine behavior) could involve specific regulatory processes related to ongoing consolidation. Interfering with ripples would then result in a dynamic compensatory response only when initial memory traces required consolidation. Here we trained rats on a spatial memory task, and showed that subsequent sleep periods where ripple activity was perturbed by timed electrical stimulation were indeed characterized by increased SPW-R occurrence rates compared with control sleep periods where stimulations were slightly delayed in time and did not interfere with ripples. Importantly, this did not occur following random foraging in a familiar environment. We next showed that this dynamic response was abolished following injection of an NMDA receptor blocker (MK-801) before, but not after training. Our results indicate that NMDA receptor-dependent processes occurring during learning, such as network "tagging" and plastic changes, regulate subsequent ripple-mediated consolidation of spatial memory during sleep.

  16. On the Analytical Approach to Present Engineering Problems: Photovoltaic Systems Behavior, Wind Speed Sensors Performance, and High-Speed Train Pressure Wave Effects in Tunnels

    Directory of Open Access Journals (Sweden)

    Santiago Pindado

    2015-01-01

    Full Text Available At present, engineering problems required quite a sophisticated calculation means. However, analytical models still can prove to be a useful tool for engineers and scientists when dealing with complex physical phenomena. The mathematical models developed to analyze three different engineering problems: photovoltaic devices analysis; cup anemometer performance; and high-speed train pressure wave effects in tunnels are described. In all cases, the results are quite accurate when compared to testing measurements.

  17. Measured temperature and pressure dependence of compressional (Vp) and shear (Vs) wave speeds in compacted, polycrystalline ice lh

    Science.gov (United States)

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2003-01-01

    We report on laboratory measurements of compressional- and shear-wave speeds in a compacted, polycrystalline ice-Ih sample. The sample was made from triply distilled water that had been frozen into single crystal ice, ground into small grains, and sieved to extract the 180–250 µm diameter fraction. Porosity was eliminated from the sample by compacting the granular ice between a hydraulically driven piston and a fixed end plug, both containing shear-wave transducers. Based on simultaneous compressional- and shear-wave-speed measurements, we calculated Poisson's ratio and compressional-wave, bulk, and shear moduli from –20 to –5°C and 22 to 33 MPa.

  18. Acoustic model of micro-pressure wave emission from a high-speed train tunnel

    Science.gov (United States)

    Miyachi, T.

    2017-03-01

    The micro-pressure wave (MPW) radiated from a tunnel portal can, if audible, cause serious problems around tunnel portals in high-speed railways. This has created a need to develop an acoustic model that considers the topography around a radiation portal in order to predict MPWs more accurately and allow for higher speed railways in the future. An acoustic model of MPWs based on linear acoustic theory is developed in this study. First, the directivity of sound sources and the acoustical effect of topography are investigated using a train launcher facility around a portal on infinitely flat ground and with an infinite vertical baffle plate. The validity of linear acoustic theory is then discussed through a comparison of numerical results obtained using the finite difference method (FDM) and experimental results. Finally, an acoustic model is derived that considers sound sources up to the second order and Green's function to represent the directivity and effect of topography, respectively. The results predicted by this acoustic model are shown to be in good agreement with both numerical and experimental results.

  19. Increasing the acquisition speed of a multi-channel guided wave system via simultaneous coded excitations

    Science.gov (United States)

    Hua, Jiadong; Michaels, Jennifer E.; Chen, Xin; Lin, Jing

    2017-02-01

    Many guided wave systems that are being evaluated for nondestructive evaluation or structural health monitoring utilize multiple transducers. Data are typically acquired by exciting each transducer in turn and recording received signals on the remaining transducers either simultaneously or separately. For either case, it can be very slow to acquire data because of the multiple transmission cycles combined with a slow repetition rate and extensive signal averaging. This long acquisition time brings another disadvantage by increasing the risk of environmental changes occurring during the complete acquisition process. For example, applied loads and temperature could change over the several seconds that are frequently required to acquire data. To increase the acquisition speed, it is proposed here to simultaneously trigger multiple transmitters, and each transmitter is driven with a unique, coded excitation. The simultaneously transmitted waves are captured by one or more receivers, and their responses are processed by dispersive matched filtering to separately extract the contribution from each transmitter. Results are shown for signals obtained from a spatially distribution array mounted on an aluminum plate.

  20. A R{\\o}mer time-delay determination of the gravitational-wave propagation speed

    CERN Document Server

    Finn, Lee Samuel

    2013-01-01

    In 1676 Olaus R{\\o}mer presented the first observational evidence for a finite light velocity $\\cem$. He formed his estimate by attributing the periodically varying discrepancy between the observed and expected occultation times of the Galilean satellite Io by its planetary host Jupiter to the time it takes light to cross Earth's orbital diameter. Given a stable celestial clock that can be observed in gravitational waves the same principle can be used to measure the propagation speed $\\cgw$ of gravitational radiation. Space-based "LISA"-like detectors will, and terrestrial LIGO-like detectors may, observe such clocks and thus be capable of directly measuring the propagation velocity of gravitational waves. In the case of space-based detectors the clocks will be galactic close white dwarf binary systems; in the case of terrestrial detectors, the most likely candidate clock is the periodic gravitational radiation from a rapidly rotating non-axisymmetric neutron star. Here we evaluate the accuracy that may be ex...

  1. Standardized Laboratory Test Requirements for Hardening Equipment to Withstand Wave Impact Shock in Small High Speed Craft

    Science.gov (United States)

    2017-02-06

    penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR...the risk of equipment malfunction or failure due to shock forces caused by wave impacts in high-speed craft. The engineering rationale, assumptions...procurement documents are presented. 15. SUBJECT TERMS Shock Wave slam shock test equipment operability risk reduction 16. SECURITY

  2. Influence of Tissue Microstructure on Shear Wave Speed Measurements in Plane Shear Wave Elastography: A Computational Study in Lossless Fibrotic Liver Media.

    Science.gov (United States)

    Wang, Yu; Jiang, Jingfeng

    2017-07-01

    Shear wave elastography (SWE) has been used to measure viscoelastic properties for characterization of fibrotic livers. In this technique, external mechanical vibrations or acoustic radiation forces are first transmitted to the tissue being imaged to induce shear waves. Ultrasonically measured displacement/velocity is then utilized to obtain elastographic measurements related to shear wave propagation. Using an open-source wave simulator, k-Wave, we conducted a case study of the relationship between plane shear wave measurements and the microstructure of fibrotic liver tissues. Particularly, three different virtual tissue models (i.e., a histology-based model, a statistics-based model, and a simple inclusion model) were used to represent underlying microstructures of fibrotic liver tissues. We found underlying microstructures affected the estimated mean group shear wave speed (SWS) under the plane shear wave assumption by as much as 56%. Also, the elastic shear wave scattering resulted in frequency-dependent attenuation coefficients and introduced changes in the estimated group SWS. Similarly, the slope of group SWS changes with respect to the excitation frequency differed as much as 78% among three models investigated. This new finding may motivate further studies examining how elastic scattering may contribute to frequency-dependent shear wave dispersion and attenuation in biological tissues.

  3. A STUDY ON THE EFFECT OF RADIAL INERTIA ON THE ELASTO-PLASTIC COMBINED STRESS WAVE PROPAGATION IN THIN-WALLED TUBES

    Institute of Scientific and Technical Information of China (English)

    Li Yongchi; Huang Chengyi; Yuan Fuping; Jin Yongmei

    2001-01-01

    An in-depth analysis of propagation characteristics of elasto-plastic combined stress waves in circular thin-walled tubes has been made. In obtaining the simple-wave solution, however,most researches have ignored the influence of the circumferential stressrelated to the radial inertial effect in the tubes. In this paper the incremental elasto-plastic constitutive relations which are convenient for dynamic numerical analysis are adopted, and the finite-difference method is used to study the evolution and propagation of elasto-plastic combined stress waves in a thin-walled tube with the radial inertial effect of the tube considered. The calculation results are compared with those obtained when the radial inertial effect is not considered. The calculation results show that the radial inertial effect of a tube has a fairly great influence on the propagation of elasto-plastic combined stress waves.

  4. The seismic wave speed structure of the Ontong Java Plateau determined from joint ambient noise and earthquake waveform data

    Science.gov (United States)

    Covellone, B. M.; Savage, B. K.; Shen, Y.

    2014-12-01

    The Ontong Java Plateau (OJP) represents the result of a significant event in the Earth's geologic history. Limited geophysical and geochemical data, as well as the plateau's relative isolation in the Pacific Ocean, have made interpretation of the modern day geologic structure and its 120 Ma formation history difficult. Here we present the highest resolution images to date of the wave speed structure of the OJP region. We use an iterative finite-frequency tomography methodology and a unique data set that combines empirical Green's functions extracted from ambient noise and earthquake waveforms. The uniqueness and combination of datasets allow us to best exploit the limited station distribution in the Pacific and image wave speed structures between 35 km and greater than 250 km into the Earth. We image a region of fast shear wave speeds, greater than 4.75 km/s, that extends to greater than 100 km beneath the plateau. The wave speeds are similar to as observed in cratonic environments and are consistent with a compositional anomaly likely a result of eclogite entrainment during the plateau's formation.

  5. A cooperative system based variable speed limit control algorithm against jam waves: an extension of the SPECIALIST algorithm

    NARCIS (Netherlands)

    Hegyi, A.; Netten, B.D.; Wang, M.; Schakel, W.; Schreiter, T.; Yuan, Y.; Arem, B. van; Alkim, T.

    2013-01-01

    The SPECIALIST algorithm can resolve jam waves on freeways using roadside technology: detector loops and speed limit gantries. In this paper we extend the algorithm, enabling the integration with cooperative system technologies and other road side detectors, such as in-car detection and actuation, a

  6. "Slowing" Mechanical Waves with a Consumer-Type High-Speed Digital Camera

    Science.gov (United States)

    Ng, Pun-hon; Chan, Kin-lok

    2015-01-01

    In most secondary physics textbooks, waves are first introduced with examples of mechanical waves because they can be illustrated by drawings and photographs. However, these illustrations are static and cannot reflect the dynamic nature of waves. Although many mechanical waves (e.g. water waves and vibrating strings) can be easily shown using…

  7. "Slowing" Mechanical Waves with a Consumer-Type High-Speed Digital Camera

    Science.gov (United States)

    Ng, Pun-hon; Chan, Kin-lok

    2015-01-01

    In most secondary physics textbooks, waves are first introduced with examples of mechanical waves because they can be illustrated by drawings and photographs. However, these illustrations are static and cannot reflect the dynamic nature of waves. Although many mechanical waves (e.g. water waves and vibrating strings) can be easily shown using…

  8. A non-invasive technique for estimating carpal tunnel pressure by measuring shear wave speed in tendon: a feasibility study.

    Science.gov (United States)

    Wang, Yuexiang; Qiang, Bo; Zhang, Xiaoming; Greenleaf, James F; An, Kai-Nan; Amadio, Peter C; Zhao, Chunfeng

    2012-11-15

    Although a close relationship between carpal tunnel pressure and median nerve dysfunction has been found, the current methods for pressure measurements are invasive, using a catheter in the carpal canal to monitor the pressure. A noninvasive method for quantifying carpal tunnel pressure would be useful as an alternative to the catheter method. In this study, a simplified experimental model was developed to measure the shear wave speed in a canine Achilles tendon under different tunnel pressures. The results showed that the speed of waves through the inside-tunnel tendon had a linear relationship with the pressure in the tunnel (first measurement: r=0.966, Ppropagation speed. However, further validations in human cadavers and clinical subjects are necessary. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Ultra-High-Speed Travelling Wave Protection of Transmission Line Using Polarity Comparison Principle Based on Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-01-01

    Full Text Available The traditional polarity comparison based travelling wave protection, using the initial wave information, is affected by initial fault angle, bus structure, and external fault. And the relationship between the magnitude and polarity of travelling wave is ignored. Because of the protection tripping and malfunction, the further application of this protection principle is affected. Therefore, this paper presents an ultra-high-speed travelling wave protection using integral based polarity comparison principle. After empirical mode decomposition of the original travelling wave, the first-order intrinsic mode function is used as protection object. Based on the relationship between the magnitude and polarity of travelling wave, this paper demonstrates the feasibility of using travelling wave magnitude which contains polar information as direction criterion. And the paper integrates the direction criterion in a period after fault to avoid wave head detection failure. Through PSCAD simulation with the typical 500 kV transmission system, the reliability and sensitivity of travelling wave protection were verified under different factors’ affection.

  10. Effects of age and pathology on shear wave speed of the human rotator cuff.

    Science.gov (United States)

    Baumer, Timothy G; Dischler, Jack; Davis, Leah; Labyed, Yassin; Siegal, Daniel S; van Holsbeeck, Marnix; Moutzouros, Vasilios; Bey, Michael J

    2017-06-28

    Rotator cuff tears are common and often repaired surgically, but post-operative repair tissue healing, and shoulder function can be unpredictable. Tear chronicity is believed to influence clinical outcomes, but conventional clinical approaches for assessing tear chronicity are subjective. Shear wave elastography (SWE) is a promising technique for assessing soft tissue via estimates of shear wave speed (SWS), but this technique has not been used extensively on the rotator cuff. Specifically, the effects of age and pathology on rotator cuff SWS are not well known. The objectives of this study were to assess the association between SWS and age in healthy, asymptomatic subjects, and to compare measures of SWS between patients with a rotator cuff tear and healthy, asymptomatic subjects. SWE images of the supraspinatus muscle and intramuscular tendon were acquired from 19 asymptomatic subjects and 11 patients with a rotator cuff tear. Images were acquired with the supraspinatus under passive and active (i.e., minimal activation) conditions. Mean SWS was positively associated with age in the supraspinatus muscle and tendon under passive and active conditions (p ≤ 0.049). Compared to asymptomatic subjects, patients had a lower mean SWS in their muscle and tendon under active conditions (p ≤ 0.024), but no differences were detected under passive conditions (p ≥ 0.783). These findings identify the influences of age and pathology on SWS in the rotator cuff. These preliminary findings are an important step toward evaluating the clinical utility of SWE for assessing rotator cuff pathology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Spreading speed and travelling wave solutions of a partially sedentary population

    Science.gov (United States)

    Volkov, Darko; Lui, Roger

    2007-12-01

    In this paper, we extend the population genetics model of Weinberger (1978, Asymptotic behavior of a model in population genetics. Nonlinear Partial Differential Equations and Applications (J. Chadam ed.). Lecture Notes in Mathematics, vol. 648. New York: Springer, pp. 47-98.) to the case where a fraction of the population does not migrate after the selection process. Mathematically, we study the asymptotic behaviour of solutions to the recursion un+1 = Qg[un], where ... In the above definition of Qg, K is a probability density function and f behaves qualitatively like the Beverton-Holt function. Under some appropriate conditions on K and f, we show that for each unit vector{xi} [isin] Rd, there exists a c*g({xi}) which has an explicit formula and is the spreading speed of Qg in the direction{xi} . We also show that for each c [≥] c*g({xi}), there exists a travelling wave solution in the direction{xi} which is continuous if gf '(0) [≤] 1.

  12. Experimenting with End-Correction and the Speed of Sound

    Science.gov (United States)

    LoPresto, Michael C.

    2011-01-01

    What follows is an alternative to the standard tuning fork and quarter-wave tube speed of sound experiment. Rather than adjusting the water level in a glass or plastic tube to vary the length of an air column, a set of resonance tubes of different lengths is used. The experiment still demonstrates the principles of standing waves in air columns…

  13. Wave and wave-particle processes induced by interplanetary high-speed stream impact on the magnetosphere under conditions of the moderate and very low solar activity

    Science.gov (United States)

    Potapov, Alexander; Polyushkina, Tatyana

    2010-05-01

    Unusually prolonged minimum of solar activity in 2008-2009 gave to scientists a unique opportunity to retrace solar-magnetospheric phenomena in their pure form, without a superposition of concurrent events or extraneous disturbances. In this work, we study a wave aspect of the solar wind - magnetosphere interaction by way of two examples of high-speed streams flowing around the magnetosphere. One of these streams was observed in January 2005 when the solar activity was moderate during the declining phase of the 23rd sunspot cycle. The other event occurred in March 2009 against the background of very low solar activity. In the latter case we found a clear demonstration of direct penetration of the ULF waves from the solar wind into the magnetosphere. In the January 2005 event, however, indications of the direct wave penetration are far less evident. The reason is a high level of magnetic disturbance caused by an interplanetary shock wave forestalling the high speed stream in January 2005. In spite of different kinds of conditions for magnetospheric ULF wave generation in these two cases, both events launch similar chains of processes leading to enhancement of relativistic electron flux at the geosynchronous orbit within two days after a peak of a high-speed solar wind stream. This suggests that even with the very low solar activity the high energy particles can present problem for satellite electronics. The mechanisms of particles acceleration under the action of Alfvèn waves in the magnetosphere are discussed briefly. The work was partly supported by RFBR grants 09-06-00048 and 10-05-00661.

  14. Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles.

    Science.gov (United States)

    Gennisson, Jean-Luc; Catheline, Stefan; Chaffaï, Sana; Fink, Mathias

    2003-07-01

    From the measurement of a low frequency (50-150 Hz) shear wave speed, transient elastography evaluates the Young's modulus in isotropic soft tissues. In this paper, it is shown that a rod source can generate a low frequency polarized shear strain waves. Consequently this technique allows to study anisotropic medium such as muscle. The evidence of the polarization of low frequency shear strain waves is supported by both numeric simulations and experiments. The numeric simulations are based on theoretical Green's functions in isotropic and anisotropic media (hexagonal system). The experiments in vitro led on beef muscle proves the pertinent of this simple anisotropic pattern. Results in vivo on man biceps shows the existence of slow and fast shear waves as predicted by theory.

  15. Noninvasive measurement of wave speed of porcine cornea in ex vivo porcine eyes for various intraocular pressures.

    Science.gov (United States)

    Zhou, Boran; Sit, Arthur J; Zhang, Xiaoming

    2017-11-01

    The objective of this study was to extend an ultrasound surface wave elastography (USWE) technique for noninvasive measurement of ocular tissue elastic properties. In particular, we aim to establish the relationship between the wave speed of cornea and the intraocular pressure (IOP). Normal ranges of IOP are between 12 and 22mmHg. Ex vivo porcine eye balls were used in this research. The porcine eye ball was supported by the gelatin phantom in a testing container. Some water was pour into the container for the ultrasound measurement. A local harmonic vibration was generated on the side of the eye ball. An ultrasound probe was used to measure the wave propagation in the cornea noninvasively. A 25 gauge butterfly needle was inserted into the vitreous humor of the eye ball under the ultrasound imaging guidance. The needle was connected to a syringe. The IOP was obtained by the water height difference between the water level in the syringe and the water level in the testing container. The IOP was adjusted between 5mmHg and 30mmHg with a 5mmHg interval. The wave speed was measured at each IOP for three frequencies of 100, 150 and 200Hz. Finite element method (FEM) was used to simulate the wave propagation in the corneal according to our experimental setup. A linear viscoelastic FEM model was used to compare the experimental data. Both the experiments and the FEM analyses showed that the wave speed of cornea increased with IOP. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. One-Dimensional Simulation of the Pressure Wave near the Exit of a High-Speed Train Tunnel

    Institute of Scientific and Technical Information of China (English)

    杨宇光; 朱克勤; 席葆树

    2001-01-01

    The one-dimensional (1-D) unsteady flow induced by a high-speed train entering a tunnel isnumerically studied by the method of characteristics. The tube area is dependent on time and distance. Theenergy equation used by Kage et al. is corrected to avoid the conflict with the isentropic assumption. Theeffect of the tunnel hood on the pressure wave is studied near the tunnel exit. Results show that the tunnel hoodis useful in reducing the peak value and the time derivative of the pressure wave.``

  17. Diffusive KPP equations with free boundaries in time almost periodic environments: II. Spreading speeds and semi-wave solutions

    Science.gov (United States)

    Li, Fang; Liang, Xing; Shen, Wenxian

    2016-08-01

    In this series of papers, we investigate the spreading and vanishing dynamics of time almost periodic diffusive KPP equations with free boundaries. Such equations are used to characterize the spreading of a new species in time almost periodic environments with free boundaries representing the spreading fronts. In the first part of the series, we showed that a spreading-vanishing dichotomy occurs for such free boundary problems (see [16]). In this second part of the series, we investigate the spreading speeds of such free boundary problems in the case that the spreading occurs. We first prove the existence of a unique time almost periodic semi-wave solution associated to such a free boundary problem. Using the semi-wave solution, we then prove that the free boundary problem has a unique spreading speed.

  18. A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations

    Science.gov (United States)

    Tsai, V.C.

    2011-01-01

    It is known that GPS time series contain a seasonal variation that is not due to tectonic motions, and it has recently been shown that crustal seismic velocities may also vary seasonally. In order to explain these changes, a number of hypotheses have been given, among which thermoelastic and hydrology-induced stresses and strains are leading candidates. Unfortunately, though, since a general framework does not exist for understanding such seasonal variations, it is currently not possible to quickly evaluate the plausibility of these hypotheses. To fill this gap in the literature, I generalize a two-dimensional thermoelastic strain model to provide an analytic solution for the displacements and wave speed changes due to either thermoelastic stresses or hydrologic loading, which consists of poroelastic stresses and purely elastic stresses. The thermoelastic model assumes a periodic surface temperature, and the hydrologic models similarly assume a periodic near-surface water load. Since all three models are two-dimensional and periodic, they are expected to only approximate any realistic scenario; but the models nonetheless provide a quantitative framework for estimating the effects of thermoelastic and hydrologic variations. Quantitative comparison between the models and observations is further complicated by the large uncertainty in some of the relevant parameters. Despite this uncertainty, though, I find that maximum realistic thermoelastic effects are unlikely to explain a large fraction of the observed annual variation in a typical GPS displacement time series or of the observed annual variations in seismic wave speeds in southern California. Hydrologic loading, on the other hand, may be able to explain a larger fraction of both the annual variations in displacements and seismic wave speeds. Neither model is likely to explain all of the seismic wave speed variations inferred from observations. However, more definitive conclusions cannot be made until the model

  19. The Almost Global and Global Existence for Quasi-linear Wave Equations with Multiple-Propagation Speeds in High Dimensions

    Institute of Scientific and Technical Information of China (English)

    Yi DU; Zheng An YAO

    2011-01-01

    In this paper, we consider the Cauchy problem for systems of quasi-linear wave equations with multiple propagation speeds in spatial dimensions n ≥ 4. The problem when the nonlinearities depend on both the unknown function and their derivatives is studied. Based on some Klainerman- Sideris type weighted estimates and space-time L estimates, the results that the almost global existence for space dimensions n = 4 and global existence for n ≥ 5 of small amplitude solutions are presented.

  20. Effect of the architecture of the left ventricle on the speed of the excitation wave in muscle fibers

    Science.gov (United States)

    Nezlobinsky, T. V.; Pravdin, S. F.; Katsnelson, L. B.; Solovyova, O. E.

    2016-07-01

    It is known that preferential paths for the propagation of an electrical excitation wave in the human ventricular myocardium are associated with muscle fibers in tissue. The speed of the excitation wave along a fiber is several times higher than that across the direction of the fiber. To estimate the effect of the architecture and anisotropy of the myocardium of the left ventricle on the process of its electrical activation, we have studied the relation between the speed of the electrical excitation wave in a one-dimensional isolated myocardial fiber consisting of sequentially coupled cardiomyocytes and in an identical fiber located in the wall of a threedimensional anatomical model of the left ventricle. It has been shown that the speed of a wavefront along the fiber in the three-dimensional myocardial tissue is much higher than that in the one-dimensional fiber. The acceleration of the signal is due to the rotation of directions of fibers in the wall and to the position of the excitation wavefront with respect to the direction of this fiber. The observed phenomenon is caused by the approach of the excitable tissue with rotational anisotropy in its properties to a pseudoisotropic tissue.

  1. Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: Growing wave of increase in speed in synchronized flow.

    Science.gov (United States)

    Kerner, Boris S

    2015-12-01

    We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S→F instability. Whereas the S→F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S→F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S→F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S→F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S→F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S→F instability governs traffic breakdown-a phase transition from free flow to synchronized flow (F→S transition) at the bottleneck: The nucleation nature of the S→F instability explains the metastability of free flow with respect to an F→S transition at the bottleneck.

  2. Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: Growing wave of increase in speed in synchronized flow

    Science.gov (United States)

    Kerner, Boris S.

    2015-12-01

    We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S →F instability. Whereas the S →F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S →F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S →F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S →F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S →F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S →F instability governs traffic breakdown—a phase transition from free flow to synchronized flow (F →S transition) at the bottleneck: The nucleation nature of the S →F instability explains the metastability of free flow with respect to an F →S transition at the bottleneck.

  3. High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves.

    Science.gov (United States)

    Angstman, Nicholas B; Kiessling, Maren C; Frank, Hans-Georg; Schmitz, Christoph

    2015-01-01

    In blast-related mild traumatic brain injury (br-mTBI) little is known about the connections between initial trauma and expression of individual clinical symptoms. Partly due to limitations of current in vitro and in vivo models of br-mTBI, reliable prediction of individual short- and long-term symptoms based on known blast input has not yet been possible. Here we demonstrate a dose-dependent effect of shock wave exposure on C. elegans using shock waves that share physical characteristics with those hypothesized to induce br-mTBI in humans. Increased exposure to shock waves resulted in decreased mean speed of movement while increasing the proportion of worms rendered paralyzed. Recovery of these two behavioral symptoms was observed during increasing post-traumatic waiting periods. Although effects were observed on a population-wide basis, large interindividual variability was present between organisms exposed to the same highly controlled conditions. Reduction of cavitation by exposing worms to shock waves in polyvinyl alcohol resulted in reduced effect, implicating primary blast effects as damaging components in shock wave induced trauma. Growing worms on NGM agar plates led to the same general results in initial shock wave effect in a standard medium, namely dose-dependence and high interindividual variability, as raising worms in liquid cultures. Taken together, these data indicate that reliable prediction of individual clinical symptoms based on known blast input as well as drawing conclusions on blast input from individual clinical symptoms is not feasible in br-mTBI.

  4. Dynamics of shock waves and cavitation bubbles in bilinear elastic-plastic media, and the implications to short-pulsed laser surgery

    Science.gov (United States)

    Brujan, E.-A.

    2005-01-01

    The dynamics of shock waves and cavitation bubbles generated by short laser pulses in water and elastic-plastic media were investigated theoretically in order to get a better understanding of their role in short-pulsed laser surgery. Numerical simulations were performed using a spherical model of bubble dynamics which include the elastic-plastic behaviour of the medium surrounding the bubble, compressibility, viscosity, density and surface tension. Breakdown in water produces a monopolar acoustic signal characterized by a compressive wave. Breakdown in an elastic-plastic medium produces a bipolar acoustic signal, with a leading positive compression wave and a trailing negative tensile wave. The calculations revealed that consideration of the tissue elasticity is essential to describe the bipolar shape of the shock wave emitted during optical breakdown. The elastic-plastic response of the medium surrounding the bubble leads to a significant decrease of the maximum size of the cavitation bubble and pressure amplitude of the shock wave emitted during bubble collapse, and shortening of the oscillation period of the bubble. The results are discussed with respect to collateral damage in short-pulsed laser surgery.

  5. COMPUTER MODELING IN DEFORM-3D FOR ANALYSIS OF PLASTIC FLOW IN HIGH-SPEED HOT EXTRUSION OF BIMETALLIC FORMATIVE PARTS OF DIE TOOLING

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2015-01-01

    Full Text Available The modern development of industrial production is closely connected with the use of science-based and high technologies to ensure competitiveness of the manufactured products on the world market. There is also much tension around an energy- and resource saving problem which can be solved while introducing new technological processes and  creation of new materials that provide productivity increase through automation and improvement of tool life. Development and implementation of such technologies are rather often considered as time-consuming processes  which are connected with complex calculations and experimental investigations. Implementation of a simulation modelling for materials processing using modern software products serves an alternative to experimental and theoretical methods of research.The aim of this paper is to compare experimental results while obtaining bimetallic samples of a forming tool through the method of speed hot extrusion and the results obtained with the help of computer simulation using DEFORM-3D package and a finite element method. Comparative analysis of plastic flow of real and model samples has shown that the obtained models provide high-quality and reliable picture of plastic flow during high-speed hot extrusion. Modeling in DEFORM-3D make it possible to eliminate complex calculations and significantly reduce a number of experimental studies while developing new technological processes.

  6. Plastic Zone Analysis of Deep-Buried, Noncircular Tunnel and Application on the High-Speed Railway in the Karst Area

    Directory of Open Access Journals (Sweden)

    Hai Shi

    2017-01-01

    Full Text Available With the conformal mapping function provided by Verruijt, the outland of a noncircular tunnel can be mapped to a circular unit in the complex plane and then spread the analytic function into a Laurent series. The stress unified solution of oval and horseshoe cross section can be determined using Muskhelishvili’s complex variables function method. Subsequently, the solution can be taken into the Griffith strength failure criterion and determine the scale and shape of plastic zone in the tunnel surrounding rock. Aiming at the critical safety thickness between a concealed cave and tunnel in the karst area and determining whether the plastic zone of tunnel surrounding rock is connected with the plastic zone of cave as a judgment standard, the model of critical safety thickness among the concealed caves and tunnels is established. The numerical model is established in comparison with the computing method of rock plate critical safety thickness in actual engineering based on the Doumo tunnel engineering of Shanghai-Kunming (Guizhou segment high-speed railway. The following conclusions can be drawn: the analytical approximation method has less indexes, and the output of this method is approximately close to actual engineering and numerical analysis, in which it is reliable and rational.

  7. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    Science.gov (United States)

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  8. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    Science.gov (United States)

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  9. The generation of gravity-capillary solitary waves by a pressure source moving at a trans-critical speed

    Science.gov (United States)

    Masnadi, Naeem; Duncan, James H.

    2017-01-01

    The unsteady response of a water free surface to a localized pressure source moving at constant speed $U$ in the range $0.95c_\\mathrm{min} \\lesssim U \\leq 1.02 c_\\mathrm{min}$, where $c_\\mathrm{min}$ is the minimum phase speed of linear gravity-capillary waves in deep water, is investigated through experiments and numerical simulations. This unsteady response state, which consists of a V-shaped pattern behind the source and features periodic shedding of pairs of depressions from the tips of the V, was first observed qualitatively by Diorio et al. (Phys. Rev. Let., 103, 214502, 2009) and called state III. In the present investigation, cinematic shadowgraph and refraction-based techniques are utilized to measure the temporal evolution of the free surface deformation pattern downstream of the source as it moves along a towing tank, while numerical simulations of the model equation described by Cho et al. (J. Fluid Mech., 672, 288-306, 2011) are used to extend the experimental results over longer times than are possible in the experiments. From the experiments, it is found that the speed-amplitude characteristics and the shape of the depressions are nearly the same as those of the freely propagating gravity-capillary lumps of inviscid potential theory. The decay rate of the depressions is measured from their height-time characteristics, which are well fitted by an exponential decay law with an order 1 decay constant. It is found that the shedding period of the depression pairs decreases with increasing source strength and speed. As the source speed approaches $c_\\mathrm{min}$, this period tends to about 1~s for all source magnitudes. At the low-speed boundary of state III, a new response with unsteady asymmetric shedding of depressions is found. This response is also predicted by the model equation.

  10. Microscopic Theory of Traffic Flow Instability Governing Traffic Breakdown at Highway Bottlenecks: Growing Wave of Increase in Speed in Synchronized Flow

    CERN Document Server

    Kerner, Boris S

    2015-01-01

    We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability as an S$\\rightarrow$F instability. Whereas the S$\\rightarrow$F instability leads to a local {\\it increase in speed} (growing acceleration wave), in contrast, the classical traffic flow instability introduced in 50s--60s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local {\\it decrease in speed} (growing deceleration wave). We have found that the S$\\rightarrow$F instability can occur only, if there is a finite time delay in driver over-acceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S$\\rightarrow$F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that ...

  11. Minimal wave speed for a class of non-cooperative diffusion-reaction system

    Science.gov (United States)

    Zhang, Tianran; Wang, Wendi; Wang, Kaifa

    2016-02-01

    In this paper, we consider a class of non-cooperative diffusion-reaction systems, which include prey-predator models and disease-transmission models. The concept of weak traveling wave solutions is proposed. The necessary and sufficient conditions for the existence of such solutions are obtained by the Schauder's fixed-point theorem and persistence theory. The introduction of persistence theory is very technical and crucial. The LaSalle's invariance principle is applied to show that traveling wave solutions connect two equilibria. The nonexistence of traveling wave solutions is proved by introducing a negative one-sided Laplace transform. The results are applied to a prey-predator model and a disease-transmission model with specific interaction functions. We find that the profile of traveling wave solutions may depend on different eigenvalues according to the corresponding condition, which is a new phenomenon.

  12. A thermistor probe for measuring particle orbital speed in water waves

    National Research Council Canada - National Science Library

    Eagleson, P.S; van de Watering, W.P.M

    1964-01-01

    The development of a thermistor probe and the necessary additional electronic circuitry to measure temporal and spatial distribution of the magnitude of the orbital velocity in water waves is described...

  13. High-speed all-optical NAND/AND logic gates using four-wave mixing Bragg scattering.

    Science.gov (United States)

    Li, Kangmei; Ting, Hong-Fu; Foster, Mark A; Foster, Amy C

    2016-07-15

    A high-speed all-optical NAND logic gate is proposed and experimentally demonstrated using four-wave mixing Bragg scattering in highly nonlinear fiber. NAND/AND logic functions are implemented at two wavelengths by encoding logic inputs on two pumps via on-off keying. A 15.2-dB depletion of the signal is obtained for NAND operation, and time domain measurements show 10-Gb/s NAND/AND logic operations with open eye diagrams. The approach can be readily extended to higher data rates and transferred to on-chip waveguide platforms.

  14. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. I - Pressure distribution

    Science.gov (United States)

    Messiter, A. F.

    1980-01-01

    Asymptotic solutions are derived for the pressure distribution in the interaction of a weak normal shock wave with a turbulent boundary layer. The undisturbed boundary layer is characterized by the law of the wall and the law of the wake for compressible flow. In the limiting case considered, for 'high' transonic speeds, the sonic line is very close to the wall. Comparisons with experiment are shown, with corrections included for the effect of longitudinal wall curvature and for the boundary-layer displacement effect in a circular pipe.

  15. Particle acceleration at shock waves moving at arbitrary speed: the case of large scale magnetic field and anisotropic scattering

    CERN Document Server

    Morlino, G; Vietri, M

    2007-01-01

    A mathematical approach to investigate particle acceleration at shock waves moving at arbitrary speed in a medium with arbitrary scattering properties was first discussed in (Vietri 2003) and (Blasi & Vietri 2005}. We use this method and somewhat extend it in order to include the effect of a large scale magnetic field in the upstream plasma, with arbitrary orientation with respect to the direction of motion of the shock. We also use this approach to investigate the effects of anisotropic scattering on spectra and anisotropies of the distribution function of the accelerated particles.

  16. Analyzing the Impact of Increasing Mechanical Index and Energy Deposition on Shear Wave Speed Reconstruction in Human Liver.

    Science.gov (United States)

    Deng, Yufeng; Palmeri, Mark L; Rouze, Ned C; Rosenzweig, Stephen J; Abdelmalek, Manal F; Nightingale, Kathryn R

    2015-07-01

    Shear wave elasticity imaging (SWEI) has found success in liver fibrosis staging. This work evaluates hepatic SWEI measurement success as a function of push pulse energy using two mechanical index (MI) values (1.6 and 2.2) over a range of pulse durations. Shear wave speed (SWS) was measured in the livers of 26 study subjects with known or potential chronic liver diseases. Each measurement consisted of eight SWEI sequences, each with different push energy configurations. The rate of successful SWS estimation was linearly proportional to the push energy. SWEI measurements with higher push energy were successful in patients for whom standard push energy levels failed. The findings also suggest that liver capsule depth could be used prospectively to identify patients who would benefit from elevated output. We conclude that there is clinical benefit to using elevated acoustic output for hepatic SWS measurement in patients with deeper livers.

  17. High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves

    Directory of Open Access Journals (Sweden)

    Nicholas Baker Angstman

    2015-02-01

    Full Text Available In blast-related mild traumatic brain injury (br-mTBI little is known about the connections between initial trauma and expression of individual clinical symptoms. Partly due to limitations of current in vitro and in vivo models of br-mTBI, reliable prediction of individual short- and long-term symptoms based on known blast input has not yet been possible. Here we demonstrate a dose-dependent effect of shock wave exposure on C. elegans using shock waves that share physical characteristics with those hypothesized to induce br-mTBI in humans. Increased exposure to shock waves resulted in decreased mean speed of movement while increasing the proportion of worms rendered paralyzed. Recovery of these two behavioral symptoms was observed during increasing post-traumatic waiting periods. Although effects were observed on a population-wide basis, large interindividual variability was present between organisms exposed to the same highly controlled conditions. Reduction of cavitation by exposing worms to shock waves in polyvinyl alcohol resulted in reduced effect, implicating primary blast effects as damaging components in shock wave induced trauma. Growing worms on NGM agar plates led to the same general results in initial shock wave effect in a standard medium, namely dose-dependence and high interindividual variability, as raising worms in liquid cultures. Taken together, these data indicate that reliable prediction of individual clinical symptoms based on known blast input as well as drawing conclusions on blast input from individual clinical symptoms is not feasible in br-mTBI.

  18. Trends in significant wave height and surface wind speed in the China Seas between 1988 and 2011

    Science.gov (United States)

    Zheng, Chongwei; Zhang, Ren; Shi, Weilai; Li, Xin; Chen, Xuan

    2017-10-01

    Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed (WS) and significant wave height (SWH) in the China Seas over the period 1988-2011 using the Cross-Calibrated Multi-Platform (CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III (WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988-2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s-1 yr-1 and 1.52 cm yr-1, respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Niño and a significant increase in the occurrence of gale force winds in the region.

  19. Computational study of shock waves propagating through air-plastic-water interfaces

    CERN Document Server

    Del Razo, Mauricio J

    2015-01-01

    The following study is motivated by experimental studies in traumatic brain injury (TBI). Recent research has demonstrated that low intensity non-impact blast wave exposure frequently leads to mild traumatic brain injury (mTBI); however, the mechanisms connecting the blast waves and the mTBI remain unclear. Collaborators at the Seattle VA Hospital are doing experiments to understand how blast waves can produce mTBI. In order to gain insight that is hard to obtain by experimental means, we have developed conservative finite volume methods for interface-shock wave interaction to simulate these experiments. A 1D model of their experimental setup has been implemented using Euler equations for compressible fluids. These equations are coupled with a Tammann equation of state (EOS) that allows us to model compressible gas along with almost incompressible fluids or elastic solids. A hybrid HLLC-exact Eulerian-Lagrangian Riemann solver for Tammann EOS with a jump in the parameters has been developed. The model has sho...

  20. Shear Horizontal Wave Propagation Speed in Mylar Sheet and Coated Paper

    Science.gov (United States)

    Leppänen, M.; Karppinen, T.; Hæggström, E.; Stor-Pellinen, J.

    2006-03-01

    Soft plate-like membranes find application e.g. as pill or paper coatings, bio-filter membranes, and gas seals in food products. For these applications the integrity and the mechanical properties of the membrane are important. Mechanical properties of these products can be determined by stretching or bending tests, but such methods can damage these fragile products. We propose a rapid nondestructive acoustic method to estimate mechanical film characteristics with shear horizontal (in-plane shear) waves. A 23 kHz, 1-cycle square signal was excited into a thin foil with a piezoceramic pickup and received with an inductive pickup. The SNR (power) was 20 dB in 1 kHz -50 kHz bandwidth. This actuation-detection scheme can be used to excite in-plane longitudinal, shear and even elliptic waves in a thin foil. The method was validated by measuring in-plane shear wave and longitudinal wave time-of-flight TOF at different actuator-receiver separations and calculating the corresponding longitudinal and shear modulus. The samples were Mylar® sheet and coated paper. The anisotropy of MOE for Mylar sheet was close to the manufacturer specifications. For coated paper a maximum shear modulus anisotropy of 5% and a shear modulus dependence on temperature of 0.7 MPa/°C were found. Laser doppler vibrometry showed that the excited waves were confined in-plane.

  1. On the response of a water surface to a surface pressure source moving at trans-critical gravity-capillary wave speeds

    Science.gov (United States)

    Masnadi, Naeem; Cho, Yeunwoo; Duncan, James H.; Akylas, Triantaphyllos

    2015-11-01

    The non-linear response of a water free surface to a pressure source moving at speeds near the minimum speed of linear gravity-capillary waves (Cmin ~ 23 cm/s) is investigated with experiments and theory. In the experiments, waves are generated by a vertically oriented air-jet that moves at a constant speed over the water surface in a long tank. The 3-D surface shape behind the air-jet is measured using a cinematic refraction-based technique combined with an LIF technique. At towing speeds just below Cmin, an unsteady pattern is formed where localized depressions periodically appear in pairs and move away from the source along the arms of a downstream V-shaped pattern. This behavior is analogous to the periodic shedding of solitary waves upstream of a source moving at the maximum wave speed in shallow water. The gravity-capillary depressions are rapidly damped by viscosity and their speed-amplitude characteristics closely match those from inviscid calculations of gravity-capillary lumps. The shedding frequency of the lumps in the present experiments increases with both increasing towing speed and air-flow rate. Predictions of this behavior using a model equation that incorporates damping and a quadratic nonlinearity are in good agreement with the experiments. The partial support of the National Science Foundation under grant OCE0751853 is gratefully acknowledged.

  2. Surface Wave Speed of Functionally Graded Magneto-Electro-Elastic Materials with Initial Stresses

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-09-01

    Full Text Available The shear surface wave at the free traction surface of half- infinite functionally graded magneto-electro-elastic material with initial stress is investigated. The material parameters are assumed to vary ex- ponentially along the thickness direction, only. The velocity equations of shear surface wave are derived on the electrically or magnetically open circuit and short circuit boundary conditions, based on the equations of motion of the graded magneto-electro-elastic material with the initial stresses and the free traction boundary conditions. The dispersive curves are obtained numerically and the influences of the initial stresses and the material gradient index on the dispersive curves are discussed. The investigation provides a basis for the development of new functionally graded magneto-electro-elastic surface wave devices.

  3. Simultaneous Reconstructions of Absorption Density and Wave Speed with Photoacoustic Measurements

    CERN Document Server

    Kirsch, Andreas

    2011-01-01

    In this paper we propose an approach for \\emph{simultaneous} identification of the \\emph{absorption density} and the \\emph{speed of sound} by photoacoustic measurements. Experimentally our approach can be realized with sliced photoacoustic experiments. The mathematical model for such an experiment is developed and exact reconstruction formulas for both parameters are presented.

  4. Joint Occurrence Period of Wind Speed and Wave Height Based on Both Service Term and Risk Probability

    Institute of Scientific and Technical Information of China (English)

    DONG Sheng; FAN Dunqiu; TAO Shanshan

    2012-01-01

    Return periods calculated for different environmental conditions are key parameters for ocean platform design.Many codes for offshore structure design give no consideration about the correlativity among multi-loads and over-estimate design values.This frequently leads to not only higher investment but also distortion of structural reliability analysis.The definition of design return period in existing codes and industry criteria in China are summarized.Then joint retum periods of different ocean environmental parameters are determined from the view of service term and danger risk.Based on a bivariate equivalent maximum entropy distribution,joint design parameters are estimated for the concomitant wave height and wind speed at a site in the Bohai Sea.The calculated results show that even if the return period of each environmental factor,such as wave height or wind speed,is small,their combinations can lead to larger joint return periods.Proper design criteria for joint return period associated with concomitant environmental conditions will reduce structural size and lead to lower investment of ocean platforms for the exploitation of marginal oil field.

  5. Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms

    Science.gov (United States)

    Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.

    2011-01-01

    Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828

  6. Relationship between the estimated glomerular filtration rate and kidney shear wave speed values assessed by acoustic radiation force impulse elastography: a pilot study.

    Science.gov (United States)

    Bob, Flaviu; Bota, Simona; Sporea, Ioan; Sirli, Roxana; Popescu, Alina; Schiller, Adalbert

    2015-04-01

    The aim of the study was to establish the relationship between the estimated glomerular filtration rate (GFR) and kidney shear wave speed values assessed by acoustic radiation force impulse (ARFI) elastography. Our study included 104 patients with or without chronic kidney disease in which the kidney shear wave speed was evaluated by ARFI elastography and correlated with the estimated GFR. Five ARFI measurements were performed in the parenchyma of each kidney. A median value expressed as meters per second was calculated. Five valid ARFI elastographic measurements were obtained in the right kidney in all patients and in the left kidney in 97.1% of patients. The mean kidney shear wave speed values ± SD in the right and left kidneys were similar: 2.17 ± 0.81 versus 2.06 ± 0.75 m/s (P = .30). The mean kidney shear wave speed decreased with the decrease in the estimated GFR. Statistically significant differences were obtained only when kidney shear wave speed values obtained in patients with an estimated GFR of greater than 90 mL/min/1.73 m(2) were compared to values in patients with stage 4 (estimated GFR, 15-29 mL/min/1.73 m(2)) and stage 5 (estimated GFR, wave speed had 86.7% sensitivity, 48.3% specificity, a 22.1% positive predictive value, and a 95.6% negative predictive value (area under the receiver operating characteristic curve, 0.692; P = .008) for predicting the presence of an estimated GFR of less than 30 mL/min/1.73 m(2). Kidney shear wave speed values obtained by ARFI elastography decrease with the decrease in the estimated GFR. © 2015 by the American Institute of Ultrasound in Medicine.

  7. Engineering Rules for Optical Generation and Detection of High Speed Wireless Millimeter-wave Band Signals

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Zibar, Darko; Sambaraju, Rakesh

    2011-01-01

    We analyze the design requirements for 40 Gbit/s wireless generation and detection in the millimeter-wave band, combining baseband optical I/Q modulation and coherent detection with wireless optical heterodyning generation and single-side band electro-optical modulation....

  8. mm-Wave Hybrid Photonic Wireless Links for Ultra-High Speed Wireless Transmissions

    DEFF Research Database (Denmark)

    Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency range are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Large FCC spectrum allocations for wireless transmission...

  9. Roadside versus in-car speed support for green wave : Driving simulator study

    NARCIS (Netherlands)

    Duivenvoorden, K.; Schaap, N.; Horst, A.R.A. van der; Feenstra, P.; Arem, B. van

    2008-01-01

    A green wave on a road enables a driver to negotiate a sequence of signalized intersections without hitting red. This is accomplished by the coupling of a series of signalized intersections. This is an advantage for driver comfort, for flow and safety on the road network, and for the environment. Pr

  10. TRENDS IN THE DEVELOPMENT OF DETONATION ENGINES FOR HIGH-SPEED AEROSPACE AIRCRAFTS AND THE PROBLEM OF TRIPLE CONFIGURATIONS OF SHOCK WAVES. Part II - Research of counterpropagating shock waves and triple shock wave configurations

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2016-03-01

    Full Text Available The paper deals with current issues of the interference theory development of gas-dynamic discontinuities as applied to a problem of propulsion refinement for the air-spacecrafts, designed for hypersonic flight speeds. In the first part of the review we have presented the history of detonation study and different concepts of detonation engines, as well as air intakes designed for hypersonic flight speeds. The second part provides an overview of works on the interference theory development for gas-dynamic discontinuities. We report about classification of the gas-dynamic discontinuities, shock wave propagation, shock-wave structures and triple configurations of shock waves. We have shown that many of these processes are accompanied by a hysteresis phenomenon, there are areas of ambiguity; therefore, in the design of engines and air intakes optimal shock-wave structures should be provided and their sustainability should be ensured. Much attention has recently been given to the use of the air intakes in the shock-wave structures with the rereflection of shock waves and the interference of shock waves in the opposite directions. This review provides increased focus on it, contains references to landmark works, the last calculated and experimental results. Unfortunately, foreign surveys missed many landmark works of the Soviet and Russian researchers, as they were not published in English. At the same time, it was the Soviet school of gas dynamics that has formulated the interference theory of gas-dynamic discontinuities in its present form. To fill this gap is one of this review scopes. The review may be recommended for professionals, engineers and scientists working in the field of aerospace engineering.

  11. Two-dimensional Rarefaction Waves in the High-speed Two-phase Flow

    Science.gov (United States)

    Nakagawa, Masafumi; Harada, Atsushi

    Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. The purpose of the present study is to elucidate theoretically the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. Two-dimensional basic equations for the compressible two-phase flow are introduced considering the inter-phase momentum transfer. Sound velocities are obtained from these equations by using monochromatic wave approximation. Those depend on the relaxation time that determines the momentum transfer. The two-phase flow with large relaxation times has a frozen sound velocity, and with small one has an equilibrium sound velocity. Rarefaction waves which occurred behind the two-phase flow nozzle are calculated by the CIP method. Although the frozen Mach number, below one, controls these basic equations, the rarefaction waves appeared for small relaxation time. The Mach line behind which the expansion starts depends on the inlet velocity and the relaxation time. Those relationships are shown in this paper. The pressure expansion curves are only a function of the revolution angle around the corner of the nozzle outlet for the relaxation time less than 0.1. For the larger relaxation time, the pressure decays because of internal friction caused by inter phase momentum transfer, and the expansion curves are a function of not only the angle but also the flow direction. The calculated expansion curves are compared with the experimental ones

  12. Comparison between holographic interferometry and high-speed videography techniques in the study of the reflection of plane shock waves

    Science.gov (United States)

    Barbosa, Filipe J.; Skews, Beric W.

    1997-05-01

    Double exposure holographic interferometry and high speed laser shadowgraph photography and videography are used to investigate the mutual reflection of two plane shock waves. Normally research on the transition from regular to Mach reflection is undertaken by allowing a plane shock wave to impinge on a wedge. However due to the boundary layer growth on the wedge, regular reflection persists at wedge angles higher than that allowed for by inviscid shock wave theory. Several bifurcated shock tubes have been constructed, wherein an initially planar shock wave is split symmetrically into two and then recombined at the trailing edge of a wedge. The plane of symmetry acts as an ideal rigid wall eliminating thermal and viscous boundary layer effects. The flow visualization system used needs to provide high resolution information on the shockwave, slipstream, triple point and vortex positions and angles. Initially shadowgraph and schlieren methods, with a Xenon light source, were used. These results, while proving useful, are not of a sufficient resolution to measure the Mach stem and slipstream lengths accurately enough in order to determine the transition point between regular and Mach reflection. To obtain the required image resolution a 2 joule double pulse ruby laser, with a 30 ns pulse duration, was used to make holographic interferograms. The combined advantages of holographic interferometry and the 30 ns pulse laser allows one to obtain much sharper definition, and more qualitative as well as quantitative information on the flow field. The disadvantages of this system are: the long time taken to develop holograms, the difficulty of aligning the pulse laser and the fact that only one image per test is obtained. Direct contact shadowgraphs were also obtained using the pulse ruby laser to help determine triple point trajectory angles. In order to provide further information a one million frames per second CCD camera, which can take up to 10 superimposed images, was

  13. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Richard L [Los Alamos National Laboratory; Bartram, Brian D [Los Alamos National Laboratory; Sanchez, Nathaniel (nate) J [Los Alamos National Laboratory

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.

  14. Detonation Wave Profiles Measured in Plastic Bonded Explosives Using 1550 nm Photon Doppler Velocimetry

    Science.gov (United States)

    Gustavsen, R. L.; Bartram, B. D.; Sanchez, N. J.

    2009-12-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was changed from shot to shot in order to produce varied distances to detonation. In this way, we tuned the support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of ≈3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of ≈6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55° C. The respective VN spike state was 2.25±0.05 km/s in EDC-35 and 2.4±0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (>2.6 km/s) nor the reaction zone length (≪50 ns) in the HMX based explosives.

  15. Estimation of wave phase speed and nearshore bathymetry from video imagery

    Science.gov (United States)

    Stockdon, H.F.; Holman, R.A.

    2000-01-01

    A new remote sensing technique based on video image processing has been developed for the estimation of nearshore bathymetry. The shoreward propagation of waves is measured using pixel intensity time series collected at a cross-shore array of locations using remotely operated video cameras. The incident band is identified, and the cross-spectral matrix is calculated for this band. The cross-shore component of wavenumber is found as the gradient in phase of the first complex empirical orthogonal function of this matrix. Water depth is then inferred from linear wave theory's dispersion relationship. Full bathymetry maps may be measured by collecting data in a large array composed of both cross-shore and longshore lines. Data are collected hourly throughout the day, and a stable, daily estimate of bathymetry is calculated from the median of the hourly estimates. The technique was tested using 30 days of hourly data collected at the SandyDuck experiment in Duck, North Carolina, in October 1997. Errors calculated as the difference between estimated depth and ground truth data show a mean bias of -35 cm (rms error = 91 cm). Expressed as a fraction of the true water depth, the mean percent error was 13% (rms error = 34%). Excluding the region of known wave nonlinearities over the bar crest, the accuracy of the technique improved, and the mean (rms) error was -20 cm (75 cm). Additionally, under low-amplitude swells (wave height H ???1 m), the performance of the technique across the entire profile improved to 6% (29%) of the true water depth with a mean (rms) error of -12 cm (71 cm). Copyright 2000 by the American Geophysical Union.

  16. A new approach to the theory of heat conduction with finite wave speeds

    Directory of Open Access Journals (Sweden)

    Vito Antonio Cimmelli

    1991-05-01

    Full Text Available Relations between the physical models describing the heat conduction in solids and a phenomenological model leading to quasi-linear hyperbolic equations and systems of conservation laws are presented. A new semi-empirical temperature scale is introduced in terms of which a modified Fourier law is formulated. The hyperbolicity of the heat conduction equation is discussed together with some wave propagation problems.

  17. New gravity-capillary waves at low speeds. Part 2: Nonlinear geometries

    CERN Document Server

    Trinh, Philippe H

    2015-01-01

    When traditional linearised theory is used to study gravity-capillary waves produced by flow past an obstruction, the geometry of the object is assumed to be small in one or several of its dimensions. In order to preserve the nonlinear nature of the obstruction, asymptotic expansions in the low-Froude or low-Bond number limits can be derived, but here, the solutions are waveless to every order. This is because the waves are in fact, exponentially small, and thus beyond-all-orders of regular asymptotics; their formation is a consequence of the divergence of the asymptotic series and the associated Stokes Phenomenon. In Part 1, we showed how exponential asymptotics could be used to study the problem when the size of the obstruction is first linearised. In this paper, we extend the analysis to the nonlinear problem, thus allowing the full geometry to be considered at leading order. When applied to the classic problem of flow over a step, our analysis reveals the existence of six classes of gravity-capillary wave...

  18. Simulation and Experimental Analysis of Super High-Speed Grinding of Ductile Material

    Institute of Scientific and Technical Information of China (English)

    SHIMIZU; Jun; EDA; Hiroshi

    2002-01-01

    This study aims to reduce the work-affected layer of the machined surface by carrying out the grinding at the speed over static pr o pagation speed of plastic wave of ductile materials and also aims to clarify suc h super high-speed machining mechanism.This paper reports on the result obtain ed through the molecular dynamics simulations and experiments on the super-spee d grinding below and beyond static propagation speed of aluminum.From the simul ation results,it is verified that the plastic deformation ...

  19. Propagation properties of Rossby waves for latitudinal β-plane variations of f and zonal variations of the shallow water speed

    Directory of Open Access Journals (Sweden)

    C. T. Duba

    2012-05-01

    Full Text Available Using the shallow water equations for a rotating layer of fluid, the wave and dispersion equations for Rossby waves are developed for the cases of both the standard β-plane approximation for the latitudinal variation of the Coriolis parameter f and a zonal variation of the shallow water speed. It is well known that the wave normal diagram for the standard (mid-latitude Rossby wave on a β-plane is a circle in wave number (ky,kx space, whose centre is displaced −β/2 ω units along the negative kx axis, and whose radius is less than this displacement, which means that phase propagation is entirely westward. This form of anisotropy (arising from the latitudinal y variation of f, combined with the highly dispersive nature of the wave, gives rise to a group velocity diagram which permits eastward as well as westward propagation. It is shown that the group velocity diagram is an ellipse, whose centre is displaced westward, and whose major and minor axes give the maximum westward, eastward and northward (southward group speeds as functions of the frequency and a parameter m which measures the ratio of the low frequency-long wavelength Rossby wave speed to the shallow water speed. We believe these properties of group velocity diagram have not been elucidated in this way before. We present a similar derivation of the wave normal diagram and its associated group velocity curve for the case of a zonal (x variation of the shallow water speed, which may arise when the depth of an ocean varies zonally from a continental shelf.

  20. High-current quasi-square-wave millisecond light source for high-speed photography

    Science.gov (United States)

    Lin, Wenzheng; Jiang, Aibao; Zhuo, Meizhen

    1993-01-01

    A novel powerful strobe for high-speed photography is described which can replace the high power cw light source, to save energy and synchroflash with the camera. In this strobe, three- phase transformerless direct rectifier, high current SCR switch and pre-ionization technique are used so that the energy consumption goes down greatly, and its total weight is less than 25 Kg. Its principal parameters are as follows: average power, 50 KW; light emitting pulse width, 1 - 100 ms; pulse rise time, less than 0.05 ms; pulse fall time, less than 0.1 ms.

  1. Review of Millimeter-Wave Integrated Circuits With Low Power Consumption for High Speed Wireless Communications

    Science.gov (United States)

    Ellinger, Frank; Fritsche, David; Tretter, Gregor; Leufker, Jan Dirk; Yodprasit, Uroschanit; Carta, C.

    2017-01-01

    In this paper we review high-speed radio-frequency integrated circuits operating up to 210 GHz and present selected state-of-the-art circuits with leading-edge performance, which we have designed at our chair. The following components are discussed employing bipolar complementary metal oxide semiconductors (BiCMOS) technologies: a 200 GHz amplifier with 17 dB gain and around 9 dB noise figure consuming only 18 mW, a 200 GHz down mixer with 5.5 dB conversion gain and 40 mW power consumption, a 190 GHz receiver with 47 dB conversion gain and 11 dB noise figure and a 60 GHz power amplifier with 24.5 dBm output power and 12.9 % power added efficiency (PAE). Moreover, we report on a single-core flash CMOS analogue-to-digital converter (ADC) with 3 bit resolution and a speed of 24 GS/s. Finally, we discuss a 60 GHz on-off keying (OOK) BiCMOS transceiver chip set. The wireless transmission of data with 5 Gb/s at 42 cm distance between transmitter and receiver was verified by experiments. The complete transceiver consumes 396 mW.

  2. Determining the solar wind speed above active regions using remote radio-wave observations.

    Science.gov (United States)

    Bougeret, J L; Fainberg, J; Stone, R G

    1983-11-04

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  3. integral equation methods for the inverse problem with discontinuous wave speed

    OpenAIRE

    Aktosun, T.; Klaus, M.; vanderMee, C.

    1996-01-01

    The recovery of the coefficient H(x) in the one-dimensional generalized Schrodinger equation d(2) psi dx(2)+k(2)H(x)(2) psi=Q(x)psi, where H(x) is a positive, piecewise continuous function with positive limits H-+/- as x-->+(+/-infinity), is studied. The large-k asymptotics of the wave functions and the scattering coefficients are analyzed. A factorization formula is given expressing the total scattering matrix as a product of simpler scattering matrices. Using this factorization an algorithm...

  4. The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation

    Science.gov (United States)

    Aktosun, Tuncay; Gintides, Drossos; Papanicolaou, Vassilis G.

    2011-11-01

    The recovery of a spherically symmetric wave speed v is considered in a bounded spherical region of radius b from the set of the corresponding transmission eigenvalues for which the corresponding eigenfunctions are also spherically symmetric. If the integral of 1/v on the interval [0, b] is less than b, assuming that there exists at least one v corresponding to the data, it is shown that v is uniquely determined by the data consisting of such transmission eigenvalues and their ‘multiplicities’, where the ‘multiplicity’ is defined as the multiplicity of the transmission eigenvalue as a zero of a key quantity. When that integral is equal to b, the unique recovery is obtained when the data contain one additional piece of information. Some similar results are presented for the unique determination of the potential from the transmission eigenvalues with ‘multiplicities’ for a related Schrödinger equation.

  5. Production of Dynamic Frozen Waves: Controlling shape, location (and speed) of diffraction-resistant beams

    CERN Document Server

    Vieira, Tárcio A; Zamboni-Rached, Michel; Recami, Erasmo

    2015-01-01

    In recent times, we experimentally realized a quite efficient modeling of the shape of diffraction-resistant optical beams; thus generating for the first time the so-called Frozen Waves (FW), whose longitudinal intensity pattern can be arbitrarily chosen, within a prefixed space interval of the propagation axis. Such waves possess a host of potential applications: in medicine, biomedical optics, optical tweezers, atom guiding, remote sensing, tractor beams, optical communications or metrology, and other topics in photonic areas. In this work, we extend our theory of FWs -- which led to beams endowed with a static envelope -- through a dynamic modeling of the FWs, whose shape is now allowed to evolve in time in a predetermined way. And we experimentally create such dynamic FWs in Optics, via a computational holographic technique and a spatial light modulator. Experimental results are here presented for two cases of dynamic FWs, one of the zeroth and the other of higher order, the last one being the most intere...

  6. Bed Evolution under Rapidly Varying Flows by a New Method for Wave Speed Estimation

    Directory of Open Access Journals (Sweden)

    Khawar Rehman

    2016-05-01

    Full Text Available This paper proposes a sediment-transport model based on coupled Saint-Venant and Exner equations. A finite volume method of Godunov type with predictor-corrector steps is used to solve a set of coupled equations. An efficient combination of approximate Riemann solvers is proposed to compute fluxes associated with sediment-laden flow. In addition, a new method is proposed for computing the water depth and velocity values along the shear wave. This method ensures smooth solutions, even for flows with high discontinuities, and on domains with highly distorted grids. The numerical model is tested for channel aggradation on a sloping bottom, dam-break cases at flume-scale and reach-scale with flat bottom configurations and varying downstream water depths. The proposed model is tested for predicting the position of hydraulic jump, wave front propagation, and for predicting magnitude of bed erosion. The comparison between results based on the proposed scheme and analytical, experimental, and published numerical results shows good agreement. Sensitivity analysis shows that the model is computationally efficient and virtually independent of mesh refinement.

  7. High Speed Travelling Wave Single-Photon Detectors With Near-Unity Quantum Efficiency

    CERN Document Server

    Pernice, W; Minaeva, O; Li, M; Goltsman, G N; Sergienko, A V; Tang, H X

    2011-01-01

    Ultrafast, high quantum efficiency single photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. Close-to-unity photon detection efficiency is essential for scalable measurement-based quantum computation, quantum key distribution, and loophole-free Bell experiments. However, imperfect modal matching and finite photon absorption rates have usually limited the maximum attainable detection efficiency of single photon detectors. Here we demonstrate a superconducting nanowire detector atop nanophotonic waveguides and achieve single photon detection efficiency up to 94% at telecom wavelengths. Our detectors are fully embedded in a scalable, low loss silicon photonic circuit and provide ultrashort timing jitter of 18ps at multi-GHz detection rates. Exploiting this high temporal resolution we demonstrate ballistic photon transport in silicon ring resonators. The direct implementation of such a detector with high quantum efficiency, high detection speed and low ji...

  8. High-speed helicopter rotor noise - Shock waves as a potent source of sound

    Science.gov (United States)

    Farassat, F.; Lee, Yung-Jang; Tadghighi, H.; Holz, R.

    1991-01-01

    In this paper we discuss the problem of high speed rotor noise prediction. In particular, we propose that from the point of view of the acoustic analogy, shocks around rotating blades are sources of sound. We show that, although for a wing at uniform steady rectilinear motion with shocks the volume quadrupole and shock sources cancel in the far field to the order of 1/r, this cannot happen for rotating blades. In this case, some cancellation between volume quadrupoles and shock sources occurs, yet the remaining shock noise contribution is still potent. A formula for shock noise prediction is presented based on mapping the deformable shock surface to a time independent region. The resulting equation is similar to Formulation 1A of Langley. Shock noise prediction for a hovering model rotor for which experimental noise data exist is presented. The comparison of measured and predicted acoustic data shows good agreement.

  9. The Generation of Gravity-Capillary Solitary Waves by a Pressure Source Moving at a Trans-critical Speed

    CERN Document Server

    Masnadi, Naeem

    2016-01-01

    The unsteady response of a water free surface to a localized pressure source moving at constant speed $U$ in the range $0.95c_\\mathrm{min} \\lesssim U \\leq 1.02 c_\\mathrm{min}$, where $c_\\mathrm{min}$ is the minimum phase speed of linear gravity-capillary waves in deep water, is investigated through experiments and numerical simulations. This unsteady response state, which consists of a V-shaped pattern behind the source and features periodic shedding of pairs of depressions from the tips of the V, was first observed qualitatively by Diorio et al. (Phys. Rev. Let., 103, 214502, 2009) and called state III. In the present investigation, cinematic shadowgraph and refraction-based techniques are utilized to measure the temporal evolution of the free surface deformation pattern downstream of the source as it moves along a towing tank, while numerical simulations using the model equation proposed by Cho et al. (J. Fluid Mech., 672, 288-306, 2011) are used to extend the experimental results over longer times than are...

  10. Qualitative and quantitative analysis with a novel shear wave speed imaging for differential diagnosis of breast lesions

    Science.gov (United States)

    Yang, Yu-Ping; Xu, Xiao-Hong; Guo, Le-Hang; He, Ya-Ping; Wang, Dan; Liu, Bo-Ji; Zhao, Chong-Ke; Chen, Bao-Ding; Xu, Hui-Xiong

    2017-01-01

    To evaluate the diagnostic performance of a new two-dimensional shear wave speed (SWS) imaging (i.e. Toshiba shear wave elastography, T-SWE) in differential diagnosis of breast lesions. 225 pathologically confirmed breast lesions in 218 patients were subject to conventional ultrasound and T-SWE examinations. The mean, standard deviation and ratio of SWS values (m/s) and elastic modulus (KPa) on T-SWE were computed. Besides, the 2D elastic images were classified into four color patterns. The area under the receiver operating characteristic (AUROC) curve analysis was performed to evaluate the diagnostic performance of T-SWE in differentiation of breast lesions. Compared with other quantitative T-SWE parameters, mean value expressed in KPa had the highest AUROC value (AUROC = 0.943), with corresponding cut-off value of 36.1 KPa, sensitivity of 85.1%, specificity of 96.6%, accuracy of 94.2%, PPV of 87.0%, and NPV of 96.1%. The AUROC of qualitative color patterns in this study obtained the best performance (AUROC = 0.957), while the differences were not significant except for that of Eratio expressed in m/s (AUROC = 0.863) (P = 0.03). In summary, qualitative color patterns of T-SWE obtained the best performance in all parameters, while mean stiffness (36.05 KPa) provided the best diagnostic performance in the quantitative parameters. PMID:28102328

  11. Numerical dispersion, stability, and phase-speed for 3D time-domain finite-difference seismic wave propagation algorithms

    Science.gov (United States)

    Haney, M. M.; Aldridge, D. F.; Symons, N. P.

    2005-12-01

    Numerical solution of partial differential equations by explicit, time-domain, finite-difference (FD) methods entails approximating temporal and spatial derivatives by discrete function differences. Thus, the solution of the difference equation will not be identical to the solution of the underlying differential equation. Solution accuracy degrades if temporal and spatial gridding intervals are too large. Overly coarse spatial gridding leads to spurious artifacts in the calculated results referred to as numerical dispersion, whereas coarse temporal sampling may produce numerical instability (manifest as unbounded growth in the calculations as FD timestepping proceeds). Quantitative conditions for minimizing dispersion and avoiding instability are developed by deriving the dispersion relation appropriate for the discrete difference equation (or coupled system of difference equations) under examination. A dispersion relation appropriate for FD solution of the 3D velocity-stress system of isotropic elastodynamics, on staggered temporal and spatial grids, is developed. The relation applies to either compressional or shear wave propagation, and reduces to the proper form for acoustic propagation in the limit of vanishing shear modulus. A stability condition and a plane-wave phase-speed formula follow as consequences of the dispersion relation. The mathematical procedure utilized for the derivation is a modern variant of classical von Neumann analysis, and involves a 4D discrete space/time Fourier transform of the nine, coupled, FD updating formulae for particle velocity vector and stress tensor components. The method is generalized to seismic wave propagation within anelastic and poroelastic media, as well as sound wave propagation within a uniformly-moving atmosphere. A significant extension of the approach yields a stability condition for wave propagation across an interface between dissimilar media with strong material contrast (e.g., the earth's surface, the seabed

  12. The seasonal variations in the significant wave height and sea surface wind speed of the China’s seas

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chongwei; PAN Jing; TAN Yanke; GAO Zhansheng; RUI Zhenfeng; CHEN Chaohui

    2015-01-01

    Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation, and other activities. The seasonal characteristics of the long-term trends in China’s seas WS and SWH are determined based on 24 a (1988–2011) cross-calibrated, multi-platform (CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III (WW3) wave model forced by CCMP wind data. The results show the following. (1) For the past 24 a, the China’s WS and SWH exhibit a significant increasing trend as a whole, of 3.38 cm/(s·a) in the WS, 1.3 cm/a in the SWH. (2) As a whole, the increasing trend of the China’s seas WS and SWH is strongest in March-April-May (MAM) and December-January-February (DJF), followed by June-July-August (JJA), and smallest in September-October-November (SON). (3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF;the smallest area was apparent in SON. In contrast to the WS, almost all of China’s seas exhibited a significant increase in SWH in MAM and DJF;the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gulf, and the Gulf of Thailand exhibited a significant increase in all seasons. (4) The variations in China’s seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.

  13. Kidney shear wave speed values in subjects with and without renal pathology and inter-operator reproducibility of acoustic radiation force impulse elastography (ARFI--preliminary results.

    Directory of Open Access Journals (Sweden)

    Flaviu Bob

    Full Text Available to assess the inter-operator reproducibility of kidney shear wave speed, evaluated by means of Acoustic Radiation Force Impulse (ARFI elastography, and the factors which influence it.Our prospective pilot study included 107 subjects with or without kidney pathology in which kidney shear wave speed was evaluated by means of ARFI elastography. Intraclass correlation coefficient (ICC was used to assess ARFI elastography reproducibility.A strong agreement was obtained between kidney shear wave speed measurements obtained by the two operators: ICC = 0.71 (right kidney and 0.69 (left kidney. Smaller ICCs were obtained in "healthy subjects", as compared to patients with kidney diseases (0.68 vs. 0.75, in women as compared with men (0.59 vs. 0.78, in subjects younger than 50 years as compared with those aged at least 50 years (0.63 vs. 0.71, in obese as compared with normal weight and overweight subjects (0.36 vs. 0.66 and 0.78 and in case of measurements depth 6 cm as compared with those performed at a depth of 4-6 cm from the skin (0.32 and 0.60 vs. 0.81.ARFI elastography is a reproducible method for kidney shear wave speed assessment.

  14. Determining the TNT equivalence of gram-sized explosive charges using shock-wave shadowgraphy and high-speed video recording

    Science.gov (United States)

    Hargather, Michael

    2005-11-01

    Explosive materials are routinely characterized by their TNT equivalence. This can be determined by chemical composition calculations, measurements of shock wave overpressure, or measurements of the shock wave position vs. time. However, TNT equivalence is an imperfect criterion because it is only valid at a given radius from the explosion center (H. Kleine et al., Shock Waves 13(2):123-138, 2003). Here we use a large retroreflective shadowgraph system and a high-speed digital video camera to image the shock wave and record its location vs. time. Optical data obtained from different explosions can be combined to determine a characteristic shock wave x-t diagram, from which the overpressure and the TNT equivalent are determined at any radius. This method is applied to gram-sized triacetone triperoxide (TATP) charges. Such small charges can be used inexpensively and safely for explosives research.

  15. Characteristics of pressure wave in common rail fuel injection system of high-speed direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Herfatmanesh

    2016-05-01

    Full Text Available The latest generation of high-pressure common rail equipment now provides diesel engines possibility to apply as many as eight separate injection pulses within the engine cycle for reducing emissions and for smoothing combustion. With these complicated injection arrangements, optimizations of operating parameters for various driving conditions are considerably difficult, particularly when integrating fuel injection parameters with other operating parameters such as exhaust gas recirculation rate and boost pressure together for evaluating calibration results. Understanding the detailed effects of fuel injection parameters upon combustion characteristics and emission formation is therefore particularly critical. In this article, the results and discussion of experimental investigations on a high-speed direct injection light-duty diesel engine test bed are presented for evaluating and analyzing the effects of main adjustable parameters of the fuel injection system on all regulated emission gases and torque performance. Main injection timing, rail pressure, pilot amount, and particularly pilot timing have been examined. The results show that optimization of each of those adjustable parameters is beneficial for emission reduction and torque improvement under different operating conditions. By exploring the variation in the interval between the pilot injection and the main injection, it is found that the pressure wave in the common rail has a significant influence on the subsequent injection. This suggests that special attentions must be paid for adjusting pilot timing or any injection interval when multi-injection is used. With analyzing the fuel amount oscillation of the subsequent injections to pilot separation, it demonstrates that the frequency of regular oscillations of the actual fuel amount or the injection pulse width with the variation in pilot separation is always the same for a specified fuel injection system, regardless of engine speed

  16. Estimating the plastic strain with the use of acoustic anisotropy

    Science.gov (United States)

    Belyaev, A. K.; Lobachev, A. M.; Modestov, V. S.; Pivkov, A. V.; Polyanskii, V. A.; Semenov, A. S.; Tret'yakov, D. A.; Shtukin, L. V.

    2016-09-01

    Experimental verification is used to show that reference specimens and structure unloading do not permit obtaining an adequate estimate of plastic strain by measuring the acoustic anisotropy. Analytic estimates of the speed of propagation of a plane acoustic wave of various polarizations in an elastoplastic material in the direction orthogonal to the action of preliminary uniaxial stress are obtained. An analysis of the obtained relations reveala an advantage of using absolute values of the velocity of longitudinal and transverse waves for the plastic strain identification. In contrast to acoustic anisotropy, the velocities vary monotonically in a wider range of plastic strains. At the same time, the elastic strain does not affect the longitude wave velocity, which allows one to use the measurement results to estimate the character of strains.

  17. Three-dimensional elastic wave speeds in the northern Chile subduction zone: variations in hydration in the supraslab mantle

    Science.gov (United States)

    Comte, Diana; Carrizo, Daniel; Roecker, Steven; Ortega-Culaciati, Francisco; Peyrat, Sophie

    2016-11-01

    We use seismic tomography to investigate the state of the supraslab mantle beneath northern Chile, a part of the Nazca-South America Plate boundary known for frequent megathrust earthquakes and active volcanism. We performed a joint inversion of arrival times from earthquake generated body waves and phase delay times from ambient noise generated surface waves recorded by a combined 360 seismic stations deployed in northern Chile at various times over several decades. Our preferred model shows an increase in Vp/Vs by as much as 3 per cent from the subducting slab into the supraslab mantle throughout northern Chile. Combined with low values of both Vp and Vs at depths between 40 and 80 km, we attribute this increase in Vp/Vs to the serpentinization of the supraslab mantle in this depth range. The region of high Vp/Vs extends to 80-120 km depth within the supraslab mantle, but Vp and Vs both increase to normal to high values. This combination, along with the greater abundance of ambient seismicity and higher temperatures at these depths, suggest that conversion from basalt to eclogite in the slab accelerates and that the fluids expelled into the supraslab mantle contribute to partial melt. The corresponding maximum melt fraction is estimated to be about 1 per cent. Both the volume of the region affected by hydration and size of the wave speed contrasts are significantly larger north of ˜21°S. This latitude also delimits large coastal scarps and the eruption of ignimbrites in the north. Ambient seismicity is more abundant north of 21°S, and the seismic zone south of this latitude is offset to the east. The high Vp/Vs region in the north may extend along the slab interface to depths as shallow as 20 km, where it corresponds to a region of reduced seismic coupling and overlaps the rupture zone of the recent 2014 M8.2 Pisagua earthquake. A potential cause of these contrasts is enhanced hydration of the subducting oceanic lithosphere related to a string of seamounts

  18. Global existence and minimal decay regularity for the Timoshenko system: The case of non-equal wave speeds

    Science.gov (United States)

    Xu, Jiang; Mori, Naofumi; Kawashima, Shuichi

    2015-12-01

    As a continued work of [18], we are concerned with the Timoshenko system in the case of non-equal wave speeds, which admits the dissipative structure of regularity-loss. Firstly, with the modification of a priori estimates in [18], we construct global solutions to the Timoshenko system pertaining to data in the Besov space with the regularity s = 3 / 2. Owing to the weaker dissipative mechanism, extra higher regularity than that for the global-in-time existence is usually imposed to obtain the optimal decay rates of classical solutions, so it is almost impossible to obtain the optimal decay rates in the critical space. To overcome the outstanding difficulty, we develop a new frequency-localization time-decay inequality, which captures the information related to the integrability at the high-frequency part. Furthermore, by the energy approach in terms of high-frequency and low-frequency decomposition, we show the optimal decay rate for Timoshenko system in critical Besov spaces, which improves previous works greatly.

  19. Numerical investigation on an array of Helmholtz resonators for the reduction of micro-pressure waves in modern and future high-speed rail tunnel systems

    Science.gov (United States)

    Tebbutt, J. A.; Vahdati, M.; Carolan, D.; Dear, J. P.

    2017-07-01

    Previous research has proposed that an array of Helmholtz resonators may be an effective method for suppressing the propagation of pressure and sound waves, generated by a high-speed train entering and moving in a tunnel. The array can be used to counteract environmental noise from tunnel portals and also the emergence of a shock wave in the tunnel. The implementation of an array of Helmholtz resonators in current and future high-speed train-tunnel systems is studied. Wave propagation in the tunnel is modelled using a quasi-one-dimensional formulation, accounting for non-linear effects, wall friction and the diffusivity of sound. A multi-objective genetic algorithm is then used to optimise the design of the array, subject to the geometric constraints of a demonstrative tunnel system and the incident wavefront in order to attenuate the propagation of pressure waves. It is shown that an array of Helmholtz resonators can be an effective countermeasure for various tunnel lengths. In addition, the array can be designed to function effectively over a wide operating envelope, ensuring it will still function effectively as train speeds increase into the future.

  20. Deflagration Wave Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Laboratory

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

  1. Consideration on longitudinal bending moment in waves of a large high-speed ship; Ogata kosokutei no haro tatemage moment ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Deguchi, M.; Takimoto, T.; Kasuda, T.; Tozawa, S. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1996-04-10

    While high-speed ships are on a trend of increased speed, size and diversity, one of the most important items is a discussion on large high-speed ships with a total length of 100 m class on their longitudinal strength in waves. With such a background, a model ship intended of realizing a large high-speed was assumed, and verification of reliability in structural strength and establishment of a design method for this ship were intended. Therefore, oceanographic condition setting, design load setting, FEM analysis, and strength assessment were carried out. This paper reports the results of comparison with and consideration on conventional criteria and linear calculations, mainly the results of simulated calculations on non-linear hull movement/wave load which have been performed in discussing the loads. The result of the non-linear simulation is thought to have well simulated non-linearity characteristic to the ship. Conventional criteria which have been arranged on the record of use for small ships are considered impossible to be applied to large high-speed ships. Under such a situation, the simplified equations by Kaneko et al are judged effective in making an initial plan for this type of ship. 6 refs., 7 figs., 2 tabs.

  2. ANALYSIS OF WATER-HAMMER WAVE SPEED IN WATER-IN-OIL EMULSION%油包水型乳化液水击波速的分析

    Institute of Scientific and Technical Information of China (English)

    张贤明; 吴峰平; 陈彬; 潘诗浪; 张渊博; 王立存

    2011-01-01

    水击驻波场处理油包水型乳化液是一门新兴工艺,稳定驻波场的存在是破乳的关键,而水击压力波波速在驻波场形成中起着重要的作用。因此,为了更精确的求解水击波速,从W/O型乳化液两相流产生水击现象的特点出发,根据流体力学的连续性原理,推导其水击波波速的表达式,并与经典单相流水击波波速公式进行对比,通过MATLAB仿真分析与对比验证,表明此水击波速公式既适用于单相流水击波速的计算,也适用于两相流水击波速的求解,且W/O型乳化液中含水量越大,其波速就越大。%The application of standing wave field occurred by water-hammer in water-in-oil emulsion is a new technology.And the existence of stable standing wave field is the key to demulsification.The velocity of water-hammer pressure wave plays an important role in the formation of standing wave field.Therefore,in order to solve the water-hammer wave speed more accurately,embarked from the characteristicses of water-hammer produced in W/O emulsion which is the two-phase flow,according to the principle of continuous fluid,the expression of water-hammer wave speed is inferred and is compared with that of classical water-hammer wave speed in single-phase flow.The simulations with MATLAB software and the verifications by contrast indicate that this formula is not only suitable for the water-hammer of single-phase flow,but also the two-phase flow.And the more water it contents in the W/O emulsion,the higher wave speed.

  3. Speed evolution of fast CME/shocks with SOHO/LASCO, WIND/WAVES, IPS and in-situ WIND data: analysis of kilometric type-II emissions

    Directory of Open Access Journals (Sweden)

    A. Gonzalez-Esparza

    2009-10-01

    Full Text Available Fast CME/shocks propagating in the interplanetary medium can generate kilometric Type II (km-TII radio emissions at the local plasma frequency and/or its harmonic, so these radio emissions provide a means of remotely tracking CME/shocks. We apply a new analysis technique, using the frequency drift of km-TII spectrum obtained by the Thermal Noise Receiver (TNR of the WIND/WAVES experiment, to infer, at some adequate intervals, the propagation speed of six CME/shocks. We combine these results with previously reported speeds from coronagraph white light and interplanetary scintillation observations, and in-situ measurements, to study the temporal speed evolution of the six events. The speed values obtained by the km-TII analysis are in a reasonable agreement with the speed measurements obtained by other techniques at different heliocentric distance ranges. The combination of all the speed measurements show a gradual deceleration of the CME/shocks as they propagate to 1 AU. This new technique can be useful in studying the evolution of fast CME/shocks when adequate intervals of km-TII emissions are available.

  4. The diagnostic performance of shear wave speed (SWS) imaging for thyroid nodules with elasticity modulus and SWS measurement.

    Science.gov (United States)

    Wang, Dan; He, Ya-Ping; Zhang, Yi-Feng; Liu, Bo-Ji; Zhao, Chong-Ke; Fu, Hui-Jun; Wei, Qing; Xu, Hui-Xiong

    2017-01-06

    To evaluate the diagnostic performance of a new technique of shear wave speed (SWS) imaging for the diagnosis of thyroid nodule with elasticity modulus and SWS measurement. 322 thyroid nodules in 322 patients (216 benign nodules, 106 malignant nodules) were included in this study. All the nodules received conventional ultrasound (US) and SWS imaging (Aplio500, Toshiba Medical Systems, Japan) before fine-needle aspiration (FNA) and/or surgery. The values of E-max and E-mean with elastic modulus (61.27 ± 36.31 kPa and 31.89 ± 19.11 kPa) or SWS (4.45 ± 1.49 m/s and 3.26 ± 2.71 m/s) in malignant nodules were significantly higher than those in benign lesions (29.18 ± 18.62 kPa and 15.85 ± 6.96 kPa, or 2.98 ± 0.85 m/s and 2.19 ± 0.42 m/s, all P 0.05). In multivariate logistic regression analysis, E-max (m/s) with SWS was identified to be the strongest independent predictor for malignant nodules (odds ratio [OR] = 16.760), followed by poorly-defined margin (OR = 7.792), taller-than-wide shape (OR = 3.160), micro-calcification (OR = 2.422), and E-max (kPa) with elastic modulus (OR = 0.914). The AUC was 0.813 for E-max with SWS (m/s) and 0.796 for E-max with elastic modulus (kPa). With cut-off SWS value of 3.52 m/s in E-max, sensitivity of 69.8%, specificity of 81.5%, and accuracy of 77.6% were achieved. SWS imaging is a valuable tool in predicting thyroid malignancy. E-max with SWS measurement is the strongest independent predictor for thyroid malignancy.

  5. Plastic Surgery

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A A ... forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word "plastic" ...

  6. Measurements of current speed using an Aanderaa RCM4 current meter in the presence of surface waves

    Science.gov (United States)

    Sherwin, T. J.

    1988-02-01

    It is shown that the Aanderaa RCM4 with Savonius rotor integrates motions that have a period significantly smaller than the recording interval, thus causing a quantifiable amplification of the observed mean speed. The minimum speed that can be recorded is 2ν/;π, where ν is the amplitude of the speed of the oscillating motion. In general, the amplification factor decreases as the ratio of mean speed over ν increases. The theory appears to explain the difference in observations made by an Aanderaa RCM4 and a neighbouring EG&G VMCM when particle velocities due to swell are included. It is recommended that vector averaging current meters should be used for current measurement in the upper 50-100 m of shelf sea regions that experience small tidal currents and a large oceanic swell.

  7. Techniques for studying gravity waves and turbulence: Vertical wind speed power spectra from the troposphere and stratosphere obtained under light wind conditions

    Science.gov (United States)

    Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.

    1983-01-01

    A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.

  8. Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations

    Science.gov (United States)

    Guermond, Jean-Luc; Popov, Bojan

    2016-09-01

    This paper is concerned with the construction of a fast algorithm for computing the maximum speed of propagation in the Riemann solution for the Euler system of gas dynamics with the co-volume equation of state. The novelty in the algorithm is that it stops when a guaranteed upper bound for the maximum speed is reached with a prescribed accuracy. The convergence rate of the algorithm is cubic and the bound is guaranteed for gasses with the co-volume equation of state and the heat capacity ratio γ in the range (1 , 5 / 3 ].

  9. Strategic Control of 60 GHz Millimeter-Wave High-Speed Wireless Links for Distributed Virtual Reality Platforms

    Directory of Open Access Journals (Sweden)

    Joongheon Kim

    2017-01-01

    Full Text Available This paper discusses the stochastic and strategic control of 60 GHz millimeter-wave (mmWave wireless transmission for distributed and mobile virtual reality (VR applications. In VR scenarios, establishing wireless connection between VR data-center (called VR server (VRS and head-mounted VR device (called VRD allows various mobile services. Consequently, utilizing wireless technologies is obviously beneficial in VR applications. In order to transmit massive VR data, the 60 GHz mmWave wireless technology is considered in this research. However, transmitting the maximum amount of data introduces maximum power consumption in transceivers. Therefore, this paper proposes a dynamic/adaptive algorithm that can control the power allocation in the 60 GHz mmWave transceivers. The proposed algorithm dynamically controls the power allocation in order to achieve time-average energy-efficiency for VR data transmission over 60 GHz mmWave channels while preserving queue stabilization. The simulation results show that the proposed algorithm presents desired performance.

  10. Trends in surface wind speed and significant wave height as revealed by ERA-Interim wind wave hindcast in the Central Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.

    The Arabian Sea and Bay of Bengal (BoB) regions are special interested sea areas in the Northern Hemisphere with large seasonal variability. This study focused on the long-term wind and wave in the central BoB from 1979 to 2012 based on the ECMWF...

  11. Design of two-dimensional ultrasonic wave wind speed and wind direction sensor%二维超声波风速风向传感器设计

    Institute of Scientific and Technical Information of China (English)

    张东明; 曹晓钟; 马尚昌

    2015-01-01

    Wind speed is an important factor meteorological forecast,accurate forecasting of wind speed,has certain influence on people’s production and living. Two-dimensional ultrasonic wind speed sensor is one of the most important way of wind speed measurement in meteorology and industry,on the basis of traditional ultrasonic wave anemometer,accurately adjust by measuring temperature and humidity of air,compensate influence of environmental factors such as rain and fog,design a 200 kHz ultrasonic anemometer all-weather based on STM32 processor,it is proved through experiment that the device can realize accurate wind speed and wind direction measurement,all-weather measurement error is small.%风是气象预报中的一个重要的要素,准确地预报风速,对人们的生产生活都有一定的影响。二维超声风传感器是气象与工业中最重要的风速测量方式之一,在传统的超声波测风仪器的基础上,通过测量空气温湿度来进行准确的调节,补偿了雨雾等环境因素的影响,设计一种基于STM32处理器的200 kHz全天候超声测风仪,通过实验证明:该装置可以实现全天候精确测量风速风向,测量误差小。

  12. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. II - Wall shear stress

    Science.gov (United States)

    Liou, M. S.; Adamson, T. C., Jr.

    1980-01-01

    Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.

  13. Transferability of decompression wave speed measured by a small-diameter shock tube to full size pipelines and implications for determining required fracture propagation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Botros, K.K., E-mail: botrosk@novachem.co [NOVA Research and Technology Center, 2928 - 16 Street N.E., Calgary, Alberta T2E 7K7 (Canada); Geerligs, J. [NOVA Research and Technology Center, 2928 - 16 Street N.E., Calgary, Alberta T2E 7K7 (Canada); Rothwell, Brian [Brian Rothwell Consulting Inc., 100 Hamptons Link Northwest, Calgary, Alberta T3A 5V9 (Canada); Carlson, Lorne [Alliance Pipeline Ltd., Calgary, Alberta (Canada); Fletcher, Leigh [Welding and Pipeline Integrity, Bright, Victoria (Australia); Venton, Philip [Venton and Associates Pty Ltd, Bundanoon, NSW (Australia)

    2010-12-15

    The control of propagating ductile (or tearing) fracture is a fundamental requirement in the fracture control design of pipelines. The Battelle two-curve method developed in the early 1970s still forms the basis of the analytical framework used throughout the industry. GASDECOM is typically used for calculating decompression speed, and idealizes the decompression process as isentropic and one-dimensional, taking no account of frictional effects. While this approximation appears not to have been a major issue for large-diameter pipes and for moderate pressures (up to 12 MPa), there have been several recent full-scale burst tests at higher pressures and smaller diameters for which the measured decompression velocity has deviated progressively from the predicted values, in general towards lower velocities. The present research was focused on determining whether pipe diameter was a major factor that could limit the applicability of frictionless models such as GASDECOM. Since potential diameter effects are primarily related to wall friction, which in turn is related to the ratio of surface roughness-to-diameter, an experimental approach was developed based on keeping the diameter constant, at a sufficiently small value to allow for an economical experimental arrangement, and varying the internal roughness. A series of tests covering a range of nominal initial pressures from 10 to 21 MPa, and involving a very lean gas and three progressively richer compositions, were conducted using two specialized high-pressure shock tubes (42 m long, I.D. = 38.1 mm). The first is honed to an extremely smooth surface finish, in order to minimize frictional effects and better simulate the behaviour of larger-diameter pipelines, while the second has a higher internal surface roughness. The results show that decompression wave speeds in the rough tube are consistently slower than those in the smooth tube under the same conditions of mixture composition and initial pressure and temperature

  14. Plane Wave-Perturbative Method for Evaluating the Effective Speed of Sound in 1D Phononic Crystals

    Directory of Open Access Journals (Sweden)

    J. Flores Méndez

    2016-01-01

    Full Text Available A method for calculating the effective sound velocities for a 1D phononic crystal is presented; it is valid when the lattice constant is much smaller than the acoustic wave length; therefore, the periodic medium could be regarded as a homogeneous one. The method is based on the expansion of the displacements field into plane waves, satisfying the Bloch theorem. The expansion allows us to obtain a wave equation for the amplitude of the macroscopic displacements field. From the form of this equation we identify the effective parameters, namely, the effective sound velocities for the transverse and longitudinal macroscopic displacements in the homogenized 1D phononic crystal. As a result, the explicit expressions for the effective sound velocities in terms of the parameters of isotropic inclusions in the unit cell are obtained: mass density and elastic moduli. These expressions are used for studying the dependence of the effective, transverse and longitudinal, sound velocities for a binary 1D phononic crystal upon the inclusion filling fraction. A particular case is presented for 1D phononic crystals composed of W-Al and Polyethylene-Si, extending for a case solid-fluid.

  15. An analysis of intrinsic variations of low-frequency shear wave speed in a stochastic tissue model: the first application for staging liver fibrosis

    Science.gov (United States)

    Wang, Yu; Wang, Min; Jiang, Jingfeng

    2017-02-01

    Shear wave elastography is increasingly being used to non-invasively stage liver fibrosis by measuring shear wave speed (SWS). This study quantitatively investigates intrinsic variations among SWS measurements obtained from heterogeneous media such as fibrotic livers. More specifically, it aims to demonstrate that intrinsic variations in SWS measurements, in general, follow a non-Gaussian distribution and are related to the heterogeneous nature of the medium being measured. Using the principle of maximum entropy (ME), our primary objective is to derive a probability density function (PDF) of the SWS distribution in conjunction with a lossless stochastic tissue model. Our secondary objective is to evaluate the performance of the proposed PDF using Monte Carlo (MC)-simulated shear wave (SW) data against three other commonly used PDFs. Based on statistical evaluation criteria, initial results showed that the derived PDF fits better to MC-simulated SWS data than the other three PDFs. It was also found that SW fronts stabilized after a short (compared with the SW wavelength) travel distance in lossless media. Furthermore, in lossless media, the distance required to stabilize the SW propagation was not correlated to the SW wavelength at the low frequencies investigated (i.e. 50, 100 and 150 Hz). Examination of the MC simulation data suggests that elastic (shear) wave scattering became more pronounced when the volume fraction of hard inclusions increased from 10 to 30%. In conclusion, using the principle of ME, we theoretically demonstrated for the first time that SWS measurements in this model follow a non-Gaussian distribution. Preliminary data indicated that the proposed PDF can quantitatively represent intrinsic variations in SWS measurements simulated using a two-phase random medium model. The advantages of the proposed PDF are its physically meaningful parameters and solid theoretical basis.

  16. High-speed camera observation of multi-component droplet coagulation in an ultrasonic standing wave field

    Science.gov (United States)

    Reißenweber, Marina; Krempel, Sandro; Lindner, Gerhard

    2013-12-01

    With an acoustic levitator small particles can be aggregated near the nodes of a standing pressure field. Furthermore it is possible to atomize liquids on a vibrating surface. We used a combination of both mechanisms and atomized several liquids simultaneously, consecutively and emulsified in the ultrasonic field. Using a high-speed camera we observed the coagulation of the spray droplets into single large levitated droplets resolved in space and time. In case of subsequent atomization of two components the spray droplets of the second component were deposited on the surface of the previously coagulated droplet of the first component without mixing.

  17. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...

  18. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  19. Seasonal variation of speed and width from kinematic parameters of mode-1 nonlinear internal waves in the northeastern East China Sea

    Science.gov (United States)

    Cho, Chomgun; Nam, SungHyun; Song, Heechun

    2016-08-01

    To better understand the statistical and theoretical characteristics of nonlinear internal waves (NLIWs) in the broad continental shelf of the northeastern East China Sea (ECS), historical hydrographic data collected over 50 years between 1962 and 2011 are analyzed to calculate monthly climatology. Based on KdV and extended KdV models under the two-layer approximation (i.e., mode-1 NLIWs), the monthly climatology for propagating speed and characteristic width is constructed, ranging from 0.8 to 1.2 m s-1 and from O(102) to O(103) m, respectively. The result is consistent with a few previous in situ observations in the region. When NLIWs originating in the southeastern slope area approach the shallower regime (northwestward propagation), they propagate more slowly with neither break nor extinction, but with a shorter width, since both the Iribarren and Ostrovsky numbers are small (Ir ≪ 0.45 and Os ≪ 1, respectively). Limitations of the two-layered KdV-type models are discussed (e.g., an importance of mode-2 waves) in the context of occasional extension of the low-salinity Changjiang Discharged Water onto the area, which implies distinct effects on the kinematic parameters of NLIWs in the ECS.

  20. Attenuation of low-frequency electromagnetic wave in the thin sheath enveloping a high-speed vehicle upon re-entry

    Science.gov (United States)

    Liu, DongLin; Li, XiaoPing; Liu, YanMing; Xie, Kai; Bai, BoWen

    2017-02-01

    Low-frequency (LF) electromagnetic (EM) waves are suggested as potentially solving "radio blackout" caused by a plasma sheath enveloping a high-speed vehicle on re-entry. However, the traditional plasma absorption theory neglects the fact that the plasma sheath is electrically small compared to LF EM wavelengths. To understand clearly the attenuation of such waves through the plasma sheath, different attenuation mechanisms for the electric field (SE) and magnetic field (SH) were studied using the equivalent circuit approach. Analytical expressions were derived by modeling the plasma sheath as a spherical shell, and numerical simulations were performed to validate the effectiveness of the expressions. SE and SH are calculated for various plasma parameter settings; the EM wave attenuations obtained from plasma absorption theory are used for comparison. Results show that, instead of SE and SH being equal in the plasma absorption theory, SE and SH are no longer the same for electrically small sizes. Whereas |SH| is close to that from plasma absorption theory, |SE| is much higher. Further analysis shows that |SH| is a function of the ratio of electron density (ne) and collision frequency (ve) and increases with increasing ne/ve. Numerical simulations with radio-attenuation-measurement-C-like vehicle's plasma sheath parameters are performed and the results show that the magnetic field attenuation in the front part of the vehicle is much lower than in the rear. So it is suggested to place the magnetic loop antenna in the very front part of the vehicle. Finally, SH at different frequencies are calculated using plasma sheath parameter values simulating the re-entry phase of a radio-attenuation measurement-C vehicle and results show that such a vehicle might overcome radio blackout during the entire re-entry phase if systems operating below 3 MHz and above the L-band are combined with a lower-frequency system working below Earth's ionosphere and a higher-frequency system

  1. The Influence of Water on Seismic Wave Speeds and Attenuation in the Upper Mantle: an update from the Laboratory

    Science.gov (United States)

    Cline, C. J., II; David, E. C.; Jackson, I.; Faul, U.; Berry, A.

    2015-12-01

    A fine-grained synthetic olivine (Fo90) polycrystal, doped with ~0.04 wt. % TiO2, has been prepared with ~70 wt. ppm H2O accommodated in the remarkably stable Ti-clinohumite defect typical of natural olivines from the Earth's generally water-undersaturated upper mantle (Berry et al., 2005). A precision-ground specimen of this material, sleeved in Pt tubing within a mild-steel jacket, was tested in torsional forced oscillation at seismic frequencies (mHz-Hz) and temperatures to 1200 °C, under 200 MPa confining pressure. The shear modulus was observed to decrease systematically with increasing oscillation period and temperature, accompanied by monotonically increasing dissipation, which are characteristic of absorption band or high-temperature-background behaviour. In a previous preliminary report, the new data were compared with the model of Jackson and Faul (Phys. Earth Planet. Interiors, 2010) for a suite of essentially anhydrous Ti-free olivine polycrystals, evaluated at the 25 μm grain size of the hydrous titaniferous olivine specimen, showing that the latter is vastly more dissipative than its anhydrous equivalent (by an order of magnitude at 1200 °C) and correspondingly lower in shear modulus. The results of additional experiments now better constrain the mechanical behaviour of the enclosing Pt sleeve and allow direct comparison with data for an anhydrous titaniferous olivine of comparable grain size. The latest results confirm a very strong influence of water on seismic wave attenuation, even under the water-undersaturated conditions expected to prevail in the Earth's upper mantle.

  2. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2010-07-15

    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  3. Plastic Jellyfish.

    Science.gov (United States)

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  4. Dynamic behaviors of a Zr-based bulk metallic glass under ramp wave and shock wave loading

    Directory of Open Access Journals (Sweden)

    Binqiang Luo

    2015-06-01

    Full Text Available Dynamic behaviors of Zr51Ti5Ni10Cu25Al9 bulk metallic glass were investigated using electric gun and magnetically driven isentropic compression device which provide shock and ramp wave loading respectively. Double-wave structure was observed under shock compression while three-wave structure was observed under ramp compression in 0 ∼ 18GPa. The HEL of Zr51Ti5Ni10Cu25Al9 is 8.97 ± 0.61GPa and IEL is 8.8 ± 0.3GPa, respectively. Strength of Zr51Ti5Ni10Cu25Al9 estimated from HEL is 5.0 ± 0.3GPa while the strength estimated from IEL is 3.6 ± 0.1GPa. Shock wave velocity versus particle velocity curve of Zr51Ti5Ni10Cu25Al9 under shock compression appears to be bilinear and a kink appears at about 18GPa. The Lagrangian sound speed versus particle velocity curve of Zr51Ti5Ni10Cu25Al9 under ramp wave compression exhibits two discontinuances and are divided to three regions: elastic, plastic-I and plastic-II. The first jump-down occurs at elastic-plastic transition and the second appears at about 17GPa. In elastic and plastic-I regions, Lagrangian sound speed increases linearly with particle velocity, respectively. Characteristic response of sound speed in plastic-I region disagree with shock result in the same pressure region(7GPa ∼ 18GPa, but is consistent with shock result at higher pressure(18-110GPa.

  5. 3mm波铁氧体高速开关仿真设计%Simulation design of 3-mm wave ferrite high-speed switch

    Institute of Scientific and Technical Information of China (English)

    尹久红; 何绍强; 闫欢; 蒋运石; 胡艺缤; 丁敬垒

    2016-01-01

    According to the requirementof 3-mm wave radar, the ferrite switch scheme of the corresponding band is proposed. Through analysis on the principle and scheme,simulation and optimization design, processing technology, the ferrite high-speed switch was obtained featureing low insertion loss, fast switching time, low power consumption, high reliability. The ferrite switch has such good working performance in 3-mm band as VSMR of higher than 1.16, insertion lossα+≤0.58dB, isolationα―≥22dB 22dB and response timet≤2μs, which is of conference for the furthersimulation, design and process on the millimeter wave ferrite switch.%针对目前3mm波雷达要求,提出了相应频段的铁氧体开关方案。通过原理与方案分析、仿真优化设计和加工工艺的探索设计制作了一种具有插损低、开关转换时间快、功耗低和可靠性高等优点的3mm铁氧体高速开关。所研制的铁氧体开关在3mm频段内工作性能良好,性能为:输入电压驻波比VSWR≤1.16,正向损耗(插损)α+≤0.58dB,反向损耗(隔离度)α―≥22dB,开关响应时间 t≤2μs,为后续毫米波的仿真研究、加工技术手段提供了一定的方向与参考。

  6. Shock wave interactions with liquid sheets

    Science.gov (United States)

    Jeon, H.; Eliasson, V.

    2017-04-01

    Shock wave interactions with a liquid sheet are investigated by impacting planar liquid sheets of varying thicknesses with a planar shock wave. A square frame was designed to hold a rectangular liquid sheet, with a thickness of 5 or 10 mm, using plastic membranes and cotton wires to maintain the planar shape and minimize bulge. The flat liquid sheet, consisting of either water or a cornstarch and water mixture, was suspended in the test section of a shock tube. Incident shock waves with Mach numbers of M_s = 1.34 and 1.46 were considered. A schlieren technique with a high-speed camera was used to visualize the shock wave interaction with the liquid sheets. High-frequency pressure sensors were used to measure wave speed, overpressure, and impulse both upstream and downstream of the liquid sheet. Results showed that no transmitted shock wave could be observed through the liquid sheets, but compression waves induced by the shock-accelerated liquid coalesced into a shock wave farther downstream. A thicker liquid sheet resulted in a lower peak overpressure and impulse, and a cornstarch suspension sheet showed a higher attenuation factor compared to a water sheet.

  7. Design of plastic wave drive gears using the example of the WAVE DRIVE {sup registered} gear; Die Auslegung von Wellgetrieben aus Kunststoff am Beispiel des WAVE DRIVE {sup registered} -Getriebes

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, K.

    2004-07-01

    Daily we are using a lot of devices whose functions are accomplished by smallish electromotive actuators. For their functions these devices must rely on according gear units. The application range for such electromotive actuators comprises simple electrical appliances like pieces of furniture, air conditioning technology, medical and optical devices and last but not least many devices in the automotive industry. Against this background wave-drive-gears turn out to be a suitable draft. These gear units are working as strain-wave gears, which is the same principle harmonic drive gears use. Strain wave gears are particularly suited when large gear transmission ratios are needed. However, for this solution only thermoplastic material will be used. Very low weight and cost is characteristic for these gears. The wave- drive gear consists essentially of three parts: an elliptical formed shaft, a flexible tooth element (flexible spline) and a thermoplastic ring with internal teeth (circular spline). The kinematics of strain wave gears do not allow for an application of the classical toothing law. This law demands for a pure roll off the teeth. In strain wave gears sliding between the teeth occur. In case of the gear principle there are some advantages: high precision, coaxial composition and high gear ratios in one step. In addition the manufacturing process - injection moulding - guarantees the design engineer a great freedom in the designing phase. First the Kinematic and forces in the gear unit will be described and explained. Based on the model for forces and moments it was possible to extract those parts of the gear, where the stiffness was considerably reformed which consider peculiarities of these gears. Simulations with the finite element method aided the development of an optimal geometry. In the result a series of geometry suggestions appeared which promised essential improvements for efficiency and transmitted moments. This will facilitate a statement about the

  8. Calculating Speed of Sound

    Science.gov (United States)

    Bhatnagar, Shalabh

    2017-01-01

    Sound is an emerging source of renewable energy but it has some limitations. The main limitation is, the amount of energy that can be extracted from sound is very less and that is because of the velocity of the sound. The velocity of sound changes as per medium. If we could increase the velocity of the sound in a medium we would be probably able to extract more amount of energy from sound and will be able to transfer it at a higher rate. To increase the velocity of sound we should know the speed of sound. If we go by the theory of classic mechanics speed is the distance travelled by a particle divided by time whereas velocity is the displacement of particle divided by time. The speed of sound in dry air at 20 °C (68 °F) is considered to be 343.2 meters per second and it won't be wrong in saying that 342.2 meters is the velocity of sound not the speed as it's the displacement of the sound not the total distance sound wave covered. Sound travels in the form of mechanical wave, so while calculating the speed of sound the whole path of wave should be considered not just the distance traveled by sound. In this paper I would like to focus on calculating the actual speed of sound wave which can help us to extract more energy and make sound travel with faster velocity.

  9. Prospective Assessment of Correlation between US Acoustic Radiation Force Impulse and MR Elastography in a Pediatric Population: Dispersion of US Shear-Wave Speed Measurement Matters.

    Science.gov (United States)

    Trout, Andrew T; Dillman, Jonathan R; Xanthakos, Stavra; Kohli, Rohit; Sprague, Garrett; Serai, Suraj; Mahley, Alana D; Podberesky, Daniel J

    2016-11-01

    Purpose To evaluate the correlation between ultrasonographic (US) point shear-wave elastography (SWE) and magnetic resonance (MR) elastography liver shear-wave speed (SWS) measurements in a pediatric population and to determine if US data dispersion affects this relationship. Materials and Methods Institutional review board approval was obtained for this HIPAA-compliant investigation; informed consent and patient assent (as indicated) were obtained. Patients (age range, 0-21 years) undergoing clinical liver MR elastography between July 2014 and November 2015 were prospectively enrolled. Patients underwent two-dimensional gradient-recalled-echo 1.5-T MR elastography with point SWE performed immediately before or immediately after MR elastography. Spearman rank correlation coefficients were calculated to assess the relationship and agreement between point SWE and MR elastography SWS measurements. Uni- and multivariate logistic regression were performed to identify predictors of US data dispersion, with the best multivariate model selected based on Akaike information criterion. Results A total of 55 patients (24 female) were enrolled (mean age, 14.0 years ± 3.9 (standard deviation) (range, 3.5-21.4 years). There was fair correlation between point SWE and MR elastography SWS values for all patients (ρ = 0.33, P = .016). Correlation was substantial, however, when including only patients with minimal US data dispersion (n = 26, ρ = 0.61, P = .001). Mean body mass index (BMI) was significantly lower in patients with minimal US data dispersion than in those with substantial US data dispersion (25.4 kg/m(2) ± 7.8 vs 32.3 kg/m(2) ± 8.3, P = .003). At univariate analysis, BMI (odds ratio, 1.12; 95% confidence interval [CI]: 1.03, 1.21; P = .006) and abdominal wall thickness (odds ratio, 2.50; 95% CI: 1.32, 4.74; P = .005) were significant predictors of US data dispersion. In the best multivariate model, BMI was the only significant predictor (odds ratio, 1.11; 95% CI: 1

  10. Human Structural Plasticity at Record Speed

    Science.gov (United States)

    Johansen-Berg, Heidi; Baptista, Cassandra Sampaio; Thomas, Adam G.

    2012-01-01

    How rapidly does learning shape our brains? A new study using diffusion magnetic resonance imaging in both humans and rats suggests that just two hours of spatial learning is sufficient to change brain structure. PMID:22445333

  11. Relating Cortical Wave Dynamics to Learning and Remembering

    Directory of Open Access Journals (Sweden)

    Eduardo Mercado III

    2014-12-01

    Full Text Available Electrical waves propagate across sensory and motor cortices in stereotypical patterns. These waves have been described as potentially facilitating sensory processing when they travel through sensory cortex, as guiding movement preparation and performance when they travel across motor cortex, and as possibly promoting synaptic plasticity and the consolidation of memory traces, especially during sleep. Here, an alternative theoretical framework is suggested that integrates Pavlovian hypotheses about learning and cortical function with concepts from contemporary proceduralist theories of memory. The proposed framework postulates that sensory-evoked cortical waves are gradually modified across repeated experiences such that the waves more effectively differentiate sensory events, and so that the waves are more likely to reverberate. It is argued that the qualities of cortical waves—their origins, form, intensity, speed, periodicity, extent, and trajectories —are a function of both the structural organization of neural circuits and ongoing reverberations resulting from previously experienced events. It is hypothesized that experience-dependent cortical plasticity, both in the short- and long-term, modulates the qualities of cortical waves, thereby enabling individuals to make progressively more precise distinctions between complex sensory events, and to reconstruct components of previously experienced events. Unlike most current neurobiological theories of learning and memory mechanisms, this hypothesis does not assume that synaptic plasticity, or any other form of neural plasticity, serves to store physical records of previously experienced events for later reactivation. Rather, the reorganization of cortical circuits may alter the potential for certain wave patterns to arise and persist. Understanding what factors determine the spatiotemporal dynamics of cortical waves, how structural changes affect their qualities, and how wave dynamics

  12. Geosat altimeter derived sea surface wind speeds and significant wave heights for the north Indian Ocean and their comparison with in situ data

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Vaithiyanathan, R.; Almeida, A.M.; Santanam, K.; Rao, L.V.G.; Sarkar, A.; Kumar, R.; Gairola, R.M.; Gohil, B.S.

    coded maps, showing the distribution of mean monthly values of wind and wave parameters over 2.5 degrees square grids. Altimeter derived wind and wave parameters are compared with (1) winds and waves obtained through ships of opportunity and documented...

  13. Plastics Technology.

    Science.gov (United States)

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  14. Correlation analysis of apparent seismic wave speeds and gas parameters in front of the coal roadway%巷道前方煤体波速与瓦斯参数相关分析研究

    Institute of Scientific and Technical Information of China (English)

    汪志军; 刘盛东; 张兴元

    2012-01-01

    为了获取掘进巷道前方煤体地震波速度和瓦斯参数间的对应关系,以阳泉五矿为实施矿井.采用矿井地震波速度超前探测方法对掘进煤巷进行探测,通过初至波拾取获得地震波原始记录中纵、横波速,并与巷道前方30m范围内平均瓦斯参数作相关分析.分析结果表明:一定条件下,煤体瓦斯含量越高,其地震波纵、横波速度越低.运用曲线拟合对纵、横波视速度与瓦斯绝对涌出量和瓦斯浓度进行拟合发现:纵、横波视速度与瓦斯绝对涌出量间存在△P=-4.6415Vp-2.7048Vs+16.1353的负线性关系;纵、横波视速度与瓦斯浓度间存在η=-0.9302Vp-0.5704Vs+3.3132的负线性关系,并对线性拟合结果进行验证表明:在误差允许范围内,计算值与实测值基本吻合.最后计算得到适用于太原组15#煤层及变质程度更高煤层的视速度瓦斯预警指标:Vp=2.00m/ms和Vs=0.73 m/ms.%In order to find the relationships between apprarent seismic wave speeds and gas parameters in the drilling coal roadway. The fifth mine of YangQuan is chosen to be the testing mine. Mine Seismic Speed Detection Method is used for advanced detection. The apparent speeds of P-wave and S-wave are gained by picking up first break in the original seismic records. The average gas parameters of the 30 meters range in front of the drilling roadway are calculated. Then the correlation analysis of apparent speeds and average gas parameters are done. The results indicate that the higher the average gas parameters are the slower the apparent speeds would be under certain conditions. The curve fitting is used to finding the linear relationship between them. Arid the curve fitting results show that there is a negative formula(△P=-4. 6415Vp-2. 7048VS+16. 1353) between apparent speeds of P-wave and S-wave and absolute amount of gas emission. There is a similar formula (η=-0. 9302Vp-0. 5704Vs+3. 3132) between apparent speeds of P-wave and S-wave and

  15. Stress wave propagation in a composite beam subjected to transverse impact.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang; Song, Bo; Jin, Huiqing

    2010-08-01

    Composite materials, particularly fiber reinforced plastic composites, have been extensively utilized in many military and industrial applications. As an important structural component in these applications, the composites are often subjected to external impact loading. It is desirable to understand the mechanical response of the composites under impact loading for performance evaluation in the applications. Even though many material models for the composites have been developed, experimental investigation is still needed to validate and verify the models. It is essential to investigate the intrinsic material response. However, it becomes more applicable to determine the structural response of composites, such as a composite beam. The composites are usually subjected to out-of-plane loading in applications. When a composite beam is subjected to a sudden transverse impact, two different kinds of stress waves, longitudinal and transverse waves, are generated and propagate in the beam. The longitudinal stress wave propagates through the thickness direction; whereas, the propagation of the transverse stress wave is in-plane directions. The longitudinal stress wave speed is usually considered as a material constant determined by the material density and Young's modulus, regardless of the loading rate. By contrast, the transverse wave speed is related to structural parameters. In ballistic mechanics, the transverse wave plays a key role to absorb external impact energy [1]. The faster the transverse wave speed, the more impact energy dissipated. Since the transverse wave speed is not a material constant, it is not possible to be calculated from stress-wave theory. One can place several transducers to track the transverse wave propagation. An alternative but more efficient method is to apply digital image correlation (DIC) to visualize the transverse wave propagation. In this study, we applied three-pointbending (TPB) technique to Kolsky compression bar to facilitate

  16. Speeding Up

    Institute of Scientific and Technical Information of China (English)

    YU SHUJUN

    2010-01-01

    In the wake of the global financial crisis, China has amazed the world with the speed of its economic recovery. But what has been even more surprising is the speed of its railway evolution. The unveiling of the 1,069-km Wuhan-Guangzhou High-speed Railway on December 26, 2009 pushed China's high-speed rail sys-tem-the total mileage, the average speed and the technology-to rank first in the world almost overnight.

  17. Plastic bronchitis

    National Research Council Canada - National Science Library

    Singhi, Anil Kumar; Vinoth, Bharathi; Kuruvilla, Sarah; Sivakumar, Kothandam

    2015-01-01

    Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics...

  18. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  19. Plastic Bridge

    Institute of Scientific and Technical Information of China (English)

    履之

    1994-01-01

    Already ubiquitous in homes and cars, plastic is now appearing inbridges. An academic-industrial consortium based at the University ofCalifornia in San Diego is launching a three-year research program aimed atdeveloping the world’s first plastic highway bridge, a 450-foot span madeentirely from glass-,carbon,and polymer-fiber-reinforced composite mate-rials, the stuff of military aircraft. It will cross Interstate 5 to connect thetwo sides of the school’s campus.

  20. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  1. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  2. Flexural waves in fluid-filled tubes subject to axial impact

    OpenAIRE

    2008-01-01

    We experimentally studied the propagation of coupled fluid stress waves and tube flexural waves generated through projectile impact along the axis of a water-filled tube. We tested mild steel tubes, 38–40 mm inner diameter and wall thicknesses of 0.8 mm, 6.4 mm, and 12.7 mm. A steel impactor was accelerated using an air cannon and struck a polycarbonate buffer placed on top of the water surface within the tube. Elastic flexural waves were observed for impact speeds of 5–10 m/s and plastic wav...

  3. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  4. On the wave induced responses for a high-speed hydrofoil catamaran. Part 2. Cabin connected to hull by spring and response to vibration; Suichuyokutsuki kosoku sodotei no harochu oto ni tsuite. 2. Dokuritsu kozogata cabin to yodo oto

    Energy Technology Data Exchange (ETDEWEB)

    Nobukawa, H.; Kitamura, M.; Kawamura, T. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1996-04-10

    A high-speed hydrofoil catamaran under development has such a structure that an independent cabin is mounted on catamaran hulls, the cabin is connected with the hulls by using four soft springs, and hydrofoils are attached to the front and rear of the cabin. The structural design conception was as follows: the self-weight of the cabin is supported by lifting power of the hydrofoils while the boat is cruising; longitudinal motions of the catamaran hulls are absorbed by soft spring struts to make the motions more difficult to be transmitted into the cabin; and vibration excited by engines rotating at high speeds, attached to rear of the catamaran hulls, is not transmitted directly to the cabin structurally. A towing experiment was carried out by using divided models of about 1/10 scale in counter waves and regular waves to investigate their vibration response characteristics in waves. Furthermore, an experimental boat made of aluminum alloy with about 1/3 scale of the design boat was attached with composite structural struts made of springs and rubber parts to perform cruising experiments on an actual sea area. As a result, it was found that vibration excited by main engines in the catamaran hulls is transmitted very little to the cabin. 2 refs., 10 figs., 1 tab.

  5. Effect of different plasticizers on the structure and properties of TPS under the condition of high-speed mixing%高速混合条件下不同增塑剂对热塑性淀粉结构及性能的影响

    Institute of Scientific and Technical Information of China (English)

    孟令; 曹龙奎

    2011-01-01

    目的:研究在一定高速混合温度下增塑剂种类对材料的结构与性能产生的影响,为今后TPS在降解材料领域的应用提供依据.方法:通过高速混合的方法制得三种不同增塑剂(甘油、甲酰胺、尿素)增塑的热塑性淀粉(TPS)样品,对保存在室温及65RH%湿度下的样品的各项性能进行测试.结果:SEM结果说明:增塑剂能在一定程度上破坏和改变淀粉颗粒的形态.XRD测试表明:甲酰胺塑化的TPS(FPTPS)和尿素塑化的TPS(UPTPS)的耐回生性能好于甘油塑化的TPS(GPTPS).TG测试表明:三种塑化剂塑化的热塑性淀粉的热稳定性次序为甘油甲酰胺>甘油.结论:甲酰胺和尿素作为淀粉增塑剂,其塑化的热塑性淀粉的综合性能要优于甘油.%Purpose:The influences of the type of plasticizers on the structure and properties were studied in a certain temperature of high-speed mixing, in order to supply valuable information for the application of TPS as degradable material.Methods: The TPS materials with three different plasticizers ( glycerol, formamide, urea) were produced by high-speed mixing.The samples used in various tests were stored under normal temperature and 65RH% relative humidity.Results:SEM suggested that plasticizers can be damaged and change the form of starch granules to a certain extent.Results of XRD demonstrated that the retrogradation-resistant properties of the FPTPS and the UPTPS was better than the GPTPS.TG showed that the thermal stability of the TPS of three kinds of plasticizer plasticized was glycerol < formamide < urea.FTIR revealed the ability of forming hydrogen bonds between the three plasticizers and starch was: urea > formamide > glycerol.Conclusion: Comprehensive performance of the thermoplastic starch which formamide and urea plasticized was superior to glycerol.

  6. PLASTICITY AND NON-LINEAR ELASTIC STRAINS

    Science.gov (United States)

    conditions existing in plane waves in an extended medium to give the time rate of change of stress as a function of the time rate of change of strain, the stress invariants, the total strain and the plastic strain. (Author)

  7. Interpretation of the Isabella High Wave-Speed Anomaly as the Partially Delaminated High-Density Root of the Southern Sierra Nevada Batholith, California

    Science.gov (United States)

    Saleeby, J.; Le Pourhiet, L.

    2012-12-01

    runs is a chain of events that initiates with the basal thermal perturbation and load of the arclogite root inducing Rayleigh-Taylor (RT) instability within the peridotitic lithosphere, as well as the development of a lower crustal channel along the eastern margin of root, which draws lower crust into the eastern Sierra region from the adjacent Basin and Range. These lead to a lithospheric break-off event that corresponds to the ca. 10 Ma inception of the Sierra Nevada microplate, and which further promotes the east to west delamination of the arclogite root. Initial topography is shown to influence the asymmetry of delamination. Much of our model experimentation consists of testing the influence of crustal rheology on model results. We find that a relatively weak crust for the entire microplate best reproduces rock uplift and tectonic subsidence observations, as well as the timing and source characteristics of observed volcanism. We apply the findings of our 2-D models to 3-D relationships across the southern Sierra region in order to elucidate the time transgressive patterns in uplift, subsidence, volcanism and shallow thermal anomalies in relation to the 3-D delamination of the root, and the production of the higher Vp core of the anomaly. These relations suggest a significant compositional component to the core area of the anomaly (deformed arclogite slab), while the peridotitic envelope produces a broad thermally-induced wave-speed anomaly.

  8. WaveNet

    Science.gov (United States)

    2015-10-30

    generates wave and wind roses and histograms of directional wave data required to define the wave climate for Corps projects. Five published technical...on the CIRP wiki: http://cirpwiki.info/wiki/Main_Page Application of Products Projected Benefits Documentation Points of Contact CIRP Website Figure 2. Display of time series of wave height ( blue ) and wind speed (red)

  9. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  10. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 1: Pressure distribution. Part 2: Wall shear stress. Part 3: Simplified formulas for the prediction of surface pressures and skin friction

    Science.gov (United States)

    Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.

    1980-01-01

    An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.

  11. Plastic Bronchitis.

    Science.gov (United States)

    Rubin, Bruce K

    2016-09-01

    Plastic bronchitis is an uncommon and probably underrecognized disorder, diagnosed by the expectoration or bronchoscopic removal of firm, cohesive, branching casts. It should not be confused with purulent mucous plugging of the airway as seen in patients with cystic fibrosis or bronchiectasis. Few medications have been shown to be effective and some are now recognized as potentially harmful. Current research directions in plastic bronchitis research include understanding the genetics of lymphatic development and maldevelopment, determining how abnormal lymphatic malformations contribute to cast formation, and developing new treatments. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  13. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  14. Plastic zonnecellen

    NARCIS (Netherlands)

    Roggen, Marjolein

    1998-01-01

    De zonnecel van de toekomst is in de maak. Onderzoekers van uiteenlopend pluimage werken eendrachtig aan een plastic zonnecel. De basis is technisch gelegd met een optimale, door invallend licht veroorzaakte, vorming van ladingdragers binnen een composiet van polymeren en buckyballs. Nu is het zaak

  15. The Cannabinoid Receptor CB1 Interacts with the WAVE1 Complex and Plays a Role in Actin Dynamics and Structural Plasticity in Neurons.

    Science.gov (United States)

    Njoo, Christian; Agarwal, Nitin; Lutz, Beat; Kuner, Rohini

    2015-10-01

    The molecular composition of the cannabinoid type 1 (CB1) receptor complex beyond the classical G-protein signaling components is not known. Using proteomics on mouse cortex in vivo, we pulled down proteins interacting with CB1 in neurons and show that the CB1 receptor assembles with multiple members of the WAVE1 complex and the RhoGTPase Rac1 and modulates their activity. Activation levels of CB1 receptor directly impacted on actin polymerization and stability via WAVE1 in growth cones of developing neurons, leading to their collapse, as well as in synaptic spines of mature neurons, leading to their retraction. In adult mice, CB1 receptor agonists attenuated activity-dependent remodeling of dendritic spines in spinal cord neurons in vivo and suppressed inflammatory pain by regulating the WAVE1 complex. This study reports novel signaling mechanisms for cannabinoidergic modulation of the nervous system and demonstrates a previously unreported role for the WAVE1 complex in therapeutic applications of cannabinoids.

  16. TRENDS IN THE DEVELOPMENT OF DETONATION ENGINES FOR HIGH-SPEED AEROSPACE AIRCRAFTS AND THE PROBLEM OF TRIPLE CONFIGURATIONS OF SHOCK WAVES. Part I. Research of detonation engines

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2016-01-01

    Full Text Available We consider current problems of improving propulsion systems of highly supersonic air-space vehicles. In the first part, we review historic developments and list the landmark scientific papers. Classification of detonation engines is presented with detailed consideration of rotation detonation engines and continuous detonation engines. Experimental results on detonation, which are of particular importance for the design of detonation engines, are discussed. The second part of the paper provides an overview of the development in detonation theory, mathematical modelling, and numerical simulation. We focus on the interference of shock waves with formation of triple points, regular and irregular reflection of shock waves, existence of multiple solutions and the resulting appearance of hysteresis. The relevance and importance of triple shock wave configurations for the development of new types of air intakes and detonation jet engines is demonstrated.

  17. Plastic Surgery Statistics

    Science.gov (United States)

    ... PSN PSEN GRAFT Contact Us News Plastic Surgery Statistics Plastic surgery procedural statistics from the American Society of Plastic Surgeons. Statistics by Year Print 2016 Plastic Surgery Statistics 2015 ...

  18. Forecasting Solar Wind Speeds

    CERN Document Server

    Suzuki, T K

    2006-01-01

    By explicitly taking into account effects of Alfven waves, I derive from a simple energetics argument a fundamental relation which predicts solar wind (SW) speeds in the vicinity of the earth from physical properties on the sun. Kojima et al. recently found from their observations that a ratio of surface magnetic field strength to an expansion factor of open magnetic flux tubes is a good indicator of the SW speed. I show by using the derived relation that this nice correlation is an evidence of the Alfven wave which accelerates SW in expanding flux tubes. The observations further require that fluctuation amplitudes of magnetic field lines at the surface should be almost universal in different coronal holes, which needs to be tested by future observations.

  19. Plastic bronchitis

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singhi

    2015-01-01

    Full Text Available Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics. They are ominous with poor prognosis. Sometimes, infection or airway reactivity may provoke cast bronchitis as a two-step insult on a vulnerable vascular bed. In such instances, aggressive management leads to longer survival. This report of cast bronchitis discusses its current understanding.

  20. Measurement of the Speed of Gravity

    Institute of Scientific and Technical Information of China (English)

    ZHU Yin

    2011-01-01

    From the Liénard-Wiechert potential in both the gravitational field and the electromagnetic field,it is shown that the propagation speed of gravitational field (waves) can be tested by comparing the measured speed of gravitational force with the measured speed of Coulomb force.

  1. In situ local shock speed and transit shock speed

    Directory of Open Access Journals (Sweden)

    S. Watari

    Full Text Available A useful index for estimating the transit speeds was derived by analyzing interplanetary shock observations. This index is the ratio of the in situ local shock speed and the transit speed; it is 0.6–0.9 for most observed shocks. The local shock speed and the transit speed calculated for the results of the magnetohydrodynamic simulation show good agreement with the observations. The relation expressed by the index is well explained by a simplified propagation model assuming a blast wave. For several shocks the ratio is approximately 1.2, implying that these shocks accelerated during propagation in slow-speed solar wind. This ratio is similar to that for the background solar wind acceleration.

    Keywords. Interplanetary physics (Flare and stream dynamics; Interplanetary shocks; Solar wind plasma

  2. On the wave induced responses for a high-speed hydrofoil catamaran. Part 1. Cabin connected to hull by spring and its riding comfort in waves; Suichuyokutsuki kosoku sodotei no harochu oto ni tsuite. 1. Dokuritsu kozogata cabin to harochu norigokochi

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K.; Nobukawa, H.; Honda, Y. [Hiroshima University, Hiroshima (Japan)

    1996-04-10

    Riding comfort in a cabin of a high-speed hydrofoil catamaran was evaluated by comparing with that in ordinary boats as to acceleration in the vertical direction as one of the responses of the catamaran in waves. First, an equation of motion in waves was introduced, and considerations were given while comparing the result of calculations in regular waves with that of model experiments. Comparison and verification were also performed on response characteristics in irregular waves. A new-type boat, whose cabin is supported with four springs, and provided with hydrofoils in front and rear thereof, was verified to have much less motions of the catamaran bodies and the cabin than in the ordinary boats both in regular and irregular waves. This result was proven by numerical calculations and model experiments. Hydrofoils affect largely the reduction in motions. The correlational data between the results of calculations and experiments are considered sufficient to provide design data, although there are still some points to be improved. These results revealed that the riding comfort of the new-type boat has been improved over that in the ordinary boats. 6 refs., 11 figs., 3 tabs.

  3. Free space millimeter wave-coupled electro-optic high speed nonlinear polymer phase modulator with in-plane slotted patch antennas.

    Science.gov (United States)

    Park, D H; Pagán, V R; Murphy, T E; Luo, J; Jen, A K-Y; Herman, W N

    2015-04-06

    We report in-plane slotted patch antenna-coupled electro-optic phase modulators with a carrier-to-sideband ratio (CSR) of 22 dB under an RF power density of 120 W/m(2) and a figure of merit of 2.0 W(-1/2) at the millimeter wave frequencies of 36-37 GHz based on guest-host type of second-order nonlinear polymer SEO125. CSR was improved more than 20 dB by using a SiO(2) protection layer. We demonstrate detection of 3 GHz modulation of the RF carrier. We also derive closed-form expressions for the modulated phase of optical wave and carrier-to-sideband ratio. Design, simulation, fabrication, and experimental results are discussed.

  4. From bell-shaped solitary wave to W/M-shaped solitary wave solutions in an integrable nonlinear wave equation

    Indian Academy of Sciences (India)

    Aiyong Chen; Jibin Li; Chunhai Li; Yuanduo Zhang

    2010-01-01

    The bifurcation theory of dynamical systems is applied to an integrable non-linear wave equation. As a result, it is pointed out that the solitary waves of this equation evolve from bell-shaped solitary waves to W/M-shaped solitary waves when wave speed passes certain critical wave speed. Under different parameter conditions, all exact explicit parametric representations of solitary wave solutions are obtained.

  5. Wave Solutions

    CERN Document Server

    Christov, Ivan C

    2012-01-01

    In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...

  6. Modulation of the shape and speed of a chemical wave in an unstirred Belousov-Zhabotinsky reaction by a rotating magnet.

    Science.gov (United States)

    Okano, Hideyuki; Kitahata, Hiroyuki

    2013-04-01

    The objective of this study was to observe whether a rotating magnetic field (RMF) could change the anomalous chemical wave propagation induced by a moderate-intensity gradient static magnetic field (SMF) in an unstirred Belousov-Zhabotinsky (BZ) reaction. The application of the SMF (maximum magnetic flux density = 0.22 T, maximum magnetic flux density gradient = 25.5 T/m, and peak magnetic force product (flux density × gradient) = 4 T(2) /m) accelerated the propagation velocity in a two-dimensional pattern. Characteristic anomalous patterns of the wavefront shape were generated and the patterns were dependent on the SMF distribution. The deformation and increase in the propagation velocity were diminished by the application of an RMF at a rotation rate of 1 rpm for a few minutes. Numerical simulation by means of the time-averaged value of the magnetic flux density gradient or the MF gradient force over one rotation partially supported the experimental observations. These considerations suggest that RMF exposure modulates the chemical wave propagation and that the degree of modulation could be, at least in part, dependent on the time-averaged MF distribution over one rotation. Bioelectromagnetics 34:220-230, 2013. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  7. Speed mathematics

    CERN Document Server

    Handley, Bill

    2012-01-01

    This new, revised edition of the bestselling Speed Mathematics features new chapters on memorising numbers and general information, calculating statistics and compound interest, square roots, logarithms and easy trig calculations. Written so anyone can understand, this book teaches simple strategies that will enable readers to make lightning-quick calculations. People who excel at mathematics use better strategies than the rest of us; they are not necessarily more intelligent. With Speed Mathematics you'll discover methods to make maths easy and fun. This book is perfect for stud

  8. Investigation of compression wave propagating in slab track tunnel of high-speed railway. 1st Report. Field test and one-dimensional numerical analysis; Kosoku tetsudo no slab kido tunnel nai wo denpasuru asshukuha no kaiseki. 1. Genchi sokutei to ichijigen suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, T.; Iida, M.; Maeda, T. [Railway Technical Research Institute, Tokyo (Japan); Maeno, K. [Chiba University, Chiba (Japan). Faculty of Engineering; Honma, H. [Chiba University, Chiba (Japan)

    1998-05-25

    An impulsive pressure wave which is called a `micro-pressure wave` or a `tunnel sonic boom` radiating from a tunnel exit is one of the important environmental problems in high-speed railways. The strength of the impulsive wave depends on the waveform of the compression wave at the tunnel exit. In this study, the distortion of the compression wave during its propagation through the tunnel is investigated by field measurement and numerical analysis. The field measurement is conducted in the concrete slab (ballastless) track tunnel of the Shinkansen. The numerical analysis is also carried out on one-dimensional compressible flow using upwind TVD scheme. It takes account of steady and unsteady wall friction and of heat transfer to the tunnel wall. Our original numerical analysis method is based on Galilei transformation of the coordinate system moving with the compression wave. The results show that the agreement of the numerical analysis and the field measurement is good. 12 refs., 11 figs.

  9. A Kind of Fault Location Method for Multi-terminal Power Distribution Network not Affected by Wave Speed%一种不受波速影响的多端配电网故障定位方法

    Institute of Scientific and Technical Information of China (English)

    方伟明; 程汉湘; 李勇; 阳海彪; 彭洁锋; 钟榜

    2016-01-01

    A kind of fault location method for travelling wave is proposed aiming at the power distribution network with tree shape structure which uses basic theory of double terminal ranging of B typed travelling wave location method and further expands to multi-terminal travelling wave location method.By measuring arrival moment of the initial travelling wave from the fault point to each end of the power distribution network line,a kind of calculating method for ranging not affected by wave speed is derived.Taking each end as the starting point,multiple location points are worked out,and taking the branch point nearest to the fault point or other points as the original point,the average value of distance from each location point to the original point is worked out.It is able to improve precision of fault location by using this average value to locate the fault point.MATLAB software is used for emulation proof and the result indicates that this method is able to rapidly and correctly locate the fault point.%对于树形结构的配电网,提出了一种行波故障定位方法。该方法利用 B 型行波定位法的双端测距基础理论,进而扩展到多端行波故障定位。通过测量故障点到配电网线路各末端的初始行波到达时刻,推导出一种不受波速影响的测距计算方法。同时以各末端为起点计算出多个定位点,取故障点最近的分支点或者其他点作为原点,计算各个定位点到原点距离的平均值,由该平均值定位故障点,提高了故障点定位的精确度。最后通过MATLAB仿真软件进行仿真验证,结果表明此定位方法能够快速准确地定位故障点。

  10. Overcoming maladaptive plasticity through plastic compensation

    Directory of Open Access Journals (Sweden)

    Matthew R.J. MORRIS, Sean M. ROGERS

    2013-08-01

    Full Text Available Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single genotype to produce multiple environmentally-induced phenotypes. Yet, not all plasticity is adaptive. Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution, much less is known about maladaptive plasticity. However, maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments. This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity, two of which involve genetic changes (standing genetic variation, genetic compensation and two of which do not (standing epigenetic variation, plastic compensation. Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity. In particular, plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence. We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change [Current Zoology 59 (4: 526–536, 2013].

  11. Overcoming maladaptive plasticity through plastic compensation

    Institute of Scientific and Technical Information of China (English)

    Matthew R.J.MORRIS; Sean M.ROGERS

    2013-01-01

    Most species evolve within fluctuating environments,and have developed adaptations to meet the challenges posed by environmental heterogeneity.One such adaptation is phenotypic plasticity,or the ability of a single genotype to produce multiple environmentally-induced phenotypes.Yet,not all plasticity is adaptive.Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution,much less is known about maladaptive plasticity.However,maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments.This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity,two of which involve genetic changes (standing genetic variation,genetic compensation) and two of which do not (standing epigenetic variation,plastic compensation).Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity.In particular,plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence.We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change.

  12. Detonation Wave Profile

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  13. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    Science.gov (United States)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  14. Explosive Line Wave Generators

    Science.gov (United States)

    2013-12-01

    curvature produced by each line wave generator. Piezoelectric pins were used for an additional assessment of the explosive lens design...to a visual assessment of the wave curvature from the high speed camera images, the explosive lens design was also evaluated using piezoelectric pins...High Explosive Firing Complex (HEFC). The various explosive line wave generators were taped vertically on a supporting board and the detonation wave

  15. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  16. optimization of the development of a plastic recycling machine

    African Journals Online (AJOL)

    machine and shows that at a speed of 268 rpm the machine functions effectively ... Keywords: recycling machine, plastics-recycling, recyclability/efficiency, throughput/capacity, ...... cycling such as the sorting and cleaning should be efficient so ...

  17. Wave turbulence in annular wave tank

    Science.gov (United States)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  18. Single-drop liquid phase microextraction accelerated by surface acoustic wave.

    Science.gov (United States)

    Zhang, Anliang; Zha, Yan

    2013-03-01

    A single-drop liquid phase microextraction method is presented, in which surface acoustic wave (SAW) is used for accelerating extraction speed. A pair of interdigital transducers with 27.5 MHz center frequency is fabricated on a 128° yx-LiNbO3 substrate. A radio frequency signal is applied to one of interdigital transducers to excite SAW. Plastic straw is filled with PDMS, leaving 1 mL for holding sample solution. Plastic straw with sample solution droplet is then dipping into extractant, into which SAW is radiated. Mass transportation from sample solution to extractant drop is accelerated due to acoustic streaming, and extraction time is decreased. An ionic liquid and an acid green-25 solution are used for extraction experiments. Results show that the extraction process is almost finished within 2 min, and extraction speed is increased with radio frequency signal power.

  19. Neuronal plasticity and thalamocortical sleep and waking oscillations

    Science.gov (United States)

    Timofeev, Igor

    2011-01-01

    Throughout life, thalamocortical (TC) network alternates between activated states (wake or rapid eye movement sleep) and slow oscillatory state dominating slow-wave sleep. The patterns of neuronal firing are different during these distinct states. I propose that due to relatively regular firing, the activated states preset some steady state synaptic plasticity and that the silent periods of slow-wave sleep contribute to a release from this steady state synaptic plasticity. In this respect, I discuss how states of vigilance affect short-, mid-, and long-term synaptic plasticity, intrinsic neuronal plasticity, as well as homeostatic plasticity. Finally, I suggest that slow oscillation is intrinsic property of cortical network and brain homeostatic mechanisms are tuned to use all forms of plasticity to bring cortical network to the state of slow oscillation. However, prolonged and profound shift from this homeostatic balance could lead to development of paroxysmal hyperexcitability and seizures as in the case of brain trauma. PMID:21854960

  20. 一种高速双体船耐波性的快速预报方法%A Fast Seakeeping Prediction Method for a High Speed Catamaran Advancing in Waves

    Institute of Scientific and Technical Information of China (English)

    许勇; 董文才

    2014-01-01

    文章以三维面元法为基础,开发了一套求解高速双体船在波浪中运动时耐波性的预报程序。该程序以三维移动脉动源格林函数为边界积分方程的基本内核,并根据该函数的对称特性及双体船辐射-绕射波的基本传播特征,采用三种方法来改进耐波性预报时的计算效率。以两条刘易斯船组成的双体船为计算对象,采用该程序求解了该船的水动力及运动响应,并和试验结果及未改进方法的预报结果进行了比较。分析表明文中方法的预报结果和试验结果吻合良好,且预报精度和未改进方法预报精度相当,而计算效率可达到未改进方法的2.9~4倍。因此该程序可作为高速双体船耐波性快速预报的有效方法。%Based on the 3D surface panel method, a fast-calculating computer code is developed in the present study to predict seakeeping performances for a high speed catamaran advancing in waves. The 3D translating-pulsating source Green function is chosen as the kernel function for the boundary element integral equation. Three methods based on the symmetry of the Green function to-gether with performances of the radiation-diffraction waves are introduced in the code to improve the calculating efficiency. Validation is performed through studying hydrodynamic terms and free mo-tions of a twin Lewis-form hulls by comparing model tests or predictions of the exact method (the method without improvement). The predictions obtained by the present method show general agree-ment with the experiments and the accuracy can be kept almost the same as that obtained in the exact method. The calculating speed of the present method is about 2.9-4 times of that of the exact method in the case of CPU time test. The present solver may serve as a fast and valid tool to predict seakeeping performances of a high speed catamaran advancing at sea.

  1. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  2. Plastic Anisotropy Prediction by Ultrasonic Texture Data

    OpenAIRE

    Serebryany, V. N.

    1996-01-01

    The plastic anisotropy parameters (R coefficient and height of ears of the drawn cup) have been calculated from ultrasonic orientation distribution function (ODF) coefficients on the basis of Taylor theory for low carbon steel and aluminium alloy sheets. The ODF coefficients were defined by Sayers method and using the iterative procedure on the basis of measurement of bulk longitudinal and shear wave time delays.

  3. INFLUENCE OF OPERABILITY CRITERIA LIMITING VALUES ON SHIP SPEED

    Directory of Open Access Journals (Sweden)

    Jasna Prpić-Oršić

    2016-09-01

    Full Text Available When the ship is caught in heavy seas, there are two manoeuvres that the shipmaster can undertake to avoid excessive ship motion and hull damage: changing course or voluntary speed reduction. This paper presents a study of the effect of the various voluntary speed reduction criteria to attainable speed of ship on seaway. The speed loss is calculated by taking into account wind and wave effect on ship speed, the engine and propeller performance in actual seas as well as the mass inertia of the ship. The attainable ship speed for ship in head, following and beam waves by accounting for voluntary speed reduction is estimated for various significant wave height. The criteria of slamming, deck wetness, propeller emergence, excessive accelerations and roll are taken into account. The impact of variations of the limiting values of certain criteria due to which the captain intentionally reduces the ship speed is analysed and discussed.

  4. 77 FR 54930 - Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A Subsidiary of Plastics...

    Science.gov (United States)

    2012-09-06

    ... Employment and Training Administration Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A... plastic parts. New information shows that Fortis Plastics is now called Carlyle Plastics and Resins. In... of Carlyle Plastics and Resins, formerly known as Fortis Plastics, a subsidiary of...

  5. Near Shore Wave Processes

    Science.gov (United States)

    2016-06-07

    the alongshore current, and a full non linear bottom shear stress. Contributions from the alongshore wind stress are mostly evident offshore and over...fraction) profiles measured on a day with offshore wave height of 1.6m, and 10 ms-1 wind speed. The one hour mean void fraction profiles are measured in a...given the offshore wave conditions. OBJECTIVES We hypothesize that the wave-induced kinematic, sediment and morphologic processes are nonlinearly

  6. Our plastic age

    National Research Council Canada - National Science Library

    Richard C. Thompson; Shanna H. Swan; Charles J. Moore; Frederick S. vom Saal

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production...

  7. Weinig plastic in vissenmaag

    NARCIS (Netherlands)

    Foekema, E.M.

    2012-01-01

    Waar de magen van sommige zeevogels vol plastic zitten, lijken vissen in de Noordzee nauwelijks last te hebben van kunststofafval. Onderzoekers die plastic resten zochten in vissenmagen vonden ze in elk geval nauwelijks.

  8. Ear Plastic Surgery

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ear Plastic Surgery Ear Plastic Surgery Patient Health Information ... they may improve appearance and self-confidence. Can Ear Deformities Be Corrected? Formation of the ear during ...

  9. Near-field millimeter-wave imaging for weapon detection

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K[sub a]-band system.

  10. Near-field millimeter-wave imaging for weapon detection

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K{sub a}-band system.

  11. Biodegradability of Plastics

    OpenAIRE

    Yutaka Tokiwa; Calabia, Buenaventurada P.; Charles U. Ugwu; Seiichi Aiba

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical ...

  12. Improvement of Longitudinal Motion Performance of High Speed Light Wave-Piercing Catamaran by Hydrofoils%高速轻型穿浪双体船纵向运动改善措施研究

    Institute of Scientific and Technical Information of China (English)

    郑义; 董文才

    2012-01-01

    The pitch and heave motion range of high speed light wave-piercing catamaran (WPC) in head sea would become much higher while wave length near the ship length. Theoretical approaches together with model test were induced to provide a longitudinal motion performance improvement for a 250 t WPC using hydrofoils. The influence of the hydrofoils parameters, such as the shape, size and mounting locations, were investigated. A comparison of numerical calculation results and test data suggests that the strip method, with hydrodynamic interactions between hydrofoil and the hull taken into account, is applicable to the longitudinal motion prediction of WPC with hydrofoils, though the calculated RAO is a little bigger which near the RAO peak value. Based on the model test data, the significant amplitude of heave and pitch of the tested model in head sea reduced 20%~30% with the hydrofoils installed.%针对在改善高速轻型穿浪双体船(WPC)迎浪中波长与船长接近时纵向运动幅度较大的缺点,采用了理论计算与模型试验相结合的方法,对250t级穿浪双体船开展了水翼改善纵向运动的理论和试验研究,分析了水翼形式、尺度和安装位置等对纵向运动的影响规律.数值计算和试验结果的比较表明,计及水翼-船体水动力干扰影响的切片理论可满足WPC加水翼后波浪中纵向运动计算的需要,但在纵向运动响应峰值处数值计算结果偏高.模型试验表明,250 t级WPC加装水翼后,迎浪纵摇和垂荡有义幅值可减少20%~30%.

  13. Chemical Recycle of Plastics

    Directory of Open Access Journals (Sweden)

    Sara Fatima

    2014-11-01

    Full Text Available Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  14. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example...

  15. Millimeter wave, high-resolution, holographic surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    McMakin, D.L.; Sheen, D.M.; Collins, H.D.; Hall, T.E.; Smith, R.R.; Droppo, J.G. Jr.

    1993-12-01

    Millimeter wave holographic imaging systems capable of imaging through clothing to detect contraband, metal, plastic, or ceramic weapons may provided a practical solution to personnel inspection needs in mass transportation centers. Traditional inspection systems, such as metal detectors and x-ray imaging systems, have limitations for the detection of concealed weapons. metal detectors are limited because they cannot detect plastic weapons and x-ray imaging systems are limited in use due to radiological health considerations. A prototype millimeter wave holographic surveillance system has been developed and demonstrated at the Pacific Northwest Laboratory (PNL). The prototype millimeter wave holographic surveillance system developed at PNL consists of a sequentially switched 2 {times} 64 element array coupled to a 35 GHz bi-static transceiver. The sequentially switched array of antennas can be used to obtain the holographic data at high speed by electonically sequencing the antennas along one dimension and performing a mechanical scan along the other dimension. A one-dimensional mechanical scan be be performed in about one second. The prototype system scans an aperture of 0.75 by 2.05. This system has been demonstrated and images have been obtained on volunteers at Sea-Tac International airport in Seattle, Washington.

  16. Wind speed scaling and the drag coefficient

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Wind speed scaling in similarity law in wind-generated waves and the drag coefficient are studied. In analyzing the data in the wind wave channel, it is found that the u. scaling greatly reduces the scatter in the U10 scaling. The u. scaling has much less scatter than the scaling using other wind speeds. The friction velocity seems to play a distinctive role in wave growth. The result is important in the applications of the similarity law and in wave modeling. In theory it gives an insight into the mechanism of wind wave interaction. It is found that wave steepness is important in influencing the drag coefficient. The variability of the coefficients in the currently widely used drag form can be explained by the differences in wave steepness in the observations. A drag coefficient model with wind speed and wave steepness as parameters is proposed. An explanation for Kahma' s result that the u. scaling does not reduce the scatter in the U10 scaling is given.

  17. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  18. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  19. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  20. Journal of CHINA PLASTICS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Journal of CHINA PLASTICS was authorized and approved by The State Committee of Science and Technology of China and The Bureau of News Press of China, and published by The China Plastics Processing Industry Association,Beijing Technology and Business University and The Institute of Plastics Processing and Application of Light Industry, distributed worldwide. Since its birth in 1987, CHINA PLASTICS has become a leading magazine in plastics industry in China, a national Chinese core journal and journal of Chinese scientific and technological article statistics. It is covered by CA.

  1. Comments on ‘Temporal significant wave height estimation from wind speed by perceptron Kalman filtering’ by A. Altunkaynak and M. Ozger, Ocean Engineering, Vol. 31(10); 2004,1245-1255

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    The significant wave heights and periods are conventionally forecasted from the wind information on the basis of the wind–wave relationship. However, the error may become large due to many uncertainties in the wind generation prediction and wind...

  2. The Speed of Galileon Gravity

    CERN Document Server

    Brax, Philippe; Davis, Anne-Christine

    2015-01-01

    We analyse the speed of gravitational waves in coupled Galileon models with an equation of state $\\omega_\\phi=-1$ now and a ghost-free Minkowski limit. We find that the gravitational waves propagate much faster than the speed of light unless these models are small perturbations of cubic Galileons and the Galileon energy density is sub-dominant to a dominant cosmological constant. In this case, the binary pulsar bounds on the speed of gravitational waves can be satisfied and the equation of state can be close to -1 when the coupling to matter and the coefficient of the cubic term of the Galileon Lagrangian are related. This severely restricts the allowed cosmological behaviour of Galileon models and we are forced to conclude that Galileons with a stable Minkowski limit cannot account for the observed acceleration of the expansion of the universe on their own. Moreover any sub-dominant Galileon component of our universe must be dominated by the cubic term. For such models with gravitons propagating faster than ...

  3. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  4. Glassy metallic plastics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper reports a class of bulk metallic glass including Ce-, LaCe-, CaLi-, Yb-, and Sr-based metallic glasses, which are regarded as glassy metallic plastics because they combine some unique properties of both plastics and metallic alloys. These glassy metallic plastics have very low glass transition temperature (Tg~25oC to 150oC) and low Young’s modulus (~20 GPa to 35 GPa). Similar to glassy plastics, these metallic plastics show excellent plastic-like deformability on macro-, micro- and even nano-scale in their supercooled liquid range and can be processed, such as elongated, compressed, bent, and imprinted at low temperatures, in hot water for instance. Under ambient conditions, they display such metallic properties as high thermal and electric conductivities and excellent mechanical properties and other unique properties. The metallic plastics have potential applications and are also a model system for studying issues in glass physics.

  5. High Speed Dynamics in Brittle Materials

    Science.gov (United States)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  6. Gravitational wave in Lorentz violating gravity

    OpenAIRE

    Li, Xin; Chang, Zhe(State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 100049, Beijing, China)

    2011-01-01

    By making use of the weak gravitational field approximation, we obtain a linearized solution of the gravitational vacuum field equation in an anisotropic spacetime. The plane-wave solution and dispersion relation of gravitational wave is presented explicitly. There is possibility that the speed of gravitational wave is larger than the speed of light and the casuality still holds. We show that the energy-momentum of gravitational wave in the ansiotropic spacetime is still well defined and cons...

  7. Plastic Pollution from Ships

    OpenAIRE

    Čulin, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  8. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plasti...... as a knowledge handbook for laser welding of plastic components. This document should provide the information for all aspects of plastic laser welding and help the design engineers to take all critical issues into consideration from the very beginning of the design phase....

  9. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  10. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  11. A Study on Kinematics Characteristics of Freak Wave

    Institute of Scientific and Technical Information of China (English)

    CUI Cheng; ZHANG Ning-chuan; ZUO Shu-hua; FANG Zhuo

    2013-01-01

    Based on the 3rd-order Stokes wave theory,the speed of freak waves is formulated in terms of the period and the wave height.Finite modified wave steepness gives rise to a significant enhancement of the nonlinear contributions to the freak wave speed in comparison with the 3rd-order Stokes wave theory.For a fix modified wave steepness,the estimated amplification of the nonlinear contributions due to the deviation from the 3rd-order Stokes wave theory is 0.22~0.99.In addition,the velocity and acceleration fields are also documented in detail.In the present simulation,the horizontal velocities are smaller than the wave speed,and the freak wave exhibits a maximal horizontal velocity up to 37% of the wave speed and a maximal vertical acceleration up to about 20% of the gravitational acceleration.

  12. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  13. Theory of Gravitational Waves

    CERN Document Server

    Tiec, Alexandre Le

    2016-01-01

    The existence of gravitational radiation is a natural prediction of any relativistic description of the gravitational interaction. In this chapter, we focus on gravitational waves, as predicted by Einstein's general theory of relativity. First, we introduce those mathematical concepts that are necessary to properly formulate the physical theory, such as the notions of manifold, vector, tensor, metric, connection and curvature. Second, we motivate, formulate and then discuss Einstein's equation, which relates the geometry of spacetime to its matter content. Gravitational waves are later introduced as solutions of the linearized Einstein equation around flat spacetime. These waves are shown to propagate at the speed of light and to possess two polarization states. Gravitational waves can interact with matter, allowing for their direct detection by means of laser interferometers. Finally, Einstein's quadrupole formulas are derived and used to show that nonspherical compact objects moving at relativistic speeds a...

  14. Halos of Plastic

    Institute of Scientific and Technical Information of China (English)

    Maya Reid

    2012-01-01

    The halos that span South Africa's coastline are anything but angelic. Fanning out around four major urban centers-Cape Town, Port Elizabeth, East London and Durban-they are made up of innumerable bits and pieces of plastic. As a form of pollution, their shelflife is unfathomable. Plastic is essentially chemically inactive. It's designed to never break down.

  15. Biodegradation of plastics.

    Science.gov (United States)

    Shimao, M

    2001-06-01

    Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. Recent work has included studies of the distribution of synthetic polymer-degrading microorganisms in the environment, the isolation of new microorganisms for biodegradation, the discovery of new degradation enzymes, and the cloning of genes for synthetic polymer-degrading enzymes.

  16. Measures for speed management.

    NARCIS (Netherlands)

    2009-01-01

    Measures for speed management are essential for limiting the negative effects of driving too fast and at inappropriate speeds. To begin with, safe and credible speed limits need to be determined. Dynamic and variable speed limits that take into account the current circumstances, such as weather cond

  17. High speed data converters

    CERN Document Server

    Ali, Ahmed MA

    2016-01-01

    This book covers high speed data converters from the perspective of a leading high speed ADC designer and architect, with a strong emphasis on high speed Nyquist A/D converters. For our purposes, the term 'high speed' is defined as sampling rates that are greater than 10 MS/s.

  18. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups...... answered the first Danish national survey, PD13[1], investigating the importance of industrial designers’ knowledge in plastics and the collaboration between designers and the polymer industry. The plastics industry and the industrial designers collaborate well, but both groups frequently experience...... that the designers’ lack of knowledge concerning polymer materials and manufacturing methods can be problematic or annoying, and design students from most Danish design universities express the need for more contact with the industry and more competencies and tools to handle even simple topics when designing plastic...

  19. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...... the relation between consciousness and brain functions. If consciousness is connected to specific brain structures (as a function or in identity) what happens to consciousness when those specific underlying structures change? It is therefore possible that the understanding and theories of neural plasticity can...

  20. Developing de Broglie Wave

    Directory of Open Access Journals (Sweden)

    Zheng-Johansson J. X.

    2006-10-01

    Full Text Available The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity v, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed c between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength Λd=vcΛ and phase velocity c2/v+v which resembles directly L. de Broglie’s hypothetic phase wave. This phase wave in terms of transmitting the particle mass at the speed v and angular frequency Ωd= 2πv/Λd, with Λd and Ωd obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schrödinger equation of an identical system.

  1. On the atmospheric internal ship waves

    Institute of Scientific and Technical Information of China (English)

    桑建国

    1997-01-01

    The analytical solutions of the atmospheric internal ship waves induced by three-dimensional terrain are obtained by solving the atmospheric wave equation. The solutions show that the waves consist of the untrapped and trapped parts. The patterns of the diverging wave and transverse wave in the untrapped parts are mainly determined by the shape and orientation of the terrain. This kind of wave may transport the wave energy to the upper atmosphere. The patterns of trapped lee waves are decided by the atmospheric conditions such as stratification, mean wind speeds and wind shear.

  2. Wind Speed Measurement by Paper Anemometer

    Science.gov (United States)

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-01-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…

  3. Wind Speed Measurement by Paper Anemometer

    Science.gov (United States)

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-01-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…

  4. Wind speed, wind direction, air temperature, wave energy spectra, significant wave height, dominant wave period and direction, peak wave period and direction, currents, temperature, conductivity, pressure, sigma-theta, river level, sonar readings, and backscatter data collected at Myrtle Beach in the North Atlantic Ocean from instruments deployed on MOORINGS using platforms NOAA Ship NANCY FOSTER and RV DAN MOORE from 2003-10-01 to 2004-05-01 (NCEI Accession 0066109)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These bottom current, wave and associated observations were collected as part of a larger study to understand the physical processes that control the transport of...

  5. Lamb wave sensing using fiber Bragg grating sensors for delamination detection in composite laminates

    Science.gov (United States)

    Takeda, N.; Okabe, Y.; Kuwahara, J.; Kojima, S.

    2005-05-01

    The authors are constructing a damage detection system using ultrasonic waves. In this system, a piezo-ceramic actuator generates Lamb waves in a CFRP laminate. After the waves propagate in the laminate, transmitted waves are received by a fiber Bragg grating (FBG) sensor attached on the laminate using a newly developed high-speed optical wavelength interrogation system. At first, the optimal gauge length of the FBG to detect ultrasonic waves was investigated through theoretical simulations and experiments. Then, the directional sensitivity of the FBG to ultrasonic waves was evaluated experimentally. On the basis of the above results, the 1mm FBG sensors were applied to the detection of Lamb waves propagated in carbon fiber reinforced plastic (CFRP) cross-ply laminates. The piezo-actuator was put on the laminate about 50mm away from the FBG sensor glued on the laminate, and three-cycle sine waves of 300kHz were excited repeatedly. The waveforms obtained by the FBG showed that S0 and A0 modes could be detected appropriately. Then, artificial delamination was made in the laminate by removing of a Teflon sheet embedded in the 0/90 interface after the manufacturing. When the Lamb waves passed through the delamination, the amplitude decreased and a new wave mode appeared. These phenomena could be well simulated using a finite element method. Furthermore, since the amplitude and the velocity of the new mode increased with an increase in the delamination length, this system has a potential to evaluate the interlaminar delamination length quantitatively.

  6. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of

  7. A Plastic Menagerie

    Science.gov (United States)

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  8. Cortical plasticity and rehabilitation.

    Science.gov (United States)

    Moucha, Raluca; Kilgard, Michael P

    2006-01-01

    The brain is constantly adapting to environmental and endogenous changes (including injury) that occur at every stage of life. The mechanisms that regulate neural plasticity have been refined over millions of years. Motivation and sensory experience directly shape the rewiring that makes learning and neurological recovery possible. Guiding neural reorganization in a manner that facilitates recovery of function is a primary goal of neurological rehabilitation. As the rules that govern neural plasticity become better understood, it will be possible to manipulate the sensory and motor experience of patients to induce specific forms of plasticity. This review summarizes our current knowledge regarding factors that regulate cortical plasticity, illustrates specific forms of reorganization induced by control of each factor, and suggests how to exploit these factors for clinical benefit.

  9. Mechanical plasticity of cells

    Science.gov (United States)

    Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben

    2016-10-01

    Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

  10. Targeting tumour Cell Plasticity

    Institute of Scientific and Technical Information of China (English)

    Elizabeth D. WILLIAMS

    2009-01-01

    @@ Her research is focused on understanding the mechanisms of tumour progression and metastasis, particularly in uro-logical carcinomas (bladder and prostate). Tumour cell plasticity, including epithelial-mesenchymal transition, is a cen-tral theme in Dr Williams' work.

  11. Are "EIT Waves" Fast-Mode MHD Waves?

    CERN Document Server

    Wills-Davey, M J; Stenflo, J O

    2007-01-01

    We examine the nature of large-scale, coronal, propagating wave fronts (``EIT waves'') and find they are incongruous with solutions using fast-mode MHD plane-wave theory. Specifically, we consider the following properties: non-dispersive single pulse manifestions, observed velocities below the local Alfven speed, and different pulses which travel at any number of constant velocities, rather than at the ``predicted'' fast-mode speed. We discuss the possibility of a soliton-like explanation for these phenomena, and show how it is consistent with the above-mentioned aspects.

  12. Laser cutting plastic materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  13. Localization of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1976-04-01

    The localization of plastic deformation into a shear band is discussed as an instability of plastic flow and a precursor to rupture. Experimental observations are reviewed, a general theoretical framework is presented, and specific calculations of critical conditions are carried out for a variety of material models. The interplay between features of inelastic constitutive description, especially deviations from normality and vertex-like yielding, and the onset of localization is emphasized.

  14. Development of plastic surgery

    Directory of Open Access Journals (Sweden)

    Pećanac Marija Đ.

    2015-01-01

    Full Text Available Introduction. Plastic surgery is a medical specialty dealing with corrections of defects, improvements in appearance and restoration of lost function. Ancient Times. The first recorded account of reconstructive plastic surgery was found in ancient Indian Sanskrit texts, which described reconstructive surgeries of the nose and ears. In ancient Greece and Rome, many medicine men performed simple plastic cosmetic surgeries to repair damaged parts of the body caused by war mutilation, punishment or humiliation. In the Middle Ages, the development of all medical braches, including plastic surgery was hindered. New age. The interest in surgical reconstruction of mutilated body parts was renewed in the XVIII century by a great number of enthusiastic and charismatic surgeons, who mastered surgical disciplines and became true artists that created new forms. Modern Era. In the XX century, plastic surgery developed as a modern branch in medicine including many types of reconstructive surgery, hand, head and neck surgery, microsurgery and replantation, treatment of burns and their sequelae, and esthetic surgery. Contemporary and future plastic surgery will continue to evolve and improve with regenerative medicine and tissue engineering resulting in a lot of benefits to be gained by patients in reconstruction after body trauma, oncology amputation, and for congenital disfigurement and dysfunction.

  15. Sorting Plastic Waste in Hydrocyclone

    Directory of Open Access Journals (Sweden)

    Ernestas Šutinys

    2011-02-01

    Full Text Available The article presents material about sorting plastic waste in hydrocyclone. The tests on sorting plastic waste were carried out. Also, the findings received from the performed experiment on the technology of sorting plastic waste are interpreted applying an experimental model of the equipment used for sorting plastics of different density.Article in Lithuanian

  16. Determining the approach speed envelope of carrier aircraft

    Institute of Scientific and Technical Information of China (English)

    Geng Jianzhong; Yao Hailin; Duan Zhuoyi

    2013-01-01

    Many factors,such as deck motion and air wave,influence the determination of the approach speed which has an important effect on landing safety. Until recently,there are no design criteria about approach speed of carrier aircraft in the current standards and available publications. Therefore,the requirements of stall margin, longitudinal acceleration ability,altitude correction and field-of-view on approach speed were researched. Based on the flight dynamics model,the flight simulations were conducted to study the effect of the response time of en-gine,wave off requirements,elevator efficiency and deflection rate on the approach speed. The results presented that the approach longitudinal acceleration and altitude correction ability had crucial influence on the approach speed envelope of the aircraft. The limitations of the control requirements,field-of-view requirements and gear were also given through the simulation and analysis. Based on the above results,the approach speed envelope were determined.

  17. Physics of Friction in Disposable Plastic Syringes

    Science.gov (United States)

    Liebmann-Vinson, A.; Vogler, E. A.; Martin, D. A.; Montgomery, D. B.; Sugg, H. W.; Monahan, L. A.

    1997-03-01

    Nosocomial applications of disposable plastic syringes demand excellent frictional behavior with no stick-slip over a broad velocity range and, simultaneously, a tight seal between stopper and barrel. However, when used in syringe pumps at slow injection speeds, stick-slip motion is frequently observed and high "break-out" forces are often necessary to initiate plunger movement after extended storage times. We have traced this frictional behavior to a velocity-dependent interaction between the elastomeric stopper and the plastic syringe barrel mediated by the syringe lubricant, almost universally a polydimethyl siloxane fluid. Lubricant properties were altered by crosslinking the surface of the silicone oil in an oxygen plasma. Changes in surface chemistry and morphology of the crosslinked oil were correlated with changes in frictional performance.

  18. Dynamics and plasticity of spinal locomotor circuits.

    Science.gov (United States)

    El Manira, Abdeljabbar

    2014-12-01

    Spinal circuits generate coordinated locomotor movements. These hardwired circuits are supplemented with neuromodulation that provide the necessary flexibility for animals to move smoothly through their environment. This review will highlight some recent insights gained in understanding the functional dynamics and plasticity of the locomotor circuits. First the mechanisms governing the modulation of the speed of locomotion will be discussed. Second, advantages of the modular organization of the locomotor networks with multiple circuits engaged in a task-dependent manner will be examined. Finally, the neuromodulation and the resulting plasticity of the locomotor circuits will be summarized with an emphasis on endocannabinoids and nitric oxide. The intention is to extract general principles of organization and discuss some onto-genetic and phylogenetic divergences.

  19. Speed in Acquisitions

    DEFF Research Database (Denmark)

    Meglio, Olimpia; King, David R.; Risberg, Annette

    2017-01-01

    The advantage of speed is often invoked by academics and practitioners as an essential condition during post-acquisition integration, frequently without consideration of the impact earlier decisions have on acquisition speed. In this article, we examine the role speed plays in acquisitions across...... the acquisition process using research organized around characteristics that display complexity with respect to acquisition speed. We incorporate existing research with a process perspective of acquisitions in order to present trade-offs, and consider the influence of both stakeholders and the pre......-deal-completion context on acquisition speed, as well as the organization’s capabilities to facilitating that speed. Observed trade-offs suggest both that acquisition speed often requires longer planning time before an acquisition and that associated decisions require managerial judgement. A framework for improving...

  20. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique.

    Science.gov (United States)

    Zhang, Xiaoming

    2016-11-01

    The purpose of this Letter to the Editor is to demonstrate an effective method for estimating viscoelasticity based on measurements of the Rayleigh surface wave speed. It is important to identify the surface wave mode for measuring surface wave speed. A concept of start frequency of surface waves is proposed. The surface wave speeds above the start frequency should be used to estimate the viscoelasticity of tissue. The motivation was to develop a noninvasive surface wave elastography (SWE) technique for assessing skin disease by measuring skin viscoelastic properties. Using an optical based SWE system, the author generated a local harmonic vibration on the surface of phantom using an electromechanical shaker and measured the resulting surface waves on the phantom using an optical vibrometer system. The surface wave speed was measured using a phase gradient method. It was shown that different standing wave modes were generated below the start frequency because of wave reflection. However, the pure symmetric surface waves were generated from the excitation above the start frequency. Using the wave speed dispersion above the start frequency, the viscoelasticity of the phantom can be correctly estimated.

  1. Waves from Propulsion Systems of Fast Ferries

    DEFF Research Database (Denmark)

    Taatø, Søren Haugsted; Aage, Christian; Arnskov, Michael M.

    1998-01-01

    Waves from fast ferries have become an environmental problem of growing concern to the public. Fast ferries produce not only higher waves than conventional ships but also fundamentally different wave systems when they sail at supercritical speeds. Hitherto, ship waves have been considered as bein...... similar to that of the hull alone, but with higher wave amplitudes. Conventional propellers will cause increased wave heights of about 10%, whereas water jets will cause increased wave heights of 20-40% as compared to those of the naked monohull....

  2. Two-wave interaction in ideal magnetohydrodynamics

    OpenAIRE

    T. V. Zaqarashvili; Roberts, B.

    2006-01-01

    The weakly nonlinear interaction of sound and linearly polarised Alfv{\\'e}n waves propagating in the same direction along an applied magnetic field is studied. It is found that a sound wave is coupled to the Alfv{\\'e}n wave with double period and wavelength when the sound and Alfv{\\'e}n speeds are equal. The Alfv{\\'e}n wave drives the sound wave through the ponderomotive force, while the sound wave returns energy back to the Alfv{\\'e}n wave through the parametric (swing) influence. As a resul...

  3. Undamped electrostatic plasma waves

    CERN Document Server

    Valentini, F; Califano, F; Pegoraro, F; Veltri, P; Morrison, P J; O'Neil, T M

    2015-01-01

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named {\\it corner modes}. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the $(k,\\omega_{_R})$ plane ($\\omega_{_R}$ being the real part of the wave frequency and $k$ the wavenumber), away from the well-known `thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existenc...

  4. The High-Frequency Dielectric Properties of Glass Fibre Reinforced Plastic and Honeycomb Layers

    Science.gov (United States)

    1989-06-29

    The dielectric constant and the dielectric loss angle tangent of glass fibre reinforced plastic are both relatively small; it is a good wave...practical value. This paper introduces the work we have done in this area. The dielectric properties of glass fibre reinforced plastic have a close

  5. Influence of the parameters of a high-frequency acoustic wave on the structure, properties, and plastic flow of metal in the zone of a joint of materials welded by ultrasound-assisted explosive welding

    Science.gov (United States)

    Peev, A. P.; Kuz'min, S. V.; Lysak, V. I.; Kuz'min, E. V.; Dorodnikov, A. N.

    2017-05-01

    The results of an investigation of the influence of the parameters of high-frequency acoustic wave on the structure and properties of the zone of joint of homogeneous metals bonded by explosive welding under the action of ultrasound have been presented. The influence of the frequency and amplitude of ultrasonic vibrations on the structure and properties of the explosively welded joints compared with the samples welded without the application of ultrasound has been established. The action of high-frequency acoustic waves on the metal leads to a reduction in the dynamic yield stress, which changes the properties of the surface layers of the metal and the conditions of the formation of the joint of the colliding plates upon the explosive welding. It has been shown that the changes in the length and amplitude of waves that arise in the weld joint upon the explosive welding with the simultaneous action of ultrasonic vibrations are connected with a decrease in the magnitude of the deforming pulse and time of action of the compressive stresses that exceed the dynamic yield stress beyond the point of contact.

  6. Dynamics of plastic shells taking into account hardening and sensitivity to the speed of deformation/Динамика пластических оболочек с учетом упрочнения и чувствительности к скорости деформирования

    OpenAIRE

    2014-01-01

    Statement of problems of a plastic deformation of ideally plastic shallow roller shells under the influence of an impact load of big intensity, taking into account bigger slags, hardening of the material and dependence of a yield stress on the speed of deformation, is observed. The full system of resolving equations is gained, the algorithm of numerical implementation of a problem on the basis of the difference method is offered./Рассмотрена постановка задач пластического деформирования идеал...

  7. Stress wave focusing transducers

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  8. Motor cortical plasticity induced by motor learning through mental practice.

    Directory of Open Access Journals (Sweden)

    Laura eAvanzino

    2015-04-01

    Full Text Available Several investigations suggest that actual and mental actions trigger similar neural substrates. Motor learning via physical practice results in long-term potentiation (LTP-like plasticity processes, namely potentiation of M1 and a temporary occlusion of additional LTP-like plasticity. However, whether this neuroplasticity process contributes to improve motor performance through mental practice remains to be determined. Here, we tested skill learning-dependent changes in primary motor cortex (M1 excitability and plasticity by means of transcranial magnetic stimulation in subjects trained to physically execute or mentally perform a sequence of finger opposition movements. Before and after physical practice and motor-imagery practice, M1 excitability was evaluated by measuring the input-output (IO curve of motor evoked potentials. M1 long-term potentiation (LTP and long-term depression (LTD-like plasticity was assessed with paired-associative stimulation (PAS of the median nerve and motor cortex using an interstimulus interval of 25 ms (PAS25 or 10 ms (PAS10, respectively. We found that even if after both practice sessions subjects significantly improved their movement speed, M1 excitability and plasticity were differentially influenced by the two practice sessions. First, we observed an increase in the slope of IO curve after physical but not after motor-imagery practice. Second, there was a reversal of the PAS25 effect from LTP-like plasticity to LTD-like plasticity following physical and motor-imagery practice. Third, LTD-like plasticity (PAS10 protocol increased after physical practice, whilst it was occluded after motor-imagery practice. In conclusion, we demonstrated that motor-imagery practice lead to the development of neuroplasticity, as it affected the PAS25- and PAS10- induced plasticity in M1. These results, expanding the current knowledge on how motor-imagery training shapes M1 plasticity, might have a potential impact in

  9. Study On Nonlinear effect In 2D Plastic Media

    Science.gov (United States)

    Wenjie, D.; Chen, X.

    2011-12-01

    Unlike the perfect elastic, homogeneous and isotropic model, the properties of real earth media are heterogeneous, plastic and anisotropic to a certain extend. To accurately simulate the strong ground motion in a basin, nonlinear or plastic effect should be considered in simulation. In this study, we use DRP/opt MacCormack non-staggered finite difference method to simulate 2D seismic wave propagation in anisotropic and plastic media. Compared with the traditional staggered grid FDM, this scheme is more accurate and more efficient. We focus on the nonlinear character of the sedimentary basin model. The preliminary ground motion results indicate that the energy of seismic wave has obvious nonlinear dissipation and irreversible deformations which is danger to buildings in the sedimentary basin.

  10. Slow frictional waves

    Science.gov (United States)

    Viswanathan, Koushik; Sundaram, Narayan; Chandrasekar, Srinivasan

    Stick-slip, manifest as intermittent tangential motion between two dry solid surfaces, is a friction instability that governs diverse phenomena from automobile brake squeals to earthquakes. We show, using high-speed in situ imaging of an adhesive polymer interface, that low velocity stick-slip is fundamentally of three kinds, corresponding to passage of three different surface waves -- separation pulses, slip pulses and the well-known Schallamach waves. These waves, traveling much slower than elastic waves, have clear distinguishing properties. Separation pulses and Schallamach waves involve local interface separation, and propagate in opposite directions while slip pulses are characterized by a sharp stress front and do not display any interface detachment. A change in the stick-slip mode from separation to slip pulse is effected simply by increasing the normal force. Together, these three waves constitute all possible stick-slip modes in adhesive friction and are shown to have direct analogues in muscular locomotory waves in soft bodied invertebrates. A theory for slow wave propagation is also presented which is capable of explaining the attendant interface displacements, velocities and stresses.

  11. Ship bow waves

    Institute of Scientific and Technical Information of China (English)

    NOBLESSE Francis; DELHOMMEAU Gerard; LIU Hua; WAN De-cheng; YANG Chi

    2013-01-01

    The bow wave generated by a ship hull that advances at constant speed in calm water is considered.The bow wave only depends on the shape of the ship bow (not on the hull geometry aft of the bow wave).This basic property makes it possible to determine the bow waves generated by a canonical family of ship bows defined in terms of relatively few parameters.Fast ships with fine bows generate overturning bow waves that consist of detached thin sheets of water,which are mostly steady until they hit the main free surface and undergo turbulent breaking up and diffusion.However,slow ships with blunt bows create highly unsteady and turbulent breaking bow waves.These two alternative flow regimes are due to a nonlinear constraint related to the Bernoulli relation at the free surface.Recent results about the overturning and breaking bow wave regimes,and the boundary that divides these two basic flow regimes,are reviewed.Questions and conjectures about the energy of breaking ship bow waves,and free-surface effects on flow circulation,are also noted.

  12. Impact factors and publication times for plastic surgery journals.

    Science.gov (United States)

    Labanaris, Apostolos P; Vassiliadu, Agapi P; Polykandriotis, Elias; Tjiawi, Jimmy; Arkudas, Andreas; Horch, Raymund E

    2007-12-01

    The purposes of the authors' analysis were to assess the values that plastic surgical journals demonstrate in terms of the standardized measures created by the Institute for Scientific Information's Journal Citation Report, and to assess the relationship between these values and the turnaround time of these journals. The overall indexes of surgical journals were compared with those of journals in other fields of medicine using the following parameters: highest impact factor, average impact factor, cited half-life, immediacy index, and number of journals. Similarly, plastic surgery journals were compared with the highest ranking journals from various fields of surgery. In addition, an evaluation of all original articles published in 2005, assessing the time intervals from submission to publication, submission to acceptance, and acceptance to publication, was conducted for all plastic surgical journals and the highest ranking journals from various surgical fields listed in the Journal Citation Report. Plastic surgical journals demonstrated low overall index values and a greater elongation of their turnaround time in comparison to journals in other fields of surgery and medicine. The fact that the field of plastic surgery targets a rather specific and limited medical audience, and that plastic surgical articles usually get quoted by this audience, partly explains these values. Furthermore, the elongated turnaround time contributes to their endurance. Since plastic surgical journals cannot attract a broader medical audience, journals should speed up their publication times to help these values rise.

  13. 46 CFR 154.1864 - Vessel speed within speed reduction.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vessel speed within speed reduction. 154.1864 Section... Vessel speed within speed reduction. The master shall ensure that the speed of the vessel is not greater than the posted speed reduction....

  14. Turbulence generation by waves

    Energy Technology Data Exchange (ETDEWEB)

    Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)

    1995-12-31

    The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.

  15. SABIC Innovative Plastics: Be the World Best Plastic Resin Manufacturer

    Institute of Scientific and Technical Information of China (English)

    Jenny Du

    2007-01-01

    @@ "SABIC Innovative Plastics is a global supplier of plastic resins, manufacturing and compounding polycarbonate, ABS, SAN, ASA, PPE, PC/ABS, PBT and PEI resins, as well as the LNP* line of high performance specialty compounds," said Hiroshi Yoshida, the Global Market Director for Electronics of SABIC Innovative Plastics based in Tokyo at the press conference held by SABIC Innovative Plastics, November 8th 2007, Shanghai.

  16. Preserving in Plastic.

    Science.gov (United States)

    Wahla, James

    1985-01-01

    Outlines steps for casting insects in permanent molds prepared from commercially available liquid plastic. Also describes dry mountings in glass, acrylic, and petri dishes. The rationale for specimen use, hints for producing quality results, purchasing information, and safety precautions are considered. (DH)

  17. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of acti

  18. Discrete dislocation plasticity

    NARCIS (Netherlands)

    van der Giessen, E.; Finel, A; Maziere, D; Veron, M

    2003-01-01

    Conventional continuum mechanics models of inelastic deformation processes axe size scale independent. In contrast, there is considerable experimental evidence that plastic flow in crystalline materials is size dependent over length scales of the order of tens of microns and smaller. At present ther

  19. Progress in neural plasticity

    Institute of Scientific and Technical Information of China (English)

    POO; Mu-Ming

    2010-01-01

    One of the properties of the nervous system is the use-dependent plasticity of neural circuits.The structure and function of neural circuits are susceptible to changes induced by prior neuronal activity,as reflected by short-and long-term modifications of synaptic efficacy and neuronal excitability.Regarded as the most attractive cellular mechanism underlying higher cognitive functions such as learning and memory,activity-dependent synaptic plasticity has been in the spotlight of modern neuroscience since 1973 when activity-induced long-term potentiation(LTP) of hippocampal synapses was first discovered.Over the last 10 years,Chinese neuroscientists have made notable contributions to the study of the cellular and molecular mechanisms of synaptic plasticity,as well as of the plasticity beyond synapses,including activity-dependent changes in intrinsic neuronal excitability,dendritic integration functions,neuron-glia signaling,and neural network activity.This work highlight some of these significant findings.

  20. New plastic recycling technology

    Science.gov (United States)

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy de...

  1. Persisting Plastic Addiction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The policy on curbing plastic shopping bag use implemented three years ago has produced mixed results In a bustling farmers’market tucked in a narrow street in Xisanqi residential community in north Beijing,stalls selling vegetables,fruits and other foods line the sidewalk.

  2. Evaluation of debonding progress in composite bonded structures by ultrasonic wave sensing with fiber Bragg grating sensors

    Science.gov (United States)

    Okabe, Yoji; Kuwahara, Junichiro; Takeda, Nobuo; Ogisu, Toshimichi; Kojima, Seiji; Komatsuzaki, Shinji

    2006-03-01

    The authors are constructing a damage detection system using ultrasonic waves. In this system, a piezo-ceramic actuator generates ultrasonic waves in a carbon fiber reinforced plastic (CFRP) laminate. After the waves propagate in the laminate, transmitted waves are received by a fiber Bragg grating (FBG) sensor using a newly developed high-speed optical wavelength interrogation system. In this research, this system was applied to the evaluation of debonding progress in CFRP bonded structures. At first, small-diameter FBG sensors, whose cladding diameter is about 1/3 of common optical fibers, were embedded in an adhesive layer of a double-lap type coupon specimen consisting of CFRP quasi-isotropic laminates, and the ultrasonic wave was propagated through the debonded region. After that, the wavelet transform was applied to the received waveforms and the results showed clear difference depending on the debonding length. Hence, a new damage index was proposed, which could be obtained from the difference in the distribution of the wavelet transform coefficient. As a result, the damage index increased with an increase in the debonded area. Furthermore this system was applied to the skin/stringer structural element of airplanes made of CFRP laminates. Both of the waves received by a bonded FBG and by an embedded FBG changed sensitively to the debonding progress. Also, the damage index could evaluate the length of the debonding between the skin and the stringer.

  3. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...

  4. Speed enforcement in Norway

    DEFF Research Database (Denmark)

    Elvik, Rune

    2015-01-01

    This paper probes the relationship between changes in the risk of apprehension for speeding in Norway and changes in the amount of speeding. The paper is based on a game-theoretic model of how the rate of violations and the amount of enforcement is determined by the interaction between drivers...

  5. Speed and income

    DEFF Research Database (Denmark)

    Fosgerau, Mogens

    2005-01-01

    between speed and income is found again in the empirical analysis of a cross-sectional dataset comprising 60,000 observations of car trips. This is used to perform regressions of speed on income, distance travelled, and a number of controls. The results are clearly statistically significant and indicate...

  6. More Than Just Speed

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The 1,318-km Beijing-Shanghai High-Speed Railway will finally come into operation at the end of June.Since construction began three years ago,the speedy railway has grabbed worldwide attention because of its design as the world’s longest and fastesthigh-speed rail line utilizing the most advanced technology.

  7. Effectiveness of Motorcycle speed controlled by speed hump

    Directory of Open Access Journals (Sweden)

    Pornsiri Urapa

    2014-09-01

    Full Text Available Speed humps are one of the traffic calming measures widely accepted to control vehicle speed in the local road. Humps standards from the western countries are designed mainly for the passenger car. This study, therefore, aims to reveal the effectiveness of speed hump to control the motorcycle speed. This study observes the free-flow speed of the riders at the total of 20 speed bumps and humps. They are 0.3-14.8 meter in width and 5-18 centimeter in height. The results reveal that the 85th percentile speeds reduce 15-65 percent when crossing the speed bumps and speed humps. Besides, this study develops the speed model to predict the motorcycle mean speed and 85th percentile speed. It is found that speed humps follow the ITE standard can control motorcycle crossing speeds to be 25-30 Kph which are suitable to travel on the local road.

  8. High speed printing with polygon scan heads

    Science.gov (United States)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  9. On the propagation speed of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, A.P.L. [State Univ. of Campinas, Campinas (Brazil)]|[Universidad Federal Fluminense (Brazil); Hernandez Figueroa, H.E. [State Univ. of Campinas, Campinas (Brazil); Recami, E. [Istituto Nazionale di Fisica Nucleare, Milan (Italy)]|[Bergamo Univ., Bergamo (Italy). Fac. di Ingegneria]|[State Univ. of Campinas, Campinas (Brazil)

    2000-03-01

    The group velocity of evanescent waves (in undersized waveguides, for instance) was theoretically predicted, and has been experimentally verified, to be superluminal. By contrast, it is known that the precursor speed in vacuum cannot be larger than c. This paper, by computer simulations based on Maxwell equations only, shows the existence of both phenomena and verifies the actual possibility of superluminal group velocities, without violating the so-called (naive) Einstein causality.

  10. A QSPR for the plasticization efficiency of polyvinylchloride plasticizers.

    Science.gov (United States)

    Chandola, Mridula; Marathe, Sujata

    2008-01-01

    A simple quantitative structure property relationship (QSPR) for correlating the plasticization efficiency of 25 polyvinylchloride (PVC) plasticizers was obtained using molecular modeling. The plasticizers studied were-aromatic esters (phthalate, terephthalate, benzoate, trimellitate), aliphatic esters (adipate, sebacate, azelate), citrates and a phosphate. The low temperature flex point, Tf, of plasticized polyvinylchloride resins was considered as an indicator of plasticization efficiency. Initially, we attempted to predict plasticization efficiency of PVC plasticizers from physical and structural descriptors derived from the plasticizer molecule alone. However, the correlation of these descriptors with Tf was not very good with R=0.78 and r2=0.613. This implied that the selected descriptors were unable to predict all the interactions between PVC and plasticizer. Hence, to account for these interactions, a model containing two polyvinylchloride (PVC) chain segments along with a plasticizer molecule in a simulation box was constructed, using molecular mechanics. A good QSPR equation correlating physical and structural descriptors derived from the model to Tf of the plasticized resins was obtained with R=0.954 and r2=0.909.

  11. Supersaturation of vertically propagating internal gravity waves

    Science.gov (United States)

    Lindzen, Richard S.

    1988-01-01

    The usual assumption that vertically propagating internal gravity waves will cease growing with height once their amplitudes are such as to permit convective instability anywhere within the wave is reexamined. Two factors lead to amplitude limitation: (1) wave clipping associated with convective mixing, and (2) energetic constraints associated with the rate at which the wave can supply energy to the convection. It is found that these two factors limit supersaturation to about 50 percent for waves with short horizontal wavelengths and high relative phase speeds. Usually the degree of supersaturation will be much less. These factors also lead to a gradual, rather than sudden, cessation of wave growth with height.

  12. 陆地高速移动环境下电波传播特性的建模与分析%Simulation and analysis of radio wave characteristics in terrestrial high-speed mobile environment

    Institute of Scientific and Technical Information of China (English)

    张晓燕; 闻映红; 谈振辉

    2012-01-01

    采用有限状态的马尔克夫链得出陆地高速移动环境下电波传播路径的动态仿真模型。将模型与真实的陆地高速移动电波传播环境相结合,建立了更符合实际传播环境的电波传播仿真模型,通过该传播模型得出陆地高速移动环境下的电波传播特性。将得出的模型运用于较平坦地理环境,基站信号覆盖区域约为3km,存在视距(LOS)路径。通过仿真给出了高速列车在沿线不同位置和不同速度时的电波路径数目、各电波路径的衰减系数、延迟时间等,以及由此分析计算出的在该环境下的多普勒频谱、电平通过率等电波特性。最后,对这些仿真数据进行统计分析,证实了该传播模型的有效性。%The finite states birth and death Markov chain is used to model the wireless propagation paths in land high-speed mobile environment. A more realistic terrestrial high-speed mobile radio propagation model is set up with the parameters of the real operation surroundings and conditions. Based on this model, the characteris- tics of radio propagation can be analyzed. In this paper,one simulation under the rural high-speed 'train scenario ,where wireless coverage is provided by base station at every 3 kilometers interval and the link between the fixed base station and the moving train was typically a line-of-sight(LOS) type, is operated with the above model. Through the simulations at different velocities(300 km/h and 500 kin/h), the changing link paths and their attenuation coefficients, delay times, Doppler spectrums and cross rate can be obtained. Moreover, this model is proved to be effective according to plenty of simulated data statistics.

  13. Shock Wave Smearing by Passive Control

    Institute of Scientific and Technical Information of China (English)

    Piotr DOERFFER; Oskar SZULC; Rainer BOHNING

    2006-01-01

    Normal shock wave, terminating a local supersonic area on an airfoil, limits its performance and becomes a source of high speed impulsive noise. It is proposed to use passive control to disintegrate the shock wave. Details of the flow structure obtained by this method are studied numerically. A new boundary condition has been developed and the results of its application are verified against experiments in a nozzle flow. The method of shock wave disintegration has been confirmed and detailed analysis of the flow details is presented. The substitution of a shock wave by a gradual compression changes completely the source of the high speed impulsive noise and bears potential of its reduction.

  14. Sustainable reverse logistics for household plastic waste

    OpenAIRE

    Bing, X

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than that of virgin plastics. Therefore, it is environmentally and economically beneficial to improve the plastic recycling system to ensure more plastic waste from households is properly collected and pr...

  15. 基于电压调节的行波超声波电机转速模糊PID控制%Fuzzy PID Speed Control of Traveling Wave Ultrasonic Motor Using Voltage Amplitude Regulation

    Institute of Scientific and Technical Information of China (English)

    史敬灼; 张慧敏

    2011-01-01

    Accordance with ultrasonic motor's time-variable nonlinearity, a online adaptive correction based on fuzzy logic was presented. The special nature of ultrasonic motor's speed control were fully taken into account in designing fuzzy rules. The amplitude of driving voltage was used as the control parameter to realite the control method. The experiments indicate that the control characteristics are much better than that of PID controller.%针对超声波电机的时变非线性,给出了基于模糊逻辑的PID控制参数在线自适应校正方法.模糊规则设计中充分考虑了超声波电机转速控制的特殊性.采用驱动电压幅值作为控制量,实现了该控制方法.实验表明,控制性能优于PID控制器.

  16. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT.

  17. Synthesis, characterization, thermal and computational studies of novel tetra-azido compounds as energetic plasticizers

    Science.gov (United States)

    Baghersad, Mohammad Hadi; Habibi, Azizollah; Heydari, Akbar

    2017-02-01

    In this paper, four azido compounds have been synthesized and characterized as new energetic plasticizers. Nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, elemental analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and differential thermal analysis (DTA) have been used to identify and determine the properties of the synthesized plasticizers. The plasticization effect of plasticizers on glycidyl azide polymer (GAP) has been investigated by viscosity measurements and thermal analysis of the prepolymer-plasticizer mixtures and plasticized binders. The plasticized mixtures were cured by a diisocyanate curing agent and the glass transition temperature and decomposition temperature of the cured polyurethane binders were measured. Thermal analysis of the prepolymer-plasticizer and cured polymer mixtures showed that the synthesized plasticizers are completely compatible with the GAP binder and have a very good plasticizing effect. Furthermore, equilibrium geometry and heats of formation of each of the plasticizer molecules were obtained using the thermochemical T1 recipe, which is available in wave function Spartan software. Comparing empirical heats of combustion and calculated heats of combustion by using the heats of formation showed that the suggested optimum molecular structure by the T1 recipe has a high similarity to the real molecular structure of these molecules.

  18. Plasticity modeling & computation

    CERN Document Server

    Borja, Ronaldo I

    2013-01-01

    There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.

  19. Dynamical effect of gas on spiral pattern speed in galaxies

    CERN Document Server

    Ghosh, Soumavo

    2016-01-01

    In the density wave theory of spiral structure, the grand-design two-armed spiral pattern is taken to rotate rigidly in a galactic disc with a constant, definite pattern speed. The observational measurement of the pattern speed of the spiral arms, though difficult, has been achieved in a few galaxies such as NGC 6946, NGC 2997, and M 51 which we consider here. We examine whether the theoretical dispersion relation permits a real solution for wavenumber corresponding to a stable wave, for the observed rotation curve and the pattern speed values. We find that the disc when treated to consist of stars alone, as is usually done in literature, does not generally support a stable density wave for the observed pattern speed. Instead the inclusion of the low velocity dispersion component, namely, gas, is essential to obtain a stable density wave. Further, we obtain a theoretical range of allowed pattern speeds that correspond to a stable density wave at a certain radius, and check that for the three galaxies consider...

  20. Plastic Deformation of Metal Tubes Subjected to Lateral Blast Loads

    Directory of Open Access Journals (Sweden)

    Kejian Song

    2014-01-01

    Full Text Available When subjected to the dynamic load, the behavior of the structures is complex and makes it difficult to describe the process of the deformation. In the paper, an analytical model is presented to analyze the plastic deformation of the steel circular tubes. The aim of the research is to calculate the deflection and the deformation angle of the tubes. A series of assumptions are made to achieve the objective. During the research, we build a mathematical model for simply supported thin-walled metal tubes with finite length. At a specified distance above the tube, a TNT charge explodes and generates a plastic shock wave. The wave can be seen as uniformly distributed over the upper semicircle of the cross-section. The simplified Tresca yield domain can be used to describe the plastic flow of the circular tube. The yield domain together with the plastic flow law and other assumptions can finally lead to the solving of the deflection. In the end, tubes with different dimensions subjected to blast wave induced by the TNT charge are observed in experiments. Comparison shows that the numerical results agree well with experiment observations.

  1. Low temperature creep plasticity

    Directory of Open Access Journals (Sweden)

    Michael E. Kassner

    2014-07-01

    Full Text Available The creep behavior of crystalline materials at low temperatures (T < 0.3Tm is discussed. In particular, the phenomenological relationships that describe primary creep are reviewed and analyzed. A discussion of the activation energy for creep at T < 0.3Tm is discussed in terms of the context of higher temperature activation energy. The basic mechanism(s of low temperature creep plasticity are discussed, as well.

  2. Traffic speed management

    Directory of Open Access Journals (Sweden)

    Subotić Jovana Lj.

    2014-01-01

    Full Text Available Speed, and vehicles themselves, affect the level of service and road safety, quality of life, noise from traffic, the environment, health, air pollution, emission of carbon dioxide, global warming, the economy and consumption of non-renewable energy such as oil. Therefore, the speed management of the traffic of multiple significance and that should be primarily to provide effective and economical conditions of the modern and preventive protection of human life as the greatest treasure and then the material resources. The way to accomplish this is by using various (different measures such as: appropriate planning and projecting roads and streets, speed control, the legislation, enforcement, campaigns, education, advanced technologies (ITS.

  3. Gas speed flow transducer

    Directory of Open Access Journals (Sweden)

    Godovaniouk V. N.

    2011-08-01

    Full Text Available The design of a gas speed flow transducer using the coupling of gas speed and heat streams within the transducer itself is proposed. To maintain the heat balance between two thermoresistors under gas stream at different temperatures, it provides energy consumption monitoring. The detailed combined planar technology for the transducer production is presented. The worked-out measurement procedure allows to make measurements in the temperature range. Information enough to organize production of cheap, reliable and precise gas speed flow transducers is given.

  4. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Microelectronics plastic molded packaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R. [Ktech Corp., Albuquerque, NM (United States); Palmer, D.W.; Peterson, D.W. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  6. Unexpected wave group behaviour challenges use of Stokes theory for ocean waves

    CERN Document Server

    Banner, Michael; Fedele, Francesco; Allis, Michael; Benetazzo, Alvise; Dias, Frederic; Peirson, William

    2013-01-01

    A key result of Stokes' water wave theory is that deep-water gravity waves of larger amplitude travel faster than those of lower amplitude at fixed wavelength. Recent observations, however, suggest that maximally-steep breaking wave crests actually travel significantly slower than expected, calling into question the predictions of Stokes' theory and its impact on diverse areas of ocean-wave physics ranging from rogue wave generation to the role of wave breaking in climate modelling. Here we report our discovery of a generic wave-crest slowdown mechanism that occurs within unsteady, propagating wave groups, which modifies the phasing of individual wave crests. Our numerical and observational studies show that just prior to reaching its maximum height, each wave crest slows down significantly. It either breaks at this reduced speed, or accelerates forward unbroken. Implications for oceanic and other natural wave systems are described.

  7. Understanding nonlinear effects on wave shapes: Comment on "An experimental analysis of a vibrating guitar string using high-speed photography" [Am. J. Phys. 82(2), 102-109 (2014)

    Science.gov (United States)

    Rowland, David R.

    2015-11-01

    In a recent paper, Whitfield and Flesh found unusual bowing behavior in the waveform of a guitar string for large amplitude plucks. This Comment discusses the theory needed to understand this nonlinear effect, and it is shown that this theory provides reasonably good qualitative agreement with the observed wave form. This theory is interesting because: (i) it allows one to quantify the boundary between linear and nonlinear behavior in terms of key physical parameters; (ii) it reveals the importance of taking into account longitudinal displacements even when they are much smaller than the associated transverse displacements; and (iii) it reveals that dispersion due to tension changes and dispersion due to flexural rigidity have very similar functional forms, which leads to the question of when one effect can be neglected in comparison to the other.

  8. Interfacial interactions between plastic particles in plastics flotation.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation.

  9. Validation of Performance of Plastic versus Glass Bottles for Culturing Anaerobes from Blood in BacT/ALERT SN Medium

    OpenAIRE

    Mirrett, Stanley; Joyce, Maria J.; Reller, L. Barth

    2005-01-01

    To validate performance, we compared the new plastic BacT/ALERT (bioMérieux, Durham, NC) SN bottle to the current glass SN bottle with samples of blood obtained for culture from adults and found them comparable for both recovery and speed of detection of microorganisms. We conclude that the safety advantage of plastic bottles can be achieved without compromising performance.

  10. Validation of performance of plastic versus glass bottles for culturing anaerobes from blood in BacT/ALERT SN medium.

    Science.gov (United States)

    Mirrett, Stanley; Joyce, Maria J; Reller, L Barth

    2005-12-01

    To validate performance, we compared the new plastic BacT/ALERT (bioMérieux, Durham, NC) SN bottle to the current glass SN bottle with samples of blood obtained for culture from adults and found them comparable for both recovery and speed of detection of microorganisms. We conclude that the safety advantage of plastic bottles can be achieved without compromising performance.

  11. Wind_Speeds_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set included wind speeds for each subregion in the study (Georges Bank, Gulf of Maine, Southern New England, Middle Atlantic Bight) . The data came from...

  12. Speeding up Transportation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 2007 was an excellent year for the transportation industry, marked by high speed railway transportation, development of the national expressway network and launch of the Chang'e lunar probe satellite.

  13. High speed heterostructure devices

    CERN Document Server

    Beer, Albert C; Willardson, R K; Kiehl, Richard A; Sollner, T C L Gerhard

    1994-01-01

    Volume 41 includes an in-depth review of the most important, high-speed switches made with heterojunction technology. This volume is aimed at the graduate student or working researcher who needs a broad overview andan introduction to current literature. Key Features * The first complete review of InP-based HFETs and complementary HFETs, which promise very low power and high speed * Offers a complete, three-chapter review of resonant tunneling * Provides an emphasis on circuits as well as devices.

  14. Police enforcement and driving speed.

    NARCIS (Netherlands)

    2008-01-01

    Speed limits are violated frequently in the Netherlands. As speed is an important factor in road crashes, the surveillance of driving speeds is one of the spearheads in the policy plans of the Dutch police. Different methods of speed enforcement have proved to be effective in reducing speed and cras

  15. Torsional wave propagation in solar tornadoes

    Science.gov (United States)

    Vasheghani Farahani, S.; Ghanbari, E.; Ghaffari, G.; Safari, H.

    2017-03-01

    Aims: We investigate the propagation of torsional waves in coronal structures together with their collimation effects in the context of magnetohydrodynamic (MHD) theory. The interplay of the equilibrium twist and rotation of the structure, e.g. jet or tornado, together with the density contrast of its internal and external media is studied to shed light on the nature of torsional waves. Methods: We consider a rotating magnetic cylinder embedded in a plasma with a straight magnetic field. This resembles a solar tornado. In order to express the dispersion relations and phase speeds of the axisymmetric magnetohydrodynamic waves, the second-order thin flux tube approximation is implemented for the internal medium and the ideal MHD equations are implemented for the external medium. Results: The explicit expressions for the phase speed of the torsional wave show the modification of the torsional wave speed due to the equilibrium twist, rotation, and density contrast of the tornado. The speeds could be either sub-Alfvénic or ultra-Alfvénic depending on whether the equilibrium twist or rotation is dominant. The equilibrium twist increases the phase speed while the equilibrium rotation decreases it. The good agreement between the explicit versions for the phase speed and that obtained numerically proves adequate for the robustness of the model and method. The density ratio of the internal and external media also play a significant role in the speed and dispersion. Conclusions: The dispersion of the torsional wave is an indication of the compressibility of the oscillations. When the cylinder is rotating or twisted, in contrast to when it only possesses a straight magnetic field, the torsional wave is a collective mode. In this case its phase speed is determined by the Alfvén waves inside and outside the tornado.

  16. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)

    2017-08-29

    This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows: Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of

  17. Use of recycled plastics in wood plastic composites - a review.

    Science.gov (United States)

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs.

  18. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system

    Science.gov (United States)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki

    2016-12-01

    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution.

  19. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  20. Plastic Surgery and Suicide: A Clinical Guide for Plastic Surgeons.

    Science.gov (United States)

    Reddy, Vikram; Coffey, M Justin

    2016-08-01

    Several studies have identified an increased risk of suicide among patient populations which a plastic surgeon may have a high risk of encountering: women undergoing breast augmentation, cosmetic surgery patients, and breast cancer patients. No formal guidelines exist to assist a plastic surgeon when faced with such a patient, and not every plastic surgery team has mental health clinicians that are readily accessible for consultation or referral. The goal of this clinical guide is to offer plastic surgeons a set of practical approaches to manage potentially suicidal patients. In addition, the authors review a screening tool, which can assist surgeons when encountering high-risk patients.

  1. Inversion of Flow Depth and Speed from Tsunami Deposits using TsuSedMod

    Science.gov (United States)

    Spiske, M.; Weiss, R.; Roskosch, J.; Bahlburg, H.

    2008-12-01

    The global evolution of a tsunami wave train can be expressed by the sum of local effects along a tsunami- wave beam. The near-shore evolution of tsunami is very complex as the waves interact with the sea-bottom sediments. Filtered through offshore and onshore erosion and deposition, this evolution is recorded in the coastal area by topographical changes, local erosion and tsunami deposits. Recordable sedimentary on-site features include grain-size distributions and horizontal thickness trends. Immediately after an event, indicators of flow depth and run up extent, such as water marks on buildings and vegetation, debris and plastic bags caught in trees and swash lines, can be measured in the field. A direct measurement of the overland flow velocity is usually not possible. However, regarding recent tsunami events, videos of surveillance cameras or witness accounts helped to estimate the characteristics of overland flow. For historical and paleotsunami events such information is not directly available. Jaffe & Gelfenbaum (2007) developed an inversion model (TsuSedMod) to estimate flow depth and speed based upon the grain-size distribution and the thickness of onshore tsunami sediments. This model assumes a steady distribution of sediment in the water column, for which the appication of the Rouse equation is possible. Further simplifications, especially concerning the turbulence structure, are based on the mixing- length theory by Prandtl, the standard approximation in physical sedimentology. We calculated flow depths for sediments left behind by the 2004 Sumatra-Tsunami in India and Kenya (Weiss & Bahlburg, 2006; Bahlburg & Weiss, 2007) and by the 2006 Java-Tsunami on Java (Piepenbreier et al., 2007), using the model of Jaffe and Gelfenbaum (2007). Estimated flow depth were compared with measured data to extend the validation procedure. This extension is needed to gain confidence and understanding before the next step is taken to compute the near

  2. Tree plastic bark

    OpenAIRE

    Casado Arroyo, Carlos

    2016-01-01

    “Tree plastic bark" consiste en la realización de una intervención artística en un entorno natural concreto, generando de esta manera un Site Specific(1). Como hace alusión Rosalind Krauss en sus reflexiones “La escultura en el campo expandido”(2), comenta que su origen esta claramente ligado con el concepto de monumentalidad. La escultura es un monumento, se crea para conmemorar algún hecho o personaje relevante y está realizada para una ubicación concreta. La investigación parte de la id...

  3. Fabrication of plastic biochips

    Energy Technology Data Exchange (ETDEWEB)

    Saaem, Ishtiaq; Ma, Kuo-Sheng; Alam, S. Munir; Tian Jingdong [Department of Biomedical Engineering and Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708 (United States); Department of Medicine and Human Vaccine Institute, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering and Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708 (United States)

    2010-07-15

    A versatile surface functionalization procedure based on rf magnetron sputtering of silica was performed on poly(methylmethacrylate), polycarbonate, polypropylene, and cyclic olefin copolymers (Topas 6015). The hybrid thermoplastic surfaces were characterized by x-ray photoelectron spectrometer analysis and contact angle measurements. The authors then used these hybrid materials to perform a sandwich assay targeting an HIV-1 antibody using fluorescent detection and biotinylated peptides immobilized using the bioaffinity of biotin-neutravidin. They found a limit of detection similar to arrays on glass surfaces and believed that this plastic biochip platform may be used for the development of disposable immunosensing and diagnostic applications.

  4. Use of shield support on faces advanced in plastic strata

    Energy Technology Data Exchange (ETDEWEB)

    Pera, F.; Szentai, G.

    1987-01-01

    A new type of rock loading model is presented for shield support on faces advancing in plastic strata. Loading of strata is not independent of the speed of advance. The problem is approached on theoretical bases and is also illustrated by measurements carried out in practice. The interpretation of the active and passive loads is given and the loads are taken into account in different manner.

  5. Variable Speed Rotor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Variable speed rotors will give helicopters several advantages: higher top speed, greater fuel efficiency, momentary emergency over-power, resonance detuning...

  6. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  7. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  8. The commercialization of plastic surgery.

    Science.gov (United States)

    Swanson, Eric

    2013-09-01

    The last decade has brought a major challenge to the traditional practice of plastic surgery from corporations that treat plastic surgery as a commercial product and market directly to the public. This corporate medicine model may include promotion of a trademarked procedure or device, national advertising that promises stunning results, sales consultants, and claims of innovation, superiority, and improved safety. This article explores the ethics of this business practice and whether corporate medicine is a desirable model for patients and plastic surgeons.

  9. Multiscale modeling and synaptic plasticity.

    Science.gov (United States)

    Bhalla, Upinder S

    2014-01-01

    Synaptic plasticity is a major convergence point for theory and computation, and the process of plasticity engages physiology, cell, and molecular biology. In its many manifestations, plasticity is at the hub of basic neuroscience questions about memory and development, as well as more medically themed questions of neural damage and recovery. As an important cellular locus of memory, synaptic plasticity has received a huge amount of experimental and theoretical attention. If computational models have tended to pick specific aspects of plasticity, such as STDP, and reduce them to an equation, some experimental studies are equally guilty of oversimplification each time they identify a new molecule and declare it to be the last word in plasticity and learning. Multiscale modeling begins with the acknowledgment that synaptic function spans many levels of signaling, and these are so tightly coupled that we risk losing essential features of plasticity if we focus exclusively on any one level. Despite the technical challenges and gaps in data for model specification, an increasing number of multiscale modeling studies have taken on key questions in plasticity. These have provided new insights, but importantly, they have opened new avenues for questioning. This review discusses a wide range of multiscale models in plasticity, including their technical landscape and their implications.

  10. Plastics recycling: challenges and opportunities

    National Research Council Canada - National Science Library

    Jefferson Hopewell; Robert Dvorak; Edward Kosior

    2009-01-01

    .... Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public...

  11. [Erythropoietin in plastic surgery].

    Science.gov (United States)

    Günter, C I; Rezaeian, F; Harder, Y; Lohmeyer, J A; Egert, S; Bader, A; Schilling, A F; Machens, H-G

    2013-04-01

    EPO is an autologous hormone, which is known to regulate erythropoiesis. For 30 years it has been used for the therapy of diverse forms of anaemia, such as renal anaemia, tumour-related anaemias, etc. Meanwhile, a multitude of scientific publications were able to demonstrate its pro-regenerative effects after trauma. These include short-term effects such as the inhibition of the "primary injury response" or apoptosis, and mid- and long-term effects for example the stimulation of stem cell recruitment, growth factor production, angiogenesis and re-epithelialisation. Known adverse reactions are increases of thromboembolic events and blood pressure, as well as a higher mortality in patients with tumour anaemias treated with EPO. Scientific investigations of EPO in the field of plastic surgery included: free and local flaps, nerve regeneration, wound healing enhancement after dermal thermal injuries and in chronic wounds.Acute evidence for the clinical use of EPO in the field of plastic surgery is still not satisfactory, due to the insufficient number of Good Clinical Practice (GCP)-conform clinical trials. Thus, the initiation of more scientifically sound trials is indicated.

  12. Optogenetics and synaptic plasticity.

    Science.gov (United States)

    Xie, Yu-feng; Jackson, Michael F; Macdonald, John F

    2013-11-01

    The intricate and complex interaction between different populations of neurons in the brain has imposed limits on our ability to gain detailed understanding of synaptic transmission and its integration when employing classical electrophysiological approaches. Indeed, electrical field stimulation delivered via traditional microelectrodes does not permit the targeted, precise and selective control of neuronal activity amongst a varied population of neurons and their inputs (eg, cholinergic, dopaminergic or glutamatergic neurons). Recently established optogenetic techniques overcome these limitations allowing precise control of the target neuron populations, which is essential for the elucidation of the neural substrates underlying complex animal behaviors. Indeed, by introducing light-activated channels (ie, microbial opsin genes) into specific neuronal populations, optogenetics enables non-invasive optical control of specific neurons with milliseconds precision. These approaches can readily be applied to freely behaving live animals. Recently there is increased interests in utilizing optogenetics tools to understand synaptic plasticity and learning/memory. Here, we summarize recent progress in applying optogenetics in in the study of synaptic plasticity.

  13. PERSONALITY AND SPEEDING

    Directory of Open Access Journals (Sweden)

    Richard TAY

    2003-01-01

    Full Text Available While there has been extensive research on the effect of sensation seeking on risky driving, relatively little research has been conducted on Type-A personality. The motivations for speeding are likely to be different for each group and these differences have important implications for the design, implementation and expected efficacy of road safety countermeasures. This paper examines the influence of sensation seeking and Type-A behavior pattern on speeding behaviour. A sample of 139 staff and students in an Australian university were surveyed in July 2001 to gather information on their gender, age, personality and self-reported speeding behaviour. The data were analysed using correlations and analysis of variance procedures. Finally, some implications for road safety are discussed.

  14. EXACT SOLUTIONS TO NONLINEAR WAVE EQUATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,we use an invariant set to construct exact solutions to a nonlinear wave equation with a variable wave speed. Moreover,we obtain conditions under which the equation admits a nonclassical symmetry. Several different nonclassical symmetries for equations with different diffusion terms are presented.

  15. Traveling Wave Solutions for Generalized Bretherton Equation

    Institute of Scientific and Technical Information of China (English)

    Amin Esfahani

    2011-01-01

    This paper studies the Generalized Bretherton equation using trigonometric function method including the sech-function method, the sine-cosine function method, and the tanh-function method, and He's semi-inverse method (He's variational method).Various traveling wave solutions are obtained, revealing an intrinsic relationship among the amplitude, frequency, and wave speed.

  16. Nonlinear ship waves and computational fluid dynamics

    National Research Council Canada - National Science Library

    MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei

    2014-01-01

    .... Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design...

  17. Magnetic Fields inside Extremely Fast Shock Waves

    NARCIS (Netherlands)

    Wiersma, J.

    2007-01-01

    The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier

  18. Magnetic Fields inside Extremely Fast Shock Waves

    NARCIS (Netherlands)

    Wiersma, J.

    2007-01-01

    The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier

  19. On the speed of fast and slow rupture fronts along frictional interfaces

    CERN Document Server

    Trømborg, Jørgen Kjoshagen; Thøgersen, Kjetil; Scheibert, Julien; Malthe-Sørenssen, Anders

    2015-01-01

    The transition from stick to slip at a dry frictional interface occurs through the breaking of the junctions between the two contacting surfaces. Typically, interactions between the junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasi-static fronts with speeds proportional to external loading rates, via fronts much slower than the Rayleigh wave speed, and fronts that propagate near the Rayleigh wave speed, to fronts that travel faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic 2D spring--block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that a proportionality between material slip speed and rupture front speed, previously reported for slow fronts, actually holds ac...

  20. Containment of high-speed rotating disk fragments

    Institute of Scientific and Technical Information of China (English)

    Hai-jun XUAN; Lu-lu LIU; Yi-ming FENG; Qing HE; Juan-juan LI

    2012-01-01

    Disk burst accidents sometimes happen in aeroengines.To avoid tragic consequences,aeroengine casings must have sufficient containment capability.Experiments and simulations need to be conducted to study the impact,distortion,and perforation caused by disk burst and which may give important clues to potential failure mechanisms.This paper presents some containment tests of high-speed rotating disk fragments,in which the original disks were burst into three equal fragments within a predetermined rotating speed range.The failure modes of the containment casing varied significantly with the thickness of the containment casing.Shearing,tearing,tensile fracture,and large plastic stretching deformation occurred in a thin-walled containment casing,while a thick-walled casing could contain disk fragments and withstand large plastic deformation.Numerical simulations were carried out to study the impact process and failure modes further.Good agreement was found between the results of the simulations and the tests.

  1. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and ... having trouble with the heat. If a heat wave is predicted or happening… - Slow down. Avoid strenuous ...

  2. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  3. Low Loss Plastic Terahertz Photonic Band-Gap Fibres

    Institute of Scientific and Technical Information of China (English)

    GENG You-Fu; TAN Xiao-Ling; ZHONG Kai; WANG Peng; YAO Jian-Quan

    2008-01-01

    We report a numerical investigation on terahertz wave propagation in plastic photonic band-gap fibres which are characterized by a 19-unit-cell air core and hexagonal air holes with rounded corners in cladding. Using the finite element method, the leakage loss and absorption loss are calculated and the transmission properties are analysed.The lowest loss of 0.268 dB/m is obtained. Numerical results show that the fibres could liberate the constraints of background materials beyond the transparency region in terahertz wave band, and efficiently minimize the effect of absorption by background materials, which present great advantage of plastic photonic band-gap fibres in long distance terahertz delivery.

  4. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies......, concerning a hydraulic evaluation and optimisation of the geometry of the Wave Dragon, is presented. Furthermore, the plans for the future development projects are sketched....

  5. Elastic Wave Propagation Mechanisms in Underwater Acoustic Environments

    Science.gov (United States)

    2015-09-30

    excited flexural mode that propagates in the ice layer at certain acoustic frequencies in ice-covered environments.[3] • Previously implemented EPE self...and ks,3, corresponding to the water layer sound speed, bottom compressional and shear wave speed, and ice layer compressional and shear wave speed... excitation of the Scholte interface mode. Dashed curve shows spectra for a source at 1 m depth and receiver at 25 m, showing the excitation of the

  6. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than th

  7. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than

  8. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than th

  9. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  10. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  11. Physiological plasticity to water flow habitat in the damselfish, Acanthochromis polyacanthus: linking phenotype to performance.

    Directory of Open Access Journals (Sweden)

    Sandra A Binning

    Full Text Available The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1 whether aspects of swimming physiology and morphology show plastic responses to water flow, 2 whether trait divergence correlates with swimming performance and 3 whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology.

  12. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  13. Wave phenomena

    CERN Document Server

    Towne, Dudley H

    1988-01-01

    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  14. Wave phenomena in sunspots

    Science.gov (United States)

    Löhner-Böttcher, Johannes

    2016-03-01

    magnetic field lines. Signatures of umbral flashes and running penumbral waves are found already in the middle to upper photosphere. The signal and velocity increases toward the chromosphere. The shock wave behavior of the umbral flashes is confirmed by the evolving saw-tooth pattern in velocity and the strong downward motion of the plasma right after the passage of the shock front. The power spectra and peak periods of sunspot waves vary significantly with atmospheric altitude and position within the sunspot. In the vertical field of the umbra, the mixture of wave periods in the lower photosphere transforms into a domination of the 2.5min range in the upper photosphere and chromosphere. In the differentially inclined penumbra, the dominating wave periods increase with radial distance. The acoustic cut-off frequency which blocks the propagation of long-period waves is considered to increase with the field inclination and the ambient sound speed. The reconstruction of the sunspot's magnetic field inclination based on the peak period distribution yields consistent results with the inferred photospheric and extrapolated coronal magnetic field.

  15. Three-Dimensional Propagation of Magnetohydrodynamic Waves in the Solar Chromosphere and Corona

    Institute of Scientific and Technical Information of China (English)

    李波; 郑惠南; 王水

    2002-01-01

    We study the three-dimensional magnetohydrodynamic (MHD) wave propagation in the solar atmosphere consisting of the chromosphere and corona. Pressure enhancement and velocity shear are implemented simultaneously at the bottom of the chromosphere. The global propagation of the incurred MHD waves, including fast-mode and slow-mode magnetoacoustic waves as well as Alfvén wave, can be identified. Wave front positions obtained numerically with respect to specific waves fit well with those calculated with local MHD wave speeds.

  16. The choice of speed and clearance for RAS on 3D method

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-fang; LI Ji-de; CAI Xin-gong

    2003-01-01

    In this paper, a 3D source distribution technique is used to calculate the coupled motions between two ships which advance in the wave with the same speed. The numerical results of coupled motions for a frigate and a supply ship have a good agreement with the experimental results. Based on the 3D coupled motions of two ships, a spectral analysis is employed to clearly observe the effect of speed, clearance and wave heading on the significant relative motion amplitude (SRMA) of two ships. The method presented in this paper will be helpful to select suitable clearance, speed and wave heading for underway replenishment at sea(RAS).

  17. Organizational Evolution of Lenovo in the Wave Pattern --Interaction of Trial and Error Learning Routine and Organizational Plasticity%联想集团“波形”轨迹下的组织演变——“试误式学习”惯例与组织可塑性的交互作用

    Institute of Scientific and Technical Information of China (English)

    王凤彬; 刘松博

    2012-01-01

    组织演变过程的研究对于发展目前新兴的动态视角的组织理论具有重要推动作用。对联想集团成立迄今组织结构演变进程的纵贯考察与多时点归纳比较显示,组织演变未必是管理者精心设计的,也不一定呈现“间断式均衡”的轨迹:以“波形”轨迹展开的组织渐进性变化过程.具有等后效性;渐变的驱动力量可以来自面对问题实践探索和总结完善中产生的应变。在具有较强可塑性的企业中。组织体会在试误武学习惯例的驱动下产生一种内生力量.摆脱前期路径的锁定。并展现“波浪武前进”的演进路线。对应的,高层管理者的作用需要从“有形之手”转变为角色隐蔽的“变形之手”。本文在归纳分析中提出了一个用以解释组织渐变中路径创造得以发生的理论模型。%Research on organizational evolution is beneficial to the development of emergent organizing theory. Taking Lenovo Group as a typical case, the paper found that organizational evolution could be, with equalfinality, a kind of wave-patterned gradual change, rather than punctuated equilibrium through deliberate design. The drive of the gradual change could be the adaptation to practical problems. In a highly plastic enterprise, driving by trial-error learning routine, organization could break the lock-in and present a wave path to move forward, enabled by the altered role of top managers from visible hand to deformative hand. Based on the inductive analysis, a theoretical model is proposed for explaining the path-creation effect in the gradual organizational evolution.

  18. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments

    Science.gov (United States)

    Rodriguez, George; Gilbertson, Steve M.

    2017-01-01

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 μm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor. PMID:28134819

  19. Spindle picker harvest speed effects

    Science.gov (United States)

    The gear drive of a modern John Deere Pro 16 picker unit was modified so that spindle speed was reduced without changing the drum speed. Three 1-row picking units were used in the study, one with the standard drive speeds, one with 25% reduction in spindle drive speed, and one with 50% reduction in...

  20. Speeding Up Innovation

    DEFF Research Database (Denmark)

    Sørensen, Flemming; Mattsson, Jan

    2016-01-01

    Minimisation of time-to-market strategies can provide companies with a competitive advantage in dynamic and competitive environments. Using parallel innovation processes has been emphasised as one strategy to speed up innovation processes and consequently minimise the time-to-market of innovations...

  1. More Than Just Speed

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Following more than 10 years of deliberation and planning,construc- tion of the 1,320-km Beijing-Shanghai High-speed Railway began in mid- April.Following the world’s most elevated Qinghai-Tibet Railway,which

  2. Variable speed generators

    CERN Document Server

    Boldea, Ion

    2005-01-01

    With the deregulation of electrical energy production and distribution, says Boldea (Polytechnical Institute, Timisoara, Romania) producers are looking for ways to tailor their electricity for different markets. Variable-speed electric generators are serving that purpose, up to the 400 megavolt ampere unit size, in Japan since 1996 and Germany sinc

  3. Cloud speed sensor

    Directory of Open Access Journals (Sweden)

    V. Fung

    2013-10-01

    Full Text Available Changing cloud cover is a major source of solar radiation variability and poses challenges for the integration of solar energy. A compact and economical system that measures cloud motion vectors to estimate power plant ramp rates and provide short term solar irradiance forecasts is presented. The Cloud Speed Sensor (CSS is constructed using an array of luminance sensors and high-speed data acquisition to resolve the progression of cloud passages across the sensor footprint. An embedded microcontroller acquires the sensor data and uses a cross-correlation algorithm to determine cloud motion vectors. The CSS was validated against an artificial shading test apparatus, an alternative method of cloud motion detection from ground measured irradiance (Linear Cloud Edge, LCE, and a UC San Diego Sky Imager (USI. The CSS detected artificial shadow directions and speeds to within 15 and 6% accuracy, respectively. The CSS detected (real cloud directions and speeds without average bias and with average weighted root mean square difference of 22° and 1.9 m s−1 when compared to USI and 33° and 1.5 m s−1 when compared to LCE results.

  4. Speed mathematics simplified

    CERN Document Server

    Stoddard, Edward

    1994-01-01

    Entertaining, easy-to-follow suggestions for developing greater speed and accuracy in doing mathematical calculations. Surefire methods for multiplying without carrying, dividing with half the pencil work of long division, plus advice on how to add and subtract rapidly, master fractions, work quickly with decimals, handle percentages, and much more.

  5. Synaptic vesicle proteins and active zone plasticity

    Directory of Open Access Journals (Sweden)

    Robert J Kittel

    2016-04-01

    Full Text Available Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone. The complex molecular architecture of active zones mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of active zones vary significantly, even for a given connection. Thus, there appear to be distinct active zone states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the active zone.The protein-rich cytomatrix at the active zone (CAZ provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1 and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and active zone states, which has heretofore received little attention.

  6. Synaptic Vesicle Proteins and Active Zone Plasticity.

    Science.gov (United States)

    Kittel, Robert J; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention.

  7. Supersonic stall flutter of high-speed fans

    Science.gov (United States)

    Adamczyk, J. J.; Stevans, W.; Jutras, R.

    1981-01-01

    An analytical model is proposed for predicting the onset of supersonic stall bending flutter in high-speed rotors. The analysis is based on a modified two-dimensional, compressible, unsteady actuator disk theory. The stability boundary predicted by the analysis is shown to be in good agreement with the measured boundary of a high speed fan. The prediction that the flutter mode would be a forward traveling wave sensitive to wheel speed and aerodynamic loading is confirmed by experimental measurements. In addition, the analysis shows that reduced frequency and dynamic head also play a significant role in establishing the supersonic stall bending flutter boundary of an unshrouded fan.

  8. Plastic in North Sea Fish

    NARCIS (Netherlands)

    Foekema, E.M.; Gruijter, de C.; Mergia, M.T.; Franeker, van J.A.; Murk, A.J.; Koelmans, A.A.

    2013-01-01

    To quantify the occurrence of ingested plastic in fish species caught at different geographical positions in the North Sea, and to test whether the fish condition is affected by ingestion of plastics, 1203 individual fish of seven common North Sea species were investigated: herring, gray gurnard, wh

  9. The scope of plastic surgery

    African Journals Online (AJOL)

    2013-08-03

    Aug 3, 2013 ... areas of surgery (especially general surgery), plastic surgeons are arguably the .... Who do you feel are experts in laparoscopic surgery? e (general surgeons) a. Maxillofacial .... of pressure sore. ORIF = open reduction internal fixation. ... Plastic versus cosmetic surgery: What's the difference? Plast Reconstr.

  10. New Life for Old Plastics

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Recycling joint venture utilizes innovative technology to reuse plastics Recycling,despite its green connotations,can be a messy business.In China,more than 400,000 companies are engaged in plastic recycling,but 70 percent of them are family enterprises,

  11. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...

  12. Architecture of European Plastic Surgery

    NARCIS (Netherlands)

    Nicolai, J. -P. A.; Banic, A.; Molea, G.; Mazzola, R.; Poell, J. G.

    2006-01-01

    The architecture of European Plastic Surgery was published in 1996 [Nicolai JPA, Scuderi N. Plastic surgical Europe in an organogram. Eur J Plast Surg 1996; 19: 253-6.] It is the objective of this paper to update information of that article. Continuing medical education (CME), science, training,

  13. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  14. Influence of rarefaction wave on premixed flame structure and propagation behavior

    Institute of Scientific and Technical Information of China (English)

    CHEN Xianfeng; SUN Jinhua; LU Shouxiang; CHU Guanquan; YAO Liyin; LIU Yi

    2007-01-01

    To explore the influence of rarefaction wave on the structure and propagation behavior of the premixed propane/air flame in a rectangle combustion pipe, the techniques of high speed Schlieren photograph method, pressure measurement and so on are used to study the interaction processes between rarefaction wave and flame. Two cases of rarefaction wave-flame interaction were performed in the experiment. The experimental result shows that both the rarefaction waves can cause the flame transition from laminar to turbulent combustion quickly. The cowflow rarefaction wave decreases the flame speed, while the counterflow rarefaction wave leads the flame propagation speed to increasing on the whole, accompanied with sharp vibration.

  15. Wave dissipation in flexible tubes in the time domain: in vitro model of arterial waves.

    Science.gov (United States)

    Feng, J; Long, Q; Khir, A W

    2007-01-01

    Earlier work of wave dissipation in flexible tubes and arteries has been carried out predominantly in the frequency domain and most of the studies used the measured pressure waveform for presenting the results. In this work we investigate the pattern of wave dissipation in the time domain using the separated forward and backward travelling waves in flexible tubes. We tested four sizes of latex tubes of 2m in length each, where a single semi-sinusoidal in shape, pressure wave, was produced at the inlet of each tube. Simultaneous measurements of pressure and flow waveforms were recorded every 5cm along the tubes and wave speed was determined using the pressure-velocity loop method (PU-loop). The measured data and wave speed were used to separate the pressure waveform and wave intensity, into their forward and backward directions, using wave intensity analysis (WIA). Also, the energy carried by the wave was calculated by integrating the relevant area under the wave intensity curve. The peak of the measured pressure waveform increased downstream, however, the peak of the separated forward pressure waveform decreased exponentially along the tube. Wave intensity and energy also dissipated exponentially along the travelling distance. The peaks of the separated pressure and wave intensity decreased in the forward in a similar exponential way to that in the backward direction in all four tube sizes. Also, the smaller the size of the tube the greater wave dissipation it caused. We conclude that wave separation is useful in studying wave dissipation in elastic tubes, and WIA provides a convenient method for determining the dissipation of the energy carried by the wave along the travelled distance. The separated pressure waveform, wave intensity and wave energy dissipate exponentially with the travelling distance, and wave dissipation varies conversely with the diameter of elastic tubes.

  16. A study on compound contents for plastic injection molding products of metallic resin pigment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Whan; Kwak, Jae Seob [Dept. of Mechanical Engineering, Pukyong National University, Busan (Korea, Republic of); Lee, Gyu Sang [Alliance Molding Engineering TeamLG Electronics Inc., Osan (Korea, Republic of)

    2016-12-15

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated.

  17. Computer Aided Design of The Cooling System for Plastic Injection Molds

    Directory of Open Access Journals (Sweden)

    Hakan GÜRÜN

    2009-02-01

    Full Text Available The design of plastic injection molds and their cooling systems affect both the dimension, the shape, the quality of a plastic part and the cycle time of process and the cost of mold. In this study, the solid model design of a plastic injection mold and the design of cooling sysytem were possibly carried out without the designer interaction. Developed program permited the use of three types of the cooling system and the different cavity orientations and the multible plastic part placement into the mold cores. The program which was developed by using Visual LISP language and the VBA (Visual BASIC for Application modules, was applicated in the AutoCAD software domain. Trial studies were presented that the solid model design of plastic injection molds and the cooling systems increased the reliability, the flexibility and the speed of the design.

  18. Structural Health Monitoring Using Lamb Wave Reflections and Total Focusing Method for Image Reconstruction

    Science.gov (United States)

    Muller, Aurelia; Robertson-Welsh, Bradley; Gaydecki, Patrick; Gresil, Matthieu; Soutis, Constantinos

    2017-04-01

    This investigation aimed to adapt the total focusing method (TFM) algorithm (originated from the synthetic aperture focusing technique in digital signal processing) to accommodate a circular array of piezoelectric sensors (PZT) and characterise defects using guided wave signals for the development of a structural health monitoring system. This research presents the initial results of a broader study focusing on the development of a structural health monitoring (SHM) guided wave system for advance carbon fibre reinforced plastic (CFRP) composite materials. The current material investigated was an isotropic (aluminium) square plate with 16 transducers operating successively as emitter or sensor in pitch and catch configuration enabling the collection of 240 signals per assessment. The Lamb wave signals collected were tuned on the symmetric fundamental mode with a wavelength of 17 mm, by setting the excitation frequency to 300 kHz. The initial condition for the imaging system, such as wave speed and transducer position, were determined with post processing of the baseline signals through a method involving the identification of the waves reflected from the free edge of the plate. The imaging algorithm was adapted to accommodate multiple transmitting transducers in random positions. A circular defect of 10 mm in diameter was drilled in the plate, which is similar to the delamination size introduced by a low velocity impact event in a composite plate. Images were obtained by applying the TFM to the baseline signals, Test 1 data (corresponding to the signals obtained after introduction of the defect) and to the data derived from the subtraction of the baseline to the Test 1 signals. The result shows that despite the damage diameter being 40 % smaller than the wavelength, the image (of the subtracted baseline data) demonstrated that the system can locate where the waves were reflected from the defect boundary. In other words, the contour of the damaged area was

  19. Structural Health Monitoring Using Lamb Wave Reflections and Total Focusing Method for Image Reconstruction

    Science.gov (United States)

    Muller, Aurelia; Robertson-Welsh, Bradley; Gaydecki, Patrick; Gresil, Matthieu; Soutis, Constantinos

    2016-11-01

    This investigation aimed to adapt the total focusing method (TFM) algorithm (originated from the synthetic aperture focusing technique in digital signal processing) to accommodate a circular array of piezoelectric sensors (PZT) and characterise defects using guided wave signals for the development of a structural health monitoring system. This research presents the initial results of a broader study focusing on the development of a structural health monitoring (SHM) guided wave system for advance carbon fibre reinforced plastic (CFRP) composite materials. The current material investigated was an isotropic (aluminium) square plate with 16 transducers operating successively as emitter or sensor in pitch and catch configuration enabling the collection of 240 signals per assessment. The Lamb wave signals collected were tuned on the symmetric fundamental mode with a wavelength of 17 mm, by setting the excitation frequency to 300 kHz. The initial condition for the imaging system, such as wave speed and transducer position, were determined with post processing of the baseline signals through a method involving the identification of the waves reflected from the free edge of the plate. The imaging algorithm was adapted to accommodate multiple transmitting transducers in random positions. A circular defect of 10 mm in diameter was drilled in the plate, which is similar to the delamination size introduced by a low velocity impact event in a composite plate. Images were obtained by applying the TFM to the baseline signals, Test 1 data (corresponding to the signals obtained after introduction of the defect) and to the data derived from the subtraction of the baseline to the Test 1 signals. The result shows that despite the damage diameter being 40 % smaller than the wavelength, the image (of the subtracted baseline data) demonstrated that the system can locate where the waves were reflected from the defect boundary. In other words, the contour of the damaged area was

  20. Identification and determination of solitary wave structures in nonlinear wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Newman, W.I.; Campbell, D.K.; Hyman, J.M.

    1991-01-01

    Nonlinear wave phenomena are characterized by the appearance of solitary wave coherent structures'' traveling at speeds determined by their amplitudes and morphologies. Assuming that these structures are briefly noninteracting, we propose a method for the identification of the number of independent features and their respective speeds. Using data generated from an exact two-soliton solution to the Korteweg-de-Vries equation, we test the method and discuss its strengths and limitations. 41 refs., 2 figs.

  1. Plasticity and Kinky Chemistry of Carbon Nanotubes

    Science.gov (United States)

    Srivastava, Deepak; Dzegilenko, Fedor

    2000-01-01

    Since their discovery in 1991, carbon nanotubes have been the subject of intense research interest based on early predictions of their unique mechanical, electronic, and chemical properties. Materials with the predicted unique properties of carbon nanotubes are of great interest for use in future generations of aerospace vehicles. For their structural properties, carbon nanotubes could be used as reinforcing fibers in ultralight multifunctional composites. For their electronic properties, carbon nanotubes offer the potential of very high-speed, low-power computing elements, high-density data storage, and unique sensors. In a continuing effort to model and predict the properties of carbon nanotubes, Ames accomplished three significant results during FY99. First, accurate values of the nanomechanics and plasticity of carbon nanotubes based on quantum molecular dynamics simulations were computed. Second, the concept of mechanical deformation catalyzed-kinky-chemistry as a means to control local chemistry of nanotubes was discovered. Third, the ease of nano-indentation of silicon surfaces with carbon nanotubes was established. The elastic response and plastic failure mechanisms of single-wall nanotubes were investigated by means of quantum molecular dynamics simulations.

  2. Modeling deflagration waves out of hot spots

    Science.gov (United States)

    Partom, Yehuda

    2017-01-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.

  3. The lifecycle of axisymmetric internal solitary waves

    Directory of Open Access Journals (Sweden)

    J. M. McMillan

    2010-09-01

    Full Text Available The generation and evolution of solitary waves by intrusive gravity currents in an approximate two-layer fluid with equal upper- and lower-layer depths is examined in a cylindrical geometry by way of theory and numerical simulations. The study is limited to vertically symmetric cases in which the density of the intruding fluid is equal to the average density of the ambient. We show that even though the head height of the intrusion decreases, it propagates at a constant speed well beyond 3 lock radii. This is because the strong stratification at the interface supports the formation of a mode-2 solitary wave that surrounds the intrusion head and carries it outwards at a constant speed. The wave and intrusion propagate faster than a linear long wave; therefore, there is strong supporting evidence that the wave is indeed nonlinear. Rectilinear Korteweg-de Vries theory is extended to allow the wave amplitude to decay as r-p with p=½ and the theory is compared to the observed waves to demonstrate that the width of the wave scales with its amplitude. After propagating beyond 7 lock radii the intrusion runs out of fluid. Thereafter, the wave continues to spread radially at a constant speed, however, the amplitude decreases sufficiently so that linear dispersion dominates and the amplitude decays with distance as r-1.

  4. Universal features of amorphous plasticity

    Science.gov (United States)

    Budrikis, Zoe; Castellanos, David Fernandez; Sandfeld, Stefan; Zaiser, Michael; Zapperi, Stefano

    2017-07-01

    Plastic yielding of amorphous solids occurs by power-law distributed deformation avalanches whose universality is still debated. Experiments and molecular dynamics simulations are hampered by limited statistical samples, and although existing stochastic models give precise exponents, they require strong assumptions about fixed deformation directions, at odds with the statistical isotropy of amorphous materials. Here, we introduce a fully tensorial, stochastic mesoscale model for amorphous plasticity that links the statistical physics of plastic yielding to engineering mechanics. It captures the complex shear patterning observed for a wide variety of deformation modes, as well as the avalanche dynamics of plastic flow. Avalanches are described by universal size exponents and scaling functions, avalanche shapes, and local stability distributions, independent of system dimensionality, boundary and loading conditions, and stress state. Our predictions consistently differ from those of mean-field depinning models, providing evidence that plastic yielding is a distinct type of critical phenomenon.

  5. Phenotypic Plasticity and Species Coexistence.

    Science.gov (United States)

    Turcotte, Martin M; Levine, Jonathan M

    2016-10-01

    Ecologists are increasingly interested in predicting how intraspecific variation and changing trait values impact species interactions and community composition. For many traits, much of this variation is caused by phenotypic plasticity, and thus the impact of plasticity on species coexistence deserves robust quantification. Partly due to a lack of sound theoretical expectations, empirical studies make contradictory claims regarding plasticity effects on coexistence. Our critical review of this literature, framed in modern coexistence theory, reveals that plasticity affects species interactions in ways that could impact stabilizing niche differences and competitive asymmetries. However, almost no study integrates these measures to quantify the net effect of plasticity on species coexistence. To address this challenge, we outline novel empirical approaches grounded in modern theory.

  6. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  7. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  8. An analysis of a QND speed-meter interferometer

    CERN Document Server

    Purdue, P

    2002-01-01

    In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors (e.g. LIGO-III and EURO), one strategy is to monitor the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. This paper describes and analyzes the most straightforward design for a {\\it speed meter interferometer} that accomplishes this -- a design (due to Braginsky, Gorodetsky, Khalili and Thorne) that is analogous to a microwave-cavity speed meter conceived by Braginsky and Khalili. A mathematical mapping between the microwave speed meter and the optical interferometric speed meter is developed and is used to show (in accord with the speed being a Quantum Nondemolition [QND] observable) that {\\it in principle} the interferometric speed meter can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies, and can do so without the use of squeezed vacuum or any auxiliary filt...

  9. Method for rudder roll stabilization control by maintaining ship speed

    Directory of Open Access Journals (Sweden)

    LIU Zhiquan

    2017-01-01

    Full Text Available A ship navigating on the surface of the water may experience greater resistance, adversely affect-ing its speed and leading to energy loss. The added resistance of surface ships in both still water and waves are investigated, and the computation method of total speed loss is presented. An autopilot system is intro-duced to constrain the speed loss, and course keeping and rudder roll stabilization sliding mode control laws are proposed according to a compact control strategy. The two working conditions of "heading" and "heading plus anti-roll" are discussed, including roll stabilization, heading error, speed maintenance and rudder abrasion. The results show that the speed can be effectively maintained using this method, and from a commercial point of view, the fin-rudder roll stabilization control is not recommended for vessels equipped with both fins and rudders.

  10. On the unstable mode merging of gravity-inertial waves with Rossby waves

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-08-01

    Full Text Available We recapitulate the results of the combined theory of gravity-inertial-Rossby waves in a rotating, stratified atmosphere. The system is shown to exhibit a "local" (JWKB instability whenever the phase speed of the low-frequency-long wavelength westward propagating Rossby wave exceeds the phase speed ("Kelvin" speed of the high frequency-short wavelength gravity-inertial wave. This condition ensures that mode merging, leading to instability, takes place in some intermediate band of frequencies and wave numbers. The contention that such an instability is "spurious" is not convincing. The energy source of the instability resides in the background enthalpy which can be released by the action of the gravitational buoyancy force, through the combined wave modes.

  11. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  12. Biodegradability of degradable plastic waste.

    Science.gov (United States)

    Agamuthu, P; Faizura, Putri Nadzrul

    2005-04-01

    Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.

  13. Augmenting Plasticity Induction in Human Motor Cortex by Disinhibition Stimulation.

    Science.gov (United States)

    Cash, Robin F H; Murakami, Takenobu; Chen, Robert; Thickbroom, Gary W; Ziemann, Ulf

    2016-01-01

    Cellular studies showed that disinhibition, evoked pharmacologically or by a suitably timed priming stimulus, can augment long-term plasticity (LTP) induction. We demonstrated previously that transcranial magnetic stimulation evokes a period of presumably GABA(B)ergic late cortical disinhibition (LCD) in human primary motor cortex (M1). Here, we hypothesized that, in keeping with cellular studies, LCD can augment LTP-like plasticity in humans. In Experiment 1, patterned repetitive TMS was applied to left M1, consisting of 6 trains (intertrain interval, 8 s) of 4 doublets (interpulse interval equal to individual peak I-wave facilitation, 1.3-1.5 ms) spaced by the individual peak LCD (interdoublet interval (IDI), 200-250 ms). This intervention (total of 48 pulses applied over ∼45 s) increased motor-evoked potential amplitude, a marker of corticospinal excitability, in a right hand muscle by 147% ± 4%. Control experiments showed that IDIs shorter or longer than LCD did not result in LTP-like plasticity. Experiment 2 indicated topographic specificity to the M1 hand region stimulated by TMS and duration of the LTP-like plasticity of 60 min. In conclusion, GABA(B)ergic LCD offers a powerful new approach for augmenting LTP-like plasticity induction in human cortex. We refer to this protocol as disinhibition stimulation (DIS).

  14. Hydrodynamic responses of a thin floating disk to regular waves

    CERN Document Server

    Yiew, Lucas; Meylan, Michael; French, Ben; Thomas, Giles

    2015-01-01

    Laboratory wave basin measurements of the surge, heave and pitch of a floating plastic disk caused by regular incident waves are presented. The measurements are used to validate two theoretical models: one based on slope-sliding theory and the other on combined potential-flow and thin-plate theories.

  15. Improving speed behaviour : the potential of in-car speed assistance and speed limit credibility.

    NARCIS (Netherlands)

    Nes, C.N. van Houtenbos, M. & Schagen, I.N.L.G. van

    2009-01-01

    Speeding is still a common practice on many roads and it contributes to a significant number of crashes. Two new approaches to solve speeding issues are focused on: intelligent speed assistance systems (ISA) and speed limit credibility. Research has indicated that ISA is promising with respect to im

  16. Sea surface wind speed estimation from space-based lidar measurements

    Directory of Open Access Journals (Sweden)

    Y. Hu

    2008-02-01

    Full Text Available Global satellite observations of lidar backscatter measurements acquired by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO mission and collocated sea surface wind speed data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E, are used to investigate the relation between wind driven wave slope variance and sea surface wind speed. The new slope variance – wind speed relation established from this study is similar to the linear relation from Cox-Munk (1954 and the log-linear relation from Wu (1972, 1990 for wind speed larger than 7 m/s and 13.3 m/s, respectively. For wind speed less than 7 m/s, the slope variance is proportional to the square root of the wind speed, assuming a two dimensional isotropic Gaussian wave slope distribution. This slope variance – wind speed relation becomes linear if a one dimensional Gaussian wave slope distribution is assumed. Contributions from whitecaps and subsurface backscattering are effectively removed by using 532 nm lidar depolarization measurements. This new slope variance – wind speed relation is used to derive sea surface wind speed from CALIPSO single shot lidar measurements (70 m spot size, after correcting for atmospheric attenuation. The CALIPSO wind speed result agrees with the collocated AMSR-E wind speed, with 1.2 m/s rms error.

  17. Determining the location of buried plastic water pipes from measurements of ground surface vibration

    Science.gov (United States)

    Muggleton, J. M.; Brennan, M. J.; Gao, Y.

    2011-09-01

    ‘Mapping the Underworld' is a UK-based project, which aims to create a multi-sensor device that combines complementary technologies for remote buried utility service detection and location. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and techniques for detecting buried infrastructure, in particular plastic water pipes, are being investigated. One of the proposed techniques involves excitation of the pipe at some known location with concurrent vibrational mapping of the ground surface in order to infer the location of the remainder of the pipe. In this paper, measurements made on a dedicated pipe rig are reported. Frequency response measurements relating vibrational velocity on the ground to the input excitation were acquired. Contour plots of the unwrapped phase revealed the location of the pipe to within 0.1-0.2 m. Magnitude contour plots revealed the excitation point and also the location of the pipe end. By examining the unwrapped phase gradients along a line above the pipe, it was possible to identify the wave-type within the pipe responsible for the ground surface vibration. Furthermore, changes in the ground surface phase speed computed using this method enabled the location of the end of the pipe to be confirmed.

  18. Efficient modelling of sand wave behaviour [Powerpoint Presentation

    NARCIS (Netherlands)

    Berg, van den Joris; Damme, van Ruud

    2004-01-01

    Sand waves form a pattern of more or less parallel ridges. The wave length is about 300 meters and the height up to 10 meters, which is a considerable amount of the total water depth. Sand waves migrate with speeds of about 10 meters per year. Information on their behaviour is valuable: the larger p

  19. Do speed cameras reduce speeding in urban areas?

    Science.gov (United States)

    Oliveira, Daniele Falci de; Friche, Amélia Augusta de Lima; Costa, Dário Alves da Silva; Mingoti, Sueli Aparecida; Caiaffa, Waleska Teixeira

    2015-11-01

    This observational study aimed to estimate the prevalence of speeding on urban roadways and to analyze associated factors. The sample consisted of 8,565 vehicles circulating in areas with and without fixed speed cameras in operation. We found that 40% of vehicles 200 meters after the fixed cameras and 33.6% of vehicles observed on roadways without speed cameras were moving over the speed limit (p cameras, more women drivers were talking on their cell phones and wearing seatbelts when compared to men (p < 0.05 for both comparisons), independently of speed limits. The results suggest that compliance with speed limits requires more than structural interventions.

  20. Plasticity and beyond microstructures, crystal-plasticity and phase transitions

    CERN Document Server

    Hackl, Klaus

    2014-01-01

    The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.