WorldWideScience

Sample records for plastic thermal stability

  1. Influence of Cellulose on the Mechanical and Thermal Stability of ABS Plastic Composites

    Directory of Open Access Journals (Sweden)

    K. Crews

    2016-01-01

    Full Text Available Microcrystalline cellulose was explored as possible biodegradable fillers in the fabrication of ABS plastic composites. TGA indicates that upon inclusion of cellulose microcrystals the thermal stability of the ABS plastics was improved significantly when compared to the neat ABS plastic counterparts. Furthermore, inclusion of extracted cellulose from plant biomass showed a higher thermal stability with maximum decomposition temperatures around 131.95°C and 124.19°C for cellulose from cotton and Hibiscus sabdariffa, respectively, when compared to that of the purchased cellulose. In addition, TMA revealed that the average CTE value for the neat ABS and 1 : 1 ratio of cellulose to ABS fabricated in this study was significantly lower than the reported CTE (ca. 73.8 μm/m°C.

  2. Three-dimensional thermal aging and dimensional stability of cellular plastic insulation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Youchen; Kokko, E. [VTT Building Technology, Espoo (Finland). Building Physics, Puilding Services and Fire Technology

    1996-12-31

    The requirement of producing environmental-friendly plastic foam results in the replacement of the traditional blowing agents, CFCs (chlorofluorocarbons), with zero ozone depletion potential (ODP) alternatives. The tool which is able to evaluate the quality of the new generation of plastic foams becomes practically important. A 3-dimensional (3-D) heat and mass (gases) transfer model with respect to rigid closed-cell cellular plastics has been carefully deduced and furnished based on our previous understanding of such problems. To solve the 3-D parabolic partial differential equations subject to the third type of boundary conditions, a modified alternative direction implicit (AD I) finite difference method was developed by using the natural laws. To predict the long-term dimensional stability of a plastic foam insulation in air, a simplified mechanical model has been presented. In addition, to closure the prediction of foam dimensional stability, we have deduced a general relationship between the elastic modulus (Young`s modulus) of a rigid closed-cell cellular plastic, E{sub f} and its density, {phi}{sub p}. In comparison to the published measurements and other two well-known E{sub f} - {phi}{sub p} models, it is found that our E{sub f} - up relationship gives better prediction and is valid over the entire rigid plastic foam density range. Thermal aging and average volume change of zero ODP foams with different facing will be addressed. In addition, the application of the model shows the effects of foam dimension and facing on its thermal aging and deformation. (orig.) (13 refs.)

  3. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity.

    Science.gov (United States)

    Zhang, Y S; Zhao, Y H; Zhang, W; Lu, J W; Hu, J J; Huo, W T; Zhang, P X

    2017-01-06

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  4. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity

    Science.gov (United States)

    Zhang, Y. S.; Zhao, Y. H.; Zhang, W.; Lu, J. W.; Hu, J. J.; Huo, W. T.; Zhang, P. X.

    2017-01-01

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  5. Compatibility and thermal stability studies on plasticized PVC/PMMA blend polymer electrolytes complexed with different lithium salts

    Directory of Open Access Journals (Sweden)

    R. Nimma Elizabeth

    2005-03-01

    Full Text Available The lithium salt (x (X= LiAsF6, LiPF6, LiN(C2F5SO22 , LiN(CF3SO22, LiBF4 was complexed with a host of poly(vinyl chloride (PVC/ poly(methyl methacrylate (PMMA blend polymer and plasticized with a combination of ethylene carbonate (EC and propylene carbonate(PC. The polymer electrolyte films were prepared for constant PVC/PMMA blend ratio. The electrochemical stability and thermal stability of the solid polymer electrolytes were reported. The role of PMMA to the phenomena occurring at the interface between the electrolyte and the lithium metal electrode was explored.

  6. Preparation and performance of lipophilic α-zirconium phosphate with high thermal stability and its application in thermal-plastic polymers

    Directory of Open Access Journals (Sweden)

    Ya Du

    2015-10-01

    Full Text Available To prepare lipophilic α-zirconium phosphate with high grafting ratio and thermal stability (OZrP-HT and explore its potential application in thermal-plastic polymers, a novel method was developed by surface lipophilicity enhancement strategy. The commercial α-zirconium phosphate (α-ZrP was pre-intercalated by n-propylamine (PA and grafted by silane coupling agents. Then the pre-intercalated PA was removed by heat-treatment, and the obtained OZrP-HT was utilized to fabricate the phosphorous-containing polyester (P-co-PET/OZrP-HT nanocomposites by melt-blending method. The prepared OZrP-HT and P-co-PET/OZrP-HT nanocomposites were characterized by Wide Angle X-ray Diffraction (WAXD, Fourier Transform Infrared Spectroscopy (FTIR, Thermogravimetric Analysis (TGA, Transmission Electron Microscope (TEM, etc. The results show that OZrP-HT with high grafting ratio (13.78 wt% and thermal stability (Tonset=368 °C was successfully prepared via this novel method and was uniformly intercalated by P-co-PET molecular chains. OZrP-HT had no significant effect on the fiber processability of P-co-PET polymer, and flame retardant properties of (P-co-PET/OZrP-HT nanocomposites were improved. This method may be suitable for organic modification of general inorganic layered compounds and could extend the potential applications in thermo-plastic polymers.

  7. Thermal Analysis of Plastics

    Science.gov (United States)

    D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A.

    2008-01-01

    This lab experiment illustrates the use of differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) in the measurement of polymer properties. A total of seven exercises are described. These are dry exercises: students interpret previously recorded scans. They do not perform the experiments. DSC was used to determine the…

  8. Thermal Analysis of Plastics

    Science.gov (United States)

    D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A.

    2008-01-01

    This lab experiment illustrates the use of differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) in the measurement of polymer properties. A total of seven exercises are described. These are dry exercises: students interpret previously recorded scans. They do not perform the experiments. DSC was used to determine the…

  9. Effect of Hafnium and Zirconium to Glass Forming Ability, Thermal Stability, Plasticity Deformation and Crystallization of Ni-Free Pentabasic Ti-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Oak J.J.

    2017-06-01

    Full Text Available The newly designed Ti-based bulk metallic glass (BMG in which case of fracture behavior was observed 1990MPa to compressive strength with a wide plastic deformation around 7% after process of elastic deformation. This phenomenon can be compared with those of Ti-based alloys and other Ti-based BMGs and indicates high potential to be applied in use. It was evaluated the Ti-based BMG for thermal stability that the reduced glass parameters, ΔTx, Trg and γ, are 79K, 0.50 and 0.38, respectively. In addition, it reveals high activation energies for crystallization in which are estimated to Ex1 = 291.77 ±9.71 kJ/mol, Ex2 = 588.77 ±28.88 kJ/mol and Ex3 = 330.26 ±3.61 kJ/mol on kissinger plotting in this study.

  10. Geotehnical Properties of Plastic Stabilized Lateritic Soil

    OpenAIRE

    Akinola Johnson Olarewaju

    2016-01-01

    Stabilization is the combination of soils and additives to change its properties and remain in its stable compacted state without undergoing any change under effect of exposure to weather and traffic. Soil stabilization through the reinforced soil construction is an efficient and reliable technique for improving the strength and stability of soils. The lateritic soil used in this study was taken along Papa-Ilaro road Ajegunle at Abalabi, Ogun State, Nigeria and the solid plastic wastes were t...

  11. Geotehnical Properties of Plastic Stabilized Lateritic Soil

    Directory of Open Access Journals (Sweden)

    Akinola Johnson Olarewaju

    2016-09-01

    Full Text Available Stabilization is the combination of soils and additives to change its properties and remain in its stable compacted state without undergoing any change under effect of exposure to weather and traffic. Soil stabilization through the reinforced soil construction is an efficient and reliable technique for improving the strength and stability of soils. The lateritic soil used in this study was taken along Papa-Ilaro road Ajegunle at Abalabi, Ogun State, Nigeria and the solid plastic wastes were taken from different locations in Ilaro. The plastics were grounded into pellets and substituted with laterite at 10%, 15%, 20%, 25% and 30% for compaction test and at 5%, 10%, 15%, 20%, 25% and 30% for California bearing ration (CBR test. The tests conducted in line with BS 1377 (1990 are the specific gravity, compaction and CBR. From the results, it was also observed that plastic pellets reduce the bulk densities and dry densities in the same proportion as the percentage water content increases. From the results, it is hereby suggested that plastic pellets could be mixed with lateritic material around underground pipes to mitigate the effects of accidental explosions. Consequently, environmental risk and hazards caused by plastic wastes and accidental explosions could be greatly reduced.

  12. Plastic Sealed Thermal Expansion Packer for Thermal Recovery

    Institute of Scientific and Technical Information of China (English)

    Liu Li; Jiang Hua

    1995-01-01

    @@ According to the requirements of wellbore heatinsulation technique and selective zonal steaminjection technique in heavy-oil steam-injection recovery process, the Oil Recovery Technique Department of Liaohe Petroleum Exploration and Production Bureau and Shuguang Oil Recovery Plant have cooperatively designed and developed a plastic sealed thermal expansion packer for thermal recovery.

  13. Thermal and catalytic pyrolysis of plastic waste

    OpenAIRE

    Débora Almeida; Maria de Fátima Marques

    2016-01-01

    Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolit...

  14. The effect of high temperature plastic deformation on the thermal stability and microstructure of Zr{sub 55}Cu{sub 30}Ni{sub 5}Al{sub 10} bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L. [State Key Lab of Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China)], E-Mail: lliu2000@public.wh.hb.cn; Chen, Q. [State Key Lab of Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Chan, K.C. [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University, Hong Kong (China); Wang, J.F. [State Key Lab of Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Pang, G.K.H. [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China)

    2007-03-25

    The plastic deformation of Zr{sub 55}Cu{sub 30}Al{sub 10}Ni{sub 5} (numbers indicate at.%) bulk metallic glass (BMG) was conducted in the supercooled liquid region under uniaxial tension with various strain rates ranging from 8.3 x 10{sup -4} to 2 x 10{sup -2} s{sup -1}. It was found that the deformation behavior of the BMG is strongly dependent on strain rate. Thermal and structural investigations revealed that the plastic deformation reduced the thermal stability of Zr{sub 55}Cu{sub 30}Al{sub 10}Ni{sub 5} BMG and promoted crystallization or reordering of the amorphous structure. To clarify the correlation between strain and structure of the BMG, the sample that was deformed at a high strain rate and exhibited significant necking was selected for a detailed investigation of its structure in different parts (e.g., the tip, middle and end parts) by conventional and high-resolution transmission electron microscopy. It was found that a band crystalline structure with a strongly crystallographic orientation was formed at the tip part, while inhomogeneous nanocrystallization occurred in the middle parts, and the amorphous structure remained almost unchanged in the end part. The different structures observed in different parts of the deformed sample are attributed to the inhomogeneous deformation of the BMG at high strain rates.

  15. Thermal and catalytic pyrolysis of plastic waste

    Directory of Open Access Journals (Sweden)

    Débora Almeida

    2016-02-01

    Full Text Available Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolites can be used as catalysts in catalytic pyrolysis and influence the final products obtained.

  16. Thermally stabilized heliostat

    Science.gov (United States)

    Anderson, Alfred J.

    1983-01-01

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  17. The role of stabilization centers in protein thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Magyar, Csaba [Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt 2, H-1117 Budapest (Hungary); Gromiha, M. Michael [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 (India); Sávoly, Zoltán [Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt 2, H-1117 Budapest (Hungary); Simon, István, E-mail: simon.istvan@ttk.mta.hu [Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt 2, H-1117 Budapest (Hungary)

    2016-02-26

    The definition of stabilization centers was introduced almost two decades ago. They are centers of noncovalent long range interaction clusters, believed to have a role in maintaining the three-dimensional structure of proteins by preventing their decay due to their cooperative long range interactions. Here, this hypothesis is investigated from the viewpoint of thermal stability for the first time, using a large protein thermodynamics database. The positions of amino acids belonging to stabilization centers are correlated with available experimental thermodynamic data on protein thermal stability. Our analysis suggests that stabilization centers, especially solvent exposed ones, do contribute to the thermal stabilization of proteins. - Highlights: • Stabilization centers contribute to thermal stabilization of protein structures. • Stabilization center content correlates with melting temperature of proteins. • Exposed stabilization center content correlates with stability even in hyperthermophiles. • Stability changing mutations are frequently found at stabilization centers.

  18. Chemical and thermal stability of insulin

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands.......To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands....

  19. Thermal Viscoelastic Analysis of Plastic Components Considering Residual Stress

    Science.gov (United States)

    Choi, Chel Woo; Jeoung, Kab Sik; Moon, Hyung-Il; Kim, Heon Young

    Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity, but plastic components may often become distorted after injection molding due to residual stress after the filling, packing, and cooling processes. In addition, plastic deteriorates depending on various temperature conditions and the operating time, which can be characterized by stress relaxation and creep. The viscoelastic behavior of plastic materials in the time domain can be expressed by the Prony series using the ABAQUS commercial software package. This paper suggests a process for predicting post-production deformation under cyclic thermal loading. The process was applied to real plastic panels, and the deformation predicted by the analysis was compared to that measured in actual testing, showing the possibility of using this process for predicting the post-production deformation of plastic products under thermal loading.

  20. System design description PFP thermal stabilization

    Energy Technology Data Exchange (ETDEWEB)

    LARKIN, K.A.

    1999-02-23

    The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: functional design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides.

  1. Plasticity, stability, and yield: the origins of Anthony David Bradshaw's model of adaptive phenotypic plasticity.

    Science.gov (United States)

    Peirson, B R Erick

    2015-04-01

    Plant ecologist Anthony David Bradshaw's account of the evolution of adaptive phenotypic plasticity remains central to contemporary research aimed at understanding how organisms persist in heterogeneous environments. Bradshaw suggested that changes in particular traits in response to specific environmental factors could be under direct genetic control, and that natural selection could therefore act directly to shape those responses: plasticity was not "noise" obscuring a genetic signal, but could be specific and refined just as any other adaptive phenotypic trait. In this paper, I document the contexts and development of Bradshaw's investigation of phenotypic plasticity in plants, including a series of unreported experiments in the late 1950s and early 1960s. Contrary to the mythology that later emerged around Bradshaw's ideas, Bradshaw was engaged in a serious and sustained empirical research program concerning plasticity in the 1950s and 1960s that went far beyond a single review paper. Moreover, that work was not isolated, but was surrounded by an already rich theoretical discourse and a substantial body of empirical research concerning the evolution of developmental plasticity and stability. Bradshaw recast the problem of how to understand (and control) plasticity and stability within an epistemic framework focused on genetic differences and natural selection.

  2. System design description PFP thermal stabilization

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.

    1998-11-10

    The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing P1ant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing to meet the 3013 storage requirements. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: function design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides.

  3. Thermal stability of aliphatic hyperbranched polyesters

    Directory of Open Access Journals (Sweden)

    Vuković Jasna

    2002-01-01

    Full Text Available The influence of the molar mass (generation, number and type of end groups on the thermal stability of aliphatic hyperbranched polyesters are presented in this study. Different end groups were obtained by modification of the samples with chlorides of propionic acid and stearic acid. The thermal stability of the hyperbranched polyesters was determined by thermogravimetry using a NET-ZSCH TG 209 instrument in nitrogen atmosphere at a heating rate of 10°C/min. A comparison of the temperatures obtained for mass losses of 5 20 and 40 wt% for unmodified samples showed that the thermal stability increased up to the fourth generation and then remained practically constant. An increase in the thermal stability of modified samples of the second, third and fourth generation was observed.

  4. Thermal Recovery of Plastic Deformation in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Dongxiao [Tsinghua Univ., Beijing (China); Yu, Xinghua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Wei [The Ohio State Univ., Columbus, OH (United States); Crooker, Paul [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); David, Stan A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-05-23

    Stainless steel has been widely used in challenging environments typical to nuclear power plant structures, due its excellent corrosion resistance. Nickel filler metals containing high chromium concentration, including Alloy 82/182, are used for joining stainless steel to carbon steel components to achieve similar high resistance to stress corrosion cracking. However, the joint usually experience weld metal stress corrosion cracking (SCC), which affects the safety and structural integrity of light water nuclear reactor systems. A primary driving force for SCC is the high tensile residual stress in these welds. Due to large dimension of pressure vessel and limitations in the field, non-destructive residual stress measurement is difficult. As a result, finite element modeling has been the de facto method to evaluate the weld residual stresses. Recent studies on this subject from researchers worldwide report different residual stress value in the weldments [5]. The discrepancy is due to the fact that most of investigations ignore or underestimate the thermal recovery in the heat-affect zone or reheated region in the weld. In this paper, the effect of heat treatment on thermal recovery and microhardness is investigated for materials used in dissimilar metal joint. It is found that high equivalent plastic strains are predominately accumulated in the buttering layer, the root pass, and the heat affected zone, which experience multiple welding thermal cycles. The final cap passes, experiencing only one or two welding thermal cycles, exhibit less plastic strain accumulation. Moreover, the experimental residual plastic strains are compared with those predicted using an existing weld thermo-mechanical model with two different strain hardening rules. The importance of considering the dynamic strain hardening recovery due to high temperature exposure in welding is discussed for the accurate simulation of weld residual stresses and plastic strains. In conclsuion, the

  5. Thermal Stability of Otto Fuel Prepolymer

    Science.gov (United States)

    Tompa, Albert S.; Sandagger, Karrie H.; Bryant, William F., Jr.; McConnell, William T.; Lacot, Fernando; Carr, Walter A.

    2000-01-01

    Otto Fuel II contains a nitrate ester, plasticizer, and 2-NDPA as a stabilizer. Otto Fuel with stabilizers from three vendors was investigated by dynamic and isothermal DSC using samples sealed in a glass ampoule and by Isothermal Microcalorimetry (IMC) using 10 gram samples aged at 75 C for 35 days. DSC kinetics did not show differences between the stabilizer; the samples had an activation energy of 36.7 +/- 0.6 kcal/mol. However, IMC analysis was sensitive enough to detect small differences between the stabilizer, namely energy of interaction values of 7 to 14 Joules. DSC controlled cooling and heating at 5 C/min from 30 to -60 to 40 C experiments were similar and showed a crystallization peak at -48 +/- 1 C during cooling, and upon heating there was a glass transition temperature step at approx. -54 +/- 0.5 C and a melting peak at -28 +/- 0.4 C.

  6. ANALYSIS ON THERMAL ELASTO- PLASTIC ASPERITY CONTACTS OF LAYERED MEDIA

    Institute of Scientific and Technical Information of China (English)

    TONG Ruiting; LIU Geng; ZENG Quanren; LIU ianxiang

    2008-01-01

    A thermal elasto-plastic asperity contact model is investigated, which takes into account the steady-state heat transfer and the asperity distortion due to thermal elasto-plastic deformations. A hard coating and a soft coating are applied to study the correlations between contact area and contact pressure, average gap and contact pressure, coating thickness and contours of the contact stress distribution, etc. The effects of material properties, coating thickness, frictional coefficient, and the heat input combinations on the stress distribution are investigated and discussed. The frictional heat input increases the maximum value of von Mises stress. Finally, the appropriate thickness of the hard coating is also discussed. To protect the substrate, one can choose hard coating and the thickness of that is suggested that can be hc=70 Rm.

  7. Thermal stability of bioactive enzymatic papers.

    Science.gov (United States)

    Khan, Mohidus Samad; Li, Xu; Shen, Wei; Garnier, Gil

    2010-01-01

    The thermal stability of two enzymes adsorbed on paper, alkaline phosphatase (ALP) and horseradish peroxidase (HRP), was measured using a colorimetric technique quantifying the intensity of the product complex. The enzymes adsorbed on paper retained their functionality and selectivity. Adsorption on paper increased the enzyme thermal stability by 2-3 orders of magnitude compared to the same enzyme in solution. ALP and HRP enzymatic papers had half-lives of 533 h and 239 h at 23 degrees C, respectively. The thermal degradation of adsorbed enzyme was found to follow two sequential first-order reactions, indication of a reaction system. A complex pattern of enzyme was printed on paper using a thermal inkjet printer. Paper and inkjet printing are ideal material and process to manufacture low-cost-high volume bioactive surfaces.

  8. Ecological stability and plasticity of potato varieties in Polissia

    Directory of Open Access Journals (Sweden)

    Е. Р. Ермантраут

    2015-12-01

    Full Text Available Purpose. Substantiating the selection of potato varieties for their ecological plasticity and stability to grow in Polissia. Methods. Field, laboratory, analitycal and statystical ones. Results. Impact of weather conditions during the growing season on the stability of potato varieties was estimated by indicators of yield, starch content and collection over the years by determining the average, standard deviation, minimum, maximum values and range of variation. ‘Memphis’, ‘Faluka’, ‘Arsenal’ and ‘Evolution’ were distinguished from the studied potato varieties by high genetic stability – their deviation from the average variance marked «minus» had values that were significantly less than zero. ‘Faktor’, ‘Flamenko’ and ‘Evora’ varieties are plastic (deviation is close to ±0, ‘Kolomba’, ‘Arizona’ and ‘Voliumiia’ ones – very plastic (deviation is most distant from zero. The studied varieties were distributed by homeostasis as follows: ‘Arizona’, ‘Colombo’, ‘Factor’ and ‘Memphis’ are the most valuable. Conclusions. ‘Evora’ potato variety can be considered intensive in terms of yield. ‘Evolution’ and ‘Flamenco’ varieties formed stable yields, during the years of study the difference between their maximum and minimum yields was the least – 8.2 and 9.3 tons per ha, respectively. Environmental assessment according to Eberhart and Russell indicates a high genetic stability of such potato varieties as ‘Arizona’, ‘Volyumiia’, ‘Kolombo’, ‘Evora’ and ‘Flamenko’. Conditions of Zhytomyr Oblast Plant Varieties Studying Centre are the most favorable among the studied regions to cultivate potato varieties.

  9. Thermal stability of gas phase magnesium nanoparticles

    NARCIS (Netherlands)

    Krishnan, Gopi; Kooi, Bart J.; Palasantzas, George; Pivak, Yevheniy; Dam, Bernard

    2010-01-01

    In this work we present a unique transmission electron microscopy study of the thermal stability of gas phase synthesized Mg nanoparticles, which have attracted strong interest as high capacity hydrogen storage materials. Indeed, Mg nanoparticles with a MgO shell (similar to 3 nm thick) annealed at

  10. Thermal stability of gas phase magnesium nanoparticles

    NARCIS (Netherlands)

    Krishnan, G.; Kooi, B.J.; Palasantzas, G.; Pivak, Y.; Dam, B.

    2010-01-01

    In this work we present a unique transmission electron microscopy study of the thermal stability of gas phase synthesized Mg nanoparticles, which have attracted strong interest as high capacity hydrogen storage materials. Indeed, Mg nanoparticles with a MgO shell ( ∼ 3 nm thick) annealed at 300 °C

  11. Thermal stability of gas phase magnesium nanoparticles

    NARCIS (Netherlands)

    Krishnan, G.; Kooi, B.J.; Palasantzas, G.; Pivak, Y.; Dam, B.

    2010-01-01

    In this work we present a unique transmission electron microscopy study of the thermal stability of gas phase synthesized Mg nanoparticles, which have attracted strong interest as high capacity hydrogen storage materials. Indeed, Mg nanoparticles with a MgO shell ( ∼ 3 nm thick) annealed at 300 °C s

  12. Novel DTA method for thermal stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berty, J.M.; Gandhi, R.J.; Lee, S.

    1986-01-01

    A Differential Thermal Analysis (DTA) technique to study the kinetics of highly exothermic reactions for estimating thermal stability parameters has been developed. The technique involves measuring and analyzing the heat generated due to the reaction from a differential temperature curve. The technique has been tested by studying the kinetics of the reaction between sodium thiosulfate and hydrogen peroxide whose kinetic parameters are already known and whose thermal stability has been analyzed by a different technique. First the envisiones experiment was simulated on computer, then the DTA experimental equipment was designed on the basis of the computer simulation and finally the actual reaction between Na/sub 2/S/sub 2/O/sub 4/ and H/sub 2/O was performed. The satisfactory results demonstrated the feasibility of the DTA technique for estimating the kinetic parameters.

  13. Thermal stability of collagen triple helix.

    Science.gov (United States)

    Xu, Yujia

    2009-01-01

    Chief among the challenges of characterizing the thermal stability of the collagen triple helix are the lack of the reversibility of the thermal transition and the presence of multiple folding-unfolding steps during the thermal transition which rarely follows the simple two-state, all-or-none mechanism. Despite of the difficulties inherited in the quantitative depiction of the thermal transition of collagen, biophysical studies combined with proteolysis and mutagenesis approaches using full-chain collagens, short synthetic peptides, and recombinant collagen fragments have revealed molecular features of the thermal unfolding of the subdomains of collagen and led to a better understanding of the diverse biological functions of this versatile protein. The subdomain of collagen generally refers to a segment of the long, rope-like triple helical molecule that can unfold cooperatively as an independent unit whose properties (their size, location, and thermal stability) are considered essential for the molecular recognition during the self-assembly of collagen and during the interactions of collagen with other macromolecules. While the unfolding of segments of the triple helix at temperatures below the apparent melting temperature of the molecule has been used to interpret much of the features of the thermal unfolding of full-chain collagens, the thermal studies of short, synthetic peptides have firmly established the molecular basis of the subdomains by clearly demonstrating the close dependence of the thermal stability of a triple helix on the constituent amino acid residues at the X and the Y positions of the characteristic Gly-X-Y repeating sequence patterns of the triple helix. Studies using recombinant collagen fragments further revealed that in the context of the long, linear molecule, the stability of a segment of the triple helix is also modulated by long-range impact of the local interactions such as the interchain salt bridges. Together, the combined approaches

  14. Long-Term Physical Stability of Plasticized Hemicellulose Films

    Directory of Open Access Journals (Sweden)

    Susanna L. Heikkinen

    2013-12-01

    Full Text Available Oat spelt arabinoxylan (OsAX and spruce galactoglucomannan (GGM are hemicelluloses that can be extracted in large quantities from side-streams of the agriculture and forest industries. They both form self-standing films, making them potential future packaging materials. This systematic study focuses on the effect of long-term storage on the physical stability of hemicellulose-based films. OsAX and GGM films were plasticized with 40% (w/w of the polysaccharide of glycerol, sorbitol, or their blends, and their stability was followed for four months. Ageing especially affected the glycerol-containing films, in which the tensile strength and Young’s modulus increased and elongation at break decreased. Although the mechanical properties were altered, storage did not affect crystallinity of the films. Oxygen gas permeability (OP and water vapor permeability (WVP properties were monitored in OsAX films. Interestingly WVP decreased during storage; more than a 40% decrease was seen when plasticizer blends contained 50% or more glycerol. In contrast, there were no drastic changes in the OP during storage; all the OPs obtained were between 3.7 and 8.9 [cm3 µm/ (m2 d kPa].

  15. Ecological plasticity and stability of new sugar beet hybrids

    Directory of Open Access Journals (Sweden)

    І. І. Коровко

    2016-07-01

    Full Text Available Purpose. To аnalyze modern sugar beet hybrids in terms of plasticity and stability indices. To identify genotypes adapted to different soil and climatic zones on the territory of Ukraine with subsequent recommendations related to the production. Methods. Field study, laboratory testing, analy­tical procedure and statistical evaluation. Results. Features of productivity formation in new sugar beet hybrids in different soil and climatic zones of Ukraine has been studied with further recommendations for hybrids distribution in regions of sugar beet production. Response of genotype to environmental conditions change, degree of their impact on yield level, sugar content, sugar yield by hybrids evaluation in terms of ecological plasticity and stability indices was defined. According to calculations, such hybrids as ‘Novela’ (b = 1,15, ‘Protekta’ (b = 1,12, ‘Monsan’ (b = 1,09, ‘Proteus’ (b = 1,03 can be considered as highly adaptive for yield level, they require advanced agrotechnology, and only in case of observing all requirements they will produce maximum yield. ‘Proteus’ (b = 1,29, ‘Bizon’ (b = 1,26, ‘Si Belana’ (b = 1,20, ‘Protekta’ (b = 1,12 hybrids were highly adaptive for sugar content. Almost all hybrids showed high plasticity for sugar yield index, except ‘Monsan’ (b = 0,45, ‘Highland’ (b = 0,96, ‘Glorianna KWS’ (b = 0,96. Conclusions. According to the results of investigation, one can recommend producers to use ‘Proteus’ and ‘Protekta’ hybrids that revealed a positive res­ponse to improvement of growing conditions for all studied parameters. ‘Highland’ and ‘Glorianna KWS’ hybrids are advisable to grow on extensive background where at minimum cost they will form the maximum parameter values.

  16. An Investigation on Thermal Recycling of Recycled Plastic Resin

    Science.gov (United States)

    Yamakita, Ryuji; Miura, Katsuya; Ishino, Yojiro; Ohiwa, Norio

    Thermal recycling of recycled plastic resin is focused in this investigation. Fine grinding of plastic resin and preparation of high temperature oxidizing atmosphere are indispensable for effective and successful burn-up of plastic resin. Polyethylene terephthalate resin powder is employed and high temperature oxidizing atmosphere is generated downstream an annular burner. Through a circular nozzle set coaxially in the closed bottom end of the annular burner, PET-powder and propane-air mixture are issued vertically upward into the high temperature oxidizing atmosphere. Temperature and O2 concentration fields downstream the annular burner are first examined by varying the circular jet equivalence ratio with the air flow rate kept constant and without PET-powder supply. PET-powder having a mass-median diameter of either 89.7µm or 145µm is then issued into the high temperature region along with propane-air mixture by varying the PET-powder mass flow rate. Appearances of the PET-powder flame are observed using a high-speed CCD video camera and unburnt PET particles are traced during their passages in the high temperature region. Variation of O2 concentration fields due to PET-powder combustion is also measured in the PET flame. According to the results, overall limit conditions for effective burn-up of PET-powder are finally discussed.

  17. System Design Description PFP Thermal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.

    2000-04-25

    The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures.

  18. Jet Fuel Thermal Stability Investigations Using Ellipsometry

    Science.gov (United States)

    Nash, Leigh; Vasu, Subith S.; Klettlinger, Jennifer Lindsey

    2017-01-01

    Jet fuels are typically used for endothermic cooling in practical engines where their thermal stability is very important. In this work the thermal stability of Sasol IPK (a synthetic jet fuel) with varying levels of naphthalene has been studied on stainless steel substrates using spectroscopic ellipsometry in the temperature range 385-400 K. Ellipsometry is an optical technique that measures the changes in a light beam’s polarization and intensity after it reflects off of a thin film to determine the film’s thickness and optical properties. All of the tubes used were rated as thermally unstable by the color standard portion of the Jet Fuel Thermal Oxidation Test, and this was confirmed by the deposit thicknesses observed using ellipsometry. A new amorphous model on a stainless steel substrate was used to model the data and obtain the results. It was observed that, as would be expected, increasing the temperature of the tube increased the overall deposit amount for a constant concentration of naphthalene. The repeatability of these measurements was assessed using multiple trials of the same fuel at 385 K. Lastly, the effect of increasing the naphthalene concentration in the fuel at a constant temperature was found to increase the deposit thickness.In conclusion, ellipsometry was used to investigate the thermal stability of jet fuels on stainless steel substrate. The effects of increasing temperature and addition of naphthalene on stainless steel tubes with Sasol IPK fuel were investigated. It was found, as expected, that increasing temperature lead to an increase in deposit thickness. It wasAmerican Institute of Aeronautics and Astronautics6also found that increasing amounts of naphthalene increased the maximum deposit thickness. The repeatability of these measurements was investigated using multiple tests at the same conditions. The present work provides as a better quantitative tool compared to the widely used JFTOT technique. Future work will expand on the

  19. Thermal comfort study of plastics manufacturing industry in converting process

    Directory of Open Access Journals (Sweden)

    Sugiono Sugiono

    2017-09-01

    Full Text Available Thermal comfort is one of ergonomics factors that can create a significant impact to workers performance. For a better thermal comfort, several environment factors (air temperature, wind speed and relative humidity should be considered in this research. The object of the study is a building for converting process of plastics manufacturing industry located in Malang, Indonesia. The maximum air temperature inside the building can reach as high as 36°C. The result of this study shows that heat stress is dominantly caused by heat source from machine and wall building. The computational fluid dynamics (CFD simulation is used to show the air characteristic through inside the building. By using the CFD simulation, some scenarios of solution are successfully presented. Employees thermal comfort was investigated based on predicted mean vote model (PMV and predicted percentage of dissatisfied model (PPD. Existing condition gives PMV in range from 1.83 to 2.82 and PPD in range from 68.9 to 98%. Meanwhile, modification of ventilation and replacing ceiling material from clear glass into reflective clear glass gave significant impact to reduce PMV into range from 1.63 to 2.18 and PPD into range from 58.2 to 84.2%. In sort, new design converting building process has more comfortable for workers.

  20. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    B S Murty; M K Datta; S K Pabi

    2003-02-01

    Nanocrystalline materials, which are expected to play a key role in the next generation of human civilization, are assembled with nanometre-sized “building blocks” consisting of the crystalline and large volume fractions of intercrystalline components. In order to predict the unique properties of nanocrystalline materials, which are a combination of the properties of the crystalline and intercrystalline regions, it is essential to understand precisely how the structures of crystalline and intercrystalline regions vary with decrease in crystallite size. In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique properties of nanocrystalline materials. Therefore, extensive interest has been generated in exploring the size effects on the structure of crystalline and intercrystalline region of nanocrystalline materials, and the thermal stability of nanocrystalline materials against significant grain growth. The present article is aimed at understanding the structure and stability of nanocrystalline materials.

  1. Thermal Stabilization study of polyacrylonitrile fiber obtained by extrusion

    Directory of Open Access Journals (Sweden)

    Robson Fleming Ribeiro

    2015-12-01

    Full Text Available A low cost and environmental friendly extrusion process of the Polyacrylonitrile (PAN polymer was viabilized by using the 1,2,3-propanetriol (glycerol as a plasticizer. The characterization of the fibers obtained by this process was the object of study in the present work. The PAN fibers were heat treated in the range of 200 °C to 300 °C, which is the temperature range related to the stabilization/oxidation step. This is a limiting phase during the carbon fiber processing. The characterization of the fibers was made using infrared spectroscopy, thermal analysis and microscopy. TGA revealed that the degradation of the extruded PAN co-VA fibers between 250 °C and 350 °C, corresponded to a 9% weight loss to samples analyzed under oxidizing atmosphere and 18% when the samples were analyzed under inert atmosphere. DSC showed that the exothermic reactions on the extruded PAN co-VA fibers under oxidizing synthetic air was broader and the cyclization started at a lower temperature compared under inert atmosphere. Furthermore, FT-IR analysis correlated with thermal anlysis showed that the stabilization/oxidation process of the extruded PAN fiber were coherent with other works that used PAN fibers obtained by other spinning processes.

  2. Thermal and Structural Properties of Silk Biomaterials Plasticized by Glycerol.

    Science.gov (United States)

    Brown, Joseph E; Davidowski, Stephen K; Xu, Dian; Cebe, Peggy; Onofrei, David; Holland, Gregory P; Kaplan, David L

    2016-12-12

    The molecular interactions of silk materials plasticized using glycerol were studied, as these materials provide options for biodegradable and flexible protein-based systems. Plasticizer interactions with silk were analyzed by thermal, spectroscopic, and solid-state NMR analyses. Spectroscopic analysis implied that glycerol was hydrogen bonded to the peptide matrix, but may be displaced with polar solvents. Solid-state NMR indicated that glycerol induced β-sheet formation in the dried silk materials, but not to the extent of methanol treatment. Fast scanning calorimetry suggested that β-sheet crystal formation in silk-glycerol films appeared to be less organized than in the methanol treated silk films. We propose that glycerol may be simultaneously inducing and interfering with β-sheet formation in silk materials, causing some improper folding that results in less-organized silk II structures even after the glycerol is removed. This difference, along with trace residual glycerol, allows glycerol extracted silk materials to retain more flexibility than methanol processed versions.

  3. Thermal depolymerization of plastics - PDU testing. Task 15. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The process development unit (PDU) test program is part of an ongoing effort at the Energy & Environmental Research Center (EERC) to expand the base of knowledge for the thermal depolymerization of plastics process. This phase of the development effort, initiated after successful completion of a bench-scale program, has concentrated on maximizing liquid yield. The purposes of the PDU program were (1) to demonstrate the process on a commercially scalable unit, (2) to produce quantities of product that could be used to initiate discussions with potential end users, and (3) to gather engineering and yield data. Experimentation consisted of eleven test points on the PDU and seven on the continuous fluid-bed reactor (CFBR) bench-scale unit. Initial PDU tests (PO35-PO39) were carried out using a base blend, which consists of 60% high-density polyethylene (HDPE), 20% polypropylene (PP), and 20% polystyrene (PS) virgin resin pellets. Test PO39 used base blend with 5% polyvinyl chloride (PVC). The base blend decomposed to produce a flowable liquid, with liquid yields ranging from 33% to 45%. The next series of tests, PO40-PO44, used a postconsumer plastics feed. This material did not decompose as readily as the base blend and formed a very waxy, heavy liquid, with {open_quotes}liquid{close_quotes} yields ranging from 18% to 63% (low liquid yields are the result of using excess air in the natural gas burner in some tests in an attempt to increase gas residence time).

  4. Bis(pinacolato)diboron as an additive for the detection of thermal neutrons in plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Adam [Department of Physics and the Nuclear Science and Engineering Center (NuSEC), Colorado School of Mines, Golden, CO 80401 (United States); Yemam, Henok A.; Stuntz, John [Department of Chemistry and Geochemistry and the Materials Science Program Colorado School of Mines, Golden, CO 80401 (United States); Remedes, Tyler [Department of Physics and the Nuclear Science and Engineering Center (NuSEC), Colorado School of Mines, Golden, CO 80401 (United States); Sellinger, Alan [Department of Chemistry and Geochemistry and the Materials Science Program Colorado School of Mines, Golden, CO 80401 (United States); Greife, Uwe, E-mail: ugreife@mines.edu [Department of Physics and the Nuclear Science and Engineering Center (NuSEC), Colorado School of Mines, Golden, CO 80401 (United States)

    2016-04-21

    A readily available and inexpensive boron compound was tested as an additive for the detection of thermal neutrons in plastic scintillators. Bis(pinacolato)diboron (B{sub 2}Pin{sub 2}) was determined to be a compatible boron source (8.51 wt% boron, 1.70 wt% {sup 10}B) in poly(vinyltoluene) based matrices. Plastic scintillator blends of 1–20 wt% 2,5-diphenyloxazole (PPO), 0.1 wt% 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP) and 1–15 wt% B{sub 2}Pin{sub 2} were prepared that provided optical clarity, good mechanical properties, and the capability of thermal neutron detection. Independent of B{sub 2}Pin{sub 2} concentration, strong {sup 10}B neutron capture signals around 90 keV{sub ee} were observed at essentially constant light output. Increasing PPO concentration allowed for the use of pulse shape discrimination (PSD) in both fast and thermal neutron detection. High PPO concentrations appear to cause additional alpha quenching that affected the {sup 10}B neutron capture signal. Aging effects after storage in air for several months were observed, which led to degradation of performance and in some samples of mechanical stability.

  5. Radiation and thermal stabilities of adenine nucleotides.

    Science.gov (United States)

    Demidov, V V; Potaman, V N; Solyanina, I P; Trofimov, V I

    1995-03-01

    We have investigated in detail radiation and thermal stabilities and transformations of adenosine mono- and triphosphates in liquid and frozen solid aqueous solutions within a wide range of absorbed radiation dose (up to 75 kGy) and temperature (up to 160 degrees C). Dephosphorylation is the main pathway of high temperature hydrolysis of adenine nucleotides. Basic thermodynamic and kinetic parameters of this process have been determined. Radiolysis of investigated compounds at room temperature results in scission of N-glycosidic bond with a radiation yield about of 1 mol/100 eV. Solution freezing significantly enhances radiation stability of nucleotides as well as other biomolecules. This circumstance is essential in the discussion of panspermia concepts.

  6. Thermal Hydraulic Stability in a Coaxial Thermosyphon

    Institute of Scientific and Technical Information of China (English)

    YANG Jianhui; LU Wenqiang; LI Qing; LI Qiang; ZHOU Yuan

    2005-01-01

    The heat transfer and thermal hydraulic stability in a two-phase thermosyphon with coaxial riser and down-comer has been experimentally investigated and theoretically analyzed to facilitate its application in cold neutron source. The flow in a coaxial thermosyphon was studied experimentally for a variety of heating rates, transfer tube lengths, charge capacities, and area ratios. A numerical analysis of the hydraulic balance between the driving pressure head and the resistance loss has also been performed. The results show that the presented coaxial thermosyphon has dynamic performance advantages relative to natural circulation in a boiling water reactor.

  7. The Thermal Stability of Unsymmetrical Dimethylhydrazine

    Science.gov (United States)

    Spakowski, Adolph E.

    1958-01-01

    The thermal stability of unsymmetrical dimethylhydrazine was investigated in a static system simulating conditions in an almost-empty fuel tank. The self-ignition temperature and spontaneous decomposition temperature of the pure fuel were determined at atmospheric pressure to be 454 and 740 F. respectively, with the larger (740 F) value, obtained in an inert atmosphere of nitrogen, representing the minimum temperature that would cause a rapid exothermic reaction. The addition of 40 weight percent dimethylenetriamine to unsymmetrical dimethylhydrazine did not significantly affect these properties.

  8. Experimental Study on Hydrocarbon Fuel Thermal Stability

    Institute of Scientific and Technical Information of China (English)

    J.S.Chin; A.H.Lefebvre

    1992-01-01

    The-thermal stability characteristics of kerosine-type fuels are examined using a heated-tube apparatus which allows independent control of fuel pressure,fuel temperature,tube-wall temperature and fuel flow rate.This method is identified simply as a "constant wall temperature method”,It is different from a previous widely used method ,which is identified as a “Constant heat flux method”,It is a single-pass system.Rate of deposition on the tube walls are measured by weighing the test tube before and after each test.For a fuel temperature of 250℃,it is found that deposition rates increease continuously with increase in tubewall temperature.This finding contradicts the results of previous studies which had led to the conclusion that deposition rates increase with increase in wall temperature up to a certain value(around 650K) beyond which any further increase in wall temperature causes the rate of deposition to decline.The present results show clearly that the constant wall temperature method is more suitable for assessing the thermal stability of gas turbine fuels.

  9. Stability and plasticizing and crystallization effects of vitamins in amorphous sugar systems.

    Science.gov (United States)

    Zhou, Yankun; Roos, Yrjö H

    2012-02-01

    Increased molecular mobility and structural changes resulting from water plasticization of glassy solids may lead to loss of the entrapped compounds from encapsulant systems. In the present study, the stability of water-soluble vitamins, vitamin B(1) (vB(1), thiamin hydrochloride) and vitamin C (vC, ascorbic acid), in freeze-dried lactose and trehalose at various water activities was studied. Water sorption of lactose-vB(1), lactose-vC, trehalose-vB(1), and trehalose-vC systems was determined gravimetrically. Glass transition and crystallization of anhydrous and plasticized sugar-vitamin systems were determined using thermal analysis. Critical water activity was calculated using water sorption and glass transition data. The retention of the vitamins was measured spectrophotometrically. The results showed that the amorphous structure protected the entrapped vitamins at low a(w). Crystallization of lactose accelerated vitamin degradation, whereas trehalose retained much higher amounts of the vitamins. Glass transition and critical water activity of solids and crystallization of component sugars should be considered in the stabilization of sensitive components.

  10. Changes in the Thermal and Dimensional Stability of the Structure of a Polymer Composite After Carbonization

    Science.gov (United States)

    Gaidachuk, V. E.; Kondratiev, A. V.; Chesnokov, A. V.

    2017-01-01

    Based on the theory of reinforcement of polymer composites, approximate relations for the physicomechanical and strength properties of a carbon-carbon composite material are synthesized, which are used to perform a finite-element analysis of the degree and character of changes in the thermal and dimensional stability of its structure after carbonization. Using approximate criteria of structural optimization of carbon-carbon composites ensuring their maximum dimensional stability, a [0/±45/90] package of thermally nonquilibrium layers is investigated and compared with an analogous carbon-fiber-reinforced plastic.

  11. The Effect of Thermal Cycling Treatments on the Thermal Stability and Mechanical Properties of a Ti-Based Bulk Metallic Glass Composite

    Directory of Open Access Journals (Sweden)

    Fan Bu

    2016-11-01

    Full Text Available The effect of thermal cycling treatments on the thermal stability and mechanical properties of a Ti48Zr20Nb12Cu5Be15 bulk metallic glass composite (BMGC has been investigated. Results show that moderate thermal cycles in a temperature range of −196 °C (cryogenic temperature, CT to 25 °C (room temperature, RT or annealing time at CT has not induced obvious changes of thermal stability and then it decreases slightly over critical thermal parameters. In addition, the dendritic second phases with a bcc structure are homogeneously embedded in the amorphous matrix; no visible changes are detected, which shows structural stability. Excellent mechanical properties as high as 1599 MPa yield strength and 34% plastic strain are obtained, and the yield strength and elastic modulus also increase gradually. The effect on the stability is analyzed quantitatively by crystallization kinetics and plastic-flow models, and indicates that the reduction of structural relaxation enthalpy, which is related to the degradation of spatial heterogeneity, reduces thermal stability but does not imperatively deteriorate the plasticity.

  12. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.

    Science.gov (United States)

    Gunderson, Alex R; Stillman, Jonathon H

    2015-06-07

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the 'Bogert effect'. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures.

  13. Synthesis, characterization, thermal and computational studies of novel tetra-azido compounds as energetic plasticizers

    Science.gov (United States)

    Baghersad, Mohammad Hadi; Habibi, Azizollah; Heydari, Akbar

    2017-02-01

    In this paper, four azido compounds have been synthesized and characterized as new energetic plasticizers. Nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, elemental analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and differential thermal analysis (DTA) have been used to identify and determine the properties of the synthesized plasticizers. The plasticization effect of plasticizers on glycidyl azide polymer (GAP) has been investigated by viscosity measurements and thermal analysis of the prepolymer-plasticizer mixtures and plasticized binders. The plasticized mixtures were cured by a diisocyanate curing agent and the glass transition temperature and decomposition temperature of the cured polyurethane binders were measured. Thermal analysis of the prepolymer-plasticizer and cured polymer mixtures showed that the synthesized plasticizers are completely compatible with the GAP binder and have a very good plasticizing effect. Furthermore, equilibrium geometry and heats of formation of each of the plasticizer molecules were obtained using the thermochemical T1 recipe, which is available in wave function Spartan software. Comparing empirical heats of combustion and calculated heats of combustion by using the heats of formation showed that the suggested optimum molecular structure by the T1 recipe has a high similarity to the real molecular structure of these molecules.

  14. Benzotriazole-type ultraviolet stabilizers and antioxidants in plastic marine debris and their new products.

    Science.gov (United States)

    Rani, Manviri; Shim, Won Joon; Han, Gi Myung; Jang, Mi; Song, Young Kyoung; Hong, Sang Hee

    2017-02-01

    Ultraviolet stabilizers (UVSs) and antioxidants are the most widely used additives in plastics to enhance the lifetime of polymeric materials. There is growing interest in the roles of plastic marine debris and microplastics as source or vector of toxic substances to marine environment and organisms. However, there is limited information available on plastic associated chemicals, particularly additive chemicals. Therefore, to evaluate their extent of exposure from plastics to the marine environment, we determined UVSs and antioxidants in plastic debris (n=29) collected from beaches along with their corresponding new plastic products in markets (n=27) belonging to food, fisheries, and general use. Antioxidants were present at higher concentrations than UVSs in both plastic debris and new plastics, indicative of their high use over UVSs. Irganox 1076 and Irganox 1010 were more commonly used than other chemicals investigated. The irregular use with high concentration of additive chemicals was observed in short-term use plastic products. Except for Irganox 1076 and UV 326, most antioxidants and UVSs were relatively high in new plastics compared to corresponding plastic marine debris, implying their potential leaching or degradation during use or after disposal. The present study provides quantitative information about additive chemicals contained in plastic marine debris and their new products. These results could be useful for better understanding of environmental exposure to hazardous chemicals through plastic pollution.

  15. Thermal stability of PMMA–clay hybrids

    Indian Academy of Sciences (India)

    Tanushree Choudhury; Nirendra M Misra

    2010-04-01

    Materials with small particle size are being extensively used in composites and hybrid materials. Exfoliated clay–polymer hybrids show enhanced properties. Exfoliation of clay platelets can be affected by selecting dispersing agents. In the present work, clay dispersed by natural dispersant (soap stone powder), cetyl trimethyl ammonium bromide (CTAB) dispersed clay and acid clay (amorphous clay) are taken. They are then polymerized with poly methyl methacrylate (PMMA) by solution intercalation method. The thermal stability of these different clay–PMMA hybrids have been studied and compared with that of pure PMMA by differential scanning calorimeter (DSC). The bonding of clay with PMMA has been studied by IR. Morphology of clay–PMMA hybrids has been shown by SEM and XRD which indicate partially exfoliated structure in T606-4 and intercalated structures in T606-6 and T606-2.

  16. Thermal stability of nanoscale metallic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, A.S., E-mail: sofia.ramos@dem.uc.pt [CEMUC, Departamento de Engenharia Mecânica, Universidade de Coimbra, 3030-788 Coimbra (Portugal); Cavaleiro, A.J.; Vieira, M.T. [CEMUC, Departamento de Engenharia Mecânica, Universidade de Coimbra, 3030-788 Coimbra (Portugal); Morgiel, J. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Cracow (Poland); Safran, G. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, H-1121 Budapest (Hungary)

    2014-11-28

    Metallic nanolayered thin films/foils, in particular Ni/Al multilayers, have been used to promote joining. The objective of this work is to evaluate the thermal stability of nanoscale metallic multilayers with potential for joining applications. Multilayers thin films with low (Ti/Al and Ni/Ti), medium (Ni/Al) and high (Pd/Al) enthalpies of exothermic reaction were prepared by dual cathode magnetron sputtering. Their thermal stability was studied by: i) differential scanning calorimetry combined with X-ray diffraction (XRD), ii) in-situ XRD using cobalt radiation, and iii) in-situ transmission electron microscopy. It was possible to detect traces of intermetallic or amorphous phases in the as-deposited short period (bilayer thickness) multilayers, except for the Ti/Al films where no reaction products that might be formed during deposition were identified. For short periods (below 20 nm) the equilibrium phases are directly achieved upon annealing, whereas for higher periods intermediate trialuminide phases are present for Ti/Al and Ni/Al multilayers. The formation of B2-NiTi from Ni/Ti multilayers occurs without the formation of intermediate phases. On the contrary, for the Pd–Al system the formation of intermediate phases was never avoided. The viability of nanoscale multilayers as “filler” materials for joining macro or microparts/devices was demonstrated. - Highlights: • Me1 and Me2 (Me—metal) alternated nanolayers deposited by magnetron sputtering • Reactive Me1/Me2 multilayer thin films with nanometric modulation period • By heat treatment the films always evolve to the equilibrium intermetallic phase. • For some Me1–Me2 systems and periods, the formation of intermediate phases occurs. • Me1/Me2 multilayer thin films can be used as filler materials to enhance joining.

  17. Thermal stability and kinetic of decomposition of nitrated HTPB.

    Science.gov (United States)

    Wang, Qingfa; Wang, Li; Zhang, Xiangwen; Mi, Zhentao

    2009-12-30

    Nitrated HTPB (NHTPB) is a potential energetic binder to replace the conventional inert binder, HTPB, for the composite solid propellants and plastic bonded explosives (PBXs). The thermal stability of the NHTPB sample with 10% double bonds converted to dinitrate ester group (10% NHTPB) was evaluated by high-pressure differential scanning calorimeter (PDSC) measurement. The influences of pressure (0.1, 2.5 and 5.0 MPa) and the heating rate (4, 6, 8 and 10 degrees C min(-1)) on the DSC behavior of the 10% NHTPB sample were investigated. The decomposition temperature of this compound decreased with the increase of pressure, meanwhile, increased as the heating rate increasing. The thermal decomposition at 150-250 degrees C followed a first-order law. The kinetic parameters and thermodynamic parameters for the 10% NHTPB sample at 150-250 degrees C under ambient pressure were obtained from the DSC data by non-isothermal methods proposed by ASTM E698 and Flynn-Wall-Ozawa. The critical temperature for this compound was estimated at about 154 degrees C.

  18. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments.

    Science.gov (United States)

    Manenti, T; Loeschcke, V; Moghadam, N N; Sørensen, J G

    2015-11-01

    The selective past of populations is presumed to affect the levels of phenotypic plasticity. Experimental evolution at constant temperatures is generally expected to lead to a decreased level of plasticity due to presumed costs associated with phenotypic plasticity when not needed. In this study, we investigated the effect of experimental evolution in constant, predictable and unpredictable daily fluctuating temperature regimes on the levels of phenotype plasticity in several life history and stress resistance traits in Drosophila simulans. Contrary to the expectation, evolution in the different regimes did not affect the levels of plasticity in any of the traits investigated even though the populations from the different thermal regimes had evolved different stress resistance and fitness trait means. Although costs associated with phenotypic plasticity are known, our results suggest that the maintenance of phenotypic plasticity might come at low and negligible costs, and thus, the potential of phenotypic plasticity to evolve in populations exposed to different environmental conditions might be limited.

  19. 21 CFR 178.2650 - Organotin stabilizers in vinyl chloride plastics.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Organotin stabilizers in vinyl chloride plastics... AIDS, AND SANITIZERS Antioxidants and Stabilizers § 178.2650 Organotin stabilizers in vinyl chloride... vinyl chloride homopolymers and copolymers complying with the provisions of § 177.1950 or § 177.1980...

  20. Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide

    KAUST Repository

    Chen, Chien-Chiang

    2011-10-01

    Decarboxylation-induced thermal crosslinking has been demonstrated to be effective for stabilizing membranes against plasticization in dense films. This study extends this promising crosslinking approach from dense films to industrially relevant asymmetric hollow fiber membranes. Crosslinkable asymmetric hollow fiber membranes were spun from a carboxylic acid containing polyimide, 6FDA-DAM:DABA. Dope and spinning conditions were optimized to obtain fibers with a defect-free selective skin layer. It is found that slightly defective fibers suffered severe selectivity loss after thermal crosslinking, suggesting that defect-free property is essential to the performance of the resulting crosslinked hollow fiber membranes. The crosslinked fibers were tested for CO 2/CH 4 separation. The excellent plasticization resistance under high pressure feeds (with highest CO 2 partial pressure of 400psia) suggests that these robust membranes are promising for aggressive natural gas purification. © 2011 Elsevier B.V.

  1. System Design Description PFP Thermal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.

    2000-01-27

    DOE has authorized in their letter of August 2, 1999, the operation of these three furnaces, quote ''Operation of the three uncompleted muffle furnaces (No.3, No.4, and No.5) located in Room 235B is authorized, using the same feed charge limits as the two existing furnaces (No.1, and No.2) located in Room 230C,''. The above statement incorrectly refers to Room 230C whereas the correct location is Room 230A. The current effort is directed to initiate the operation and to complete the design activities DOE authorized the operation of the furnaces based on their Safety Evaluation Report (SER). Based on analogy and the principle of similarity, the risks and consequences of accidents both onsite and offsite due to operation of three furnaces are not significantly larger than those already evaluated with the two operating furnaces. Thermal stabilization operations and the material of feed for furnaces in Glovebox HA-21 I are essentially the same as those currently being stabilized in furnaces in Glovebox HC-21 C. Therefore the accident analysis has utilized identical accident scenarios in evaluation and no additional failure modes are introduced by HA-21 I muffle furnace operation that would enhance the consequences of accidents. Authorization Basis documents as referenced below (PFP FSAR and DOE Letter authorizing the operation) appear to contradict each other, i.e. one allows and authorizes the operation and the other imposes the restriction on the operation. The purpose of the PFP FSAR restrictions was to review thoroughly the design and installation of three furnaces and perform acceptance testing before approving the startup for operation. With the experience of operating the two furnaces in Glovebox HC-21C, and the knowledge of risks and hazards the facility operation, the plant is adequately prepared to operate these additional furnaces. ECN 653595 has been prepared to incorporate operation of the muffle furnaces in Glovebox HA-21 I into the

  2. Genetic architecture and phenotypic plasticity of thermally-regulated traits in an eruptive species, Dendroctonus ponderosae

    Science.gov (United States)

    Barbara J. Bentz; Ryan B. Bracewell; Karen E. Mock; Michael E. Pfrender

    2011-01-01

    Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic...

  3. Catalytic thermal cracking of post-consumer waste plastics to fuels: Part 1 - Kinetics and optimization

    Science.gov (United States)

    Thermogravimetric analysis (TGA) was used to investigate thermal and catalytic pyrolysis of waste plastics such as prescription bottles (polypropylene/PP), high density polyethylene, landfill liners (polyethylene/PE), packing materials (polystyrene/PS), and foams (polyurethane/PU) into crude plastic...

  4. Thermal stability of brushite with chitosan samples

    Science.gov (United States)

    Chikanova, E. S.; Golovanova, O. A.; Malikova, T. V.; Kuimova, M. V.

    2017-01-01

    In this paper, the powders of brushite from an aqueous solution of Ca(NO3)2- (NH4)2HPO4 with different content of chitosan were synthesized. XRD data revealed that all samples are single-phase and are brushite (CaHPO4·2H2O). By FT-IR spectroscopy and BET methods, it was found that chitosan adsorbs onto the surface of powders. With increase of the content of the additive, the average size of crystallites increases 4.0 – 4.8 – 11.8 μm, respectively, and the dissolution rate in isotonic solution also decreases. The thermal stability of the composite powders was studied. It was established that the highest destruction of samples occurs in the range 473-673 K by removing of adsorption and crystallization water and partial change of the structure of the mineral and chitosan. At a temperature of 873 K, carbonization of the organic additive occurs.

  5. Technological thermal stresses in the shrink fitting of cylindrical bodies with consideration of plastic flows

    Science.gov (United States)

    Dats, E. P.; Tkacheva, A. V.

    2016-05-01

    This paper presents a solution of a sequence of one-dimensional boundary-value problems of thermal stresses defining the elastic-plastic deformation processes used in the shrink fitting of cylindrical bodies. The initiation and development of plastic flow in the materials of the assembly elements are studied taking into account the temperature dependence of the yield stress of these materials. During temperature equalization, the flow can slow down, followed by unloading and formation of a residual stress field providing tension. The conditions of formation and motion of the boundaries of the elastic and plastic states in plastic flow and during unloading are determined.

  6. The effects of thermally reversible agents on PVC stability properties

    Science.gov (United States)

    Wang, J.; Yao, J.; Xiong, X. H.; Jia, C. X.; Ren, R.; Chen, P.; Liu, X. M.

    2016-07-01

    One kind of thermally reversible cross-linking agents for improving PVC thermally stability was synthesized. The chemical structure and thermally reversible characteristics of cross-linking agents were investigated by FTIR and DSC analysis, respectively. FTIR results confirmed that the cyclopentadienyl barium mercaptides ((CPD-C2H4S)2Ba) were successfully synthesized. DSC results showed it has thermally reversible characteristics and the depolymerization temperature was between 170 °C and 205 °C. The effects of cross-linking reaction time on gel content of Poly(vinyl chloride) compounds was evaluated. The gel content value arrived at 42% after being cross-linked for 25 min at 180 C. The static thermally stability measurement proved that the thermally stability of PVC compounds was improved.

  7. Investigation of thermal treatment on selective separation of post consumer plastics prior to froth flotation.

    Science.gov (United States)

    Guney, Ali; Poyraz, M Ibrahim; Kangal, Olgac; Burat, Firat

    2013-09-01

    Plastics have become the widely used materials because of their advantages, such as cheapness, endurance, lightness, and hygiene. However, they cause waste and soil pollution and they do not easily decompose. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. Depending on their surface characteristics, these plastics can be separated from each other by flotation method which is useful mineral processing technique with its low cost and simplicity. The main objective of this study is to investigate the flotation characteristics of PET and PVC and determine the effect of plasticizer reagents on efficient plastic separation. For that purpose, various parameters such as pH, plasticizer concentration, plasticizer type, conditioning temperature and thermal conditioning were investigated. As a result, PET particles were floated with 95.1% purity and 65.3% efficiency while PVC particles were obtained with 98.1% purity and 65.3% efficiency.

  8. Specific heat and thermal conductivity of explosives, mixtures, and plastic-bonded explosives determined experimentally

    Energy Technology Data Exchange (ETDEWEB)

    Baytos, J.F.

    1979-09-01

    The specific heat and thermal conductivity of explosives and plastic-bonded explosives of interest to WX operations, determined experimentally, are reported in three tables. Specific heat was determined by differential scanning calorimetry against sapphire standards. Thermal conductivity was determined by two means: the guarded hot-plate method or the differential scanning calorimeter comparative method on miniature samples.

  9. Polyaniline Conducting Electroactive Polymers Thermal and Environmental Stability Studies

    Directory of Open Access Journals (Sweden)

    Reza Ansari

    2006-01-01

    Full Text Available In the current studies, polyaniline (PANi was prepared both chemical and electrochemically in the presence of different bronsted acids from aqueous solutions. The effect of thermal treatment on electrical conductivity, and thermal stability of the PANi conducting polymers were investigated using 4-point probe and TGA techniques respectively. It was found that polymer prepared by CV method is more thermally stable than those prepared by the other electrochemical techniques. In this paper we have also reviewed some fundamental information about synthesis, general properties, diverse applications, thermal and environmental stability of polyaniline conducting polymers.

  10. Shape memory polymer network with thermally distinct elasticity and plasticity.

    Science.gov (United States)

    Zhao, Qian; Zou, Weike; Luo, Yingwu; Xie, Tao

    2016-01-01

    Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices.

  11. Does greater thermal plasticity facilitate range expansion of an invasive terrestrial anuran into higher latitudes?

    Science.gov (United States)

    Winwood-Smith, Hugh S; Alton, Lesley A; Franklin, Craig E; White, Craig R

    2015-01-01

    Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to predict future cane toad distributions in Australia, but understanding the potential contribution of phenotypic plasticity and adaptation to future range expansion remains challenging. Previous research demonstrates the considerable thermal metabolic plasticity of the cane toad, but suggests limited thermal plasticity of locomotor performance. Additionally, the oxygen-limited thermal tolerance hypothesis predicts that reduced aerobic scope sets thermal limits for ectotherm performance. Metabolic plasticity, locomotor performance and aerobic scope are therefore predicted targets of natural selection as cane toads invade colder regions. We measured these traits at temperatures of 10, 15, 22.5 and 30°C in low- and high-latitude toads acclimated to 15 and 30°C, to test the hypothesis that cane toads have adapted to cooler temperatures. High-latitude toads show increased metabolic plasticity and higher resting metabolic rates at lower temperatures. Burst locomotor performance was worse for high-latitude toads. Other traits showed no regional differences. We conclude that increased metabolic plasticity may facilitate invasion into higher latitudes by maintaining critical physiological functions at lower temperatures.

  12. Thermal and pH Stability of Feline Calicivirus

    Science.gov (United States)

    Lee, Kyu M.; Gillespie, J. H.

    1973-01-01

    Molar concentration of sodium chloride partially stabilized feline calicivirus against thermal inactivation at 50 C. One strain of feline calicivirus was relatively acid labile compared to another. PMID:4762115

  13. Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols

    DEFF Research Database (Denmark)

    Cervera, Mirna Fernández; Karjalainen, Milja; Airaksinen, Sari

    2004-01-01

    The short-term stability and the water sorption of films prepared from binary mixtures of chitosan and native amylose maize starch (Hylon VII) were evaluated using free films. The aqueous polymer solutions of the free films contained 2% (w/w) film formers, glycerol, or erythritol as a plasticizer...... in the crystallinity of the films are evident within a 3-month period of storage, and the changes in the solid state are dependent on the plasticizer and storage conditions. When stored at ambient conditions for 3 months, the aqueous chitosan-amylose starch films plasticized with erythritol exhibited a partly...

  14. Calcium-dependent phosphorylation regulates neuronal stability and plasticity in a highly precise pacemaker nucleus.

    Science.gov (United States)

    George, Andrew A; Macleod, Gregory T; Zakon, Harold H

    2011-07-01

    Specific types of neurons show stable, predictable excitability properties, while other neurons show transient adaptive plasticity of their excitability. However, little attention has been paid to how the cellular pathways underlying adaptive plasticity interact with those that maintain neuronal stability. We addressed this question in the pacemaker neurons from a weakly electric fish because these neurons show a highly stable spontaneous firing rate as well as an N-methyl-D-aspartate (NMDA) receptor-dependent form of plasticity. We found that basal firing rates were regulated by a serial interaction of conventional and atypical PKC isoforms and that this interaction establishes individual differences within the species. We observed that NMDA receptor-dependent plasticity is achieved by further activation of these kinases. Importantly, the PKC pathway is maintained in an unsaturated baseline state to allow further Ca(2+)-dependent activation during plasticity. On the other hand, the Ca(2+)/calmodulin-dependent phosphatase calcineurin does not regulate baseline firing but is recruited to control the duration of the NMDA receptor-dependent plasticity and return the pacemaker firing rate back to baseline. This work illustrates how neuronal plasticity can be realized by biasing ongoing mechanisms of stability (e.g., PKC) and terminated by recruiting alternative mechanisms (e.g., calcineurin) that constrain excitability. We propose this as a general model for regulating activity-dependent change in neuronal excitability.

  15. A Stability Formula for Plastic-Tipped Bullets Part 2: Experimental Testing

    CERN Document Server

    Courtney, Michael W

    2014-01-01

    Part 1 of this paper describes a modification of the original Miller twist rule for computing gyroscopic bullet stability that is better suited to plastic-tipped bullets. The original Miller twist rule assumes a bullet of constant density, but it also works well for conventional copper (or gilding metal) jacketed lead bullets because the density of copper and lead are sufficiently close. However, the original Miller twist rule significantly underestimates the gyroscopic stability of plastic-tipped bullets, because the density of plastic is much lower than the density of copper and lead. Here, a new amended formula is developed for the gyroscopic stability of plastic-tipped bullets by substituting the length of just the metal portion for the total length in the (1 + L2) term of the original Miller twist rule. Part 2 describes experimental testing of this new formula on three plastic-tipped bullets. The new formula is relatively accurate for plastic-tipped bullets whose metal portion has nearly uniform density,...

  16. A Stability Formula for Plastic-Tipped Bullets Part 1: Motivation and Development of New Formula

    CERN Document Server

    Courtney, Michael W

    2014-01-01

    Part 1 of this paper describes a modification of the original Miller twist rule for computing gyroscopic bullet stability that is better suited to plastic-tipped bullets. The original Miller twist rule assumes a bullet of constant density, but it also works well for conventional copper (or gilding metal) jacketed lead bullets because the density of copper and lead are sufficiently close. However, the original Miller twist rule significantly underestimates the gyroscopic stability of plastic-tipped bullets, because the density of plastic is much lower than the density of copper and lead. Here, a new amended formula is developed for the gyroscopic stability of plastic-tipped bullets by substituting the length of just the metal portion for the total length in the $(1 + L^2)$ term of the original Miller twist rule. Part 2 describes experimental testing of this new formula on three plastic-tipped bullets. The new formula is relatively accurate for plastic-tipped bullets whose metal portion has nearly uniform densi...

  17. 350℃ - Thermal Stability of Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    M. Pellizzari; M. Zadra, A. Molinari

    2004-01-01

    The thermal stability of an ADI has been studied by isothermal aging at 350℃ for 150 hours, measuring the amount of retained austenite and its carbon content by X-ray diffractometry. The influence of different austempering treatments, carried out at temperatures between 300 and 450℃ (300, 330, 360, 410 and 450℃) and holding times between15 and 60 minutes (15, 30, 45, 60), was considered. Thermal stability depends on whether austempering temperature is higher or lower than the ageing one. Thermal stability increases by increasing austempering temperatures, from 300° to410℃. Samples treated at 410° and 450° show a lower austenite decomposition than samples at 300-330-360℃. A drop in stability is shown by increasing the austempering temperature from 410° to 450℃. The results have been interpreted on the basis of the austenite stability out of the processing window, which in turn depends on the austempering parameters.

  18. Plasticity, Swell-Shrink, and Microstructure of Phosphogypsum Admixed Lime Stabilized Expansive Soil

    Directory of Open Access Journals (Sweden)

    Jijo James

    2016-01-01

    Full Text Available The study involved utilization of an industrial waste, Phosphogypsum (PG, as an additive to lime stabilization of an expansive soil. Three lime dosages, namely, initial consumption of lime (ICL, optimum lime content (OLC, and less than ICL (LICL, were identified for the soil under study for stabilizing the soil. Along with lime, varying doses of PG were added to the soil for stabilization. The effect of stabilization was studied by performing index tests, namely, liquid limit, plastic limit, shrinkage limit, and free swell test, on pulverized remains of failed unconfined compression test specimens. The samples were also subjected to a microstructural study by means of scanning electron microscope. Addition of PG to lime resulted in improvement in the plasticity and swell-shrink characteristics. The microstructural study revealed the formation of a dense compact mass of stabilized soil.

  19. Thermal elasto-plastic stress analysis during laser heating of a metal plate

    Science.gov (United States)

    Chen, Yanbei; Lu, Jian; Ni, Xiaowu

    2008-03-01

    During laser heating of a metal material, the continuity of material confines its free expansion, thermal stresses arise. On one hand the thermal expansion of the heated zone of the material increases with the increase of temperature, the thermal stress level increases correspondingly; on the other hand the mechanical properties of the material will change with the increase of temperature, especially the elastic modulus, yield strength and tensile strength drop significantly, which is the so-called thermal softening problem. Due to the effect of the two factors, as the heating time or the intensity of the laser beam increases, it is possible that the stress levels of the heated zone of the material exceed the yield strength, which leads the material to come into a plastic stage. Thus, a thermal plastic problem occurs. In this study, thermal elasto-plastic stresses during laser heating of a metal plate are computed by the finite element method (FEM) based on thermal elasto-plastic constitutive theory. The mechanical behaviors of the metal material during the laser heating are analyzed. By the analysis of the results, it is found that thermal expansion leads to the increase of stress level early during the laser irradiating, and thermal softening causes the decrease of stress levels in the plastic zone and the slow growth and even decrease of stress levels in elastic zone later. The radial stresses are all compressive stresses, and the hoop stresses are compressive stresses within about the laser spot and are tensile stresses at other place. This work may be beneficial to the laser processing of metal materials.

  20. Compendium of information on identification and testing of materials for plastic solar thermal collectors

    Energy Technology Data Exchange (ETDEWEB)

    McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.; Talbert, S.G.

    1980-07-31

    This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation and on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.

  1. Polymer Nanofibers with Outstanding Thermal Conductivity and Thermal Stability: Fundamental Linkage between Molecular Characteristics and Macroscopic Thermal Properties

    CERN Document Server

    Zhang, Teng; Luo, Tengfei

    2014-01-01

    Polymer nanofibers with high thermal conductivities and outstanding thermal stabilities are highly desirable in heat transfer-critical applications such as thermal management, heat exchangers and energy storage. In this work, we unlock the fundamental relations between the thermal conductivity and thermal stability of polymer nanofibers and their molecular characteristics by studying the temperature-induced phase transitions and thermal transport of a series of polymer nanofibers. Ten different polymer nanofibers with systematically chosen molecular structures are studied using large scale molecular dynamics simulations. We found that high thermal conductivity and good thermal stability can be achieved in polymers with rigid backbones, exemplified by {\\pi}-conjugated polymers, due to suppressed segmental rotations and large phonon group velocities. The low probability of segmental rotation does not only prevent temperature-induced phase transition but also enables long phonon mean free paths due to reduced di...

  2. Thermal stabilization of a microring modulator using feedback control.

    Science.gov (United States)

    Padmaraju, Kishore; Chan, Johnnie; Chen, Long; Lipson, Michal; Bergman, Keren

    2012-12-17

    We describe and demonstrate the use of a feedback control system to thermally stabilize a silicon microring modulator subjected to a thermally volatile environment. Furthermore, we establish power monitoring as an effective and appropriate mechanism to infer the temperature drift of a microring modulator. Our demonstration shows that a high-performance silicon microring-based device, normally inoperable in thermally volatile environments, can maintain error-free performance when a feedback control system is implemented.

  3. Electroweak absolute, meta-, and thermal stability in neutrino mass models

    Science.gov (United States)

    Lindner, Manfred; Patel, Hiren H.; Radovčić, Branimir

    2016-04-01

    We analyze the stability of the electroweak vacuum in neutrino mass models containing right-handed neutrinos or fermionic isotriplets. In addition to considering absolute stability, we place limits on the Yukawa couplings of new fermions based on metastability and thermal stability in the early Universe. Our results reveal that the upper limits on the neutrino Yukawa couplings can change significantly when the top quark mass is allowed to vary within the experimental range of uncertainty in its determination.

  4. Micellar Enzymology for Thermal, pH, and Solvent Stability.

    Science.gov (United States)

    Minteer, Shelley D

    2017-01-01

    This chapter describes methods for enzyme stabilization using micellar solutions. Micellar solutions have been shown to increase the thermal stability, as well as the pH and solvent tolerance of enzymes. This field is traditionally referred to as micellar enzymology. This chapter details the use of ionic and nonionic micelles for the stabilization of polyphenol oxidase, lipase, and catalase, although this method could be used with any enzymatic system or enzyme cascade system.

  5. Electroweak Absolute, Meta-, and Thermal Stability in Neutrino Mass Models

    CERN Document Server

    Lindner, Manfred; Radovčić, Branimir

    2015-01-01

    We analyze the stability of the electroweak vacuum in neutrino mass models containing right handed neutrinos or fermionic isotriplets. In addition to considering absolute stability, we place limits on the Yukawa couplings of new fermions based on metastability and thermal stability in the early Universe. Our results reveal that the upper limits on the neutrino Yukawa couplings can change significantly when the top quark mass is allowed to vary within the experimental range of uncertainty in its determination.

  6. Lab-scale thermal analysis of electronic waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong, E-mail: jhong@ustc.edu.cn; Yu, Han-Qing

    2016-06-05

    Highlights: • We provided the experimental evidence that WEEE can be recovered by pyrolysis method. • We explored the thermochemical behaviors of WEEE using online TG–FTIR–MS technology. • The intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs. - Abstract: In this work, we experimentally revealed the thermochemical decomposition pathway of Decabromodiphenyl ethane (DBDPE) and tetrabromobisphenol A (TBBPA) containing electronic waste plastics using an online thermogravimetric–fourier transform infrared–mass spectroscopy (TG–FTIR–MS) system, a high resolution gas chromatography/high resolution mass (HRGC–MS) spectroscopy, and a fixed-bed reactor. We found the distribution and species of produced bromides can be easily controlled by adjusting pyrolytic temperature, which is particularly crucial to their recycle. From the analysis of the liquid and solid phase obtained from the fixed-bed reactor, we proposed that the ·Br radicals formed during the pyrolysis process may be captured by organic species derived from the depolymerization of plastics to form brominated compounds or by the inorganic species in the plastics, and that these species remained in the char residue after pyrolysis. Our work for the first time demonstrates intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs that pyrolysis of oxygen-free BFRs is PBDD/Fs-free, whereas pyrolysis of oxygen-containing BFRs is PBDD/Fs-reduced.

  7. Lab-scale thermal analysis of electronic waste plastics.

    Science.gov (United States)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Yu, Han-Qing

    2016-06-05

    In this work, we experimentally revealed the thermochemical decomposition pathway of Decabromodiphenyl ethane (DBDPE) and tetrabromobisphenol A (TBBPA) containing electronic waste plastics using an online thermogravimetric-fourier transform infrared-mass spectroscopy (TG-FTIR-MS) system, a high resolution gas chromatography/high resolution mass (HRGC-MS) spectroscopy, and a fixed-bed reactor. We found the distribution and species of produced bromides can be easily controlled by adjusting pyrolytic temperature, which is particularly crucial to their recycle. From the analysis of the liquid and solid phase obtained from the fixed-bed reactor, we proposed that the Br radicals formed during the pyrolysis process may be captured by organic species derived from the depolymerization of plastics to form brominated compounds or by the inorganic species in the plastics, and that these species remained in the char residue after pyrolysis. Our work for the first time demonstrates intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs that pyrolysis of oxygen-free BFRs is PBDD/Fs-free, whereas pyrolysis of oxygen-containing BFRs is PBDD/Fs-reduced.

  8. Grain growth and thermal stability accompanying recrystallization in undercooled Ni-3at.%Sn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z., E-mail: chenzheng1218@163.com [School of Material Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710016 (China); Chen, Q.; Shen, C.J. [School of Material Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Liu, F. [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710016 (China)

    2015-10-15

    The grain growth and thermal stability after recrystallization in as-solidified highly undercooled Ni-3at.%Sn alloy melt were investigated. As for undercooled Ni-3at.%Sn alloy, a transition from dendritic to granular crystals occurred when ΔT≥ΔT{sup *}, which was induced by the plastic deformation of dendrites and subsequent recrystallization. On this basis, the subsequent grain growth and solute segregation accompanying recalescence were calculated by a recently proposed thermo-kinetic model, which showed close agreement with the experimental results. It is concluded that the grain growth process was interrelated to recalescence, solute trapping and solute segregation of Sn atoms captured by solute trapping, which was responsible for the reduction of grain boundary energy and improvement of thermal stability. - Highlights: • A transition from dendritic to granular crystals occurred when ΔT≥ΔT{sup *}. • The grain growth accompanying recalescence was calculated. • A close agreement with the experimental results was shown.

  9. Experimental study of the thermal stability of austempered ductile irons

    Science.gov (United States)

    Pérez, M. J.; Cisneros, M. M.; Valdés, E.; Mancha, H.; Calderón, H. A.; Campos, R. E.

    2002-10-01

    A nonisothermal annealing was applied to austempered Ni-Cu-Mo alloyed and unalloyed ductile irons to determine the thermal stability of the ausferritic structure. Differential thermal analysis (DTA) results were used to build the corresponding stability diagrams. The transformation starting temperature of the high carbon austenite was found to be strongly dependent on the austempering temperature, the heating rate, and the chemical composition of the iron. The Ni-Cu-Mo alloying elements and high austempering temperature increased the stability. The transformation of the austenite to ferrite and cementite is achieved via the precipitation of transition carbides identified as silico-carbides of triclinic structure.

  10. STUDY OF THERMAL AND ACID STABILITY OF BENTONITE CLAY

    OpenAIRE

    Karna Wijaya; Ani Setyo Pratiwi; Sri Sudiono; Emi Nurahmi

    2010-01-01

    The thermal and acid stability of the bentonite clays (Na- and Ca-bentonite) have been tested. The thermal stability testing has been carried out by heating 5 gram of the clays  for five hours at 200, 300 and 500 °C respectively, meanwhile acid stability testing was performed by immersing 5 gram clays into 100 mL sulphuric acid 1M, 2M and 3M for 24 hours. The tested clays, then were characterized by means of X-Ray difractometry and IR-spectroscopy methods. The characterization results showed ...

  11. Pannexin1 stabilizes synaptic plasticity and is needed for learning.

    Directory of Open Access Journals (Sweden)

    Nora Prochnow

    Full Text Available Pannexin 1 (Panx1 represents a class of vertebrate membrane channels, bearing significant sequence homology with the invertebrate gap junction proteins, the innexins and more distant similarities in the membrane topologies and pharmacological sensitivities with gap junction proteins of the connexin family. In the nervous system, cooperation among pannexin channels, adenosine receptors, and K(ATP channels modulating neuronal excitability via ATP and adenosine has been recognized, but little is known about the significance in vivo. However, the localization of Panx1 at postsynaptic sites in hippocampal neurons and astrocytes in close proximity together with the fundamental role of ATP and adenosine for CNS metabolism and cell signaling underscore the potential relevance of this channel to synaptic plasticity and higher brain functions. Here, we report increased excitability and potently enhanced early and persistent LTP responses in the CA1 region of acute slice preparations from adult Panx1(-/- mice. Adenosine application and N-methyl-D-aspartate receptor (NMDAR-blocking normalized this phenotype, suggesting that absence of Panx1 causes chronic extracellular ATP/adenosine depletion, thus facilitating postsynaptic NMDAR activation. Compensatory transcriptional up-regulation of metabotropic glutamate receptor 4 (grm4 accompanies these adaptive changes. The physiological modification, promoted by loss of Panx1, led to distinct behavioral alterations, enhancing anxiety and impairing object recognition and spatial learning in Panx1(-/- mice. We conclude that ATP release through Panx1 channels plays a critical role in maintaining synaptic strength and plasticity in CA1 neurons of the adult hippocampus. This result provides the rationale for in-depth analysis of Panx1 function and adenosine based therapies in CNS disorders.

  12. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    Science.gov (United States)

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal

  13. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW).

    Science.gov (United States)

    Al-Salem, S M; Antelava, A; Constantinou, A; Manos, G; Dutta, A

    2017-04-03

    Plastic plays an important role in our daily lives due to its versatility, light weight and low production cost. Plastics became essential in many sectors such as construction, medical, engineering applications, automotive, aerospace, etc. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. Hence, a sustainable and an efficient plastic waste treatment is essential to avoid such issues. Pyrolysis is a thermo-chemical plastic waste treatment technique which can solve such pollution problems, as well as, recover valuable energy and products such as oil and gas. Pyrolysis of plastic solid waste (PSW) has gained importance due to having better advantages towards environmental pollution and reduction of carbon footprint of plastic products by minimizing the emissions of carbon monoxide and carbon dioxide compared to combustion and gasification. This paper presents the existing techniques of pyrolysis, the parameters which affect the products yield and selectivity and identify major research gaps in this technology. The influence of different catalysts on the process as well as review and comparative assessment of pyrolysis with other thermal and catalytic plastic treatment methods, is also presented.

  14. Stability of thermal modes in cool prominence plasmas

    CERN Document Server

    Soler, Roberto; Parenti, Susanna

    2012-01-01

    Context: Magnetohydrodynamic thermal modes may play an important role in the formation, plasma condensation, and evolution of solar prominences. Unstable thermal modes due to unbalance between radiative losses and heating can lead to rapid plasma cooling and condensation. An accurate description of the radiative loss function is therefore crucial for this process. Aims: We study the stability of thermal modes in unbounded and uniform plasmas with properties akin to those in solar prominences. Effects due to partial ionization are taken into account. Three different parametrizations of the radiative loss function are used. Methods: By means of a normal mode analysis, we investigate linear nonadiabatic perturbations superimposed on the equilibrium state. We find an approximate instability criterion for thermal modes, while the exact linear growth rate is obtained by numerically solving the general dispersion relation. The stability of thermal disturbances is compared for the three different loss functions consi...

  15. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: quantitative traits to transcripts.

    Science.gov (United States)

    Clemson, A S; Sgrò, C M; Telonis-Scott, M

    2016-12-01

    The flexibility afforded to genotypes in different environments by phenotypic plasticity is of interest to biologists studying thermal adaptation because of the thermal lability of many traits. Differences in thermal performance and reaction norms can provide insight into the evolution of thermal adaptation to explore broader questions such as species distributions and persistence under climate change. One approach is to study the effects of temperature on fitness, morphological and more recently gene expression traits in populations from different climatic origins. The diverse climatic conditions experienced by Drosophila melanogaster along the eastern Australian temperate-tropical gradient are ideal given the high degree of continuous trait differentiation, but reaction norm variation has not been well studied in this system. Here, we reared a tropical and temperate population from the ends of the gradient over six developmental temperatures and examined reaction norm variation for five quantitative traits including thermal performance for fecundity, and reaction norms for thermotolerance, body size, viability and 23 transcript-level traits. Despite genetic variation for some quantitative traits, we found no differentiation between the populations for fecundity thermal optima and breadth, and the reaction norms for the other traits were largely parallel, supporting previous work suggesting that thermal evolution occurs by changes in trait means rather than by reaction norm shifts. We examined reaction norm variation in our expanded thermal regime for a gene set shown to previously exhibit GxE for expression plasticity in east Australian flies, as well as key heat-shock genes. Although there were differences in curvature between the populations suggesting a higher degree of thermal plasticity in expression patterns than for the quantitative traits, we found little evidence to support a role for genetic variation in maintaining expression plasticity. © 2016

  16. V-groove-based compact FBG package for thermal tuning and mechanical stability

    Science.gov (United States)

    Zhang, Li; Fang, Wei; Wang, Di; Chen, Di-Jun; Cai, Hai-Wen; Qu, Rong-Hui

    2016-04-01

    We demonstrated a V-groove-based fiber Bragg grating (FBG) package that has been glue-filled and cured to make it a bulky component with much improved mechanical stability. The V-groove can be executed with many types of materials including plastics, ceramics, semiconductors, and metals, providing an easy method for redesigning the thermal tuning performance of FBGs by selecting among a wide variety of materials and processes. We achieved more than 10-nm thermal wavelength tuning and thermal sensitivity ranging from 15 to 160 pm/K. The original FBG spectrum can be maintained without any degradation because the fiber is buried in the V-groove. The compact package does not increase the original grating length and turns the FBG into a planar waveguide grating, improving FBG applications in telecommunications, external cavity lasers, and sensing areas.

  17. Thermal Stability of Rhodopsin and Progression of Retinitis Pigmentosa

    Science.gov (United States)

    Liu, Monica Yun; Liu, Jian; Mehrotra, Devi; Liu, Yuting; Guo, Ying; Baldera-Aguayo, Pedro A.; Mooney, Victoria L.; Nour, Adel M.; Yan, Elsa C. Y.

    2013-01-01

    Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions contributing to the thermal decay of rhodopsin as follows: thermal isomerization of 11-cis-retinal and hydrolysis of the protonated Schiff base linkage between the 11-cis-retinal chromophore and opsin protein. We used UV-visible spectroscopy and HPLC to examine the kinetics of these reactions at 37 and 55 °C for WT and mutant rhodopsin purified from HEK293 cells. Compared with WT rhodopsin and the D190N mutant, the S186W mutation dramatically increases the rates of both thermal isomerization and dark state hydrolysis of the Schiff base by 1–2 orders of magnitude. The results suggest that the S186W mutant thermally destabilizes rhodopsin by disrupting a hydrogen bond network at the receptor's active site. The decrease in the thermal stability of dark state rhodopsin is likely to be associated with higher levels of dark noise that undermine the sensitivity of rhodopsin, potentially accounting for night blindness in the early stages of RP. Further studies of the thermal stability of additional pathogenic rhodopsin mutations in conjunction with clinical studies are expected to provide insight into the molecular mechanism of RP and test the correlation between rhodopsin's thermal stability and RP progression in patients. PMID:23625926

  18. Influence of colorant and film thickness on thermal aging characteristics of oxo-biodegradable plastic bags

    Science.gov (United States)

    Leuterio, Giselle Lou D.; Pajarito, Bryan B.; Domingo, Carla Marie C.; Lim, Anna Patricia G.

    2016-05-01

    Functional, lightweight, strong and cheap plastic bags incorporated with pro-oxidants undergo accelerated degradation under exposure to heat and oxygen. This work investigated the effect of colorant and film thickness on thermal aging characteristics of commercial oxo-biodegradable plastic bag films at 70 °C. Degradation is monitored through changes in infrared absorption, weight, and tensile properties of thermally aged films. The presence of carbonyl band in infrared spectrum after 672 h of thermal aging supports the degradation behavior of exposed films. Results show that incorporation of colorant and increasing thickness exhibit low maximum weight uptake. Titanium dioxide as white colorant in films lowers the susceptibility of films to oxygen uptake but enhances physical degradation. Higher amount of pro-oxidant loading also contributes to faster degradation. Opaque films are characterized by low tensile strength and high elastic modulus. Decreasing the thickness contributes to lower tensile strength of films. Thermally aged films with colorant and low thickness promote enhanced degradation.

  19. CHEMICAL AND THERMAL STABILITY OF RICE HUSKS AGAINST ALKALI TREATMENT

    Directory of Open Access Journals (Sweden)

    Bwire S. Ndazi

    2008-11-01

    Full Text Available Chemical and thermal stability of rice husks against alkali treatment with 2 to 8% w/v NaOH are presented and discussed in this paper. The thermal stability of the rice husks was examined by using a thermal gravimetric analysis instrument. Chemical stability was evaluated by examining the organic components of rice husks using proximate analysis. The results indicated that the proportion of lignin and hemicellulose in rice husks treated with NaOH ranging from 4 to 8% decreased significantly by 96% and 74%, respectively. The thermal stability and final degradation temperatures of the alkali-treated rice husks were also lowered by 24-26°C due to degradation of hemicellulose and lignin during alkali treatment. Absence of the onset degradation zones in the alkali-treated rice husks was a further indication that hemicellulose and other volatile substances degraded during alkali treatment. This leads to a conclusion that alkali treatment of rice husks with more than 4% NaOH causes a substantial chemical degradation of rice husks, which subsequently decreases their thermal stability.

  20. Detection of Plastic Explosive Traces in the Human Thermal Plume

    Science.gov (United States)

    Gowadia, Huban A.; Settles, Gary S.

    1998-11-01

    Aviation security requires the detection of explosive devices which terrorists, posing as passengers, may conceal beneath their clothing. Our goal is to understand the generation, transport, and collection of trace signals from such concealed explosives, which are found in the natural convective plume produced by the human body. Previous work (APS/DFD96, CG10) has visualized this plume and shown that concealed volatile explosives (e.g. TNT) produce a detectable vapor signal therein. Plastic explosives, on the other hand, have vanishingly low vapor pressures and are thus considered very difficult to detect. Present experiments use a dispersal chamber to collect and sample the plumes of human subjects wearing concealed gauze patches containing milligrams of RDX, the primary component of plastic explosives such as C-4. These experiments address the effects of agitation, clothing, temperature and humidity on trace detectability. Further experiments address the effects of oily vs. dry skin, contaminated clothing vs. gauze patches, and residual contamination left on skin previously in contact with RDX. The key role of airborne contaminated textile fibers is noted. Knowledge thus gained contributes to the design of an explosive detection portal for aviation security screening. (Research supported by FAA Grant 93-G-052.)

  1. Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels

    CERN Document Server

    Zwaag, S; Kruijver, S O; Sietsma, J

    2002-01-01

    Stability of retained austenite is the key issue to understand transformation-induced plasticity (TRIP) effect. In this work, both thermal stability and mechanical stability are investigated by thermo-magnetic as well as in situ conventional X-ray diffraction and micro synchrotron radiation diffraction measurements. The thermal stability in a 0.20C-1.52Mn-0.25Si-0.96Al (wt%) TRIP steel is studied in the temperature range between 5 and 300 K under a constant magnetic field of 5T. It is found that almost all austenite transforms thermally to martensite upon cooling to 5K and M sub s and M sub f temperatures are analyzed to be 355 and 115 K. Transformation kinetics on the fraction versus temperature relation are well described by a model based on thermodynamics. From the in situ conventional X-ray and synchrotron diffraction measurements in a 0.17C-1.46Mn-0.26Si-1.81Al (wt%) steel, the volume fraction of retained austenite is found to decrease as the strain increases according to Ludwigson and Berger relation. T...

  2. Survey analysis of volatile organics released from plastics under thermal stress

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, D.A.

    1986-05-01

    Irritating or toxic vapors can be produced from plastic process materials by a variety of operations, such as injection molding, hot wire cutting, bandsawing and milling. These components typically are not reported in the combustion toxicology literature for the materials used, but rather represent the volatilization of plasticizers, unreacted monomer, mold-release agents or other additives, or lubricants. A method for the characterization of the complex mixtures that can result from thermal stressing of plastic and of relating quantitatively to process temperatures and amounts of plastic used is presented. The method utilizes both Thermo-Gravimetric analysis (TGA) and dynamic headspace GC/MS with on-column cryogenic focusing. Application to actual occupational situations is illustrated with three examples.

  3. A Physics-Based Temperature Stabilization Criterion for Thermal Testing

    Science.gov (United States)

    Rickman, Steven L.; Ungar, Eugene K.

    2009-01-01

    Spacecraft testing specifications differ greatly in the criteria they specify for stability in thermal balance tests. Some specify a required temperature stabilization rate (the change in temperature per unit time, dT/dt), some specify that the final steady-state temperature be approached to within a specified difference, delta T , and some specify a combination of the two. The particular values for temperature stabilization rate and final temperature difference also vary greatly between specification documents. A one-size-fits-all temperature stabilization rate requirement does not yield consistent results for all test configurations because of differences in thermal mass and heat transfer to the environment. Applying a steady-state temperature difference requirement is problematic because the final test temperature is not accurately known a priori, especially for powered configurations. In the present work, a simplified, lumped-mass analysis has been used to explore the applicability of these criteria. A new, user-friendly, physics-based approach is developed that allows the thermal engineer to determine when an acceptable level of temperature stabilization has been achieved. The stabilization criterion can be predicted pre-test but must be refined during test to allow verification that the defined level of temperature stabilization has been achieved.

  4. Prediction of thermal strains in fibre reinforced plastic matrix by discretisation of the temperature exposure history

    Science.gov (United States)

    Ngoy, E. K.

    2016-07-01

    Prediction of environmental effects on fibre reinforced plastics habitually is made difficult due to the complex variability of the natural service environment. This paper suggests a method to predict thermal strain distribution over the material lifetime by discretisation of the exposure history. Laboratory results show a high correlation between predicted and experimentally measured strain distribution

  5. Stabilizing the thermal lattice Boltzmann method by spatial filtering.

    Science.gov (United States)

    Gillissen, J J J

    2016-10-01

    We propose to stabilize the thermal lattice Boltzmann method by filtering the second- and third-order moments of the collision operator. By means of the Chapman-Enskog expansion, we show that the additional numerical diffusivity diminishes in the low-wavnumber limit. To demonstrate the enhanced stability, we consider a three-dimensional thermal lattice Boltzmann system involving 33 discrete velocities. Filtering extends the linear stability of this thermal lattice Boltzmann method to 10-fold smaller transport coefficients. We further demonstrate that the filtering does not compromise the accuracy of the hydrodynamics by comparing simulation results to reference solutions for a number of standardized test cases, including natural convection in two dimensions.

  6. Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Bouëssel du Bourg, Lila; Ortiz, Aurélie U.; Coudert, François-Xavier, E-mail: fx.coudert@chimie-paristech.fr [PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Boutin, Anne [École Normale Supérieure, PSL Research University, Département de Chimie, Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24 rue Lhomond, 75005 Paris (France)

    2014-12-01

    Theoretical studies on the experimental feasibility of hypothetical Zeolitic Imidazolate Frameworks (ZIFs) have focused so far on relative energy of various polymorphs by energy minimization at the quantum chemical level. We present here a systematic study of stability of 18 ZIFs as a function of temperature and pressure by molecular dynamics simulations. This approach allows us to better understand the limited stability of some experimental structures upon solvent or guest removal. We also find that many of the hypothetical ZIFs proposed in the literature are not stable at room temperature. Mechanical and thermal stability criteria thus need to be considered for the prediction of new MOF structures. Finally, we predict a variety of thermal expansion behavior for ZIFs as a function of framework topology, with some materials showing large negative volume thermal expansion.

  7. Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs

    Directory of Open Access Journals (Sweden)

    Lila Bouëssel du Bourg

    2014-12-01

    Full Text Available Theoretical studies on the experimental feasibility of hypothetical Zeolitic Imidazolate Frameworks (ZIFs have focused so far on relative energy of various polymorphs by energy minimization at the quantum chemical level. We present here a systematic study of stability of 18 ZIFs as a function of temperature and pressure by molecular dynamics simulations. This approach allows us to better understand the limited stability of some experimental structures upon solvent or guest removal. We also find that many of the hypothetical ZIFs proposed in the literature are not stable at room temperature. Mechanical and thermal stability criteria thus need to be considered for the prediction of new MOF structures. Finally, we predict a variety of thermal expansion behavior for ZIFs as a function of framework topology, with some materials showing large negative volume thermal expansion.

  8. Chemical, thermal and mechanical stabilities of metal-organic frameworks

    Science.gov (United States)

    Howarth, Ashlee J.; Liu, Yangyang; Li, Peng; Li, Zhanyong; Wang, Timothy C.; Hupp, Joseph T.; Farha, Omar K.

    2016-03-01

    The construction of thousands of well-defined, porous, metal-organic framework (MOF) structures, spanning a broad range of topologies and an even broader range of pore sizes and chemical functionalities, has fuelled the exploration of many applications. Accompanying this applied focus has been a recognition of the need to engender MOFs with mechanical, thermal and/or chemical stability. Chemical stability in acidic, basic and neutral aqueous solutions is important. Advances over recent years have made it possible to design MOFs that possess different combinations of mechanical, thermal and chemical stability. Here, we review these advances and the associated design principles and synthesis strategies. We focus on how these advances may render MOFs effective as heterogeneous catalysts, both in chemically harsh condensed phases and in thermally challenging conditions relevant to gas-phase reactions. Finally, we briefly discuss future directions of study for the production of highly stable MOFs.

  9. Thermal stability of silicon nanowires:atomistic simulation study

    Institute of Scientific and Technical Information of China (English)

    Liu Wen-Liang; Zhang Kai-Wang; Zhong Jian-Xin

    2009-01-01

    Using the Stillinger-Weber (SW) potential model, we investigate the thermal stability of pristine silicon nanowires based on classical molecular dynamics (MD) simulations. We explore the structural evolutions and the Lindemann indices of silicon nanowires at different temperatures in order to unveil atomic-level melting behaviour of silicon nanowires.The simulation results show that silicon nanowires with surface reconstructions have higher thermal stability than those without surface reconstructions, and that silicon nanowires with perpendicular dimmer rows on the two (100) surfaces have somewhat higher thermal stability than nanowires with parallel dimmer rows on the two (100) surfaces. Furthermore, the melting temperature of silicon nanowires increases as their diameter increases and reaches a saturation value close to the melting temperature of bulk silicon. The value of the Lindemann index for melting silicon nanowires is 0.037.

  10. Characteristics of materials and thermal treatments applied to gearwheels obtained by plastic deformation

    Science.gov (United States)

    Bostan, I.; Dulgheru, V.; Trifan, N.

    2016-08-01

    A variety of materials are used in the manufacture of gearwheels. These materials satisfy various working conditions for gears. Such gears are made of metallic materials - ferrous, non-ferrous and from plastic materials. Among ferrous materials the following are used: irons; cast, forged and rolled steels; among non-ferrous materials the following are used: bronze, aluminium alloys, brass, etc., and of plastics the following are used: textolite, polyamide, polyacetal. In the practice of exploitation and in the process of special research it was established that the permissible load, according to teeth contact resistance, is generally determined by the hardness of the material. The highest hardness and respectively, the smallest sizes and reduced mass of the transmission can be obtained in the manufacture of steel gears via thermal treatment. It is obvious that by plastic deformation at cold it cannot be obtained gearwheels with complicated configuration as deformed plastic metal will form cracks caused by low plasticity. To improve processability by plastic deformation the mouldings for gearwheels are heated. With increasing the heating temperature, plasticity increases and resistance to deformation decreases.

  11. Microstructural stability after severe plastic deformation of AZ31 Magnesium

    Science.gov (United States)

    Young, J. P.; Askari, H.; Hovanski, Y.; Heiden, M. J.; Field, D. P.

    2014-08-01

    Friction stir processing (FSP) and equal channel angular pressing (ECAP) were used to modify the microstructure of twin roll cast (TRC) AZ31 magnesium. The influence of these processes on the microstructural properties of the material was investigated. It was found that both processes produced microstructures with an average grain size of less than 10 pm, suggesting that they have the potential for superplastic deformation. Heat treatments were performed on the TRC, ECAP and FSP materials to assess their microstructural stability. Both the ECAP and TRC material were found to be fairly stable, showing normal grain growth while the FSP material grew substantially at temperatures above 200°C. The activation energy of grain boundary motion of the TRC material was calculated to be 167 kJ/mol.

  12. A plastic stabilizer dibutyltin dilaurate induces subchronic neurotoxicity in rats

    Institute of Scientific and Technical Information of China (English)

    Minghua Jin; Peilin Song; Na Li; Xuejun Li; Jiajun Chen

    2012-01-01

    Dibutyltin dilaurate functions as a stabilizer for polyvinyl chloride.In this study,experimental rats were intragastrically administered 5,10,or 20 mg/kg dibutyltin dilaurate to model sub-chronic poisoning.After exposure,our results showed the activities of superoxide dismutase and glutathione peroxidase decreased in rat brain tissue,while the malondialdehyde and nitric oxide content,as well as nitric oxide synthase activity in rat brain tissue increased.The cell cycle in the right parietal cortex was disordered and the rate of apoptosis increased.DNA damage was aggravated in the cerebral cortex,and the ultrastructure of the right parietal cortex tissues was altered.The above changes became more apparent with exposure to increasing doses of dibutyltin dilaurate.Our experimental findings confirmed the neurotoxicity of dibutyltin dilaurate in rat brain tissues,and demonstrated that the poisoning was dose-dependent.

  13. A Rate-Dependent Crystal Plasticity Analysis of Orientation Stability in Biaxial Tension of Magnesium

    Institute of Scientific and Technical Information of China (English)

    Donghong Zhang; Saiyi Li

    2011-01-01

    The development of texture during plastic deformation plays an important role in determining the stretch formability of magnesium alloy sheets. In this study, the orientation stability during equibiaxial tension of magnesium was analyzed based on three dimensional lattice rotations calculated by using a rate-dependent crystal plasticity model and assuming five different combinations of slip modes. The results show that no orientations can satisfy the stability criteria with both zero rotation velocity and convergent orientation flow in all dimensions. However, relatively stable orientations with zero rotation velocity and an overall convergence are found. They are featured by characteristic alignments of specific crystallographic directions in the macroscopic axis of contraction, depending on the slip modes involved in the deformation. It is also shown that the orientation stability varies significantly with the deviation of deformation mode from equibiaxial tension. The simulation results are briefly discussed in comparison with pre-existing experiments.

  14. Thermal and radiation resistance of stabilized LDPE

    Energy Technology Data Exchange (ETDEWEB)

    Zaharescu, T., E-mail: traian_zaharescu@yahoo.co [INCDIE ICPE CA, Department of Radiation Processing, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); Jipa, S. [INCDIE ICPE CA, Department of Radiation Processing, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); ' Valahia' University of Targoviste, Faculty of Sciences, Targoviste 130024 (Romania); Henderson, D. [Trinity College, Hartford, CT 06106 (United States); Kappel, W. [INCDIE ICPE CA, Department of Radiation Processing, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); Maris, D.A.; Maris, M. [' Ovidius' University, 7 Ilarie Voronca St, P.O. Box 8700, Constanta (Romania)

    2010-03-15

    The effect of capsaicin on the radiation stability of low density polyethylene was accomplished by applying the chemiluminescence procedure. The neat and modified polymer with 0.25% and 0.50% (w/w) capsaicin were exposed to gamma-irradiation in air receiving 10, 20 and 30 kGy. The synergistic effect due to the presence of metallic selenium was demonstrated. The significant improvement in oxidation induction time was obtained demonstrating the efficient antioxidant activity of capsaicin in LDPE. The simultaneous protection action of metallic selenium in LDPE/capsaicin systems brought about a supplementary enhancement in the oxidation resistance of irradiated samples.

  15. Thermal Stability Analysis for a Heliocentric Gravitational Radiation Detection Mission

    Science.gov (United States)

    Folkner, W.; McElroy, P.; Miyake, R.; Bender, P.; Stebbins, R.; Supper, W.

    1994-01-01

    The Laser Interferometer Space Antenna (LISA) mission is designed for detailed studies of low-frequency gravitational radiation. The mission is currently a candidate for ESA's post-Horizon 2000 program. Thermal noise affects the measurement in at least two ways. Thermal variation of the length of the optical cavity to which the lasers are stabilized introduces phase variations in the interferometer signal, which have to be corrected for by using data from the two arms separately.

  16. Study on the thermal stability of styrene butadiene rubber nanocomposites

    Science.gov (United States)

    Saeb, M. R.; Chenari, T. N.; Parast, O. Yazdan; Jafari, B.; Asadi, H.; Safari, M. Arfavi; Holisaz, H.

    2012-07-01

    This study aims to investigate the thermal stability of the styrene butadiene rubber (SBR) nanocomposites containig surface modified calcium carbonate (MCC). All nanocomposites were produced at various nanofiller contents, utilizing a laboratory scale two-roll mill. The thermal stability parameters including initial decomposing temperature, temperature at maximum rate of weight loss, and char content of the MCC/SBR nanocomposites were then compared. It was found that by increasing the filler content, the decomposition temperature of MCC/SBR nanocomposites increases. Furthermore, the char content at high temperatures rises by increasing nanofiller content.

  17. Novel Antimicrobial Organic Thermal Stabilizer and Co-Stabilizer for Rigid PVC

    Directory of Open Access Journals (Sweden)

    Nadia A. Mohamed

    2012-07-01

    Full Text Available Biologically active N-benzoyl-4-(N-maleimido-phenylhydrazide (BMPH was synthesized and its structure was confirmed by elemental analysis and various spectral tools. It was examined as a thermal stabilizer and co-stabilizer for rigid poly (vinyl chloride at 180 °C in air. Blending BMPH with reference samples in different ratios greatly lengthens the thermal stability value and improves the extent of discoloration of PVC. TGA confirmed the improved stability of PVC in presence of the investigated organic stabilizer. GPC measurements were done to investigate the changes occurred in the molecular masses of the degraded samples of blank PVC and PVC in presence of the novel stabilizer. BMPH showed good antimicrobial activity towards two kinds of bacteria and two kinds of fungi.

  18. Thermal stability of Cryptococcus albidus α-L-rhamnosidase

    Directory of Open Access Journals (Sweden)

    O. V. Gudzenko

    2015-06-01

    Full Text Available Yeast as well as micromycetes α-L-rhamnosidases, currently, are the most promising group of enzymes. Improving of the thermal stability of the enzyme preparation are especially important studies. Increase in stability and efficiency of substrate hydrolysis by α-L-rhamnosidase will improve the production technology of juices and wines. The aim of our study was to investigate the rate of naringin hydrolysis by α-L-rhamnosidase from Cryptococcus albidus, and also some aspects of the thermal denaturation and stabilization of this enzyme. We investigated two forms of α-L-rhamnosidase from C. albidus, which were obtained by cultivation of the producer on two carbon sources – naringin and rhamnose. A comparative study of properties and the process of thermal inactivation of α-L-rhamnosidases showed that the inducer of synthesis had no effect on the efficiency of naringin hydrolysis by the enzyme, but modified thermal stability of the protein molecule. Hydrophobic interactions and the cysteine residues are involved in maintaining of active conformation of the α-L-rhamnosidase molecule. Yeast α-L-rhamnosidase is also stabilized by 0.5% bovine serum albumin and 0.25% glutaraldehyde.

  19. Noise and thermal stability of vibrating micro-gyrometers preamplifiers

    CERN Document Server

    Levy, R; Mathias, H; Gilles, J -P; Parrain, F; Eisenbeis, B; Megherbi, S

    2008-01-01

    The preamplifier is a critical component of gyrometer's electronics. Indeed the resolution of the sensor is limited by its signal to noise ratio, and the gyrometer's thermal stability is limited by its gain drift. In this paper, five different kinds of preamplifiers are presented and compared. Finally, the design of an integrated preamplifier is shown in order to increase the gain stability while reducing its noise and size.

  20. Degradation Behavior of Thermal Stabilized Polyacrylonitrile Fibers

    Directory of Open Access Journals (Sweden)

    LEI Shuai

    2017-05-01

    Full Text Available In the temperature range of 300-800℃, 40%-50% of the mass lost during the processing of polyacrylonitrile based carbon fiber (PANCF. Understanding the degradation behavior will be valuable in understanding the formation mechanism of pseudo-graphite structure, and providing theoretic basis for producing high performance carbon fiber and increasing the carbonization yield. The simulation of the degradation progress was carried out on the thermogravimetric analyzer (TGA, the results show that there are two degradation steps for PAN fiber stabilized in air, and controlled by cyclization coefficient and oxygen content. The cyclization coefficient and oxygen content are effective to the density of carbon fiber by influencing the degradation behavior, which cause defects in the fiber. The higher cyclization coefficient leads to form less structural defects and higher density of the fiber; on the contrary, the higher oxygen content leads to form more structural defects and lower density of the fiber.

  1. ANALYTICAL SOLUTIONS OF THERMAL STRESS DISTRIBUTION IN PLASTIC ENCAPSULATED INTEGRATED CIRCUIT PACKAGES

    Institute of Scientific and Technical Information of China (English)

    刘玉岚; 王彪; 王殿富

    2003-01-01

    Due to the mismatch in the coefficients of thermal expansion of slicon chip and the surrounding plastic encapsulation materials, the induced thermal stress is the main cause for die and encapsulant rupture. The corner geometry is simplified as the semi-infinite wedge. Then the two-dimensional thermal stress distribution around the corner was obtained explicitly. Based on the stress calculation, the strain energy density factor criterion is used to evaluate the strength of the structure, which can not only give the critical condition for the stresses, but also determine the direction of fracture initiation around the corner.

  2. ANALYTICAL SOLUTIONS OF THERMAL STRESS DISTRIBUTION IN PLASTIC ENCAPSULATED INTEGRATED CIRCUIT PACKAGES

    Institute of Scientific and Technical Information of China (English)

    LIUYu-lan; WANGBiao; WANGDian-fu

    2003-01-01

    Due to the mismatch in the coefficients of thermal epansion of slicon chip and the surrounding plastic encapsulation materials,the induced thermal stress is the main cause for die and encapsulant rupture.The corner geometry is simplified as the semi-infinite wedge.The the two-dimensional thermal stress distribution around the coner was obtained explicitly.Based on the stress calculation,the strain energy density factor criterion is used to evaluate the strength of the structure,which can not only give the critical condition for the stresses,but also determine the direction of fracture iuntiation around the corner.

  3. On the cause of low thermal stability of ethyl halodiazoacetates

    Science.gov (United States)

    Mortén, Magnus; Hennum, Martin

    2016-01-01

    Summary Rates for the thermal decomposition of ethyl halodiazoacetates (halo = Cl, Br, I) have been obtained, and reported herein are their half-lives. The experimental results are supported by DFT calculations, and we provide a possible explanation for the reduced thermal stability of ethyl halodiazoacetates compared to ethyl diazoacetate and for the relative decomposition rates between the chloro, bromo and iodo analogs. We have also briefly studied the thermal, non-catalytic cyclopropanation of styrenes and compared the results to the analogous Rh(II)-catalyzed reactions. PMID:27559411

  4. Thermal Stability of Nanoporous Raney Gold Catalyst

    Directory of Open Access Journals (Sweden)

    Matthew C. Tai

    2015-07-01

    Full Text Available Nanoporous “Raney gold” sponge was prepared by de-alloying an Au-Al precursor alloy. Catalytic tests using a micro-reactor confirmed that Raney gold can serve as an active heterogeneous catalyst for CO oxidation, reduction of NO to N2, and oxidation of NO to NO2. In general, the specific surface area of a heterogeneous catalyst has an influence on its catalytic efficacy. Unfortunately, gold sponges coarsen readily, leading to sintering of their structure and reduction in surface area. This potentially places constraints on their upper operating temperature in catalytic reactors. Here we analyzed the behavior of Raney gold when the temperature was raised. We examined the kinetics and mechanism of coarsening of the sponge using a combination of in situ optical measurements and Metropolis Monte Carlo modeling with a Lennard-Jones interatomic potential. Modeling showed that the sponges started with an isotropic “foamy” morphology with negative average “mean curvature” but that subsequent thermally activated coarsening will drive the morphology through a bi-continuous fibrous state and on, eventually, to a sponge consisting of sintered blobs of predominantly positive “mean curvature”.

  5. Effect of alternate magnetic field on LY12 structure properties after thermal plastic forming

    Institute of Scientific and Technical Information of China (English)

    陈革新; 付宇明; 尹京; 肖宏

    2008-01-01

    The powerful alternate magnetic field treatment is an effective not-heat treatment, which improves the coriaceous performance of the material. In order to reveal the effect rule of the powerful alternate magnetic field on the structure capability after thermal plastic forming, the experimental methods were adopted to compare the microcosmic structure of the LY12 aluminium alloy test pieces before and after the powerful alternate magnetic field treatment. The mechanism of the structure refining was analyzed theoretically. According to the effect rule of the alternate magnetic field on critical grain growth work and the magnetic vibration-constriction mechanism, the structure dynamics factors were analyzed. The results show that, after a certain powerful alternate magnetic field treatment, the mechanical capability of the LY12 aluminium alloy after thermal plastic forming can be reinforced, the structure intertwist deriving from the thermal plastic forming becomes even and the branch crystal is also smashed, consequently refines the structure. The powerful alternate magnetic field treatment can be regarded as an effective method to improve metal structure performance after heat plastic forming.

  6. Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation.

    Science.gov (United States)

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The objective of the present work was to improve the thermal stability of eugenol by encapsulating into chitosan nanoparticles via an emulsion-ionic gelation crosslinking method. The influences of the initial eugenol content and tripolyphosphate (TPP) concentration on the loading capacity (LC), encapsulation efficiency (EE), morphology and surface charge of the eugenol-loaded chitosan nanoparticles were also investigated. LC and EE tended to increase with increasing initial eugenol content and decreasing TPP concentration. Particles with LC of 12% and EE of 20% exhibited a spherical shape with an average size of less than 100 nm. Thermal stability of the encapsulated eugenol was verified through its extrusion at 155°C with a model plastic, i.e. thermoplastic flour (TPF). TPF containing encapsulated eugenol showed 8-fold higher remaining eugenol content and 2.7-fold greater radical scavenging activity than that containing naked eugenol. The results suggest the possible use of eugenol-loaded chitosan nanoparticles as antioxidants in bioactive plastics for food packaging.

  7. Investigation of thermal treatment on selective separation of post consumer plastics prior to froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    Guney, Ali; Poyraz, M. Ibrahim; Kangal, Olgac, E-mail: kangal@itu.edu.tr; Burat, Firat

    2013-09-15

    Highlights: • Both PET and PVC have nearly the same densities. • The best pH value will be 4 for optimizing pH values. • Malic acid gave the best results for selective separation of PET and PVC. - Abstract: Plastics have become the widely used materials because of their advantages, such as cheapness, endurance, lightness, and hygiene. However, they cause waste and soil pollution and they do not easily decompose. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. Depending on their surface characteristics, these plastics can be separated from each other by flotation method which is useful mineral processing technique with its low cost and simplicity. The main objective of this study is to investigate the flotation characteristics of PET and PVC and determine the effect of plasticizer reagents on efficient plastic separation. For that purpose, various parameters such as pH, plasticizer concentration, plasticizer type, conditioning temperature and thermal conditioning were investigated. As a result, PET particles were floated with 95.1% purity and 65.3% efficiency while PVC particles were obtained with 98.1% purity and 65.3% efficiency.

  8. Thermal stability of liquid antioxidative extracts from pomegranate peel

    Science.gov (United States)

    This research was carried out to assess the potential of using the natural antioxidants in pomegranate peel extracts as replacement for synthetic antioxidants. As a result the thermal stability of pomegranate peel extract products during sterilization and storage, and its effect on industrial, color...

  9. Thermal stability of substitutional ag in CdTe

    NARCIS (Netherlands)

    Jahn, SG; Hofsass, H; Restle, M; Ronning, C; Quintel, H; BharuthRam, K; Wahl, U

    1996-01-01

    The thermal stability of substitutional Ag in CdTe was deduced from lattice location measurements at different temperatures. Substitutional Ag probe atoms were generated via transmutation doping from radioactive Cd isotopes. The lattice sites of Ag isotopes were determined by measuring the channelin

  10. Method for enhancing the thermal stability of ionic compounds

    DEFF Research Database (Denmark)

    2013-01-01

    This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA....

  11. Method for enhancing the thermal stability of ionic compounds

    OpenAIRE

    Riisager, Anders; Fehrmann, Rasmus; Robin, Roger; Gabriela, Gurau

    2013-01-01

    This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA.

  12. Thermal stability of substitutional ag in CdTe

    NARCIS (Netherlands)

    Jahn, SG; Hofsass, H; Restle, M; Ronning, C; Quintel, H; BharuthRam, K; Wahl, U

    1996-01-01

    The thermal stability of substitutional Ag in CdTe was deduced from lattice location measurements at different temperatures. Substitutional Ag probe atoms were generated via transmutation doping from radioactive Cd isotopes. The lattice sites of Ag isotopes were determined by measuring the channelin

  13. Can green solvents be alternatives for thermal stabilization of collagen?

    Science.gov (United States)

    Mehta, Ami; Rao, J Raghava; Fathima, Nishter Nishad

    2014-08-01

    "Go Green" campaign is gaining light for various industrial applications where water consumption needs to be reduced. To resolve this, industries have adopted usage of green, organic solvents, as an alternative to water. For leather making, tanning industry consumes gallons of water. Therefore, for adopting green solvents in leather making, it is necessary to evaluate its influence on type I collagen, the major protein present in the skin matrix. The thermal stability of collagen from rat tail tendon fiber (RTT) treated with seven green solvents namely, ethanol, ethyl lactate, ethyl acetate, propylene carbonate, propylene glycol, polyethylene glycol-200 and heptane was determined using differential scanning calorimetry (DSC). Crosslinking efficiency of basic chromium sulfate and wattle on RTT in green solvents was determined. DSC thermograms show increase in thermal stability of RTT collagen against heat with green solvents (>78°C) compared to water (63°C). In the presence of crosslinkers, RTT demonstrated thermal stability >100°C in some green solvents, resulting in increased intermolecular forces between collagen, solvent and crosslinkers. The significant improvement in thermal stability of collagen potentiates the capability of green solvents as an alternative for water.

  14. Lanthanide phosphonates: Synthesis, thermal stability and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Amghouz, Z., E-mail: amghouz.uo@uniovi.es [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Garcia, J.R.; Garcia-Granda, S. [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Clearfield, A. [Department of Chemistry, Texas A and M University, College Station, TX 77842-3012 (United States); Rodriguez Fernandez, J.; Pedro, I. de [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Report of the complete series of lanthanide 1,4-phenylbis(phosphonate). Black-Right-Pointing-Pointer Synthesis under conventional hydrothermal synthesis or microwave-assisted hydrothermal synthesis. Black-Right-Pointing-Pointer Cation size is the key factor for the structural and particles size variations. Black-Right-Pointing-Pointer Thermal behaviour is characterized by unusual very high thermal stability. - Abstract: Series of novel organic-inorganic hybrids materials based on trivalent lanthanides (Ln = Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and 1,4-phenylbis(phosphonate) obtained under hydrothermal conditions either by oven heat or microwave irradiation. The anhydrous compounds containing La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho, are isostructural. However, the compounds based on Y, Er, Tm, Yb, and Lu are hydrated and their structures have not yet been solved. The series of compounds are characterized by PXRD, TEM, SEM-EDX and thermal analyses (TG-MS and DSC). TEM study show a variable particles size with a minimum mean-particle size of ca. 30 nm. These compounds exhibit unusual very high thermal stability. The size of particles and the thermal stability are depending on lanthanide(III) cation features. All the investigated materials show paramagnetic behaviour. The magnetic susceptibility data follow a Curie-Weiss laws with paramagnetic effective moments in good agreement with those expected for Ln{sup 3+} free ions.

  15. Crystal plasticity extend FEM implementation of thermal-tensile aluminum alloy

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2016-01-01

    Full Text Available Multi-level approach has been used to simulate the thermal deformation of aluminium alloy at different temperature and strain rate. The crystal plasticity model is extended in the finite element method and the thermal behaviour is integrated in the constitutive equations. Moreover, the damage evolution is also reflected in the simulation using continuum damage mechanics model. Thus, the void evolution and thermal effect could both be shown in the simulation. A new shear strain rate model is constructed with the thermal activated mechanism to describe the rate dependent behaviours during tensile test. The thermal parameters are determined in a fitting test of representative volume element to compare with the experimental data. The results prove that the mechanical tensile behaviour of 5052 aluminium alloy could be well described at different temperatures. The damage evolution process is expressed by the stress concentration and strain concentration in the finite element simulation, which are also confirmed by the experiments.

  16. Thermal Stability of Austenite and Properties of Quenching & Partitioning (Q&P) Treated AHSS

    Science.gov (United States)

    Wu, R. M.; Wang, L.; Jin, X. J.

    A Fe-0.2C-1.87Mn-1.42Si-0.0405Al steel subjected to an appropriate Quenching & Partitioning treatment (Q&P) exhibits the combination of high tensile strength (1311 MPa) and high elongation (13.6%). The thermal decomposition of retained austenite in the as-treated steel has been studied at an elevated temperature of 500oC by means of differential scanning calorimetry (DSC). Activation energy has been obtained by performing a Kissinger analysis method. The DSC results show that the activation energy of thermal decomposition of the retained austenite in this Q&P steel is 221.3KJ/mol, which is in a good agreement with the result of retained austenite in similar chemical composition steel subjected to a TRansformation Induced Plasticity (TRIP) treatment. This investigation helps to investigate the stability of retained austenite in Q&P steels upon cooling or under external stress.

  17. Grain boundary engineering to enhance thermal stability of electrodeposited nickel

    DEFF Research Database (Denmark)

    Alimadadi, Hossein

    by miniaturization of the grains down to nano-meter scale. However, this augments the total grain boundary energy stored in the material, hence, making the material less thermally stable. Coherent twin boundaries are of very low energy and mobility compared to all other boundaries in a FCC material. Accordingly......Manufacturing technologies such as injection molding and micro electromechanical systems demand materials with improved mechanical properties (e.g. hardness, ductility) and high durability at elevated temperatures. Significant improvement in some of the mechanical properties is obtained......, grain boundary engineering of electrodeposited nickel to achieve high population of coherent twin boundaries and, hence, higher thermal stability is a promising method to achieve simultaneous improvement in mechanical properties and thermal stability. This is of particular scientific and practical...

  18. Thermal stability assessment of anti-explosive ammonium nitrate

    Institute of Scientific and Technical Information of China (English)

    Lijin Shen; Xuguang Wang

    2005-01-01

    The explosivity experiment of anti-explosive ammonium nitrate (AEAN) shows that the explosive characteristic of AEAN is eliminated. The adiabatic decompositions of ammonium nitrate and AEAN were investigated with an accelerating rate calorimeter (ARC). The curves of thermal decomposition temperature and pressure versus time, self-heating rate and pressure versus temperature for two systems were obtained. The kinetic parameters such as apparent activation energy and pre-exponential factor were calculated.The safety of AEAN was analyzed. It was indicated that AEAN has a higher thermal stability than AN. At the same time, it can be shown that the elimination of its explosive characteristic is due to the improvement on the thermal stability of AEAN.

  19. Thermal stability analysis of the liquid phase methanol synthesis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gogate, M.R.; Desirazu, S.; Berty, J.M.; Lee, S. (Akron University, Akron, OH (USA). Dept. of Chemical Engineering)

    1992-01-01

    The effect of addition of an inert liquid phase on the rate of heat generation in the catalytic synthesis of methanol from syngas has been studied. Gas compositions typical of product gases from Lurgi and Koppers-Totzek gasifiers, represented by H[sub 2]-rich and CO-rich syngas respectively, were used to experimentally verify the 'slope' and 'dynamic' criteria in a three-phase fixed bed recycle reactor. The liquid medium, Witco-40 oil, has been effective in controlling the rate of heat generation and in preventing catalyst overheating, signifying that the liquid phase synthesis is thermally far more stable than the vapour phase synthesis. The experimental thermal stability study provides crucial and valuable information in commercializing the liquid phase methanol synthesis process. The current approach of thermal stability analysis does not require any a priori assumption or predetermined reaction kinetics. 22 refs., 6 figs., 7 tabs.

  20. Lineage stability and phenotypic plasticity of Foxp3⁺ regulatory T cells.

    Science.gov (United States)

    Hori, Shohei

    2014-05-01

    Regulatory T (Treg) cells expressing the transcription factor forkhead box protein 3 (Foxp3) constitute a unique T-cell lineage committed to suppressive functions. While their differentiation state is remarkably stable in the face of various perturbations from the extracellular environment, they are able to adapt to diverse and fluctuating tissue environments by changing their phenotype. The lineage stability and phenotypic plasticity of Treg cells thus ensure the robustness of self-tolerance and tissue homeostasis. Recent studies have suggested, however, that Treg cells may retain lineage plasticity, the ability to switch their cell fate to various effector T-cell types under certain circumstances such as inflammation, a notion that remains highly contentious. While accumulating evidence indicates that some Treg cells can downregulate Foxp3 expression and/or acquire effector T-helper cell-like phenotypes, results from my laboratory have shown that Treg cells retain epigenetic memory of, and thus remain committed to, Foxp3 expression and suppressive functions despite such phenotypic plasticity. It has also become evident that Foxp3 can be promiscuously and transiently expressed in activated T cells. Here, I argue that the current controversy stems partly from the lack of the lineage specificity of Foxp3 expression and also from the confusion between phenotypic plasticity and lineage plasticity, and discuss implications of our findings in Treg cell fate determination and maintenance.

  1. Network and guest dependent thermal stability and thermal expansion in a trigonal host

    Indian Academy of Sciences (India)

    Viswanadha G Saraswatula; Mukhtar Ahmad Bhat; Suman Bhattacharya; Binoy K Saha

    2014-09-01

    Thermal stability and thermal expansion of bromo trimer synthon mediated hexagonal inclusion compounds of 2,4,6-tris(4-bromophenoxy)-1,3,5-triazine (BrPOT) with dichloromethane (DCM), tetrahydrofuran (THF) and hexamethyl benzene (HMB) and also the guest-free form of BrPOT are reported. Each of these three guests produced two concomitant inclusion compounds with BrPOT. The thermal stability of the solvate lattice increases with decreasing cavity size. The channel network of the DCM inclusion compound is stable only for a few seconds at room temperature outside the mother liquor, whereas the cage network of the DCM solvate is stable for months under similar conditions. Thermal expansions of the lattices depend upon the network, guest content as well as the type of guest molecules. The guest-free form exhibits the least thermal expansion in this series of systems.

  2. Is phenotypic plasticity a key mechanism for responding to thermal stress in ants?

    Science.gov (United States)

    Oms, Cristela Sánchez; Cerdá, Xim; Boulay, Raphaël

    2017-06-01

    Unlike natural selection, phenotypic plasticity allows organisms to respond quickly to changing environmental conditions. However, plasticity may not always be adaptive. In insects, body size and other morphological measurements have been shown to decrease as temperature increases. This relationship may lead to a physiological conflict in ants, where larger body size and longer legs often confer better thermal resistance. Here, we tested the effect of developmental temperature (20, 24, 28 or 32 °C) on adult thermal resistance in the thermophilic ant species Aphaenogaster senilis. We found that no larval development occurred at 20 °C. However, at higher temperatures, developmental speed increased as expected and smaller adults were produced. In thermal resistance tests, we found that ants reared at 28 and 32 °C had half-lethal temperatures that were 2 °C higher than those of ants reared at 24 °C. Thus, although ants reared at higher temperatures were smaller in size, they were nonetheless more thermoresistant. These results show that A. senilis can exploit phenotypic plasticity to quickly adjust its thermal resistance to local conditions and that this process is independent of morphological adaptations. This mechanism may be particularly relevant given current rapid climate warming.

  3. Thermal analysis and stability of commercially available endodontic obturation materials.

    Science.gov (United States)

    Roberts, H W; Kirkpatrick, T C; Bergeron, B E

    2017-02-10

    The purpose of this study was to evaluate the thermal stability of 23 commercially-available endodontic obturation materials. Specimens (n = 10) were sealed in aluminum differential scanning calorimetry (DSC) crucibles and subjected to thermal scan series consisting of a 25 to 70 °C at 5 °C/min followed by a rapid increase to 230 °C, followed by a second scan from 25 to 70 °C at 5 °C/min. The first scan evaluated the materials as-received followed by a worse-case-scenario thermal challenge simulating temperatures involved with warm vertical condensation obturation techniques. The second thermal scan observed any phase changes from the high temperature challenge. This two-scan process was repeated twice to observe changes encountered by repeat high heat exposure during obturation. Mean thermal enthalpies were analyzed with Kruskal-Wallis and Games-Howell post-hoc test. (p = 0.05). Thermal behavior was material dependent. During the first thermal scan, materials typically demonstrated broad endothermic enthalpy curves suggesting either a gutta-percha phase mixture and/or an alpha crystalline phase. The first high-heat challenge produced definitive alpha/beta thermal phase signatures usually associated with gutta-percha. Changes in beta-phase enthalpies were noted with Therarmafil Plus and UltraFil Firmset while increase in alpha-phases was observed with GuttaCore, K3, Lexicon, and Schein Accessory Points. Commercial endodontic gutta-percha obturation materials displayed thermal characteristics that were material dependent. However, all demonstrated stability at temperatures in excess to that experienced during warm vertical condensation techniques. The gutta-percha obturation materials evaluated in this evaluation can be used successfully in warm vertical condensation techniques without fear of degradation.

  4. Thermal plasticity in young snakes: how will climate change affect the thermoregulatory tactics of ectotherms?

    Science.gov (United States)

    Aubret, F; Shine, R

    2010-01-15

    Climate change will result in some areas becoming warmer and others cooler, and will amplify the magnitude of year-to-year thermal variation in many areas. How will such changes affect animals that rely on ambient thermal heterogeneity to behaviourally regulate their body temperatures? To explore this question, we raised 43 captive-born tiger snakes Notechis scutatus in enclosures that provided cold (19-22 degrees C), intermediate (19-26 degrees C) or hot (19-37 degrees C) thermal gradients. The snakes adjusted their diel timing of thermoregulatory behaviour so effectively that when tested 14 months later, body temperatures (mean and maximum), locomotor speeds and anti-predator behaviours did not differ among treatment groups. Thus, the young snakes modified their behaviour to compensate for restricted thermal opportunities. Then, we suddenly shifted ambient conditions to mimic year-to-year variation. In contrast to the earlier plasticity, snakes failed to adjust to this change, e.g. snakes raised at cooler treatments but then shifted to hot conditions showed a higher mean body temperature for at least two months after the onset of the new thermal regime. Hence, thermal conditions experienced early in life influenced subsequent thermoregulatory tactics; the mean selected temperature of a snake depended more upon its prior raising conditions than upon its current thermoregulatory opportunities. Behavioural plasticity thus allows snakes to adjust to suboptimal thermal conditions but this plasticity is limited. The major thermoregulatory challenge from global climate change may not be the shift in mean values (to which our young snakes adjusted) but the increased year-to-year variation (with which our snakes proved less able to deal).

  5. Chemical stability and adsorption of atracurium besylate injections in disposable plastic syringes.

    Science.gov (United States)

    Pramar, Y V; Loucas, V A; Word, D

    1996-06-01

    Atracurium besylate (AB) is supplied as a sterile, non-pyrogenic aqueous solution for intravenous use. Hospitals pre-fill disposable plastic syringes with these solutions so that they are ready for immediate use when required. Drug loss due to potential adsorption on to the plastic material of the syringes has not been studied. Atracurium is also administered by intravenous infusion using a diluted solution in either 5% dextrose injection (USP) or 0.9% sodium chloride injection USP. Drug solutions not used within 24 h are usually discarded, resulting in tremendous waste. The purpose of these investigations was to determine the adsorption behaviour of atracurium when stored in plastic syringes, and to study the degradation of atracurium in i.v. fluids. For the adsorption study, 10 mg/ml solutions were used, whereas the diluted infusion solutions were prepared to contain 0.5 mg/ml of atracurium. Drug degradation was monitored using a stability-indicating high-performance liquid chromatography method. Degradation studies were conducted at 5 degrees C, 25 degrees C and 40 degrees C. Refrigeration was observed to improve drug stability. The manufacturer's recommended expiry period was too conservative. Storage at room temperature for up to 6 weeks can be safely recommended, without significant loss of chemical stability.

  6. Stability and reinforcement analysis of rock slope based on elasto-plastic finite element method

    Institute of Scientific and Technical Information of China (English)

    刘耀儒; 武哲书; 常强; 李波; 杨强

    2015-01-01

    The rigid body limit equilibrium method (RBLEM) and finite element method (FEM) are two widely used approaches for rock slope’s stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety (FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory (DRT) is developed. With this theory, plastic complementary energy (PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope’s stability evaluation and reinforcement engineering practice in southwest of China.

  7. Thermal expansion of PBX 9501 and PBX 9502 plastic-bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Darla Graff [Los Alamos National Laboratory; Brown, Geoff W [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Giambra, Anna [Los Alamos National Laboratory; Sandstrom, Mary [Los Alamos National Laboratory

    2009-01-01

    Two applications of thermal expansion measurements on plastic-bonded explosive (PBX) composites are described. In the first dilatometer application, thermal expansion properties of HMX-based PBX 9501 are measured over a broad thermal range that includes glass and domain-restructuring transitions in the polymeric binder. Results are consistent with other thermal measurements and analyses performed on the composite, as well as on the binder itself. The second application used the dilatometer to distinguish the reversible and irreversible components of thermal expansion in PBX 9502, a TATB-based explosive. Irreversible expansion of the composite is believed to derive from the highly-anisotropic coefficient of thermal expansion (CTE) values measured on single T A TB crystals, although the mechanism is not well understood. Effects of specimen density, thermal ramp rate, and thermal range variation (warm first or cold first) were explored, and the results are presented and discussed. Dilatometer measurements are ongoing towards gaining insight into the mechanism(s) responsible for PBX 9502 irreversible thermal expansion.

  8. The effect of di-(-2-ethyl hexyl phthalate (Dehp as plasticizer on the thermal and mechanical properties of pvc/pmma blends

    Directory of Open Access Journals (Sweden)

    Kamira Aouachria

    2014-08-01

    Full Text Available Plasticizers play a key role in the formulation of polymers and in determining their physical properties and processability. This study examines the effect of di(2-ethyl hexylphthalate (DEHP as plasticizer on the thermal and mechanical properties of PVC/PMMA blends. For that purpose, blends of variable composition, from 0 to 100 wt%, were prepared in the presence (15, 30 and 50 wt % and in the absence of di(2-ethyl hexylphthalate. The thermal degradation of the blends was investigated by thermogravimetric analysis (TGA in an atmosphere of synthetic air in the temperature range of 50-550°C. The variation of the mechanical properties, such as tensile behavior, hardness and impact resistance, were investigated for all blend compositions. The effect of the plasticizer on the same properties was considered. The results obtained show that a range of properties can be generated according to the blend compositions. Therefore, the addition of PMMA to the blends stabilized PVC, for the initial thermal degradation, and the addition of the plasticizer caused a decrease of stress at break and Young modulus.

  9. Development of plastic heat exchangers for ocean thermal energy conversion. Final report, August 1976--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Hart, G.K.; Lee, C.O.; Latour, S.R.

    1979-01-01

    Materials and processes have been selected and design information obtained for plastic ocean thermal energy conversion (OTEC) heat exchangers as the result of a program comprising five types of laboratory experiments. Tests to evaluate the chemical resistance of seven commercially available thermoplastics to sea water and several possible working fluids were conducted with emphasis placed on compatibility with ammonia. Environmental rupture tests involving exposure of stressed specimens to sea water or liquid ammonia indicated that the high density polyethylene (HDPE) is the best suited candidate and produced an extrapolated 100,000 hour failure stress of 1060 psi for HDPE. Long term durability tests of extruded HDPE plate-tube panel confirmed that plastic heat transfer surface is mechanically reliable in an OTEC environment. Thermal conductivity measurements of acetylene black filled HDPE indicated that conductivity may be increased by 50% with a 35% by weight filler loading. The permeability coefficient measured for liquid ammonia through HDPE was higher than previous estimates. Test showed that the rate can be significantly reduced by sulfonation of HDPE. A review of biofouling mechanisms revealed that the permeable nature of the plastic heat exchanger surface may be used to control primary biofouling form formation by allowing incorporation of non-toxic organic repellents into the plastic. A preliminary design and fabrication development program suggests that construction of an ammonia condenser test unit is feasible using currently available materials and manufacturing techniques.

  10. Morphological and Thermal Studies of Plasticized Poly (methyl methacrylate) Polymer Electrolyte Systems

    Science.gov (United States)

    Osman, Z.; Chew, K. W.; Othman, L.; Isa, K. B. M.

    2010-03-01

    In the present study, six systems of poly(methylmethacrylate) (PMMA)-based polymer electrolyte films have been prepared using solution casting technique. They are; the pure PMMA system, the plasticized-PMMA systems (PMMA+EC and PMMA+PC), the salted-PMMA system (PMMA+LiBF4) and the plasticized-salted PMMA systems (PMMA+EC+LiBF4 and PMMA+PC+LiBF4). The effect of adding the plasticizers and the salt to the PMMA based polymer electrolyte films on the morphology and thermal properties will be investigated using Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Differential Scanning Calorimetry (DSC). The phase structure and the complexation for each system that has the highest conductivity are characterized using the XRD. The FTIR results confirmed the complexation has taken place between the plasticizers and the polymer, the salt and the polymer, and the plasticizers and the salt. These results are supported by SEM analysis. The glass transition temperature, Tg of polymer electrolyte films will be determined by DSC analysis. The Tg value of the highest conducting film in the (PMMA+EC) system, the (PMMA+PC) system and the (PMMA+LiBF4) system is 117.2° C, 118.8° C and 122.1° C, respectively. The Tg value is decreased with the increased of the amorphous phase.

  11. Photoacoustic thermal characterization of lime-partially stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, M.E.; Serrato, J.; Zarate, J.; Pacheco, C.; Villasenor, L. [Univ. Michoacana, Morelia Michoacan (Mexico)

    1997-01-01

    Photoacoustic and photothermal techniques are used to investigate the room-temperature thermophysical properties of 9.4 mol% lime-partially stabilized zirconia (C-PSZ) samples in the density range of 5.12 {times} 10{sup 3}--5.58 {times} 10{sup 3}kg/m{sup 3}. The open-photoacoustic-cell approach is used to measure thermal diffusivity, and the photothermal technique of continuous illumination of the sample in vacuum is used to measure the product of density and specific heat capacity. Thermal conductivity is shown to be the thermophysical parameter most sensitive to changes in porosity.

  12. Morphology, thermal stability and thermal degradation kinetics of cellulose-modified urea–formaldehyde resin

    Indian Academy of Sciences (India)

    M A ARSHAD; A MAAROUFI; G PINTO; S EL-BARKANY; A ELIDRISSI

    2016-10-01

    This article reports a study on the structural characterization and evaluation of thermal degradation kinetics of urea–formaldehyde resin modified with cellulose, known as UFC resin. Structural characterization of UFC undertaken by scanning electron microscopy, Fourier transform infrared and X-ray diffractionanalyses reveals that the resin is fairly homogenous, and it constitutes of partly crystalline structure including urea–formaldehyde/cellulose interface morphology different from UFC precursors. Measurement of inherent thermal stability, probing reaction complexity and the thermal degradation kinetic analysis of UFC have been carried out by thermogravimetric/differential thermal analyses (TGA/DTA) under non-isothermal conditions. The integral proceduredecomposition temperature elucidates significant thermal stability of UFC. TGA/DTA analyses suggest highly complicated reaction profile for thermal degradation of UFC, comprising various parallel/consecutive reactions.Different differential and integral isoconversional methods have been employed to determine the thermal degradation activation energy of UFC. Substantial variation in activation energy with the advancement of reaction verifiesmulti-step reaction pathway of UFC. A plausible interpretation of the obtained kinetic parameters of UFC thermal degradation with regard to their physical meanings is given and discussed in this study.

  13. Stability Study of Sunscreens with Free and Encapsulated UV Filters Contained in Plastic Packaging

    Directory of Open Access Journals (Sweden)

    Benedetta Briasco

    2017-05-01

    Full Text Available Sunscreens play a fundamental role in skin cancer prevention and in protection against photo-aging. UV filters are often photo-unstable, especially in relation to their vehicles and, being lipophilic substances, they are able to interact with plastic packaging. Finally, UV filter stability can be significantly affected by the routine use of the product at high temperatures. This work aims to study the stability of sunscreen formulations in polyethylene packaging. Butyl methoxydibenzoylmethane and octocrylene, both in a free form and as encapsulated filters were chosen as UV filters. Stability evaluations were performed both in the packaging and on the formulations. Moreover, a further two non-destructive techniques, near-infrared (NIR spectroscopy and a multiple light scattering technique, were also used to evaluate the stability of the formulation. Results demonstrated clearly that all of the pack underwent significant changes in its elastic/plastic behavior and in external color after solar irradiation. From the evaluation of the extractable profile of untreated and treated packaging material an absorption of 2-phenoxyethanol and octocrylene were shown. In conclusion, the results highlighted clearly that a reduction of the UV filter in the formulation packed in high-density polyethylene/low-density polyethylene (HDPE/LDPE material can occur over time, reducing the protective effect of the product when applied to the skin.

  14. Stability Study of Sunscreens with Free and Encapsulated UV Filters Contained in Plastic Packaging.

    Science.gov (United States)

    Briasco, Benedetta; Capra, Priscilla; Mannucci, Barbara; Perugini, Paola

    2017-05-31

    Sunscreens play a fundamental role in skin cancer prevention and in protection against photo-aging. UV filters are often photo-unstable, especially in relation to their vehicles and, being lipophilic substances, they are able to interact with plastic packaging. Finally, UV filter stability can be significantly affected by the routine use of the product at high temperatures. This work aims to study the stability of sunscreen formulations in polyethylene packaging. Butyl methoxydibenzoylmethane and octocrylene, both in a free form and as encapsulated filters were chosen as UV filters. Stability evaluations were performed both in the packaging and on the formulations. Moreover, a further two non-destructive techniques, near-infrared (NIR) spectroscopy and a multiple light scattering technique, were also used to evaluate the stability of the formulation. Results demonstrated clearly that all of the pack underwent significant changes in its elastic/plastic behavior and in external color after solar irradiation. From the evaluation of the extractable profile of untreated and treated packaging material an absorption of 2-phenoxyethanol and octocrylene were shown. In conclusion, the results highlighted clearly that a reduction of the UV filter in the formulation packed in high-density polyethylene/low-density polyethylene (HDPE/LDPE) material can occur over time, reducing the protective effect of the product when applied to the skin.

  15. Electrical Conductivity, Thermal Stability, and Lattice Defect Evolution During Cyclic Channel Die Compression of OFHC Copper

    Science.gov (United States)

    Satheesh Kumar, S. S.; Raghu, T.

    2015-02-01

    Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.

  16. Thermal stability analysis of the fine structure of solar prominences

    Science.gov (United States)

    Demoulin, Pascal; Malherbe, Jean-Marie; Schmieder, Brigitte; Raadu, Mickael A.

    1986-01-01

    The linear thermal stability of a 2D periodic structure (alternatively hot and cold) in a uniform magnetic field is analyzed. The energy equation includes wave heating (assumed proportional to density), radiative cooling and both conduction parallel and orthogonal to magnetic lines. The equilibrium is perturbed at constant gas pressure. With parallel conduction only, it is found to be unstable when the length scale 1// is greater than 45 Mn. In that case, orthogonal conduction becomes important and stabilizes the structure when the length scale is smaller than 5 km. On the other hand, when the length scale is greater than 5 km, the thermal equilibrium is unstable, and the corresponding time scale is about 10,000 s: this result may be compared to observations showing that the lifetime of the fine structure of solar prominences is about one hour; consequently, our computations suggest that the size of the unresolved threads could be of the order of 10 km only.

  17. Structure and Thermal Stability of Copper Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Guangan Zhang

    2013-01-01

    Full Text Available Copper nitride (Cu3N thin films were deposited on glass via DC reactive magnetron sputtering at various N2 flow rates and partial pressures with 150°C substrate temperature. X-ray diffraction and scanning electron microscopy were used to characterize the microstructure and morphology. The results show that the films are composed of Cu3N crystallites with anti-ReO3 structure. The microstructure and morphology of the Cu3N film strongly depend on the N2 flow rate and partial pressure. The cross-sectional micrograph of the film shows typical columnar, compact structure. The thermal stabilities of the films were investigated using vacuum annealing under different temperature. The results show that the introducing of argon in the sputtering process decreases the thermal stability of the films.

  18. Summation of connectivity strengths in the visual cortex reveals stability of neuronal microcircuits after plasticity.

    Science.gov (United States)

    Bachatene, Lyes; Bharmauria, Vishal; Cattan, Sarah; Chanauria, Nayan; Rouat, Jean; Molotchnikoff, Stéphane

    2015-10-09

    Within sensory systems, neurons are continuously affected by environmental stimulation. Recently, we showed that, on cell-pair basis, visual adaptation modulates the connectivity strength between similarly tuned neurons to orientation and we suggested that, on a larger scale, the connectivity strength between neurons forming sub-networks could be maintained after adaptation-induced-plasticity. In the present paper, based on the summation of the connectivity strengths, we sought to examine how, within cell-assemblies, functional connectivity is regulated during an exposure-based adaptation. Using intrinsic optical imaging combined with electrophysiological recordings following the reconfiguration of the maps of the primary visual cortex by long stimulus exposure, we found that within functionally connected cells, the summed connectivity strengths remain almost equal although connections among individual pairs are modified. Neuronal selectivity appears to be strongly associated with neuronal connectivity in a "homeodynamic" manner which maintains the stability of cortical functional relationships after experience-dependent plasticity. Our results support the "homeostatic plasticity concept" giving new perspectives on how the summation in visual cortex leads to the stability within labile neuronal ensembles, depending on the newly acquired properties by neurons.

  19. Thermal stability of -amylase in aqueous cosolvent systems

    Indian Academy of Sciences (India)

    Jay Kant Yadav; V Prakash

    2009-09-01

    The activity and thermal stability of -amylase were studied in the presence of different concentrations of trehalose, sorbitol, sucrose and glycerol. The optimum temperature of the enzyme was found to be 50 ± 2°C. Further increase in temperature resulted in irreversible thermal inactivation of the enzyme. In the presence of cosolvents, the rate of thermal inactivation was found to be significantly reduced. The apparent thermal denaturation temperature ()app and activation energy () of -amylase were found to be significantly increased in the presence of cosolvents in a concentration-dependent manner. In the presence of 40% trehalose, sorbitol, sucrose and glycerol, increments in the ()app were 20°C, 14°C, 13°C and 9°C, respectively. The of thermal denaturation of -amylase in the presence of 20% (w/v) trehalose, sorbitol, sucrose and glycerol was found to be 126, 95, 90 and 43 kcal/mol compared with a control value of 40 kcal/mol. Intrinsic and 8-anilinonaphathalene-1-sulphonic acid (ANS) fluorescence studies indicated that thermal denaturation of the enzyme was accompanied by exposure of the hydrophobic cluster on the protein surface. Preferential interaction parameters indicated extensive hydration of the enzyme in the presence of cosolvents.

  20. Dependence of thermal stability of lithiated Si on particle size

    Science.gov (United States)

    Li, Chao; Shi, Tongfei; Li, Decheng; Yoshitake, Hideya; Wang, Hongyu

    2016-12-01

    Thermal properties of the component materials are key issues in lithium ion batteries (LIBs). Si-based anodes are one of the most promising materials, but its thermal evolution have received much less attention than its electrochemical performance. In this article, the thermal behavior of various of Si material has been studied by differential scanning calorimetry (DSC). Three kinds of Si-particles, ranging from nano-to micro-sizes was subject to thermal analysis. It has been found that the thermal stability increases with the rise in particle-size. For the nanoparticles of 20 nm, both characteristic peaks of A and B regions in the heating process are stronger than the large-diameter particles. For three kinds of Si particles, the starting temperature of thermal reaction demonstrates a similar trend, gradually becoming lower with the increasing of the lithiation extent. At last, the ex situ XPS has also been conducted to explore the causes of surface state after temperature elevation. In A region, the heating decomposition of SEI with electrolyte, mainly consisting of a variety of esterification compounds, produces high content of lithium carbonate below 180 °C. When lithium in the inner phase of Si particles loses the protection of SEI film, the severe exothermic reaction occurred between lithium and the solvent species.

  1. Thermal stability of segmented polyurethane elastomers reinforced by clay particles

    Directory of Open Access Journals (Sweden)

    Pavličević Jelena

    2009-01-01

    Full Text Available The aim of this work was to determine the influence of clay nanoparticles on thermal properties of segmented polyurethanes based on hexamethylene- diisocyanate, aliphatic polycarbonate diol and 1,4-butanediol as chain extender. The organically modified particles of montmorillonite and bentonite were used as reinforcing fillers. The structure of elastomeric materials was varied either by diol type or chain extender content. The ratio of OH groups from diol and chain extender (R was either 1 or 10. Thermal properties of prepared materials were determined using modulated differential scanning calorimetry (MDSC. Thermal stability of obtained elastomers has been studied by simultaneously thermogravimetry coupled with DSC. The glass transition temperature, Tg, of soft segments for all investigated samples was about -33°C. On the basis of DTG results, it was concluded that obtained materials were very stable up to 300°C.

  2. Stability of thermal structures with an internal heating source

    CERN Document Server

    Sanchez, Nestor

    2008-01-01

    We study the thermal equilibrium and stability of isobaric, spherical structures having a radiation source located at its center. The thermal conduction coefficient, external heating and cooling rates are represented as power laws of the temperature. The internal heating decreases with distance from the source r approximately as exp(-tau)/(r**2), being tau the optical depth. We find that the influence of the radiation source is important only in the central region, but its effect is enough to make the system thermally unstable above a certain threshold central temperature. This threshold temperature decreases as the internal heating efficiency increases, but, otherwise, it does not depend on the structure size. Our results suggest that a solar-like star migrating into a diffuse interstellar region may destabilize the surrounding medium.

  3. Thermal Stability of Large Al-stabilized Superconducting Magnets Theoritical Analysis of CMS Solenoid.

    CERN Document Server

    Juster, F P

    1998-01-01

    The CMS detector magnet presently under design for the future Large Hadron Collider at CERN is an epoxy-impregnated structure, indirectly cooled by two-phase flow liquid helium. This magnet, based on aluminum-stabilized, mechanically reinforced conductor, is not cryostable : the heat generated by a thermal disturbance can be removed only by thermal diffusivity through the windings. In order to study the thermal stability of the magnet, we have developed numerical codes able to predict the thermal behaviour of an anisotropic and non-homogeneous medium against thermal perturbations due to friction or epoxy cracking. Our 3D finite element codes can calculate the propagation or the recovery of a normal zone in a superconducting magnet, taking into account the current diffusion effect, which strongly affects the heat generated by a transition in the case of large Al-stabilized conductors. Two different codes, CASTEM 2000 and HEATING are described in this paper. We present the results of the CMS Solenoid magnet sta...

  4. Flexible all-carbon photovoltaics with improved thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun; Ishihara, Hidetaka; Sodhi, Jaskiranjeet; Chen, Yen-Chang; Siordia, Andrew; Martini, Ashlie; Tung, Vincent C., E-mail: ctung@ucmerced.edu

    2015-04-15

    The structurally robust nature of nanocarbon allotropes, e.g., semiconducting single-walled carbon nanotubes (SWCNTs) and C{sub 60}s, makes them tantalizing candidates for thermally stable and mechanically flexible photovoltaic applications. However, C{sub 60}s rapidly dissociate away from the basal of SWCNTs under thermal stimuli as a result of weak intermolecular forces that “lock up” the binary assemblies. Here, we explore use of graphene nanoribbons (GNRs) as geometrically tailored protecting layers to suppress the unwanted dissociation of C{sub 60}s. The underlying mechanisms are explained using a combination of molecular dynamics simulations and transition state theory, revealing the temperature dependent disassociation of C{sub 60}s from the SWCNT basal plane. Our strategy provides fundamental guidelines for integrating all-carbon based nano-p/n junctions with optimized structural and thermal stability. External quantum efficiency and output current–voltage characteristics are used to experimentally quantify the effectiveness of GNR membranes under high temperature annealing. Further, the resulting C{sub 60}:SWCNT:GNR ternary composites display excellent mechanical stability, even after iterative bending tests. - Graphical abstract: The incorporation of solvent resistant, mechanically flexible and electrically addressable 2-D soft graphene nanoribbons facilitates the assembly of photoconductive carbon nano-p/n junctions for thermally stable and flexible photovoltaic cells.

  5. Thermal stability of the C106 dye in robust electrolytes

    DEFF Research Database (Denmark)

    Lund, Torben; Phuong, Nguyen Tuyet; Pechy, Peter

    Thermal stability of the C106 dye in robust electrolytes. We have investigated the thermal stability and degradation chemistry of the ruthenium dye C106 (Figure 1) at 80 ◦C in the “robust” electrolyte “B” comprised of 1.0 M DMII, 0.03 M I2, 0.5 M NBB, and 0.1 M GuNCS in 3-methoxypropionitrile (3......-MPN) introduced by Gao et al. in 2008. [1]. Figure 1 Thermal degradation of C106 bound to TiO2 at 80 ºC in dark as a function of heating time. ● C106 = RuLL´(NCS)2 ■ RuLL´(NCS)(NBB)+ ▲ RuLL´(NCS)(3-MPN)+ The C106 dye was attached to the surface of TiO2 nano-particles and stable colloidal solutions...... of the particles were prepared in electrolyte mixture B. The solutions were thermally treated at 80 ◦C for 0-2000 hours followed by dye extraction and analysis by HPLC coupled to UV/Vis and electro spray mass spectrometry [2]. Figure 1 shows the concentration profiles of C106 samples prepared under ambient...

  6. Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers

    Science.gov (United States)

    Mess, Derek

    2003-01-01

    yttria in suitable proportions has shown promise of being a superior thermal- barrier coating (TBC) material, relative to zirconia stabilized with yttria only. More specifically, a range of compositions in the zirconia/scandia/yttria material system has been found to afford increased resistance to deleterious phase transformations at temperatures high enough to cause deterioration of yttria-stabilized zirconia. Yttria-stabilized zirconia TBCs have been applied to metallic substrates in gas turbine and jet engines to protect the substrates against high operating temperatures. These coatings have porous and microcracked structures, which can accommodate strains induced by thermal-expansion mismatch and thermal shock. The longevity of such a coating depends upon yttria as a stabilizing additive that helps to maintain the zirconia in an yttria-rich, socalled non-transformable tetragonal crystallographic phase, thus preventing transformation to the monoclinic phase with an associated deleterious volume change. However, at a temperature greater than about 1,200 C, there is sufficient atomic mobility that the equilibrium, transformable zirconia phase is formed. Upon subsequent cooling, this phase transforms to the monoclinic phase, with an associated volume change that adversely affects the integrity of the coating. Recently, scandia was identified as a stabilizer that could be used instead of, or in addition to, yttria. Of particular interest are scandia-and-yttria-stabilized zirconia (SYSZ) compositions of about 6 mole percent scandia and 1 mole percent yttria, which have been found to exhibit remarkable phase stability at a temperature of 1,400 C in simple aging tests. Unfortunately, scandia is expensive, so that the problem becomes one of determining whether there are compositions with smaller proportions of scandia that afford the required high-temperature stability. In an attempt to solve this problem, experiments were performed on specimens made with reduced

  7. Thermal Stability of Poly (acrylonitrile-methyl acrylate) Copolymers

    Institute of Scientific and Technical Information of China (English)

    HAN Na; ZHANG Xing-xiang; WANG Xue-chen

    2008-01-01

    Poly (acrylonitrile-methyl acrylate) copolymer was synthesized by water depositing polymerization and has a typical feed ratio of 85/15. And then 1 - 3 wt% lauryl alcohol maleic anhydride (LAM) was adopted as stabilizer to mix with the acrylonitrile based copolymer. The mixtures were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (1H NMR ), Gel Permeation Chromatography ( GPC ), Differential Scanning Calorimetry (DSC), optic microscope and Ubbelohde viscosimetryr etc. The melting point (Tm) and glass transition temperature (Tg) of the 85/15 AN/MA copolymer mixed with LAM all decrease with the increase of stabilizer content. The lowest Tg and Tm were 116.1 ℃ and 209. 1℃ respectively at the heating rate of 100℃/min when the content of LAM is 2 wt%. The 85°/15 AN/MA copolymer mixed with 1 - 3 w t% LAM possess good thermal stability up to 30 min at 220 ℃.

  8. Structural homeostasis in the nervous system: A balancing act for wiring plasticity and stability

    Directory of Open Access Journals (Sweden)

    Jun eYin

    2015-01-01

    Full Text Available Experience-dependent modifications of neural circuits provide the cellular basis for functional adaptation and learning, while presenting significant challenges to the stability of neural networks. The nervous system copes with these perturbations through a variety of compensatory mechanisms with distinct spatial and temporal profiles. Mounting evidence suggests that structural plasticity, through modifications of the number and structure of synapses, or changes in local and long-range connectivity, might contribute to the stabilization of network activity and serve as an important component of the homeostatic regulation of the nervous system. Conceptually similar to the homeostatic regulation of synaptic strength and efficacy, homeostatic structural plasticity has a profound and lasting impact on the intrinsic excitability of the neuron and circuit properties, yet remains largely unexplored. In this review, we examine recent reports describing structural modifications associated with functional compensation in both developing and adult nervous systems, and discuss the potential role for structural homeostasis in maintaining network stability and its implications in physiological and pathological conditions of the nervous systems.

  9. Modulation of yellow expression contributes to thermal plasticity of female abdominal pigmentation in Drosophila melanogaster

    Science.gov (United States)

    Gibert, Jean-Michel; Mouchel-Vielh, Emmanuèle; Peronnet, Frédérique

    2017-01-01

    Phenotypic plasticity describes the ability of a given genotype to produce distinct phenotypes in different environments. We use the temperature sensitivity of abdominal pigmentation in Drosophila melanogaster females as a model to analyse the effect of the environment on development. We reported previously that thermal plasticity of abdominal pigmentation in females involves the pigmentation gene tan (t). However, the expression of the pigmentation gene yellow (y) was also modulated by temperature in the abdominal epidermis of pharate females. We investigate here the contribution of y to female abdominal pigmentation plasticity. First, we show that y is required for the production of black Dopamine-melanin. Then, using in situ hybridization, we show that the expression of y is strongly modulated by temperature in the abdominal epidermis of pharate females but not in bristles. Interestingly, these two expression patterns are known to be controlled by distinct enhancers. However, the activity of the y-wing-body epidermal enhancer only partially mediates the effect of temperature suggesting that additional regulatory sequences are involved. In addition, we show that y and t co-expression is needed to induce strong black pigmentation indicating that y contributes to female abdominal pigmentation plasticity. PMID:28230190

  10. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics.

    Science.gov (United States)

    Zhang, Xuesong; Lei, Hanwu; Zhu, Lei; Zhu, Xiaolu; Qian, Moriko; Yadavalli, Gayatri; Wu, Joan; Chen, Shulin

    2016-11-01

    The present study aims to investigate the thermal decomposition behaviors and kinetics of biomass (cellulose/Douglas fir sawdust) and plastics (LDPE) in a non-catalytic and catalytic co-pyrolysis over ZSM-5 catalyst by using a thermogravimetric analyzer (TGA). It was found that there was a positive synergistic interaction between biomass and plastics according to the difference of weight loss (ΔW), which could decrease the formation of solid residue at the end of the experiment. The first order reaction model well fitted for both non-catalytic and catalytic co-pyrolysis of biomass with plastics. The activation energy (E) of Cellulose-LDPE-Catalyst and DF-LDPE-Catalyst are only 89.51 and 54.51kJ/mol, respectively. The kinetics analysis showed that adding catalyst doesn't change the decomposition mechanism. As a result, the kinetic study on catalytic co-pyrolysis of biomass with plastics was suggested that the catalytic co-pyrolysis is a promising technique that can significantly reduce the energy input.

  11. Thermal Stability of RP-2 for Hydrocarbon Boost Regenerative Cooling

    Science.gov (United States)

    Kleinhenz, Julie E.; Deans, Matthew C.; Stiegemeier, Benjamin R.; Psaras, Peter M.

    2013-01-01

    A series of tests were performed in the NASA Glenn Research Centers Heated Tube Facility to study the heat transfer and thermal stability behavior of RP-2 under conditions similar to those found in rocket engine cooling channels. It has long been known that hydrocarbon fuels, such as RP-2, can decompose at high temperature to form deposits (coke) which can adversely impact rocket engine cooling channel performance. The heated tube facility provides a simple means to study these effects. Using resistively heated copper tubes in a vacuum chamber, flowing RP-2 was heated to explore thermal effects at a range of test conditions. Wall temperature (850-1050F) and bulk fluid temperature (300-500F) were varied to define thermal decomposition and stability at each condition. Flow velocity and pressure were fixed at 75 fts and 1000 psia, respectively. Additionally, five different batches of RP-2 were tested at identical conditions to examine any thermal stability differences resulting from batch to batch compositional variation. Among these tests was one with a potential coke reducing additive known as 1,2,3,4-Tetrahydroquinoline (THQ). While copper tubes were used for the majority of tests, two exploratory tests were performed with a copper alloy known as GRCop-42. Each tube was instrumented with 15 thermocouples to examine the temperature profile, and carbon deposition at each thermocouple location was determined post-test in an oxidation furnace. In many tests, intermittent local temperature increases were observed visually and in the thermocouple data. These hot spots did not appear to correspond with a higher carbon deposition.

  12. Enhancement of thermal stability in microwave applicators by mismatching and detuning

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.M.

    1996-07-01

    Many microwave applicator systems experiencing thermal runaway can be stabilized by mismatching and/or detuning the system. The stability of the systems is discussed qualitatively and a conservative guide for adjusting microwave applicators for enhanced stability is described.

  13. Thermal stability, optical property, and morphology of flexible organoclay films.

    Science.gov (United States)

    Shin, Jieun; Chang, Jin-Hae

    2011-07-01

    Novel organo-saponite (organo-SPT) films with excellent thermal stability and optical property were synthesized by solution casting. Na ion-exchanged saponite (pristine SPT), hexadecylammonium ion-exchanged SPT (C16-SPT), hexadecyltriphenyl phosphonium ion-exchanged SPT (C16PPh3-SPT), and tetraphenyl phosphonium ion-exchanged SPT (PPh4-SPT) were used to prepare clay films. We examined the relationship between the structures and properties of the various SPT films. SPT films were examined by means of wide-angle X-ray diffraction (XRD), electronic microscopy (FE-SEM), thermogravimetric analysis (TGA), ultraviolet-visible (UV-vis.) spectrometer. On the basis of these analyses, we sought to improve both the thermal stability and the optical properties. Clay films composed of C16PPh3-SPT and PPh4-SPT were found to be more thermally stable than those composed of pristine SPT or C16-SPT. On the other hand, the transmittance was not significantly affected by variations in the organo-SPT material.

  14. Preparation, Thermal Stability and Electrochemical Properties of LiODFB

    Institute of Scientific and Technical Information of China (English)

    Hongming Zhou; Furong Liu; Jian Li

    2012-01-01

    Lithium oxalyldifluoroborate (LiODFB) was synthesized in dimethyl carbonate solvent and purified by the method of solvent-out crystallization. The structure characterization and thermal stability of LiODFB were performed by Fourier transform infrared (FTIR) spectrometry, nuclear magnetic resonance (NMR) spectrometry and thermogravimetric analyzer (TGA). LiODFB was exposed to 50% humid air at 25 ℃for different time, then dried at 80 ℃ for 12 h, and the electrochemical properties of the cells using 1 mol/L dried LiODFB in ethylene carbonate -I- dimethyl carbonate + ethyl(methyl)carbonate were investigated. The results showed that, pure crystallization LiODFB was obtained; it had good thermal stability with a thermal decomposition temperature of 248 ℃; when it was exposed to humid air, it was firstly converted into LiODFB.H20; with increasing exposure time, more and stronger impurity peaks in the X-ray diffraction (XRD) patterns of LiODFB were observed, and both the discharge specific capacity and the capacity retention decreased gradually.

  15. Flexible all-carbon photovoltaics with improved thermal stability

    Science.gov (United States)

    Tang, Chun; Ishihara, Hidetaka; Sodhi, Jaskiranjeet; Chen, Yen-Chang; Siordia, Andrew; Martini, Ashlie; Tung, Vincent C.

    2015-04-01

    The structurally robust nature of nanocarbon allotropes, e.g., semiconducting single-walled carbon nanotubes (SWCNTs) and C60s, makes them tantalizing candidates for thermally stable and mechanically flexible photovoltaic applications. However, C60s rapidly dissociate away from the basal of SWCNTs under thermal stimuli as a result of weak intermolecular forces that "lock up" the binary assemblies. Here, we explore use of graphene nanoribbons (GNRs) as geometrically tailored protecting layers to suppress the unwanted dissociation of C60s. The underlying mechanisms are explained using a combination of molecular dynamics simulations and transition state theory, revealing the temperature dependent disassociation of C60s from the SWCNT basal plane. Our strategy provides fundamental guidelines for integrating all-carbon based nano-p/n junctions with optimized structural and thermal stability. External quantum efficiency and output current-voltage characteristics are used to experimentally quantify the effectiveness of GNR membranes under high temperature annealing. Further, the resulting C60:SWCNT:GNR ternary composites display excellent mechanical stability, even after iterative bending tests.

  16. Macromolecular Crowding Enhances Thermal Stability of Rabbit Muscle Creatine Kinase

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiang; HE Huawei; LI Sen

    2008-01-01

    The effect of dextran on the conformation (or secondary structure) and thermal stability of creatine kinase (CK) was studied using the far-ultraviolet (UV) circular dichroism (CD) spectra.The results showed that lower concentrations of dextran (less than 60 g/L) induced formation of the secondary CK structures.However,the secondary structure content of CK decreased when the dextran concentrations exceeded 60 g/L.Thermally induced transition curves were measured for CK in the presence of different concentrations of dextran by far-UV CD.The thermal transition curves were fitted to a two-state model by a nonlinear,least-squares method to obtain the transition temperature of the unfolding transition.An increase in the tran- sition temperature was observed with the increase of the dextran concentration.These observations qualita-tively accord with predictions of a previously proposed model for the effect of intermolecular excluded volume (macromolecular crowding) on protein stability and conformation.These findings imply that the effects of macromolecular crowding can have an important influence on our understanding of how protein folding oc-curs in vivo.

  17. Enhanced Thermal Stability of Polylactide by Terminal Conjugation Groups

    Science.gov (United States)

    Tran, Hang Thi; Matsusaki, Michiya; Akashi, Mitsuru; Vu, Ngo Dinh

    2016-05-01

    Various acids such as aliphatic or carbocyclic fatty or aromatic acids were successfully conjugated into the ending hydroxyl group of poly( l-lactide) (PLLA). The chemical structures of various acid-PLLAs were confirmed by Fourier transform infrared and proton nuclear magnetic resonance analysis. The crystallinity and solubility of the original PLLA were maintained after the terminal conjugation of various acids. The thermal properties were significantly improved, especially the 10% weight-loss temperature that showed an increase of over 80°C for conjugation of aliphatic or aromatic acids as compared to that of the corresponding original PLLA. In addition, more than 60 wt.% of the aliphatic acid-PLLAs was pyrolyzed, and aromatic acid-PLLAs degraded only about 10 wt.% for 150 min, although the original PLLA was pyrolyzed completely at 250°C for 7 min. The thermal stability of PLLA was controlled by the conjugation of aliphatic or aromatic acids into a chain end. These acid-PLLAs may be useful as materials with high thermal stability for various application fields.

  18. Effect of interfacial treatment on the thermal properties of thermal conductive plastics

    Directory of Open Access Journals (Sweden)

    2007-09-01

    Full Text Available In this paper, ZnO, which is processed by different surface treatment approaches, is blended together with polypropylene to produce thermal conductive polymer composites. The composites are analyzed by Fourier transform infrared (FTIR spectroscopy and scanning electron microscopy (SEM to investigate the surface modification of filler, their distribution in the matrix and the condition of two-phase interface. Optimized content of filler surface modifier is investigated as well. The results showed that using low-molecular coupling agent produces positive effect to improve the interface adhesion between filler and matrix, and the thermal conductivity of the composite as well. Macro-molecular coupling agent can strongly improve two-phase interface, but it is not beneficial at obtaining a high thermal conductivity. The blend of ZnO without modification and polypropylene has many defects in the two-phase interface, and the thermal conductivity of the composite is between those of composites produced by previous two approaches. The surface treatment of the filler also allowed producing the composites with lower coefficient of thermal expansion (CTE. As for the content of low-molecular coupling agent, it obtains the best effect at 1.5 wt%.

  19. Effects of Bio-based Plasticizers on Mechanical and Thermal Properties of PVC/Wood Flour Composites

    Directory of Open Access Journals (Sweden)

    Zhenhua Xie

    2014-10-01

    Full Text Available Poly(vinyl chloride/wood flour (WPVC composites with dioctyl phthalate (DOP, dibutyl phthalate (DBP, cardanol acetate (CA, or epoxy fatty acid methyl ester (EFAME were prepared using twin-screw extrusion. The effects of plasticizers on the mechanical, dynamic mechanical, and melt rheological properties of composites and the thermal migration of plasticizers were characterized. The results demonstrated that WPVC/ DBP and WPVC/EFAME composites had better elongation at break; however, composites with bio-based plasticizers exhibited significantly higher impact strength. The morphology indicated that the compatibility between CA and WPVC was poor, while the surface of the composites showed good plasticity with the addition of DBP or EFAME. The PVC matrix with a plasticizer of higher molecular weight exhibited a higher glass transition temperature (Tg. The dynamic rheological test showed that WPVC/EFAME composites had the lowest storage modulus, loss modulus, and complex viscosity, but EFAME migrated more easily from composites than other plasticizers.

  20. Thermal stability and nova cycles in permanent superhump systems

    CERN Document Server

    Retter, A

    2000-01-01

    Archival data on permanent superhump systems are compiled to test the thermal stability of their accretion discs. We find that their discs are almost certainly thermally stable as expected. This result confirms Osaki's suggestion (1996) that permanent superhump systems form a new subclass of cataclysmic variables (CVs), with relatively short orbital periods and high mass transfer rates. We note that if the high accretion rates estimated in permanent superhump systems represent their mean secular values, then their mass transfer rates cannot be explained by gravitational radiation, therefore, either magnetic braking should be extrapolated to systems below the period gap or they must have mass transfer cycles. Alternatively, a new mechanism that removes angular momentum from CVs below the gap should be invoked. We suggest applying the nova cycle scenarios offered for systems above the period gap to the short orbital period CVs. Permanent superhumps have been observed in the two non-magnetic ex-novae with binary...

  1. Molecular dynamics simulation of thermal stability of nanocrystalline vanadium

    Institute of Scientific and Technical Information of China (English)

    WEI; Mingzhi; XIAO; Shifang; YUAN; Xiaojian; HU; Wangyu

    2006-01-01

    The microstructure and thermal stability of nanocrystalline vanadium with an average grain size ranging from 2.86 to 7.50 nm are calculated by means of the analytic embedded-atom method and molecular dynamics. The grain boundary and nanocrystalline grain atoms are differentiated by the common neighbor analysis method. The results indicate that the fraction of grain boundary increases with the grain size decreasing, and the mean energy of atoms is higher than that of coarse crystals. The thermal-stable temperatures of nanocrystalline vanadium are determined from the evolution of atomic energy, fraction of grain boundary and radial distribution function. It is shown that the stable temperature decreases obviously with the grain size decreasing. In addition the reasons which cause the grain growth of nanocrystalline vanadium are discussed.

  2. Thermal stability of marks gold nanoparticles: A molecular dynamics simulation

    Science.gov (United States)

    Jia, Yanlin; Li, Siqi; Qi, Weihong; Wang, Mingpu; Li, Zhou; Wang, Zhixing

    2017-03-01

    Molecular dynamics (MDs) simulations were used to explore the thermal stability of Au nanoparticles (NPs) with decahedral, cuboctahedral, icosahedral and Marks NPs. According to the calculated cohesive energy and melting temperature, the Marks NPs have a higher cohesive energy and melting temperature compared to these other shapes. The Lindemann index, radial distribution function, deformation parameters, mean square displacement and self-diffusivity have been used to characterize the structure variation during heating. This work may inspire researchers to prepare Marks NPs and apply them in different fields.

  3. Synthesis, Thermal Stability and Sensitivity of 2, 4-Dinitroimidazole

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; DONG Hai-shan; ZHANG Xiao-yu; ZHOU Jian-hua; ZHANG Xiu-li; LI Jin-shan

    2010-01-01

    Pursuing new insensitive high explosive (IHE) is the main research hot-point in explosive field. Nitroimidazole compounds were mainly studied in the medicine chemistry in the past[1-2], seldom seen as the components of explosives and propellants. But now, several nitroimidazole compounds, such as 2, 4-dinitroimidazole (2, 4-DNI), 2, 4, 5-trinitroimidazole (2, 4, 5-TNI) and 1-methyl-2, 4, 5-trinitroimidazole (MTNI) etc are found to be the important intermediates of synthesizing new high explosives or itself possessing excellent explosive performances[3-5]. This paper introduces the synthesis, especially the experimental thermal stability, sensitivity and security of 2, 4-dinitroimidazole (2, 4-DNI).

  4. Thermal stability of atomically flat metal nanofilms on metallic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, F.; Hinarejos, J.J. [Departamento de Fisica de la Materia Condensada e Instituto de Ciencia de Materiales N. Cabrera, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Passeggi, M.C.G. [Laboratorio de Superficies e Interfases, INTEC (CONICET and UNL), S3000GLN Santa Fe (Argentina); Vazquez de Parga, A.L. [Departamento de Fisica de la Materia Condensada e Instituto de Ciencia de Materiales N. Cabrera, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Miranda, R. [Departamento de Fisica de la Materia Condensada e Instituto de Ciencia de Materiales N. Cabrera, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)], E-mail: rodolfo.miranda@uam.es

    2007-10-31

    By means of variable temperature scanning tunneling microscope we studied the morphology and electronic structure of Pb films grown on Cu(1 1 1). Due to the spatial confinement of electrons, the islands display quantized energy levels. At 300 K, Pb forms 3D nanostructures with magic heights, that correspond to islands having a quantum well state (QWS) far from the Fermi energy. Below 100 K Pb grows in a quasi-layer-by-layer fashion. The QWS that develop in the films determine their total energy and, accordingly, their thermal stability. Films of particularly magic thickness are stable upon heating to 300 K.

  5. Ionoluminscence of partially-stabilized zirconia for thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo, N.R. [Departamento de Fisica Experimental, Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM), Circuito de la Investigacion Cientifica S/N, Ciudad Universitaria, Mexico D.F., C.P. 04510 (Mexico)]. E-mail: nrebollof@yahoo.com; Ruvalcaba-Sil, J.L. [Departamento de Fisica Experimental, Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM), Circuito de la Investigacion Cientifica S/N, Ciudad Universitaria, Mexico D.F., C.P. 04510 (Mexico); Miranda, J. [Departamento de Fisica Experimental, Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM), Circuito de la Investigacion Cientifica S/N, Ciudad Universitaria, Mexico D.F., C.P. 04510 (Mexico)

    2007-08-15

    Ionoluminescence is explored as an alternative technique to study the high temperature phase stability of zirconia-based oxides. The evolution of an initially metastable single tetragonal phase towards de-stabilization is investigated for three single-doped zirconia compositions with Y, Yb and Gd. The differences in de-stabilization paths are identified using X-ray diffraction and ionoluminescence; elemental analysis is also performed using particle-induced X-ray emission. X-ray diffraction studies reveal a different scenario for each of the compositions selected; the differences are strongly influenced by the thermodynamic driving forces associated to the fluorite-to-tetragonal displacive transformation. Ionoluminescence studies indicate a significant increment on the signal intensity for de-stabilized samples, relative to previous annealing stages. There are also more subtle differences in the luminescent response from the samples at intermediate annealing stages also related to phase changes. This study provides a basis to characterize phase evolution in single-doped zirconia compositions for thermal insulation applications using luminescence.

  6. Influence of Water Content on the β-Sheet Formation, Thermal Stability, Water Removal, and Mechanical Properties of Silk Materials.

    Science.gov (United States)

    Yazawa, Kenjiro; Ishida, Kana; Masunaga, Hiroyasu; Hikima, Takaaki; Numata, Keiji

    2016-03-14

    Silk, which has excellent mechanical toughness and is lightweight, is used as a structural material in nature, for example, in silkworm cocoons and spider draglines. However, the industrial use of silk as a structural material has garnered little attention. For silk to be used as a structural material, its thermal processability and associated properties must be well understood. Although water molecules influence the glass transition of silk, the effects of water content on the other thermal properties of silks are not well understood. In this study, we prepared Bombyx mori cocoon raw fibers, degummed fibers, and films with different water contents and then investigated the effects of water content on crystallization, degradation, and water removal during thermal processing. Thermal gravimetric analyses of the silk materials showed that water content did not affect the thermal degradation temperature but did influence the water removal behavior. By increasing the water content of silk, the water molecules were removed at lower temperatures, indicating that the amount of free water in silk materials increased; additionally, the glass transition temperature decreased with increasing water plasticization. Differential scanning calorimetry and wide-angle X-ray scattering of the silk films also suggested that the water molecules in the amorphous regions of the silk films acted as a plasticizer and induced β-sheet crystallization. The plasticizing effect of water was not detected in silk fibers, owing to their lower amorphous content and mobility. The structural and mechanical characterizations of the silk films demonstrated the silk film prepared at RH 97% realized both crystallinity and ductility simultaneously. Thus, the thermal stability, mechanical, and other properties of silk materials are regulated by their water content and crystallinity.

  7. Thermodynamic analysis of alcohol effect on thermal stability of proteins.

    Science.gov (United States)

    Miyawaki, Osato; Tatsuno, Michiko

    2011-02-01

    Thermal unfolding of ribonuclease A and α-chymotrypsinogen A was analyzed in various alcohol solutions of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, trifluoroethanol, and glycerol. The change in thermal unfolding ratio with temperature was described well by the van't Hoff equation and the melting temperature and the enthalpy of protein unfolding were obtained. The reciprocal form of the Wyman-Tanford equation, which describes the unfolded-to-folded protein ratio as a function of water activity, was applied to obtain a linear plot. From the slope of this plot and water activity, the stabilization free energy (ΔΔG) in a solution was calculated. This shows an important role of water activity in protein stability. ΔΔG was linearly dependent on alcohol concentration and m-values of alcohols for protein unfolding were obtained. This provides a theoretical basis for the linear extrapolation model (LEM). The m-values for alcohols were negative except for glycerol. The negative higher m-value for longer and linear chain alcohols suggested the important role of the disturbance of hydrophobic interactions as well as the hydrogen-bonding in the mechanism of protein destabilization by alcohols. The number of change in bound-alcohol molecules upon protein unfolding was also obtained. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.S.

    1994-08-23

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment.

  9. Speciation of copper in the thermally stabilized slag

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Y.-J. [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Paul Wang, H., E-mail: wanghp@mail.ncku.edu.t [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Chang, J.-E. [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Chao, C.-C. [Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Tsai, C.-K. [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-07-21

    The Taiwan universities laboratory hazardous wastes have been treated by incineration at the temperature range of 1173-1273 K. By X-ray absorption near edge structure (XANES) spectroscopy, mainly CuO and CuSO{sub 4} are found in the incineration bottom and fly ashes. The incineration fly ash can be stabilized thermally at 1773 K in the plasma melting reaction chamber (integrated with the incinerator), and converted to slag. The concentration of leachable copper in the slag is reduced significantly mainly due to the fact that copper is encapsulated in the SiO{sub 2} matrix. In addition, the refined extended X-ray adsorption fine structure (EXAFS) spectra of copper also indicate formation of the Cu-O-Si species in the slag as the bond distances of 1.95 A for Cu-O and 2.67 A for O-Si are observed. This work exemplifies utilization of the synchrotron X-ray absorption spectroscopy to facilitate the thermal stabilization treatments of the fly ash hazardous waste using the plasma melting method.

  10. Thermal stability and modeling of lithium ion batteries

    Science.gov (United States)

    Botte, Gerardine Gabriela

    2000-10-01

    First-principles mathematical models were developed to examine the effect of the lithium-lithium ion interactions inside the anode particles on the performance of a lithium foil cell. Two different models were developed: the chemical potential model (CPM) that includes the lithium-lithium ion interactions inside the anode particles and the diffusion model (DIM) that does not include the interactions. Significant differences in the thermal and electrochemical performance of the cell were observed between the two approaches. The temperature of the cell predicted by the DFM is higher than the one predicted by the CPM at a given capacity. The discharge time of the cell predicted by the DFM is shorter than the one predicted by the CPM. The results indicate that the cell needs to be modeled using the CPM approach especially at high discharge rates. An evaluation of the numerical techniques, control volume formulation (CVF) and finite difference method (FDM), used for the models was performed. It is shown that the truncation error is the same for both methods when the boundary conditions are of the Dirichlet type, the system of equations are linear and represented in Cartesian coordinates. A new technique to analyze the accuracy of the methods is presented. The only disadvantage of the FDM is that it failed to conserve mass for a small number of nodes when both boundary conditions include a derivative term whereas the CVF did conserve mass for these cases. However, for a large number of nodes the FDM provides mass conservation. It is important to note that the CVF has only (DeltaX) order of accuracy for a Neumann type boundary condition whereas the FDM has (DeltaX) 2 order. The second topic of this dissertation presents a study of the thermal stability of LiPF6 EC:EMC electrolyte for lithium ion batteries. A differential scanning calorimeter (DSC) was used to perform the study of the electrolyte. For first time, the effect of different variables on its thermal stability

  11. Polyacrylonitrile nanofibers with added zeolitic imidazolate frameworks (ZIF-7) to enhance mechanical and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Wook [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, Illinois 60607-7022 (United States); An, Seongpil; Song, Kyo Yong; Joshi, Bhavana N.; Jo, Hong Seok; Yoon, Sam S., E-mail: skyoon@korea.ac.kr, E-mail: ayarin@uic.edu [School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Al-Deyab, Salem S. [Department of Chemistry, King Saud University, Riyadh 11451 (Saudi Arabia); Yarin, Alexander L., E-mail: skyoon@korea.ac.kr, E-mail: ayarin@uic.edu [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, Illinois 60607-7022 (United States); School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-12-28

    Zeolitic imidazolate framework 7/polyacrylonitrile (ZIF-7/PAN) nanofiber mat of high porosity and surface area can be used as a flexible fibrous filtration membrane that is subjected to various modes of mechanical loading resulting in stresses and strains. Therefore, the stress-strain relation of ZIF-7/PAN nanofiber mats in the elastic and plastic regimes of deformation is of significant importance for numerous practical applications, including hydrogen storage, carbon dioxide capture, and molecular sensing. Here, we demonstrated the fabrication of ZIF-7/PAN nanofiber mats via electrospinning and report their mechanical properties measured in tensile tests covering the elastic and plastic domains. The effect of the mat fabrication temperature on the mechanical properties is elucidated. We showed the superior mechanical strength and thermal stability of the compound ZIF-7/PAN nanofiber mats in comparison with that of pure PAN nanofiber mats. Material characterization including scanning electron microscope, energy-dispersive X-ray spectroscopy, tensile tests, differential scanning calorimetry, and Fourier transform infrared spectroscopy revealed the enhanced chemical bonds of the ZIF-7/PAN complex.

  12. Research Progress of Lowing Thermal Expansion Coefficient of Thermoplastic Plastics%降低热塑性塑料热膨胀系数的研究进展

    Institute of Scientific and Technical Information of China (English)

    吴银财; 郑嘉玮; 宁冲冲; 崔益华

    2012-01-01

    综述了国内外关于降低热塑性塑料热膨胀系数的主要方法,按添加物的种类分为:一般颗粒材料填充改性、空心玻璃微珠填充改性、负热膨胀系数材料填充改性、稀土氧化物填充改性、高热稳定性材料填充改性、橡胶共混改性、多种材料混杂复合改性等.对未来降低热塑性塑料热膨胀系数的发展方向进行了展望.%Main methods of lowing the thermal expansion coefficient of thermoplastic plastics at home and abroad were summarized. According to the types of additives the methods could be divided into the following categories : general granular materials filling modification, hollow glass bead filling modification, materials with negative thermal expansion coefficient filling modification, rare earth oxide filling modification, high thermal stability materials filling modification, rubber blending modification, a variety of materials hybrid mixing modification and so on. The future development trend of lowing the thermal expansion coefficeint of thermoplastic plastics was prospected.

  13. Thermal stabilization of static single-mirror Fourier transform spectrometers

    Science.gov (United States)

    Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.

    2017-05-01

    Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.

  14. Thermal stability in exchange-spring chains of spins

    Science.gov (United States)

    Pellicelli, Raffaele; Solzi, Massimo

    2016-02-01

    Thermal stability and switching behaviour have been compared in pure-hard and soft-hard Heisenberg linear spin chains of the same total length and equal magnetic parameters (except for magnetic anisotropy) with the anisotropy axis and external magnetic field parallel to the chain direction. The zero-temperature energy barriers and finite-temperature transition rates between remanent equilibrium states have been calculated by utilizing the string method and the forward flux sampling (FFS) method, respectively. Depending on the assumed interfaces, the FFS method could in fact fail to correctly sample the characteristic transition paths at interfaces at which these paths have probabilities much lower than those associated with other non-characteristic transition paths. This can especially occur in the case of the asymmetric energy landscapes and multiple asymmetric minimum energy paths (MEPs) of soft-hard systems. Therefore, a proper interface definition is needed in order to deduce the correct transition rates. In particular, we show that the thermal switching of soft-hard chains starting in the soft or in the hard part turns out to occur with an equal rate provided that the interfaces of the FFS method are defined on the basis of the corresponding zero-temperature MEPs. The thermal stability of a soft-hard chain in the remanent equilibrium state could be to some extent lower with respect to that of a pure-hard chain, due to the shorter hard-part length crossed by the domain wall formed in the chain and also to the related slightly smaller energy barrier. However, its switching field at zero temperature is verified to be widely lower than that of the pure-hard chain. Analytical expressions of switching fields and energy barriers have been deduced in various cases.

  15. Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties

    Science.gov (United States)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Huang, Jingfeng; Tan, Dunlin; Zhang, Bowei; Teo, Edwin Hang Tong; Tok, Alfred Iing Yoong

    2016-05-01

    Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability. CNT arrays are grown using a commercially available thermal chemical vapor deposition (TCVD) technique and an outer BNNT with a wall thickness up to 1.37 nm is introduced by a post-growth TCVD treatment. Importantly, compared to the as-grown CNT arrays which deform almost plastically upon compression, the coaxial C@BNNT arrays exhibit an impressive ~4-fold increase in compressive strength with nearly full recovery after the first compression cycle at a 50% strain (76% recovery maintained after 10 cycles), as well as a significantly high and persistent energy dissipation ratio (~60% at a 50% strain after 100 cycles), attributed to the synergistic effect between the CNT and outer BNNT. Additionally, the as-prepared C@BNNT arrays show an improved structural stability in air at elevated temperatures, attributing to the outstanding thermal stability of the outer BNNT. This work provides new insights into tailoring the mechanical and thermal behaviours of arbitrary CNT arrays which enables a broader range of applications.Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability

  16. Stability and Plasticity of Contextual Modulation in the Mouse Visual Cortex

    Directory of Open Access Journals (Sweden)

    Adam Ranson

    2017-01-01

    Full Text Available Activity of neurons in primary visual cortex is shaped by sensory and behavioral context. However, the long-term stability of the influence of contextual factors in the mature cortex remains poorly understood. To investigate this, we used two-photon calcium imaging to track the influence of surround suppression and locomotion on individual neurons over 14 days. We found that highly active excitatory neurons and parvalbumin-positive (PV+ interneurons exhibited relatively stable modulation by visual context. Similarly, most neurons exhibited a stable yet distinct degree of modulation by locomotion. In contrast, less active excitatory neurons exhibited plasticity in visual context influence, resulting in increased suppression. These findings suggest that the mature visual cortex possesses stable subnetworks of neurons, differentiated by cell type and activity level, which have distinctive and stable interactions with sensory and behavioral contexts, as well as other less active and more labile neurons, which are sensitive to visual experience.

  17. Increasing Type 1 Poliovirus Capsid Stability by Thermal Selection

    Science.gov (United States)

    Adeyemi, Oluwapelumi O.; Nicol, Clare

    2016-01-01

    ABSTRACT Poliomyelitis is a highly infectious disease caused by poliovirus (PV). It can result in paralysis and may be fatal. Integrated global immunization programs using live-attenuated oral (OPV) and/or inactivated (IPV) PV vaccines have systematically reduced its spread and paved the way for eradication. Immunization will continue posteradication to ensure against reintroduction of the disease, but there are biosafety concerns for both OPV and IPV. They could be addressed by the production and use of virus-free virus-like particle (VLP) vaccines that mimic the “empty” capsids (ECs) normally produced in viral infection. Although ECs are antigenically indistinguishable from mature virus particles, they are less stable and readily convert into an alternative conformation unsuitable for vaccine purposes. Stabilized ECs, expressed recombinantly as VLPs, could be ideal candidate vaccines for a polio-free world. However, although genome-free PV ECs have been expressed as VLPs in a variety of systems, their inherent antigenic instability has proved a barrier to further development. In this study, we selected thermally stable ECs of type 1 PV (PV-1). The ECs are antigenically stable at temperatures above the conversion temperature of wild-type (wt) virions. We have identified mutations on the capsid surface and in internal networks that are responsible for EC stability. With reference to the capsid structure, we speculate on the roles of these residues in capsid stability and postulate that such stabilized VLPs could be used as novel vaccines. IMPORTANCE Poliomyelitis is a highly infectious disease caused by PV and is on the verge of eradication. There are biosafety concerns about reintroduction of the disease from current vaccines that require live virus for production. Recombinantly expressed virus-like particles (VLPs) could address these inherent problems. However, the genome-free capsids (ECs) of wt PV are unstable and readily change antigenicity to a form not

  18. Thermally robust and biomolecule-friendly room-temperature bonding for the fabrication of elastomer-plastic hybrid microdevices.

    Science.gov (United States)

    Nguyen, T P O; Tran, B M; Lee, N Y

    2016-08-16

    Here, we introduce a simple and fast method for bonding a poly(dimethylsiloxane) (PDMS) silicone elastomer to different plastics. In this technique, surface modification and subsequent bonding processes are performed at room temperature. Furthermore, only one chemical is needed, and no surface oxidation step is necessary prior to bonding. This bonding method is particularly suitable for encapsulating biomolecules that are sensitive to external stimuli, such as heat or plasma treatment, and for embedding fracturable materials prior to the bonding step. Microchannel-fabricated PDMS was first oxidized by plasma treatment and reacted with aminosilane by forming strong siloxane bonds (Si-O-Si) at room temperature. Without the surface oxidation of the amine-terminated PDMS and plastic, the two heterogeneous substrates were brought into intimate physical contact and left at room temperature. Subsequently, aminolysis occurred, leading to the generation of a permanent seal via the formation of robust urethane bonds after only 5 min of assembling. Using this method, large-area (10 × 10 cm) bonding was successfully realized. The surface was characterized by contact angle measurements and X-ray photoelectron spectroscopy (XPS) analyses, and the bonding strength was analyzed by performing peel, delamination, leak, and burst tests. The bond strength of the PDMS-polycarbonate (PC) assembly was approximately 409 ± 6.6 kPa, and the assembly withstood the injection of a tremendous amount of liquid with the per-minute injection volume exceeding 2000 times its total internal volume. The thermal stability of the bonded microdevice was confirmed by performing a chamber-type multiplex polymerase chain reaction (PCR) of two major foodborne pathogens - Escherichia coli O157:H7 and Salmonella typhimurium - and assessing the possibility for on-site direct detection of PCR amplicons. This bonding method demonstrated high potential for the stable construction of closed microfluidic systems

  19. Thermal stability of Al-Mg-Sc-Zr alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-tao; YAN De-sheng; RONG Li-jian

    2006-01-01

    The thermal stability of Al3(Sc,Zr) precipitates in the cold worked Al-Mg-Sc-Zr alloy after elevated temperature exposure was investigated. The evaluation was conducted using room temperature tensile, Vicker's hardness, optical metallography and scanning electron microscope (SEM) with the backscatter. The results show that the Al3(Sc,Zr) precipitates and mechanical properties have no obvious change, and the grains keep elongated along the working direction as that in cold worked sample after exposure at 300 ℃ for 1 000 h. The coarsening of Al3(Sc,Zr) precipitates occurs and is no longer effective on the recrystallization resistance, and partial recrystallization is observed after 400 ℃ exposure. In particular, after 500 ℃ exposure, the hardness decreases drastically and the alloy has fully recrystallized due to the obvious coarsening of Al3(Sc,Zr) precipitates.

  20. Hardness and thermal stability of cubic silicon nitride

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Kragh, Flemming; Frost, D. J.

    2001-01-01

    The hardness and thermal stability of cubic spinel silicon nitride (c-Si3N4), synthesized under high-pressure and high-temperature conditions, have been studied by microindentation measurements, and x-ray powder diffraction and scanning electron microscopy, respectively The phase at ambient...... temperature has an average hardness of 35.31 GPa, slightly larger than SiO2 stishovite, which is often referred to as the third hardest material after diamond and cubic boron nitride. The cubic phase is stable up to 1673 K in air. At 1873 K, alpha -and beta -Si3N4 phases are observed, indicating a phase...... transformation sequence of c-to-alpha -to-beta -Si3N4 phases....

  1. Thermal stability for a reactive viscous flow in a slab

    CERN Document Server

    Okoya, S S

    2002-01-01

    The paper deals with the effect of dimensionless non - Newtonian coefficient on the thermal stability of a reactive viscous liquid in steady flow between parallel heated plates. It is assumed that the liquid is symmetrically heated and the flow fully developed. Approximate analytical solution is obtained for the velocity of the flow and the criterion for which this solution is valid is determined. After the velocity distribution is known, the temperature distribution may be calculated. Criticality and disappearance of criticality (transition values) are obtained in the following cases: (i) Bimolecular (ii) Arrhenius and (iii) Sensitized temperature dependence. We have observed that nonlinear effect from velocity and temperature fields introduced decaying for the transitional values of the dimensionless central temperature. Other effects of this nonlinearity are reported. We also give results for the plane - Couette flow problem. The results help to enhance understanding of the interplay between Newtonian and ...

  2. Thermal stability of radiating fluids: The scattering problem

    Science.gov (United States)

    Bakan, Stephan

    1984-12-01

    The problem of convective instability of a radiating fluid layer with scattering is treated with an extension of the Eddington aproximation that allows the inclusion of anisotropic scattering into the solution of the radiative transfer equation. Introduction of scattering by keeping the optical depth of absorption constant reduces the critical Rayleigh number as well as the wavenumber, and thus, reduces the stabilizing influence of thermal radiation. It is shown that in cases of a narrow radiative boundary layer with a large temperature gradient, higher-order expansion terms are sometimes necessary to approximate the solution properly. In certain cases a two layer convection mode with a large critical wavenumber up to 50 sets in the first layer has two cells developing in and near the two radiative boundary layers.

  3. Thermal stability of gold-PS nanocomposites thin films

    Indian Academy of Sciences (India)

    Umananda M Bhatta; Deepa Khushalani; P V Satyam

    2011-07-01

    Low-temperature transmission electron microscopy (TEM) studies were performed on polystyrene (PS, w = 234 K) – Au nanoparticle composite thin films that were annealed up to 350°C under reduced pressure conditions. The composite thin films were prepared by wet chemical approach and the samples were then subsequently spin-coated on a carbon-coated copper grid for TEM measurements. TEM measurements were performed at liquid nitrogen temperatures to reduce the electron–beam-induced radiation damage. The results showed a marginal increase in Au nanoparticle diameter (2.3 nm–3.6 nm) and more importantly, an improved thermal stability of the polystyrene (PS) composite film much above its glass transition temperature

  4. Playing smart vs. playing safe: the joint expression of phenotypic plasticity and potential bet hedging across and within thermal environments.

    Science.gov (United States)

    Simons, A M

    2014-06-01

    Adaptive phenotypic plasticity evolves when cues reliably predict fitness consequences of life-history decisions, whereas bet hedging evolves when environments are unpredictable. These modes of response should be jointly expressed, because environmental variance is composed of both predictable and unpredictable components. However, little attention has been paid to the joint expression of plasticity and bet hedging. Here, I examine the simultaneous expression of plasticity in germination rate and two potential bet-hedging traits - germination fraction and within-season diversification in timing of germination - in seeds from multiple seed families of five geographically distant populations of Lobelia inflata (L.) subjected to a thermal gradient. Populations differ in germination plasticity to temperature, in total germination fraction and in the expression of potential diversification in the timing of germination. The observation of a negative partial correlation between the expression of plasticity and germination variance (potential diversification), and a positive correlation between plasticity and germination fraction is suggestive of a trade-off between modes of response to environmental variance. If the observed correlations are indicative of those between adaptive plasticity and bet hedging, we expect an optimal balance to exist and differ among populations. I discuss the challenges involved in testing whether the balance between plasticity and bet hedging depends on the relative predictability of environmental variance.

  5. Ionic conductivity and thermal stability of magnetron-sputtered nanocrystalline yttria-stabilized zirconia

    DEFF Research Database (Denmark)

    Sillassen, M.; Eklund, P.; Sridharan, M.;

    2009-01-01

    Thermally stable, stoichiometric, cubic yttria-stabilized zirconia (YSZ) thin-film electrolytes have been synthesized by reactive pulsed dc magnetron sputtering from a Zr–Y (80/20 at. %) alloy target. Films deposited at floating potential had a texture. Single-line profile analysis of the 111 x.......5% at bias voltages of −175 and −200 V with additional incorporation of argon. The films were thermally stable; very limited grain coarsening was observed up to an annealing temperature of 800 °C. Temperature-dependent impedance spectroscopy analysis of the YSZ films with Ag electrodes showed that the in......-plane ionic conductivity was within one order of magnitude higher in films deposited with substrate bias corresponding to a decrease in grain size compared to films deposited at floating potential. This suggests that there is a significant contribution to the ionic conductivity from grain boundaries...

  6. Effect of dimethylformamide treatment of coals on their thermal degradation and elastic-plastic properties

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Epshtein; O.V. Barabanova; V.I. Minaev; J. Weber; D.L. Shirochin [Moscow State Mining University, Moscow (Russian Federation)

    2007-08-15

    Data on the thermal degradation and the elastic-plastic properties of Donetsk hard coals before and after sorption of dimethylformamide (DMF) are reported. It was shown that the sorption parameters and the microhardness of the coals decrease to different extents with an increase in metamorphic maturity for isometamorphic coals of different genetic types in terms of the degree of reduction. It was concluded that it is impractical to use DMF for studying the sorption behavior of coal of different genotypes with a vitrinite reflectance greater than 1.1%. It was found that the interaction of coals of a less reduced genotype with DMF leads to substantial changes in the microhardness and the parameters of thermal degradation of the coals. For coals of a more reduced type, the microhardness and thermal degradation parameters change to a much lesser extent. This finding suggests that DMF sorption by these coals is accompanied by partially reversible processes that do not result in a substantial alteration in the structure of coal matter.

  7. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon.

    Science.gov (United States)

    Sparks, Morgan M; Westley, Peter A H; Falke, Jeffrey A; Quinn, Thomas P

    2017-06-06

    An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and among treatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could facilitate

  8. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata Starch

    Directory of Open Access Journals (Sweden)

    Muhammed L. Sanyang

    2015-06-01

    Full Text Available The use of starch based films as a potential alternative choice to petroleum derived plastics is imperative for environmental waste management. This study presents a new biopolymer (sugar palm starch for the preparation of biodegradable packaging films using a solution casting technique. The effect of different plasticizer types (glycerol (G, sorbitol (S and glycerol-sorbitol (GS combination with varying concentrations (0, 15, 30 and 45, w/w% on the tensile, thermal and barrier properties of sugar palm starch (SPS films was evaluated. Regardless of plasticizer types, the tensile strength of plasticized SPS films decreased, whereas their elongation at break (E% increased as the plasticizer concentrations were raised. However, the E% for G and GS-plasticized films significantly decreased at a higher plasticizer concentration (45% w/w due to the anti-plasticization effect of plasticizers. Change in plasticizer concentration showed an insignificant effect on the thermal properties of S-plasticized films. The glass transition temperature of SPS films slightly decreased as the plasticizer concentration increased from 15% to 45%. The plasticized films exhibited increased water vapor permeability values from 4.855 × 10−10 to 8.70 × 10−10 g·m−1·s−1·Pa−1, irrespective of plasticizer types. Overall, the current study manifested that plasticized sugar palm starch can be regarded as a promising biopolymer for biodegradable films.

  9. Synchronization stability and firing transitions in two types of class I neuronal networks with short-term plasticity.

    Science.gov (United States)

    Zhang, Honghui; Wang, Qingyun; He, Xiaoyan; Chen, Guanrong

    2014-01-01

    This paper investigates synchronization stability and firing transition in two types of the modified canonical class I neuronal networks, where the short-term plasticity of synapse is introduced. We mainly consider both unidirectional chain and global coupling configurations. Previous studies have shown that the coupled class I neurons can spontaneously de-synchronize. Presently, the short-term plasticity of synapse is considered to check the universality of this phenomenon. Based on the theoretical analysis and numerical simulation, it is shown that unidirectionally chain coupled class I neurons can realize synchronization, whereas bidirectionally coupled chain neurons cannot synchronize, and globally coupled class I neurons de-synchronize. Furthermore, the dynamics of coupled neurons with different firing modes are also studied in numerical simulations, and interesting transitions of different firing modes can be induced by the short-term plasticity. The obtained results can be helpful to further understand important effects of the short-term synaptic plasticity on realistic neuronal systems.

  10. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M.; Struis, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  11. Thermal Stability and Vertical Structure of Radiation Dominated Accretion Disks

    Science.gov (United States)

    Jiang, Yanfei; Stone, J. M.; Davis, S.

    2013-01-01

    Standard thin disk model predicts that radiation dominated accretion disk is thermally unstable. However, using a radiation MHD code based on flux-limited diffusion (FLD) approximation, Hirose et al. (2009) finds that when the accretion stress provided by Magneto-rotational instability (MRI) is calculated self-consistently, the disk is actually stable. We check this surprising result with our recently developed radiation transfer module in Athena. We modify the Godunov method to include the radiation source terms and close the radiation momentum equations with variable Eddington tensor. In this way, it works in both optically thin and thick regimes, and works for both radiation or gas pressure dominated flows. As a general purpose radiation MHD code, it can also be used to study other systems, where radiation field plays an important role, such as feedback effects of stars on the interstellar medium. I will show a set of tests to demonstrate that the code is working accurately as expected for different regimes. I will describe in detail our results on the thermal stability of accretion disks in both the gas pressure dominated regime and radiation pressure dominated regime. Detailed studies of the vertical structures of the accretion disk will also be presented. I will also comment on the differences between our results and the results from FLD calculations.

  12. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    Science.gov (United States)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  13. Thermal stability of water ice in Ceres' crater Oxo

    Science.gov (United States)

    Formisano, Michelangelo; Federico, Costanzo; De Sanctis, Maria Cristina; Frigeri, Alessandro; Magni, Gianfranco; Tosi, Federico

    2016-10-01

    Dwarf planet Ceres, target of the NASA Dawn mission, exhibits evidences of ammoniated phyllosilicates on its surface [1], compatible with a likely outer Solar System origin. Considerable amounts of water ice have recently been detected in some craters by the Visible InfraRed mapping spectrometer (VIR) onboard Dawn in some small fresh crater, such as Oxo, located at about 40° N. The exposure mechanism of water ice is unknown: cryovolcanism, cometary type sublimation/recondensation [2]or impacts with other bodies are likely mechanisms. The evaluation of the time stability of the water ice is crucial to understand the plausible mechanism for its existence. For this purpose, we developed a 3D finite-elements model (FEM) by using the topography given by the shape model of Ceres derived on the basis of images acquired by the Framing Camera in the Survey mission phase. The illumination conditions are provided by the SPICE toolkit. We performed several simulations by analyzing the effect of thermal inertia and albedo on the temperature and rate of ice sublimation. The results of the simulations about the stability of water ice will be presented.[1] De Sanctis et al. NATURE, doi:10.1038/nature16172[2] Formisano et al. MNRAS, doi: 10.1093/mnras/stv2344

  14. Effect of cation trapping on thermal stability of magnetite nanoparticles.

    Science.gov (United States)

    Pati, S S; Philip, John

    2014-06-01

    We investigate the effect of sodium trapping on thermal stability of magnetite (Fe3O4) nanoparticles. The pure magnetite nanoparticles incubated in sodium hydroxide solutions and subsequently washed with water to remove the excess sodium. The amount of sodium in magnetite is measured using atomic absorption spectroscopy. The size distribution obtained from Small angle X-ray scattering measurements show that particles are fairly monodisperse. The FTIR spectra of nanoparticles show transmission bands at 441 and 611 cm(-1) are due to the symmetric stretching vibrations (v) of Fe-O in octahedral and tetrahedral sites respectively. With 500 ppm of sodium ions (Na+) in magnetite, the cubic ferrite structure of maghemite (gamma-Fe2O3) to hexagonal hematite (alpha-Fe2O3) phase transition is enhanced by -150 degrees C in air. The Rietveld analysis of sodium doped magnetite nanoparticles show that above 99% of metastable gamma-Fe2O3 is converted to a thermodynamically stable alpha-Fe2O3 after air annealing at 700 degrees C. A decrease in enthalpy observed in doped magnetite unambiguously confirms that the activation energy for maghemite to hematite transition is increased due to the presence of trapped sodium ions. These results suggest that the trapped cations in ferrite nanoparticles can stabilize them by increasing the activation energy.

  15. Thermal stability of graphene edge structure and graphene nanoflakes

    Science.gov (United States)

    Barnard, Amanda S.; Snook, Ian K.

    2008-03-01

    One of the most exciting recent developments in nanoscience was the discovery of graphene (single sheets of carbon atoms, a two-dimensional ``(2D) crystal'') and the subsequent discovery of the fascinating properties of this new material, e.g., electrons behaving as massless relativistic particles and an anomalous quantum Hall effect [A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007)]. It is also surprising that large sheets of graphene exist as it was widely believed that 2D crystals are unstable. Furthermore, because of the stability of folded graphene sheets, i.e., carbon nanotubes (CNTs), a fascinating question is why does not graphene spontaneously transform into CNTs? In this paper, we explore the thermal stability of small pieces of graphene, i.e., graphene nanoflakes by ab initio quantum mechanical techniques. We find that indeed nanoflakes are stable to being heated and do not under any conditions used here transform to CNTs. They do not, however, remain strictly 2D as at finite temperatures, they undergo extensive vibrational motion and remain buckled if annealed and then quenched to room temperature.

  16. Thermal-mechanical coupled effect on fracture mechanism and plastic characteristics of sandstone

    Institute of Scientific and Technical Information of China (English)

    ZUO; JianPing; XIE; HePing; ZHOU; HongWei; PENG; SuPing

    2007-01-01

    Scanning electronic microscopy (SEM) was employed to investigate fractographs of sandstone in mine roof strata under thermal-mechanical coupled effect. Based on the evolution of sandstone surface morphology in the failure process and fractography, the fracture mechanism was studied and classified under meso and micro scales, respectively. The differences between fractographs under different temperatures were examined in detail. Under high temperature, fatigue fracture and plastic deformation occurred in the fracture surface. Therefore, the temperature was manifested by these phenomena to influence strongly on micro failure mechanism of sandstone. In addition, the failure mechanism would transit from brittle failure mechanism at low temperature to coupled brittle-ductile failure mechanism at high temperature. The variation of sandstone strength under different temperature can be attributed to the occurrence of plastic deformation, fatigue fracture, and microcracking. The fatigue striations in the fracture surfaces under high temperature may be interpreted as micro fold. And the coupled effect of temperature and tensile stress may be another formation mechanism of micro fold in geology.

  17. Alginate/PEO-PPO-PEO composite hydrogels with thermally-active plasticity.

    Science.gov (United States)

    White, Joseph C; Saffer, Erika M; Bhatia, Surita R

    2013-12-09

    Stimuli-responsive hydrogels with high strength and toughness have received significant interest in recent years. Here, we report thermally active composite hydrogels comprising alginate and one of two poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers. Temperature-sensitive structural and mechanical changes are probed using calorimetry, neutron scattering, shear rheology, unconfined compression, and fracture. Below the lower gelation temperature, LGT, the mechanical properties are dominated by alginate. As the LGT is reached, the contribution of PEO-PPO-PEO to the mechanical properties is activated, resulting in order-of-magnitude increases in elastic modulus. Under compression, we show the evolution of plasticity for the composite hydrogels as the LGT is approached and surpassed, resulting in dramatic increases in fracture stress compared to neat alginate hydrogels. Plasticity was observed above the LGT and may be attributed to restructuring from the sliding of packed micelles and strain-hardening due to stress concentration on alginate cross-links and junction zones, ultimately leading to fracture.

  18. Stabilizing the Advancing Front of Thermally Driven Climbing Films.

    Science.gov (United States)

    Kataoka; Troian

    1998-07-15

    As known from thermodynamic principles, the surface tension of a liquid decreases with increasing temperature. This property can be used to force a liquid film to climb a vertical substrate whose lower end is held warmer than the top. The vertical gradient in surface tension generates a surface shear stress that causes the liquid film to spread upward spontaneously in the direction of higher surface tension. Experimental investigations have shown that the application of a large temperature gradient produces a thin climbing film whose leading edge develops a pronounced capillary rim which breaks up into vertical rivulets. In contrast, smaller temperature gradients produce thicker films whose profiles decrease monotonically toward the substrate with no evidence of a rim or subsequent film breakup. We have previously shown within linear stability analysis that a climbing film can undergo a fingering instability at the leading edge when the film is sufficiently thin or the shear stress sufficiently large for gravitational effects to be negligible. In this work we show that thicker films which experience significant drainage cannot form a capillary rim and spread in stable fashion. Gravitational drainage helps promote a straight advancing front and complete surface coverage. Our numerical predictions for the entire shape and stability of the climbing film are in good agreement with extensive experiments published years ago by Ludviksson and Lightfoot (AIChE J. 17, 1166 (1971)). We propose that the presence of a counterflow which eliminates the capillary rim can provide a simple and general technique for stabilizing thermally driven films in other geometries. Copyright 1998 Academic Press.

  19. MCTP is an ER-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity

    Science.gov (United States)

    Genç, Özgür; Dickman, Dion K; Ma, Wenpei; Tong, Amy; Fetter, Richard D; Davis, Graeme W

    2017-01-01

    Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission. DOI: http://dx.doi.org/10.7554/eLife.22904.001 PMID:28485711

  20. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels

    Science.gov (United States)

    Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.

    2004-08-01

    Two Fe-0.2C-1.55Mn-1.5Si (in wt pct) steels, with and without the addition of 0.039Nb (in wt pct), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.

  1. J-integral elastic plastic fracture mechanics evaluation of the stability of cracks in nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M. P.; McMeeking, R. M.; Parks, D. M.

    1980-06-01

    Contributions were made toward developing a new methodology to assess the stability of cracks in pressure vessels made from materials that exhibit a significant increase in toughness during the early increments of crack growth. It has a wide range of validity from linear elastic to fully plastic behavior.

  2. Evaluation of the Lifetime and Thermal Conductivity of Dysprosia-Stabilized Thermal Barrier Coating Systems

    Science.gov (United States)

    Curry, Nicholas; Markocsan, Nicolaie; Östergren, Lars; Li, Xin-Hai; Dorfman, Mitch

    2013-08-01

    The aim of this study was the further development of dysprosia-stabilized zirconia coatings for gas turbine applications. The target for these coatings was a longer lifetime and higher insulating performance compared to today's industrial standard thermal barrier coating. Two morphologies of ceramic top coat were studied: one using a dual-layer system and the second using a polymer to generate porosity. Evaluations were carried out using a laser flash technique to measure thermal properties. Lifetime testing was conducted using thermo-cyclic fatigue testing. Microstructure was assessed with SEM and Image analysis was used to characterize porosity content. The results show that coatings with an engineered microstructure give performance twice that of the present reference coating.

  3. Comparative Analysis of the Effects of Severe Plastic Deformation and Thermomechanical Training on the Functional Stability of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy

    Science.gov (United States)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Maier, H. J.

    2010-01-01

    We compare the effectiveness of a conventional thermomechanical training procedure and severe plastic deformation via equal channel angular extrusion to achieve improved functional stability in a Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Thermomechanical testing indicates that both methods result in enhanced shape memory characteristics, such as reduced irrecoverable strain and thermal hysteresis. The mechanisms responsible for the improvements are discussed in light of microstructural findings from transmission electron microscopy.

  4. Comparative Analysis of the Effects of Severe Plastic Deformation and Thermomechanical Training on the Functional Stability of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy

    Science.gov (United States)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Maier, H. J.

    2010-01-01

    We compare the effectiveness of a conventional thermomechanical training procedure and severe plastic deformation via equal channel angular extrusion to achieve improved functional stability in a Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Thermomechanical testing indicates that both methods result in enhanced shape memory characteristics, such as reduced irrecoverable strain and thermal hysteresis. The mechanisms responsible for the improvements are discussed in light of microstructural findings from transmission electron microscopy.

  5. PLASMA THERMAL BARRIER COATINGS BASED ON ZIRCONIUM DIOXIDE WITH HIGH THERMAL STABILITY

    Directory of Open Access Journals (Sweden)

    O. G. Devoino

    2015-01-01

    Full Text Available The paper presents optimization of  processes for obtaining maximum content of tetragonal phase in the initial material and thermal barrier coatings (TBC based on zirconium dioxide and hafnium oxide.  Results of the investigations on phase composition of oxide HfO2 – ZrO2 – Y2O3  system have been given in the paper. The system represents  a microstructure which is similar to  zirconia dioxide and  transformed for its application at 1300 °C. The paper explains a mechanism of hafnium oxide influence on formation of the given microstructure. The research methodology has been based on complex metallography, X – ray diffraction and electron microscopic investigations of  structural elements of the composite plasma coating HfO2 – ZrO2 – Y2O system.In order to stabilize zirconium dioxide  dopant oxide should not only have an appropriate size of  metal ion, but also form a solid solution with the zirconia. This condition severely limits the number of possible stabilizers. In fact, such stabilization is possible only with the help of rare earth oxides (Y2O3, Yb2O3, CeO2, HfO2. Chemical purity of the applied materials plays a significant role for obtaining high-quality thermal barrier coatings. Hafnium oxide has been selected as powder for thermal barrier coatings instead of zirconium dioxide due to their similarities in structural modification, grating, chemical and physical properties and its high temperature structural transformations. It has been established that plasma thermal barrier HfO2 – ZrO2 – Y2O3 coatings consist of  one tetragonal phase. This phase is equivalent to a non-equilibrium tetragonal t' phase in the “zirconium dioxide stabilized with yttrium oxide” system. Affinity of  Hf+4 and Zr+4 cations leads to the formation of identical metastable phases during rapid quenching.

  6. An experimental study on thermal stability of biodiesel fuel

    Science.gov (United States)

    Zhu, Yiying

    Biodiesel fuel, as renewable energy, has been used in conventional diesel engines in pure form or as biodiesel/diesel blends for many years. However, thermal stability of biodiesel and biodiesel/diesel blends has been minimally explored. Aimed to shorten this gap, thermal stability of biodiesel is investigated at high temperatures. In this study, batch thermal stressing experiments of biodiesel fuel were performed in stainless steel coils at specific temperature and residence time range from 250 to 425 °C and 3 to 63 minutes, respectively. Evidence of different pathways of biodiesel fuel degradation is demonstrated chromatographically. It was found that biodiesel was stable at 275 °C for a residence time of 8 minutes or below, but the cis-trans isomerization reaction was observed at 28 minutes. Along with isomerization, polymerization also took place at 300 °C at 63 minutes. Small molecular weight products were detected at 350 °C at 33 minutes resulting from pyrolysis reactions and at 360 °C for 33 minutes or above, gaseous products were produced. The formed isomers and dimers were not stable, further decomposition of these compounds was observed at high temperatures. These three main reactions and the temperature ranges in which they occurred are: isomerization, 275--400 °C; polymerization (Diels-Alder reaction), 300--425 °C; pyrolysis reaction, ≥350 °C. The longer residence time and higher temperature resulted in greater decomposition. As the temperature increased to 425 °C, the colorless biodiesel became brownish. After 8 minutes, almost 84% of the original fatty acid methyl esters (FAMEs) disappeared, indicating significant fuel decomposition. A kinetic study was also carried out subsequently to gain better insight into the biodiesel thermal decomposition. A three-lump model was proposed to describe the decomposition mechanism. Based on this mechanism, a reversible first-order reaction kinetic model for the global biodiesel decomposition was shown to

  7. Metal lanolin fatty acid as novel thermal stabilizers for rigid poly(vinyl chloride)

    Institute of Scientific and Technical Information of China (English)

    GUO Yong; ZHENG Yuying; QIU Shangchang; ZENG Anran; LI Baoming

    2011-01-01

    The synergistic stabilization effect of different metal lanolin fatty acids as natural-based thermal stabilizers for poly(vinyl chloride)(PVC) including calcium lanolin fatty acid (Calan2), zinc lanolin fatty acid (Znlan2) and lanthanum lanolin fatty acid (Lalan3) were studied through Congo red testing, color measurements, FTIR analyses and thermal behavior in this paper. The results showed that Lalan3/Calan2/Znlan2 stabilizers exhibited more excellent thermal stabilization efficiency to PVC than Calan2/Znlan2 thermal stabilizers, and the optimal mass ratio of Lalan3/Calan2/Znlan2 was 8:9:3. At last, the effect of degradation mechanism on PVC and synergistic stabilization was also investigated by FTIR analyses and thermal behavior.

  8. The prominent conformational plasticity of lactoperoxidase: a chemical and pH stability analysis.

    Science.gov (United States)

    Boscolo, Barbara; Leal, Sónia S; Salgueiro, Carlos A; Ghibaudi, Elena M; Gomes, Cláudio M

    2009-07-01

    Lactoperoxidase (LPO) is a structurally complex and stable mammalian redox enzyme. Here we aim at evaluating the influence of ionic interactions and how these intertwine with the structural dynamics, stability and activity of LPO. In this respect, we have compared LPO guanidinium hydrochloride (GdmCl) and urea denaturation pathways and performed a detailed investigation on the effects of pH on the LPO conformational dynamics and stability. Our experimental findings using far-UV CD, Trp fluorescence emission and ESR spectroscopies clearly indicate that LPO charged-denaturation with GdmCl induced a sharp two-step process versus a three-step unfolding mechanism induced by urea. This differential effect between GdmCl and urea suggests that ionic interactions must play a rather prominent role in the stabilization of LPO. With both denaturants, the protein core was shown to retain activity up to near the respective C(m) values. Moreover, a pH titration of LPO evidenced no significant conformational alterations or perturbation of heme activity within the 4 to 11 pH interval. In contrast, alterations of ionic interactions by poising LPO at pH 3, 2 and 12 resulted in a loss of secondary structure, loosening of tertiary contacts and loss of activity, which appear to be associated with the perturbation of the hydrophobic core, as evidenced by ANS binding, as well as disruption of the heme pocket demonstrated by optical and EPR spectroscopies. Overall, LPO is characterised by a high degree of peripheral structural plasticity without perturbation of the core heme moiety. The possible physiological meaning of such features is discussed.

  9. A Semi-Persistent Adult Ocular Dominance Plasticity in Visual Cortex Is Stabilized by Activated CREB

    Science.gov (United States)

    Barco, Angel; Kandel, Eric R.; Gordon, Barbara; Lickey, Marvin E.; Suzuki, Seigo; Pham, Tony A.; Graham, Sarah J.

    2004-01-01

    The adult cerebral cortex can adapt to environmental change. Using monocular deprivation as a paradigm, we find that rapid experience-dependent plasticity exists even in the mature primary visual cortex. However, adult cortical plasticity differs from developmental plasticity in two important ways. First, the effect of adult, but not juvenile…

  10. Compensated gadolinium-loaded plastic scintillators for thermal neutron detection (and counting)

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.; Hamel, Matthieu; Sguerra, Fabien; Dehe-Pittance, Chrystele; Normand, Stephane [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 99 Gif-sur-Yvette, (France); Mechin, Laurence [CNRS, UCBN, Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, 4050 Caen, (France)

    2015-07-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by gadolinium-155 and gadolinium-157, alternative treatment to Pulse Shape Discrimination has to be proposed in order to display a trustable count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a non-gadolinium loaded compensation scintillator solely interacts with the photon part of the incident radiation. Posterior to the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate after photon response compensation falls into statistical fluctuations or provides a robust image of a neutron activity. A laboratory prototype is tested under both photon and neutron irradiations, allowing us to investigate the performance of the overall compensation system in terms of neutron detection, especially with regards to a commercial helium-3 counter. The study reveals satisfactory results in terms of sensitivity and orientates future investigation toward promising axes. (authors)

  11. The effect of crystal plasticity and mineral stability on the rheological properties of magma during spine extrusion at Unzen, Japan

    Science.gov (United States)

    Wallace, Paul A.; Kendrick, Jackie E.; Lavallée, Yan; Ashworth, James D.; Mariani, Elisabetta; von Aulock, Felix W.; Coats, Rebecca; Miwa, Takahiro

    2016-04-01

    and microlites, with biotite displaying the greatest evidence of strain accommodation. This permanent strain is induced when the shear stress exceeds a critical point on an orientated lattice plane, resulting in a misorientation of the internal lattice. Crystal-plastic behaviour may thus act as a strain marker for the viscous-brittle transition during ascent. In the highly sheared zone, the rims of both hydrous minerals (hornblende and biotite) and plagioclase show a reaction with the melt suggesting disequilibrium conditions - a feature not as evident in the undeformed magmatic core of the spine. The narrow localisation of the disequilibrium textures suggest that the increased effects of gas flow in the permeable shear zone and/or thermal input due to strain localisation may be contributing factors affecting mineral stability during magma transport. These deformation microstructures that occur in the shallow conduit, especially during ascent of highly viscous magma, can lead to permeability anisotropy which can significantly alter degassing efficiency and control the explosivity of an eruption. For this reason a thorough petrological/rheological understanding of these deformation processes is vital in constraining the complexities associated with on-going eruptions and shifts from effusive to explosive activity.

  12. Analytic method for material aging and quality analyzing to forecast long time stability of plastic micro heliostat components

    Science.gov (United States)

    Sauerborn, Markus; Liebenstund, Lena; Raue, Markus; Mang, Thomas; Herrmann, Ulf; Dueing, Andreas

    2017-06-01

    The Solar-Institute Jülich (SIJ) developed the micro heliostat system - a small sized heliostat - during the last years. One special performance of the micro heliostat is the option to integrate inexpensive plastic elements. The use of plastic as a cost reducer in the heliostat technique is also offering the chance to integrate complex designed components with a higher quality and special system function. The plastic for this application requires a high standing against UV radiation and thermal cycles with a daily extreme temperature variation. The temperature range inside the closed micro heliostat box can annually fluctuate between -20 °C and 80 °C in the worst case. Special aging tests were designed and performed for the first time in cooperation with the Institute for Applied Polymer Science (IAP) in order to identify and qualify a resistance plastic for the micro heliostat. This systematic plastic aging testing for the micro heliostat is introduced here. The tests were carried out under extreme ambient situations, which simulate the temperature and irradiation conditions that the heliostat has to stand for years. A particular climate of arid areas with continuous high solar radiation was defined for these tests. Two accelerating aging methods were adapted to reach adequate aging results in a reduced time. The aging of the investigated kinds of plastics were followed by tensile test, impact test, measuring Shore hardness, dynamic-mechanical analysis, differential scanning calorimetry and Fourier transform infrared spectroscopy to compare the different types of polymers. Parallel to these tests running real outdoor tests were performed, to control this accelerated aging. To have adequate conditions that the plastic in a micro heliostat has to stand, an identical closed test box with a glass cover was designed. The test samples inside the box were irradiated by the sun. The wanted forecast for the analyzed plastic was defined by the comparison of the real and

  13. Thermal stability of ladderane lipids as determined by hydrous pyrolysis

    Science.gov (United States)

    Jaeschke, A.; Lewan, M.D.; Hopmans, E.C.; Schouten, S.; Sinninghe, Damste J.S.

    2008-01-01

    Anaerobic ammonium oxidation (anammox) has been recognized as a major process resulting in loss of fixed inorganic nitrogen in the marine environment. Ladderane lipids, membrane lipids unique to anammox bacteria, have been used as markers for the detection of anammox in marine settings. However, the fate of ladderane lipids after sediment burial and maturation is unknown. In this study, anammox bacterial cell material was artificially matured by hydrous pyrolysis at constant temperatures ranging from 120 to 365 ??C for 72 h to study the stability of ladderane lipids during progressive dia- and catagenesis. HPLC-MS/MS analysis revealed that structural alterations of ladderane lipids already occurred at 120 ??C. At temperatures >140 ??C, ladderane lipids were absent and only more thermally stable products could be detected, i.e., ladderane derivatives in which some of the cyclobutane rings were opened. These diagenetic products of ladderane lipids were still detectable up to temperatures of 260 ??C using GC-MS. Thus, ladderane lipids are unlikely to occur in ancient sediments and sedimentary rocks, but specific diagenetic products of ladderane lipids will likely be present in sediments and sedimentary rocks of relatively low maturity (i.e., C31 hopane 22S/(22S + 22R) ratio 0.5). ?? 2008 Elsevier Ltd.

  14. Thermal stability and curing kinetics of polycarbosilane fibers

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Thermal stability and curing kinetics of polycarbosilane (PCS) fibers were studied by thermogravimetry (TG), Fourier transform infrared spectroscopy(FT-IR). Curing is an essential step in the preparation of SiC fibers and the properties of SiC fibers are affected greatly by curing conditions. TG measurement performed in air shows that mass gain starts at approximately 200℃ and PCS fibers are sensitive to oxygen. Curing with oxygen, which results in crosslinking on the surface, enabled PCS fibers to retain its shape during high-temperature pyrolysis. The curing of PCS fibers is oxidation of Si-H and Si-CH3, then Si-O-Si and Si-O-C bonds are formed. This is a first order reaction, with activation energy of 79.27 kJ/mol, and the pre-exponential factor is calculated as 3.07 × 106.The kinetics model was obtained and the experimental data of PCS fibers show good agreement with the kinetics model.

  15. Synthesis, thermal stability, and photocatalytic activity of nanocrystalline titanium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Youjian; Zhang, Hong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Ma, DeKun [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Nanomaterials and Chemistry Key Laboratory, Advanced Materials Research Center of Wenzhou, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Ma, Jianhua, E-mail: mjh820@ustc.edu [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Nanomaterials and Chemistry Key Laboratory, Advanced Materials Research Center of Wenzhou, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Ye, Hongnan; Qian, Gaojin; Ye, Yi [Oujiang College, Wenzhou University, Wenzhou, Zhejiang 325027 (China)

    2011-11-15

    Highlights: {yields} The synthesized temperature is lower than some conventional methods. {yields} These raw materials are safe; all manipulations are rather safe and convenient. {yields} The product exhibits photocatalytic activity in degradation of Rhodamine-B. -- Abstract: Titanium carbide (TiC) was prepared via one simple route by the reaction of metallic magnesium powders with titanium dioxide (TiO{sub 2}) and potassium acetate (CH{sub 3}COOK) in an autoclave at 600 {sup o}C and 8 h. Phase structure and morphology were characterized by X-ray powder diffraction (XRD) and Scanning electron microscopy (SEM). The results indicated that the product was cubic TiC, which consisted of particles with an average size of about 100 nm in diameter. The product was also studied by the thermogravimetric analysis (TGA) and its photocatalysis. It had good thermal stability and oxidation resistance below 350 {sup o}C in air. In addition, we discovered that the cubic TiC powders exhibited photocatalytic activity in degradation of Rhodamine-B (RhB) under 500 W mercury lamp light irradiation.

  16. Thermal Properties of Wood Plastic Composites with High Content of Wood Powder%高填充木塑复合材料热性能的研究*

    Institute of Scientific and Technical Information of China (English)

    郭勇; 李大纲; 陈玉霞; 李晶晶; 邵旭

    2013-01-01

      Wood plastic composites(WPC) were prepared by mini extrusion equipment with PE-HD as plastic matrix and wood flour as filler. The effects of highly filled wood flour mass fraction on the thermal properties of WPC were studied. The results show that the dimension thermal stability of WPC is improved with increasing the wood flour mass fraction. The glass transition temperatures(Tg) of WPC increase and the glass transition step height of WPS decrease with increasing the wood flour mass fraction. The dimension thermal stability of WPC under Tg is good and tend to a constant when the wood flour mass fractions are 60%~70%, which is benefit to maintaining the mechanical properties of WPC.%  以高密度聚乙烯(PE-HD)为基体,以木粉作为填充料,用微型挤出成型设备制备PE-HD基木塑复合材料(WPC),研究高填充木粉质量分数变化对WPC热性能的影响。结果表明,随着木粉含量的增加,WPC的尺寸热稳定性得到改善,玻璃化转变温度(Tg)相应提高,玻璃化转变台阶高度减小;当木粉质量分数为60%~70%、温度低于Tg时,WPC的尺寸热稳定性较好,并趋于恒定,有利于其保持力学性能。

  17. Enhanced thermal stability of lysosomal beta-D-galactosidase in parenchymal cells of tumour bearing mice.

    OpenAIRE

    1986-01-01

    The thermal stability of the enzyme beta-D-galactosidase varies among different organs in normal C57Bl/6 mice, and increases in the same organs in mice with Lewis Lung carcinoma. Thermal stability of this enzyme is also increased by treatment of the mice with cell-free extracts of tumour cells or with inflammatory compounds such as carrageenan or orosomucoid. After desialylation, orosomucoid more effectively increases the heat stability of the enzyme. By contrast talc, which has no galactosyl...

  18. Determination of Polymer Additives-Antioxidants, Ultraviolet Stabilizers, Plasticizers and Photoinitiators in Plastic Food Package by Accelerated Solvent Extraction Coupled with High-Performance Liquid Chromatography.

    Science.gov (United States)

    Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying; Su, Qi-Zhi; Wu, Yu-Mei

    2015-07-01

    An analytical method for the quantitative determination of 4 antioxidants, 9 ultraviolet (UV) stabilizers, 12 phthalate plasticizers and 2 photoinitiators in plastic food package using accelerated solvent extraction (ASE) coupled with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic conditions were studied in order to determine operating conditions. The analytical method of ASE-HPLC showed good linearity with good correlation coefficients (R ≥ 0.9833). The limits of detection and quantification were between 0.03 and 0.30 µg mL(-1) and between 0.10 and 1.00 µg mL(-1) for 27 analytes. Average spiked recoveries for most analytes in samples were >70.4% at 10, 20 and 40 µg g(-1) spiked levels, except UV-9 and Irganox 1010 (58.6 and 64.0% spiked at 10 µg g(-1), respectively), the relative standard deviations were in the range from 0.4 to 15.4%. The methodology has been proposed for the analysis of 27 polymer additives in plastic food package. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Thermal Tolerance in Widespread and Tropical Drosophila Species: Does Phenotypic Plasticity Increase with Latitude?

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Kristensen, Torsten Nygård; Mitchell, Katherin A

    2011-01-01

    The distribution of insects can often be related to variation in their response to thermal extremes, which in turn may reflect differences in plastic responses or innate variation in resistance. Species with widespread distributions are expected to have evolved higher levels of plasticity than...... for environmental variation and phylogeny. Irrespective of acclimation, cold resistance was higher in the widespread species. Developmental cold acclimation simulating temperate conditions extended cold limits by 2–4C, whereas developmental heat acclimation under simulated tropical conditions increased upper...

  20. Geometric thermal phase diagrams for studying the thermal dynamic stability of hollow gold nanoballs at different temperatures.

    Science.gov (United States)

    Jiang, Luyun; Sun, Wei; Gao, Yajun; Zhao, Jianwei

    2014-04-14

    Thermal stability is one of the main concerns for the synthesis of hollow nanoparticles. In this work, molecular dynamics simulation gave an insight into the atomic reconstruction and energy evolution during the collapse of hollow gold nanoballs, based on which a mechanism was proposed. The stability was found to depend on temperature, its wall thickness and aspect ratio to a great extent. The relationship among these three factors was revealed in geometric thermal phase diagrams (GTPDs). The GTPDs were studied theoretically, and the boundary between different stability regions can be fitted and calculated. Therefore, the GTPDs at different temperatures can be deduced and used as a guide for hollow structure synthesis.

  1. Warm fish with cold hearts: thermal plasticity of excitation-contraction coupling in bluefin tuna.

    Science.gov (United States)

    Shiels, H A; Di Maio, A; Thompson, S; Block, B A

    2011-01-07

    Bluefin tuna have a unique physiology. Elevated metabolic rates coupled with heat exchangers enable bluefin tunas to conserve heat in their locomotory muscle, viscera, eyes and brain, yet their hearts operate at ambient water temperature. This arrangement of a warm fish with a cold heart is unique among vertebrates and can result in a reduction in cardiac function in the cold despite the elevated metabolic demands of endothermic tissues. In this study, we used laser scanning confocal microscopy and electron microscopy to investigate how acute and chronic temperature change affects tuna cardiac function. We examined the temporal and spatial properties of the intracellular Ca2+ transient (Δ[Ca2+]i) in Pacific bluefin tuna (Thunnus orientalis) ventricular myocytes at the acclimation temperatures of 14°C and 24°C and at a common test temperature of 19°C. Acute (less than 5 min) warming and cooling accelerated and slowed the kinetics of Δ[Ca2+]i, indicating that temperature change limits cardiac myocyte performance. Importantly, we show that thermal acclimation offered partial compensation for these direct effects of temperature. Prolonged cold exposure (more than four weeks) increased the amplitude and kinetics of Δ[Ca2+]i by increasing intracellular Ca2+ cycling through the sarcoplasmic reticulum (SR). These functional findings are supported by electron microscopy, which revealed a greater volume fraction of ventricular SR in cold-acclimated tuna myocytes. The results indicate that SR function is crucial to the performance of the bluefin tuna heart in the cold. We suggest that SR Ca2+ cycling is the malleable unit of cellular Ca2+ flux, offering a mechanism for thermal plasticity in fish hearts. These findings have implications beyond endothermic fish and may help to delineate the key steps required to protect vertebrate cardiac function in the cold.

  2. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi

    2014-11-11

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  3. Closed-form dynamic stability criterion for elastic-plastic structures under near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2016-03-01

    Full Text Available A dynamic stability criterion for elastic-plastic structures under near-fault ground motions is derived in closed-form. A negative post-yield stiffness is treated in order to consider the P-delta effect. The double impulse is used as a substitute of the fling-step near-fault ground motion. Since only the free-vibration appears under such double impulse, the energy approach plays a critical role in the derivation of the closed-form solution of a complicated elastic-plastic response of structures with the P-delta effect. It is remarkable that no iteration is needed in the derivation of the closed-form dynamic stability criterion on the critical elastic-plastic response. It is shown via the closed-form expression that several patterns of unstable behaviors exist depending on the ratio of the input level of the double impulse to the structural strength and on the ratio of the negative post-yield stiffness to the initial elastic stiffness. The validity of the proposed dynamic stability criterion is investigated by the numerical response analysis for structures under double impulses with stable or unstable parameters. Furthermore the reliability of the proposed theory is tested through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.

  4. Synthesis of antimony tris(mercaptoethyl carboxylates) as thermal stabilizer for polyvinyl chloride

    Institute of Scientific and Technical Information of China (English)

    舒万艮; 刘又年; 陈启元

    2002-01-01

    A novel type of thermal stabilizers-antimony tris(mercaptoethyl carboxylates) (Sb(SCH2CH2OOCR) 3), was synthesized from carboxylic acid, antimony trioxide and 2-mercaptoethanol in two steps. The experimental results show that the molar ratio of carboxylic acid to antimony tris(2-hydroxyethyl mercaptide) is 1.2, when adding 0.6% tetra-n-butyl titanate as catalyst and xylene as isotropic solvent, heating and refluxing for about 2~4h. The thermal stability was measured by heat-aging oven test. The thermal stability time is about 8~40min(at 200℃) when adding 2% tetra-n-butyl titanate in polyvinyl chloride(PVC). Among these stabilizers, antimony tris(mercaptoethyl stearate) has best thermal stability. Its thermal stability is better than that of Ca-Zn complex and basic lead stabilizers, and equal to that of organotin. In addition, the stabilization mechanism of this kind of stabilizers for PVC was discussed briefly.

  5. Rare Earth Stearates as Thermal Stabilizers for Rigid Poly(vinyl chloride)

    Institute of Scientific and Technical Information of China (English)

    Zheng Yuying; Cai Weilong; Fu Minglian; Wang Canyao; Zhang Xing

    2005-01-01

    A series of stearates with different rare-earth ion were investigated as thermal stabilizers for rigid PVC at 180 ℃ in air. Their stabilizing efficiency was based on measuring the rate of dehydrochlorination. The resulted revealed the higher stabilizing efficiency of the investigated rare-earth stearates as thermal stabilizers for rigid PVC compared with the thermal stabilizers for industry: calcium stearate, zinc stearate, butyl stannum mercaptide, phosphite esters, β-diketone and epoxidized sunflower oil. This was well illustrated by longer incubation period (TS) values and lower rate of dehydrochlorination. The stable efficiency was affected by the nature of rare-earth element's individual electronic shell. The mechanism for the stabilizing effect of rare-earth stearates was proposed. The result was experimentally proved based on IR spectrum.

  6. Thermal stability and thermodynamic properties of hybrid proton-conducting polyaryl etherketones.

    Science.gov (United States)

    Marani, D; Di Vona, M L; Traversa, E; Licoccia, S; Beurroies, I; Llewellyn, P L; Knauth, P

    2006-08-17

    The thermal and structural stability of sulfonated cross-linked PEEK (polyether ether ketone) and its silicon-containing class II hybrid derivatives were characterized by combination of mass spectrometry, infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. Thermodynamic properties of the hybrids were determined, including glass-transition temperature, degree of crystallinity, and thermal stability. The decomposition processes of the hybrid polymers could be consistently interpreted and their energetics quantitatively determined. The introduction of inorganic silanol moieties improves the thermal stability compared to sulfonated products.

  7. Stability evaluation of hydrate-bearing sediments during thermally-driven hydrate dissociation

    Science.gov (United States)

    Kwon, T.; Cho, G.; Santamarina, J.; Kim, H.; Lee, J.

    2009-12-01

    Hydrate-bearing sediments may destabilize spontaneously as part of geological processes, unavoidably during petroleum drilling/production operations, or intentionally as part of gas extraction from the hydrate itself. In all cases, high pore fluid pressure generation is anticipated during hydrate dissociation. This study examined how thermal changes destabilize gas hydrate-bearing sediments. First, an analytical formulation was derived for predicting fluid pressure evolution in hydrate-bearing sediments subjected to thermal stimulation without mass transfer. The formulation captures the self-preservation behavior, calculates the hydrate and free gas quantities during dissociation, considering effective stress-controlled sediment compressibility and gas solubility in aqueous phase. Pore fluid pressure generation is proportional to the initial hydrate fraction and the sediment bulk stiffness; is inversely proportional to the initial gas fraction and gas solubility; and is limited by changes in effective stress that cause the failure of the sediment. Second, the analytical formulation for hydrate dissociation was incorporated as a user-defined function into a verified finite difference code (FLAC2D). The underlying physical processes of hydrate-bearing sediments, including hydrate dissociation, self-preservation, pore pressure evolution, gas dissolution, and sediment volume expansion, were coupled with the thermal conduction, pore fluid flow, and mechanical response of sediments. We conducted the simulations for a duration of 20 years, assuming a constant-temperature wellbore transferred heat to the surrounding hydrate-bearing sediments, resulting in dissociation of methane hydrate in the well vicinity. The model predicted dissociation-induced excess pore fluid pressures which resulted in a large volume expansion and plastic deformation of the sediments. Furthermore, when the critical stress was reached, localized shear failure of the sediment around the borehole was

  8. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 2; Thermal and Mechanical Loadings

    Science.gov (United States)

    Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.

  9. Study on Thermal Stability and Spectroscopic Properties of Nd3+ -Doped Phosphate Laser Glasses

    Institute of Scientific and Technical Information of China (English)

    Shi Qi; Lv Jingwen; Cheng Hong; Fu Xingguo; Sun Yu

    2004-01-01

    Fluorescence spectra, absorption spectra and thermal stability properties of Nd3 + -doped phosphate laser glasses were tested in this work. We calculated spectroscopic parameters of Nd3 + -doped phosphate laser glasses according to their absorption spectrum. Measuring and calculating linear thermal expansion coefficient, and analysising thermal stability of glasses show that this kind of Nd3 + -doped phosphate laser glasses has thermal expansion coefficient α = 38.75× 10 -7/℃ and optimal spectroscopic properties which extend application range of Nd +3-doped phosphate laser glasses.

  10. Pulse shape discrimination between (fast or thermal) neutrons and gamma rays with plastic scintillators: State of the art

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guillaume H.V. [CEA, LIST, Laboratoire Capteurs & Architectures Électroniques, CEA Saclay, F-91191 Gif-sur-Yvette cedex (France); Hamel, Matthieu, E-mail: matthieu.hamel@cea.fr [CEA, LIST, Laboratoire Capteurs & Architectures Électroniques, CEA Saclay, F-91191 Gif-sur-Yvette cedex (France); Normand, Stéphane [CEA, DAM, Le Ponant, 25 rue Leblanc, F-75015 Paris (France); Sguerra, Fabien [CEA, LIST, Laboratoire Capteurs & Architectures Électroniques, CEA Saclay, F-91191 Gif-sur-Yvette cedex (France)

    2015-03-11

    We would like to present here with the eyes of the chemist the most recent developments of plastic scintillators (PS) for neutron detection. This review covers the period from 2000 to August 2014, and is fragmented in two main chapters. The first chapter deals with the chemical modifications for thermal neutron capture, whereas the second chapter presents the various strategies used to enhance the response to fast neutrons via pulse shape discrimination. For each chapter the theory is also explained.

  11. Effect of Palm Oil Bio-Based Plasticizer on the Morphological, Thermal and Mechanical Properties of Poly(Vinyl Chloride)

    OpenAIRE

    Kar Min Lim; Yern Chee Ching; Seng Neon Gan

    2015-01-01

    Flexible poly(vinyl chloride) (PVC) was fabricated using a palm oil-based alkyd as a co-plasticizer to di-octyl phthalate (DOP) and di-isononyl phthalate (DiNP). The effects of the incorporation of the palm oil-based alkyd on morphological, thermal and mechanical properties of PVC compounds were studied. Results showed the incorporation of the alkyd enhanced the mechanical and thermal properties of the PVC compounds. Fourier transform infrared spectroscopy (FTIR) results showed that the polar...

  12. An Experimental Study on the Thermal Performance of Phase-Change Material and Wood-Plastic Composites for Building Roofs

    Directory of Open Access Journals (Sweden)

    Min Hee Chung

    2017-02-01

    Full Text Available We assessed the usefulness of phase-change material (PCM-based thermal plates fabricated from wood-plastic composites (WPCs in mitigating the urban heat island effect. The thermal performance of plates containing PCMs with two different melting temperatures and with two different albedo levels was evaluated. The results showed that the PCM with a melting temperature of 44 °C maintained lower surface and inner temperatures than the PCM with a melting temperature of 25 °C. Moreover, a higher surface albedo resulted in a lower surface temperature. However, the thermal performance of PCMs with different melting temperatures but the same surface albedo did not differ. Using PCM-based materials in roof finishing materials can reduce surface temperatures and improve thermal comfort.

  13. Effects of actin-binding proteins on the thermal stability of monomeric actin.

    Science.gov (United States)

    Pivovarova, Anastasia V; Chebotareva, Natalia A; Kremneva, Elena V; Lappalainen, Pekka; Levitsky, Dmitrii I

    2013-01-08

    Differential scanning calorimetry (DSC) was applied to investigate the thermal unfolding of rabbit skeletal muscle G-actin in its complexes with actin-binding proteins, cofilin, twinfilin, and profilin. The results show that the effects of these proteins on the thermal stability of G-actin depend on the nucleotide, ATP or ADP, bound in the nucleotide-binding cleft between actin subdomains 2 and 4. Interestingly, cofilin binding stabilizes both ATP-G-actin and ADP-G-actin, whereas twinfilin increases the thermal stability of the ADP-G-actin but not that of the ATP-G-actin. By contrast, profilin strongly decreases the thermal stability of the ATP-G-actin but has no appreciable effect on the ADP-G-actin. Comparison of these DSC results with literature data reveals a relationship between the effects of actin-binding proteins on the thermal unfolding of G-actin, stabilization or destabilization, and their effects on the rate of nucleotide exchange in the nucleotide-binding cleft, decrease or increase. These results suggest that the thermal stability of G-actin depends, at least partially, on the conformation of the nucleotide-binding cleft: the actin molecule is more stable when the cleft is closed, while an opening of the cleft leads to significant destabilization of G-actin. Thus, DSC studies of the thermal unfolding of G-actin can provide new valuable information about the conformational changes induced by actin-binding proteins in the actin molecule.

  14. Thermal Stability Comparison of Nanocrystalline Fe-Based Binary Alloy Pairs

    Science.gov (United States)

    Clark, B. G.; Hattar, K.; Marshall, M. T.; Chookajorn, T.; Boyce, B. L.; Schuh, C. A.

    2016-06-01

    The widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest; yet, they have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dominated systems. Although traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloys can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdoch et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10 at.% Mg) with a predicted non-NC stable alloy (Fe-10 at.% Cu) using the same processing and characterization methodologies. Results show improved thermal stability of the Fe-Mg alloy in comparison with the Fe-Cu, and thermally-evolved microstructures that are consistent with those predicted by Monte Carlo simulations.

  15. Improving the Stability and Performance of Perovskite Light-Emitting Diodes by Thermal Annealing Treatment.

    Science.gov (United States)

    Yu, Jae Choul; Kim, Dae Woo; Kim, Da Bin; Jung, Eui Dae; Park, Jong Hyun; Lee, Ah-Young; Lee, Bo Ram; Di Nuzzo, Daniele; Friend, Richard H; Song, Myoung Hoon

    2016-08-01

    A perovskite LED with a perovskite film treated under optimum thermal annealing conditions exhibits a significantly enhanced long-term stability with full coverage of the green electroluminescence emission due to the highly uniform morphology of the perovskite film.

  16. Thermal phenotypic plasticity of body size in Drosophila melanogaster: sexual dimorphism and genetic correlations

    Indian Academy of Sciences (India)

    Jean R. David; Amir Yassin; Jean-Claude Moreteau; Helene Legout; Brigitte Moreteau

    2011-08-01

    Thirty isofemale lines collected in three different years from the same wild French population were grown at seven different temperatures (12–31°C). Two linear measures, wing and thorax length, were taken on 10 females and 10 males of each line at each temperature, also enabling the calculation of the wing/thorax (W/T) ratio, a shape index related to wing loading. Genetic correlations were calculated using family means. The W–T correlation was independent of temperature and on average, 0.75. For each line, characteristic values of the temperature reaction norm were calculated, i.e. maximum value, temperature of maximum value and curvature. Significant negative correlations were found between curvature and maximum value or temperature of maximum value. Sexual dimorphism was analysed by considering either the correlation between sexes or the female/male ratio. Female–male correlation was on average 0.75 at the within line, within temperature level but increased up to 0.90 when all temperatures were averaged for each line. The female/male ratio was genetically variable among lines but without any temperature effect. For the female/male ratio, heritability (intraclass correlation) was about 0.20 and evolvability (genetic coefficient of variation) close to 1. Although significant, these values are much less than for the traits themselves. Phenotypic plasticity of sexual dimorphism revealed very similar reaction norms for wing and thorax length, i.e. a monotonically increasing sigmoid curve from about 1.11 up to 1.17. This shows that the males are more sensitive to a thermal increase than females. In contrast, the W/T ratio was almost identical in both sexes, with only a very slight temperature effect.

  17. Test of Cable Products in Respect of Thermal and Dynamic Stability

    Directory of Open Access Journals (Sweden)

    M. A. Коrotkevich

    2010-01-01

    Full Text Available The paper considers conditions for selection of  power supply of the unit which is used for testing samples of cable products by thermal and dynamic stability currents. It has been shown that while conducting testing by thermal and dynamic stability currents at nominal cable voltage it is more justifiable to use a percussive energy accumulator, and in the case when the voltage is low an inductive energy accumulator is used.

  18. Correlation between iron self-diffusion and thermal stability in doped iron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Akhil; Gupta, Mukul, E-mail: mgupta@csr.res.in, E-mail: dr.mukul.gupta@gmail.com; Kumar, D.; Reddy, V. R.; Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 001 (India); Amir, S. M. [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at MLZ Lichtenbergstrasse 1, 85747 Garching (Germany); Korelis, Panagiotis; Stahn, Jochen [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2014-12-14

    Nanocrystalline Fe-X-N thin films (with doping X = 0, 3.1 at. % Al, 1.6 at. % Zr), were deposited using reactive ion beam sputtering. Magnetization study reveals that the deposited films exhibit a perpendicular magnetic anisotropy. Thermal stability of the films was investigated systematically and it was observed that the structural and the magnetic stability gets significantly enhanced with Al doping, whereas Zr doping has only a marginal effect. Fe self-diffusion, obtained using polarized neutron reflectivity, shows a suppression with both additives. A correlation between the thermal stability and the diffusion process gives a direct evidence that the enhancement in the thermal stability is primarily diffusion controlled. A combined picture of diffusion, structural, and magnetic stability has been drawn to understand the obtained results.

  19. Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling

    Energy Technology Data Exchange (ETDEWEB)

    Eddahbi, M. [Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalurgicas (CENIM), CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Valle, J.A. del [Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalurgicas (CENIM), CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Perez-Prado, M.T. [Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalurgicas (CENIM), CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain)]. E-mail: tpprado@cenim.csic.es; Ruano, O.A. [Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalurgicas (CENIM), CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain)

    2005-11-25

    The aim of this work is to compare the microstructure, the texture, as well as the thermal stability of an AZ31 Mg alloy processed via two different severe plastic deformation processing techniques, namely large strain hot rolling (LSHR) and equal channel angular pressing (ECAP). The microstructure was characterized by optical microscopy and the texture was measured both by X-ray diffraction and electron backscatter diffraction (EBSD). The microstructure obtained via LSHR has average grain sizes around 3 {mu}m, but it is quite heterogeneous. Additionally, a well-defined basal texture develops. ECAP gives rise to a more homogeneous and slightly coarser microstructure, with an average grain size of 7 {mu}m and a shear type texture. The higher resistance of the extruded sample to secondary recrystallization after severe post-deformation annealing is attributed to a texture effect.

  20. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system

    Science.gov (United States)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki

    2016-12-01

    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution.

  1. Grey relationship analysis and grey forecasting modeling on thermal stability of synthetic single diamond

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Through analyzing 7 Ib-type samples of synthetic single diamonds by their DTA and TG in air, we ascertained the extrapolated onset temperature on the curves of DTA as the characteristic temperature of their thermal stabilities. Based on the grey system theory, we analyzed 4 factors influential in the thermal stability by the grey relationship analysis, a quantitative method, and derived the grey relationship sequence, that is, the rank of the influence extent of 4 factors on the thermal stability. Furthermore, we established the grey forecasting model, namely GM ( 1,5 ), for predicting the thermal stability of single diamonds with their intrinsic properties, which was then examined by a deviation-probability examination. The results illustrate that it is reasonable to take the Extrapolated Onset Temperature in DTA as the characteristic temperature for thermal stability (TS)of Ib -type synthetic single diamonds. The nitrogen content and grain shape regularity of diamonds are dominating factors. Likewise, grain size and compressive strength are minor factors. In addition, GM (1,5) can be used to predict the thermal stability of Ib-type synthetic single diamonds available. The precision rank of GM( 1,5 ) is‘GOOD’.

  2. Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin.

    Science.gov (United States)

    Pivovarova, Anastasia V; Khaitlina, Sofia Yu; Levitsky, Dmitrii I

    2010-09-01

    Differential scanning calorimetry was used to investigate the thermal unfolding of actin specifically cleaved within the DNaseI-binding loop between residues Met47-Gly48 or Gly42-Val43 by two bacterial proteases, subtilisin or ECP32/grimelysin (ECP), respectively. The results obtained show that both cleavages strongly decreased the thermal stability of monomeric actin with either ATP or ADP as a bound nucleotide. An even more pronounced difference in the thermal stability between the cleaved and intact actin was observed when both actins were polymerized into filaments. Similar to intact F-actin, both cleaved F-actins were significantly stabilized by phalloidin and aluminum fluoride; however, in all cases, the thermal stability of the cleaved F-actins was much lower than that of intact F-actin, and the stability of ECP-cleaved F-actin was lower than that of subtilisin-cleaved F-actin. These results confirm that the DNaseI-binding loop is involved in the stabilization of the actin structure, both in monomers and in the filament subunits, and suggest that the thermal stability of actin depends, at least partially, on the conformation of the nucleotide-binding cleft. Moreover, an additional destabilization of the unstable cleaved actin upon ATP/ADP replacement provides experimental evidence for the highly dynamic actin structure that cannot be simply open or closed, but rather should be considered as being able to adopt multiple conformations. © 2010 The Authors Journal compilation © 2010 FEBS.

  3. Analysis of Thermal Stability of Different Counter on 28nm FPGA

    DEFF Research Database (Denmark)

    Gupta, Daizy; Yadav, Amit; Hussain, Dil muhammed Akbar

    2016-01-01

    In this paper we are presenting the power analysis for thermal awareness of different counters. The technique we are using to do the analysis is based on 28 nm FPGA tech-nique. In this work during implementation on FPGA, we are going to analyze thermal stability of different counters in temperature...

  4. Analysis of Thermal Stability of Different Counter on 28nm FPGA

    DEFF Research Database (Denmark)

    Gupta, Daizy; Yadav, Amit; Hussain, Dil muhammed Akbar

    2016-01-01

    In this paper we are presenting the power analysis for thermal awareness of different counters. The technique we are using to do the analysis is based on 28 nm FPGA tech-nique. In this work during implementation on FPGA, we are going to analyze thermal stability of different counters in temperature...

  5. Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Jordan, Eric H.; Jiang, Chen; Roth, Jeffrey; Gell, Maurice

    2014-06-01

    The primary function of thermal barrier coatings (TBCs) is to insulate the underlying metal from high temperature gases in gas turbine engines. As a consequence, low thermal conductivity and high durability are the primary properties of interest. In this work, the solution precursor plasma spray (SPPS) process was used to create layered porosity, called inter-pass boundaries, in yttria-stabilized zirconia (YSZ) TBCs. IPBs have been shown to be effective in reducing thermal conductivity. Optimization of the IPB microstructure by the SPPS process produced YSZ TBCs with a thermal conductivity of 0.6 W/mK, an approximately 50% reduction compared to standard air plasma sprayed (APS) coatings. In preliminary tests, SPPS YSZ with IPBs exhibited equal or greater furnace thermal cycles and erosion resistance compared to regular SPPS and commercially made APS YSZ TBCs.

  6. Synthesis and exceptional thermal stability of Mg-based bimetallic nanoparticles during hydrogenation

    NARCIS (Netherlands)

    Krishnan, Gopi; Negrea, Raluca F.; Ghica, Corneliu; ten Brink, Gert H.; Kooi, Bart J.; Palasantzas, Georgios

    2014-01-01

    Here we report the extraordinary thermal stability of Mg rich bimetallic nanoparticles (NPs), which is important for hydrogen storage technology. The enhanced NP stability is accomplished because of two critical improvements: (i) no void development within NPs (nanoscale Kirkendall effect) during

  7. Synthesis and exceptional thermal stability of Mg-based bimetallic nanoparticles during hydrogenation

    NARCIS (Netherlands)

    Krishnan, Gopi; Negrea, Raluca F.; Ghica, Corneliu; ten Brink, Gert H.; Kooi, Bart J.; Palasantzas, Georgios

    2014-01-01

    Here we report the extraordinary thermal stability of Mg rich bimetallic nanoparticles (NPs), which is important for hydrogen storage technology. The enhanced NP stability is accomplished because of two critical improvements: (i) no void development within NPs (nanoscale Kirkendall effect) during th

  8. Thermal Behaviour of AP Based CMDB Propellants with Stabilizers

    Directory of Open Access Journals (Sweden)

    S. N. Asthana

    1992-07-01

    Full Text Available Stability test results and DTA studies indicate the superiority of molecular sieve (MS over zirconium silicate (ZrSiO/sub 4/ as the stabilizer for a composite modified double base (CMDB system. Shelf life as computed from autoignition test results was 30 years for MS-based composition which is almost double the life of ZrSiO/sub 4/, but approximately half the life of resorcinol-based composition which was used as a reference. Higher stabilizing effect of MS as compared to ZrSiO/sub 4/ has been explained on the basis of the presence of channels and cavities in its structure, which makes it an effective adsorbent for decomposition catalysing species. Poor stabilization capability of m-dinitrobenzene as compared to resorcinol suggests the catalytic involvement of acidic decomposition products of nitrate esters in autodecomposition process of CMDB propellants.

  9. Epoxidized Vegetable Oils Plasticized Poly(lactic acid Biocomposites: Mechanical, Thermal and Morphology Properties

    Directory of Open Access Journals (Sweden)

    Buong Woei Chieng

    2014-10-01

    Full Text Available Plasticized poly(lactic acid PLA with epoxidized vegetable oils (EVO were prepared using a melt blending method to improve the ductility of PLA. The plasticization of the PLA with EVO lowers the Tg as well as cold-crystallization temperature. The tensile properties demonstrated that the addition of EVO to PLA led to an increase of elongation at break, but a decrease of tensile modulus. Plasticized PLA showed improvement in the elongation at break by 2058% and 4060% with the addition of 5 wt % epoxidized palm oil (EPO and mixture of epoxidized palm oil and soybean oil (EPSO, respectively. An increase in the tensile strength was also observed in the plasticized PLA with 1 wt % EPO and EPSO. The use of EVO increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The SEM micrograph of the plasticized PLA showed good compatible morphologies without voids resulting from good interfacial adhesion between PLA and EVO. Based on the results of this study, EVO may be used as an environmentally friendly plasticizer that can improve the overall properties of PLA.

  10. Thermal expansion behavior of co-extruded wood-plastic composites with glass-fiber reinforced shells

    Directory of Open Access Journals (Sweden)

    Runzhou Huang

    2012-11-01

    Full Text Available Coextruded wood-plastic composites (WPCs with glass-fiber (GF filled shells were manufactured, and their thermal expansion behavior was studied. A three-dimensional finite element model (FEM considering differential properties of both shell and core layers was developed to predict the linear coefficient of thermal expansion (LCTE of the material. It was shown that the LCTE values varied with composite structure and composition (i.e., core-shell thicknesses and materials. The use of GF-filled shells helped lower overall composite LCTE values. The imbalance of shell and core LCTE, and their moduli led to complex stress fields within a given composite system. The FEM predicted a trend of LCTE change with varying composite structures, which was in good agreement with the experimental data. This study provides for the first time a finite element modeling technique to optimize raw material composition and composite structure for optimizing thermal expansion behavior of co-extruded WPCs.

  11. Effect of Filler Concentration on Thermal Stability of Vinyl Copolymer Elastomer (VCE) Composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dali [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hubbard, Kevin Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devlin, David James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henderson, Kevin C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pacheco, Robin Montoya [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-06

    To study the thermal stability of vinyl copolymer elastomer (VCE) in its composite form, systematic TGA characterizations were conducted in both nonisothermal and isothermal modes. The effects of filler concentration on the aging behaviors of the VCE/filler composites were investigated under nitroplasticizer (NP) environment. FTIR characterization was used to probe the structural changes in the VCE polymer before and after the thermal treatments. This study suggests that the filler concentration significantly deteriorates the thermal stability of NP at a moderate temperature (< 70 °C). The degradation of NP, in turn, accelerates the aging process of the VCE polymer in its composite form.

  12. Thermal stability of n-dodecane : experiments and kinetic modelling

    CERN Document Server

    Herbinet, Olivier; Battin-Leclerc, Frédérique; Fournet, René

    2007-01-01

    The thermal decomposition of n-dodecane, a component of some jet fuels, has been studied in a jet-stirred reactor at temperatures from 793 to 1093 K, for residence times between 1 and 5 s and at atmospheric pressure. Thermal decomposition of hydrocarbon fuel prior the entrance in the combustion chamber is an envisaged way to cool the wall of hypersonic vehicles. The products of the reaction are mainly hydrogen, methane, ethane, 1,3-butadiene and 1-alkenes from ethylene to 1-undecene. For higher temperatures and residence times acetylene, allene, propyne, cyclopentene, 1,3-cyclopentadiene and aromatic compounds from benzene to pyrene through naphthalene have also been observed. A previous detailed kinetic model of the thermal decomposition of n-dodecane generated using EXGAS software has been improved and completed by a sub-mechanism explaining the formation and the consumption of aromatic compounds.

  13. Phase Behavior, Thermal Stability and Rheological Properties of PPEK/PC Blends

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phase behavior, thermal stability and rheological properties of the blends of poly(phthalazinone ether ketone) (PPEK)with bisphenol-A polycarbonate (PC) prepared by solution coprecipitation were studied using differential scanning calorimetry (DSC), Frourier-Transform IR spectroscopy (FT-IR), thermogravimetric analysis (TGA) and capillary rheometer. The DSC results indicated that PPEK/PC blends are almost immiscible in full compositions. FT-IR investigation showed that there were no apparent specific interactions between the constituent polymers. The blends keep excellent thermal stability and the addition of PC degrades the thermal stability of blends to some degree. The thermal degradation processes of the blends are much similar to that of PC. The studies on rheological properties of blends show that blending PPEK with PC is beneficial to reducing the melt viscosity and improving the appearance of PPEK.

  14. Enhanced thermal stability of monodispersed silver cluster arrays assembled on block copolymer scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Xu, C H; Chen, X; Liu, Y J; Xie, B; Han, M [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Song, F Q; Wang, G H, E-mail: sjhanmin@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2010-05-14

    Triblock copolymer poly(styrene-b-butadiene-b-styrene) (SBS) films with long-range ordered self-assembled nanopatterns are used as templates to selectively adsorb soft-landing silver clusters. Closely spaced cluster arrays with high monodispersity are formed through the confinement of the block copolymer scaffolds, and show a much enhanced thermal stability as compared with the cluster assemblies on the surfaces of covalent amorphous solids, or even on the disordered SBS films. Their morphologies are barely influenced by long time thermal annealing at a temperature as high as 180 deg. C, while in the latter case intense aggregations and coalescences of silver clusters are commonly observed upon annealing. The different thermal stabilities of the cluster assemblies also induce different evolutions of their optical extinction spectra under annealing. This promises a simple way to control the monodispersity and thermal stability of metal cluster assembly via self-assembled block copolymer template.

  15. Effects of Composition and Thermal Cycle on Transformation Behaviors, Thermal Stability and Mechanical Properties of CuAlAg Alloy

    Institute of Scientific and Technical Information of China (English)

    Yunqing MA; Chengbao JIANG; Lifen DENG; Huibin XU

    2003-01-01

    The phase transformation behavior, mechanical properties, and the thermal stability of CuAlAg alloy were studied andminor rare earth (0.1 wt pct La+Ce) was added to improve the mechanical property of the studied alloy. It was foundthat Ag addition in the CuAl binary alloy can improve the stability of martensitic transformation and high Al contentleads to the disappearing of martensitic transformation. The tensile strength and strain of the Cu-10.6Al-5.8Ag (wtpct) alloy were measured to be 383.5 MPa and 0.86%, respectively. With rare earth addition, the tensile strainincreased from 0.86% to 1.47%. The CuAlAg alloy did not exhibit martensitic transformation on the second heatingprocess. Its poor thermal stability still needs to be improved.

  16. Analysis of protein stability and ligand interactions by thermal shift assay.

    Science.gov (United States)

    Huynh, Kathy; Partch, Carrie L

    2015-02-02

    Purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in a 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as an initial low-cost screen to discover new protein-ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for small-scale, high-throughput thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye.

  17. Multiscale Crystal Plasticity Modeling Considering Nucleation of Dislocations Based on Thermal Activation Process on Ultrafine-grained Aluminum

    Science.gov (United States)

    Aoyagi, Y.

    2017-05-01

    In this study, a crystal plasticity model expressing the behavior of the dislocation source and the mobile dislocations is proposed by considering a thermal activation process of dislocations. In order to predict the variation of critical resolved shear stress due to grain boundaries, mobile dislocations, or dislocation sources, information on these crystal defects is introduced into a hardening law of crystal plasticity. The crystal orientation and shape of ultrafine-grained (UFG) aluminum produced by accumulative roll bonding processes are measured by electron backscatter diffraction (EBSD). Mechanical properties of the UFG aluminum are estimated using tensile test and indentation test. Results obtained by EBSD are introduced into a computational model. Finite element simulation for polycrystal of aluminum investigates the effect of microstructure on mechanical properties of UFG aluminum.

  18. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaolin, E-mail: shirleyqiu2009@gmail.com [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Lu, Lixin; Wang, Ju [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Tang, Guoyi [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2015-11-20

    Highlights: • Microencapsulation of octadecane and paraffin by crosslinked poly(lauryl methacrylate). • Octadecane microcapsules have a melting enthalpy of about 118 J g{sup −1}. • Weight loss temperatures of the microcapsules were increased by 67 °C and 28 °C. • Phase change enthalpies decreased by around 10 wt% after 500 thermal cycles. • Foams with microcapsules can be applied for passive temperature control. - Abstract: Microencapsulation of n-octadecane or paraffin with poly(lauryl methacrylate) (PLMA) shell was performed by a suspension-like polymerization. The polymer shell was crosslinked by pentaerythritol tetraacrylate (PETRA). The surface morphologies of microcapsules were investigated by scanning electron microscopy (SEM). Phase change properties, thermal reliabilities and thermal stabilities of microcapsules were determined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The n-octadecane microcapsule exhibits higher melting enthalpy (118.0 J g{sup −1}) and crystallization enthalpy (108.3 J g{sup −1}) compared with the paraffin microcapsule. The thermal resistant temperatures were enhanced by more than 25 °C when n-alkanes were microencapsulated by PLMA. The PCM contents of microcapsules decreased by less than 4 wt% and 6 wt% after 500 and 1000 thermal cycles, respectively. Heat-up experiments indicated that microcapsule-treated foams exhibited upgraded thermal regulation capacities. Consequently, microencapsulated n-octadecane or paraffin with PLMA as shell possesses good potentials for heat storage and thermal regulation.

  19. Stabilization of immobilized glucose oxidase against thermal inactivation by silanization for biosensor applications.

    Science.gov (United States)

    Sarath Babu, V R; Kumar, M A; Karanth, N G; Thakur, M S

    2004-05-15

    An important requirement of immobilized enzyme based biosensors is the thermal stability of the enzyme. Studies were carried out to increase thermal stability of glucose oxidase (GOD) for biosensor applications. Immobilization of the enzyme was carried out using glass beads as support and the effect of silane concentration (in the range 1-10%) during the silanization step on the thermal stability of GOD has been investigated. Upon incubation at 70 degrees C for 3h, the activity retention with 1% silane was only 23%, which increased with silane concentration to reach a maximum up to 250% of the initial activity with 4% silane. Above this concentration the activity decreased. The increased stability of the enzyme in the presence of high silane concentrations may be attributed to the increase in the surface hydrophobicity of the support. The decrease in the enzyme stability for silane concentrations above 4% was apparently due to the uneven deposition of the silane layer on the glass bead support. Further work on thermal stability above 70 degrees C was carried out by using 4% silane and it was found that the enzyme was stable up to 75 degrees C with an increased activity of 180% after 3-h incubation. Although silanization has been used for the modification of the supports for immobilization of enzymes, the use of higher concentrations to stabilize immobilized enzymes is being reported for the first time.

  20. Thermal stability of the C106 dye in robust electrolytes

    DEFF Research Database (Denmark)

    Lund, Torben; Phuong, Nguyen Tuyet; Pechy, Peter

    of the particles were prepared in electrolyte mixture B. The solutions were thermally treated at 80 ◦C for 0-2000 hours followed by dye extraction and analysis by HPLC coupled to UV/Vis and electro spray mass spectrometry [2]. Figure 1 shows the concentration profiles of C106 samples prepared under ambient...

  1. Thermal Stability Influence of the Enclosure Structure on the Building’s Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Zaborova Daria

    2016-01-01

    Full Text Available Thermal stability of the enclosure structures is one of the most important objective in the building design. Thermal processes in the wall depend not only on the internal and external air temperature, but also on many other factors. Therefore, complexity of this process make heat conservation in the room to be an actual problem. This paper presents dependence between thermal stability of the enclosure structure and its design. It was shown that thermophysical characteristics of materials directly affect the thermal processes in the wall. For the research, three frequently used types of enclosure structure in Russia were taken. For each wall was found the average temperature and cooling time. As a result, it was found that the higher values of thermal conductivity, specific heat and material density are, the higher average temperature of the wall is.

  2. Iron-stabilized nanocrystalline ZrO{sub 2} solid solutions: Synthesis by combustion and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Legorreta Garcia, Felipe [Universite de Toulouse, CIRIMAT, CNRS-UPS-INP, Universite Paul-Sabatier, 31062 Toulouse cedex 9 (France); Resende, Valdirene Gonzaga de; De Grave, Eddy [NUMAT, Department of Subatomic and Radiation Physics, University of Ghent, Proeftuinstraat 86, B-9000 Gent (Belgium); Peigney, Alain; Barnabe, Antoine [Universite de Toulouse, CIRIMAT, CNRS-UPS-INP, Universite Paul-Sabatier, 31062 Toulouse cedex 9 (France); Laurent, Christophe, E-mail: laurent@chimie.ups-tlse.fr [Universite de Toulouse, CIRIMAT, CNRS-UPS-INP, Universite Paul-Sabatier, 31062 Toulouse cedex 9 (France)

    2009-06-03

    The synthesis of Fe{sup 3+}-stabilized zirconia by the nitrate/urea combustion route was investigated. Using several characterization techniques, including X-ray diffraction, field-emission-gun scanning electron microscopy and notably Moessbauer spectroscopy, it was possible to determine the appropriate amount of urea that allows to obtain a totally stabilized Zr{sub 0.9}Fe{sub 0.1}O{sub 1.95} solid solution. The nanocrystalline zirconia solid solution is mostly tetragonal, but the presence of the cubic phase could not be ruled out. An in-depth study of the thermal stability in air showed that the Fe{sup 3+} solubility in the stabilized solid solution starts to decrease at about 875 deg. C which results in the formation of hematite (possibly containing some Zr{sup 4+}) at the surface of the zirconia grains and further provokes the progressive transformation into the monoclinic zirconia phase.

  3. Sterculia striata seed kernel oil: Characterization and thermal stability

    Directory of Open Access Journals (Sweden)

    Oliveira Cavalheiro, José Marcelino

    2008-06-01

    Full Text Available The objective of the present work was to characterize sterculia seed kernel oil. The chemical composition of the seeds, physicochemical properties as well as the fatty acid composition of the kernel oil was determined. The chemical composition of kernel flour presented about 25.8% lipid content. The physicochemical parameters such as acid, iodine, peroxide and saponification values were 0.82 (% as oleic acid, 69.2 (g iodine/100 g oil, 4.20 (m eq./kg and 136.1 (mg. KOH/g oil, respectively. With respect to fatty acid composition, the oil contained 36.2, 43.7 and 10.9% saturated, monounsaturated and polyunsaturated fatty acids, respectively. Palmitic acid (31.9%, oleic acid (41.7% and linoleic acid (10.73% were the principal saturated, monounsaturated and polyunsaturated fatty acids. Two cyclopropanoid fatty acids i.e. sterculic and malvalic acid were identified at a concentration of 5.3 and 2.3%, respectively. With regards to the thermal stability of the oil, a thermogravimetric analysis (TGA has shown that the oil was stable until about 284 °C, above that the oil started loosing mass, while a differential thermogravimetric analysis (DTGA revealed three stages of degradation with an increase in temperature. These stages corresponded to the degradation of polyunsaturated, monounsaturated and saturated fatty aids. The Differential Scanning Calorimetric (DSC analysis showed the existence of two exothermic events of energy transition, one of which is related to the oxidation reactions and another to the decomposition of the oil. Exothermic transitions in the oil were initiated at a temperature (Ti of 287.79 °C, and terminated at 347.81 °C, with an enthalpy variation of 11.69 joules.g–1 and at initial temperature (Ti of 384.87 °C, peak temperature (Tp 415.71 °C, final temperature (Tf 448.9 °C and an enthalpy of 200.83 Joules. G–1El objetivo de este trabajo fue la caracterización del aceite de almendra de la semilla de

  4. Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells

    NARCIS (Netherlands)

    Neugebauer, H.; Brabec, C.; Hummelen, J.C.; Sariciftci, N.S.

    2000-01-01

    Degradation studies of poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene) (MDMO-PPV), fullerenes ((6,6)-phenyl C-61-butyric acid methyl ester (PCBM) and C-60), and mixtures, which are the photoactive components in plastic solar cells, are shown. The degradation processes of the indivi

  5. Thermal treating as a tool to produce plastic pellets based on Eudragit RS PO and RL PO aimed for tableting.

    Science.gov (United States)

    Abbaspour, M R; Sadeghi, F; Afrasiabi Garekani, H

    2007-08-01

    A 3(2) full-factorial design was used for preparation of pellets using extrusion-spheronization technique. Independent variables were %ibuprofen (40, 60, 80) and %Eudragit RS PO/RL PO (0, 50, 100). In all formulations 3% w/w PVP K30 and 10% Avicel PH101 were also used. The pellets were cured in oven at 60 degrees C for 24h. The evaluated responses were crushing strength or yield point, elastic modulus and mean dissolution time (MDT) of pellets. The cured pellets were also compressed at 15kN compaction force and then observed under scanning electron microscope. It was shown that the cured pellets containing 40% or 60% drug exhibited a plastic deformation without any fracture under mechanical tests. The curing process resulted in significant decrease in the elastic modulus of the pellets. The SEM of the compressed pellets were also confirmed the plastic behavior of these pellets. The transition of pellet behavior from brittle to plastic upon curing was due to shift of Eudragit structure from glassy to rubbery state which was supported by DSC studies. However pellets with 80% drug showed brittle properties even after curing due to presence of less amount of Eudragit in their structure. Increasing the ratio of Eudragit RS in the pellets decreased the yield point and elastic modulus of cured pellets containing 40% or 60% drug, indicating more plastic behavior of these pellets. This was attributed to lower Tg of Eudragit RS than Eudragit RL. The curing process also retarded drug release from pellets and increased MDT. Increasing the ratio of Eudragit RS in the pellets increased MDT in cured pellets containing 40% or 60% drug but had no effect in pellets with 80% drug. Overall the results of this study revealed that thermal treating is a proper tool to produce plastic ibuprofen pellets based on Eudragit RS PO and Eudragit RL PO.

  6. Factors affecting the thermal shock behavior of yttria stabilized hafnia based graphite and tungsten composites.

    Science.gov (United States)

    Lineback, L. D.; Manning, C. R.

    1971-01-01

    Hafnia-based composites containing either graphite or tungsten were investigated as rocket nozzle throat inserts in solid propellant rocket engines. The thermal shock resistance of these materials is considered in terms of macroscopic thermal conductivity, thermal expansion, modulus of elasticity, and compressive fracture stress. The effect of degree of hafnia stabilization, density, and graphite or tungsten content upon these parameters is discussed. The variation of the ratio of elastic modulus to compressive fracture stress with density and its effect upon thermal shock resistance of these materials are discussed in detail.

  7. High Temperature Thermal Properties of Columnar Yttria Stabilized Zirconia Thermal Barrier Coating Performed by Suspension Plasma Spraying

    Science.gov (United States)

    Bernard, B.; Schick, V.; Remy, B.; Quet, A.; Bianchi, L.

    2016-09-01

    Performance enhancement of gas turbines is a main issue for the aircraft industry. Over many years, a large part of the effort has been focused on the development of more insulating Thermal Barrier Coatings (TBCs). In this study, Yttria Stabilized Zirconia (YSZ) columnar structures are processed by Suspension Plasma Spraying (SPS). These structures have already demonstrated abilities to get improved thermal lifetime, similarly to standard YSZ TBCs performed by EB-PVD. Thermal diffusivity measurements coupled with differential scanning calorimetry analysis are performed from room temperature up to 1100 °C, first, on HastelloyX substrates and then, on bilayers including a SPS YSZ coating. Results show an effective thermal conductivity for YSZ performed by SPS lower than 1 W.m-1K-1 whereas EB- PVD YSZ coatings exhibit a value of 1.5 W.m-1K-1.

  8. SEMICONDUCTOR DEVICES Design consideration of the thermal and electro stability of multi-finger HBTs based on different device structures

    Science.gov (United States)

    Yanhu, Chen; Huajun, Shen; Xinyu, Liu; Hui, Xu; Ling, Li; Huijun, Li

    2010-10-01

    The thermal and electro stability of multi-finger heterojunction bipolar transistors (HBTs) with different structures were analyzed and discussed simultaneously. The thermal stability of the devices with different layout structures was assessed by the DC-IV test and thermal resistance calculation. Their electro stability was assessed by the calculation of the stability factor K based on the S parameter of the HBT. It is found that HBTs with higher thermal stability are prone to lower electro stability. The trade-off relationship between the two types of stability was explained and discussed by using a compact K-factor analytic formula which is derived from the small signal equivalent circuit model of HBT. The electro stability of the device with a thermal ballasting resistor was also discussed, based on the analytic formula.

  9. Thermal stability of a highly-deformed warm-rolled tungsten plate in the temperature range 1100 °C to 1250 °C

    DEFF Research Database (Denmark)

    Alfonso Lopez, Angel; Juul Jensen, Dorte; Luo, G.-N.

    2015-01-01

    Pure tungsten is considered as armor material for the most critical parts of fusion reactors (i.e. the divertor and the first wall), among other reasons due to its high melting point (3422 °C) and recrystallization temperature. The thermal stability of a pure tungsten plate warm-rolled to a high...... suggest that large plastic deformations (e.g. applied during shaping) are only suitable to produce tungsten components to be used at relatively low temperatures (up to 900 °C for a 2 years lifespan). Higher operation temperatures will lead to fast degradation of the microstructure during operation....

  10. Studies on Thermal Stability and Fluid Property of PVC Filled with Hydrotalcite

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Hydrotalcite can act as a co-stabilizer with other main stabilizer for poly(vinyl chloride)(PVC). The thermal stability and fluid property of PVC filled with hydrotalcite surface-treated with titanate and silane were studied in this work. Organic Sn is a main stabilizer and hydrotalcite is a stabilizing assistant. The stability of the PVC resin mixed with organic Sn and hydrotalcite is better than that of the PVC resin mixed with organic Sn alone. It is shown that the PVC resin filled with hydrotalcite possesses a better static and dynamic heat stability. Moreover, hydrotalcite can improve the fluid property of PVC, which is advantageous to the processing of PVC, and the optimum content of hydrotalcite is about 1%-2%(mass fraction).

  11. Solution and solid state thermal stability of morpholinedithiocarbamates

    Directory of Open Access Journals (Sweden)

    Antunes Patrícia A.

    2001-01-01

    Full Text Available Thermogravimetric and differential scanning calorimetric investigation of the thermal behavior of NH4+, Mn2+, Co2+, Ni2+ e Cu2+ morpholinedithiocarbamates were performed under nitrogen and air atmospheres in order to investigate the effect, in the thermal decomposition, of the presence of an oxygen as the heteroatom in the amine ring. Decomposition products were identified by their X-ray diffraction patterns. Metal sulfites and oxides were the major residues under nitrogen and air atmospheres, respectively. Spectrophotometric measurements were used to estimate the pKa =3.56 for the morpholinedithiocarbamic acid at 0.50 mol dm-3 ionic strength (NaClO4 at 25.0 °C and kinetic parameters of decomposition at different pH values (k lim = 0.14 ± 0.04 s-1 e t½ lim = 5.3 ± 1.2 s.

  12. Thermal stability of butter oils produced from sheep’s non-pasteurized and pasteurized milk

    Directory of Open Access Journals (Sweden)

    FLAVIA POP

    Full Text Available The physical and chemical characteristics and thermal stability of butter oil produced from non-pasteurized and pasteurized sheep’s milk were studied. Thermal stability of samples was estimated by using the accelerated shelf-life testing method. Samples were stored at 50, 60 and 70oC in the dark and the reaction was monitored by measuring peroxide, thiobarbituric acid and free fatty acid values. The peroxide and thiobarbituric acid values increased as the temperature increased. The increase of acid values of the two samples was not significant. A slight increase in free fatty acid value showed that hydrolytic reactions were not responsible for the deterioration of butter oil samples in thermal stability studies. When compared, butter oil produced from pasteurized sheep’s milk has higher thermal stability than butter oil produced from non-pasteurized sheep’s milk. Although butter oil produced from non-pasteurized milk was not exposed to any heat treatment, the shelf-life of this product was lower than the shelf-life of butter oil produced from pasteurized sheep’s milk. Therefore, heat treatment for pasteurization did not affect the thermal stability of butter oil.

  13. Effect of various nanofillers on thermal stability and degradation kinetics of polymer nanocomposites.

    Science.gov (United States)

    Choudhury, Anusuya; Bhowmick, Anil K; Ong, Christopher; Soddemann, Matthias

    2010-08-01

    Structure of nanofillers and their subsequent interaction with a polymer is very important in determining thermal stability of polymer nanocomposite. In this paper, we tried to correlate structure of various 0, 1 and 2 dimensional nanofillers with the thermal stability of hydrogenated nitrile butadiene rubber (HNBR) nanocomposites. Organically modified and unmodified layered silicates such as montmorillonite (Cloisite Na+, Cloisite 30B and Cloisite 15A), rod-like fibrous filler (sepiolite) and spherical nanoparticles (nanosilica) were chosen for this purpose. A significant improvement in thermal stability (obtained by thermogravimeric analysis and differential scanning calorimetry) was observed for silica-filled nanocomposites. However, the activation energy of the nanocomposites calculated by different kinetic methods (both non-isothermal and isothermal methods) was found to be significantly high for sepiolite, 30B and silica-filled nanocomposites. The results were explained with the help of structure of the nanofillers, their interaction with the elastomer and the subsequent dispersion, as measured by X-ray diffraction, transmission electron microscopy and atomic force microscopy. From these analyses it was concluded that organically modified montmorillonite, sepiolite and nanosilica increase the thermal stability of the nanocomposite to a great extent due to the interaction of the reactive groups on the surface of these fillers with the polymer and high thermal stability of these inorganic fillers. Finally, degradation mechanism of HNBR in presence of the nanofillers at severe operating temperatures was investigated with the help of FTIR spectroscopy.

  14. Thermal stability of Al-Cr-N hard coatings

    Energy Technology Data Exchange (ETDEWEB)

    Willmann, H. [Materials Center Leoben, Franz-Josef Strasse 13, 8700 Leoben (Austria) and IFM Material Physics, Division of Thin Film Physics, Linkoeping University, 58183 Linkoeping (Sweden)]. E-mail: herbert.willmann@unileoben.ac.at; Mayrhofer, P.H. [Department of Physical Metallurgy and Materials Testing, University of Leoben, 8700 Leoben (Austria); Materials Chemistry, RWTH-Aachen, 52074 Aachen (Germany); Persson, P.O.A. [IFM Material Physics, Division of Thin Film Physics, Linkoeping University, 58183 Linkoeping (Sweden); FEI Company, 5651 GG Eindhoven (Netherlands); Reiter, A.E. [Balzers Ltd., 9496 Balzers (Liechtenstein); Hultman, L. [IFM Material Physics, Division of Thin Film Physics, Linkoeping University, 58183 Linkoeping (Sweden); Materials Chemistry, RWTH-Aachen, 52074 Aachen (Germany); Mitterer, C. [Department of Physical Metallurgy and Materials Testing, University of Leoben, 8700 Leoben (Austria); Christian Doppler Laboratory for Advanced Hard Coatings, University of Leoben, 8700 Leoben (Austria)

    2006-06-15

    Heat treatment of arc-evaporated cubic Al{sub 0.7}Cr{sub 0.3}N hard coatings in Ar up to 1450 deg. C causes precipitation of AlN. The Cr-enriched matrix transforms into Cr via Cr{sub 2}N under N{sub 2} release. These reactions are investigated by simultaneous thermal analysis, mass spectrometry, X-ray diffraction, and analytical transmission electron microscopy.

  15. Thermal Decomposition of RP-2 with Stabilizing Additives

    Science.gov (United States)

    2010-04-01

    the reactors were removed from the thermostatted block and immediately cooled in room-temperature water . The thermally stressed fuel was then...34 Supercritical Fuel Deposition Mechanisms," Industrial & Engineering Chemistry Research 32, 3117-3122 (1993). 22. MacDonald, M.E., Davidson, D.F...H.H., and Hatcher, P.G., "Pyrolytic Degradation Studies of a Coal -Derived and a Petroleum-Derived Aviation Jet Fuel," Energy & Fuels 7, 234-243 (1993

  16. Thermal stability of zeolitic tuff from Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bish, D.L.

    1990-04-01

    Thermal models of the proposed repository at Yucca Mountain, Nevada, suggest that rocks near the proposed host rock will experience elevated temperatures for at least 1000 yrs. In order to assess the effects of elevated temperatures on zeolites clinoptilolite and mordenite were investigated using a combination of high-temperature X-ray powder diffraction, thermogravimetric and differential scanning calorimetric analysis, and long-term heating experiments. 13 refs., 7 figs.

  17. Thermal stability test and analysis of a 20-actuator bimorph deformable mirror

    Institute of Scientific and Technical Information of China (English)

    Ning Yu; Zhou Hong; Yu Hao; Rao Chang-Hui; Jiang Wen-Han

    2009-01-01

    One of the important characteristic of adaptive mirrors is the thermal stability of surface flatness. In this paper, the thermal stability from 13℃ to 25℃ of a 20-actuator bimorph deformable mirror is tested by a Shack-Hartmann wavefront sensor. Experimental results show that, the surface P-V of bimorph increases nearly linearly with ambient temperature. The ratio is 0.11 μm/℃ and the major component of surface displacement is defocused, compared with which, astigmatism, coma and spherical aberration contribute very small. Besides, a finite element model is built up to analyse the influence of thickness, thermal expansion coefficient and Young's modulus of materials on thermal stability. Calculated results show that bimorph has the best thermal stability when the materials have the same thermal expansion coefficient. And when the thickness ratio of glass to PZT is 3 and Young's modulus ratio is approximately 0.4, the surface instability behaviour of the bimorph manifests itself most severely.

  18. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries

    Science.gov (United States)

    Börner, M.; Friesen, A.; Grützke, M.; Stenzel, Y. P.; Brunklaus, G.; Haetge, J.; Nowak, S.; Schappacher, F. M.; Winter, M.

    2017-02-01

    Established safety of lithium ion batteries is key for the vast diversity of applications. The influence of aging on the thermal stability of individual cell components and complete cells is of particular interest. Commercial 18650-type lithium ion batteries based on LiNi0.5Co0.2Mn0.3O2/C are investigated after cycling at different temperatures. The variations in the electrochemical performance are mainly attributed to aging effects on the anode side considering the formation of an effective solid-electrolyte interphase (SEI) during cycling at 45 °C and a thick decomposition layer on the anode surface at 20 °C. The thermal stability of the anodes is investigated including the analysis of the evolving gases which confirmed the severe degradation of the electrolyte and active material during cycling at 20 °C. In addition, the presence of metallic lithium deposits could strongly affect the thermal stability. Thermal safety tests using quasi-adiabatic conditions show variations in the cells response to elevated temperatures according to the state-of-charge, i.e. a reduced reactivity in the discharged state. Furthermore, it is revealed that the onset of exothermic reactions correlates with the thermal stability of the SEI, while the thermal runaway is mainly attributed to the decomposition of the cathode and the subsequent reactions with the electrolyte.

  19. Effect of Pressure on Thermal Stability and Decomposition of KDP Crystal

    Institute of Scientific and Technical Information of China (English)

    DING Jian-Xu; WANG Tao; WANG Sheng-Lai; CUI De-Liang; MU Xiao-Ming; XU Xin-Guang

    2011-01-01

    @@ Effect of pressure on thermal behavior of KDP crystals is investigated by using the in-situ infrared reflective spectra.Compared with that under normal atmosphere, the onset temperature of decomposition under pressure of 1 MPa is improved to from 210℃ to 213℃, suggesting that the thermal stability of KDP is enhanced.Under pressure of 2 MPa, the thermal stability is deteriorated and KDP begins to decompose at 183℃.Under normal atmosphere KDP decomposes in route of translating to K4P2O7 firstly, and then to KPO3.Under pressures of 1 MPa and 2MPa, KDP translates to KPO3 directly without any other polymeric intermediates.%Effect of pressure on thermal behavior of KDP crystals is investigated by using the in-situ infrared reflective spectra.Compared with that under normal atmosphere, the onset temperature of decomposition under pressure of 1 MPa is improved to from 210 ℃ to 213℃, suggesting that the thermal stability of KDP is enhanced.Under pressure of 2 MPa, the thermal stability is deteriorated and KDP begins to decompose at 183℃.Under normal atmosphere KDP decomposes in route of translating to K4P2O7 firstly, and then to KPO3.Under pressures of 1 MPa and 2 MPa, KDP translates to KPO3 directly without any other polymeric intermediates.

  20. Comprehensive transient-state study for CARMENES NIR high-thermal stability

    Science.gov (United States)

    Becerril, Santiago; Sánchez, Miguel A.; Cárdenas, M. C.; Rabaza, Ovidio; Ramón, Alejandro; Abril, Miguel; Costillo, Luis P.; Morales, Rafael; Rodríguez, Alicia; Amado, Pedro J.

    2010-07-01

    CARMENES has been proposed as a next-generation instrument for the 3.5m Calar Alto Telescope. Its objective is finding habitable exoplanets around M dwarfs through radial velocity measurements (m/s level) in the near-infrared. Consequently, the NIR spectrograph is highly constraint regarding thermal/mechanical requirements. Indeed, the requirements used for the present study limit the thermal stability to +/-0.01K (within year period) over a working temperature of 243K in order to minimise radial velocity drifts. This can be achieved by implementing a solution based on several temperature-controlled rooms (TCR), whose smallest room encloses the vacuum vessel which houses the spectrograph's optomechanics. Nevertheless, several options have been taken into account to minimise the complexity of the thermal design: 1) Large thermal inertia of the system, where, given a thermal instability of the environment (typically, +/-0.1K), the optomechanical system remains stable within +/-0.01K in the long run; 2) Environment thermal control, where thermal stability is ensured by controlling the temperature of the environment surrounding the vacuum vessel. The present article also includes the comprehensive transient-state thermal analyses which have been implemented in order to make the best choice, as well as to give important inputs for the thermal layout of the instrument.

  1. The development of thermal nanoprobe methods as a means of characterizing and mapping plasticizer incorporation into ethylcellulose films.

    Science.gov (United States)

    Meng, Jin; Levina, Marina; Rajabi-Siahboomi, Ali R; Round, Andrew N; Reading, Mike; Craig, Duncan Q M

    2012-08-01

    The phase composition and distribution of ethylcellulose (EC) films containing varying amounts of the plasticizer fractionated coconut oil (FCO) were studied using a novel combination of thermal and mapping approaches. The thermal and thermomechanical properties of films containing up to 30% FCO were characterized using modulated temperature differential scanning calorimetry (MTDSC) and dynamic mechanical analysis (DMA). Film surfaces were mapped using atomic force microscopy (AFM; topographic and pulsed force modes) and the composition of specific regions identified using nanothermal probes. Clear evidence of distinct conjugate phases was obtained for the 20-30% FCO/EC film systems. We suggest a model whereby the composition of the distinct phases may be estimated via consideration of the glass transition temperatures observed using DSC and DMA. By combining pulsed force AFM and nano-thermal analysis we demonstrate that it is possible to map the two separated phases. In particular, the use of thermal probes allowed identification of the distinct regions via localized thermomechanical analysis, whereby nanoscale probe penetration is measured as a function of temperature. The study has indicated that by using thermal and imaging techniques in conjunction it is possible to both identify and map distinct regions in binary films.

  2. Thermal stability and mechanical properties of the TiCuZrPd glasses with 10, 14 and 20 at.% Pd

    Energy Technology Data Exchange (ETDEWEB)

    Sypien, Anna, E-mail: a.sypien@imim.pl [Institute of Metallurgy and Materials Science PAS, Reymonta 25 St., 30-059 Kraków (Poland); Czeppe, Tomasz, E-mail: t.czeppe@imim.pl [Institute of Metallurgy and Materials Science PAS, Reymonta 25 St., 30-059 Kraków (Poland); Garzel, Grzegorz, E-mail: g.garzel@imim.pl [Institute of Metallurgy and Materials Science PAS, Reymonta 25 St., 30-059 Kraków (Poland); Litynska-Dobrzynska, Lidia, E-mail: l.litynsk@imim.pl [Institute of Metallurgy and Materials Science PAS, Reymonta 25 St., 30-059 Kraków (Poland); Latuch, Jerzy, E-mail: jlatuch@inmat.pw.edu.pl [Warsaw University of Technology, Warsaw (Poland); Chinh, N.Q., E-mail: chinh@metal.elte.hu [Eötvös University, Budapest (Hungary)

    2014-12-05

    Highlights: • Metallic glasses Ti{sub 40}Zr{sub 10}Cu{sub 40−x}Pd{sub 10+x} with x = 0, 4 and 10, were investigated. • The DSC, TMA, Hv{sub 10} and depth-sensing indentation method were applied. • The TMA was performed on ribbons in the modulated constant load tensile mode. • Thermal evolution of the materials ductility was identified by dL/dTL{sub 0} function. • High macro- and nanohardness increasing after crystallization were determined. - Abstract: Metallic glasses of the composition Ti{sub 40}Zr{sub 10}Cu{sub 40−x}Pd{sub 10+x} with x = 0, 4 and 10, were investigated from the point of view of the thermal stability, crystallization and hardness. The samples in the form of melt spun ribbons and rods 2.8 mm in diameter, were characterized by differential scanning calorimetry (DSC), Thermo-Mechanical Analysis (TMA), macro-Vickers hardness (MHv{sub 10}) and depth-sensing indentation measurements. The TMA experiments were performed on ribbons in the modulated constant load tensile mode. The processes of relaxation, glass transition and crystallization were observed with DSC and transmission electron microscopy (TEM). The relative length changes rates as a function of temperature (dL/dTL{sub 0}) showed influence of the thermal stability of the amorphous phase on the materials ductility. High ductility was available in the wide range of temperature including primary crystallization range. Vickers-macrohardness of BMG was about 5500 MPa and nanohardness was about 9300 MPa, increasing after crystallization completion by about 18%. At small nanoindentation rates deformed amorphous phase revealed local plastic instability resulting from the shear bands formation.

  3. The thermal stability of nanocrystalline copper cryogenically milled with tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Atwater, Mark A., E-mail: maatwat2@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, 911 Partner' s Way, EB I, Room 3002 Raleigh, NC 27606 (United States); US Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Roy, Debdas [Department of Materials Science and Engineering, North Carolina State University, 911 Partner' s Way, EB I, Room 3002 Raleigh, NC 27606 (United States); Materials and Metallurgical Engineering Department, NIFFT, Ranchi 834003 (India); Darling, Kristopher A.; Butler, Brady G. [US Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Scattergood, Ronald O.; Koch, Carl C. [Department of Materials Science and Engineering, North Carolina State University, 911 Partner' s Way, EB I, Room 3002 Raleigh, NC 27606 (United States)

    2012-12-15

    Copper (Cu) was cryogenically milled with tungsten (W) in a high-energy ball mill. The process created W particles dispersed in a nanocrystalline Cu matrix. These 'alloys' were then annealed to a maximum temperature of 800 Degree-Sign C. The addition of W stabilized the Cu at{approx}40 nm during annealing to 400 Degree-Sign C for a 1 at% W composition and to 600 Degree-Sign C for 10 at% W. As evidenced through hardness measurement, the W provided a significant increase in strength over pure Cu, and the 10 at% W material maintained a 2.6 GPa hardness after annealing at 800 Degree-Sign C. The stabilization and strengthening mechanisms are compared against theoretical prediction and found to be in good agreement. Although the strength and stability are significantly improved over pure Cu, the maximum benefit was hindered by an extremely broad W particle size distribution ({approx}5-5000 nm). For the 10 at% W alloy, only half of the added W was reduced to nanoscale where kinetic pinning and strengthening become most effective.

  4. Thermal stability relationships between PMR-15 resin and its composites

    Science.gov (United States)

    Bowles, Kenneth J.; Jayne, Douglas; Leonhardt, Todd A.; Bors, Dennis

    1993-01-01

    A study was conducted to investigate the relationship between the thermo-oxidative stability of PMR-15 matrix resin and the stability of graphite-fiber-reinforced composites that contain this resin as the matrix material. Three areas were investigated. The first was the effect of fiber/matrix interfacial bond strength on the isothermal aging weight loss of composites. By using type-A graphite fibers produced by Hercules, it was possible to study composites reinforced with fibers that were processed to receive different surface treatments. One of the fibers was untreated, a second fiber was treated by oxidation to enhance fiber/matrix bonding, and the third type of fiber was coated with an epoxy sizing. These treatments produced three significantly different interfacial bond strengths. The epoxy sizing on the third fiber was quickly oxidized from the bare fiber surfaces at 288, 316, and 343 C. The weight loss due to the removal of the sizing was constant at 1.5 percent. This initial weight loss was not observed in thermo-oxidative stability studies of composites. The PMR-15 matrix satisfactorily protected the reinforcemnt at all three temperatures.

  5. Polymer-stabilized ferroelectric liquid crystal for flexible displays using plastic substrates

    Science.gov (United States)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Iino, Yoshiki; Kikuchi, Hiroshi; Kawakita, Masahiro; Tsuchiya, Yuzuru

    2001-12-01

    We have developed a ferroelectric liquid crystal device with a novel structure containing a polymer fiber network for flexible lightweight displays using thin plastic substrates. The aligned polymer fibers of sub-micrometers -diameter were formed under ultraviolet light irradiation in a heated nematic- phase solution consisting of liquid crystal and monofunctional acrylate monomer. The rigid polymer network was found to adhere to the two plastic substrates, and the uniform liquid crystal alignment provided a contrast ratio of 100:1 for a monomer concentration of 20 wt%. This device achieves a continuous grayscale capability as a result of change in the spatial distribution of small liquid crystal domains, and also exhibits a fast response time of 80 microsecond(s) due to high-purity separation of polymer and liquid crystal materials. It therefore has attractive features for flexible moving-image display applications.

  6. Thermal stability study for candidate stainless steels of GEN IV reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simeg Veternikova, J., E-mail: jana.veternikova@stuba.sk [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Degmova, J. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Pekarcikova, M. [Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, Paulinska 16, 917 24 Trnava (Slovakia); Simko, F. [Department of Molten Salts, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia); Petriska, M. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Skarba, M. [Slovak University of Technology, Vazovova 5, 812 43 Bratislava (Slovakia); Mikula, P. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Pupala, M. [Department of Molten Salts, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia)

    2016-11-30

    Highlights: • Thermal resistance of advanced stainless steels were observed at 1000 °C. • GEN IV candidate steels were confronted to classic AISI steels. • ODS AISI 316 has weaker thermal resistance than classic AISI steel. • Ferritic ODS steels and NF 709 has better thermal resistance than AISI steels. - Abstract: Candidate stainless steels for GEN IV reactors were investigated in term of thermal and corrosion stability at high temperatures. New austenitic steel (NF 709), austenitic ODS steel (ODS 316) and two ferritic ODS steels (MA 956 and MA 957) were exposed to around 1000 °C in inert argon atmosphere at pressure of ∼8 MPa. The steels were further studied in a light of vacancy defects presence by positron annihilation spectroscopy and their thermal resistance was confronted to classic AISI steels. The thermal strain supported a creation of oxide layers observed by scanning electron microscopy (SEM).

  7. Determination of structural and mechanical properties, diffractometry, and thermal analysis of chitosan and hydroxypropylmethylcellulose (HPMC films plasticized with sorbitol

    Directory of Open Access Journals (Sweden)

    Jefferson Rotta

    2011-06-01

    Full Text Available In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v in water and chitosan (2% w/v in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100 of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM, differential scanning calorimetry (DSC, and thermal gravimetric analysis (TGA. The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.

  8. Lattice position and thermal stability of diluted As in Ge

    CERN Document Server

    Decoster, S; Cottenier, S; Correia, JG; Mendonça, T; Amorim, LM; Pereira, LMC; Vantomme, A

    2012-01-01

    We present a lattice location study of the n-type dopant arsenic after ion implantation into germanium. By means of electron emission channeling experiments, we have observed that the implanted As atoms substitute the Ge host atoms. However, in contrast to several implanted metal impurities in Ge, no significant fraction of As is found on interstitial sites. The substitutional As impurities are found to be thermally stable up to 600°C. After 700°C annealing a strong reduction of emission channeling effects was observed, in full accordance with the expected diffusion-induced broadening of the As profile.

  9. Thermal Mechanical Stability of Single-Crystal-Oxide Refractive Concentrators Evaluated for High-Temperature Solar-Thermal Propulsion

    Science.gov (United States)

    Jacobson, Nathan S.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Recently, refractive secondary solar concentrator systems were developed for solar thermal power and propulsion (ref. 1). Single-crystal oxides-such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO), and sapphire (Al2O3)-are candidate refractive secondary concentrator materials. However, the refractive concentrator system will experience high-temperature thermal cycling in the solar thermal engine during the sun/shade transition of a space mission. The thermal mechanical reliability of these components in severe thermal environments is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions. In this research at the NASA Lewis Research Center, a controlled heat flux test approach was developed for investigating the thermal mechanical stability of the candidate oxide. This approach used a 3.0-kW continuous-wave (wavelength, 10.6 mm) carbon dioxide (CO2) laser (ref. 2). The CO2 laser is especially well-suited for single-crystal thermal shock tests because it can directly deliver well-characterized heat energy to the oxide surfaces. Since the oxides are opaque at the 10.6-mm wavelength of the laser beam, the light energy is absorbed at the surfaces rather than transmitting into the crystals, and thus generates the required temperature gradients within the specimens. The following figure is a schematic diagram of the test rig.

  10. A pyrolysis study for the thermal and kinetic characteristics of an agricultural waste with two different plastic wastes.

    Science.gov (United States)

    Çepelioğullar, Özge; Pütün, Ayşe E

    2014-10-01

    In this study, thermochemical conversion of plastic wastes (PET and PVC) together with an agricultural waste (hazelnut shell) was investigated. In order to determine the thermal and kinetic behaviours, pyrolysis experiments were carried out from room temperature to 800 °C, with a heating rate of 10 °C min(-1) in the presence of a N2 atmosphere in a thermogravimetric analyzer. With the obtained thermogravimetric data, an appropriate temperature was specified for the pyrolysis of biomass-plastic wastes in a fixed-bed reactor. At the second step, pyrolysis experiments were carried out at the same conditions with the thermogravimetric analyzer, except the final temperature which was up to 500 °C in this case. After pyrolysis experiments, pyrolysis yields were calculated and characterization studies for bio-oil were investigated. Experimental results showed that co-pyrolysis has an important role in the determination of the pyrolysis mechanism and the process conditions while designing/implementing a thermochemical conversion method where biomass-plastic materials were preferred as raw materials. © The Author(s) 2014.

  11. Dispersion stability and thermal conductivity of propylene glycol-based nanofluids

    CERN Document Server

    Palabiyik, Ibrahim; Witharana, Sanjeeva; Ding, Yulong; 10.1007/s11051-011-0485-x

    2012-01-01

    The dispersion stability and thermal conductivity of propylene glycol based nanofluids containing Al2O3 and TiO2 nanoparticles were studied in the temperature range of 20 to 80 {\\deg}C. Nanofluids with different concentrations of nanoparticles were formulated by the two-step method without use of dispersants. In contrast to the common belief the average particle size of nanofluids was observed to decrease with increasing temperature. The nanofluids showed excellent stability over the temperature range of interest. Thermal conductivity enhancement for both of studied nanofluids was a non-linear function of concentration while was temperature independent. Theoretical analyses were performed using existing models and comparisons were made with experimental results. The model based on the aggregation theory appears to yield the best fit. Keywords: Nanofluids, Propylene glycol, Alumina nanoparticles, Titania nanoparticles, Thermal conductivity, Dispersion stability.

  12. Effect of Pd on GFA and Thermal Stability of Zr-based Bulk Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    Fengxiang QIN; Haifeng ZHANG; Aimin WANG; Bingzhe DING; Zhuangqi HU

    2004-01-01

    The effect of Pd addition on the glass-forming ability and thermal stability of the Zr5sAl10Cus0Nis-xPdx (x=0, 1, 3,5 at. Pct) alloys upon copper-mold casting has been investigated. The structure, thermal stability and microstructure were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM), respectively. It was identified that a new bulk amorphous alloy with the larger supercooled liquid region Atx of 100 K is obtained with substituting Ni by 1 at. Pct Pd. Furthermore, the origins that thermal stability and GFA change with increasing of Pd have also beer discussed.

  13. FTIR and DSC studies of the thermal and photochemical stability of Balanites aegyptiaca oil (Toogga oil).

    Science.gov (United States)

    Gardette, Jean-Luc; Baba, Mohamed

    2013-01-01

    The oil extracted from the bean of Balanites aegyptiaca was characterized, and its photochemical and thermal stabilization were evaluated. The chemical composition was determined using gas chromatography (GC), revealing that the oil is very rich in unsaturated fatty acids (72% omega-6 and omega-9). The photochemical stability was assessed by subjecting it to artificially accelerated photo-aging and then examining the changes using infrared spectroscopy. The thermal stability was studied at six different temperatures ranging from 130 to 200°C and monitored in situ by differential scanning calorimetry (DSC). The kinetic parameters (EA and k) describing the thermal degradation of this oil were calculated. It has been shown that the antioxidants present in the oil delay the oxidation process (induction period). The degradation of the Toogga oil was compared with that of oleic and linoleic fatty acids. In addition, the degradation of the Toogga oil extracted with hexane was compared to that of the neat oil.

  14. Preparation, characterization and thermal stability of bentonite modified with bis-imidazolium salts

    Energy Technology Data Exchange (ETDEWEB)

    Makhoukhi, B., E-mail: benamarmakh@yahoo.fr [Laboratory of Separation and Purification Technologies, Department of Chemistry, Tlemcen University, Box 119, Tlemcen (Algeria); Villemin, D. [Laboratoire de Chimie Moléculaire et Thio-organique, UMR CNRS 6507, INC3M, FR 3038, ENSICAEN and Université de Caen, 14050 Caen (France); Didi, M.A. [Laboratory of Separation and Purification Technologies, Department of Chemistry, Tlemcen University, Box 119, Tlemcen (Algeria)

    2013-02-15

    Sodium bentonite was modified with several organic bis-imidazolium salts. Organoclays with water soluble surfactants were prepared by the traditional cation exchange reaction. The bis-imidazolium-bentonites were characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction analysis (PXRD) and thermogravimetric analysis (TGA). The effect of chemical composition and molecular weight of the salts on the thermal stability and basal spacing were evaluated. The bis-imidazolium-bentonites showed enhanced thermal stability (300–400 °C) and may be potentially useful materials for melt processing of polymer/layered silicates nanocomposites. - Highlights: ► Geometry and volume of the molecule influence on interlayer spacing of modified bentonites. ► The intercalation increases with molecule length. ► The modified bentonites have an appreciably higher thermal stability.

  15. Thermal decomposition and kinetics of plastic bonded explosives based on mixture of HMX and TATB with polymer matrices

    Directory of Open Access Journals (Sweden)

    Arjun Singh

    2017-02-01

    Full Text Available This work describes thermal decomposition behaviour of plastic bonded explosives (PBXs based on mixture of l,3,5,7-tetranitro- 1,3,5,7-tetrazocane (HMX and 2,4,6- triamino-1,3,5-trinitrobenzene (TATB with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis (STA and differential scanning calorimetry (DSC to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis (TGA indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn–Wall–Ozawa (FWO and Kissinger-Akahira-Sunose (KAS methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition.

  16. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  17. The Thermal Stabilization of Vaccines Against Agents of Bioterrorism

    Science.gov (United States)

    2005-09-01

    Dextran T40 0.1 12.37 cc Cyclodextrin 2.50% 5.61 Dextran T40 2.5 1.18 Dextran Sulfate 0.1 0.00 Dextran Sulfate 1 0.00 Dextran Sulfate 2.5 0.00 Brij 35...storage stability, more like the original constructs. 60 The chimeric valley fever protein was encapsulated into nanoparticles in an effort to improve...glycerol (20%) 6 dextran sulfate (0.0003mM) diethanolamnine (.0.3M.) Tween 20 (0.05%) lactose (20%) a- cyclodextrin (2.5%) 5 dextran sulfate (0.003mM

  18. Thermal stability of the krypton Hall effect thruster

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2017-03-01

    Full Text Available The Krypton Large IMpulse Thruster (KLIMT ESA/PECS project, which has been implemented in the Institute of Plasma Physics and Laser Microfusion (IPPLM and now is approaching its final phase, was aimed at incremental development of a ~500 W class Hall effect thruster (HET. Xenon, predominantly used as a propellant in the state-of-the-art HETs, is extremely expensive. Krypton has been considered as a cheaper alternative since more than fifteen years; however, to the best knowledge of the authors, there has not been a HET model especially designed for this noble gas. To address this issue, KLIMT has been geared towards operation primarily with krypton. During the project, three subsequent prototype versions of the thruster were designed, manufactured and tested, aimed at gradual improvement of each next exemplar. In the current paper, the heat loads in new engine have been discussed. It has been shown that thermal equilibrium of the thruster is gained within the safety limits of the materials used. Extensive testing with both gases was performed to compare KLIMT’s thermal behaviour when supplied with krypton and xenon propellants.

  19. Thermal stability of soils and detectability of intrinsic soil features

    Science.gov (United States)

    Siewert, Christian; Kucerik, Jiri

    2014-05-01

    Soils are products of long term pedogenesis in ecosystems. They are characterized by a complex network of interactions between organic and inorganic constituents, which influence soil properties and functions. However, the interrelations cannot easily be determined. Our search for unifying principles of soil formation focuses on water binding. This approach was derived from water-dependent soil formation. It considers the importance of water binding in theories about the origin of genes, in the structural arrangement and functionality of proteins, and in the co-evolution of organism species and the biosphere during the history of earth. We used thermogravimetry as a primary experimental technique. It allows a simple determi-nation of bound water together with organic and inorganic components in whole soil samples without a special preparation. The primary goal was to search for fingerprinting patterns using dynamics of thermal mass losses (TML) caused by water vaporization from natural soils, as a reference base for soil changes under land use. 301 soil samples were collected in biosphere reserves, national parks and other areas as-sumingly untouched by human activity in Siberia, North and South America, Antarctica, and in several long term agricultural experiments. The results did not support the traditional data evaluation procedures used in classical differ-ential thermogravimetry. For example, peak positions and amplitudes did not provide useful information. In contrast, using thermal mass losses (TML) in prefixed smaller, e.g. 10 °C temperature intervals allowed the determination of the content of carbon, clay, nitrogen and carbonates with high accuracy. However, this approach was applicable for soils and neither for soil-like carbon containing mineral substrates without pedogenetic origin, nor for plant residues or soils containing ashes, cinder, or charcoal. Therefore, intrinsic soil regulation processes are discussed as a possible factor causing

  20. Influence of Carbon Nanotubes on Thermal Stability of Water-Dispersible Nanofibrillar Polyaniline/Nanotube Composite

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Zhang

    2012-02-01

    Full Text Available Significant influence on the thermal stability of polyaniline (PANI in the presence of multi-walled carbon nanotubes (MWCNTs is reported. By means of in-situ rapid mixing approach, water-dispersible nanofibrillar PANI and composites, consisting of MWCNTs uniformly coated with PANI in the state of emeraldine salt, with a well-defined core-shell heterogeneous structure, were prepared. The de-protonation process in PANI occurs at a lower temperature under the presence of MWCNTs on the polyaniline composite upon thermal treatment. However, it is found that the presence of MWCNTs significantly enhances the thermal stability of PANI’s backbone upon exposure to laser irradiation, which can be ascribed to the core-shell heterogeneous structure of the composite of MWCNTs and PANI, and the high thermal conductivity of MWCNTs.

  1. A polymorphic position in electron transfer flavoprotein modulates kinetic stability as evidenced by thermal stress.

    Science.gov (United States)

    Henriques, Bárbara J; Fisher, Mark T; Bross, Peter; Gomes, Cláudio M

    2011-02-04

    The electron transfer flavoprotein (ETF) is a hub interacting with at least 11 mitochondrial flavoenzymes and linking them to the respiratory chain. Here we report the effect of the ETFα-T/I171 polymorphism on protein conformation and kinetic stability under thermal stress. Although variants have comparable thermodynamic stabilities, kinetically their behavior is rather distinct as ETFα-T171 displays increased susceptibility to cofactor flavin adenine dinucleotide (FAD) loss and enhanced kinetics of inactivation during thermal stress. Mimicking a fever episode yields substantial activity loss. However, the presence of substoichiometric concentrations of GroEL is sufficient to act as an effective buffer against long-term thermal denaturation. Our investigations are compatible with the notion that the ETFα-T171 variant displays an altered conformational landscape that results in reduced protein function under thermal stress.

  2. Influence of Sonication on the Stability and Thermal Properties of Al2O3 Nanofluids

    Directory of Open Access Journals (Sweden)

    Monir Noroozi

    2014-01-01

    Full Text Available Nanofluids containing Al2O3 nanoparticles (either 11 or 30 nm in size dispersed in distilled water at low concentrations (0.125–0.5 wt% were prepared using two different ultrasonic devices (a probe and a bath sonicator as the dispersant. The effect of the ultrasonic system on the stability and thermal diffusivity of the nanofluids was investigated. Thermal diffusivity measurements were conducted using a photopyroelectric technique. The dispersion characteristics and morphology of the nanoparticles, as well as the optical absorption properties of the nanofluids, were studied using photon cross correlation spectroscopy with a Nanophox analyzer, transmission electron microscopy, and ultraviolet-visible spectroscopy. At higher particle concentration, there was greater enhancement of the thermal diffusivity of the nanofluids resulting from sonication. Moreover, greater stability and enhancement of thermal diffusivity were obtained by sonicating the nanofluids with the higher power probe sonicator prior to measurement.

  3. The influence of polyol type on cell geometry and the thermal stability of polyurethane foams

    Directory of Open Access Journals (Sweden)

    Prendžov Slobodan J.

    2006-01-01

    Full Text Available The aim of this study was to examine the influence of substituting defined amounts of polyol Voranol 3322 by polyol Voranol CP 1055 on the cell geometry and thermal stability of the synthesized flexible polyurethane foams. The influence of the amount of antipyrene on the cell geometry and their thermal stability was also investigated. The following components were used in the synthesis of the polyurethanes: a mixture of two polyols (Voranol 3322 with the hydroxyl number 47 mg KOH/g, mean molecular mass 3400 and Voranol CP 1055 with the hydroxyl number 156 mg KOH/g, mean molecular mass 1000, toluene discarnate as the isocyanate component, a combination of an organic-metallic compound and a tertiary amine as catalysts, surfactant and water as the coreactant. The thermal stability was determined by thermogravimetric analysis (in a nitrogen atmosphere. The cell geometry was analyzed by optical microscopy. Examination of the cell geometry revealed different cell shapes. The form factor as an indicator of cell deviation from spherical shape increased (more round forms were observed with increasing amount of Voranol CP 1055. The TG examination showed that specimens with 6 and 8 g of Voranol 3322 substituted by Voranol CP 1055 completely degraded at 350 °C, while foams with 10 and 12 g of Voranol 3322 substituted by Voranol CP 1055 displayed lower mass loss at higher temperatures and had residual masses of 46 % and 43 % at 600°C respectively. The addition of antipyrene in an amount of 1% (based on the amount of polyol contributed to improved thermal stability, no visible color change of the specimen tested at 210°C for 40 minutes, and to rounder cell forms. Considering the obtained results it can be concluded that an increase in the amount of Voranol CP 1055 yielded more spherically shaped cells and better thermal stability of the synthesized flexible polyurethane foams. The addition of antipyrene improves the thermal stability and the cell geometry.

  4. Stress and Strain During the Process of Thermal Stabilization of Modified Pan Precursors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wang-xi; WANG Yan-zhi; PAN Wei

    2007-01-01

    Thermal mechanical analysis, FT- IR, WAXD and some conventional measurements, such as densities and mechanical properties, were used to characterize the effect of the modification using KMnO4 and SnCl4 on the thermal mechanical behaviors and structural changes dining the process of thermal stabilization of modified PAN precursors. to the unmodified original PAN precursors, some conclusions were drawn that the thermal stabilization starts at a lower temperature for modified PAN fibers, for example, the peak of thermal stress changes for modified PAN precursors using KMnO4 displays a decrease of 20℃ and a increase of 30% in the ultimate thermal stress, that chemical modification makes structural transformation perfect and increases by 25% of the thermal stress at the temperature range of 230℃- 300℃, that the modified PAN fibers display an increase of 100% in the thermal strain, once after pre-oxidized, show an increase of 7.8% in orientation index, and a decrease of 9.9% in crystal size for identical preload in the region of 13.1 - 14.5 MPa. It was also concluded that the modification using SnCl4 would alleviate the changes in physical and chemical stress regimes and result in improvement in structure and decrease in defects.

  5. Thermal stability conditions of a weakly interacting Fermi gas in a weak magnetic field

    Institute of Scientific and Technical Information of China (English)

    Fudian Men; Hui Liu; Houyu Zhu

    2009-01-01

    On the basis of the results derived from pseudopotential method and ensemble theory,thermal stability of a weakly interacting Fermi gas in a weak magnetic field is studied by using analytical method of thermodynamics.The exact analytical expressions of stability conditions at different temperatures are given,and the effects of interactions as well as magnetic field on the stability of the system are discussed.It is shown that there is an upper-limit magnetic field for the stability of the system at low temperatures,and there is an attractive dividing value at high temperatures.If attractive interaction is lower than the critical value,the stability of the system has no request for magnetic field,but if attractive interaction is higher than the dividing value,a lower-limit magnetic field exists for the stability of the system.

  6. Thermal behavior of epoxidized cardanol diethyl phosphate as novel renewable plasticizer for poly(vinyl chloride)

    Science.gov (United States)

    A novel plasticizer, epoxidized cardanol diethyl phosphate (ECEP), based on cardanol was synthesized. Chemical structure of ECEP was characterized by fourier transform infrared (FTIR), 1H-nuclear magnetic resonance(1H NMR) and 13C-nuclear magnetic resonance(13C NMR) spectroscopy. Effects of ECEP sub...

  7. Thermal Stability Study of Five Newcastle Disease Attenuated Vaccine Strains.

    Science.gov (United States)

    Boumart, Zineb; Hamdi, Jihane; Daouam, Samira; Elarkam, Amal; Tadlaoui, Khalid Omari; El Harrak, Mehdi

    2016-12-01

    Newcastle disease (ND) is a big concern throughout the world because of the devastating losses that can occur with commercial and backyard poultry. The major problem in many countries is the loss of the vaccine's effectiveness due to inadequate use or storage conditions, particularly in hot climates. In the present study, stability of the five, most-used NDV vaccine strains (I-2, LaSota, B1, Clone 30 [C30], and VG-GA) was tested comparatively at different storage temperatures (4 and 37 C for the freeze-dried form and 4, 24, 37, and 45 C for the freeze-dried vaccine reconstituted in diluents). The vaccine stability was evaluated by the cumulative infectious titer drop and the theoretical shelf life at particular temperatures. Results showed that I-2 and LaSota are the most stable vaccine strains compared to B1, C30, and VG-GA; they registered the lowest titer drops and the longest shelf life whether at cool, high, or room temperatures and for both freeze-dried and reconstituted vaccines.

  8. Experimental and Numerical Analysis of Thermal and Hygrometric Characteristics of Building Structures Employing Recycled Plastic Aggregates and Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Francesco Colangelo

    2013-11-01

    Full Text Available The correct estimation of building energy consumptions is assuming an always increasing importance, and a detailed reproduction of building structures, with all the single components involved, is necessary to achieve this aim. In addition, the current ecological development tries to limit the use of natural raw materials as building components, in favor of alternative (waste materials, which ensure significant advantages from the economic, energetic and environmental point of views. In this work, dynamic heat and vapor transport in a typical three-dimensional (3D building structure, involving different types of environmental-friendly concrete mixtures, have been simulated by using finite elements. In particular, the authors propose to substitute part of the aggregates with plastic waste and to use a fly ash based geopolymeric binder for the production of low conductivity concrete, to be employed in eco-efficient buildings. Concrete produced with natural limestone aggregates has been considered as the reference benchmark. The whole characterization of the different types of concrete tested in the present work has been obtained through laboratory experiments. The structure taken into account in the simulations is a 3D thermal bridge, typical of building envelopes. The thermal and hygrometric transient behavior of this structure, employing plastic waste in different percentages and geopolymer concrete, has been analyzed by the authors.

  9. Effect of Palm Oil Bio-Based Plasticizer on the Morphological, Thermal and Mechanical Properties of Poly(Vinyl Chloride

    Directory of Open Access Journals (Sweden)

    Kar Min Lim

    2015-10-01

    Full Text Available Flexible poly(vinyl chloride (PVC was fabricated using a palm oil-based alkyd as a co-plasticizer to di-octyl phthalate (DOP and di-isononyl phthalate (DiNP. The effects of the incorporation of the palm oil-based alkyd on morphological, thermal and mechanical properties of PVC compounds were studied. Results showed the incorporation of the alkyd enhanced the mechanical and thermal properties of the PVC compounds. Fourier transform infrared spectroscopy (FTIR results showed that the polar –OH and –C=O groups of alkyd have good interaction with the –C–Cl group in PVC via polar interaction. The morphological results showed good incorporation of the plasticizers with PVC. Improved tensile strength, elastic modulus, and elongation at break were observed with increasing amount of the alkyd, presumably due to chain entanglement of the alkyd with the PVC molecules. Thermogravimetric analysis results confirmed that the alkyd has improved the thermostability of the PVC compounds.

  10. Thermal Stability of Annealed Germanium-Tin Alloys Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Bhargava, Nupur; Gupta, Jay Prakash; Faleev, Nikolai; Wielunski, Leszek; Kolodzey, James

    2017-01-01

    The thermal stability of undoped and boron-doped germanium tin (Ge1-x Sn x ) alloys grown by molecular beam epitaxy with varying composition and layer thickness was investigated. The alloys were annealed in forming gas at various temperatures up to 800°C for 1 min using rapid thermal processing, and were characterized using high-resolution x-ray diffraction and Rutherford backscattering spectrometry. It was found that the Ge1-x Sn x alloys were stable to well above the growth temperature, but the stability decreased with increasing thickness, Sn content, and doping. Ge1-x Sn x alloys with low Sn composition (x ˜ 0.025) were stable up to 700°C, and for a given Sn composition, the undoped alloys were more thermally stable than the doped alloys. As the thickness of the Ge0.975Sn0.025 alloys increased to about 950 nm, the temperature of thermal stability dropped to 500°C. As the Sn composition of the 90 nm-Ge1-x Sn x alloys increased up to x = 0.08, the temperature of thermal stability dropped to 300°C. At higher annealing temperatures, the Ge1-x Sn x alloy degraded with lower crystal quality, and a gradient in the Sn composition appeared, which may be due to Sn diffusion or segregation.

  11. Applications of differential scanning calorimetry for thermal stability analysis of proteins: qualification of DSC.

    Science.gov (United States)

    Wen, Jie; Arthur, Kelly; Chemmalil, Letha; Muzammil, Salman; Gabrielson, John; Jiang, Yijia

    2012-03-01

    Differential scanning calorimetry (DSC) has been used to characterize protein thermal stability, overall conformation, and domain folding integrity by the biopharmaceutical industry. Recently, there have been increased requests from regulatory agencies for the qualification of characterization methods including DSC. Understanding the method precision can help determine what differences between samples are significant and also establish the acceptance criteria for comparability and other characterization studies. In this study, we identify the parameters for the qualification of DSC for thermal stability analysis of proteins. We use these parameters to assess the precision and sensitivity of DSC and demonstrate that DSC is suitable for protein thermal stability analysis for these purposes. Several molecules from different structural families were studied. The experiments and data analyses were performed by different analysts using different instruments at different sites. The results show that the (apparent) thermal transition midpoint (T(m)) values obtained for the same protein by same and different instruments and/or analysts are quite reproducible, and the profile similarity values obtained for the same protein from the same instrument are also high. DSC is an appropriate method for assessing protein thermal stability and conformational changes.

  12. PMR-15/Layered Silicate Nanocomposites For Improved Thermal Stability And Mechanical Properties

    Science.gov (United States)

    Campbell, Sandi; Scheiman, Daniel; Faile, Michael; Papadopoulos, Demetrios; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Montmorillonite clay was organically modified by co-exchange of an aromatic diamine and a primary alkyl amine. The clay was dispersed into a PMR (Polymerization of Monomer Reactants)-15 matrix and the glass transition temperature and thermal oxidative stability of the resulting nanocomposites were evaluated. PMR-15/ silicate nanocomposites were also investigated as a matrix material for carbon fabric reinforced composites. Dispersion of the organically modified silicate into the PMR-15 matrix enhanced the thermal oxidative stability, the flexural strength, flexural modulus, and interlaminar shear strength of the polymer matrix composite.

  13. Thermal behavior of vehicle plastic blends contained acrylonitrile-butadiene-styrene (ABS) in pyrolysis using TG-FTIR.

    Science.gov (United States)

    Liu, Guicai; Liao, Yanfen; Ma, Xiaoqian

    2017-03-01

    As important plastic blends in End-of-Life vehicles (ELV), pyrolysis profiles of ABS/PVC, ABS/PA6 and ABS/PC were investigated using thermogravimetric-Fourier transform infrared spectrometer (TG-FTIR). Also, CaCO3 was added as plastic filler to discuss its effects on the pyrolysis of these plastics. The results showed that the interaction between ABS and PVC made PVC pyrolysis earlier and HCl emission slightly accelerated. The mixing of ABS and PA6 made their decomposition temperature closer, and ketones in PA6 pyrolysis products were reduced. The presence of ABS made PC pyrolysis earlier, and phenyl compounds in PC pyrolysis products could be transferred into alcohol or H2O. The interaction between ABS and other polymers in pyrolysis could be attributed to the intermolecular radical transfer, and free radicals from the polymer firstly decomposed led to a fast initiation the decomposition of the other polymer. As plastic filler, CaCO3 promoted the thermal decomposition of PA6 and PC, and had no obvious effects on ABS and PVC pyrolysis process. Also, CaCO3 made the pyrolysis products from PA6 and PC further decomposed into small-molecule compounds like CO2. The kinetics analysis showed that isoconversional method like Starink method was more suitable for these polymer blends. Starink method showed the average activation energy of ABS50/PVC50, ABS50/PA50 and ABS50/PC50 was 186.63kJ/mol, 239.61kJ/mol and 248.95kJ/mol, respectively, and the interaction among them could be reflected by the activation energy variation.

  14. Improved insights into protein thermal stability: from the molecular to the structurome scale.

    Science.gov (United States)

    Pucci, Fabrizio; Rooman, Marianne

    2016-11-13

    Despite the intense efforts of the last decades to understand the thermal stability of proteins, the mechanisms responsible for its modulation still remain debated. In this investigation, we tackle this issue by showing how a multiscale perspective can yield new insights. With the help of temperature-dependent statistical potentials, we analysed some amino acid interactions at the molecular level, which are suggested to be relevant for the enhancement of thermal resistance. We then investigated the thermal stability at the protein level by quantifying its modification upon amino acid substitutions. Finally, a large scale analysis of protein stability-at the structurome level-contributed to the clarification of the relation between stability and natural evolution, thereby showing that the mutational profile of proteins differs according to their thermal properties. Some considerations on how the multiscale approach could help in unravelling the protein stability mechanisms are briefly discussed.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  15. Differential Scanning Calorimetry — A Method for Assessing the Thermal Stability and Conformation of Protein Antigen

    Science.gov (United States)

    Durowoju, Ibrahim B.; Bhandal, Kamaljit S.; Hu, Jian; Carpick, Bruce; Kirkitadze, Marina

    2017-01-01

    Differential scanning calorimetry (DSC) is an analytical technique that measures the molar heat capacity of samples as a function of temperature. In the case of protein samples, DSC profiles provide information about thermal stability, and to some extent serves as a structural “fingerprint” that can be used to assess structural conformation. It is performed using a differential scanning calorimeter that measures the thermal transition temperature (melting temperature; Tm) and the energy required to disrupt the interactions stabilizing the tertiary structure (enthalpy; ∆H) of proteins. Comparisons are made between formulations as well as production lots, and differences in derived values indicate differences in thermal stability and structural conformation. Data illustrating the use of DSC in an industrial setting for stability studies as well as monitoring key manufacturing steps are provided as proof of the effectiveness of this protocol. In comparison to other methods for assessing the thermal stability of protein conformations, DSC is cost-effective, requires few sample preparation steps, and also provides a complete thermodynamic profile of the protein unfolding process. PMID:28287565

  16. Differential Scanning Calorimetry - A Method for Assessing the Thermal Stability and Conformation of Protein Antigen.

    Science.gov (United States)

    Durowoju, Ibrahim B; Bhandal, Kamaljit S; Hu, Jian; Carpick, Bruce; Kirkitadze, Marina

    2017-03-04

    Differential scanning calorimetry (DSC) is an analytical technique that measures the molar heat capacity of samples as a function of temperature. In the case of protein samples, DSC profiles provide information about thermal stability, and to some extent serves as a structural "fingerprint" that can be used to assess structural conformation. It is performed using a differential scanning calorimeter that measures the thermal transition temperature (melting temperature; Tm) and the energy required to disrupt the interactions stabilizing the tertiary structure (enthalpy; ∆H) of proteins. Comparisons are made between formulations as well as production lots, and differences in derived values indicate differences in thermal stability and structural conformation. Data illustrating the use of DSC in an industrial setting for stability studies as well as monitoring key manufacturing steps are provided as proof of the effectiveness of this protocol. In comparison to other methods for assessing the thermal stability of protein conformations, DSC is cost-effective, requires few sample preparation steps, and also provides a complete thermodynamic profile of the protein unfolding process.

  17. Hafnia-plugged microcavities for thermal stability of selective emitters

    Science.gov (United States)

    Lee, Heon-Ju; Smyth, Katherine; Bathurst, Stephen; Chou, Jeffrey; Ghebrebrhan, Michael; Joannopoulos, John; Saka, Nannaji; Kim, Sang-Gook

    2013-06-01

    Two-dimensional arrays of micro-cavities effectively control photon motion and selectively emit radiation tailored to the preferred bandgap of photovoltaic (PV) cells, thus enhancing the efficiency of thermophotovoltaic energy conversion. At the high operating temperatures, however, the micro- and nano-patterned structures of the selective emitters quickly lose their integrity--obliterating the tight tolerances required for precise spectral control. Even if oxidation, recrystallization, and grain growth could be avoided with single-crystal tungsten (W) selective emitters with vacuum packaging, surface diffusion, evaporation, and re-condensation are not avoidable in long-term operation at high temperatures. The concept of a planar array of plugged micro-cavities to suppress the curvature-dependent thermal degradation modes is proposed and tested. Based on scale-accelerated failure tests of silicon devices, the lifetime of W selective emitters operating at 1100 K is estimated to be at least 30 yr.

  18. The analysis of thermal stability of detonation nanodiamond

    Science.gov (United States)

    Efremov, V. P.; Zakatilova, E. I.

    2016-11-01

    The detonation nanodiamond is a new perspective material. Ammunition recycling with use of high explosives and obtaining nanodiamond as the result of the detonation synthesis have given a new motivation for searching of their application areas. In this work nanodiamond powder has been investigated by the method of synchronous thermal analysis. Experiments have been carried out at atmospheric pressure in the environment of argon. Nanodiamond powder has been heated in the closed corundum crucible at the temperature range of 30-1500 °C. The heating rates were varied from 2 K/min to 20 K/min. After the heat treatment, the samples have been studied by the x-ray diffraction and the electron microscopy. As one of the results of this work, it has been found that the detonation nanodiamond has not started the transition into graphite at the temperature below 800 °C.

  19. Examining the stability of thermally fissile Th and U isotopes

    Science.gov (United States)

    Kumar, Bharat; Biswal, S. K.; Singh, S. K.; Patra, S. K.

    2015-11-01

    The properties of recently predicted thermally fissile Th and U isotopes are studied within the framework of the relativistic mean-field approach using the axially deformed basis. We calculate the ground, first intrinsic excited state for highly neutron-rich thorium and uranium isotopes. The possible modes of decay such as α decay and β decay are analyzed. We found that neutron-rich isotopes are stable against α decay, however, they are very unstable against β decay. The lifetime of these nuclei is predicted to be tens of seconds against β decay. If these nuclei are utilized before their decay time, a lot of energy can be produced with the help of multifragmentation fission. Also, these nuclei have great implications from the astrophysical point of view. In some cases, we found that the isomeric states with energy range from 2 to 3 MeV and three maxima in the potential energy surface of Th-230228 and U-234228 isotopes.

  20. The pH-dependent thermal and storage stability of glycosylated caseinomacropeptide

    DEFF Research Database (Denmark)

    Siegert, Nadja; Tolkach, Alexander; Kulozik, Ulrich

    2012-01-01

    treatment and storage under different pH values. Process stability (preservation of native protein structure in terms of attached glycans) was analysed by quantifying the release of the terminal carbohydrate, N-acetylneuraminic acid (Neu5Ac), from gCMP. The results clearly showed that the thermal stability......, with a maximum release of 30% at pH 2. Acidic pH conditions were responsible for the hydrolysis of the glycans from the peptide backbone during heat treatment and storage....

  1. Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    Science.gov (United States)

    Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  2. Thermal Stability of Magnesium Silicide/Nickel Contacts

    Science.gov (United States)

    de Boor, J.; Droste, D.; Schneider, C.; Janek, J.; Mueller, E.

    2016-10-01

    Magnesium silicide-based materials are a very promising class of thermoelectric materials with excellent potential for thermoelectric waste heat recovery. For the successful application of magnesium silicide-based thermoelectric generators, the development of long-term stable contacts with low contact resistance is as important as material optimization. We have therefore studied the suitability of Ni as a contact material for magnesium silicide. Co-sintering of magnesium silicide and Ni leads to the formation of a stable reaction layer with low electrical resistance. In this paper we show that the contacts retain their low electrical contact resistance after annealing at temperatures up to 823 K for up to 168 h. By employing scanning electron microscope analysis and time-of-flight (ToF)-secondary ion mass spectrometry, we can further show that elemental diffusion is occurring to a very limited extent. This indicates long-term stability under practical operation conditions for magnesium silicide/nickel contacts.

  3. Particle stabilization of plastic flow in nanostructured Al-1 %Si Alloy

    DEFF Research Database (Denmark)

    Huang, Tianlin; Li, Chao; Wu, Guilin

    2014-01-01

    A nanostructured Al-1 %Si alloy containing a dispersion of Si particles in ultrapure aluminum (99.9996 %) was produced by heavy cold rolling to study the effect of second-phase particles on the occurrence of plastic instability during tensile testing of a nanostructured metal. Tensile tests were...... conducted on the as-deformed sample and on samples after recovery annealing treatments. Work hardening and strain rate sensitivity were studied by tensile test at different strain rates, and deformed and annealed samples were characterized by transmission electron microscopy. By comparing the observed...

  4. Enhanced thermal stability of lysosomal beta-D-galactosidase in parenchymal cells of tumour bearing mice.

    Science.gov (United States)

    Lenti, L; Lipari, M; Lombardi, D; Zicari, A; Dotta, A; Pontieri, G M

    1986-12-01

    The thermal stability of the enzyme beta-D-galactosidase varies among different organs in normal C57Bl/6 mice, and increases in the same organs in mice with Lewis Lung carcinoma. Thermal stability of this enzyme is also increased by treatment of the mice with cell-free extracts of tumour cells or with inflammatory compounds such as carrageenan or orosomucoid. After desialylation, orosomucoid more effectively increases the heat stability of the enzyme. By contrast talc, which has no galactosyl groups, is without effect on the stability of the enzyme in vivo. Macrophages of tumour bearing mice release into the culture medium a more heat resistant enzyme than macrophages from control mice. In both cases the heat resistance of the secreted enzyme is higher when fetal calf serum is present in the culture medium. Bovine serum does not modify the thermal stability of beta-D-galactosidase in this system. Incubation of lysosomal fractions of various organs with the synthetic beta-D-galactosidase substrate, p-nitrophenyl-galactopyranoside, also strongly increases the heat resistance of the enzyme. The results suggest that one factor influencing the heat resistance of this enzyme may be complex formation between the enzyme and its substrates, an example of substrate protection of the enzyme. This may not be the only factor involved in enzyme stabilization in vivo.

  5. Effect of single amino acid replacements on the thermal stability of the NH2-terminal domain of phage lambda repressor.

    Science.gov (United States)

    Hecht, M H; Sturtevant, J M; Sauer, R T

    1984-09-01

    The thermal stabilities of mutant phage lambda repressors that have single amino acid replacements in the NH2-terminal domain have been studied by means of circular dichroism and differential scanning calorimetry. The variations in stability determined by these physical methods correlate with the resistance to proteolysis at various temperatures and can be compared with the temperature-sensitive activity of the mutants in vivo. In general, mutant proteins bearing solvent-exposed substitutions have thermal stabilities identical to wild type, whereas buried substitutions reduce stability. In one case, a single amino acid replacement increases the thermal stability of the repressor.

  6. The intensity distribution and thermal stability of InnoSlab laser

    Institute of Scientific and Technical Information of China (English)

    Ning Wang; Peng Shi; Yutian Lu

    2005-01-01

    Partially end-pumped slab laser is an innovative solid state laser, namely InnoSlab. Combining the hybrid resonator with partially end-pumping, the output power can be scaled with high beam quality. In this paper, the output intensity distributions are simulated by coordinate transformation fast Fourier transform(FFT) algorithm, comparing the thermal lens influence. As the simulated curves showed, the output mode is still good when the thermal lens effect is strong, indicatingthe good thermal stability of InnoSlab laser.Such a new kind of laser can be designed and optimized on the base of this simulation.

  7. Thermal stability study for candidate stainless steels of GEN IV reactors

    Science.gov (United States)

    Simeg Veternikova, J.; Degmova, J.; Pekarcikova, M.; Simko, F.; Petriska, M.; Skarba, M.; Mikula, P.; Pupala, M.

    2016-11-01

    Candidate stainless steels for GEN IV reactors were investigated in term of thermal and corrosion stability at high temperatures. New austenitic steel (NF 709), austenitic ODS steel (ODS 316) and two ferritic ODS steels (MA 956 and MA 957) were exposed to around 1000 °C in inert argon atmosphere at pressure of ∼8 MPa. The steels were further studied in a light of vacancy defects presence by positron annihilation spectroscopy and their thermal resistance was confronted to classic AISI steels. The thermal strain supported a creation of oxide layers observed by scanning electron microscopy (SEM).

  8. Thermal Stability of Retained Austenite in TRIP Steel After Different Treatments

    Institute of Scientific and Technical Information of China (English)

    SHI Wen; LI Lin; Bruno C De Cooman; Patrick Wollants; YANG Chun-xia

    2008-01-01

    Thermal decomposition of retained austenite in TRIP steel was investigated by means of differential scanning calorimetry (DSC). The decomposition curve was abnormal, and the decomposition temperature and the activation energy were measured by the Kissinger method, which were all higher than those in quenched steel. The thermal decomposition data of samples soaked in liquid nitrogen after TRIP treatment were all similar to those without additional low temperature treatment. It indicated that there is a high thermal stability in retained austenite of the TRIP steel at low temperature, which was also proved by XRD analysis.

  9. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation

    Directory of Open Access Journals (Sweden)

    Ali Ahmed Mahmoud Abdelhaleem

    2015-06-01

    Full Text Available This study addressed the possibility of forming of co-amorphous systems between clozapine (CZ and various carboxylic acid plasticizers (CAPs. The aim was to improve the solubility and oral bioavailability of clozapine. Co-amorphous dispersions were prepared using modified solvent evaporation methodology at drug/plasticizer stoichiometric ratios of 1:1, 1:1.5 and 1:2. Solid state characterization was performed using differential scanning calorimetry, X-ray diffraction and infra red spectroscopy. Highly soluble homogeneous co-amorphous dispersions were formed between clozapine and CAPs via hydrogen bonding. The co-amorphous dispersions formed with tartaric acid (1:2 showed the highest dissolution percentage (> 95 % in 20 minutes compared to pure crystalline CZ (56 %. Highly stable solutions were obtained from co-amorphous CZ-citric and CZ-tartaric acid at 1:1.5 molar ratio. The prepared dispersions suggest the possibility of peroral or sublingual administration of highly soluble clozapine at a reduced dose with the great chance to bypass the first pass metabolism.

  10. Fundamental display properties of flexible devices containing polymer-stabilized ferroelectric liquid crystal between plastic substrates

    Science.gov (United States)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Iino, Yoshiki; Kawakita, Masahiro; Kikuchi, Hiroshi

    2002-09-01

    We describe several fundamental display properties of a flexible ferroelectric liquid crystal device containing polymer fibers between thin plastic substrates. The composite film of liquid crystal and polymer was created from a solution of liquid crystal and monomer materials between the plastic substrates under ultraviolet light irradiation. The dynamic electrooptic response to analog voltage pulses was examined with an incidence of laser beam light, and its light modulation property exhibited good linearity in continuous gray-scale capability. The excellent spatial uniformity of liquid crystal alignment formed between the flexible substrates resulted in high-contrast light modulation, although slight spontaneous bending of liquid crystal alignment in the device plane was recognized. When the laser light beam was obliquely incident on the flexible display device, the measured transmittance revealed that the device has a wide viewing angle of more than 100 deg without contrast reversal. This is considered to be caused by the molecular switching in the device plane and the thin electrooptic layer in the display device.

  11. Examining the stability of thermally fissile Th and U isotopes

    CERN Document Server

    Kumar, Bharat; Singh, S K; Patra, S K

    2015-01-01

    The properties of recently predicted thermally fissile Th and U isotopes are studied within the framework of relativistic mean field (RMF) approach using axially deformed basis. We calculated the ground, first intrinsic excited state and matter density for highly neutron-rich thorium and uranium isotopes. The possible modes of decay like $\\alpha$-decay and $\\beta$-decay are analyzed. We found that the neutron-rich isotopes are stable against $\\alpha$-decay, however they are very much unstable against $\\beta$-decay. The life time of these nuclei predicted to be tens of second against $\\beta$-decay. If these nuclei utilize before their decay time, a lots of energy can be produced within the help of multi-fragmentation fission. Also, these nuclei have a great implication in astrophysical point of view. The total nucleonic densities distribution are calculated, from which the clusters inside the parent nuclei are determined. %Most of the thorium isotopes are $\\alpha$ emitters, where as some %of them have short ha...

  12. Thermal stabilization of collagen in skin and decalcified bone

    Science.gov (United States)

    Miles, Christopher A.; Avery, Nicholas C.

    2011-04-01

    The state of collagen molecules in the fibres of tail tendon, skin and demineralized bone has been investigated in situ using differential scanning calorimetry (DSC). Hydroxyproline analysis and tissue digestion with bacterial collagenase and trypsin were used to confirm that the common cause of all the DSC endotherms was collagen denaturation. This occurred within a narrow temperature range in tendons, but over a wide temperature range in demineralized bone and old skin and demonstrated that in tendon and demineralized bone at least the same type I collagen molecule exists in different thermal states. Hypothesizing that this might be caused by different degrees of confinement within the fibre lattice, experiments were performed to measure the effect of changing the lattice dimensions by extracting the collagen into dilute solution with pepsin, swelling the lattice in acetic acid, and contracting the lattice by dehydration. A theoretical analysis was undertaken to predict the effect of dehydration. Results were consistent with the hypothesis, demonstrating that collagen molecules within the natural fibres of bone and old skin are located at different intermolecular spacings, revealing differences between molecules in the magnitude of either the attractive or repulsive forces controlling their separation. One potential cause of such variation is known differences in covalent cross-linking.

  13. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE).

    Science.gov (United States)

    Santella, Chiara; Cafiero, Lorenzo; De Angelis, Doina; La Marca, Floriana; Tuffi, Riccardo; Vecchio Ciprioti, Stefano

    2016-08-01

    Pyrolysis seems a promising route for recycling of heterogeneous, contaminated and additives containing plastics from waste electrical and electronic equipment (WEEE). This study deals with the thermal and catalytic pyrolysis of a synthetic mixture containing real waste plastics, representative of polymers contained in small WEEE. Two zeolite-based catalysts were used at 400°C: HUSY and HZSM-5 with a high silica content, while three different temperatures were adopted for the thermal cracking: 400, 600 and 800°C. The mass balance showed that the oil produced by pyrolysis is always the main product regardless the process conditions selected, with yields ranging from 83% to 93%. A higher yield was obtained when pyrolysis was carried out with HZSM-5 at 400°C and without catalysts, but at 600 and 800°C. Formation of a significant amount of solid residue (about 13%) is observed using HUSY. The oily liquid product of pyrolysis, analysed by GC-MS and GC-FID, as well as by elemental analysis and for energy content, appeared lighter, less viscous and with a higher concentration of monoaromatics under catalytic condition, if compared to the liquid product derived from thermal degradation at the same temperature. HZSM-5 led to the production of a high yield of styrene (17.5%), while HUSY favoured the formation of ethylbenzene (15%). Energy released by combustion of the oil was around 39MJ/kg, thus suggesting the possibility to exploit it as a fuel, if the recovery of chemical compounds could not be realised. Elemental and proximate analysis of char and GC-TCD analysis of the gas were also performed. Finally, it was estimated to what extent these two products, showing a relevant ability to release energy, could fulfil the energy demand requested in pyrolysis.

  14. Correlation between calculated molecular descriptors of excipient amino acids and experimentally observed thermal stability of lysozyme

    DEFF Research Database (Denmark)

    Meng-Lund, Helena; Friis, Natascha; van de Weert, Marco

    2017-01-01

    A quantitative structure-property relationship (QSPR) between protein stability and the physicochemical properties of excipients was investigated to enable a more rational choice of stabilizing excipients than prior knowledge. The thermal transition temperature and aggregation time were determined...... analysis was applied to correlate the descriptors with the experimental results. It was possible to identify descriptors, i.e. amino acids properties, with a positive influence on either transition temperature or aggregation onset time, or both. A high number of hydrogen bond acceptor moieties was the most....... The QSPR shows good correlation between calculated molecular descriptors and the measured stabilizing effect of amino acids on lysozyme....

  15. Experimental measurement of the thermal stability criteria for low pressure methanol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Berty, J.M.; Lenczyk, J.P.; Shah, S.M.

    1982-11-01

    The mathematical basis was derived for the experimental measurement of the ''Slope Condition'' and of the ''Dynamic Condition'' of the thermal stability criteria in a laboratory-scale internal recycle reactor. This work also resulted in clearer interpretations and simpler expressions for the two stability criteria. The method was experimentally demonstrated on the example of the low pressure methanol synthesis. Only seven experiments were needed to evaluate the stability criteria of this reaction for which the kinetics is unknown.

  16. Thermal Stability: The Next Frontier for Nanocrystalline Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mathaudhu, Suveen; Boyce, Brad L.

    2015-11-06

    For the past quarter decade, the science and technology of nanocrystalline materials (materials with grain sizes less than 100 nm) has been an extremely rich and diverse field of study.1,2 Generally, it has been observed that tremendous improvements in physical and mechanical properties, including order-of-magnitude increases in yield strength, are possible.2 As predicted by the Hall– Petch equation,3,4 a reduction in grain size should be accompanied by an increase in strength. But, despite the promise of nanocrystalline materials for a host of structural and functional applications, their use has been severely limited by their lack of microstructural stability at elevated temperatures5 or under mechanical loads.6,7 In the case of pure metals, this coarsening often occurs even at ambient temperatures.5 Ironically, the same features that often result in the enhancement of properties in nanocrystalline materials, namely the high volume fraction of high-energy grain boundaries, are responsible for the observed grain growth or phase transformation.8

  17. The Effect of Homogenization Heat Treatment on Thermal Expansion Coefficient and Dimensional Stability of Low Thermal Expansion Cast Irons

    Science.gov (United States)

    Chen, Li-Hao; Liu, Zong-Pei; Pan, Yung-Ning

    2016-08-01

    In this paper, the effect of homogenization heat treatment on α value [coefficient of thermal expansion (10-6 K-1)] of low thermal expansion cast irons was studied. In addition, constrained thermal cyclic tests were conducted to evaluate the dimensional stability of the low thermal expansion cast irons with various heat treatment conditions. The results indicate that when the alloys were homogenized at a relatively low temperature, e.g., 1023 K (750 °C), the elimination of Ni segregation was not very effective, but the C concentration in the matrix was moderately reduced. On the other hand, if the alloys were homogenized at a relatively high temperature, e.g., 1473 K (1200 °C), opposite results were obtained. Consequently, not much improvement (reduction) in α value was achieved in both cases. Therefore, a compound homogenization heat treatment procedure was designed, namely 1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ, in which a relatively high homogenization temperature of 1473 K (1200 °C) can effectively eliminate the Ni segregation, and a subsequent holding stage at 1023.15 K (750 °C) can reduce the C content in the matrix. As a result, very low α values of around (1 to 2) × 10-6 K-1 were obtained. Regarding the constrained thermal cyclic testing in 303 K to 473 K (30 °C to 200 °C), the results indicate that regardless of heat treatment condition, low thermal expansion cast irons exhibit exceedingly higher dimensional stability than either the regular ductile cast iron or the 304 stainless steel. Furthermore, positive correlation exists between the α 303.15 K to 473.15 K value and the amount of shape change after the thermal cyclic testing. Among the alloys investigated, Heat I-T3B (1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ) exhibits the lowest α 303 K to 473 K value (1.72 × 10-6 K-1), and hence has the least shape change (7.41 μm) or the best dimensional stability.

  18. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  19. Thermal Stability and Thermodynamics of Xylanase from Melanocarpus albomyces in Presence of Polyols and Salts

    Directory of Open Access Journals (Sweden)

    Gupteshwar Gupta

    2014-08-01

    Full Text Available An extracellular xylanase from the thermophilic fungus Melanocarpus albomyces IIS 68 was evaluated for its activity and stability in the presence of polyols and salts at 60 °C, and found to be an effective protecting agent for thermal deactivation of enzyme. Response surface methodology was employed to study the synergistic effects of glycerol and NaCl (thermo-stabilizers for xylanase stability. The addition of these thermo-stabilizers resulted in more than a 10-fold increment in enzyme half-life. Activation energy (Ea and thermodynamic parameters such as ∆H, ∆G, and ∆S were calculated for the thermal inactivation of free and immobilized xylanase. The immobilized enzyme underwent substantially less conformational changes because of its enhanced stability and increased compactness, providing better thermo-stability at elevated temperatures. These findings suggest that the combined effect of glycerol and sodium chloride serves as a potential stabilizer for extracellular thermophilic xylanase, which finds commercial application in many industries, especially in the pulp and paper industry.

  20. Thermal stability of structurally different viruses with proven or potential relevance to food safety

    NARCIS (Netherlands)

    Tuladhar, E.; Bouwknegt, M.; Zwietering, M.H.; Koopmans, M.; Duizer, E.

    2012-01-01

    Aims: To collect comparative data on thermal stability of structurally different viruses with proven or potential relevance to food safety. Methods and Results: Suspensions with poliovirus Sabin1, adenovirus type5, parechovirus1, human norovirus (NoV) GII.4, murine NoV (MNV1) and human influenza A (

  1. Thermal stability and practical applications of UV induced index changes in silica glasses

    DEFF Research Database (Denmark)

    Rathje, Jacob

    2000-01-01

    This thesis represents the partial fulfilment of the requirements for the danish ph.d. degree. I have been involved in both basic research of UV induced refractive index changes in silica glasses and in concrete applications. I have performed work on the thermal stability of UV-induced index...

  2. Thermal stability of Nb3Sn Rutherford cables for accelerator magnets

    NARCIS (Netherlands)

    Rapper, de Willem Michiel

    2014-01-01

    In large scale superconducting applications, like bending magnets in particle colliders, thermal stability is an important issue. A relatively small perturbation of about 100 µJ in a single point can create a small normal zone in the superconductor, which will experience sever joule heating. If the

  3. Tribological behavior and thermal stability of TiC/a-C : H nanocomposite coatings

    NARCIS (Netherlands)

    Pei, Y.T.; Galvan, D.; Hosson, J.Th.M. De

    2006-01-01

    Advanced TiC/a-C:H nanocomposite coatings have been produced via reactive deposition in a closed-field unbalanced magnetron sputtering system (Hauzer HTC-1200). These wear-resistant coatings are targeted for automotive applications where high load-bearing capacity and thermal stability, low friction

  4. Effect of graphene oxide sheet size on the curing kinetics and thermal stability of epoxy resins

    Science.gov (United States)

    Wang, Xiao; Jin, Jie; Song, Mo; Lin, Yue

    2016-10-01

    This work revealed the influences of graphene oxide (GO) sheet size on the curing kinetics and thermal stability of epoxy resins. A series of GO/epoxy nanocomposites were prepared by the incorporation of three different sized GO sheets, namely GO-1, GO-2 and GO-3, the average size of which was 10.79 μm, 1.72 μm and 0.70 μm, respectively. The morphologies of the nanocomposites were observed by field emission gun scanning electron microscope. The dispersion quality of each sized GO was comparable in the epoxy matrix. The curing kinetics was investigated by means of differential scanning calorimetry and analyzed based on kinetics model. Addition of a small amount of GO (0.1 wt%) exhibited strong catalytic effect on the curing reaction of epoxy resin. The activation energy was reduced by 18.9%, 28.8% and 14.6% with addition of GO-1, GO-2 and GO-3, respectively. GO-2 with medium size (1.72 μm) showed the most effective catalysis on the cure. The thermal stability of the cured resins was evaluated based on thermogravimetric analysis. GO/epoxy nanocomposites showed improved thermal stability in the range of 420 °C-500 °C, compared with the pure resin. A ˜ 4% more residue was obtained in each of the incorporated system. The variations of GO sheet size did not influence the enhancement effect on the thermal stability.

  5. Thermal stability of high concentration lysozyme across varying pH: A Fourier Transform Infrared study

    Directory of Open Access Journals (Sweden)

    Sathyadevi Venkataramani

    2013-01-01

    Full Text Available Aim: The current work is aimed at understanding the effect of pH on the thermal stability of hen egg white lysozyme (HEWL at high concentration (200 mg/mL. Materials and Methods: Fourier Transform Infrared (FTIR Spectroscopy with modified hardware and software to overcome some of the traditional challenges like water subtraction, sample evaporation, proper purging etc., are used in this study. Results: HEWL was subjected to thermal stress at pH 3.0-7.0 between 25°C and 95°C and monitored by FTIR spectroscopy. Calculated T m values showed that the enzyme exhibited maximum thermal stability at pH 5.0. Second derivative plots constructed in the amide I region suggested that at pH 5.0 the enzyme possessed higher amount of α-helix and lower amount of aggregates, when compared to other pHs. Conclusions: Considering the fact that HEWL has attractive applications in various industries and being processed under different experimental conditions including high temperatures, our work is able to reveal the reason behind the pH dependent thermal stability of HEWL at high concentration, when subjected to heat denaturation. In future, studies should aim at using various excipients that may help to increase the stability and activity of the enzyme at this high concentration.

  6. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking

    NARCIS (Netherlands)

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-01-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80. °C for 15. min. During heating of w/o emulsions containing 10% (w/v) WPI protein

  7. Thermal stability of structurally different viruses with proven or potential relevance to food safety

    NARCIS (Netherlands)

    Tuladhar, E.; Bouwknegt, M.; Zwietering, M.H.; Koopmans, M.; Duizer, E.

    2012-01-01

    Aims: To collect comparative data on thermal stability of structurally different viruses with proven or potential relevance to food safety. Methods and Results: Suspensions with poliovirus Sabin1, adenovirus type5, parechovirus1, human norovirus (NoV) GII.4, murine NoV (MNV1) and human influenza A

  8. Improved thermal stability of gas-phase Mg nanoparticles for hydrogen storage

    NARCIS (Netherlands)

    Krishnan, Gopi; Palasantzas, G.; Kooi, B. J.

    2010-01-01

    This work focuses on improving the thermal stability of Mg nanoparticles (NPs) for use in hydrogen storage. Three ways are investigated that can achieve this goal. (i) Addition of Cu prevents void formation during NP production and reduces the fast evaporation/voiding of Mg during annealing. (ii) Al

  9. Digalactosyl-diacylglycerol-deficiency lowers the thermal stability of thylakoid membranes

    NARCIS (Netherlands)

    Krumova, S.K.B.; Laptenok, S.; Kovács, L.; Toth, T.; Hoek, van A.; Garab, G.; Amerongen, van H.

    2010-01-01

    We investigated the effects of digalactosyl-diacylglycerol (DGDG) on the organization and thermal stability of thylakoid membranes, using wild-type Arabidopsis thaliana and the DGDG-deficient mutant, dgd1. Circular-dichroism measurements reveal that DGDG-deficiency hampers the formation of the

  10. Thermal stability of catalytically grown multi-walled carbon nanotubes observed in transmission electron microscopy

    DEFF Research Database (Denmark)

    Wang, Cheng-Yu; Liu, Chuan-Pu; Boothroyd, Chris

    2009-01-01

    The thermal stability of multi-walled carbon nanotubes (MWCNTs) was assessed in situ by transmission electron microscopy. Upon heating, Ni catalysts in MWC-NTs containing bamboo structures shrank from the tail due to evaporation, leading to additional bamboo formation and tube elongation at 800...

  11. Synthesis and thermal stability of a novel phosphorus-nitrogen containing intumescent flame retardant

    Institute of Scientific and Technical Information of China (English)

    Zhi Yu Ju; Yong Ye; Ru Yi Zou; Xin Cheng Liao; Yu Fen Zhao

    2008-01-01

    A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of dichlor-opentate with JV-methylaniline. The structure of the product was confirmed by 1H NMR, 31P NMR, MS and IR. TGA analysis showed it has effective thermal stability.

  12. Design of Ag nanorods for sensitivity and thermal stability of surface-enhanced Raman scattering

    Science.gov (United States)

    Ma, Lingwei; Zhang, Zhengjun; Huang, Hanchen

    2017-10-01

    The technology of surface-enhanced Raman scattering (SERS) has found many applications and may find more if it can possess both sensitivity and thermal stability. This paper reports a rational design of Ag nanorods to simultaneously achieve two competing goals: the sensitivity and the thermal stability of SERS substrates. The Ag nanorods are designed and synthesized using physical vapor deposition under the condition of glancing angle incidence. The working pressure of the vacuum chamber is controlled so the mean free path of depositing atoms is comparable to the dimension of the chamber, so as to grow Ag nanorods with small diameter, and small but clear separation for optimal SERS sensitivity. Such Ag nanorods are further capped with Al2O3 on their top surfaces to reduce the diffusion-induced coarsening at high temperatures, and thereby to improve the thermal stability for SERS detections. Meanwhile, since the side surfaces of Ag nanorods are not coated with oxides in this approach, the SERS sensitivity is largely preserved while good thermal stability is achieved.

  13. Stability of lysozyme in aqueous extremolyte solutions during heat shock and accelerated thermal conditions.

    Directory of Open Access Journals (Sweden)

    Christina Avanti

    Full Text Available The purpose of this study was to investigate the stability of lysozyme in aqueous solutions in the presence of various extremolytes (betaine, hydroxyectoine, trehalose, ectoine, and firoin under different stress conditions. The stability of lysozyme was determined by Nile red Fluorescence Spectroscopy and a bioactivity assay. During heat shock (10 min at 70°C, betaine, trehalose, ectoin and firoin protected lysozyme against inactivation while hydroxyectoine, did not have a significant effect. During accelerated thermal conditions (4 weeks at 55°C, firoin also acted as a stabilizer. In contrast, betaine, hydroxyectoine, trehalose and ectoine destabilized lysozyme under this condition. These findings surprisingly indicate that some extremolytes can stabilize a protein under certain stress conditions but destabilize the same protein under other stress conditions. Therefore it is suggested that for the screening extremolytes to be used for protein stabilization, an appropriate storage conditions should also be taken into account.

  14. Thermal and Chemical Stability of Crystalline Silicotitanate Sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A.

    2000-10-04

    The Savannah River Site (SRS) is evaluating technologies for removing radioactive cesium ({sup 137}Cs) from the supernate solutions stored in the high-level waste tanks at the site. Crystalline silicotitanate sorbent (IONSIV IE-911,{reg_sign} UOP LLC, Des Plaines, IL), which is very effective at removing cesium from high-salt solution, is one of three technologies currently being tested. Because of the extremely high inventory of {sup 137}Cs expected for the large columns of crystalline silicotitanate (CST) that would be used for treating the SRS supernate, any loss of flow or cooling to the columns could result in high temperatures from radiolytic heating. Also, even for normal operation, the CST would be exposed to the supernates for up to a year before being removed. Small-scale tests using simulant solutions were used to determine the long-term stability of the CST to the solutions at various temperatures. In the tests performed in this study, the cesium capacity of the CST decreased significantly (76%) as the temperature of the simulant and CST during loading was increased from 23 to 80 C. CST exposed to recirculating SRS average simulant solution at room temperature in a column test showed a slow decrease in cesium loading capacity (measured at 23 C), with a drop of 30% for CST from the top of the bed and 13% for CST from the bottom of the bed after a 12-month period of exposure. A similar column test using a high-pH salt solution did not show any change in the cesium capacity of the CST. An increase was noted in pressure drop through the column using average simulant, but no change was observed for the column using high-pH salt solution.

  15. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  16. SELECTION OF OXIDES FOR STABILIZATION OF ZIRCONIUM DIOXIDE WHILE OBTAINING THERMAL BARRIER COATINGS

    Directory of Open Access Journals (Sweden)

    V. V. Okovity

    2015-01-01

    Full Text Available The paper analyzes selection of oxides and describes in details a majority of oxide systems which are applicable for stabilization of zirconium dioxide while obtaining thermal barrier coatings with maximum amount of tetragonal phase. Methodology of investigation is based on a review of analytical information on the current state of thermal barrier coatings on the basis of zirconium dioxide stabilized by oxides of rare-earth metals. The method used for application of  zirconium dioxide thermal barrier coatings is plasma spraying. Positive results have been also obtained while applying e-beam sputtering, ion-plasma deposition and magnetron sputtering. Nevertheless preferred plasma spraying application for thermal barrier coatings still continues due to its high productivity and versatility that permits to deposit metallic and ceramic materials of the ordered chemical and phase composition.Ytterbium and cerium oxides have been selected as oxides for stabilization of zirconium dioxide in order to obtain thermal barrier coatings. The paper also considers аn oxide system of zirconium dioxide: “hafnium oxide – yttrium oxide”, representing in itself the structure which is similar to zirconium dioxide.

  17. Effect of Chain Extension on Thermal Stability Behaviors of Polylactide Bioplastics

    Directory of Open Access Journals (Sweden)

    Yodthong Baimark

    2016-06-01

    Full Text Available The influences of chain extension and blending temperature on the thermal properties of poly(L-lactide (PLL were investigated. Joncryl® ADR 4368, a styrene-acrylic multifunctional oligomeric agent, was used as a chain extender. Differential scanning calorimetry and thermogravimetry were used to determine the thermal transition properties and thermal stability of the chain extended PLL, respectively. The chain extension reaction occurred at a blending temperature of 190 °C better than at 170 °C. The molecular weights of the chain extended PLLs increased and melt flow indices decreased when the Joncryl® ADR 4368 ratio was increased. The addition of Joncryl® ADR 4368 had an effect on the glass transition temperature, crystallizing temperature and crystallinity of the PLL for the blending temperature of 190 °C. The chain extended PLLs with branched structures showed lower thermal stability than the linear PLLs. The content of branched PLLs increased with the Joncryl® ADR 4368 ratio and blending temperature. The chain extension reaction was complete when 2% Joncryl® ADR 4368 and a blending temperature of 190 °C were used. The results indicated that the chain extension improved the PLL’s melt strength and it has an effect on the thermal stability of the PLLs.

  18. Thermal stability and hydration behavior of ritonavir sulfate: A vibrational spectroscopic approach

    Directory of Open Access Journals (Sweden)

    Kaweri Gambhir

    2015-12-01

    Full Text Available Ritonavir sulfate is a protease inhibitor widely used in the treatment of acquired immunodeficiency syndrome. In order to elucidate the inherent stability and sensitivity characteristics of ritonavir sulfate, it was investigated under forced thermal and hydration stress conditions as recommended by the International Conference on Harmonization guidelines. In addition, competency of vibrational (infrared and Raman spectroscopy was assessed to identify structural changes of the drug symbolizing its stress degradation. High performance liquid chromatography was used as a confirmatory technique for both thermal and hydration stress study, while thermogravimetric analysis/differential thermal analysis and atomic force microscopy substantiated the implementation of vibrational spectroscopy in this framework. The results exhibited high thermal stability of the drug as significant variations were observed in the diffuse reflectance infrared Fourier transform spectra only after the drug exposure to thermal radiations at 100 °C. Hydration behavior of ritonavir sulfate was evaluated using Raman spectroscopy and the value of critical relative humidity was found to be >67%. An important aspect of this study was to utilize vibrational spectroscopic technique to address stability issues of pharmacological molecules, not only for their processing in pharmaceutical industry, but also for predicting their shelf lives and suitable storage conditions.

  19. Thermal stability and hydration behavior of ritonavir sulfate:A vibrational spectroscopic approach

    Institute of Scientific and Technical Information of China (English)

    Kaweri Gambhir; Parul Singh; Deepak K Jangir; Ranjana Mehrotra

    2015-01-01

    abstract Ritonavir sulfate is a protease inhibitor widely used in the treatment of acquired immunodeficiency syndrome. In order to elucidate the inherent stability and sensitivity characteristics of ritonavir sulfate, it was investigated under forced thermal and hydration stress conditions as recommended by the Inter-national Conference on Harmonization guidelines. In addition, competency of vibrational (infrared and Raman) spectroscopy was assessed to identify structural changes of the drug symbolizing its stress de-gradation. High performance liquid chromatography was used as a confirmatory technique for both thermal and hydration stress study, while thermogravimetric analysis/differential thermal analysis and atomic force microscopy substantiated the implementation of vibrational spectroscopy in this frame-work. The results exhibited high thermal stability of the drug as significant variations were observed in the diffuse reflectance infrared Fourier transform spectra only after the drug exposure to thermal ra-diations at 100 °C. Hydration behavior of ritonavir sulfate was evaluated using Raman spectroscopy and the value of critical relative humidity was found to be 4 67%. An important aspect of this study was to utilize vibrational spectroscopic technique to address stability issues of pharmacological molecules, not only for their processing in pharmaceutical industry, but also for predicting their shelf lives and suitable storage conditions.

  20. Differential scanning fluorimetry based assessments of the thermal and kinetic stability of peptide-MHC complexes.

    Science.gov (United States)

    Hellman, Lance M; Yin, Liusong; Wang, Yuan; Blevins, Sydney J; Riley, Timothy P; Belden, Orrin S; Spear, Timothy T; Nishimura, Michael I; Stern, Lawrence J; Baker, Brian M

    2016-05-01

    Measurements of thermal stability by circular dichroism (CD) spectroscopy have been widely used to assess the binding of peptides to MHC proteins, particularly within the structural immunology community. Although thermal stability assays offer advantages over other approaches such as IC50 measurements, CD-based stability measurements are hindered by large sample requirements and low throughput. Here we demonstrate that an alternative approach based on differential scanning fluorimetry (DSF) yields results comparable to those based on CD for both class I and class II complexes. As they require much less sample, DSF-based measurements reduce demands on protein production strategies and are amenable for high throughput studies. DSF can thus not only replace CD as a means to assess peptide/MHC thermal stability, but can complement other peptide-MHC binding assays used in screening, epitope discovery, and vaccine design. Due to the physical process probed, DSF can also uncover complexities not observed with other techniques. Lastly, we show that DSF can also be used to assess peptide/MHC kinetic stability, allowing for a single experimental setup to probe both binding equilibria and kinetics.

  1. Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin

    Science.gov (United States)

    Lin, Yanjun; Wang, Jianrong; Evans, David G.; Li, Dianqing

    2006-05-01

    In the light of the accepted mechanism of thermal stabilization of PVC by layered double hydroxides (LDHs), the layer cations and interlayer counterions in LDHs were tailored to give MgZnAl-CO3-LDH and MgZnAl-maleate-LDH. These materials were characterized by XRD, FT-IR, and TG DTA. The thermal stability of PVC composites containing different LDH additives was tested in sheets having a thickness of about 1 mm. The results showed that compared with MgAl-CO3-LDH, MgZnAl-CO3-LDH enhances the thermal stability of PVC in terms of both long-term stability and early coloring. After intercalation of maleate in the LDH by reaction of maleic acid with the MgZnAl-CO3-LDH precursor, the interlayer distance increases from 0.75 to 1.11 nm. Since Cl- promotes the autocatalytic dehydrochlorination of PVC, which is responsible for its degradation, an increased interlayer distance should facilitate entry of Cl- into the interlayer galleries and inhibit the decomposition of PVC. In addition, maleic acid has a conjugated C=C double bond which can react with double bond formed in the dehydrochlorination of PVC and thus further inhibit the autocatalytic degradation reaction. The results show that the early coloring of PVC is markedly improved and the long-term stability slightly reduced by addition of the MgZnAl-maleate-LDH.

  2. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    Energy Technology Data Exchange (ETDEWEB)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir, E-mail: smadakbas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul (Turkey)

    2016-03-15

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  3. Enhancement of Aviation Fuel Thermal Stability Characterization Through Application of Ellipsometry

    Science.gov (United States)

    Browne, Samuel Tucker; Wong, Hubert; Hinderer, Cameron Branch; Klettlinger, Jennifer

    2012-01-01

    ASTM D3241/Jet Fuel Thermal Oxidation Tester (JFTOT) procedure, the standard method for testing thermal stability of conventional aviation turbine fuels is inherently limited due to the subjectivity in the color standard for tube deposit rating. Quantitative assessment of the physical characteristics of oxidative fuel deposits provides a more powerful method for comparing the thermal oxidation stability characteristics of fuels, especially in a research setting. We propose employing a Spectroscopic Ellipsometer to determine the film thickness and profile of oxidative fuel deposits on JFTOT heater tubes. Using JP-8 aviation fuel and following a modified ASTM D3241 testing procedure, the capabilities of the Ellipsometer will be demonstrated by measuring oxidative fuel deposit profiles for a range of different deposit characteristics. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project

  4. Ambient effect on thermal stability of amorphous InGaZnO thin film transistors

    Science.gov (United States)

    Xu, Jianeng; Wu, Qi; Xu, Ling; Xie, Haiting; Liu, Guochao; Zhang, Lei; Dong, Chengyuan

    2016-12-01

    The thermal stability of amorphous InGaZnO thin film transistors (a-IGZO TFTs) with various ambient gases was investigated. The a-IGZO TFTs in air were more thermally stable than the devices in the ambient argon. Oxygen, rather than nitrogen and moisture, was responsible for this improvement. Furthermore, the thermal stability of the a-IGZO TFTs improved with the increasing oxygen content in the surrounding atmosphere. The related physical mechanism was examined, indicating that the higher ambient oxygen content induced more combinations of the oxygen vacancies and adsorbed oxygen ions in the a-IGZO, which resulted in the larger defect formation energy. This larger defect formation energy led to the smaller variation in the threshold voltage for the corresponding TFT devices.

  5. Effect of supramolecular organization of a cartilaginous tissue on thermal stability of collagen II

    Science.gov (United States)

    Ignat'eva, N. Yu.; Averkiev, S. V.; Lunin, V. V.; Grokhovskaya, T. E.; Obrezkova, M. V.

    2006-08-01

    The thermal stability of collagen II in various cartilaginous tissues was studied. It was found that heating a tissue of nucleus pulposus results in collagen II melting within a temperature range of 60-70°C; an intact tissue of hyaline cartilage (of nasal septum and cartilage endplates) is a thermally stable system, where collagen II is not denatured completely up to 100°C. It was found that partial destruction of glycosaminoglycans in hyaline cartilage leads to an increase in the degree of denaturation of collagen II upon heating, although a significant fraction remains unchanged. It was shown that electrostatic interactions of proteoglycans and collagen only slightly affect the thermal stability of collagen II in the tissues. Evidently, proteoglycan aggregates play a key role: they create topological hindrances for moving polypeptide chains, thereby reducing the configurational entropy of collagen macromolecules in the state of a random coil.

  6. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, Mo)O {sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Legorreta-Garcia, F.; Esperanza Hernandez-Cruz, L.; Villanueva-Ibanez, M.; Flores-Gonzalez, M. A.

    2015-10-01

    The synthesis of Fe{sup 3}+, Mo{sup 4+} and Y{sup 3+} fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM) results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe{sup 3+}, Mo{sup 4+} and Y{sup 3+} ions in the zirconia tetragonal monophase, even after calcinations. (Author)

  7. Magnetic thermal stability of permalloy microstructures with shape-induced bi-axial anisotropy

    Science.gov (United States)

    Telepinsky, Yevgeniy; Sinwani, Omer; Mor, Vladislav; Schultz, Moty; Klein, Lior

    2016-02-01

    We study the thermal stability of the magnetization states in permalloy microstructures in the form of two crossing elongated ellipses, a shape which yields effective bi-axial magnetic anisotropy in the overlap area. We prepare the structure with the magnetization along one of the easy axes of magnetization and measure the waiting time for switching when a magnetic field favoring the other easy axis is applied. The waiting time for switching is measured as a function of the applied magnetic field and temperature. We determine the energy barrier for switching and estimate the thermal stability of the structures. The experimental results are compared with numerical simulations. The results indicate exceptional stability which makes such structures appealing for a variety of applications including magnetic random access memory based on the planar Hall effect.

  8. Stability of Sun Creams Formulated with Thermal Spring Waters from Ourense, Northwest Spain

    Directory of Open Access Journals (Sweden)

    Alexandra Del Castillo

    2016-12-01

    Full Text Available Sun protection creams were formulated with a commercial rosemary extract and with thermal waters from different springs in the Northwest Spain. A six month stability study was carried out and microbiological and chemical stability, as well as sensorial characteristics, were evaluated. In all creams, the mesophilic count always remained low (under 10 cfu/mL and most of them showed greater antioxidant stability than the control cream formulated with distilled water. Color was stable during storage in almost all creams. Sensory analysis showed a quite similar valoration of the creams regardless the sex of the panelists, and small differences were found between consumers aged 30–40 and >40. Formulations elaborated from Outariz and A Chavasqueira thermal waters were preferred to those prepared with distilled water as a control.

  9. Synthesis of lanthanum ricinoleate and its effect on thermal stability and mechanical properties in PVC

    Institute of Scientific and Technical Information of China (English)

    张伟; 董丹丹; 魏忠; 马彦青

    2014-01-01

    The lanthanum ricinoleate (abbreviated as Lari3) of rare earth heat stabilizer was synthesized by the reaction of ricinoleic acid, lanthanum nitrate and sodium hydroxide. The IR and fluorescence spectra methods confirmed the structure of the product. The thermal stability of PVC in the presence of Lari3 was studied by the Congo method and using TG analysis. The results showed that Lari3 could be used as a thermal stabilizer for PVC. When the ratio of Lari3/pentaerythritol was 3:1, the complex exhibited better syn-ergistic effect. Incorporation of Lari3 to PVC resulted in a marked increase of maximum and onset degradation temperature as well as elongation and impact strength of PVC. Lari3 might replace the labile chlorine atoms to interrupt the formation of conjugated double bonds in PVC chains and act as HCl scavenger to restrain the self-catalyticdehydrochlorination.

  10. Spectral properties and thermal stability of AS1411 G-quadruplex.

    Science.gov (United States)

    Bagheri, Zeinab; Ranjbar, Bijan; Latifi, Hamid; Zibaii, Mohammad Ismail; Moghadam, Tahereh Tohidi; Azizi, Azade

    2015-01-01

    G-quadruplexes are supramolecular structures of G-rich nucleic acid, formed by non-canonical base pairing in the presence of specific environmental inducers. These structures have been vastly considered in diagnostic and therapeutic applications. However, detailed information on structure, optical properties and thermal stability of G-quadruplex potent oligonucleotides is scarce. Herein, optical properties and thermodynamic stability of AS1411 quadruplex is reported for various concentrations of potassium and lead ions. Circular dichroism showed that AS1411 ss-DNA folds into parallel conformation in the presence of metal ions and molecular crowding condition. UV-vis spectroscopy indicated formation of quadruplex and fluorescent spectroscopy revealed intercalation of PicoGreen in its structure, with enhancement of emission intensity upon increment of metal ion concentration. This investigation also proposes high-throughput and reliable analysis of AS1411 quadruplex's thermal stability by real-time PCR technique, which can be further applied for other quadruplex structures.

  11. Synthesis, antibacterial and thermal studies of cellulose nanocrystal stabilized ZnO-Ag heterostructure nanoparticles.

    Science.gov (United States)

    Azizi, Susan; Ahmad, Mansor Bin Hj; Hussein, Mohd Zobir; Ibrahim, Nor Azowa

    2013-05-28

    Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs) as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO₃ relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9-35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNC-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.

  12. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, MoO2

    Directory of Open Access Journals (Sweden)

    Felipe Legorreta-García

    2015-05-01

    Full Text Available The synthesis of Fe3+, Mo4+ and Y3+ fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD, scanning electron microscopy (SEM and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe3+, Mo4+ and Y3+ ions in the zirconia tetragonal monophase, even after calcinations.

  13. Stability of the pion string in a thermal and dense medium

    CERN Document Server

    Berera, Arjun; Mabillard, Joel; Ramos, Rudnei O

    2016-01-01

    We investigate the stability of the pion string in a thermal bath and a dense medium. We find that stability is dependent on the order of the chiral transition. String core stability within the experimentally allowed regime is found only if the chiral transition is second order, and even there the stable region is small, i.e., the temperature below which the core is unstable is close to the critical temperature of the phase transition. We also find that the presence of a dense medium, in addition to the thermal bath, enhances the experimentally accessible region with stable strings. We also argue that once the string core decays, the "effective winding" of the string persists at large distances from the string core.

  14. Preparation of Emulsion Polymerization from Styrene Vinylpyrrolidone and Studying their Thermal Stability and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Azza Mazrouaa

    2014-01-01

    Full Text Available Copolymer styrene and vinylpyrrolidone were prepared using different techniques. The emulsion polymerization technique was chosen as it gives the highest molecular weight with polymer particles in the nanorange. The polymer nanocomposites were prepared using Pickering emulsion polymerization stabilized by adding inorganic nanosized particles. Ag nanometal and nanometal oxides of CuO, ZnO and AgO were added into the copolymer for enhancing its thermal stability and electrical conductivity. The nanocomposite chemical structure was confirmed by using FTIR, 1HNMR spectroscopy and TEM. Transmission electron microscopy, TEM photos show that the copolymer particles are almost in the nanoscale region. The thermal stability (TGA of styrene-co-vinylpyrrolidone in the presence of the nanometal and nanometal oxides was slightly increased. The electrical conductivity of these nanocomposites using dc at different temperatures was measured. The data reveal that the nanocomposites are enhanced by adding the nanometal and nanometal oxides.

  15. Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex.

    Science.gov (United States)

    Wang, Xinge; Luo, Zhigang; Xiao, Zhigang

    2014-01-30

    β-Cyclodextrin (β-CD), which is widely used to increase the stability, solubility, and bioavailability of guests, can form host-guest inclusion complexes with a wide variety of organic molecules. In this study the β-CD/soybean lecithin inclusion complex was prepared. The effect of reaction parameters such as reaction temperature, reaction time and the molar ratio of β-CD/soybean lecithin on inclusion ratio were studied. The inclusion ratio of the product prepared under the optimal conditions of β-CD/soybean lecithin molar ratio 2:1, reaction temperature 60°C reaction time 2h was 40.2%. The results of UV-vis, DSC, XRD and FT-IR spectrum indicated the formation of inclusion complex. The thermal stability experiment indicated that the thermal stability of soybean lecithin in inclusion complex was significantly improved compared with free soybean lecithin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Thermal stability and energy harvesting characteristics of Au nanorods: harsh environment chemical sensing

    Science.gov (United States)

    Karker, Nicholas; Dharmalingam, Gnanaprakash; Carpenter, Michael A.

    2015-05-01

    Monitoring the levels of polluting gases such as CO and NOx from high temperature (500°C and higher) combustion environments requires materials with high thermal stability and resilience that can withstand harsh oxidizing and reducing environments. Au nanorods (AuNRs) have shown potential in plasmonic gas sensing due to their catalytic activity, high oxidation stability, and absorbance sensitivity to changes in the surrounding environment. By using electron beam lithography, AuNR geometries can be patterned with tight control of the rod dimensions and spacings, allowing tunability of their optical properties. Methods such as NR encapsulation within an yttria-stabilized zirconia overcoat layer with subsequent annealing procedures will be shown to improve temperature stability within a simulated harsh environment. Since light sources and spectrometers are typically required to obtain optical measurements, integration is a major barrier for harsh environment sensing. Plasmonic sensing results will be presented where thermal energy is harvested by the AuNRs, which replaces the need for an external incident light source. Results from gas sensing experiments that utilize thermal energy harvesting are in good agreement with experiments which use an external incident light source. Principal component analysis results demonstrate that by selecting the most "active" wavelengths in a plasmonic band, the wavelength space can be reduced from hundreds of monitored wavelengths to just four, without loss of information about selectivity of the AuNRs. By combining thermal stability, the thermal energy harvesting capability, and the selectivity in gas detection (achieved through multivariate analysis), integration of plasmonic sensors into combustion environments can be greatly simplified.

  17. Effects of Mo addition on thermal stability and magnetic properties of a ferromagnetic Fe75P10C10B5 metallic glass

    Science.gov (United States)

    Zhang, Wei; Jia, Xingjie; Li, Yanhui; Fang, Canfeng

    2014-05-01

    The effects of Mo content on the thermal stability, glass-forming ability (GFA), magnetic and mechanical properties of Fe75-xMoxP10C10B5 (x = 0-10) metallic glasses were investigated. The stabilization of supercooled liquid and GFA were significantly enhanced by addition of Mo. Although the saturation magnetization (Is) of the alloys reduced with increasing Mo content, the coercive force (Hc) decreased. The metallic glasses with x = 2.5-7.5 exhibit low glass transition temperature of 733-749 K, large supercooled liquid region of 61-96 K, and high GFA with critical fully glassy sample diameters of 1.5-3.0 mm. They also possess rather high Is of 0.81-1.11 T, low Hc of 2.07-4.87 A/m, high Vicker's hardness of 860-992, high compressive yield strength of over 3000 MPa with a distinct plastic strain.

  18. EFFECT OF SOIL SOLARIZATION ON THERMAL REGIME OF PLASTIC GREENHOUSE SOIL

    OpenAIRE

    Nereu Augusto Streck; Flavio Miguel Schneider; Galileo Adeli Buriol

    1994-01-01

    SUMMARY Temperature modification in soil of plastic greenhouse caused by solarization was measured during the summer in the Subtropical Central Region of the Rio Grande do Sul State, Brazil. The experiment was carried out in a 10m x 25m greenhouse covered with low density transparent polyethylene (PE). Four 6m x 4m plots were mulched with 100µm thickness PE sheets, from December 12, 1992 to March 7, 1993. Four other plots (same size) without the cover were used as control (bare soil). Results...

  19. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni.

    Science.gov (United States)

    Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha

    2016-02-01

    Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity. © 2016 Institute of Food Technologists®

  20. Photoelasticity analysis of thermal stresses in the plastic ICs. Hikari danseiho ni yoru IC package nai oryoku no keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Shibuya, Y. (Mitsubishi Electric Corp., Tokyo (Japan))

    1992-10-20

    Recent highly integrated semiconductors have tendencies of being finer patterns and larger silicon chip area. Plastic packages excellent in productivity have been proved to be highly reliable in moisture resistance due to improved sealing resin and have become the main part of IC packages. However, in such devices featuring larger chip area and finer circuit pattern as large capacity memories, the problem of internal stress due to sealing resin contraction has been highlighted as a new problem. In this study, a photoelasticity which is a relatively simple method is employed to evaluate stress within sealing resin, and the review on effects of stress on the interior of sealing resin and chip are reported. Further, the effect of a buffer coat formed on the chip to reduce the stress on a silicon chip, and the effect of package shape on the thermal stress has been examined by means of photoelasticity, and the result is also shown. 10 refs., 18 figs., 2 tabs.

  1. Impact of revised thermal stability on pollutant transport time in a deep reservoir

    Science.gov (United States)

    Wu, Binbin; Wang, Guoqiang; Jiang, Hong; Wang, Jingfu; Liu, Changming

    2016-04-01

    Thermal stability (Schmidt stability) and water age, which are significantly related to water quality and algae bloom in deep reservoirs, are two crucial indicators of stratification strength and pollutant transport time, respectively. Here, the original Schmidt stability, which was derived from a one-dimensional assumption, was theoretically extended to a three-dimensional water body. In addition, a three-dimensional model was verified for the case study of Hongfeng Reservoir in China based on data from 2009 and 2010. Although the revised stability was similar to the original stability of Hongfeng Reservoir, which occurred at a relatively low level, the greater stratification in other deep water bodies would enhance their difference. Air temperature and water depth were the most important factors of the temporal variation in stability and the spatial variation in stability, respectively. The pollutant transport processes in the Hongfeng Reservoir was very complex with alternate appearances of overflow, interflow and underflow, depending on the season. The spatial water age was primarily determined by the morphometry and the inflow/outflow (with the highest water age in North Lake), whereas the vertical difference in the water age among the layers was primarily controlled by thermal stratification. Negative linear relationships between the average stability and the water ages of the bottom layers in three representative sites during summer were observed. Positive linear relationships between the average stability and the water ages of the surface layers were also observed. These findings enable a better understanding of the hydrodynamic and pollutant transport processes in a deep reservoir.

  2. Synthesis, characterization and application of enrofloxacin complexes as thermal stabilizers for rigid poly(vinyl chloride).

    Science.gov (United States)

    el-Gamel, Nadia E A; Mohamed, Riham R; Zayed, M A

    2012-02-14

    Synthesis and characterization of both binary Co(II)- (1), Ni(II)- (2) complexes with enrofloxacin drug (HL(1)) and ternary Co(II)- (3), Ni(II)- (4) complexes in presence of DL-alanine (H(2)L(2)) are reported using physico-chemical techniques. The antimicrobial activity of these complexes has been screened against two gram-positive and two gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with reference drug. All the binary and ternary complexes showed remarkable potential antimicrobial activity higher than the recommended standard agents. Ni(II)-complexes exhibited higher potency as compared to the parent drug against bacterial and fungal strain. In addition, it was of interest to investigate the reported complexes as thermal stabilizers and co-stabilizers for rigid PVC in air at 180 °C. Their high stabilizing efficiency is detected by their high induction period values (T(s)) compared with some of the common reference stabilizers used industrially, such as dibasic lead carbonate (DBLC) and calcium-zinc soap. Blending these complexes with some of the reference stabilizers in different ratios had a synergistic effect on both induction period as it gave better thermal stability and lower extent of discoloration. The stabilizing efficiency is attributed at least partially to the ability of the metal complex stabilizer to be incorporated in the polymeric chains, thus disrupting the chain degradation and replace the labile chlorine atoms on PVC chains by a relatively more s moiety of the inorganic stabilizer. Their amenability to use as a biomedical additives for PVC, has afforded them great potential for various medical applications.

  3. Thermal stabilization of dihydrofolate reductase using monte carlo unfolding simulations and its functional consequences.

    Directory of Open Access Journals (Sweden)

    Jian Tian

    2015-04-01

    Full Text Available Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR, a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r=0.65-0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover

  4. Mathematical model of thermal shields for long-term stability optical resonators

    CERN Document Server

    Sanjuan, Josep; Braxmaier, Claus

    2015-01-01

    Modern experiments aiming at tests of fundamental physics, like measuring gravitational waves or testing Lorentz Invariance with unprecedented accuracy, require thermal environments that are highly stable over long times. To achieve such a stability, the experiment including typically an optical resonator is nested in a thermal enclosure, which passively attenuates external temperature fluctuations to acceptable levels. These thermal shields are usually designed using tedious numerical simulations or with simple analytical models. In this paper, we propose an accurate analytical method to estimate the performance of passive thermal shields in the frequency domain, which allows for fast evaluation and optimization. The model analysis has also unveil interesting properties of the shields, such as dips in the transfer function for some frequencies under certain combinations of materials and geometries. We validate the results by comparing them to numerical simulations performed with commercial software based on ...

  5. Expanded polytetrafluoroethylene reinforced polyvinylidenefluoride-hexafluoropropylene separator with high thermal stability for lithium-ion batteries

    Science.gov (United States)

    Xiong, Ming; Tang, Haolin; Wang, Yadong; Lin, Yu; Sun, Meiling; Yin, Zhuangfei; Pan, Mu

    2013-11-01

    PVDF-HFP/ePTFE composite separator with high thermal stability and low thermal shrinkage characteristic has been developed. The PVDF-HFP acts to absorb the electrolyte and shutdown at elevated temperature. The thermally stable ePTFE matrix is adopted to improve the mechanical strength and sustain the insulation after the shutdown. This novel separator presents good ion conductivity (up to 1.29 mS cm-1) and has a low thermal shrinkage of 8.8% at 162 °C. The composite separator shutdown at 162 °C and keep its integrity before 329 °C. Cells based on the composite separator show excellent capacities at high rate discharge and stable cycling performance.

  6. Synthesis and characterization of conducting composites of polyaniline and carbon black with high thermal stability

    Directory of Open Access Journals (Sweden)

    Fabio R. Simões

    2009-01-01

    Full Text Available In this work, a detailed chemical route to prepare thermally stable polyaniline (PANI/carbon black (CB composites is described. The syntheses were performed by chemical polymerization of aniline over CB particles, using different PANI/CB mass ratios. The thermal and electrical properties were characterized. Composites with mass ratio up to 65:35 (PANI:CB showed excellent thermal stability maintaining their conducting properties when thermally treated at 230 °C for two hours, which is adequate to process these materials. Moreover, the results showed an important reduction in the surface area of the composites which have a good relationship with the improvement of the rheological properties in melt processing.

  7. Data on blueberry peroxidase kinetic characterization and stability towards thermal and high pressure processing

    Directory of Open Access Journals (Sweden)

    Netsanet Shiferaw Terefe

    2017-08-01

    Full Text Available The data presented in this article are related to a research article entitled ‘Thermal and high pressure inactivation kinetics of blueberry peroxidase’ (Terefe et al., 2017 [1]. In this article, we report original data on the activity of partially purified blueberry peroxidase at different concentrations of hydrogen peroxide and phenlylenediamine as substrates and the effects of thermal and high pressure processing on the activity of the enzyme. Data on the stability of the enzyme during thermal (at temperatures ranging from 40 to 80 °C and combined thermal-high pressure processing (100–690 MPa, 30–90 °C are included in this report. The data are presented in this format in order to facilitate comparison with data from other researchers and allow statistical analyses and modeling by others in the field.

  8. Comprehensive transient-state study for CARMENES-NIR high thermal stability

    CERN Document Server

    Becerril, S; Cárdenas, M C; Rabaza, O; Ramón, A; Abril, M; Costillo, L P; Morales, R; Rodríguez, A; Amado, P J

    2010-01-01

    CARMENES has been proposed as a next-generation instrument for the 3.5m Calar Alto Telescope. Its objective is finding habitable exoplanets around M dwarfs through radial velocity measurements (m/s level) in the near-infrared. Consequently, the NIR spectrograph is highly constraint regarding thermal/mechanical requirements. As a first approach, the thermal stability has been limited to \\pm 0.01K (within year period) over a working temperature of 243K. This can be achieved by means of several temperature-controlled rooms. The options considered to minimise the complexity of the thermal design are here presented, as well as the transient-state thermal analyses realised to make the best choice.

  9. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification

    Science.gov (United States)

    Arpin, Kevin A.; Losego, Mark D.; Cloud, Andrew N.; Ning, Hailong; Mallek, Justin; Sergeant, Nicholas P.; Zhu, Linxiao; Yu, Zongfu; Kalanyan, Berç; Parsons, Gregory N.; Girolami, Gregory S.; Abelson, John R.; Fan, Shanhui; Braun, Paul V.

    2013-10-01

    Selective thermal emission in a useful range of energies from a material operating at high temperatures is required for effective solar thermophotovoltaic energy conversion. Three-dimensional metallic photonic crystals can exhibit spectral emissivity that is modified compared with the emissivity of unstructured metals, resulting in an emission spectrum useful for solar thermophotovoltaics. However, retention of the three-dimensional mesostructure at high temperatures remains a significant challenge. Here we utilize self-assembled templates to fabricate high-quality tungsten photonic crystals that demonstrate unprecedented thermal stability up to at least 1,400 °C and modified thermal emission at solar thermophotovoltaic operating temperatures. We also obtain comparable thermal and optical results using a photonic crystal comprising a previously unstudied material, hafnium diboride, suggesting that refractory metallic ceramic materials are viable candidates for photonic crystal-based solar thermophotovoltaic devices and should be more extensively studied.

  10. Thermal Stability of Hexamethyldisiloxane (MM for High-Temperature Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2016-03-01

    Full Text Available The design of efficient Organic Rankine Cycle (ORC units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

  11. Effects of biodegradable plastics on the predominant culturable bacteria associated with soil aggregate formation and stability after 9 months of incubation in natural soil

    Science.gov (United States)

    An in vitro study of the effects of biodegradable plastics on the predominant soil aggregating bacteria associated to soil aggregate formation and stability after 9 months of incubation in soil. Caesar-TonThat TC, Fukui R*, Caesar AJ., Lartey, RT, and Gaskin, JF. USDA-Agricultural Research Service, ...

  12. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context

    DEFF Research Database (Denmark)

    Chown, Steven L.; Jumbam, Keafon R.; Sørensen, Jesper Givskov

    2009-01-01

    this is the case for critical thermal limits using a population of the model species Drosophila melanogaster and the invasive ant species Linepithema humile. 4.  We found that effects of the different rates of temperature change are variable among traits and species. However, in general, different rates....... humile. 5.  Although it seems premature to dismiss past generalities concerning interspecific and acclimation-related variation in critical thermal limits, we recommend that conditions during trials be appropriately selected, carefully reported and rigorously controlled....

  13. The effect of ligands on the thermal stability of sulfotransferases: a molecular dynamics simulation study.

    Science.gov (United States)

    Zhang, Pu-pu; Zhao, Li; Long, Shi-yang; Tian, Pu

    2015-04-01

    Human cytosolic sulfotransferases (hSULTs) are important phase II metabolic enzymes. They catalyze transfer of the sulfuryl-group (-SO3) from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the hydroxyl or primary amine moieties of a large number of endogenous and xenobiotic substrates. Broad selectivity and specificity of binding and activity within the sulfortransferases family could be detected by thermal denaturation assays, which have been made more and more suitable for high throughput screening based on recent technical advances. Here molecular dynamics simulations were used to explore the effect of the cofactor (PAPS) and substrate (LCA) on the thermal stability of the enzyme. It was found that the apo-enzyme unfolded fastest upon heating. The holo-enzyme with bound substrate LCA unfolded slowest. This thermo-denaturation order is consistent with that observed in experiments. Further it was found that the cofactor and substrate will pronouncedly increase the thermal stability of the active pocket regions that interact directly with the ligands. In addition, cofactor and substrate show noticeable synergy effect on the thermal stability of the enzyme.

  14. Enhanced thermal stability of RuO2/polyimide interface for flexible device applications

    Science.gov (United States)

    Music, Denis; Schmidt, Paul; Chang, Keke

    2017-09-01

    We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic–organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru–C and a few Ru–O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.

  15. Thermal stability assessment of antibiotics in moderate temperature and subcriticalwater using a pressurized dynamic flow-through system

    OpenAIRE

    Svahn, Ola; Björklund, Erland

    2015-01-01

    Thermal degradation of antibiotics has been studied for decades in a broad range of disciplines including food production, agriculture and analytical chemistry. Yet, there is a lack of thermal stability data for many antibiotics. Here we systematically investigated the thermal stability of ten commonly prescribed antibiotics applying a laborsaving automated inhouse pressurized dynamic flow-through system. The design of the system allowed a fast access to a large number of data at medium to su...

  16. Thermal Stability of Intermetallic Phases in Fe-rich Fe-Cr-Ni-Mo Alloys

    Science.gov (United States)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-09-01

    Understanding the thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical to alloy design and application of Mo-containing austenitic steels. Coupled with thermodynamic modeling, the thermal stability of intermetallic Chi and Laves phases in two Fe-Cr-Ni-Mo alloys was investigated at 1273 K, 1123 K, and 973 K (1000 °C, 850 °C, and 700 °C) for different annealing times. The morphologies, compositions, and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Two key findings resulted from this study. First, the Chi phase is stable at high temperature, and with the decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, and Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. The thermodynamic models that were developed were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  17. Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers.

    Science.gov (United States)

    Kayaci, Fatma; Ertas, Yelda; Uyar, Tamer

    2013-08-28

    Polyvinyl alcohol (PVA) nanofibers encapsulating eugenol (EG)/cyclodextrin (CD) inclusion complexes (IC) (EG/CD-IC) were produced via electrospinning technique in order to achieve high thermal stability and slow release of EG. In order to find out the most favorable CD type for the stabilization of EG, three types of native cyclodextrins (α-CD, β-CD, and γ-CD) were used for the formation of EG/CD-IC. In the case of PVA/EG/α-CD nanofibers, uncomplexed EG was detected indicating that α-CD is not a proper host for EG/CD-IC formation. However, for PVA/EG/β-CD-IC and PVA/EG/γ-CD-IC nanofibers, enhanced durability and high thermal stability for EG were achieved due to the inclusion complexation. The electrospun nanofibers encapsulating CD-IC of active compounds such as eugenol may be quite useful in the food industry due to the extremely large surface area of nanofibers along with specific functionality, enhanced thermal stability, and slow release of the active compounds by CD inclusion complexation.

  18. Structure-Activity Relationship Analysis of the Thermal Stabilities of Nitroaromatic Compounds Following Different Decomposition Mechanisms.

    Science.gov (United States)

    Li, Jiazhong; Liu, Huanxiang; Huo, Xing; Gramatica, Paola

    2013-02-01

    The decomposition behavior of energetic materials is very important for the safety problems concerning their production, transportation, use and storage, because molecular decomposition is intimately connected to their explosive properties. Nitroaromatic compounds, particularly nitrobenzene derivatives, are often considered as prototypical energetic molecules, and some of them are commonly used as high explosives. Quantitative structure-activity relationship (QSAR) represents a potential tool for predicting the thermal stability properties of energetic materials. But it is reported that constructing general reliable models to predict their stability and their potential explosive properties is a very difficult task. In this work, we make our efforts to investigate the relationship between the molecular structures and corresponding thermal stabilities of 77 nitrobenzene derivatives with various substituent functional groups (in ortho, meta and/or para positions). The proposed best MLR model, developed by the new software QSARINS, based on Genetic Algorithm for variable selection and with various validation tools, is robust, stable and predictive with R(2) of 0.86, QLOO (2) of 0.79 and CCC of 0.90. The results indicated that, though difficult, it is possible to build predictive, externally validated QSAR models to estimate the thermal stability of nitroaromatic compounds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Thermal stabilization of formaldehyde dehydrogenase by encapsulation in liposomes with nicotinamide adenine dinucleotide.

    Science.gov (United States)

    Yoshimoto, Makoto; Yamashita, Takayuki; Kinoshita, Satoshi

    2011-07-10

    The thermal stability of formaldehyde dehydrogenase (FaDH) from Pseudomonas sp. was examined and controlled by encapsulation in liposomes with β-reduced nicotinamide adenine dinucleotide (NADH). The activity of 4.8 μg/mL free FaDH at pH 8.5 in catalyzing the oxidation of 50mM formaldehyde was highly dependent on temperature so that the activity at 60 °C was 27 times larger than that at 25 °C. Thermal stability of the FaDH activity was examined with and without liposomes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Rapid deactivation of free FaDH was observed at 60 °C because of its dissociation into two subunits. The rate of dissociative deactivation of POPC liposome-encapsulated FaDH was smaller than that of the free enzyme. The liposomal FaDH was however progressively deactivated for the incubation period of 60 min eventually leading to complete loss of its activity. The free FaDH and NADH molecules were revealed to form the thermostable binary complex. The thermal stability of POPC liposome-encapsulated FaDH and NADH system was significantly higher than the liposomal enzyme without cofactor. The above results clearly show that NADH is a key molecule that controls the activity and stability of FaDH in liposomes at high temperatures.

  20. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  1. Study of fuzzy adaptive PID controller on thermal frequency stabilizing laser with double longitudinal modes

    Science.gov (United States)

    Mo, Qingkai; Zhang, Tao; Yan, Yining

    2016-10-01

    There are contradictions among speediness, anti-disturbance performance, and steady-state accuracy caused by traditional PID controller in the existing light source systems of thermal frequency stabilizing laser with double longitudinal modes. In this paper, a new kind of fuzzy adaptive PID controller was designed by combining fuzzy PID control technology and expert system to make frequency stabilizing system obtain the optimal performance. The experiments show that the frequency stability of the designed PID controller is similar to the existing PID controller (the magnitude of frequency stability is less than 10-9 in constant temperature and 10-7 in open air). But the preheating time is shortened obviously (from 10 minutes to 5 minutes) and the anti-disturbance capability is improved significantly (the recovery time needed after strong interference is reduced from 1 minute to 10 seconds).

  2. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems....... This paper gives a comparison of systems with mineral wool and cellular plastic, based on experience from practice and literature. It is important to look at the details in the system and at long time stability of the properties such as thermal insulation, moisture and fire. Investigation of fire properties...... insulation....

  3. Influence of Thermal Treatment on the Hygroscopicity and Dimensional Stability of Oak Wood

    Directory of Open Access Journals (Sweden)

    Inga JUODEIKIENĖ

    2013-03-01

    Full Text Available The influence of thermal treatment on moisture exchange between wood and natural environment with variable air parameters as well as on dimensional stability of wood samples was investigated. The experiments were carried out with oak wood samples indoors and outside. The thickness of samples was 30 mm, width was 30 mm and length was 20 mm; conventional density varied from 500 kg/m3 to 580 kg/m3. Initially, the wood was air-dried down to 7 % – 9 % of moisture content. In order to decrease possibility of the both moisture absorption and evaporation during wood application thermal treatment must be applied. Due to that the samples were heated at temperature of 60, 80, 100 and 120 ºC for 24, 48, 72 and 96 hours. The moisture content of wood and its variations after thermal treatment depends on the both heating temperature and duration. The higher temperature and the longer heating duration, the lower wood hygroscopicity can be achieved. The effect of thermal treatment on the moisture content and its changes were observed for wood samples stored indoor and outside. In dependence of thermal treatment conditions moisture content in wood samples independently on storing conditions (indoor or outside can decrease down to 30 % compare to the untreated ones. The change of moisture content during various seasons after 24 hours of storing indoor decreases down to 60 %, while outside that is only 39 %. Dimensional stability of wood samples also depends on the both thermal treatment temperature and duration. The higher treatment temperature and the longer duration, the higher dimensional stability can be obtained. The heat treatment of oak wood samples at selected regimes allows to decrease values of shrinkage and swelling coefficients down to 40 %.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3825

  4. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates

    KAUST Repository

    Naganuma, Tamaki

    2014-01-01

    Abundant oxygen vacancies coexisting with Ce3+ ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce3+ ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce3+ ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce3+ and Ce4+ ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce3+ ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce 3+ ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce3+ ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce 3+ to Ce4+ occurred at 350 °C in air. Highly concentrated Ce3+ ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce 3+ stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce3+ sites. This study also illuminates the potential interaction mechanisms of stable Ce3+ ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments. © The Royal Society of Chemistry 2014.

  5. Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries

    Science.gov (United States)

    Lee, Yunju; Lee, Hoogil; Lee, Taejoo; Ryou, Myung-Hyun; Lee, Yong Min

    2015-10-01

    To improve the safety of lithium-ion batteries (LIBs), co-polyimide (PI) P84 was introduced as a polymeric binder for Al2O3/polymer composite surface coatings on polypropylene (PP) separators. By monitoring the dimensional shrinkage of the PP separators at high temperatures, we verified a synergistic thermal stabilization effect between the Al2O3 ceramic and the PI polymeric binder. Although PI was thermally stable up to 300 °C, a coating consisting solely of PI did not impede the PP separator dimensional changes (-22% at 150 °C). On the other hand, the Al2O3/PI-coated PP separators efficiently impeded the thermal shrinkage (-10% at 150 °C). In contrast, an Al2O3/poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) combination lowered the thermal stability of the PP separators (-33% at 150 °C). As a result, the Al2O3/PI-coated PP separators remarkably suppressed the internal short-circuit of the unit half-cells associated with separator thermal shrinkage (100 min at 160 °C), whereas the PVdF-HFP retained only 40 min under identical conditions. The Al2O3/PI-coated PP separators achieved rate capabilities and cell performances similar to those of the bare PP separators.

  6. Thermal Stability of Frozen Volatiles in the North Polar Region of Mercury

    Science.gov (United States)

    Paige, David A.; Siegler, Matthew A.; Harmon, John K.; Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Solomon, Sean C.

    2012-01-01

    Earth-based radar observations have revealed the presence on Mercury of anomalously bright, depolarizing features that appear to be localized in the permanently shadowed regions of high-latitude impact craters [1]. Observations of similar radar signatures over a range of radar wavelengths implies that they correspond to deposits that are highly transparent at radar wavelengths and extend to depths of several meters below the surface [1]. Thermal models using idealized crater topographic profiles have predicted the thermal stability of surface and subsurface water ice at these same latitudes [2]. One of the major goals of the MESSENGER mission is to characterize the nature of radar-bright craters and presumed associated frozen volatile deposits at the poles of Mercury through complementary orbital observations by a suite of instruments [3]. Here we report on an examination of the thermal stability of water ice and other frozen volatiles in the north polar region of Mercury using topographic profiles obtained by the Mercury Laser Altimeter (MLA) instrument [4] in conjunction with a three-dimensional ray-tracing thermal model previously used to study the thermal environment of polar craters on the Moon [5].

  7. Thermal stabilities and decomposition mechanism of amino- and hydroxyl-functionalized ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhimin; Zhang, Yuwei [Department of Chemistry, Renmin University of China, Beijing 100872 (China); Zhou, Xiao-qin [College of Chemistry, Qufu Normal University, Shandong, Qufu 273165 (China); Cao, Yuanyuan [Department of Chemistry, Renmin University of China, Beijing 100872 (China); Mu, Tiancheng, E-mail: tcmu@chem.ruc.edu.cn [Department of Chemistry, Renmin University of China, Beijing 100872 (China)

    2014-02-01

    Highlights: • The long term thermal stabilities of [C{sub 2}NH{sub 2}MIM][Br] and [C{sub 3}OHMIM][Cl] are overestimated. • The thermal decomposition mechanisms of [C{sub 2}NH{sub 2}MIM][Br] and [C{sub 3}OHMIM][Cl] are complicated. • Bimolecular nucleophilic substitution (SN2) is the main reaction mechanism. - Abstract: Thermal stabilities and thermal decomposition mechanisms of amino-functionalized ionic liquid (IL) 1-aminoethyl-3-methylimidazolium bromide ([C{sub 2}NH{sub 2}MIM][Br]) and hydroxyl-functionalized IL 1-hydropropyl-3-methylimidazolium chloride ([C{sub 3}OHMIM][Cl]) were investigated by thermogravimetric analysis (TGA), TG–mass spectroscopy (TG–MS), density functional theory (DFT), and nuclear magnetic resonance (NMR) spectrum. Results show that the [C{sub 2}NH{sub 2}MIM][Br] and [C{sub 3}OHMIM][Cl] are stable up to 200 °C and 220 °C, respectively. Also, DFT calculation indicates that the thermal decomposition mechanisms of [C{sub 2}NH{sub 2}MIM][Br] and [C{sub 3}OHMIM][Cl] are complicated, while bimolecular nucleophilic substitution (SN2) is the main reaction mechanism. TG–MS and NMR spectra further prove the mechanisms.

  8. Hygroscopic and thermal micro deformations of plastic substrates for flexible electronics using digital image correlation

    NARCIS (Netherlands)

    Berg, D. van den; Barink, M.; Giesen, P.; Meinders, E.R.; Yakimets, I.

    2010-01-01

    Thin polymer substrates are promising materials for flexible electronics with many advantages. However, the dimensional stability of polymer substrates is low. Nowadays, this is overcome by laminating polymer substrates onto a rigid carrier. Nevertheless, carrier-less processing will be a foreseen n

  9. Hygroscopic and thermal micro deformations of plastic substrates for flexible electronics using digital image correlation

    NARCIS (Netherlands)

    Berg, D. van den; Barink, M.; Giesen, P.; Meinders, E.R.; Yakimets, I.

    2011-01-01

    Thin polymer substrates are promising materials for flexible electronics with many advantages. However, the dimensional stability of polymer substrates is low. Nowadays, this is overcome by laminating polymer substrates onto a rigid carrier. Nevertheless, carrier-less processing will be a foreseen n

  10. Thermal stability of anthocyanins and colourless phenolics in pomegranate (Punica granatum L.) juices and model solutions.

    Science.gov (United States)

    Fischer, Ulrike A; Carle, Reinhold; Kammerer, Dietmar R

    2013-06-01

    The present study aimed at a systematic assessment of the factors influencing the anthocyanin (AC) stability and colour retention of pomegranate juices and less complex model solutions with particular focus on the effects of colourless phenolic copigments (CP). The thermal stability of ACs in three pomegranate juices obtained from isolated arils and the entire fruit with and without previous steaming, in model solutions with AC:CP ratios ranging from 1:0 to 1:4 (m/m), and in two purified extracts from pomegranate juices characterised by different phenolic profiles, respectively, was investigated upon heating at 60, 70, 80 and 90°C for 15 min to 5h. The thermal impact on the AC and CP contents, and the formation of 5-hydroxymethylfurfural (HMF) and AC degradation products were monitored using HPLC-DAD-MS(n). Total phenolic contents, antioxidant capacity and colour properties were determined spectrophotometrically. Heating at 90°C for 5h resulted in total AC losses ranging from 76% to 87% of the initial AC levels in the juices, 78% in both extracts as well as 57% and ∼78% in the model solutions, showing the best stability at an AC:CP ratio of 1:2 and in juices having the highest initial AC contents, respectively. In contrast, the AC stability was independent of total phenolic contents, and low and high molecular pomegranate matrix components (such as organic acids and sugars). Good correlation of the AC contents with red colour (a(∗)) was observed for all samples at elevated temperatures (70-90°C). The stability of putative health-promoting polyphenols of pomegranate juices was not markedly affected by the thermal treatment. Unexpectedly, the HMF contents only slightly increased upon forced heating. Therefore, the visual appearance does not adequately reflect the quality and storage stability of pomegranate juices.

  11. Unique Thermal Stability of Unnatural Hydrophobic Ds Bases in Double-Stranded DNAs.

    Science.gov (United States)

    Kimoto, Michiko; Hirao, Ichiro

    2017-07-26

    Genetic alphabet expansion technology, the introduction of unnatural bases or base pairs into replicable DNA, has rapidly advanced as a new synthetic biology area. A hydrophobic unnatural base pair between 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px) exhibited high fidelity as a third base pair in PCR. SELEX methods using the Ds-Px pair enabled high-affinity DNA aptamer generation, and introducing a few Ds bases into DNA aptamers extremely augmented their affinities and selectivities to target proteins. Here, to further scrutinize the functions of this highly hydrophobic Ds base, the thermal stabilities of double-stranded DNAs (dsDNA) containing a noncognate Ds-Ds or G-Ds pair were examined. The thermal stability of the Ds-Ds self-pair was as high as that of the natural G-C pair, and apart from the generally higher stability of the G-C pair than that of the A-T pair, most of the 5'-pyrimidine-Ds-purine-3' sequences, such as CDsA and TDsA, exhibited higher stability than the 5'-purine-Ds-pyrimidine-3' sequences, such as GDsC and ADsC, in dsDNAs. This trait enabled the GC-content-independent control of the thermal stability of the designed dsDNA fragments. The melting temperatures of dsDNA fragments containing the Ds-Ds pair can be predicted from the nearest-neighbor parameters including the Ds base. In addition, the noncognate G-Ds pair can efficiently distinguish its neighboring cognate natural base pairs from noncognate pairs. We demonstrated that real-time PCR using primers containing Ds accurately detected a single-nucleotide mismatch in target DNAs. These unique properties of the Ds base that affect the stabilities of the neighboring base pairs could impart new functions to DNA molecules and technologies.

  12. Thermal stability of sputtered nanocrystalline hard coatings; Thermische Stabilitaet gesputterter nanokristalliner Hartstoffschichten

    Energy Technology Data Exchange (ETDEWEB)

    Willmann, H.; Mayrhofer, P.H.; Mitterer, C. [Inst. fuer Metallkunde und Werkstoffpruefung, Montanuniversitaet Leoben, Leoben (Austria); Beschliesser, M. [Materials Center Leoben, Leoben (Austria)

    2004-08-01

    This article deals with the thermal stability of magnetron sputtered hard coatings, i.e. their resistance against oxidation and recrystallization, depending on their chemical compositions. The oxidation behaviour of films in the chromium-nitrogen system was studied by thermogravimetric measurements at different temperatures. Dynamic differential scanning calorimetry was employed to characterize the recrystallization behaviour and the succeeding grain growth. The investigated samples were multiphase nanocrystalline coatings within the titanium-boron-nitrogen system. In addition, the film structures and grain sizes prior to and after the thermal analysis were investigated by means of X-ray diffraction (XRD). (orig.)

  13. Thermal stability of multilayered Pt-Al2O3 nanocoatings for high temperature CSP systems

    CSIR Research Space (South Africa)

    Nuru, ZY

    2015-10-01

    Full Text Available B), 115-120 Thermal stability of multilayered Pt-Al2O3 nanocoatings for high temperature CSP systems Z.Y. Nuru a, b, *, L. Kotsedi a, b, C.J. Arendse c, D. Motaung d, B. Mwakikunga d, K. Roro d, e, M. Maaza a, b a UNESCO-UNISA Africa Chair... Pretoria, South Africa e R&D Core-Energy, Council for Scientific and Industrial Research, P O Box 395, 0001 Pretoria, South Africa Abstract This contribution reports on the effect of thermal annealing on sputtered Pt–Al(sub2)O(sub3) multilayered...

  14. Thermal and structural stability of medium energy target carrier assembly for NOvA at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Ader, C.; Anderson, K.; Hylen, J.; Martens, M.; /Fermilab

    2010-05-01

    The NOvA project will upgrade the existing Neutrino at Main Injector (NuMI) project beamline at Fermilab to accommodate beam power of 700 kW. The Medium Energy (ME) graphite target assembly is provided through an accord with the State Research Center of Russia Institute for High Energy Physics (IHEP) at Protvino, Russia. The effects of proton beam energy deposition within beamline components are considered as thermal stability of the target carrier assembly and alignment budget are critical operational issues. Results of finite element thermal and structural analysis involving the target carrier assembly is provided with detail regarding the target's beryllium windows.

  15. SiC-based ceramic fibres : thermal stability and oxidation behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Greck, O.; Viricelle, J.P.; Bahloul-Hourlier, D.; Goursat, P. [Limoges Univ. (France). LMCTS/LCN; Dalbin, M.; Thomin, S. [CEAT, Toulouse (France); Flank, A.M. [LURE, Centre Univ., Orsay (France)

    1997-12-31

    The thermal stability of three commercial SiC-based fibres (Tyranno Lox M and Lox E, Hi-Nicalon) has been studied through their gaseous release and density changes followed by mass spectrometry and thermal expansion experiments. An axial shrinkage of about 0.8% has been measured in neutral and oxidizing atmosphere, at temperatures corresponding to the final pyrolysis treatment during the fibre processing (1200 C for Lox M and Lox E, 1400 C for Hi-Nicalon). This shrinkage is concommited with residual hydrogen removal for Tyranno fibres. In oxidizing conditions, the release of hydrogen results in water vapour formation which enhances the oxidation kinetics. (orig.) 5 refs.

  16. Balanced plasticity and stability of the electrical properties of a molluscan modulatory interneuron after classical conditioning: a computational study

    Directory of Open Access Journals (Sweden)

    Dimitris Vavoulis

    2010-05-01

    Full Text Available The Cerebral Giant Cells (CGCs are a pair of identified modulatory interneurons in the Central Nervous System of the pond snail Lymnaea stagnalis with an important role in the expression of both unconditioned and conditioned feeding behavior. Following single-trial food-reward classical conditioning, the membrane potential of the CGCs becomes persistently depolarized. This depolarization contributes to the conditioned response by facilitating sensory cell to command neuron synapses, which results in the activation of the feeding network by the conditioned stimulus. Despite the depolarization of the membrane potential, which enables the CGGs to play a key role in learning-induced network plasticity, there is no persistent change in the tonic firing rate or shape of the action potentials, allowing these neurons to retain their normal network function in feeding. In order to understand the ionic mechanisms of this novel combination of plasticity and stability of intrinsic electrical properties, we first constructed and validated a Hodgkin-Huxley-type model of the CGCs. We then used this model to elucidate how learning-induced changes in a somal persistent sodium and a delayed rectifier potassium current lead to a persistent depolarization of the CGCs whilst maintaining their firing rate. Including in the model an additional increase in the conductance of a high-voltage-activated calcium current allowed the spike amplitude and spike duration also to be maintained after conditioning. We conclude therefore that a balanced increase in three identified conductances is sufficient to explain the electrophysiological changes found in the CGCs after classical conditioning.

  17. Coordinated Stability Control of Wind-Thermal Hybrid AC/DC Power System

    Directory of Open Access Journals (Sweden)

    Zhiqing Yao

    2015-01-01

    Full Text Available The wind-thermal hybrid power transmission will someday be the main form of transmitting wind power in China but such transmission mode is poor in system stability. In this paper, a coordinated stability control strategy is proposed to improve the system stability. Firstly, the mathematical model of doubly fed wind farms and DC power transmission system is established. The rapid power controllability of large-scale wind farms is discussed based on DFIG model and wide-field optical fiber delay feature. Secondly, low frequency oscillation and power-angle stability are analyzed and discussed under the hybrid transmission mode of a conventional power plant with wind farms. A coordinated control strategy for the wind-thermal hybrid AC/DC power system is proposed and an experimental prototype is made. Finally, real time simulation modeling is set up through Real Time Digital Simulator (RTDS, including wind power system and synchronous generator system and DC power transmission system. The experimental prototype is connected with RTDS for joint debugging. Joint debugging result shows that, under the coordinated control strategy, the experimental prototype is conductive to enhance the grid damping and effectively prevents the grid from occurring low frequency oscillation. It can also increase the transient power-angle stability of a power system.

  18. High-temperature stability of yttria-stabilized zirconia thermal barrier coating on niobium alloy—C-103

    Indian Academy of Sciences (India)

    S S Panwar; T Umasankar Patro; K Balasubramanian; B Venkataraman

    2016-02-01

    Thermal barrier coatings (TBCs) of yttria-stabilized zirconia (YSZ) of different thicknesses with an intermediate bond coat were deposited on C-103 Nb alloy using the air plasma spraying technique. The coatings were subjected to rapid infra-red (IR) heating ($\\sim$25°C s$^{−1}$) up to $\\sim$1250°C and exposed up to 100 s at this temperature with heat flux varying from 55 to 61 Wcm$^{−2}$. The TBCs were found to be stable and intact after the heat treatment. In contrast, at the same conditions, the uncoated C-103 alloy specimen showed extensive oxidation followed by weight loss due to spallation. A maximum temperature drop of $\\sim$200°C was observed on the opposite side of the coated alloy with 600 $\\mu$m YSZ coat; as against negligible temperature drop in case of bare alloy specimen. The temperature drop was found to increase with the coating thickness of YSZ. The coatings before and after IR heating were investigated by scanning electron microscopy, X-ray diffraction, electron probe microanalysis, microhardness and residual stress measurements in order to understand the effect of thermal shock on the properties of the TBC. On account of these high-temperature properties, YSZ coating along with the bond coat is expected to find potential thermal barrier coating system on niobium alloys for supersonic vehicles.

  19. Metal ion-specific thermal stability of bacterial S-Layers

    Energy Technology Data Exchange (ETDEWEB)

    Drobot, Bjoern; Raff, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Biogeochemistry; Fahmy, Karim [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Biophysics

    2016-07-01

    Many bacteria are covered by a surface layer (S-layer), i.e., a para-crystalline two-dimensional array of proteins which control cell shape, act as molecular sieves and have potential applications as radionuclide-binding material for bioremediation of polluted areas. Knowledge and control of the metal-dependent stability of the purified proteins is required for their technical application. Here, we have explored by differential scanning calorimetry the thermal stability of the S-layer protein slp-B53 from Lysinibacillus sphaericus, a Gram-positive bacterium isolated from a uranium mining waste pile [1].

  20. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M.; Fink, J.K. [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  1. Soil thermal resistivity and thermal stability measuring instrument. Volume 2: Manual for operation and use of the thermal property analyzer and statistical weather analysis program to determine thermal design parameters

    Science.gov (United States)

    Boggs, S. A.; Radhakrishna, H. S.; Chu, F. Y.; Ford, G. L.; Griffin, J. D. A.; Steinmanis, J.

    1981-11-01

    Numerous considerations influence the thermal design of an underground power cable, including the soil thermal resistivity, thermal diffusivity and thermal stability. Each of these properties is a function of soil moisture which is in turn a function of past weather, soil composition, and biological burden. The Neher-McGrath formalism has been widely used for thermal cable design. However, this formalism assumes knowledge of soil thermal properties (resistivity and diffusivity). For design purposes, these parameters should be treated statistically, since weather varies greatly from year to year. As well, soil thermal property surveys are normally required along the route to assess the thermal quality of the native soil. This project is intended to fill the gap between the need to carry out thermal design and the use of the Neher-McGrath formalism which is normally employed. This goal has been addressed through: development of instrumentation and methods of measuring soil thermal properties in situ and in the laboratory; recommendation of methods for conducting soil surveys along a proposed cable route and of assessing the thermal quality of soils; and development of a computerized method to treat soil thermal design parameters on a statistical basis using computerized weather records as supplied by the US Environmental Data Service. The use of the methods and instrumentation developed as a result of this contract should permit less conservative thermal design thereby improving the economics of underground transmission. As well, these techniques and instrumentation facilitate weather-dependent prediction of cable ampacity for installed cables, monitoring of backfill thermal stability, and many other new practices.

  2. A plastic scintillator-based 2D thermal neutron mapping system for use in BNCT studies.

    Science.gov (United States)

    Ghal-Eh, N; Green, S

    2016-06-01

    In this study, a scintillator-based measurement instrument is proposed which is capable of measuring a two-dimensional map of thermal neutrons within a phantom based on the detection of 2.22MeV gamma rays generated via nth+H→D+γ reaction. The proposed instrument locates around a small rectangular water phantom (14cm×15cm×20cm) used in Birmingham BNCT facility. The whole system has been simulated using MCNPX 2.6. The results confirm that the thermal flux peaks somewhere between 2cm and 4cm distance from the system entrance which is in agreement with previous studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. System and plastic scintillator for discrimination of thermal neutron, fast neutron, and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.; Glenn, Andrew M.; Martinez, H. Paul; Pawelczak, Iwona A.; Payne, Stephen A.

    2017-05-16

    A scintillator material according to one embodiment includes a polymer matrix; a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 3 wt % or more; and at least one component in the polymer matrix, the component being selected from a group consisting of B, Li, Gd, a B-containing compound, a Li-containing compound and a Gd-containing compound, wherein the scintillator material exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays. A system according to one embodiment includes a scintillator material as disclosed herein and a photodetector for detecting the response of the material to fast neutron, thermal neutron and gamma ray irradiation.

  4. Oxidative stability, thermal stability and acceptability of coconut oil flavored with essential oils from black pepper and ginger.

    Science.gov (United States)

    Chandran, Janu; Nayana, N; Roshini, N; Nisha, P

    2017-01-01

    The present study investigates the oxidative and thermal stability of flavoured oils developed by incorporating essential oils from black pepper and ginger to coconut oil (CNO) at concentrations of 0.1 and 1.0% (CNOP-0.1, CNOP-1, CNOG-0.1, CNOG-1). The stability of oils were assessed in terms of free fatty acids, peroxide, p-anisidine, conjugated diene and triene values and compared with CNO without any additives and a positive control with synthetic antioxidant TBHQ (CNOT). It was found that the stability of CNOP-1 and CNOG-1 were comparable with CNOT at both study conditions. The possibility of flavoured oil as a table top salad oil was explored by incorporating the same in vegetable salad and was found more acceptable than the control, on sensory evaluation. The synergetic effect of essential oil as a flavour enhancer and a powerful natural antioxidant that can slow down the oxidation of fats was established in the study.

  5. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    Science.gov (United States)

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  6. Improvement of thermal stability of insulation paper cellulose by modified polysiloxane grafting

    Science.gov (United States)

    Zhang, Song; Tang, Chao; Xie, Jingyu; Zhou, Qu

    2016-10-01

    We present a method for improving the thermal stability of insulation paper cellulose. A polysiloxane was grafted to the hydroxyl group connected to the C6 atom in the cellulose chain. The effects of the mass fraction of polysiloxane on the mechanical properties and glass-transition temperatures of model cellulose samples modified by polysiloxane grafting were investigated using molecular dynamics simulations. The results show that for four models, with polysiloxane mass fractions of 0%, 3.3%, 6.5%, and 12.2%, the best chain performance was achieved using a mass fraction of 6.5%. The glass-transition temperature of the modified cellulose with a 6.5% mass fraction of polysiloxane was 48 K higher than that of unmodified cellulose, which shows that modification improved the thermal stability of the cellulose.

  7. Applications of high pressure differential scanning calorimetry to aviation fuel thermal stability research

    Science.gov (United States)

    Neveu, M. C.; Stocker, D. P.

    1985-01-01

    High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels.

  8. Thermal stability and structural characteristics of PTHF–Mmt organophile nanocomposite

    Directory of Open Access Journals (Sweden)

    Youcef Hattab

    2015-05-01

    The objective of this study is to use organophilized montmorillonites in the presence of monomer tetrahydrofuran to obtain polytétrahydrofuran montmorillonites (PTHF–Mmt of composites by polymerization in situ. The organophilisation of the Mmt is formed by active cationic surface. The obtained results show an increase in the distance inside the reticular in the diffractograms of X-rays (DRX and the appearance of absorption bands of the characteristics of polytétrahydrofuran on the spectra of infrared spectroscopy (IR, which indicate pre-polymerization of tetrahydrofuran in the galleries of clay and, therefore, the obtaining of a nanocomposite. We have also studied the thermal stability of the samples by differential analysis calorimetric (DSC analysis, and we can conclude that the nanocomposites are stabilized thermally by the presence of clay in the matrix.

  9. High physiological thermal triplex stability optimization of twisted intercalating nucleic acids (TINA).

    Science.gov (United States)

    Bomholt, Niels; Osman, Amany M A; Pedersen, Erik B

    2008-10-21

    The structure of the monomer (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol () in twisted intercalating nucleic acids (TINA) was optimized for stabilizing interactions between the intercalator and surrounding nucleobases when used as a triplex forming oligonucleotide (TFO). Enhancement of pi-pi interactions with nucleobases of the TFO was achieved by increasing the aromatic surface using the (R)-1-O-[4-(1-pyrenylethynyl)naphthylmethyl]glycerol monomer (). Bulge insertion of in the middle of a Hoogsteen-type triplex increased the triplex thermal stability, DeltaT(m) = +2.0 degrees C compared with at pH 7.2. Syntheses and thermal denaturation studies of triplexes and duplexes are described for three novel TINA monomers. The influence of pi-pi interactions, link length and the positioning of the ether in the linker in the TINA derivatives are described.

  10. Investigation on the thermal stability of PVC filled with hydrotalcite by the UV-vis spectroscopy.

    Science.gov (United States)

    Zhang, Qiang; Li, Hancheng

    2008-01-01

    The thermal stability of the polyvinyl chloride (PVC) filled with hydrotalcite was studied in this paper. It was found that the stability of the PVC resin mixed with organic Sn and hydrotalcite was better than that of the PVC resin mixed with organic Sn alone. The UV-vis spectra showed that under certain heat treatment conditions, the sample without hydrotalcite embodied relatively high content of the conjugated double bonds with the chain length of about 3-5, however, the content of the conjugated double bond with the chain length of about 7 was greatly increased when the hydrotalcite was filled into the PVC resin. The hydrotalcite could inhibit the thermal degradation process of PVC resin in ionic mechanism.

  11. Stability and color changes of thermally treated betanin, phyllocactin, and hylocerenin solutions.

    Science.gov (United States)

    Herbach, Kirsten M; Stintzing, Florian C; Carle, Reinhold

    2006-01-25

    Thermal degradation of betanin, phyllocactin (malonyl-betanin), and hylocerenin (3' '-hydroxy-3' '-methyl-glutaryl-betanin) solutions isolated from purple pitaya (Hylocereus polyrhizus [Weber] Britton and Rose) was monitored by spectrophotometric and high-performance liquid chromatography-diode array detection (HPLC-DAD) analyses. For betanin and phyllocactin solutions, the color shift upon thermal treatment was found to be nearly identical, while hylocerenin samples exhibited an intelligibly higher chromatic steadiness. Betanin proved to be the most stable individual pigment structure, while the enhanced tinctorial stability of the integral phyllocactin and especially hylocerenin solutions was due to the formation of red degradation products exhibiting improved color retention as opposed to their respective genuine pigments. Individual structure-related stability characteristics can exclusively be assessed by HPLC-DAD analyses and may not be noticed by mere spectrophotometric assessment of color and tinctorial strength.

  12. Introduction of fluorin into PBO polymer chains:Toward higher thermal stability and lower dielectric constant

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A series of novel fluorinated benzoxazole polymers (6FPBO’s) with high thermal stability and low dielectric constant were synthesized by copolymerization of 1,3-diamino-4, 6-dihydroxybenzene dihy-drochloride (DAR), 1,4-benzenedicarboxylic acid (PTA) and various amount of 4’4- (hexafluoroisopro-pylidene) bis (benzoic acid) (BIS-B-AF) in the medium of polyphosphoric acid (PPA). 6FPBO fibers were then obtained via dry-jet wet-spinning technique and characterized by means of Fourier transform infrared (FTIR) spectra, thermogravimetric analysis (TGA), single fiber tensile testing machine and scanning electron microscopy (SEM). FTIR spectrum of 6FPBO fibers indicated that the fluorine groups had been incorporated into PBO molecular chains successfully. TGA curves revealed that 6FPBO fibers possessed high thermal stability just as pure PBO fibers. Moreover, dielectric constant spectrum of 6FPBO exhibited that the polymers had low dielectric constant, especially in the range of high- frequency.

  13. Thermal stability and oil absorption of aluminum hydroxide treated by dry modification with phosphoric acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The dry modification of aluminum hydroxide powders with phosphoric acid and the effects of modification of technological conditions on thermal stability, morphology and oil absorption of aluminum hydroxide powders were investigated. The results show that the increase of mass ratio of phosphoric acid to aluminum hydroxide, the decrease of mass concentration of phosphoric acid and prolongation of mixing time are favorable to the improvement of thermal stability of aluminum hydroxide; when the mass ratio of phosphoric acid to aluminum hydroxide is 5:100, the mass concentration of phosphoric acid is 200 g/L and the mixing time is 10 min, the initial temperature of loss of crystal water in aluminum hydroxide rises from about 192.10 to 208.66 ℃2,but the dry modification results in the appearance of agglomeration and macro-aggregate in the modified powders, and the oil absorption of modified powders becomes higher than that of original aluminum hydroxide.

  14. In Situ Study of Thermal Stability of Copper Oxide Nanowires at Anaerobic Environment

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2014-01-01

    Full Text Available Many metal oxides with promising electrochemical properties were developed recently. Before those metal oxides realize the use as an anode in lithium ion batteries, their thermal stability at anaerobic environment inside batteries should be clearly understood for safety. In this study, copper oxide nanowires were investigated as an example. Several kinds of in situ experiment methods including in situ optical microscopy, in situ Raman spectrum, and in situ transmission electron microscopy were adopted to fully investigate their thermal stability at anaerobic environment. Copper oxide nanowires begin to transform as copper(I oxide at about 250°C and finish at about 400°C. The phase transformation proceeds with a homogeneous nucleation.

  15. Thermal Stability and Spectroscopic Properties of Yb3+-Doped New Gallium-Lead-Germanate Glass

    Institute of Scientific and Technical Information of China (English)

    XU Shi-Qing; FENG Ai-Ming; ZHANG Li-Yan; ZHAO Shi-Long; WANG Bao-Ling; ZHANG Jue; WANG Wei; BAO Ren-Qiang

    2006-01-01

    @@ Yb3+-doped new gallium-lead-germanate glass is presented. Thermal stability, spectroscopic and laser performance parameters of the Yb3+-doped new gallium-lead-germanate glass are calculated. The results show that the Yb3+-doped new gallium-lead-germanate glass has good thermal stability (△T = 198 ℃), high stimulated emission cross section (0.79pm2), and long fluorescence lifetime (1.46ms). Compared with other Yb3+-doped glass hosts, the Yb3+-doped new gallium-lead-germanate glass has better laser performance parameters and laser properties, indicating that Yb3+-doped new gallium-lead-germanate glass is a promising laser material for short pulse generation in diode pumped lasers, short pulse generation tunable laser, high-peak power and high-average power lasers.

  16. Flammability Properties of Composites of Wood Fiber and Recycled Plastic

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flammability properties of composites of wood fiber and recycled plastic were evaluated by the cone calorimeter and oxygen index chamber. Results were shown as follows: 1) Wood-PVC composite showed worse thermal stability on time to ignition (TTI) and mean heat release rate (MHRR), but better performance on heat release rate (HRR) and mean efficient heat of combustion (MEHC); wood-PP composite had better thermal stability properties, but was worse on other fire performance; 2) Compared with wood-PVC composi...

  17. The Effect Of Thermal Insulation Of An Apartment Building On The Thermo-Hydraulic Stability Of Its Heating System

    Science.gov (United States)

    Kurčová, Mária

    2015-12-01

    The contribution aims to investigate the effect of the decreased thermal losses of an apartment building due to the thermal insulation of opaque external building constructions and the replacement of transparent constructions. It emphasizes the effect of the thermal characteristics of external constructions on the functionality of the existing heating system in the building and the related requirements for the renovation of the heating system in order to ensure the hydraulic stability of the system and the thermal comfort of the inhabitants.

  18. On the physics of thermal-stability changes upon mutations of a protein.

    Science.gov (United States)

    Murakami, Shota; Oshima, Hiraku; Hayashi, Tomohiko; Kinoshita, Masahiro

    2015-09-28

    It is of great interest from both scientific and practical viewpoints to theoretically predict the thermal-stability changes upon mutations of a protein. However, such a prediction is an intricate task. Up to now, significantly many approaches for the prediction have been reported in the literature. They always include parameters which are adjusted so that the prediction results can be best fitted to the experimental data for a sufficiently large set of proteins and mutations. The inclusion is necessitated to achieve satisfactorily high prediction performance. A problem is that the resulting values of the parameters are often physically meaningless, and the physicochemical factors governing the thermal-stability changes upon mutations are rather ambiguous. Here, we develop a new measure of the thermal stability. Protein folding is accompanied by a large gain of water entropy (the entropic excluded-volume (EV) effect), loss of protein conformational entropy, and increase in enthalpy. The enthalpy increase originates primarily from the following: The energy increase due to the break of protein-water hydrogen bonds (HBs) upon folding cannot completely be cancelled out by the energy decrease brought by the formation of protein intramolecular HBs. We develop the measure on the basis of only these three factors and apply it to the prediction of the thermal-stability changes upon mutations. As a consequence, an approach toward the prediction is obtained. It is distinguished from the previously reported approaches in the following respects: The parameters adjusted in the manner mentioned above are not employed at all, and the entropic EV effect, which is ascribed to the translational displacement of water molecules coexisting with the protein in the system, is fully taken into account using a molecular model for water. Our approach is compared with one of the most popular approaches, FOLD-X, in terms of the prediction performance not only for single mutations but also for

  19. [PLASTICITY OF THE THERMAL REACTION NORMS FOR DEVELOPMENT IN THE EUROPEAN PEACOCK BUTTERLY INACHIS IO (LEPIDOPTERA, NYMPHALIDAE)].

    Science.gov (United States)

    Ryzhkova, M V; Lopatina, E B

    2015-01-01

    The goal of this study was to examine the plasticity of the thermal reaction norms for development in the European Peacock butterfly Inachis io under the effect of different photoperiodic conditions and group versus individual maintenance. The overwintered imagoes were collected in Old Peterhof (near Saint-Petersburg) in May, 2010 and 2012-2013. 12 experimental regimens were used: 4 temperatures (16, 18, 20 and 22 degrees C) and 3 photoperiods (12, 18 and 22 h of light a day). It was found that under short-day conditions (12 h) the caterpillars developed a little faster than under long-day ones (22 h). The developmental temperature thresholds in these two cases did not differ. A linear regression coefficient characterizing thermal sensitivity of development was significantly higher only in males with their development affected by short-day photoperiod stronger than in females. At 18-h day length, the caterpillar development was less temperature-sensitive and characterized by a lower threshold than in shorter and longer days. The influence of short-day photoperiod on the caterpillar development manifested itself most distinctly in the emerging pupae' weight changes: in all the temperature regimens the pupae were lighter at short than at long days. The pupal weight increased as the temperature rose. The found dependence does not agree with the "temperature-size rule". Individual rearing led to a longer duration and lower thermal sensitivity of caterpillar and pupal development as well as to a reduced weight of the pupae. Individual rearing had a stronger impact on the mineral of females than males.

  20. Improvement of thermal-stability of enzyme immobilized onto mesoporous zirconia

    Directory of Open Access Journals (Sweden)

    Yuichi Masuda

    2014-03-01

    Thereafter, FDH immobilized on MPZ showed higher catalytic activity than that on MPS. Enhancement of catalytic activity was obtained by improving the substrate affinity derived from interparticle voids of MPZ. In addition, the FDH immobilized on MPZ had a very great higher thermal stability. Further investigation using transmittance Infrared spectroscopy indicated that the high-order structure of the FDH immobilized on MPZ did not get altered after the heat-treatment.

  1. Thermal and photo-stability of the antioxidant potential of Spirulina platensis powder.

    Science.gov (United States)

    Colla, L M; Bertol, C D; Ferreira, D J; Bavaresco, J; Costa, J A V; Bertolin, T E

    2016-09-26

    This work aimed to evaluate the thermal and photo stability of the antioxidant potential (AP) of the Spirulina platensis biomass. Thermal stability was established at 25ºC, 40ºC and 50ºC for 60 days, in the dark, protected from light. Photo stability was evaluated using UV (15 W, λ = 265 nm) and fluorescent (20 W, 0.16 A, power factor FP > 0.5, 50/60 Hz, 60 lm/w, 1200 lm) light for 90 days in capsules, glass and Petri dishes, at room temperature. The AP of the biomass in these conditions was determined at intervals (every 7 and 30 days in the studies of thermal and photo stability, respectively) using the induction of the oxidation of a lipid system by heat and aeration. In this lipid system, the biomass submitted to degradation was used as an antioxidant. The kinetics of the reaction was determined by the Arrhenius method. Thermal degradation was found to follow zero order kinetics, whereas photo degradation followed first order kinetics. The AP decreased 50% after 50 days at 25°C. At 40°C and 50°C, the AP decreased more than 50% after 35 and 21 days of exposition, respectively. The decrease of the AP of Spirulina was more sensible to UV and fluorescence light. After 30 days of exposition, the AP decreased more than 50% in all storage conditions tested. The antioxidant potential of Spirulina platensis is easily degraded when the biomass is exposed to heat and light, indicating the need for care to be taken in its storage.

  2. The thermal stability of the framework, hydroxyl groups, and active sites of faujasites

    Energy Technology Data Exchange (ETDEWEB)

    Mishin, I.V.; Kalinin, V.P.; Nissenbaum, V.D. [Zelinskii Institute of Organic Chemistry, Moscow (Russian Federation); Beyer, H.K. [Hungarian Academy of Sciences, Budapest (Hungary); Karge, H.G. [Fritz Haber Institute of the Max Planck Soceity, Berlin (Germany)

    1994-07-01

    The effect of the framework composition on the crystallinity and {open_quotes}density{close_quotes} of hydroxyl groups and the concentration of active sites is reported for hydrogen forms of Y zeolites preheated at 400 - 1000{degrees}C. The increase in the Si/Al ratios results in improved resistance of the framework atoms and hydroxyl groups to high temperatures and in enhanced thermal stability of the sites that are active in the cracking of isooctane and disproportionation of ethylbenzene.

  3. A technique for enhancing the thermal stability of hydrogen-loaded fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    Youlong Yu(余有龙); Hwayaw Tam(谭华耀)

    2003-01-01

    Heat treatment with the presence of hydrogen (H2) that react with GeE' centers (.Ge ≡) at high tem-perature will weaken the refractive index modulation of grating fabricated in hydrogen-loaded normalgermanosilicate fiber. Pre-annealing treatment of the above fiber was demonstrated to be able to enhancethe grating's thermal stability effectively. 0.37-nm blue-shift of the reflected Bragg wavelength was ob-served.

  4. Thermal Conductivity and Water Vapor Stability of Ceramic HfO2-Based Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO2-5mol%Y2O3, HfO2-15mol%Y2O3 and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications will also be discussed.

  5. Thermal analysis of a direct-gain room with shape-stabilized PCM plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guobing; Zhang, Yinping; Lin, Kunping; Xiao, Wei [Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084 (China)

    2008-06-15

    The thermal performance of a south-facing direct-gain room with shape-stabilized phase change material (SSPCM) plates has been analysed using an enthalpy model. Effects of the following factors on room air temperature are investigated: the thermophysical properties of the SSPCM (melting temperature, heat of fusion and thermal conductivity), inner surface convective heat transfer coefficient, location and thickness of the SSPCM plate, wall structure (external thermal insulation and wallboard material) etc. The results show that: (1) for the present conditions, the optimal melting temperature is about 20{sup o}C and the heat of fusion should not be less than 90 kJ kg{sup -1}; (2) it is the inner surface convection, rather than the internal conduction resistance of SSPCM, that limits the latent thermal storage; (3) the effect of PCM plates located at the inner surface of interior wall is superior to that of exterior wall (the south wall); (4) external thermal insulation of the exterior wall obviously influences the operating effect and period of the SSPCM plates and the indoor temperature in winter; (5) the SSPCM plates create a heavyweight response to lightweight constructions with an increase of the minimum room temperature at night by up to 3{sup o}C for the case studied; (6) the SSPCM plates really absorb and store the solar energy during the daytime and discharge it later and improve the indoor thermal comfort degree at nighttime. (author)

  6. EFFECT OF SOIL SOLARIZATION ON THERMAL REGIME OF PLASTIC GREENHOUSE SOIL

    Directory of Open Access Journals (Sweden)

    Nereu Augusto Streck

    1994-01-01

    Full Text Available SUMMARY Temperature modification in soil of plastic greenhouse caused by solarization was measured during the summer in the Subtropical Central Region of the Rio Grande do Sul State, Brazil. The experiment was carried out in a 10m x 25m greenhouse covered with low density transparent polyethylene (PE. Four 6m x 4m plots were mulched with 100µm thickness PE sheets, from December 12, 1992 to March 7, 1993. Four other plots (same size without the cover were used as control (bare soil. Results indicated that solarization incrased the maximum soil temperature. The average was 11.9, 10.8, 9.8, and 8.6°C over uncovered control soil at 2, 5, 10, and 20cm depth, respectively. The soil temperature reached values of up to 54.4°C at 2cm and 50.2°C at 5cm depth. Temperatures exceeding 45°C and 50°C in solarized soil have also occurred in several days. "Edge effect" in mulched plots was also detected.

  7. Detection of plastic explosives using thermal neutron radiography; Deteccao de explosivos plasticos por neutrongrafia termica

    Energy Technology Data Exchange (ETDEWEB)

    Hacidume, Leo Ryoske

    1999-12-01

    The work aims to demonstrate the potentiality of the neutron radiography technique, allied to the computerized tomography by transmission, to both detect and visualize plastic explosive samples in several hidden conditions, using a simple scanner as a digitalisation instrument. Each tomographic essay was obtained in the J-9 channel of the Argonauta Research Reactor of IEN/CNEN, in groups of six neutron radiographic projections, performed with an angular increment of 30 deg C, in a period of time of 30 minutes for each projection. Two groups of tomographic reconstructions were generated, distinguished by the digitalisation process of the interested lines in the reconstruction plane coming from the projection groups, utilization a scanner and a microdensitometer, respectively. The reconstruction of the bi-dimensional image of the transverse section, in relation to this plane, was processed making use of the Image Reconstruction Algorithmic of an Image based on the Maximum Entropy principle (ARIEM). From the qualitative analysis of the images, we conclude that the neutron radiographic system was able to detect the explosive sample in a satisfactory way while the quantitative analysis confirmed the application effectiveness of a scanner to acquire the projection dates whose objective is only a reconnaissance. (author)

  8. Evaluating quality of adhesive joints in glass-fiber plastic piping by using active thermal NDT

    Science.gov (United States)

    Grosso, M.; Marinho, C. A.; Nesteruk, D. A.; Rebello, J. M.; Soares, S. D.; Vavilov, V. P.

    2013-05-01

    GRP-type composites (Glass-fibre Reinforced Plastics) have been continuously employed in the oil industry in recent years, often on platforms, especially in pipes for water or oil under moderate temperatures. In this case, the pipes are usually connected through adhesive joints and, consequently, the detection of defects in these joints, as areas without adhesive or adhesive failure (disbonding), gains great importance. One-sided inspection on the joint surface (front side) is a challenging task because the material thickness easily exceeds 10 mm that is far beyond the limits of the capacity of thermography applied to GRP inspection, as confirmed by the experience. Detection limits have been evaluated both theoretically and experimentally as a function of outer wall thickness and defect lateral size. The 3D modeling was accomplished by using the ThermoCalc-6L software. The experimental unit consisted of a FLIR SC640 and NEC TH- 9100 IR imagers and some home-made heaters with the power from 1,5 to 30 kW. The results obtained by applying pulsed heating have demonstrated that the inspection efficiency is strongly dependent on the outer wall thickness with a value of about 8 mm being a detection limit.

  9. Microfluidic thermodynamics of the shift in thermal stability of DNA duplex in a microchannel laminar flow.

    Science.gov (United States)

    Yamashita, Kenichi; Miyazaki, Masaya; Yamaguchi, Yoshiko; Nakamura, Hiroyuki; Maeda, Hideaki

    2007-06-01

    This paper reports the shift in thermal stability of DNA duplex and its thermodynamics spectroscopically, caused by stretching and orientation of DNA strands in a microchannel laminar flow. For direct spectroscopic measurement of the microchannel, we prepared an in-house temperature-controllable microchannel-type flow cell. The melting curves of DNA oligomers in a microchannel laminar flow were measured. For DNA oligomers with more than 10 base pairs, the melting curve shifted to the high-temperature side with higher flow speed. However, for 8-base-pair DNA oligomers, a change in the melting profile was not observed in batchwise and microchannel flows. We undertook microfluidic thermodynamic analysis to elucidate details of the shift in thermal stability of the DNA duplex in a microchannel laminar flow. Enthalpy-entropy compensation is applicable to the microfluidic thermal stability shift. We studied the relationships between the enthalpy-entropy compensation and DNA strand length or flow speed. Results showed that the enthalpy-entropy compensation was influenced by both DNA strand length and flow speed, and the penalties of enthalpy were 2-12% greater than the benefits of entropy.

  10. Curing Mechanism of Condensed Polynuclear Aromatic Resin and Thermal Stability of Cured Resin

    Institute of Scientific and Technical Information of China (English)

    Li Shibin; Sun Qiqian; Wang Yuwei; Wu Mingbo; Zhang Zailong

    2015-01-01

    In order to improve the thermal stability of condensed polynuclear aromatic (COPNA) resin synthesized from vacuum residue, 1,4-benzenedimethanol was added to cure COPNA resin. The curing mechanism was investigated by pro-ton nuclear magnetic resonance spectrometry, solid carbon-13 nuclear magnetic resonance spectrometry and Fourier trans-form infrared spectroscopy. Microstructures of the uncured and the cured COPNA resins were studied by scanning electron microscopy and X-ray diffractometry. The thermal stability of COPNA resins before and after curing was tested by thermo-gravimetric analysis. The element composition of the cured COPNA resin heated at different temperatures was analyzed by an element analyzer. The results showed that the uncured COPNA resin reacted with the cross-linking agent during the cur-ing process, and the curing mechanism was conifrmed to be the electrophilic substitution reaction. Compared with the un-cured COPNA resin, the cured COPNA resin had a smooth surface, well-ordered and streamlined sheet structure with more crystalline solids, better molecular arrangement and orientation. The weight loss process of the uncured and cured COPNA resins was divided into three stages. Carbon residue of the cured COPNA resin was 41.65%at 600℃, which was much higher than 25.02%of the uncured COPNA resin, which indicated that the cured COPNA resin had higher thermal stability.

  11. SOYBEAN (GLYCINE MAX UREASE: STEADY STATE KINETICS, STABILITY AND THERMAL INACTIVATION STUDIES

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2017-06-01

    Full Text Available The soybean (Glycine max urease was characterized with respect to kinetic parameters, stability studies and thermal inactivation. The stability temperature and stability pH of the purified urease was found to be 4 °C and 7.6, respectively. The optimum pH and optimum temperature were 7.0 oC and 65 oC, respectively. The energy of activation (Ea was 15.40 kJ/mol. Further, the Km and Vmax were determined by Lineweaver Burk plot and the values were 2.70 ± 0.10 mM and 2.85 x102 µmol NH3/min/mg protein,respectively. Thermal inactivation studies at 65 oC, revealed the mono-phasic kinetics, which indicated the loss in activity in single phase. However, at higher temperatures (70 oC, 75 oC and 77 oC, the kinetic pattern was mainly bi-phasic. At 80 oC, there was complete loss in activity thereby showing the denaturation of enzyme. Thermal inactivation studies strongly support the oligomeric nature of urease.

  12. Lignin-based carbon fibers: Carbon nanotube decoration and superior thermal stability

    KAUST Repository

    Xu, Xuezhu

    2014-08-23

    Lignin-based carbon fibers (CFs) decorated with carbon nanotubes (CNTs) were synthesized and their structure, thermal stability and wettability were systematically studied. The carbon fiber precursors were produced by electrospinning lignin/polyacrylonitrile solutions. CFs were obtained by pyrolyzing the precursors and CNTs were subsequently grown on the CFs to eventually achieve a CF–CNT hybrid structure. The processes of pyrolysis and CNT growth were conducted in a tube furnace using different conditions and the properties of the resultant products were studied and compared. The CF–CNT hybrid structure produced at 850 °C using a palladium catalyst showed the highest thermal stability, i.e., 98.3% residual weight at 950 °C. A mechanism for such superior thermal stability was postulated based on the results from X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, and electron energy loss spectroscopy analyses. The dense CNT decoration was found to increase the hydrophobicity of the CFs.

  13. Physicochemical properties and thermal stability of quercetin hydrates in the solid state

    Energy Technology Data Exchange (ETDEWEB)

    Borghetti, G.S., E-mail: greicefarm@yahoo.com.br [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, CEP 90.610-000, Porto Alegre, RS (Brazil); Carini, J.P. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, CEP 90.610-000, Porto Alegre, RS (Brazil); Honorato, S.B.; Ayala, A.P. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, CEP 60.455-970, Fortaleza, CE (Brazil); Moreira, J.C.F. [Departamento de Bioquimica, Instituto de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, CEP 90035-003, Porto Alegre, RS (Brazil); Bassani, V.L. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, CEP 90.610-000, Porto Alegre, RS (Brazil)

    2012-07-10

    Highlights: Black-Right-Pointing-Pointer Quercetin raw materials may present different degree of hydration. Black-Right-Pointing-Pointer Thermal stability of quercetin in the solid state depends on its degree of hydration. Black-Right-Pointing-Pointer Quercetin dehydrate is thermodynamically more stable than the other crystal forms. - Abstract: In the present work three samples of quercetin raw materials (QCTa, QCTb and QCTc), purchased from different Brazilian suppliers, were characterized employing scanning electron microscopy, Raman spectroscopy, simultaneous thermogravimetry and infrared spectroscopy, differential scanning calorimetry, and variable temperature-powder X-ray diffraction, in order to know their physicochemical properties, specially the thermal stability in solid state. The results demonstrated that the raw materials of quercetin analyzed present distinct crystalline structures, ascribed to the different degree of hydration of their crystal lattice. The thermal stability of these quercetin raw materials in the solid state was highly dependent on their degree of hydration, where QCTa (quercetin dihydrate) was thermodynamically more stable than the other two samples.

  14. Curing Kinetics, Mechanical Properties and Thermal Stability of Epoxy/Graphene Nanoplatelets (GNPs) Powder Coatings

    Institute of Scientific and Technical Information of China (English)

    ZHI Maoyong; HUANG Wanxia

    2016-01-01

    Epoxy/graphene nanoplatelets (GNPs) powder coatings were fabricated using ultrasonic pre-dispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored by means of real-time Fourier transform infrared spectroscopy (FT-IR) with a heating cell. The mechanical properties of the epoxy/GNPs cured coatings had been investigated, by evaluating their fracture surfaces with ifeld-emission scanning electron microscopy (FE-SEM) after three-point-bending tests. The thermal stability of the epoxy/GNPs cured coatings was studied by thermo-gravimetric analysis (TGA). The isothermal curing kinetics result showed that the GNPs would not affect the autocatalytic reaction mechanism, but the loading of GNPs below 1.0 wt % additive played a prompting role in the curing of the epoxy/GNPs powder coatings. The fracture strain, fracture toughness and impact resistance of the epoxy/GNPs cured coatings increased dramatically at low levels of GNPs loading (1 wt %), indicating that the GNPs could improve the toughness of the epoxy/GNPs powder coatings. Furthermore, from FE-SEM studies of the fracture surfaces, the possible toughening mechanisms of the epoxy/GNPs cured coatings were proposed. TGA result showed that the incorporation of GNPs improved the thermal stability of the cured coatings. Hence, the GNPs modiifed epoxy can be an efifcient approach to toughen epoxy powder coating along with improving their thermal stability.

  15. Structural Characterization of Mg/Al hydrotalcite-like Compounds and their Thermal Stability

    Science.gov (United States)

    Zhang, Shuhua; Yang, Siyuan; Wang, Cheng; Liu, Weijun; Gu, Xiaodan; Gan, Wenjun; Xue, Xiaoyu

    2014-03-01

    Hydrotalcite-like compounds, repersented by the formula [M1-x 2 + Mx3+ (OH)2]Xx/n n - . nH2O (M2+ = Ni2+, Mg2+, Cu2+,etc; M3+ = Al3+, Fe3+, etc; Xn- = CO32- , NO3-,etc) possess the brucite-like layers [Mg(OH)2] with positive charge and anionic compounds in the interlayer to form neutral materials. Catalytic effects to decompose NOx from automobile exhaust were highly related with the difference of M2+ and thermal stability because the catylists locate are about 200 ~ 500°. In this paper, Mg-Al-Cu and Mg-Al-Ni hydrotalcite-like compounds were characterized by XRD and FT-IR spectra and the thermal stability were analyzed by TGA and DTA. Even though they both have the typical diffraction peaks of hydrotalcites, but their interlayer spaces are different. Some weak chemical bonds were observed to be formed in Mg-Al-Ni hydrotalcites by FT-IR. Mg-Al-Ni hydrotalcite-like compound degraded at lower temperature, by contrast, Mg-Al-Cu hydrotalcite has the better structural stablilty and thermal stability.

  16. Thermal stability and starch degradation profile of α-amylase from Streptomyces avermitilis.

    Science.gov (United States)

    Hwang, Sang Youn; Nakashima, Kazunori; Okai, Naoko; Okazaki, Fumiyoshi; Miyake, Michiru; Harazono, Koichi; Ogino, Chiaki; Kondo, Akihiko

    2013-01-01

    Amylases from Streptomyces are useful in the production of maltooligosaccharides, but they have weak thermal stability at temperatures higher than 40 °C. In this study, α-amylase (SAV5981 gene of Streptomyces avermitilis) was expressed from Streptomyces lividans 1326 and purified by ammonium sulfate fractionation followed by anionic chromatography (Q-HP sepharose). The properties of the purified SAV5981 amylase were determined by the starch-iodine method. The effect of metal ions on amylase activity was investigated. The optimal temperature shifted from 25 to 50 °C with the addition of the Ca(2+) ion. The thermal stability of SAV5981 was also dramatically enhanced by the addition of 10 mM CaCl2. Improvement of the thermal stability of SAV5981 was examined by CD spectra in the presence and the absence of the Ca(2+) ion. Thin-layer chromatography (TLC) analysis and HPLC analysis of starch degradation revealed that SAV5981 mainly produced maltose and maltotriose, not glucose. The maltoorigosaccharide-producing amylase examined in this study has the potential in the industrial application of oligosaccharide production.

  17. Polyaniline-Doped Spherical Polyelectrolyte Brush Nanocomposites with Enhanced Electrical Conductivity, Thermal Stability, and Solubility Property

    Directory of Open Access Journals (Sweden)

    Na Su

    2015-09-01

    Full Text Available The synthesis procedure and dopant are crucial to the electrical conductivity, thermal stability, and solubility properties of polyaniline (PANI. In this paper, high-performance PANI was synthesized by means of chemical oxidative polymerization using anionic spherical polyelectrolyte brushes (ASPB as dopant. The bonding structure, crystallographic structure, morphology, and thermal stability of the conductive nanocomposite were analyzed by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM, and thermo-gravimetric analysis (TGA respectively. Meanwhile, investigation on the electrical conductivity suggested that the room-temperature electrical conductivity of PANI doped with ASPB (PANI/ASPB was 19.3 S/cm, which was higher than that of PANI (7.0 S/cm, PANI doped with poly(sodium-p-styrenesulfonate (PSS (PANI/PSS (14.6 S/cm, PANI doped with SiO2 (PANI/SiO2 (18.2 S/cm, and PANI doped with canonic spherical polyelectrolyte brushes (CSPB (PANI/CSPB (8.0 S/cm. Meanwhile, the addition of ASPB improved the thermal stability and solubility properties of PANI. ASPB played the role of template. Conductive mechanism of PANI/ASPB nanocomposite can be explained by the theoretical models of three-dimensional variable range-hopping (3D VRH.

  18. Minimizing Postsampling Degradation of Peptides by a Thermal Benchtop Tissue Stabilization Method.

    Science.gov (United States)

    Segerström, Lova; Gustavsson, Jenny; Nylander, Ingrid

    2016-04-01

    Enzymatic degradation is a major concern in peptide analysis. Postmortem metabolism in biological samples entails considerable risk for measurements misrepresentative of true in vivo concentrations. It is therefore vital to find reliable, reproducible, and easy-to-use procedures to inhibit enzymatic activity in fresh tissues before subjecting them to qualitative and quantitative analyses. The aim of this study was to test a benchtop thermal stabilization method to optimize measurement of endogenous opioids in brain tissue. Endogenous opioid peptides are generated from precursor proteins through multiple enzymatic steps that include conversion of one bioactive peptide to another, often with a different function. Ex vivo metabolism may, therefore, lead to erroneous functional interpretations. The efficacy of heat stabilization was systematically evaluated in a number of postmortem handling procedures. Dynorphin B (DYNB), Leu-enkephalin-Arg(6) (LARG), and Met-enkephalin-Arg(6)-Phe(7) (MEAP) were measured by radioimmunoassay in rat hypothalamus, striatum (STR), and cingulate cortex (CCX). Also, simplified extraction protocols for stabilized tissue were tested. Stabilization affected all peptide levels to varying degrees compared to those prepared by standard dissection and tissue handling procedures. Stabilization increased DYNB in hypothalamus, but not STR or CCX, whereas LARG generally decreased. MEAP increased in hypothalamus after all stabilization procedures, whereas for STR and CCX, the effect was dependent on the time point for stabilization. The efficacy of stabilization allowed samples to be left for 2 hours in room temperature (20°C) without changes in peptide levels. This study shows that conductive heat transfer is an easy-to-use and efficient procedure for the preservation of the molecular composition in biological samples. Region- and peptide-specific critical steps were identified and stabilization enabled the optimization of tissue handling and opioid

  19. Friction, wear, and thermal stability studies of some organotin and organosilicon compounds

    Science.gov (United States)

    Jones, W. R., Jr.

    1973-01-01

    Thermal decomposition temperatures were determined for a number of organotin and organosilicon compounds. A ball-on-disk sliding friction apparatus was used to determine the friction and wear characteristics of two representative compounds, (1) 3-tri-n-butylstannyl (diphenyl) and (2) 3-tri-n-butylsilyl (diphenyl). Friction and wear test conditions included a 1-kg load, 25 to 225 C disk temperatures, and a dry air atmosphere. The tin and silicon compounds yielded friction and wear results either lower than or similar to those obtained with a polyphenyl ether and a C-ether. The maximum thermal decomposition temperatures obtained in the silicon and tin series were 358 and 297 C, respectively. Increasing the steric hindrance around the silicon or tin atoms increased the thermal stability. Future work with these compounds will emphasize their use as antiwear additives rather than base fluids.

  20. Flame retardancy and thermal stability of polyurethane foam composites containing carbon additives

    Science.gov (United States)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Lee, Geesoo; Han, San Wook; Kim, Hyunchul; Lee, Ki-Dong; Han, Joo-Kwon

    2016-03-01

    Polyurethane (PU) is an important class of polymers that have wide application in a number of different industrial sectors. The goal of this work was the synthesis of flame-retarded PU foam with expandable graphite (EG) or commercial graphene. The flame retardancy and thermal stability of the foams has been studied through cone calorimeter analysis, the limited oxygen index and thermal conductivity. The presence of expandable graphite brings an improvement in fire behavior. In particular, the limited oxygen index increases in a linear way and the highest limited oxygen index values are obtained for EG-PU foams. The results from the cone calorimeter are in agreement with those of oxygen index; EG filled foams show a considerable decrease of maximum-heat release rate (M-HRR) with respect to unfilled foams. The results of thermal conductivity show that an increase in expandable graphite amount in PU foams lead to an increased conductivity.

  1. Thermal stability of the solid DNA as a novel optical material

    Science.gov (United States)

    Nizioł, Jacek; Makyła-Juzak, Katarzyna; Marzec, Mateusz M.; Ekiert, Robert; Marzec, Monika; Gondek, Ewa

    2017-04-01

    Deoxyribonucleic acid (DNA) has been extensively exploited for the past decade as the matrix material in organic electronics and nonlinear optics. In this work thermal stability of DNA in solid form was thoroughly studied, mainly by optical methods. Solid samples of low molecular mass DNA were subjected to heating according to different protocols and dissolved. The temperature effect was observed in the evolution of UV absorption and circular dichroism spectra. Thin films of DNA were deposited on polished silicon wafers. They were conditioned at consecutively raised temperature and simultaneously measured by spectroscopic ellipsometry. Changes in chemical composition of thermally treated films were studied by XPS. Below 100 °C all thermal effects were reversible. Melting occurred at c.a.140 °C. Irreversible chemical changes probably occurred at 170-180 °C.

  2. The Addition of Aluminum Nanoparticles to Polypropylene Increases Its Thermal Stability

    Directory of Open Access Journals (Sweden)

    Javier Arranz-Andrés

    2017-01-01

    Full Text Available This work reports the thermal degradation kinetics of isotactic polypropylene (iPP and iPP with incorporated Al nanoparticles. The Friedman, Flynn-Wall–Ozawa (FWO, ASTM E698 and Coats-Redfern methods were used to calculate the activation energy of the samples from thermogravimetric data. The thermal stability of the iPP was improved by the introduction of the nanoparticles: the maximum decomposition temperature of the nanocomposite increased from 453 ºC to 457 ºC and the activation energy from 226 kJ/mol to 244 kJ/mol. The thermal degradation models of iPP can be described by “Contracting Sphere” model, whereas that to nanocomposite by Rn (n= 4.8 model (phase boundary reaction

  3. The effect of heparin and pentosan polysulfate on the thermal stability of yeast alcohol dehydrogenase.

    Science.gov (United States)

    Paulíková, H; Molnárová, M; Podhradský, D

    1998-12-01

    Heparin and pentosan polysulfate as organic polyanions inhibit yeast alcohol dehydrogenase (YADH). The aim of this study was to determine the effect of heparin and pentosan polysulfate on the thermostability of alcohol dehydrogenase. Spectral and kinetic analyses showed that these compounds increase the thermal stability of the enzyme and eliminate entirely thermal aggregation. The thermostabilizing effect of unfractionated heparin and pentosan polysulfate was accelerated in the presence of NAD+. The addition of NAD+ (11 microM) to the incubation medium decreased the inhibition of the YADH activity in the presence of pentosan polysulfate (1.32 microM). Moreover, 38% of the residual activity of YADH was found after a 5-min incubation at 70 degrees C. These findings indicate that heparinoids not only modulate the enzyme activity but also can prevent the protein's thermal denaturation.

  4. Dithiothreitol decreases the thermal stability and unfolding cooperativity of ribulose-1, 5-bisphosphate carboxylase/oxygenase

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Plant rubisco consists of eight large subunits (55 kD) encoded by chloroplast gene and eight small subunits (15 kD) encoded by nuclear gene. There are abundant cysteine residues that do not form disulfide bonds in native rubisco. Differential scanning calorimetry has been used to study some plant rubisco and suggested an irreversible two-state denaturation due to the high cooperativity in subunits. By comparing the data from circular dichroism, fluorescence, differential scanning calorimetry, SDS electrophoresis, and activity assays in the absence or presence of DTT, we suggest that the formation of disulfide bonds in subunits during the early thermal unfolding may increase the thermal stability and the thermal unfolding cooperativity of rubisco.

  5. Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing

    Science.gov (United States)

    Baker, Charles; Garrison, Matthew; Cottingham, Christine; Peabody, Sharon

    2010-01-01

    The theory shown here can provide thermal stability criteria based on physics and a goal steady state error rather than on an arbitrary "X% Q/mC(sub P)" method. The ability to accurately predict steady-state temperatures well before thermal balance is reached could be very useful during testing. This holds true for systems where components are changing temperature at different rates, although it works better for the components closest to the sink. However, the application to these test cases shows some significant limitations: This theory quickly falls apart if the thermal control system in question is tightly coupled to a large mass not accounted for in the calculations, so it is more useful in subsystem-level testing than full orbiter tests. Tight couplings to a fluctuating sink causes noise in the steady state temperature predictions.

  6. Refractometric sensitivity and thermal stabilization of fluorescent core microcapillary sensors: theory and experiment.

    Science.gov (United States)

    Lane, S; Marsiglio, F; Zhi, Y; Meldrum, A

    2015-02-20

    Fluorescent-core microcapillaries (FCMs) present a robust basis for the application of optical whispering gallery modes toward refractometric sensing. An important question concerns whether these devices can be rendered insensitive to local temperature fluctuations, which may otherwise limit their refractometric detection limits, mainly as a result of thermorefractive effects. Here, we first use a standard cylindrical cavity formalism to develop the refractometric and thermally limited detection limits for the FCM structure. We then measure the thermal response of a real device with different analytes in the channel and compare the result to the theory. Good stability against temperature fluctuations was obtained for an ethanol solvent, with a near-zero observed thermal shift for the transverse magnetic modes. Similarly good results could in principle be obtained for any other solvent (e.g., water), if the thickness of the fluorescent layer can be sufficiently well controlled.

  7. Morphology and thermal properties of PLA films plasticized with aliphatic oligoesters; Morfologia e propriedades termicas de filmes de PLA plastificados com oligoesteres alifaticos

    Energy Technology Data Exchange (ETDEWEB)

    Inacio, Erika M.; Dias, Marcos L., E-mail: erika.minacio@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Lima, Maria Celiana P. [Instituto Federal do Rio de Janeiro (IFRJ), Duque de Caxias, RJ (Brazil)

    2015-07-01

    The addition of plasticizers to poly(lactic acid) (PLA) is one of the known ways of changing its ductility, making possible the modification of its mechanical and thermal properties. In this work, it was synthesized two biodegradable aliphatic oligoesters: oligo(trimethylene sebacate) (OST) and oligo(trimethylene malonate) (OMT), and these oligomers were used as plasticizer in cast films of commercial film grade PLA at concentrations of 1, 5 and 10 wt% of each plasticizer. X-ray diffraction (XRD) was used to investigate the morphology and differential scanning calorimetry (DSC) was also used aiming the evaluation of the thermal properties of these films. The PLA films containing no plasticizer showed an amorphous behavior, and the addition of PMT on the PLA films acted, simultaneously, decreasing the Tg, and rising the material's crystallinity. In contrast, the increased addition of OST to the PLA films did not change the Tg, and equally, did not have a significant changes in the material's crystallinity. Therefore, it was possible to observe the effect of the concentration of oligomers on the crystallinity of the films as well as the no plasticizer effect of the OST. (author)

  8. Improving the thermal dimensional stability of flexible polymer composite backing materials for ultrasound transducers.

    Science.gov (United States)

    State, Mihai; Brands, Peter J; van de Vosse, Frans N

    2010-04-01

    Novel ultrasound backing materials based on polymer composites with improved dimensional stability and low coefficient of thermal expansion are being developed and analyzed. For this purpose a filled epoxy resin (Stycast(1265)), a commonly used backing material, was considered reference material and polyurethane composites (PU(2305), PU(2350)) were proposed as better alternatives. When compared to the reference, the PU(2350) filled with a mixture of Al(2)O(3) and tungsten exhibited an approximately 15 times lower glassy transition temperature and a 2.5 time lower longitudinal thermal expansion at 20 degrees C. This ensures that within the entire operational temperature range the backing material is flexible, minimizing the thermal stresses induced onto transducer elements soldered joints and piezoceramic core. For the same material, the attenuation at 5MHz was similar to the reference material while at 7 and 8.5MHz it was 33% and 54% higher respectively. From these analyses it is concluded that the newly developed polyurethane composites outperform the reference backing with respect to the thermal dimensional stability as well as to the damping properties. An integrated rigorous mechano-acoustical approach is being proposed as an appropriate passive material design path. It can be easily extended to any other passive materials used for ultrasound transducer conception.

  9. Performance and Thermal Stability of a Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    Directory of Open Access Journals (Sweden)

    Joanna McFarlane

    2014-01-01

    Full Text Available Because polyaromatic hydrocarbons show high thermal stability, an example of these compounds, phenylnaphthalene, was tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 ℃ indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. This would indicate that the internal channels of cooler components of trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades to be used in a loop at temperatures significantly greater than the current 400 ℃ maximum for organic fluids. Similar degradation pathways may occur with other organic materials. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of 60% could be achieved using a high efficiency collector and 12 h thermal energy storage when run at a field outlet temperature of 550 ℃.

  10. Improved thermal stability of lithium ion battery by using cresyl diphenyl phosphate as an electrolyte additive

    Science.gov (United States)

    Wang, Qingsong; Ping, Ping; Sun, Jinhua; Chen, Chunhua

    To enhance the safety of lithium ion battery, cresyl diphenyl phosphate (CDP) is explored as an additive in 1.0 M LiPF 6/ethylene carbonate (EC) + diethyl carbonate (DEC) (1:1 wt.). The electrochemical performances of LiCoO 2/CDP-electrolyte/C cells are tested. At the thermal aspect, the thermal stability of the electrolyte with CDP is detected firstly by using a C80 micro-calorimeter, and then the charged LiCoO 2/CDP-electrolyte/C cells are disassembled and wrapped to detect the thermal behaviors. The results indicate that CDP-containing electrolyte enhances the thermal stabilities of electrolyte and lithium ion battery, and the electrochemical performances of LiCoO 2/CDP-electrolyte/C cell become slightly worse by using CDP in the electrolyte. Furthermore, the cell with 10% (wt.) CDP-containing electrolyte shows better cycle efficiency than that of other CDP-containing electrolyte, such as containing 5% (wt.) CDP and 15% (wt.) CDP. This maybe because that the mass ratio between CDP and electrolyte is close to the reaction stoichiometric ratio in the 10% (wt.) CDP-containing electrolyte, where stable solid electrolyte interphase (SEI) is formed. Therefore, 10% CDP-containing electrolyte improves the safety of lithium ion battery and keeps its electrochemical performance.

  11. Phosphate buffer effects on thermal stability and H2O2-resistance of horseradish peroxidase.

    Science.gov (United States)

    Asad, Sedigheh; Torabi, Seyed-Fakhreddin; Fathi-Roudsari, Mehrnoosh; Ghaemi, Nasser; Khajeh, Khosro

    2011-05-01

    Horseradish peroxidase (HRP) has attracted intense research interest due to its potential applications in biotechnological fields. However, inadequate stability under prevalent conditions such as elevated temperatures and H(2)O(2) exposure, has limited its industrial application. In this study, stability of HRP was investigated in the presence of different buffer systems (potassium phosphate and Tris-HCl) and additives. It was shown that the concentration of phosphate buffer severely affects enzyme thermostability in a way that in diluted potassium phosphate buffer (10mM) half-life (from 13 to 35 min at 80 °C) and T(m) (from 73 to 77.5 °C) increased significantly. Among additives tested, trehalose had the most thermostabilizing effect. Exploring the role of glycosylation in stabilizing effect of phosphate buffer, non-glycosylated recombinant HRP was also examined for its thermal and H(2)O(2) stability in both diluted and concentrated phosphate buffers. The recombinant enzyme was more thermally stable in diluted buffer in accordance to glycosylated HRP; but interestingly recombinant HRP showed higher H(2)O(2) tolerance in concentrated buffer.

  12. Thermal stability and long-chain fatty acid positional distribution on glycerol of argan oil.

    Science.gov (United States)

    Khallouki, Farid; Mannina, Luisa; Viel, Stéphane; Owen, Robert W

    2008-09-01

    The primary aim of this study was to determine the oxidative stability of argan oils by using peroxides and conjugated diene hydroperoxides measurements as analytical indicators. Both food and cosmetic argan oils were investigated. Their oxidative stability was also determined by monitoring the relative changes of their fatty acid profiles by (1)H NMR. In addition, valuable information regarding minor components as well as the acyl positional distribution, were obtained for both grades by high field (1)H and (13)C NMR, respectively. Given that the cosmetic and food grades have a similar profile and content of phenolic antioxidants, vitamers, and squalene, it appears that the ratio of fatty acid aliphatic to bisallylic CH2 groups, much higher in argan oils than in other vegetable oils, is responsible for their higher thermal stability. Copyright © 2008 Elsevier Ltd. All rights reserved.

  13. Migration kinetics and mechanisms of plasticizers, stabilizers at interfaces of NEPE propellant/HTPB liner/EDPM insulation.

    Science.gov (United States)

    Huang, Zhi-ping; Nie, Hai-ying; Zhang, Yuan-yuan; Tan, Li-min; Yin, Hua-li; Ma, Xin-gang

    2012-08-30

    Migration appeared in the interfaces of nitrate ester plasticized polyether (NEPE) based propellant/hydroxyl-terminated polybutadiene (HTPB) based liner/ethylene propylene terpolymer (EPDM) based insulation was studied by aging at different temperatures. The migration components were extracted with solvent and determined by high performance liquid chromatography (HPLC). The migration occurred within 1mm to the interfaces, and the apparent migration activation energy (Ea) of nitroglycerin (NG), 1,2,4-butanetriol trinitrate (BTTN) and a kind of aniline stabilizer AD in propellant, liner and insulation was calculated respectively on the basis of HPLC data. The Ea values were among 15 and 50 kJ/mol, which were much less than chemical energy, and almost the same as hydrogen bond energy. The average diffusion coefficients were in the range of 10(-19)m(2)s(-1) to 10(-16)m(2)s(-1). It seemed the faster the migration rates, the smaller the apparent migration activation energy, the larger the diffusion coefficient and the less the amount of migration. It could be explained that the migration rate and energy were affected by the molecular volume of a mobile component and its diffusion property, and the amount of migration was resulted from the molecular polarity comparability of a mobile component to the based material.

  14. Thermal stability analysis of eccentrically stiffened Sigmoid-FGM plate with metal–ceramic–metal layers based on FSDT

    Directory of Open Access Journals (Sweden)

    Pham Hong Cong

    2016-12-01

    Full Text Available This paper researches the thermal stability of eccentrically stiffened plates made of functionally graded materials (FGM with metal–ceramic–metal layers subjected to thermal load. The equilibrium and compatibility equations for the plates are derived by using the first-order shear deformation theory of plates, taking into account both the geometrical nonlinearity in the von Karman sense and initial geometrical imperfections with Pasternak type elastic foundations. By applying Galerkin method and using stress function, effects of material and geometrical properties, elastic foundations, temperature-dependent material properties, and stiffeners on the thermal stability of the eccentrically stiffened S-FGM plates in thermal environment are analyzed and discussed.

  15. Biobased additive plasticizing Polylactic acid (PLA

    Directory of Open Access Journals (Sweden)

    Mounira Maiza

    2015-12-01

    Full Text Available Polylactic acid (PLA is an attractive candidate for replacing petrochemical polymers because it is from renewable resources. In this study, a specific PLA 2002D was melt-mixed with two plasticizers: triethyl citrate (TEC and acetyl tributyl citrate (ATBC. The plasticized PLA with various concentrations were analyzed by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, melt flow index (MFI, thermogravimetric analysis (TGA, X-ray diffraction (XRD, UV-Visible spectroscopy and plasticizer migration test. Differential scanning calorimetry demonstrated that the addition of TEC and ATBC resulted in a decrease in glass transition temperature (Tg, and the reduction was the largest with the plasticizer having the lowest molecular weight (TEC. Plasticizing effect was also shown by decrease in the dynamic storage modulus and viscosity of plasticized mixtures compared to the treated PLA. The TGA results indicated that ATBC and TEC promoted a decrease in thermal stability of the PLA. The X-ray diffraction showed that the PLA have not polymorphic crystalline transition. Analysis by UV-Visible spectroscopy showed that the two plasticizers: ATBC and TEC have no effect on the color change of the films. The weight loss plasticizer with heating time and at 100°C is lesser than at 135 °C. Migration of TEC and ATBC results in cracks and changed color of material. We have concluded that the higher molecular weight of citrate in the studied exhibited a greater plasticizing effect to the PLA.

  16. Phase evolution and thermal properties of yttria-stabilized hafnia nano-coatings deposited on alumina

    Science.gov (United States)

    Rubio, Ernesto Javier

    High-temperature coatings are critical to the future power-generation systems and industries. Thermal barrier coatings (TBCs), which are usually the ceramic materials applied as thin coatings, protect engine components and allow further increase in engine temperatures for higher efficiency. Thus, the durability and reliability of the coating systems have to be more robust compared to current natural gas based engines. While a near and mid-term target is to develop TBC architecture with a 1300 °C surface temperature tolerance, a deeper understanding of the structure evolution and thermal behavior of the TBC-bond coat interface, specifically the thermally grown oxide (TGO), is of primary importance. In the present work, attention is directed towards yttria-stabilized hafnia (YSH) coatings on alumina (α-Al2O 3) to simulate the TBC-TGO interface and understand the phase evolution, microstructure and thermal oxidation of the coatings. YSH coatings were grown on α-Al2O3 substrates by sputter deposition by varying coating thickness in a wide range ˜30-1000 nm. The effect of coating thickness on the structure, morphology and the residual stress has been investigated using X-ray diffraction (XRD) and high resolution scanning electron microscopy (SEM). Thermal oxidation behavior of the coatings has been evaluated using the isothermal oxidation measurements under static conditions. X-ray diffraction analyses revealed the existence of monoclinic hafnia phase for relatively thin coatings indicating that the interfacial phenomena are dominant in phase stabilization. The evolution towards pure stabilized cubic phase of hafnia with the increasing coating thickness is observed. The SEM results indicate the changes in morphology of the coatings; the average grain size increases from 15 to 500 nm with increasing thickness. Residual stress was calculated employing XRD using the variable ψ-angle. Relation between residual stress and structural change is also studied. The results

  17. Thermal Property and Migration of Polyvinyl Chloride Plasticized with Polyester Based on Soybean Oil%豆油基聚酯塑化聚氯乙烯的热性能和迁移性能研究

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The soybean oil based polyester was synthesized by the polycondensation of o-phthalic anhydride and the soybean oil monoglyceride obtained from the transesterification of soybean oil and glycerol at 230 -240 ℃. The soybean oil polyester was characterized by gel permeation chromatography ( GPC) and FT-IR. And the synthesized soybean oil polyester was then blend with polyvinyl chloride ( PVC ) to form a plasticized PVC. Thermodynamic properties, plasticizer migration stability and mechanical properties of soybean oil polyester plasticized PVC were investigated. The results showed that relative molecular mass of the polyester was 3 541. The thermal degradation temperature of the plasticized PVC was 256. 1 ℃. And tensile strength and elongation at break for this plasticized PVC could reach 6. 5 MPa and 230. 3%, respectively. In addition, the combination of soybean oil polyester and dioctyl phthalate ( DOP ) using as complex plasticizer to plasticize PVC was also evaluated. The migration ratio of these complex plasticizers in distilled water, acetic acid solution, ethanol solution, petroleum ether and olive oil reduced to 0. 18%,0. 22%,0. 28%,0. 83% and 0. 34%, which was indicative of their excellent migration property. Herein, the thermal and mechanical properties of the soybean oil polyester plasticized PVC could maintain for long time and the potential harm to human caused by plasticizer could be reduced at same time.%使用大豆油经醇解、酯化和缩合反应制备了豆油基聚酯,采用红外光谱( FT-IR)、核磁共振氢谱(1 H NMR)和凝胶渗透色谱( GPC)对该豆油聚酯产品的化学结构进行了表征,将其与邻苯二甲酸二辛酯复配使用增塑聚氯乙烯( PVC),经热塑共混成型制备塑化PVC共混物,对共混物的热性能、耐迁移性能和力学性能进行了测定。研究发现:该豆油基聚酯的相对分子质量为3541、黏度2.7 Pa·s、酸值1.02 mg/g。聚酯产品可将PVC共混

  18. Polyacrolein/mesoporous silica nanocomposite: Synthesis, thermal stability and covalent lipase immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Motevalizadeh, Seyed Farshad; Khoobi, Mehdi; Shabanian, Meisam [Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14176 (Iran, Islamic Republic of); Asadgol, Zahra; Faramarzi, Mohammad Ali [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 14176 (Iran, Islamic Republic of); Shafiee, Abbas, E-mail: ashafiee@ams.ac.ir [Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14176 (Iran, Islamic Republic of); Center of Excellence in Biothermodynamics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-12-16

    In this work, new polyacrolein/MCM-41 nanocomposites with good phase mixing behavior were prepared through an emulsion polymerization technique. Mesoporous silica was synthesized by in situ assembly of tetraethyl orthosilicate (TEOS) and cetyl trimethyl ammonium bromide (CTAB). The structure and properties of polyacrolein containing nanosized MCM-41 particle (5 and 10 wt%), were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, Dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N{sub 2} adsorption techniques, and thermogravimetric (TGA) analyses. The SEM images from the final powder have revealed good dispersion of the MCM-41 nanoparticles throughout polymeric matrix with no distinct voids between two phases. The results indicated that the thermal properties of the nanocomposite were enhanced by addition of MCM-41. Thermomyces lanuginosa lipase (TLL) was used as a model biocatalyst and successfully immobilized with polyacrolein and the nanocomposite via covalent bonds with the aldehyde groups. The activity between free enzyme, polyacrolein, and MCM-41 nanocomposite (10 wt%)-immobilized TLL was compared. The immobilized lipase with the nanocomposite shows better operational stability such as pH tolerance, thermal and storage stability. In addition, the immobilized lipase with the nanocomposite can be easily recovered and retained at 74% of its initial activity after 15 time reuses. - Graphical abstract: The influence of incorporation of mesoporous MCM-41 nanoparticle with polyacrolein on the thermal properties and enzyme immobilization was investigated. - Highlights: • Polyacrolein/MCM-41 nanocomposites were prepared by emulsion polymerization method. • Thermal stability and char residues in nanocomposites were improved. • Nanocomposites significant effects on immobilization of lipase.

  19. Thermal stability and degradation kinetics of polyphenols and polyphenylenediamines enzymatically synthesized by horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hansol; Ryu, Keungarp [University of Ulsan, Ulsan (Korea, Republic of); Kwon, Oyul [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2015-09-15

    Various substituted phenols and phenylenediamines were enzymatically polymerized by horseradish peroxidase in 80% (v/v) organic solvents-aqueous buffer (100 mM sodium acetate, pH 5) mixtures with H{sub 2}O{sub 2} as the oxidant. The thermal stability of the polymers was investigated by thermogravimetric analysis (TGA) and represented by the char yield (wt% of the initial polymer mass) after being heated at 800 .deg. C. Poly(p-phenylphenol) had the highest thermal stability among the synthesized polymers with a char yield of 47 wt%. The polymers containing amino groups such as poly(p-aminophenol) and polyphenylenediamines were also shown to possess high thermal stabilities. The activation energies for the thermal degradation of the polymers determined by derivative thermogravimetric analysis (DTG) using Horowitz-Metzger's pseudo-first-order kinetics were in the range between 23-65 kJ/mol and comparable to those of the chemically synthesized polymers. Dynamic structural changes of the enzymatically synthesized polymers upon heating were studied by differential scanning calorimetry (DSC). The DSC curves of poly(p-phenylphenol) showed a broad exothermic peaks between 150-250 .deg. C, indicating that the polymer undergoes complex structural transitions in the temperature range. On the other hand, the DSC curves of the poly(p-aminophenol) and the poly(p-phenylenediamine) which contain amino groups showed strong sharp endothermic peaks near 150 .deg. C, implying that these polymers possess homogeneous oriented structures which undergo a concerted structural disintegration upon heating.

  20. MISCIBILITY, THERMAL STABILITY AND RETENTION OF PVP FOR CROSSLINKED PVA/PVP BLENDS

    Institute of Scientific and Technical Information of China (English)

    LIANG Guomei; ZHANG Kun; FENG Rongyin

    1994-01-01

    The thermal behavior, miscibility, crystallite conformation and thermal stability of crosslinked(CL-) PVA/PVP blends were studied by DSC and TG methods, respectively. DSC results showed that in the blend, the crystallinity,Tm and Tc of PVA were obviously lower than those of pure PVA; the crystal growth changed from three dimensional to two dimensional and only a single Tg was detected . These facts demonstrated that this crystalline and amorphous blend have good miscibility. TG curves showed that providing the quantity of K2S2O8 added is more than 3 wt % ,in the blends PVA will form a stable CL-network, whose thermal degradation temperature was near to that of PVP. But crosslinking reaction will not take place for PVP. The processes of thermal degradation of CL-blends are based on combining both the thermal degradation of PVP and that of PVA crosslinked with corresponding quantity of K2S2O8 CL-agent, respectively.The UV measurements showed that 75 wt% of PVP may be remained in CL-blend hydrogels crosslinked by adding (3- 5 wt % )K2S2O8.This is mainly due to the stable CL-network formed and the good compatibility and proper entanglement between the composites in the CL-blends.