WorldWideScience

Sample records for plastic strain recovery

  1. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  2. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....

  3. A strain gradient plasticity theory with application to wire torsion

    KAUST Repository

    Liu, J. X.; El Sayed, Tamer S.

    2014-01-01

    Based on the framework of the existing strain gradient plasticity theories, we have examined three kinds of relations for the plastic strain dependence of the material intrinsic length scale, and thus developed updated strain gradient plasticity

  4. Energy recovery from plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baur, A; Atzger, J

    1983-07-01

    The conversion of plastic wastes to energy is suggested as a practicable and advantageous alternative to recycling. A two-stage pilot gasification plant for the pyrolysis of wastes is described and the utilization of the resulting fuel gas discussed.

  5. What is behind the plastic strain rate?

    NARCIS (Netherlands)

    Hütter, M.; Grmela, M.; Öttinger, H.C.

    2009-01-01

    The plastic strain rate plays a central role in macroscopic models on elasto-viscoplasticity. In order to discuss the concept behind this quantity, we propose, first, a kinetic toy model to describe the dynamics of sliding layers representative of plastic deformation of single crystalline metals.

  6. On fracture in finite strain gradient plasticity

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof

    2016-01-01

    In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....

  7. On lower order strain gradient plasticity theories

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2002-01-01

    By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...

  8. On lower order strain gradient plasticity theories

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...... the tangent moduli governing increments of stress and strain. It is shown that the modification is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of localization that is at odds with what is expected from a strain gradient theory....... The findings raise questions about the physical acceptability of this class of strain gradient theories....

  9. Influence of plastic strain on deformation-induced martensitic transformations

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Groen, M.

    2008-01-01

    The effects of plastic strain on deformation-induced martensitic transformations have been investigated experimentally. Austenitic metastable stainless steel samples were heated to a temperature at which the transformation is suppressed and were plastically strained to different amounts. The

  10. Brain plasticity and recovery of cognitive functions

    Directory of Open Access Journals (Sweden)

    Anja Čuš

    2011-10-01

    Full Text Available Through its capacity of plastic changes, the adult brain enables successful dealing with new demands of everyday life and recovery after an acquired brain damage either spontaneously or by the help of rehabilitation interventions. Studies which explored the effects of cognitive training in the normal population report on different types of changes in the performance of cognitive tasks as well as different types of changes in brain activation patterns.Following practice, brain activation can change in its extent, intensity or location, while cognitive processes can become more efficient or can be replaced by different processes.After acquired brain damage plastic changes are somewhat different. After the injury, the damaged brain area can either gradually regain its previous function, or different brain regions are recruited to perform that function.Studies of spontaneous and guided recovery of cognitive functions have revealed both types of plastic changes that follow each other, as well as significant correlations between these changes and improvement on the behavioural level.

  11. Observation of a new dynamic recovery mechanism in the high strain regime

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels; Huang, Xiaoxu

    2014-01-01

    Plastic deformation of metals refines the microstructure and increases the strength through work hardening, but this effect of deformation is counterbalanced by dynamic recovery. After deformation to large strains, the microstructure typically shows a lamellar morphology, with finely spaced...

  12. Strain gradient effects on cyclic plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2010-01-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between...... rigid platens have been carried out, using the finite element method. It is shown for elastic–perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly...... hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening...

  13. Plastic strain and flux jumps in hard and composite superconductors

    International Nuclear Information System (INIS)

    Maksimov, I.L.; Mints, R.G.

    1981-01-01

    A study is made into the effect of the critical current density dependence upon the value of plastic strain on the critical state stability in hard and composite superconductors under conditions of plastic yield of the material. Criteria of the critical state stability relative to the jointly developing magnetic flux jumps and plastic strain jerks, are found. (author)

  14. Finite element analysis of a finite-strain plasticity problem

    International Nuclear Information System (INIS)

    Crose, J.G.; Fong, H.H.

    1984-01-01

    A finite-strain plasticity analysis was performed of an engraving process in a plastic rotating band during the firing of a gun projectile. The aim was to verify a nonlinear feature of the NIFDI/RB code: plastic large deformation analysis of nearly incompressible materials using a deformation theory of plasticity approach and a total Lagrangian scheme. (orig.)

  15. Metallic nanomaterials formed by exerting large plastic strains

    International Nuclear Information System (INIS)

    Richert, M; Richert, J.; Zasadzinski, J.; Hawrylkiewicz, S.

    2002-01-01

    The investigations included pure Al and Cu single crystals, AlMg5 alloy and AlCuZr alloy have been presented. The materials were deformed by the cyclic extrusion compression method (CEC) within the range of true strains φ = 0.4-59.8 (1 to 67 deformation cycles by the CEC method). In all examined materials a strong tendency to form banded was observed. Within the range of very large plastic strains there was observed intensive rebuilding of the banded microstructure into subgrains, at first of rhombic shape, and next into equiaxial subgrains. A characteristic feature of the newly formed subgrains, not encountered in the range of conventional deformations, was the occurrence of large misorientation angles between the newly formed subgrains. The proportion of large misorientation angles in the microstructure varied, and it increased with increasing deformation. Reduction of the recovery process in AlMg5 and AlCuZr alloys preserved the growth of the newly formed nanograins, favoring the retaining of the nanomeric dimensions. This results show that there is the effective possibility of production of metallic nanomaterials by exerting of very large nonconventional plastic strains. (author)

  16. Plastic strain caused by contraction of pores in polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Yoda, Shinichi; Konishi, Takashi.

    1989-01-01

    The effects of porosity on mechanical properties and deformation behavior of four isotropic polycrystalline graphites were studied. The pore size distributions of the graphites were measured using a conventional mercury penetration technique. The average pore radius of ISO-88 graphite was about one-tenth of that of ISEM-1, IG-11 or IG-15 graphites. Young's modulus of the graphites decreased with increasing porosity. The stress-strain curve of each graphite was measured in its lateral and axial directions. Young's modulus of graphite decreased with increasing load. The plastic strain at a given compressive load was calculated from the stress-strain curve and the initial gradient of the unloading curve at the load. The ratio of lateral plastic strain to axial plastic strain for the graphites was less than 0.5, indicating that the volume of the graphites decreased during compressive loading. By assuming that the volume change was caused by contraction of pores, plastic strain associated with contraction of pores was calculated from the axial plastic strain and lateral plastic strain by slips along the basal planes. The plastic strain increased with increasing axial plastic strain and porosity of graphite. (author)

  17. The strain path dependence of plastic deformation response of AA5754: Experiment and modeling

    International Nuclear Information System (INIS)

    Pham, Minh-Son; Hu, Lin; Iadicola, Mark; Creuziger, Adam; Rollett, Anthony D.

    2013-01-01

    This work presents modeling of experiments on a balanced biaxial (BB) pre-strained AA5754 alloy, subsequently reloaded uniaxially along the rolling direction and transverse direction. The material exhibits a complex plastic deformation response during the change in strain path due to 1) crystallographic texture, 2) aging (interactions between dislocations and Mg atoms) and 3) recovery (annihilation and re-arrangement of dislocations). With a BB prestrain of about 5 %, the aging process is dominant, and the yield strength for uniaxially deformed samples is observed to be higher than the flow stress during BB straining. The strain hardening rate after changing path is, however, lower than that for pre-straining. Higher degrees of pre-straining make the dynamic recovery more active. The dynamic recovery at higher strain levels compensates for the aging effect, and results in: 1) a reduction of the yield strength, and 2) an increase in the hardening rate of re-strained specimens along other directions. The yield strength of deformed samples is further reduced if these samples are left at room temperature to let static recovery occur. The synergistic influences of texture condition, aging and recovery processes on the material response make the modeling of strain path dependence of mechanical behavior of AA5754 challenging. In this study, the influence of crystallographic texture is taken into account by incorporating the latent hardening into a visco-plastic self-consistent model. Different strengths of dislocation glide interaction models in 24 slip systems are used to represent the latent hardening. Moreover, the aging and recovery effects are also included into the latent hardening model by considering strong interactions between dislocations and dissolved atom Mg and the microstructural evolution. These microstructural considerations provide a powerful capability to successfully describe the strain path dependence of plastic deformation behavior of AA5754

  18. Effect of plastic strain on fracture strength of cracked components

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2009-01-01

    Nuclear power plant components are occasionally subjected to large load by earthquake and may suffer plastic strain. Although the plastic strain induced in materials increases the strength, it may reduce the fracture toughness due to a crack in the components. In this study, the effect of the plastic strain on strength of cracked components was investigated. Firstly, the change in the tensile properties and fracture toughness due to plastic strain were examined for Type 316 stainless steel and carbon steel (SM490). The degree of nominal plastic strain was 5%, 10%, 20% and 40% (only for stainless steel). Secondly, the J-integral values of surface crack on a pipe were evaluated by finite element analyses. Finally, the critical load for fracture of the cracked pipe was evaluated for various pipe and crack geometries using the J-integral values and the fracture toughness obtained. It was concluded that the plastic strain enhances the fracture strength of the cracked components when the induced plastic strain is less than 10%, although the extremely large plastic strain could reduce the strength. (author)

  19. Effect of plastic strain on fracture strength of cracked components

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2010-01-01

    Nuclear power plant components are occasionally subjected to excessive load by earthquake and may suffer plastic strain. Although the plastic strain introduced in materials increases the strength, it may reduce the fracture toughness. In this study, the effect of the plastic strain on strength of cracked components was investigated. Firstly, the change in the tensile properties and fracture toughness due to plastic strain were examined for Type 316 stainless steel and carbon steel (SM 490). The degree of nominal plastic strain was 5%, 10%, 20% and 40% (only for stainless steel). Secondly, the J-integral values of surface crack on a pipe were evaluated by finite element analyses. Finally, the critical load for fracture of the cracked pipe was evaluated for various pipe and crack geometries using the J-integral values and the fracture toughness obtained. It was concluded that the plastic strain enhances the fracture strength of the cracked components when the induced plastic strain is less than 10%, although the extremely large plastic strain could reduce the strength. (author)

  20. Strain gradient plasticity effects in whisker-reinforced metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2002-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (2001). Cell-model analyzes are used to study the influence of the material length parameters numerically. Different higher order boundary conditions are considered...... at the fiber-matrix interface. The results are presented as overall stress-strain curves for the whisker-reinforced metal, and also contour plots of effective plastic strain are shown. The strain gradient plasticity theory predicts a significant stiffening effect when compared to conventional models...

  1. Strain gradient crystal plasticity effects on flow localization

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    for metals described by the reformulated Fleck-Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory...... in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered...

  2. Effect of plastic strain on shape memory characteristics in sputter-deposited Ti-Ni thin films

    International Nuclear Information System (INIS)

    Nomura, K.

    1995-01-01

    The plastic strain which is introduced during cooling and heating under a constant stress has an influence upon the transformation and deformation characteristics of sputter-deposited Ti-Ni shape memory alloy thin films. With increasing the accumulated plastic strain, Ms rises and recovery strain increases. The changes in such characteristics are due to the internal stress field that is formed by plastic deformation. However, the change in Ms in Ti-50.5at%Ni is larger than that in Ti-48.9at%Ni, although the plastic strain in the former is lower than that in the latter. In order to understand this point, the effective internal stresses were estimated in both alloys; the internal stress in the former is more effectively created by the introduction of plastic strain than in the latter. (orig.)

  3. Fracture of anisotropic materials with plastic strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2013-01-01

    A unit cell is adopted to numerically analyze the effect of plastic anisotropy on frac-ture evolution in a micro-reinforced fiber-composite. The matrix material exhibit size-effects and an anisotropic strain-gradient plasticity model accounting for such size-effects through a mate-rial length scale...

  4. Enhanced Recovery After Surgery: The Plastic Surgery Paradigm Shift.

    Science.gov (United States)

    Bartlett, Erica L; Zavlin, Dmitry; Friedman, Jeffrey D; Abdollahi, Aariane; Rappaport, Norman H

    2017-12-14

    With a focus on providing high quality care and reducing facility based expenses there has been an evolution in perioperative care by way of enhanced recovery after surgery (ERAS). ERAS allows for a multidisciplinary and multimodal approach to perioperative care which not only expedites recovery but maximizes patient outcomes. This paradigm shift has been generally accepted by most surgical specialties, including plastic surgery. The goal of this study was to evaluate the impact of ERAS on outcomes in cosmetic plastic surgery. A prospective study consisting of phone call questionnaires was designed where patients from two senior plastic surgeons (N.H.R. and J.D.F.) were followed. The treatment group (n = 10) followed an ERAS protocol while the control group (n = 12) followed the traditional recovery after surgery which included narcotic usage. Patients were contacted on postoperative days (POD) 0 through 7+ and surveyed about a number of outcomes measures. The ERAS group demonstrated a significant reduction in postoperative pain on POD 0, 1, 2, and 3 (all P plastic surgery. The utility lies in the ability to expedite patient's recovery while still providing quality care. This study showed a reduction in postoperative complaints by avoiding narcotics without an increase in complications. Our findings signify the importance of ERAS protocols within cosmetic plastic surgery. 4. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  5. Recovery of electrical resistance in copper films on polyethylene terephthalate subjected to a tensile strain

    International Nuclear Information System (INIS)

    Glushko, O.; Marx, V.M.; Kirchlechner, C.; Zizak, I.; Cordill, M.J.

    2014-01-01

    Substantial recovery (decrease) of electrical resistance during and after unloading is demonstrated for copper films on polyethylene terephthalate substrates subjected to a tensile strain with different peak values. Particularly, the films strained to 5% exhibit full resistance recovery after unloading despite clearly visible plastic deformation of the film. The recovery of electrical resistance in connection with the mechanical behavior of film/substrate couple is discussed with the help of in situ scanning electron microscopy and X-ray diffraction analysis. - Highlights: • Tensile tests on 200 nm Cu films on PET substrate are performed. • Electrical resistance is recorded in-situ during loading and unloading. • Significant recovery (decrease) of resistance is observed during and after unloading. • Films strained to 5% demonstrate full resistance recovery. • Viscoelastic relaxation of PET is responsible for recovery of Cu film resistance

  6. Strain path dependency in metal plasticity

    NARCIS (Netherlands)

    Viatkina, E.M.; Brekelmans, W.A.M.; Geers, M.G.D.

    2003-01-01

    A change in strain path has a significant effect on the mechanical response of metals. Strain path change effects physically originate from a complex microstructure evolution. This paper deals with the contribution of cell structure evolution to the strain path change effect. The material with cells

  7. A new constitutive equation for strain hardening and softening of fcc metals during severe plastic deformation

    International Nuclear Information System (INIS)

    Wei, W.; Wei, K.X.; Fan, G.J.

    2008-01-01

    The stress-strain relationship for strain hardening and softening of high-purity aluminum and copper, which were deformed by equal channel angular pressing (ECAP) at ambient temperature, was analyzed by combining the Estrin and Mecking (EM) model and an Avrami-type equation with experimental data during severe plastic deformation. The initial strain hardening can be described by the EM model, while the flow stress arrives at the peak stress after it was saturated. However, strain softening similar to plastic deformation at high temperatures is observed after the peak stress. Moreover, the peak strain at the maximum flow stress is ∼4 for copper and ∼2 for aluminum. A new constitutive equation was developed to describe strain softening at high strain levels, which was supported well by tensile, compression and microhardness tests at room temperature and low strain rate. It was observed that dynamic recovery and recrystallization occurs in copper, and recrystallized grains and their growth in aluminum. The results indicate that dynamic recovery and recrystallization was the dominant softening mechanism, which was confirmed by scanning electron microscopy-electron channeling contrast observations and the abnormal relationship between the imposed strain during ECAP and subsequent recrystallization temperature after ECAP

  8. Recovery of amplitude dependent internal friction in plastically deformed LiF single crystals

    International Nuclear Information System (INIS)

    Koshimizu, S.

    1977-01-01

    The internal friction due to is studied interactions between point defects and dislocations produced in pure LiF single crystais by plastic deformation. The recovery of amplitude dependent damping is investigated in these crystais in the low frequency range. The logarithmic decrement is measured as a function of strain amplitude at several different temperatures in the range 8C - 35C in order to observe thermal breakaway. The results were interpred according to the theory developed by Granato and Lucke. Systematic measurements are also been carried out to determine the logarithmic decrement as a function of time at different temperatures, after driving the specimens at high strains amplitudes, yelding the following results: I) there is a recovery of the amplitude dependent damping upon removal of the high strain excitations, and II) the Kinetic of the recovery follows initially a t sup(2/3) ageing law, changing to tsup(1/3) afterwards [pt

  9. A strain gradient plasticity theory with application to wire torsion

    KAUST Repository

    Liu, J. X.

    2014-06-05

    Based on the framework of the existing strain gradient plasticity theories, we have examined three kinds of relations for the plastic strain dependence of the material intrinsic length scale, and thus developed updated strain gradient plasticity versions with deformation-dependent characteristic length scales. Wire torsion test is taken as an example to assess existing and newly built constitutive equations. For torsion tests, with increasing plastic strain, a constant intrinsic length predicts too high a torque, while a decreasing intrinsic length scale can produce better predictions instead of the increasing one, different from some published observations. If the Taylor dislocation rule is written in the Nix-Gao form, the derived constitutive equations become singular when the hardening exponent gets close to zero, which seems questionable and calls for further experimental clarifications on the exact coupling of hardening due to statistically stored dislocations and geometrically necessary dislocations. Particularly, when comparing the present model with the mechanism-based strain gradient plasticity, the present model satisfies the reciprocity relation naturally and gives different predictions even under the same parameter setting. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Recovery by triple junction motion in aluminium deformed to ultrahigh strains

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels; Huang, Xiaoxu

    2011-01-01

    during plastic deformation and decreases during isochronal and isothermal annealing. Based on TEM and EBSD observations, thermally activated triple junction motion is identified as the key process during the recovery of highly strained aluminium, leading to the removal of thin lamellae with small...... dihedral angles at the ends and structural coarsening. A mechanism for recovery by triple junction motion is proposed, which can underpin the general observation that a lamellar structure formed by plastic deformation during annealing can evolve into an equiaxed structure, preceding further structural...... coarsening and recrystallization. Within this framework, the grain boundary surface tension on triple junctions is discussed based on the structural parameters characterizing the deformed and annealed microstructure....

  11. Fatique of Copper Polycrystals at Low Plastic Strain Amplitudes

    DEFF Research Database (Denmark)

    Rasmussen, K. V.; Pedersen, Ole Bøcker

    1980-01-01

    Single crystals and polycrystals of pure copper were fatigued in tension-compression at constant low amplitudes of plastic strain and low cycling frequencies at room temperature in air. Surface patterns of persistent slip bands were quantitatively examined by optical microscopy. Bulk dislocation...

  12. Strain gradient plasticity effects in whisker-reinforced metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2003-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001) 2245). Cell-model analyses are used to study the influence of the material length parameters numerically, for both a single parameter...

  13. Stress-strain response of plastic waste mixed soil.

    Science.gov (United States)

    Babu, G L Sivakumar; Chouksey, Sandeep Kumar

    2011-03-01

    Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Computational neurorehabilitation: modeling plasticity and learning to predict recovery.

    Science.gov (United States)

    Reinkensmeyer, David J; Burdet, Etienne; Casadio, Maura; Krakauer, John W; Kwakkel, Gert; Lang, Catherine E; Swinnen, Stephan P; Ward, Nick S; Schweighofer, Nicolas

    2016-04-30

    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling - regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity.

  15. Variation of the Young's modulus with plastic strain applying to elastoplastic software

    International Nuclear Information System (INIS)

    Morestin, F.; Boivin, M.

    1993-01-01

    Work hardening of steel involves modifications of the elastic properties of the material, for instance, an increase of its yield stress. It may be also the cause of an appreciable decrease of the Young's modulus. This property decreases as plastic strain increases. Experiments with a microcomputer controlled tensile test machine indicated that diminution could reach more than 10% of the initial value, after only 5% of plastic strain. In spite of this fact, lots of elastoplastic softwares don't combine the decrease of the Young's modulus with plastification though it may involve obvious differences among results. As an application we have developed a software which computes the deformation of steel sheet in press forming, after springback. This software takes into account the decrease of the Young's modulus and its results are very close to experimental values. Quite arbitrarily, we noticed a recovery of the Young's modulus of plastified specimens after few days but not for all steels tested. (author)

  16. Shear banding in large strain plasticity - Influence of specimen dimensions

    Science.gov (United States)

    Mucha, Marzena; Wcisło, Balbina; Pamin, Jerzy

    2018-01-01

    The paper deals with numerical analysis of shear banding which occurs in an elongated rectangular plate for a large strain elastic-plastic material model. It is focused on the influence of plate size proportions and finite element mesh density on numerical results. The discussion is limited to isothermal conditions and ideal plasticity. First a plain strain case is computed for different lengths of the plate, then simulations are repeated for plane stress for which different thicknesses of the plate are considered. Most of the computations are performed for three finite element meshes to verify discretization sensitivity of the results. The simulations are performed using AceGen and AceFEM packages for Wolfram Mathematica.

  17. The behavior of intermetallic compounds at large plastic strains

    International Nuclear Information System (INIS)

    Gray, G.T.; Embury, J.D.

    1993-01-01

    This paper contains a summary of a broad study of intermetallics which includes the following materials, Ni 3 Al, Ti-48Al-1V, Ti-24Al-11Nb, Ti-48Al-2Cr-2Nb, and Ti-24.5 Al-10.5Nb-1.5Mo. Much effort has been devoted to the study of ordered materials at modes plastic strains and the problem of premature failure. However by utilizing stress states other than simple tension it is possible to study the deformation of intermetallic compounds up to large plastic strains and to consider the behavior of these materials in the regime where stresses approach the theoretical stress. The current work outlines studies of the work hardening rate of a number of titanium and nickel-based intermetallic compounds deformed in compression. Attention is given to the structural basis of the sustained work hardening. The large strain plasticity of these materials is summarized in a series of diagrams. Fracture in these materials in compression occurs via catastrophic shear at stresses of the order of E/80 (where E is the elastic modulus)

  18. Mechanical strength model for plastic bonded granular materials at high strain rates and large strains

    International Nuclear Information System (INIS)

    Browning, R.V.; Scammon, R.J.

    1998-01-01

    Modeling impact events on systems containing plastic bonded explosive materials requires accurate models for stress evolution at high strain rates out to large strains. For example, in the Steven test geometry reactions occur after strains of 0.5 or more are reached for PBX-9501. The morphology of this class of materials and properties of the constituents are briefly described. We then review the viscoelastic behavior observed at small strains for this class of material, and evaluate large strain models used for granular materials such as cap models. Dilatation under shearing deformations of the PBX is experimentally observed and is one of the key features modeled in cap style plasticity theories, together with bulk plastic flow at high pressures. We propose a model that combines viscoelastic behavior at small strains but adds intergranular stresses at larger strains. A procedure using numerical simulations and comparisons with results from flyer plate tests and low rate uniaxial stress tests is used to develop a rough set of constants for PBX-9501. Comparisons with the high rate flyer plate tests demonstrate that the observed characteristic behavior is captured by this viscoelastic based model. copyright 1998 American Institute of Physics

  19. Linking strain anisotropy and plasticity in copper metallization

    International Nuclear Information System (INIS)

    Murray, Conal E.; Jordan-Sweet, Jean; Priyadarshini, Deepika; Nguyen, Son

    2015-01-01

    The elastic anisotropy of copper leads to significant variation in the x-ray elastic constants (XEC), which link diffraction-based strain measurements to stress. An accurate depiction of the mechanical response in copper thin films requires a determination of an appropriate grain interaction model that lies between Voigt and Reuss limits. It is shown that the associated XEC weighting fraction, x*, between these limits provides a metric by which strain anisotropy can be quantified. Experimental values of x*, as determined by a linear regression scheme of diffraction data collected from multiple reflections, reveal the degree of strain anisotropy and its dependence on plastic deformation induced during in-situ and ex-situ thermal treatments

  20. Clay behaviour under thermal gradients elastic and plastic strains

    International Nuclear Information System (INIS)

    Pintado, Xavier; Autio, Jorma; Punkkinen, Olli

    2010-01-01

    Document available in extended abstract form only. The nuclear waste repositories will generate strong temperature gradients at the clay barrier. The heat and water transport generate volume change in the clay. An experimental work is proposed here. The clay reference is the MX-80. The test device imposes a fixed heat flow in one side of the sample and maintains constant the temperature on the other side. Two samples are tested for symmetry. The samples are unconfined and the total mass of water remains constant. This situation creates a strong thermal gradient in the samples. The final radial strains in some places of the sample, the total vertical strain and the water content distribution will be measured just at the end of the test and some weeks later in order to distinguish the elastic strains from the plastic strains. The test period mustn't be longer than two weeks because a large quantity of water loses through the rubber membrane and the heads of the sample. The maximum temperature reached in the cooper is 90 degrees because with higher temperature, the rubber membrane is damaged. This test is already simulated by a numerical code. Thermal, thermo-hydraulic and thermo-hydro-mechanical analyses are being done. These analyses allow studying the different fluxes inside the sample and its quantification. Water content distribution is compared with the water content calculated from the reference parameters in the clay. The water distribution and the change of diameter after the test will also be studied. This experimental work will allow to know what is the percentage of the strains elastic or plastic and check the mechanical model. The experimental diameter change is compared with the diameter change calculated from the reference parameters of the clay. (authors)

  1. On the homogenization of metal matrix composites using strain gradient plasticity

    DEFF Research Database (Denmark)

    Azizi, Reza; Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2014-01-01

    The homogenized response of metal matrix composites (MMC) is studied using strain gradient plasticity. The material model employed is a rate independent formulation of energetic strain gradient plasticity at the micro scale and conventional rate independent plasticity at the macro scale. Free...

  2. Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework

    NARCIS (Netherlands)

    Geers, M.G.D.

    2004-01-01

    This paper addresses the extension of a Eulerian logarithmic finite strain hyperelasto-plasticity model in order to incorporate an isotropic plastic damage variable that leads to softening and failure of the plastic material. It is shown that a logarithmic elasto-plastic model with a strongly

  3. A new approach for elasto-plastic finite strain analysis of cantilever ...

    Indian Academy of Sciences (India)

    A new approach for elasto-plastic finite strain analysis of cantilever beams subjected to uniform bending moment ... Curvature; deflection curve; cantilever beam; elasto-plastic analysis; tapered beam subjected to tipmoment; ... Sadhana | News.

  4. Effect of transient change in strain rate on plastic flow behaviour of ...

    Indian Academy of Sciences (India)

    Steels; stress–strain measurement; plastic flow; mechanical properties; metallurgy. Abstract. Plastic flow behaviour of low carbon steel has been studied at room temperature during tensile deformation by ... Bulletin of Materials Science | News.

  5. An incremental flow theory for crystal plasticity incorporating strain gradient effects

    DEFF Research Database (Denmark)

    Nellemann, Christopher; Niordson, Christian Frithiof; Nielsen, Kim Lau

    2017-01-01

    The present work investigates a new approach to formulating a rate-independent strain gradient theory for crystal plasticity. The approach takes as offset recent discussions published in the literature for isotropic plasticity, and a key ingredient of the present work is the manner in which...... a gradient enhanced effective slip measure governs hardening evolution. The effect of both plastic strains and plastic strain gradients are combined into this scalar effective slip quantity, the energy associated with plastic strain is dissipative (unrecoverable), while the energy from plastic strain...... gradients is recoverable (free). The framework developed forms the basis of a finite element implementation and is demonstrated on benchmark problems designed to bring out effects such as strengthening and hardening. Monotonic loading and plane strain deformation is assumed throughout, but despite this, non...

  6. Influence of the Martensitic Transformation on the Microscale Plastic Strain Heterogeneities in a Duplex Stainless Steel

    Science.gov (United States)

    Lechartier, Audrey; Martin, Guilhem; Comby, Solène; Roussel-Dherbey, Francine; Deschamps, Alexis; Mantel, Marc; Meyer, Nicolas; Verdier, Marc; Veron, Muriel

    2017-01-01

    The influence of the martensitic transformation on microscale plastic strain heterogeneity of a duplex stainless steel has been investigated. Microscale strain heterogeneities were measured by digital image correlation during an in situ tensile test within the SEM. The martensitic transformation was monitored in situ during tensile testing by high-energy synchrotron X-ray diffraction. A clear correlation is shown between the plasticity-induced transformation of austenite to martensite and the development of plastic strain heterogeneities at the phase level.

  7. On higher-order boundary conditions at elastic-plastic boundaries in strain-gradient plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2008-01-01

    are suppressed by using a very high artificial hardening modulus. Through numerical studies of pure bending under plane strain conditions, it is shown that this method predicts the build-up of higher order stresses in the pseudo-elastic regime. This has the effect of delaying the onset of incipient yield......, as well as extending the plastic zone further toward the neutral axis of the beam, when compared to conventional models. Arguments supporting the present method are presented that rest on both mathematical and physical grounds. The results obtained are compared with other methods for dealing with higher...

  8. Effect of cyclic plastic pre-strain on low cycle fatigue life

    International Nuclear Information System (INIS)

    Kanno, Satoshi; Nakane, Motoki; Yorikawa, Morio; Takagi, Yoshio

    2010-01-01

    In order to evaluate structural integrity of nuclear components subjected large seismic load which produce locally plastic strain, low cycle fatigue life was examined using cyclic plastic pre-strained materials of austenitic steel (SUS316, SUS316L, SUS304TP: JIS (Japanese Industrial Standards)) and ferritic steel (SFVQ1A, STS480, STPT410, SFVC2B, SS400: JIS). It was not found that cyclic plastic pre-strain up to range of 16%, 2.5 times affected on low cycle fatigue life. The validity of existing procedure of fatigue life estimation based on usage factor was confirmed when large seismic load brought nuclear materials cyclic plastic strain. (author)

  9. A model for recovery kinetics of aluminum after large strain

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels

    2012-01-01

    A model is suggested to analyze recovery kinetics of heavily deformed aluminum. The model is based on the hardness of isothermal annealed samples before recrystallization takes place, and it can be extrapolated to longer annealing times to factor out the recrystallization component of the hardness...... for conditions where recovery and recrystallization overlap. The model is applied to the isothermal recovery at temperatures between 140 and 220°C of commercial purity aluminum deformed to true strain 5.5. EBSD measurements have been carried out to detect the onset of discontinuous recrystallization. Furthermore...

  10. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  11. An alternative treatment of phenomenological higher-order strain-gradient plasticity theory

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2010-01-01

    strain is discussed, applying a dislocation theory-based consideration. Then, a differential equation for the equivalent plastic strain-gradient is introduced as an additional governing equation. Its weak form makes it possible to deduce and impose extra boundary conditions for the equivalent plastic...... strain. A connection between the present treatment and strain-gradient theories based on an extended virtual work principle is discussed. Furthermore, a numerical implementation and analysis of constrained simple shear of a thin strip are presented....

  12. Plastic Strain Induced Damage Evolution and Martensitic Transformation in Ductile Materials at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behaviour at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of thes...

  13. The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2

    International Nuclear Information System (INIS)

    Ballinger, R.G.; Lucas, G.E.; Pelloux, R.M.

    1984-01-01

    The evolution of crystallographic texture during plastic deformation was investigated in Zircaloy-2 using X-ray and metallographic techniques. Inverse pole figures, the resolved fraction of basal poles, and the volume fraction of twinned material, were determined as a function of plastic strain for several strain paths and initial textures at 298 K and 623 K. Incremental transverse platic strain ratios (R) were measured as a function of plastic strain. Texture rotation occurs early in the deformation process, after as little as 1.5% plastic strain. For compressive plastic strains, the resolved fraction of basal poles increases in the direction parallel to the strain axis. For tensile plastic strains, the resolved fraction of basal poles decreases in the direction parallel to the strain axis. The rate of change of the resolved fraction of basal poles with plastic strain is a function of the initial resolved fraction of basal poles. The texture rotation can be explained by considering the operating of the principal tensile twinning systems, [10anti 12], . (orig.)

  14. Effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, R.G. (Massachusetts Inst. of Tech., Cambridge (USA)); Lucas, G.E. (California Univ., Santa Barbara (USA)); Pelloux, R.M. (Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Materials Science and Engineering)

    1984-09-01

    The evolution of crystallographic texture during plastic deformation was investigated in Zircaloy-2 using X-ray and metallographic techniques. Inverse pole figures, the resolved fraction of basal poles, and the volume fraction of twinned material, were determined as a function of plastic strain for several strain paths and initial textures at 298 K and 623 K. Incremental transverse platic strain ratios (R) were measured as a function of plastic strain. Texture rotation occurs early in the deformation process, after as little as 1.5% plastic strain. For compressive plastic strains, the resolved fraction of basal poles increases in the direction parallel to the strain axis. For tensile plastic strains, the resolved fraction of basal poles decreases in the direction parallel to the strain axis. The rate of change of the resolved fraction of basal poles with plastic strain is a function of the initial resolved fraction of basal poles. The texture rotation can be explained by considering the operating of the principal tensile twinning systems, (10anti 12), .

  15. The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2

    Science.gov (United States)

    Ballinger, R. G.; Lucas, G. E.; Pelloux, R. M.

    1984-09-01

    The evolution of crystallographic texture during plastic deformation was investigated in Zircaloy-2 using X-ray and metallographic techniques. Inverse pole figures, the resolved fraction of basal poles, and the volume fraction of twinned material, were determined as a function of plastic strain for several strain paths and initial textures at 298 K and 623 K. Incremental transverse platic strain ratios ( R) were mesured as a function of plastic strain. Texture rotation occurs early in the deformation process, after as little as 1.5% plastic strain. For compressive plastic strains, the resolved fraction of basal poles increases in the direction parallel to the strain axis. For tensile plastic strains, the resolved fraction of basal poles decreases in the direction parallel to the strain axis. The rate of change of the resolved fraction of basal poles with plastic strain is a function of the initial resolved fraction of basal poles. The texture rotation can be explained by considering the operation of the principal tensile twinning systems, {101¯2}.

  16. Recovery of strain-hardening rate in Ni-Si alloys

    Science.gov (United States)

    Yang, C. L.; Zhang, Z. J.; Cai, T.; Zhang, P.; Zhang, Z. F.

    2015-10-01

    In this study, the recovery of strain-hardening rate (RSHR) was discovered for the first time in polycrystalline materials (Ni-Si alloys) that have only dislocation activities during tensile test. Detailed microstructure characterizations show that the activation of dislocations in the secondary slip systems during tensile deformation is the major reason for this RSHR. By taking into account other metals that also exhibit RSHR during tension, a more general mechanism for the RSHR was proposed, i.e. the occurrence of a sharp decrease of dislocation mean free path (Λ) during plastic deformation, caused by either planar defects or linear defects.

  17. Deformation patterning driven by rate dependent non-convex strain gradient plasticity

    NARCIS (Netherlands)

    Yalcinkaya, T.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    A rate dependent strain gradient plasticity framework for the description of plastic slip patterning in a system with non-convex energetic hardening is presented. Both the displacement and the plastic slip fields are considered as primary variables. These fields are determined on a global level by

  18. Energetic dislocation interactions and thermodynamical aspects of strain gradient crystal plasticity theories

    NARCIS (Netherlands)

    Ertürk, I.; Dommelen, van J.A.W.; Geers, M.G.D.

    2009-01-01

    This paper focuses on the unification of two frequently used and apparently different strain gradient crystal plasticity frameworks: (i) the physicallymotivated strain gradient crystal plasticity models proposed by Evers et al. (2004a,b) and Bayley et al. (2006, 2007) (here referred to as

  19. Plastic strain accumulation during asymmetric cyclic loading of Zircaloy-2 at room temperature

    International Nuclear Information System (INIS)

    Rajpurohit, R.S.; Santhi Srinivas, N.C.; Singh, Vakil

    2016-01-01

    Asymmetric cyclic loading leads to accumulation of cyclic plastic strain and reduces the fatigue life of components. This phenomenon is known as ratcheting fatigue. Zircaloy-2 is a important structural material in nuclear reactors and used as pressure tubes and fuel cladding in pressurized light and heavy water nuclear reactors. Due to power fluctuations, these components experience plastic strain cycles in the reactor and their life is reduced due to strain cycles. Power fluctuations also cause asymmetric straining of the material and leads to accumulation of plastic strain. The present investigation deals with the effect of the magnitude of mean stress, stress amplitude and stress rate on hardening/softening behavior of Zircaloy-2 under asymmetric cyclic loading, at room temperature. It was observed that plastic strain accumulation increased with mean stress and stress amplitude; however, it decreased with stress rate. (author)

  20. Plasticity margin recovery during annealing after cold deformation

    International Nuclear Information System (INIS)

    Bogatov, A.A.; Smirnov, S.V.; Kolmogorov, V.L.

    1978-01-01

    Restoration of the plasticity margin in steel 20 after cold deformation and annealing at 550 - 750 C and soaking for 5 - 300 min was investigated. The conditions of cold deformation under which the metal acquires microdefects unhealed by subsequent annealing were determined. It was established that if the degree of utilization of the plasticity margin is psi < 0.5, the plasticity margin in steel 20 can be completely restored by annealing. A mathematical model of restoration of the plasticity margin by annealing after cold deformation was constructed. A statistical analysis showed good agreement between model and experiment

  1. Stress and strain fluctuations in plastic deformation of crystals with disordered microstructure

    International Nuclear Information System (INIS)

    Kapetanou, O; Zaiser, M; Weygand, D

    2015-01-01

    We investigate the spatial structure of stress and strain patterns in crystal plasticity. To this end, we combine theoretical arguments with plasticity simulations using three different models: (i) a generic model of bulk crystal plasticity with stochastic evolution of the local microstructure, (ii) a 2D discrete dislocation simulation assuming single-slip deformation in a bulk crystal, and (iii) a 3D discrete dislocation model for deformation of micropillars in multiple slip. For all three models we investigate the scale-dependent magnitude of local fluctuations of internal stress and plastic strain, and we determine the spatial structure of the respective auto- and cross-correlation functions. The investigations show that, in the course of deformation, nontrivial long range correlations emerge in the stress and strain patterns. We investigate the influence of boundary conditions on the observed spatial patterns of stress and strain, and discuss implications of our findings for larger-scale plasticity models. (paper)

  2. A study of microindentation hardness tests by mechanism-based strain gradient plasticity

    International Nuclear Information System (INIS)

    Huang, Y.; Xue, Z.; Gao, H.; Nix, W. D.; Xia, Z. C.

    2000-01-01

    We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model. In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society

  3. Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses

    International Nuclear Information System (INIS)

    Sauer, G.

    1998-01-01

    Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)

  4. The role of plastic slip anisotropy in the modelling of strain path change effects

    NARCIS (Netherlands)

    Viatkina, E.M.; Brekelmans, W.A.M.; Geers, M.G.D.

    2009-01-01

    Most industrial metal forming processes are characterised by a complex strain path history. A change in strain path may have a significant effect on the mechanical response of metals. This paper concentrates on the role of the plastic slip anisotropy in the strain path dependency of materials

  5. Detection of thermal aging degradation and plastic strain damage for duplex stainless steel using SQUID sensor

    International Nuclear Information System (INIS)

    Otaka, M.; Evanson, S.; Hesegawa, K.; Takaku, K.

    1991-01-01

    An apparatus using a SQUID sensor is developed for nondestructive inspection. The measurements are obtained with the SQUID sensor located approximately 150 mm from the specimen. The degradation of thermal aging and plastic strain for duplex stainless steel is successfully detected independently from the magnetic characterization measurements. The magnetic flux density under high polarizing field is found to be independent of thermal aging. Coercive force increases with thermal aging time. On the other hand, the magnetic flux density under high field increases with the plastic strain. Coercive force is found to be independent of the plastic strain. (author)

  6. Modeling Shock Induced Plasticity in Copper Single Crystal: Numerical and Strain Localization Issues

    International Nuclear Information System (INIS)

    Shehadeh, M

    2011-01-01

    Multiscale dislocation dynamics plasticity (MDDP) simulations are carried out to address the following issues in modeling shock-induced plasticity: 1- the effect of finite element (FE) boundary conditions on shock wave characteristics and wave-dislocation interaction, 2- the effect of the evolution of the dislocation microstructure on lattice rotation and strain localization. While uniaxial strain is achieved with high accuracy using confined boundary condition, periodic boundary condition yields a disturbed wave profile due the edge effect. Including lattice rotation in the analysis leads to higher dislocation density and more localized plastic strain. (author)

  7. Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.

    Science.gov (United States)

    Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier

    2015-12-01

    This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Neutron-diffraction measurement of the evolution of strain for non-uniform plastic deformation

    CERN Document Server

    Rogge, R B; Boyce, D

    2002-01-01

    Neutrons are particularly adept for the validation of modeling predictions of stress and strain. In recent years, there has been a significant effort to model the evolution of both the macroscopic stresses and the intergranular stress during plastic deformation. These have had broad implications with regard to understanding the evolution of residual stress and to diffraction-based measurements of strain. Generally the modeling and associated measurements have been performed for simple uniaxial tension, leaving questions with regard to plastic deformation under multi-axial stress and non-uniform stress. Extensive measurements of the strain profile across a plastic hinge for each of a series of loading and unloading cycles to progressively higher degrees of plastic deformation are presented. These measurements are used to assess multiple-length-scale finite-element modeling (FEM) of the plastic hinge, in which the elements will range in size from single crystallites (as used in successful simulations of uniaxia...

  9. Plastic limit analysis with non linear kinematic strain hardening for metalworking processes applications

    International Nuclear Information System (INIS)

    Chaaba, Ali; Aboussaleh, Mohamed; Bousshine, Lahbib; Boudaia, El Hassan

    2011-01-01

    Limit analysis approaches are widely used to deal with metalworking processes analysis; however, they are applied only for perfectly plastic materials and recently for isotropic hardening ones excluding any kind of kinematic hardening. In the present work, using Implicit Standard Materials concept, sequential limit analysis approach and the finite element method, our objective consists in extending the limit analysis application for including linear and non linear kinematic strain hardenings. Because this plastic flow rule is non associative, the Implicit Standard Materials concept is adopted as a framework of non standard plasticity modeling. The sequential limit analysis procedure which considers the plastic behavior with non linear kinematic strain hardening as a succession of perfectly plastic behavior with yielding surfaces updated after each sequence of limit analysis and geometry updating is applied. Standard kinematic finite element method together with a regularization approach is used for performing two large compression cases (cold forging) in plane strain and axisymmetric conditions

  10. Potential of Electronic Plastic Waste as a Source of Raw Material and Energy Recovery

    International Nuclear Information System (INIS)

    Norazli Othman; Nor Ezlin Ahmad Basri; Lariyah Mohd Sidek

    2009-01-01

    Nowadays, the production of electronic equipment is one of the fastest growing industrial activities in this world. The increase use of plastic in this sector resulted in an increase of electronic plastic waste. Basically, electronic plastic material contains various chemical elements which act as a flame retardant when electronic equipment is operated. In general, the concept of recycling electronic plastic waste should be considered in order to protect the environment. For this purpose, research has been conducted to different resins of electronic plastic waste to identify the potential of electronic plastic waste as a source of raw material and energy recovery. This study was divided into two part for example determination of physical and chemical characteristics of plastic resins and calculation of heating value for plastic resins based on Dulong formula. Results of this research show that the average calorific value of electronic waste is 30,872.42 kJ/ kg (7,375 kcal/ kg). The emission factor analysis showed that the concentration of emission value that might occur during waste management activities is below the standard set by the Environment Quality Act 1974. Basically, this research shows that electronic plastic waste has the potential to become the source of raw material and energy recovery. (author)

  11. Elasto-plastic strain analysis by a semi-analytical method

    Indian Academy of Sciences (India)

    Non-uniform taper bar; rotating disk; elasto-plastic strain analysis; loaded natural frequency. ... The location of initiation of elasto-plastic front and its growth are found to be functions of geometry of the bar and loading ... Sadhana | News.

  12. CYCLIC PLASTIC BEHAVIOUR OF UFG COPPER UNDER CONTROLLED STRESS AND STRAIN LOADING

    Directory of Open Access Journals (Sweden)

    Lucie Navrátilová

    2012-01-01

    Full Text Available The influence of stress- and strain-controlled loading on microstructure and cyclic plastic behaviour of ultrafine-grained copper prepared by equal channel angular pressing was examined. The stability of microstructure is a characteristic feature for stress-controlled test whereas grain coarsening and development of bimodal structure was observed after plastic strain-controlled tests. An attempt to explain the observed behaviour was made.

  13. Fast recovery strain measurements in a nuclear test environment

    International Nuclear Information System (INIS)

    Kitchen, W.R.; Nauman, W.J.; Vollmer, D.W.

    1979-01-01

    The recovery of early-time (50 μs or less) strain gage data on structural response experiments in underground nuclear tests has been a continuing problem for experimenters at the Nevada Test Site. Strain measurement is one of the primary techniques used to obtain experimental data for model verification and correlation with predicted effects. Peak strains generally occur within 50 to 100 μs of the radiation exposure. Associated with the exposure is an intense electromagnetic impulse that produces potentials of kilovolts and currents of kiloamperes on the experimental structures. For successful operation, the transducer and associated recording system must recover from the initial noise overload and accurately track the strain response within about 50 μs of the nuclear detonation. A gaging and fielding technique and a recording system design that together accomplish these objectives are described. Areas discussed include: (1) noise source model; (2) experimental cassette design, gage application, grounding, and shielding; (3) cable design and shielding between gage and recorder; (4) recorder design including signal conditioner/amplifier, digital encoder, buffer memory, and uphole data transmission; and (5) samples of experimental data

  14. Plastic strain induced damage evolution and martensitic transformation in ductile materials at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garion, C.; Skoczen, B.T.

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behavior at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of these irreversible phenomena, associated with the dissipation of plastic power, are included into the constitutive model of stainless steels at cryogenic temperatures. The model is tested on the thin-walled corrugated shells (known as bellows expansion joints) used in the interconnections of the Large Hadron Collider, the new proton storage ring being constructed at present at CERN

  15. Strain localization and elastic-plastic coupling during deformation of porous sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Dewers, Thomas A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Issen, Kathleen A. [Clarkson Univ., Potsdam, NY (United States). Mechanical and Aeronautical Engineering; Holcomb, David J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Olsson, William A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Ingraham, Mathew D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2017-09-12

    Results of axisymmetric compression tests on weak, porous Castlegate Sandstone (Cretaceous, Utah, USA), covering a range of dilational and compactional behaviors, are examined for localization behavior. Assuming isotropy, bulk and shear moduli evolve as increasing functions of mean stress and Mises equivalent shear stress respectively, and as decreasing functions of work-conjugate plastic strains. Acoustic emissions events located during testing show onset of localization and permit calculation of observed shear and low-angle compaction localization zones, or bands, as localization commences. Total strain measured experimentally partitions into: A) elastic strain with constant moduli, B) elastic strain due to stress dependence of moduli, C) elastic strain due to moduli degradation with increasing plastic strain, and D) plastic strain. The third term is the elastic-plastic coupling strain, and though often ignored, contributes significantly to pre-failure total strain for brittle and transitional tests. Constitutive parameters and localization predictions derived from experiments are compared to theoretical predictions. In the brittle regime, predictions of band angles (angle between band normal and maximum compression) demonstrate good agreement with observed shear band angles. Compaction localization was observed in the transitional regime in between shear localization and spatially pervasive compaction, over a small range of mean stresses. In contrast with predictions however, detailed acoustic emissions analyses in this regime show low angle, compaction-dominated but shear-enhanced, localization.

  16. Recovery of Porosity and Permeability for High Plasticity Clays

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Foged, Niels Nielsen

    to be the case for high plasticity clays that are uncemented, and with a high content of clay minerals, especially smectite. Oedometer tests on samples from the Paleogene period show that 80% or more of the compaction will recover when unloaded, and if unloaded to a stress lower than in situ stress level...

  17. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Science.gov (United States)

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  18. Strain Recovery by TiNi Element Under Fast Heating

    Science.gov (United States)

    Volkov, Aleksandr E.; Miszuris, Wiktoria; Volkova, Natalia A.

    2018-01-01

    A theoretical and experimental study of strain recovery under fast heating of a shape memory alloy (SMA) rod preliminarily stretched in the martensitic state is carried out. Two theoretical models are considered: instantaneous heating and heating with temperature variation during a finite time. In the first case, it is supposed that the straight SMA rod experiences an instantaneous reverse martensitic transformation, and in the second the transformation is supposed to progress at a rate corresponding to the temperature rate. Analytical expression for the time dependence of the rod free-end displacement is obtained. In the experiment, a wire specimen made of titanium-nickel SMA was heated by a short impulse of electric current. The variation of the specimen length in time was registered. Thus, it has been shown that the minimum operation time of an SMA actuator (time needed for the strain recovery) can be reduced to 20 µs. Comparison of the theoretical results with the experimental ones leads to the conclusion that the displacement variation in time is controlled by the rate of heating and the inertia of the specimen. The incubation time of the martensitic transformation on the microscale apparently is estimated as less than 1 µs.

  19. Plasticity dependent damage evolution in composites with strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2015-01-01

    . (2013). In this study the reinforcement is assumed perfectly stiff and consequently only one new cohesive material parameter is introduced. Results are shown for both conventional isotropy as well as plastic anisotropy with higher-order material behavior. Due to fiber-matrix decohesion a sudden stress......A unit cell approach is adopted to numerically analyze the effect of reinforcement size on fracture evolution in metal matrix composites. The matrix material shows plastic size-effects and is modeled by an anisotropic version of the single parameter strain-gradient (higher-order) plasticity model...... by Fleck and Hutchinson (2001). The fracture process along the fiber-matrix interface is modeled using a recently proposed cohesive law extension, where plasticity affects the fracture process as both the average as well as the jump in plastic strain across the interface are accounted for Tvergaard et al...

  20. Hardening and strengthening behavior in rate-independent strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Nellemann, C.; Niordson, C. F.; Nielsen, K.L.

    2018-01-01

    Two rate-independent strain gradient crystal plasticity models, one new and one previously published, are compared and a numerical framework that encompasses both is developed. The model previously published is briefly outlined, while an in-depth description is given for the new, yet somewhat...... related,model. The difference between the two models is found in the definitions of the plastic work expended in the material and their relation to spatial gradients of plastic strains. The model predictions are highly relevant to the ongoing discussion in the literature, concerning 1) what governs...... the increase in the apparent yield stress due to strain gradients (also referred to as strengthening)? And 2), what is the implication of such strengthening in relation to crystalline material behavior at the micron scale? The present work characterizes material behavior, and the corresponding plastic slip...

  1. Resistance to small plastic strains during martensite tempering under tension

    Energy Technology Data Exchange (ETDEWEB)

    Zabil' skij, V.V.; Sarrak, V.I. (AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)

    1982-11-01

    The mechanism of plastic deformation of martensite of a series of hardened steels (N18, 20KhG, 50KhFA and others) during tempering under tension and the role of residual internal microstresses and phase transformations are studied. It is shown that martensite low resistance to small plastic deformations during tempering under tension which is usually associated with phase transformations depends as well on the level of residual internal microstresses in the martensite structure. The decrease of resistance to deformation in the course of the decomposition of a solid solution is due to weakening of martensitic matrix because of carbon departure from the solid solution and carbide coarsening. An assumption is made that martensite plastic deformation during tempering under tension is realized at the expense of the directed microplastic deformation in the regions of higher concentration of internal stresses.

  2. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI. Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. The mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain pathways in the spinal cord may emerge with certain patterns of activity, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after spinal cord injury. We review these basic phenomena, discuss the cellular and molecular mechanisms, and discuss implications of these findings for improved rehabilitative therapies after spinal cord injury.

  3. Finite element implementation and numerical issues of strain gradient plasticity with application to metal matrix composites

    DEFF Research Database (Denmark)

    Frederiksson, Per; Gudmundson, Peter; Mikkelsen, Lars Pilgaard

    2009-01-01

    A framework of finite element equations for strain gradient plasticity is presented. The theoretical framework requires plastic strain degrees of freedom in addition to displacements and a plane strain version is implemented into a commercial finite element code. A couple of different elements...... of quadrilateral type are examined and a few numerical issues are addressed related to these elements as well as to strain gradient plasticity theories in general. Numerical results are presented for an idealized cell model of a metal matrix composite under shear loading. It is shown that strengthening due...... to fiber size is captured but strengthening due to fiber shape is not. A few modelling aspects of this problem are discussed as well. An analytic solution is also presented which illustrates similarities to other theories....

  4. Mode I and mixed mode crack-tip fields in strain gradient plasticity

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2011-01-01

    Strain gradients develop near the crack-tip of Mode I or mixed mode cracks. A finite strain version of the phenomenological strain gradient plasticity theory of Fleck–Hutchinson (2001) is used here to quantify the effect of the material length scales on the crack-tip stress field for a sharp...... stationary crack under Mode I and mixed mode loading. It is found that for material length scales much smaller than the scale of the deformation gradients, the predictions converge to conventional elastic–plastic solutions. For length scales sufficiently large, the predictions converge to elastic solutions....... Thus, the range of length scales over which a strain gradient plasticity model is necessary is identified. The role of each of the three material length scales, incorporated in the multiple length scale theory, in altering the near-tip stress field is systematically studied in order to quantify...

  5. Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery

    Directory of Open Access Journals (Sweden)

    Kevin J. Maloney

    2013-08-01

    Full Text Available Ordered periodic microlattices with densities from 0.5 mg/cm3 to 500 mg/cm3 are fabricated by depositing various thin film materials (Au, Cu, Ni, SiO2, poly(C8H4F4 onto sacrificial polymer lattice templates. Young's modulus and strength are measured in compression and the density scaling is determined. At low relative densities, recovery from compressive strains of 50% and higher is observed, independent of lattice material. An analytical model is shown to accurately predict the transition between recoverable “pseudo-superelastic” and irrecoverable plastic deformation for all constituent materials. These materials are of interest for energy storage applications, deployable structures, and for acoustic, shock, and vibration damping.

  6. Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube

    International Nuclear Information System (INIS)

    Eraslan, Ahmet N.; Akis, Tolga

    2006-01-01

    Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters

  7. Study on elastic-plastic deformation analysis using a cyclic stress-strain curve

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Yamauchi, Masafumi

    1983-01-01

    This paper presents the results of the elastic-plastic deformation analysis using a cyclic stress-strain curve with an intention to apply this method for predicting the low-cycle fatigue life. Uniaxial plastic cycling tests were performed on 2 1/4Cr-1Mo steel to investigate the correspondence between the cyclic stress-strain curve and the hysteresis loop, and also to determine what mathematical model should be used for analysis of deformation at stress reversal. Furthermore, a cyclic in-plane bending test was performed on a flat plate to clarify the validity of the cyclic stress-strain curve-based theoretical analysis. The results obtained are as follows: (1) The cyclic stress-strain curve corresponds nearly to the ascending curve of hysteresis loop scaled by a factor of 1/2 for both stress and strain. Therefore, the cyclic stress-strain curve can be determined from the shape of hysteresis loop, for simplicity. (2) To perform the elastic-plastic deformation analysis using the cyclic stress-strain curve is both practical and effective for predicting the cyclic elastic-plastic deformation of structures at the stage of advanced cycles. And Masing model can serve as a suitable mathematical model for such a deformation analysis. (author)

  8. The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke

    DEFF Research Database (Denmark)

    Ruscher, Karsten; Shamloo, Mehrdad; Rickhag, Karl Mattias

    2011-01-01

    Stroke leads to brain damage with subsequent slow and incomplete recovery of lost brain functions. Enriched housing of stroke-injured rats provides multi-modal sensorimotor stimulation, which improves recovery, although the specific mechanisms involved have not been identified. In rats housed in ...... of biomolecules required for brain repair, thereby stimulating brain plasticity. Pharmacological targeting of the sigma-1 receptor provides new opportunities for stroke treatment beyond the therapeutic window of neuroprotection....

  9. Recovery-related indicators of motor network plasticity according to impairment severity after stroke.

    Science.gov (United States)

    Lee, J; Park, E; Lee, A; Chang, W H; Kim, D-S; Kim, Y-H

    2017-10-01

    Brain connectivity analysis has been widely used to investigate brain plasticity and recovery-related indicators of patients with stroke. However, results remain controversial because of interindividual variability of initial impairment and subsequent recovery of function. In this study, we aimed to investigate the differences in network plasticity and motor recovery-related indicators according to initial severity. We divided participants (16 males and 14 females, aged 54.2 ± 12.0 years) into groups of different severity by Fugl-Mayer Assessment score, i.e. moderate (50-84), severe (20-49) and extremely severe (impairment groups. Longitudinal resting-state functional magnetic resonance imaging data were acquired at 2 weeks and 3 months after onset. The differences in network plasticity and recovery-related indicators between groups were investigated using network distance and graph measurements. As the level of impairment increased, the network balance was more disrupted. Network balance, interhemispheric connectivity and network efficiency were recovered at 3 months only in the moderate impairment group. However, this was not the case in the extremely severe impairment group. A single connection strength between the ipsilesional primary motor cortex and ventral premotor cortex was implicated in the recovery of motor function for the extremely severe impairment group. The connections of the ipsilesional primary motor cortex-ventral premotor cortex were positively associated with motor recovery as the patients were more severely impaired. Differences in plasticity and recovery-related indicators of motor networks were noted according to impairment severity. Our results may suggest meaningful implications for recovery prediction and treatment strategies in future stroke research. © 2017 EAN.

  10. Effect of plastic strain on elastic-plastic fracture toughness of SM490 carbon steel. Assessment by stress-based criterion for ductile crack initiation

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2012-01-01

    Although the plastic strain induced in materials increases the mechanical strength, it may reduce the fracture toughness. In this study, the change in fracture toughness of SM490 carbon steel due to pre-straining was investigated using a stress-based criterion for ductile crack initiation. The specimens with blunt notch of various radiuses were used in addition to those with conventional fatigue pre-cracking. The degree of applied plastic strain was 5%, 10% or 20%. The fracture toughness was largest when the induced plastic strain was 5%, although it decreased for the plastic strains of 10% and 20%. The stress and strain distributions near the crack tip of fracture toughness test specimens was investigated by elastic-plastic finite element analyses using a well-correlated stress-strain curve for large strain. It was shown that the critical condition at the onset of the ductile crack was better correlated with the equivalent stress than the plastic strain at the crack tip. By using the stress-based criterion, which was represented by the equivalent stress and stress triaxiality, the change in the fracture toughness due to pre-straining could be reasonably explained. Based on these results, it was concluded that the stress-based criterion should be used for predicting the ductile crack initiation. (author)

  11. Plastic strain characterization in austenitic stainless steels and nickel alloys by electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Saez-Maderuelo, A., E-mail: alberto.saez@ciemat.es [CIEMAT, Av. Complutense, 22-28040 Madrid (Spain); Castro, L.; Diego, G. de [CIEMAT, Av. Complutense, 22-28040 Madrid (Spain)

    2011-09-01

    Stress corrosion cracking (SCC) is enhanced by cold work and causes many problems in components of the nuclear power plants. Besides, during manufacturing, installation, welding and service of the material, residual strains can be produced increasing the susceptibility to SCC. For this reason, it is important to characterize the degree of plastic strain due to dislocation accumulation in each crystal. Electron backscatter diffraction (EBSD), in conjunction with scanning electron microscope (SEM), has been a great advance in this field because it enables to estimate the plastic strain in a quick and easy way. Nevertheless, over the last few years, a lot of different mathematical expressions to estimate the plastic strain have appeared in the literature. This situation hinders the election of one of them by a novel scientist in this field. Therefore, in this paper some of the more common expressions used in the calculation of the angular misorientation have been presented and discussed in order to clarify their more important aspects. Then, using one of these expressions (average local misorientation), curves relating misorientation density with known levels of strain will be obtained for an austenitic stainless steel 304L and nickel base alloy 690, which have shown a linear behaviour that is in good agreement with results found in the literature. Finally, using curves obtained in previous steps, levels of plastic strain in a plate of nickel base alloy 600 welded with weld metal 182 were estimated between 8 and 10% for a high temperature mill annealing sample.

  12. Plastic strain characterization in austenitic stainless steels and nickel alloys by electron backscatter diffraction

    International Nuclear Information System (INIS)

    Saez-Maderuelo, A.; Castro, L.; Diego, G. de

    2011-01-01

    Stress corrosion cracking (SCC) is enhanced by cold work and causes many problems in components of the nuclear power plants. Besides, during manufacturing, installation, welding and service of the material, residual strains can be produced increasing the susceptibility to SCC. For this reason, it is important to characterize the degree of plastic strain due to dislocation accumulation in each crystal. Electron backscatter diffraction (EBSD), in conjunction with scanning electron microscope (SEM), has been a great advance in this field because it enables to estimate the plastic strain in a quick and easy way. Nevertheless, over the last few years, a lot of different mathematical expressions to estimate the plastic strain have appeared in the literature. This situation hinders the election of one of them by a novel scientist in this field. Therefore, in this paper some of the more common expressions used in the calculation of the angular misorientation have been presented and discussed in order to clarify their more important aspects. Then, using one of these expressions (average local misorientation), curves relating misorientation density with known levels of strain will be obtained for an austenitic stainless steel 304L and nickel base alloy 690, which have shown a linear behaviour that is in good agreement with results found in the literature. Finally, using curves obtained in previous steps, levels of plastic strain in a plate of nickel base alloy 600 welded with weld metal 182 were estimated between 8 and 10% for a high temperature mill annealing sample.

  13. Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation

    International Nuclear Information System (INIS)

    Byun, T.S.; Farrell, K.; Lee, E.H.; Hunn, J.D.; Mansur, L.K.

    2001-01-01

    Strain hardening and plastic instability properties were analyzed for EC316LN, HTUPS316, and AL6XN austenitic stainless steels after combined 800 MeV proton and spallation neutron irradiation to doses up to 10.7 dpa. The steels retained good strain-hardening rates after irradiation, which resulted in significant uniform strains. It was found that the instability stress, the stress at the onset of necking, had little dependence on the irradiation dose. Tensile fracture stress and strain were calculated from the stress-strain curve data and were used to estimate fracture toughness using an existing model. The doses to plastic instability and fracture, the accumulated doses at which the yield stress reaches instability stress or fracture stress, were predicted by extrapolation of the yield stress, instability stress, and fracture stress to higher dose. The EC316LN alloy required the highest doses for plastic instability and fracture. Plastic deformation mechanisms are discussed in relation to the strain-hardening properties of the austenitic stainless steels

  14. Basic Strain Gradient Plasticity Theories with Application to Constrained Film Deformation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, John W.

    2011-01-01

    films: the compression or extension of a finite layer joining rigid platens. Full elastic-plastic solutions are obtained for the same problem based on a finite element method devised for the new class of flow theories. Potential difficulties and open issues associated with the new class of flow theories......A family of basic rate-independent strain gradient plasticity theories is considered that generalize conventional J(2) deformation and flow theories of plasticity to include a dependence on strain gradients in a simple way. The theory builds on three recent developments: the work of Gudmundson (J....... Mech. Phys. Solids 52 (2004), 1379-1406) and Gurtin and Anand (J. Mech. Phys. Solids 57 (2009), 405-421), proposing constitutive relations for flow theories consistent with requirements of positive plastic dissipation; the work of Fleck and Willis (J. Mech. Phys. Solids 57 (2009), 161-177 and 1045...

  15. Measurement of Plastic Stress and Strain for Analytical Method Verification (MSFC Center Director's Discretionary Fund Project No. 93-08)

    Science.gov (United States)

    Price, J. M.; Steeve, B. E.; Swanson, G. R.

    1999-01-01

    The analytical prediction of stress, strain, and fatigue life at locations experiencing local plasticity is full of uncertainties. Much of this uncertainty arises from the material models and their use in the numerical techniques used to solve plasticity problems. Experimental measurements of actual plastic strains would allow the validity of these models and solutions to be tested. This memorandum describes how experimental plastic residual strain measurements were used to verify the results of a thermally induced plastic fatigue failure analysis of a space shuttle main engine fuel pump component.

  16. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    International Nuclear Information System (INIS)

    Huang Mingxin; Rivera-Diaz-del-Castillo, Pedro E J; Zwaag, Sybrand van der; Bouaziz, Olivier

    2009-01-01

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that there is a transitional strain rate (∼ 10 4 s -1 ) over which the phonon drag effects appear, resulting in a significant increase in the flow stress and the average dislocation density. The model is applied to pure Cu deformed at room temperature and at strain rates ranging from 10 -5 to 10 6 s -1 showing good agreement with experimental results.

  17. Growth of extrusions in localized cyclic plastic straining

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Sauzay, M.

    2009-01-01

    Roč. 500, č. 1-2 (2009), s. 122-129 ISSN 0921-5093 R&D Projects: GA ČR GA101/07/1500 Institutional research plan: CEZ:AV0Z20410507 Keywords : extrusion * strain localization * persistent slip band * vacancy Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.901, year: 2009

  18. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste

    International Nuclear Information System (INIS)

    Adrados, A.; Marco, I. de; Caballero, B.M.; López, A.; Laresgoiti, M.F.; Torres, A.

    2012-01-01

    Highlights: ► Pyrolysis of plastic waste. ► Comparison of different samples: real waste, simulated and real waste + catalyst. ► Study of the effects of inorganic components in the pyrolysis products. - Abstract: Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products.

  19. Elastic-plastic analysis of local and integral straining behaviour in a cracked plate

    International Nuclear Information System (INIS)

    Grueter, L.; Ruettenauer, B.

    1982-01-01

    For components of the primary coolant system of the German LMFBR prototype reactor SNR-300, integrity against anticipated accidents (Bethe-Tait) has to be shown for a cracked structure. Within this programme a number of tests with cracked wide plate specimens yielding overall limit strains of approximately 15% have been run; finite element calculations have been infinated for the wide plate geometry. The paper discusses the straining behaviour of a cracked plate by considering the numerical simulation of structures strained up to such high levels. The stress-strain diagram of the weldment of the austenitic stainless steel X6 CrNi 18 at 450 0 C has been used. Plane strain and stress conditions have been prescribed. The original plate dimensions (t = thickness = 40 mm; h = height = 400 mm) have been used as well as a similar, but smaller plate of t = 8.8 mm width. The crack length is defined as 0.1 t. The results show that for a cracked plate under high plastic strain the near-crack-tip-field values still govern the structural mechanical behaviour. Concerning the absolute dimensions the effects known for elasticity retain their influence in the plastic regime; however, the crack location becomes more unimportant with increasing strain, i.e. the appropriate pure geometry factor tends to unity in the plastic regime. The center-crack, defined as 2a = 0.1 t, corresponds to an equivalent edge crack of depth a = 0.05 t in the elastic case. It can be shown that for high plastic strains this correspondence remains fully valid. (orig.)

  20. Mechanisms of large strain, high strain rate plastic flow in the explosively driven collapse of Ni-Al laminate cylinders

    International Nuclear Information System (INIS)

    Olney, K L; Chiu, P H; Nesterenko, V F; Higgins, A; Serge, M; Weihs, T P; Fritz, G; Stover, A; Benson, D J

    2014-01-01

    Ni-Al laminates have shown promise as reactive materials due to their high energy release through intermetallic reaction. In addition to the traditional ignition methods, the reaction may be initiated in hot spots that can be created during mechanical loading. The explosively driven thick walled cylinder (TWC) technique was performed on two Ni-Al laminates composed of thin foil layers with different mesostructues: concentric and corrugated. These experiments were conducted to examine how these materials accommodate large plastic strain under high strain rates. Finite element simulations of these specimens with mesostuctures digitized from the experimental samples were conducted to provide insight into the mesoscale mechanisms of plastic flow. The dependence of dynamic behaviour on mesostructure may be used to tailor the hot spot formation and therefore the reactivity of the material system.

  1. Neutron-diffraction measurement of the evolution of strain for non-uniform plastic deformation

    International Nuclear Information System (INIS)

    Rogge, R.B.; Dawson, P.R.; Boyce, D.

    2002-01-01

    Neutrons are particularly adept for the validation of modeling predictions of stress and strain. In recent years, there has been a significant effort to model the evolution of both the macroscopic stresses and the intergranular stress during plastic deformation. These have had broad implications with regard to understanding the evolution of residual stress and to diffraction-based measurements of strain. Generally the modeling and associated measurements have been performed for simple uniaxial tension, leaving questions with regard to plastic deformation under multi-axial stress and non-uniform stress. Extensive measurements of the strain profile across a plastic hinge for each of a series of loading and unloading cycles to progressively higher degrees of plastic deformation are presented. These measurements are used to assess multiple-length-scale finite-element modeling (FEM) of the plastic hinge, in which the elements will range in size from single crystallites (as used in successful simulations of uniaxial tension) to macroscopic elements (as typically used in FEM simulations). (orig.)

  2. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    Science.gov (United States)

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    International Nuclear Information System (INIS)

    Cunha, Sérgio B.; Netto, Theodoro A.

    2012-01-01

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3″ diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: ► An analytical model for the burst of a pipe with a volumetric flaw is developed. ► Deformation, strain and stress are modeled in the elastic and plastic domains. ► The model is comprehensively validated by experiments and numerical simulations. ► The burst pressure model’s accuracy is equivalent to finite element simulations.

  4. Analytic examination of mechanism for compressive residual stress introduction with low plastic strain using peening

    International Nuclear Information System (INIS)

    Ishibashi, Ryo; Hato, Hisamitsu; Miyazaki, Katsumasa; Yoshikubo, Fujio

    2016-01-01

    Our goal for this study was to understand the cause of the differences in surface properties between surfaces processed using water jet peening (WJP) and shot peening (SP) and to examine the compressive residual stress introduction process with low plastic strain using SP. The dynamic behaviors of stress and strain in surfaces during these processes were analyzed through elasto-plastic calculations using a finite-element method program, and the calculated results were compared with measured results obtained through experiments. Media impacting a surface results in a difference in the hardness and microstructure of the processed surface. During SP, a shot deforms the surface locally with stress concentration in the early stages of the impact, while shock waves deform the surface evenly throughout the wave passage across the surface during WJP. A shot with a larger diameter creates a larger impact area on the surface during shot impact. Thus, SP with a large-diameter shot suppresses the stress concentration under the same kinetic energy condition. As the shot diameter increases, the equivalent plastic strain decreases. On the other hand, the shot is subject to size restriction since the calculated results indicate the compressive residual stress at the surface decreased and occasionally became almost zero as the shot diameter increased. Thus, compressive residual stress introduction with low plastic strain by using SP is considered achievable by using shots with a large diameter and choosing the appropriate peening conditions. (author)

  5. Effect of plastic deformation and strain history on X-ray elastic constants

    International Nuclear Information System (INIS)

    Iadicola, Mark A.; Foecke, Tim

    2005-01-01

    The use of X-ray diffraction to measure residual stress in a crystalline material is well known. This method is currently being reapplied to the surface measurement of in situ stresses during biaxial straining of sheet metal specimens. This leads to questions of precision and calibration of the method through plastic deformation. Little is known of the change, with plastic work, in the X-ray elastic constants (XECs) that are required by the technique for stress measurement. Experiments to determine the formability of various materials using this stress measurement technique in conjunction with a typical Marciniak test (with the Raghavan variation of specimen shapes) have been performed assuming a constant value for XECs. New results of calibration experiments are presented which admit the possibility of variation of the XECs with plastic strain history and initial texture of the material. Adjustment of the data from the previously performed formability experiments is shown. Additionally, various phenomena are captured including initial yielding, change of XECs with plastic strain level (both with uniaxial and biaxial strain histories), and some of the effects of texture on the technique. This technique has potential application in verification of the assumptions made during other standard testing methods (in-plane biaxial specimen geometries and bulge testing), verifying stress predictions from finite element analyses (i.e. benchmarking experiments such as BM3), analysis of stress states in localized deformation (yield point effects), and tracking of the effect of prestraining on material formability through the process of multistage forming

  6. Strain gradient crystal plasticity analysis of a single crystal containing a cylindrical void

    DEFF Research Database (Denmark)

    Borg, Ulrik; Kysar, J.W.

    2007-01-01

    to one another. Finite element simulations are performed using a strain gradient crystal plasticity formulation with an intrinsic length scale parameter in a non-local strain gradient constitutive framework. For a vanishing length scale parameter the non-local formulation reduces to a local crystal...... plasticity formulation. The stress and deformation fields obtained with a local non-hardening constitutive formulation are compared to those obtained from a local hardening formulation and to those from a non-local formulation. Compared to the case of the non-hardening local constitutive formulation......, it is shown that a local theory with hardening has only minor effects on the deformation field around the void, whereas a significant difference is obtained with the non-local constitutive relation. Finally, it is shown that the applied stress state required to activate plastic deformation at the void is up...

  7. Recycling and recovery of post-consumer plastic solid waste in a European context

    Directory of Open Access Journals (Sweden)

    Dewil Raf

    2012-01-01

    Full Text Available The disposal of waste plastics has become a major worldwide environmental problem. The USA, Europe and Japan generate annually about 50 million tons of post-consumer plastic waste, previously landfilled, generally considered as a non-sustainable and environmentally questionable option. Landfill sites and their capacity are, moreover, decreasing rapidly, and legislation is stringent. Several European Directives and US legislation concern plastic wastes and the required management. They are briefly discussed in this paper. New processes have emerged, i.e., advanced mechanical recycling of plastic waste as virgin or second grade plastic feedstock, and thermal treatments to recycle the waste as virgin monomer, as synthetic fuel gas, or as heat source (incineration with energy recovery. These processes avoid land filling, where the non-biodegradable plastics remain a lasting environmental burden. The paper reviews these alternative options through mostly thermal processing (pyrolysis, gasification and waste-to-energy. Additional research is, however, still needed to confirm the potential on pilot and commercial scale. [Acknowledgments. The research was partly funded by the Fundamental Research Funds for the Central Universities RC1101 (PR China and partly funded by Project KP/09/005 (SCORES4CHEM Knowledge Platform of the Industrial Research Council of the KU Leuven (Belgium.

  8. Strain-rate dependent plasticity in thermo-mechanical transient analysis

    International Nuclear Information System (INIS)

    Rashid, Y.R.; Sharabi, M.N.

    1980-01-01

    The thermo-mechanical transient behavior of fuel element cladding and other reactor components is generally governed by the strain-rate properties of the material. Relevant constitutive modeling requires extensive material data in the form of strain-rate response as function of true-stress, temperature, time and environmental conditions, which can then be fitted within a theoretical framework of an inelastic constitutive model. In this paper, we present a constitutive formulation that deals continuously with the entire strain-rate range and has the desirable advantage of utilizing existing material data. The derivation makes use of strain-rate sensitive stress-strain curve and strain-rate dependent yield surface. By postulating a strain-rate dependent on Mises yield function and a strain-rate dependent kinematic hardening rule, we are able to derive incremental stress-strain relations that describe the strain-rate behavior in the entire deformation range spanning high strain-rate plasticity and creep. The model is sufficiently general as to apply to any materials and loading histories for which data is available. (orig.)

  9. Recovery and deformation substructures of zircaloy-4 in high temperature plasticity under stationary or non-stationary stress

    International Nuclear Information System (INIS)

    Bocek, M.; Armas, I.

    1982-01-01

    It was the aim of the present investigation to examine how the recovery rate in creep is influenced by a non-stationary stress. For purposes of phenomenological analysis it is postulated that, irrespective of whether the applied stress is stationary or not, for large strains the mean internal stress sigmasub(i) approaches a stationary value sigmasub(i,s). The stationary recovery rate Rsub(s) for constant load creep turns out be governed by the applied stress indicating that the recovery mechanism is dynamic in nature. For sigma-ramp loading, Rsub(s) is dependent on the stress rate sigma. In tensional stress cycling, Rsub(s) is governed by the maximum stress sigmasub(M) and is also dependent on the ratio of sigmasub(M) to the minimum stress sigma 0 . TEM examination of Zircaloy-4 specimens crept at 800 0 C at constant and cycling load respectively could not reveal any differences in the deformation substructure for the two loading types. Subgrain formation did not appear, individual dislocations were observed only rarely. However, typical networks were formed as well as pileups which perhaps are responsible for the back stress in high temperature plasticity (HTP). (orig.)

  10. Calculation of recovery plasticity in multistage hot forging under isothermal conditions.

    Science.gov (United States)

    Zhbankov, Iaroslav G; Perig, Alexander V; Aliieva, Leila I

    2016-01-01

    A widely used method for hot forming steels and alloys, especially heavy forging, is the process of multistage forging with pauses between stages. The well-known effect which accompanies multistage hot forging is metal plasticity recovery in comparison with monotonic deformation. A method which takes into consideration the recovery of plasticity in pauses between hot deformations of a billet under isothermal conditions is proposed. This method allows the prediction of billet forming limits as a function of deformation during the forging stage and the duration of the pause between the stages. This method takes into account the duration of pauses between deformations and the magnitude of subdivided deformations. A hot isothermal upsetting process with pauses was calculated by the proposed method. Results of the calculations have been confirmed with experimental data.

  11. The Microstructure Evolution of Dual-Phase Pipeline Steel with Plastic Deformation at Different Strain Rates

    Science.gov (United States)

    Ji, L. K.; Xu, T.; Zhang, J. M.; Wang, H. T.; Tong, M. X.; Zhu, R. H.; Zhou, G. S.

    2017-07-01

    Tensile properties of the high-deformability dual-phase ferrite-bainite X70 pipeline steel have been investigated at room temperature under the strain rates of 2.5 × 10-5, 1.25 × 10-4, 2.5 × 10-3, and 1.25 × 10-2 s-1. The microstructures at different amount of plastic deformation were examined by using scanning and transmission electron microscopy. Generally, the ductility of typical body-centered cubic steels is reduced when its stain rate increases. However, we observed a different ductility dependence on strain rates in the dual-phase X70 pipeline steel. The uniform elongation (UEL%) and elongation to fracture (EL%) at the strain rate of 2.5 × 10-3 s-1 increase about 54 and 74%, respectively, compared to those at 2.5 × 10-5 s-1. The UEL% and EL% reach to their maximum at the strain rate of 2.5 × 10-3 s-1. This phenomenon was explained by the observed grain structures and dislocation configurations. Whether or not the ductility can be enhanced with increasing strain rates depends on the competition between the homogenization of plastic deformation among the microconstituents (ultra-fine ferrite grains, relatively coarse ferrite grains as well as bainite) and the progress of cracks formed as a consequence of localized inconsistent plastic deformation.

  12. Singular solutions for the rigid plastic double slip and rotation model under plane strain

    Science.gov (United States)

    Alexandrov, S.; Lyamina, E.

    2018-02-01

    In the mechanics of granular and other materials the system of equations comprising the rigid plastic double slip and rotation model together with the stress equilibrium equations under plane strain conditions forms a hyperbolic system. Boundary value problems for this system of equations can involve a frictional interface. An envelope of characteristics may coincide with this interface. In this case, the solution is singular. In particular, some components of the strain rate tensor approach infinity in the vicinity of the frictional interface. Such behavior of solutions is in qualitative agreement with experimental data that show that a narrow layer of localized plastic deformation is often generated near frictional interfaces. The present paper deals with asymptotic analysis of the aforementioned system of equations in the vicinity of an envelope of characteristics. It is shown that the shear strain rate and the spin component in a local coordinate system connected to the envelope follow an inverse square root rule in its vicinity.

  13. A numerical basis for strain-gradient plasticity theory: Rate-independent and rate-dependent formulations

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof

    2014-01-01

    of a single plastic zone is analyzed to illustrate the agreement with earlier published results, whereafter examples of (ii) multiple plastic zone interaction, and (iii) elastic–plastic loading/unloading are presented. Here, the simple shear problem of an infinite slab constrained between rigid plates......A numerical model formulation of the higher order flow theory (rate-independent) by Fleck and Willis [2009. A mathematical basis for strain-gradient plasticity theory – part II: tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids 57, 1045-1057.], that allows for elastic–plastic...... loading/unloading and the interaction of multiple plastic zones, is proposed. The predicted model response is compared to the corresponding rate-dependent version of visco-plastic origin, and coinciding results are obtained in the limit of small strain-rate sensitivity. First, (i) the evolution...

  14. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  15. Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel

    International Nuclear Information System (INIS)

    Liang, Z.Y.; Wang, X.; Huang, W.; Huang, M.X.

    2015-01-01

    The present work investigated the effect of strain rates (10 −3 to 10 3 s −1 ) on the deformation behaviour of a twinning-induced plasticity (TWIP) steel. The strain rate sensitivity was studied in terms of instantaneous strain rate sensitivity (ISRS) and strain rate sensitivity of work-hardening (SRSW). While ISRS concerns the instantaneous flow stress change upon strain rate jump, SRSW deals with the subsequent modification in microstructure evolution, i.e. change of work-hardening rate. The present TWIP steel demonstrates a positive ISRS which remains stable during deformation and a negative SRSW, i.e. lower work-hardening rate at higher strain rate. Synchrotron X-ray diffraction experiments indicate that the negative SRSW should be attributed to the suppression of dislocations and deformation twins at high strain rate. This unexpected finding is different to conventional face-centred cubic (fcc) metals which generally show enhanced work-hardening rate at higher strain rate. A constitutive model which is strain rate- and temperature-dependent is developed to explain the stable ISRS and the negative SRSW. The modelling results reveal that the stable ISRS should be attributed to the thermally-activated dislocation motion dominated by interstitial carbon atoms and the negative SRSW should be due to the suppression of the dislocations and deformation twins caused by the adiabatic heating associated with high strain rate deformation

  16. Recovery Kinetics in Commercial Purity Aluminum Deformed to Ultrahigh Strain: Model and Experiment

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels

    2016-01-01

    A new approach to analyze recovery kinetics is developed from a recent model, and microstructural observations are introduced to supplement hardness measurements. The approach involves two steps of data fitting, and the second step of fitting enables an estimation of the apparent activation energy...... for recovery. This approach is applied to commercial purity aluminum (AA1050) cold rolled to ultrahigh strain (99.6 pct reduction in thickness) and annealed at temperatures from 413 K to 493 K (140 A degrees C to 220 A degrees C). The annealing data fit the recovery model well, and the analysis shows...... that the apparent activation energy increases during recovery and approaches 190 kJ/mol at the end of recovery, suggesting that solute drag is an important rate-controlling mechanism. The recovery rate for the highly strained Al is found to be higher than that for Al deformed to a lower strain, an effect which...

  17. A study on plastic strain accumulation caused by traveling of temperature distribution synchronizing with temperature rise

    International Nuclear Information System (INIS)

    Okajima, Satoshi

    2016-01-01

    The prevention of excessive deformation by thermal ratcheting is important in the design of high-temperature components of fast breeder reactors (FBR). This includes evaluation methods for a new type of thermal ratcheting caused by an axial traveling of temperature distribution, which corresponds to moving-up of liquid sodium surface in startup phase. Long range traveling of the axial temperature distribution brings flat plastic deformation profile in wide range. Therefore, at the center of this range, residual stress that brings shakedown behavior does not accumulate. As a result, repeating of this temperature traveling brings continuous accumulation of the plastic strain, even if there is no primary stress. In contrast, in the case with short range traveling, residual stress is caused by constraint against elastic part, and finally it results in shakedown. Because of this mechanism, we supposed that limit for the shakedown behavior depends on distance from the elastic part (i.e. half length of region with plastic deformation). In this paper, we examined characteristics of the accumulation of the plastic strain caused by realistic heat transients, namely, traveling of temperature distribution synchronizing with temperature rise. This examination was based on finite element analyses using elastic-perfectly plastic material. As a result, we confirmed that the shakedown limit depends not on the traveling range of the temperature distribution but the plastic deformation range, which was predicted by the elastic analysis. In the actual application, we can control the plastic deformation range by changing rate of the moving-up of liquid sodium surface. (author)

  18. An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package

    Energy Technology Data Exchange (ETDEWEB)

    Kuhr, Bryan [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component Science and Mechanics; Lechman, Jeremy B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanoscale and Reactive Processes

    2015-03-01

    The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.

  19. Strain gradient plasticity modeling of hydrogen diffusion to the crack tip

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; del Busto, S.; Niordson, Christian Frithiof

    2016-01-01

    to characterize the gradient-enhanced stress elevation and subsequent diffusion of hydrogen towards the crack tip. Results reveal that GNDs, absent in conventional plasticity predictions, play a fundamental role on hydrogen transport ahead of a crack. SGP estimations provide a good agreement with experimental......In this work hydrogen diffusion towards the fracture process zone is examined accounting for local hardening due to geometrically necessary dislocations (GNDs) by means of strain gradient plasticity (SGP). Finite element computations are performed within the finite deformation theory...

  20. Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes

    Science.gov (United States)

    Zhou, Dong

    In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user

  1. Elasto-plastic bond mechanics of embedded fiber optic sensors in concrete under uniaxial tension with strain localization

    Science.gov (United States)

    Li, Qingbin; Li, Guang; Wang, Guanglun

    2003-12-01

    Brittleness of the glass core inside fiber optic sensors limits their practical usage, and therefore they are coated with low-modulus softer protective materials. Protective coatings absorb a portion of the strain, and hence part of the structural strain is sensed. The study reported here corrects for this error through development of a theoretical model to account for the loss of strain in the protective coating of optical fibers. The model considers the coating as an elasto-plastic material and formulates strain transfer coefficients for elastic, elasto-plastic and strain localization phases of coating deformations in strain localization in concrete. The theoretical findings were verified through laboratory experimentation. The experimental program involved fabrication of interferometric optical fiber sensors, embedding within mortar samples and tensile tests in a closed-loop servo-hydraulic testing machine. The elasto-plastic strain transfer coefficients were employed for correction of optical fiber sensor data and results were compared with those of conventional extensometers.

  2. Strong strain rate effect on the plasticity of amorphous silica nanowires

    International Nuclear Information System (INIS)

    Yue, Yonghai; Zheng, Kun

    2014-01-01

    With electron-beam (e-beam) off, in-situ tensile experiments on amorphous silica nanowires (NWs) were performed inside a transmission electron microscope (TEM). By controlling the loading rates, the strain rate can be adjusted accurately in a wide range. The result shows a strong strain rate effect on the plasticity of amorphous silica NWs. At lower strain rate, the intrinsic brittle materials exhibit a pronounced elongation higher than 100% to failure with obvious necking near ambient temperature. At the strain rate higher than 5.23 × 10 −3 /s, the elongation of the NW decreased dramatically, and a brittle fracture feature behavior was revealed. This ductile feature of the amorphous silica NWs has been further confirmed with the in-situ experiments under optical microscopy while the effect of e-beam irradiation could be eliminated.

  3. Dynamic strain aging of twinning-induced plasticity (TWIP) steel in tensile testing and deep drawing

    International Nuclear Information System (INIS)

    Kim, J.G.; Hong, S.; Anjabin, N.; Park, B.H.; Kim, S.K.; Chin, K.-G.; Lee, S.; Kim, H.S.

    2015-01-01

    The dynamic strain aging (DSA) of metallic materials due to solute atom diffusion to mobile dislocations induce deformation instability with load fluctuations and deformation localizations, hence reducing their sheet formability. In this paper, DSA behaviors of twinning induced plasticity (TWIP) steel with and without Al during tensile testing and deep drawing are investigated in terms of strain localization and the Portevin-Le Chatelier (PLC) band. A theoretical DSA model with internal variables of dislocation density and twin volume fraction is presented for an estimation of strain localization and strain hardening behavior of TWIP steels. The simulation results of the load history and PLC bands during tensile testing and deep drawing are in good agreement with the experimental values. A serration behavior is observed in high-Mn TWIP steels and its tensile residual stress is higher than that in the Al-added TWIP steels, which results in a deformation crack or delayed fracture of deep drawn specimens

  4. Investigation of grain subdivision at very low plastic strains in a magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X. [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Godfrey, A., E-mail: awgodfrey@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang, C.L.; Liu, W. [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chapuis, A. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2017-05-02

    In-situ tensile loading combined with electron backscatter diffraction (EBSD) measurements has been used to investigate the plastic deformation of a magnesium alloy. A novel EBSD mapping is presented, based on construction of maps showing the rotation axis component in the sample coordinate frame of the misorientation from each pixel to the average grain orientation in the deformed sample. Using this mapping it is shown that the pattern of grain subdivision, even at very low plastic strains, can be revealed simultaneously in a large number of grains. In addition, it is demonstrated how maps of the rotation axis corresponding to the misorientation between each pixel and the initial grain orientation provide complimentary information directly useful for crystal plasticity analysis. A detailed slip system analysis shows that the grain subdivision can be accounted for according to the low energy dislocation structures (LEDS) model of work-hardening by differences in the slip amplitudes within different parts of each grain.

  5. Micro-Structural Evolution and Size-Effects in Plastically Deformed Single Crystals: Strain Gradient Continuum Modeling

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah

    the macroscopic effects related to strain gradients, most predict smooth micro-structures. The evolution of dislocation micro-structures, during plastic straining of ductile crystalline materials, is highly complex and nonuniform. Published experimental measurements on deformed metal crystals show distinct......An extensive amount of research has been devoted to the development of micro-mechanics based gradient plasticity continuum theories, which are necessary for modeling micron-scale plasticity when large spatial gradients of plastic strain appear. While many models have proven successful in capturing...... strain. It is clear that many challenges are associated with modeling dislocation structures, within a framework based on continuum fields, however, since the strain gradient effects are attributed to the dislocation micro-structure, it is a natural step, in the further development of gradient theories...

  6. Elasto-plastic stress/strain at notches, comparison of test and approximative computations

    International Nuclear Information System (INIS)

    Beste, A.; Seeger, T.

    1979-01-01

    The lifetime of cyclically loaded components is decisively determined by the value of the local load in the notch root. The determination of the elasto-plastic notch-stress and-strain is therefore an important element of recent methods of lifetime determination. These local loads are normally calculated with the help of approximation formulas. Yet there are no details about their accuracy. The basic construction of the approximation formulas is presented, along with some particulars. The use of approximations within the fully plastic range and for material laws which show a non-linear stress-strain (sigma-epsilon-)-behaviour from the beginning is explained. The use of approximation for cyclic loads is particularly discussed. Finally, the approximations are evaluated in terms of their exactness. The test results are compared with the results of the approximation calculations. (orig.) 891 RW/orig. 892 RKD [de

  7. Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions

    Science.gov (United States)

    Herrmann, Christoph; Schoof, Ephraim; Schneider, Daniel; Schwab, Felix; Reiter, Andreas; Selzer, Michael; Nestler, Britta

    2018-04-01

    We introduce a small strain elasto-plastic multiphase-field model according to the mechanical jump conditions. A rate-independent J_2 -plasticity model with linear isotropic hardening and without kinematic hardening is applied exemplary. Generally, any physically nonlinear mechanical model is compatible with the subsequently presented procedure. In contrast to models with interpolated material parameters, the proposed model is able to apply different nonlinear mechanical constitutive equations for each phase separately. The Hadamard compatibility condition and the static force balance are employed as homogenization approaches to calculate the phase-inherent stresses and strains. Several verification cases are discussed. The applicability of the proposed model is demonstrated by simulations of the martensitic transformation and quantitative parameters.

  8. Elastic and plastic strains and the stress corrosion cracking of austenitic stainless steels. Final report

    International Nuclear Information System (INIS)

    Vaccaro, F.P.; Hehemann, R.F.; Troiano, A.R.

    1979-08-01

    The influence of elastic (stress) and plastic (cold work) strains on the stress corrosion cracking of a transformable austenitic stainless steel was studied in several aqueous chloride environments. Initial polarization behavior was active for all deformation conditions as well as for the annealed state. Visual observation, potential-time, and current-time curves indicated the development of a pseudo-passive (flawed) film leading to localized corrosion, occluded cells and SCC. SCC did not initiate during active corrosion regardless of the state of strain unless severe low temperature deformation produced a high percentage of martensite. Both elastic and plastic deformation increased the sensitivity to SCC when examined on the basis of percent yield strength. The corrosion potential, the critical cracking potential, and the potential at which the current changes from anodic to cathodic were essentially unaffected by deformation. It is apparent that the basic electrochemical parameters are independent of the bulk properties of the alloy and totally controlled by surface phenomena

  9. Comparison of experiment and theory for elastic-plastic plane strain crack growth

    International Nuclear Information System (INIS)

    Hermann, L.; Rice, J.R.

    1980-02-01

    Recent theoretical results on elastic-plastic plane strain crack growth, and experimental results for crack growth in a 4140 steel in terms of the theoretical concepts are reviewed. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasi-statically advancing crack tip in an ideally-plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large scale yielding. Nevertheless, it suffices to derive a relation between the imposed loading and amount of crack growth, prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens

  10. Dislocation-mediated strain hardening in tungsten: Thermo-mechanical plasticity theory and experimental validation

    Science.gov (United States)

    Terentyev, Dmitry; Xiao, Xiazi; Dubinko, A.; Bakaeva, A.; Duan, Huiling

    2015-12-01

    A self-consistent thermo-mechanical model to study the strain-hardening behavior of polycrystalline tungsten was developed and validated by a dedicated experimental route. Dislocation-dislocation multiplication and storage, as well dislocation-grain boundary (GB) pinning were the major mechanisms underlying the evolution of plastic deformation, thus providing a link between the strain hardening behavior and material's microstructure. The microstructure of the polycrystalline tungsten samples has been thoroughly investigated by scanning and electron microscopy. The model was applied to compute stress-strain loading curves of commercial tungsten grades, in the as-received and as-annealed states, in the temperature range of 500-1000 °C. Fitting the model to the independent experimental results obtained using a single crystal and as-received polycrystalline tungsten, the model demonstrated its capability to predict the deformation behavior of as-annealed samples in a wide temperature range and applied strain. The relevance of the dislocation-mediated plasticity mechanisms used in the model have been validated using transmission electron microscopy examination of the samples deformed up to different amounts of strain. On the basis of the experimental validation, the limitations of the model are determined and discussed.

  11. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Sergio B., E-mail: sbcunha@petrobras.com.br [PETROBRAS/TRANSPETRO, Av. Pres. Vargas 328 - 7th floor, Rio de Janeiro, RJ 20091-060 (Brazil); Netto, Theodoro A., E-mail: tanetto@lts.coppe.ufrj.br [COPPE, Federal University ot Rio de Janeiro, Ocean Engineering Department, PO BOX 68508, Rio de Janeiro - RJ (Brazil)

    2012-01-15

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3 Double-Prime diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: Black-Right-Pointing-Pointer An analytical model for the burst of a pipe with a volumetric flaw is developed. Black-Right-Pointing-Pointer Deformation, strain and stress are modeled in the elastic and plastic domains. Black-Right-Pointing-Pointer The model is comprehensively validated by experiments and numerical simulations. Black-Right-Pointing-Pointer The burst pressure model's accuracy is equivalent to finite element simulations.

  12. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure

    DEFF Research Database (Denmark)

    Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... is investigated numerically using a unit cell model with periodic boundary conditions containing a single fiber deformed under generalized plane strain conditions. The homogenized response can be modeled by conventional plasticity with an anisotropic yield surface and a free energy depending on plastic strain...

  13. Diffraction measurements for evaluating plastic strain in A533B ferritic steel-a feasibility study

    International Nuclear Information System (INIS)

    Lewis, S J; Truman, C E

    2010-01-01

    It is known that the physical properties of many engineering materials may be strongly affected by previous loading, in particular prior plastic deformation. Most obviously, work hardening will alter subsequent yielding behaviour. Plastic deformation may also preferentially align the material microstructure, resulting in anisotropy of subsequent behaviour and a change in material fracture resistance. When physical characterization is undertaken by experimental testing it is, therefore, important to have some knowledge of the current state of the material. As a result, it is desirable to have methods of quantitatively evaluating the level of plastic deformation which specimen material may have experienced prior to testing. This paper presents the results of a feasibility study, using a ferritic reactor pressure vessel steel, into the use of diffractive methods for plastic strain evaluation. Using neutron diffraction, changes in diffraction peak width and anisotropy of peak response were correlated with plastic deformation in a tensile test. The relationships produced were then used to evaluate permanent deformation levels in large samples, representative of standard fracture toughness test specimens.

  14. Interpreting the stress–strain response of Al micropillars through gradient plasticity

    International Nuclear Information System (INIS)

    Zhang, Xu; Aifantis, Katerina E.; Ngan, Alfonso H.W.

    2014-01-01

    Micropillar compression has fascinated the materials and mechanics communities for over a decade, due to the unique stochastic effects and slip zones that dictate their stress–strain curves and microstructure. Although plethora studies exist that capture experimentally the mechanical response of various types of micropillars, limited theoretical models can interpret the observed behavior. Particularly, single crystal micropillars exhibit multiple serrations in their stress–strain response, indicating the activation of slip zones, while bi-crystal pillars, in which the grain boundary lies parallel to the pillar axis, do not display such serrations, but rather a distinct “knee”, which indicates dislocation pileups at the grain boundary. In-situ synchrotron microdiffraction experiments have illustrated that not only dislocations, but also significant plastic strain gradients develop during micropillar compression. In the present study, therefore, appropriate gradient plasticity models that can account for the pillar microstructure, are successfully used to capture the stress–strain response of single- and bi-crystal Al pillars

  15. Attaining the rate-independent limit of a rate-dependent strain gradient plasticity theory

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2016-01-01

    The existence of characteristic strain rates in rate-dependent material models, corresponding to rate-independent model behavior, is studied within a back stress based rate-dependent higher order strain gradient crystal plasticity model. Such characteristic rates have recently been observed...... for steady-state processes, and the present study aims to demonstrate that the observations in fact unearth a more widespread phenomenon. In this work, two newly proposed back stress formulations are adopted to account for the strain gradient effects in the single slip simple shear case, and characteristic...... rates for a selected quantity are identified through numerical analysis. Evidently, the concept of a characteristic rate, within the rate-dependent material models, may help unlock an otherwise inaccessible parameter space....

  16. Modeling and Analysis of Size-Dependent Structural Problems by Using Low- Order Finite Elements with Strain Gradient Plasticity

    International Nuclear Information System (INIS)

    Park, Moon Shik; Suh, Yeong Sung; Song, Seung

    2011-01-01

    An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers

  17. Immune response to Bifidobacterium bifidum strains support Treg/Th17 plasticity.

    Directory of Open Access Journals (Sweden)

    Patricia López

    Full Text Available In this work we analyzed the immune activation properties of different Bifidobacterium strains in order to establish their ability as inductors of specific effector (Th or regulatory (Treg responses. First, we determined the cytokine pattern induced by 21 Bifidobacterium strains in peripheral blood mononuclear cells (PBMCs. Results showed that four Bifidobacterium bifidum strains showed the highest production of IL-17 as well as a poor secretion of IFNγ and TNFα, suggesting a Th17 profile whereas other Bifidobacterium strains exhibited a Th1-suggestive profile. Given the key role of Th17 subsets in mucosal defence, strains suggestive of Th17 responses and the putative Th1 Bifidobacterium breve BM12/11 were selected to stimulate dendritic cells (DC to further determine their capability to induce the differentiation of naïve CD4(+ lymphocytes toward different Th or Treg cells. All selected strains were able to induce phenotypic DC maturation, but showed differences in cytokine stimulation, DC treated with the putative Th17 strains displaying high IL-1β/IL-12 and low IL-12/IL-10 index, whereas BM12/11-DC exhibited the highest IL-12/IL-10 ratio. Differentiation of naïve lymphocytes confirmed Th1 polarization by BM12/11. Unexpectedly, any B. bifidum strain showed significant capability for Th17 generation, and they were able to generate functional Treg, thus suggesting differences between in vivo and vitro responses. In fact, activation of memory lymphocytes present in PBMCS with these bacteria, point out the presence in vivo of specific Th17 cells, supporting the plasticity of Treg/Th17 populations and the key role of commensal bacteria in mucosal tolerance and T cell reprogramming when needed.

  18. Stability of surface plastic flow in large strain deformation of metals

    Science.gov (United States)

    Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan

    We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.

  19. Use of endochronic plasticity for multi-dimensional small and large strain problems

    International Nuclear Information System (INIS)

    Hsieh, B.J.

    1980-04-01

    The endochronic plasticity theory was proposed in its general form by K.C. Valanis. An intrinsic time measure, which is a property of the material, is used in the theory. the explicit forms of the constitutive equation resemble closely those of the classical theory of linear viscoelasticity. Excellent agreement between the predicted and experimental results is obtained for some metallic and non-metallic materials for one dimensional cases. No reference on the use of endochronic plasticity consistent with the general theory proposed by Valanis is available in the open literature. In this report, the explicit constitutive equations are derived that are consistent with the general theory for one-dimensional (simple tension or compression), two-dimensional plane strain or stress and three-dimensional axisymmetric problems

  20. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, T.L.; Zhang, X.; Knapp, R.M.; McInerney, M.J.; Sharma, P.K.; Jackson, B.E.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gas produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.

  1. The potential of Bacillus licheniformis strains for in situ enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yakimov, Michail M.; Timmis, Kenneth N. [Microbial Ecology Group, Division of Microbiology, GBF-National Research Centre for Biotechnology, Braunschweig (Germany); Amro, Mohammed M.; Kessel, Dagobert G. [German Petroleum Institute, Clausthal-Zellerfeld (Germany); Bock, Michael; Boseker, Klaus [BGR, Federal Institute for Geoscience and Natural Resources, Hannover (Germany); Fredrickson, Herbert L. [Environmental Laboratory, Waterways Experimental Station, USAGE, Vicksburg, MS (United States)

    1997-07-15

    The ability of microorganisms isolated from oil reservoirs to increase oil recovery by in situ growth and metabolism following the injection of laboratory grown microbial cells and nutrients were studied. Four strains isolated from Northern German oil reservoirs at depths of 866 to 1520 m, and identified as Bacillus licheniformis, were characterized taxonomically and physiologically. All strains grew on a variety of substrates at temperatures of up to 55C and at salinities of up to 12% NaCl. Extracellular polymer production occurred both aerobically and anaerobically over a wide range of temperatures, pressures and salinities, though it was optimal at temperatures around 50C and at salinities between 5 and 10% NaCl. Strain BNP29 was able to produce significant amounts of biomass, polymer, fermentation alcohols and acids in batch culture experiments under simulated reservoir conditions. Oil recovery (core flooding) experiments with strain BNP29 and a sucrose-based nutrient were performed with lime-free and lime-containing, oil-bearing sandstone cores. Oil recovery efficiencies varied from 9.3 to 22.1% of the water flood residual oil saturation. Biogenic acid production that accompanied oil production, along with selective plugging, are important mechanisms leading to increased oil recovery, presumably through resulting changes in rock porosity and alteration of wettability. These data show that strain BNP29 exhibits potential for the development of enhanced oil recovery processes

  2. Shape recovery and irrecoverable strain control in polyurethane shape-memory polymer

    International Nuclear Information System (INIS)

    Tobushi, Hisaaki; Ejiri, Yoshihiro; Hayashi, Syunichi; Hoshio, Kazumasa

    2008-01-01

    In shape-memory polymers, large strain can be fixed at a low temperature and thereafter recovered at a high temperature. If the shape-memory polymer is held at a high temperature for a long time, the irrecoverable strain can attain a new intermediate shape between the shape under the maximum stress and the primary shape. Irrecoverable strain control can be applied to the fabrication of a shape-memory polymer element with a complex shape in a simple method. In the present study, the influence of the strain-holding conditions on the shape recovery and the irrecoverable strain control in polyurethane shape-memory polymer is investigated by tension test of a film and three-point bending test of a sheet. The higher the shape-holding temperature and the longer the shape-holding time, the higher the irrecoverable strain rate. The equation that expresses the characteristics of the irrecoverable strain control is formulated

  3. Internal strains after recovery of hardness in tempered martensitic steels for fusion reactors

    Science.gov (United States)

    Brunelli, L.; Gondi, P.; Montanari, R.; Coppola, R.

    1991-03-01

    After tempering, with recovery of hardness, MANET steels present internal strains; these residual strains increase with quenching rate prior to tempering, and they remain after prolonged tempering times. On account of their persistence, after thermal treatments which lead to low dislocation and sub-boundary densities, the possibility has been considered that the high swelling resistance of MANET is connected with these centres of strain, probably connected with the formation, in ferrite, of Cr-enriched and contiguous Cr-depleted zones which may act as sinks for interstitials. Comparative observations on the internal strain behaviour of cold worked 316L stainless steel appear consistent with this possibility.

  4. Three-dimensional elastic--plastic stress and strain analyses for fracture mechanics: complex geometries

    International Nuclear Information System (INIS)

    Bellucci, H.J.

    1975-11-01

    The report describes the continuation of research into capability for three-dimensional elastic-plastic stress and strain analysis for fracture mechanics. A computer program, MARC-3D, has been completed and was used to analyze a cylindrical pressure vessel with a nozzle insert. A method for generating crack tip elements was developed and a model was created for a cylindrical pressure vessel with a nozzle and an imbedded flaw at the inside nozzle corner. The MARC-3D program was again used to analyze this flawed model. Documentation for the use of the MARC-3D computer program has been included as an appendix

  5. Strain gradient plasticity-based modeling of hydrogen environment assisted cracking

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof; P. Gangloff, Richard

    2016-01-01

    Finite element analysis of stress about a blunt crack tip, emphasizing finite strain and phenomenologicaland mechanism-based strain gradient plasticity (SGP) formulations, is integrated with electrochemical assessment of occluded-crack tip hydrogen (H) solubility and two H-decohesion models...... to predict hydrogen environment assisted crack growth properties. SGP elevates crack tip geometrically necessary dislocation density and flow stress, with enhancement declining with increasing alloy strength. Elevated hydrostatic stress promotes high-trapped H concentration for crack tip damage......; it is imperative to account for SGP in H cracking models. Predictions of the threshold stress intensity factor and H-diffusion limited Stage II crack growth rate agree with experimental data for a high strength austenitic Ni-Cusuperalloy (Monel®K-500) and two modern ultra-high strength martensitic steels (Aer...

  6. In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate

    International Nuclear Information System (INIS)

    Namkoong, Gon; Huang, Sa; Moseley, Michael; Doolittle, W. Alan

    2009-01-01

    We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO 2 , by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO 2 . The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO 2 , respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 ± 0.17 and 7.8 ± 0.7 nm along the a- and b-axis of LiGaO 2 , respectively.

  7. An improved Armstrong-Frederick-Type Plasticity Model for Stable Cyclic Stress-Strain Responses Considering Nonproportional Hardening

    Science.gov (United States)

    Li, Jing; Zhang, Zhong-ping; Li, Chun-wang

    2018-03-01

    This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.

  8. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  9. Efficient recovery of fluoroquinolone-susceptible and fluoroquinolone-resistant Escherichia coli strains from frozen samples.

    Science.gov (United States)

    Lautenbach, Ebbing; Santana, Evelyn; Lee, Abby; Tolomeo, Pam; Black, Nicole; Babson, Andrew; Perencevich, Eli N; Harris, Anthony D; Smith, Catherine A; Maslow, Joel

    2008-04-01

    We assessed the rate of recovery of fluoroquinolone-resistant and fluoroquinolone-susceptible Escherichia coli isolates from culture of frozen perirectal swab samples compared with the results for culture of the same specimen before freezing. Recovery rates for these 2 classes of E. coli were 91% and 83%, respectively. The majority of distinct strains recovered from the initial sample were also recovered from the frozen sample. The strains that were not recovered were typically present only in low numbers in the initial sample. These findings emphasize the utility of frozen surveillance samples.

  10. The potential environmental gains from recycling waste plastics: simulation of transferring recycling and recovery technologies to Shenyang, China.

    Science.gov (United States)

    Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi

    2011-01-01

    With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Microbial Enhanced Oil Recovery-Laboratory Experiments with a Strain of Clostridium tyrobutyricum

    DEFF Research Database (Denmark)

    Jimoh, Ismaila Adetunji

    the desired metabolic products needed for enhanced oil recovery. In this study, experiments have been performed with a strain of Clostridium tyrobutyricum. The experiments focused on salinity adaptation, gas production and the ability of microbes to modify rock properties. The result of the experiments showed...... that the strain of Clostridium tyrobutyricum adapted to 10, 30, 50, and 90 g/l before the start of the experiments produce more gas with an increase factor of between 0.39-6.9 for the same salinity condition than the pure culture. The adaptation process also led to the production of a strain 90F which can grow...

  12. Safe Disposal of Medical and Plastic Waste and Energy Recovery Possibilities using Plasma Pyrolysis Technology

    International Nuclear Information System (INIS)

    Nema, S.K.; Mukherjee, S.

    2010-01-01

    Plasma pyrolysis and plasma gasification are emerging technologies that can provide complete solution to organic solid waste disposal. In these technologies plasma torch is used as a workhorse to convert electrical energy into heat energy. These technologies dispose the organic waste in an environment friendly manner. Thermal plasma provides extremely high temperature in oxygen free or controlled air environment which is required for pyrolysis or gasification reactions. Plasma based medical waste treatment is an extremely complex technology since it has to contend with extreme temperatures and corrosion-prone environment, complex pyro-chemistry resulting in toxic and dangerous products, if not controlled. In addition, one has to take care of complete combustion of pyrolyzed gases followed by efficient scrubbing to meet the emission standards set by US EPA and Central Pollution Control Board, India. In medical waste, high volume and low packing density waste with nonstandard composition consisting of a variety of plastics, organic material and liquids used to be present. The present paper describes the work carried out at Institute for Plasma Research, India, on plasma pyrolysis of (i) medical waste disposal and the results of emission measurement done at various locations in the system and (ii) energy recovery from cotton and plastic waste. The process and system development has been done in multiple steps. Different plasma pyrolysis models were made and each subsequent model was improved upon to meet stringent emission norms and to make the system energy efficient and user friendly. FCIPT, has successfully demonstrated up to 50 kg/ hr plasma pyrolysis systems and have installed plasma pyrolysis facilities at various locations in India . Plastic Waste disposal along with energy recovery in 15 kg/ hr model has also been developed and demonstrated at FCIPT. In future, this technology has great potential to dispose safely different waste streams such as biomass

  13. Self-consistent modelling of lattice strains during the in-situ tensile loading of twinning induced plasticity steel

    International Nuclear Information System (INIS)

    Saleh, Ahmed A.; Pereloma, Elena V.; Clausen, Bjørn; Brown, Donald W.; Tomé, Carlos N.; Gazder, Azdiar A.

    2014-01-01

    The evolution of lattice strains in a fully recrystallised Fe–24Mn–3Al–2Si–1Ni–0.06C TWinning Induced Plasticity (TWIP) steel subjected to uniaxial tensile loading up to a true strain of ∼35% was investigated via in-situ neutron diffraction. Typical of fcc elastic and plastic anisotropy, the {111} and {200} grain families record the lowest and highest lattice strains, respectively. Using modelling cases with and without latent hardening, the recently extended Elasto-Plastic Self-Consistent model successfully predicted the macroscopic stress–strain response, the evolution of lattice strains and the development of crystallographic texture. Compared to the isotropic hardening case, latent hardening did not have a significant effect on lattice strains and returned a relatively faster development of a stronger 〈111〉 and a weaker 〈100〉 double fibre parallel to the tensile axis. Close correspondence between the experimental lattice strains and those predicted using particular orientations embedded within a random aggregate was obtained. The result suggests that the exact orientations of the surrounding aggregate have a weak influence on the lattice strain evolution

  14. Recovery and permanent radiation damage of plastic scintillators at different dose rates

    International Nuclear Information System (INIS)

    Bicken, B.; Holm, U.; Marckmann, T.; Wick, K.; Rhode, M.

    1990-01-01

    This paper reports on the radiation stability of plastic scintillators and wavelength shifters for the calorimeter of the ZEUS detector by irradiating them with protons, a 60 Co-source, and depleted uranium. Changes in light yield, absorption length and absorption coefficient have been measured for storage in inert and oxygen atmospheres during and after irradiation. Radiation doses up to 40 kGy with dose rates of 30 up to 2000 Gy/h have been applied. The polystyrene based scintillator SCSN-38 and the wavelength shifters Y-7 and K-27 in PMMA show an additional absorption but a recovery in air to a low permanent damage (at 10 kGy) which is proportional to the applied dose. Series investigations on samples of all production cycles of the ZEUS scintillators with high dose rates show only minor differences in radiation hardness. The recovery is described by a simple oxygen diffusion model for high and medium dose rates down to 30 Gy/h. During long term irradiations at low dose rates (<100 Gy/h) of 3 mm thick SCSN-38 in air the radiation damage recovers to a permanent damage which does not depend on the dose rate. On the other hand the radiation damage at very low dose rates (17 Gy/a) seems to be higher than expected for the accumulated dose

  15. Recycling and recovery routes of plastic solid waste (PSW): A review

    International Nuclear Information System (INIS)

    Al-Salem, S.M.; Lettieri, P.; Baeyens, J.

    2009-01-01

    Plastic solid waste (PSW) presents challenges and opportunities to societies regardless of their sustainability awareness and technological advances. In this paper, recent progress in the recycling and recovery of PSW is reviewed. A special emphasis is paid on waste generated from polyolefinic sources, which makes up a great percentage of our daily single-life cycle plastic products. The four routes of PSW treatment are detailed and discussed covering primary (re-extrusion), secondary (mechanical), tertiary (chemical) and quaternary (energy recovery) schemes and technologies. Primary recycling, which involves the re-introduction of clean scrap of single polymer to the extrusion cycle in order to produce products of the similar material, is commonly applied in the processing line itself but rarely applied among recyclers, as recycling materials rarely possess the required quality. The various waste products, consisting of either end-of-life or production (scrap) waste, are the feedstock of secondary techniques, thereby generally reduced in size to a more desirable shape and form, such as pellets, flakes or powders, depending on the source, shape and usability. Tertiary treatment schemes have contributed greatly to the recycling status of PSW in recent years. Advanced thermo-chemical treatment methods cover a wide range of technologies and produce either fuels or petrochemical feedstock. Nowadays, non-catalytic thermal cracking (thermolysis) is receiving renewed attention, due to the fact of added value on a crude oil barrel and its very valuable yielded products. But a fact remains that advanced thermo-chemical recycling of PSW (namely polyolefins) still lacks the proper design and kinetic background to target certain desired products and/or chemicals. Energy recovery was found to be an attainable solution to PSW in general and municipal solid waste (MSW) in particular. The amount of energy produced in kilns and reactors applied in this route is sufficiently

  16. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury.

    Science.gov (United States)

    Huie, J Russell; Morioka, Kazuhito; Haefeli, Jenny; Ferguson, Adam R

    2017-05-15

    Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.

  17. The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China

    International Nuclear Information System (INIS)

    Chen Xudong; Xi Fengming; Geng Yong; Fujita, Tsuyoshi

    2011-01-01

    Research highlights: → Urban symbiosis creates compatibility of industrial development and waste management. → Mechanical technology leads to more CO 2 emission reduction. → Energy recovery technology leads to more fossil fuel saving. → Clean energy makes recycling technologies cleaner. → Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO 2 e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

  18. Strain-dependent variations in spatial learning and in hippocampal synaptic plasticity in the dentate gyrus of freely behaving rats

    Directory of Open Access Journals (Sweden)

    Denise eManahan-Vaughan

    2011-03-01

    Full Text Available Hippocampal synaptic plasticity is believed to comprise the cellular basis for spatial learning. Strain-dependent differences in synaptic plasticity in the CA1 region have been reported. However, it is not known whether these differences extend to other synapses within the trisynaptic circuit, although there is evidence for morphological variations within that path. We investigated whether Wistar and Hooded Lister (HL rat strains express differences in synaptic plasticity in the dentate gyrus in vivo. We also explored whether they exhibit differences in the ability to engage in spatial learning in an 8-arm radial maze. Basal synaptic transmission was stable over a 24h period in both rat strains, and the input-output relationship of both strains was not significantly different. Paired-pulse analysis revealed significantly less paired-pulse facilitation in the Hooded Lister strain when pulses were given 40-100 msec apart. Low frequency stimulation at 1Hz evoked long-term depression (>24h in Wistar and short-term depression (<2h in HL rats; 200Hz stimulation induced long-term potentiation (>24h in Wistar, and a transient, significantly smaller potentiation (<1h in HL rats, suggesting that HL rats have higher thresholds for expression of persistent synaptic plasticity. Training for 10d in an 8-arm radial maze revealed that HL rats master the working memory task faster than Wistar rats, although both strains show an equivalent performance by the end of the trial period. HL rats also perform more efficiently in a double working and reference memory task. On the other hand, Wistar rats show better reference memory performance on the final (8-10 days of training. Wistar rats were less active and more anxious than HL rats.These data suggest that strain-dependent variations in hippocampal synaptic plasticity occur in different hippocampal synapses. A clear correlation with differences in spatial learning is not evident however.

  19. Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain.

    Science.gov (United States)

    Song, Hyohak; Huh, Yun Suk; Lee, Sang Yup; Hong, Won Hi; Hong, Yeon Ki

    2007-12-01

    There have recently been much advances in the production of succinic acid, an important four-carbon dicarboxylic acid for many industrial applications, by fermentation of several natural and engineered bacterial strains. Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce succinic acid with high efficiency, but also produces acetic, formic and lactic acids just like other anaerobic succinic acid producers. We recently reported the development of an engineered M. succiniciproducens LPK7 strain which produces succinic acid as a major fermentation product while producing much reduced by-products. Having an improved succinic acid producer developed, it is equally important to develop a cost-effective downstream process for the recovery of succinic acid. In this paper, we report the development of a simpler and more efficient method for the recovery of succinic acid. For the recovery of succinic acid from the fermentation broth of LPK7 strain, a simple process composed of a single reactive extraction, vacuum distillation, and crystallization yielded highly purified succinic acid (greater than 99.5% purity, wt%) with a high yield of 67.05wt%. When the same recovery process or even multiple reactive extraction steps were applied to the fermentation broth of MBEL55E, lower purity and yield of succinic acid were obtained. These results suggest that succinic acid can be purified in a cost-effective manner by using the fermentation broth of engineered LPK7 strain, showing the importance of integrating the strain development, fermentation and downstream process for optimizing the whole processes for succinic acid production.

  20. Heavy metals dispersion during thermal treatment of plastic bags and its recovery.

    Science.gov (United States)

    Alam, Ohidul; Wang, Sijia; Lu, Wentao

    2018-04-15

    One of the main worries for thermal treatment of plastic bag (PB) is the air pollution resulting from heavy metal (HM) evaporation and emission. The quest of the study was to investigate their fate during thermal treatment varying with temperature and atmosphere to explore the appropriate treatment technology. Four commonly consumed polymer bags such as PE, HDPE, LDPE and PVC were selected for the analysis. The elemental compositions, heating values and total metal contents of the samples were measured by an elemental analyzer, a sulphur/halogen analyzer, a bomb calorimeter and an ICP-OES, respectively. Thermal treatments of the samples were conducted in a tube furnace at 350, 550, 650, 750, and 850 °C with 1 L/min air or N 2 gas flow, respectively. 5% HNO 3 /10% H 2 O 2 solution was used for absorbing metals from gas phase, and then HM distributions both in flue gas and bottom ash were determined. Results revealed that the lower heating values of HDPE, LDPE, PVC and PE bags were 33.32, 34.28, 24.82 and 36.7 MJ/kg, respectively indicating energy recovery potential. Thermal treatment showed the maximum mass reduction (>90%) of PB at 850 °C. The higher percentage of metals was distributed in ash at initial temperature that promoted to gas with rise of temperature. The used absorption solution exhibited tremendous quantity of metals recovery. However, there was no significant difference between using air and N 2 gas flow during treatment of PB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate

    Energy Technology Data Exchange (ETDEWEB)

    Namkoong, Gon, E-mail: gnamkoon@odu.ed [Old Dominion University, Electrical and Computer Engineering, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Huang, Sa; Moseley, Michael; Doolittle, W. Alan [Georgia Institute of Technology, School of Electrical and Computer Engineering, 777 Atlantic Dr., Atlanta, GA 30332 (United States)

    2009-10-30

    We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO{sub 2}, by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO{sub 2}. The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO{sub 2}, respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 {+-} 0.17 and 7.8 {+-} 0.7 nm along the a- and b-axis of LiGaO{sub 2}, respectively.

  2. The Finite Strain Johnson Cook Plasticity and Damage Constitutive Model in ALEGRA.

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Jason James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    A finite strain formulation of the Johnson Cook plasticity and damage model and it's numerical implementation into the ALEGRA code is presented. The goal of this work is to improve the predictive material failure capability of the Johnson Cook model. The new implementation consists of a coupling of damage and the stored elastic energy as well as the minimum failure strain criteria for spall included in the original model development. This effort establishes the necessary foundation for a thermodynamically consistent and complete continuum solid material model, for which all intensive properties derive from a common energy. The motivation for developing such a model is to improve upon ALEGRA's present combined model framework. Several applications of the new Johnson Cook implementation are presented. Deformation driven loading paths demonstrate the basic features of the new model formulation. Use of the model produces good comparisons with experimental Taylor impact data. Localized deformation leading to fragmentation is produced for expanding ring and exploding cylinder applications.

  3. X-ray measurement of plastic strain by means of Eshelby/Mori-Tanaka model and its application

    International Nuclear Information System (INIS)

    Sasaki, Toshihiko; Lin, Zheng; Hirose, Yukio

    1997-01-01

    A new method is proposed in this paper for determining plastic strains in composite materials using the X-ray diffraction method. The present method was derived by using both Eshelby's approach and the Mori-Tanaka theory to express the stress state in composite materials instead of the elasticity in single-phase materials which is used in the conventional method of X-ray stress measurement. It was found that the plastic strain can be determined from the slope of the linear relation between lattice strains measured by the X-ray diffraction technique and sin 2 ψ using almost the same procedure as that for determining stresses by the conventional X-ray method. The results on ferritic and austenitic dual-phase stainless steel are shown. We discuss the effects of a uniaxial tensile load in a range of plastic deformation on the field of plastic strain as well as on residual macro-, micro- and phase stresses built up in the sample. (author)

  4. Analysis of the strain-aging phenomena in high purity niobium: competition between hardening and recovery

    International Nuclear Information System (INIS)

    Andreone, C.; Cizeron, G.; Larere, A.

    1981-01-01

    The strain-aging phenomena in high purity niobium were studied using tensile tests. Four parameters were considered which characterize the yield point, the permanent hardening, the recovery and the apparent yield stress. Five successive steps can be distinguished from the changes in these parameters with changes in the aging temperature. The detailed analysis of the phenomena involved concerns mainly the locking of dislocations by first- and second-type segregations and the opposite effect of reorganization of the dislocation network. (Auth.)

  5. Diffraction-amalgamated grain boundary tracking for mapping 3D crystallographic orientation and strain fields during plastic deformation

    International Nuclear Information System (INIS)

    Toda, Hiroyuki; Kamiko, Takanobu; Tanabe, Yasuto; Kobayashi, Masakazu; Leclere, D.J.; Uesugi, Kentaro; Takeuchi, Akihisa; Hirayama, Kyosuke

    2016-01-01

    By amalgamating the X-ray diffraction technique with the grain boundary tracking technique, a novel method, diffraction-amalgamated grain boundary tracking (DAGT), has been developed. DAGT is a non-destructive in-situ analysis technique for characterising bulk materials, which can be applied up to near the point of fracture. It provides information about local crystal orientations and detailed grain morphologies in three dimensions, together with high-density strain mapping inside grains. As it obtains the grain morphologies by utilising X-ray imaging instead of X-ray diffraction, which latter is typically vulnerable to plastic deformation, DAGT is a fairly robust technique for analysing plastically deforming materials. Texture evolution and localised deformation behaviours have here been successfully characterised in Al–Cu alloys, during tensile deformation of 27% in applied strain. The characteristic rotation behaviours of grains were identified, and attributed to the effects of interaction with adjacent grains on the basis of the 3D local orientation and plastic strain distributions. It has also been revealed that 3D strain distribution in grains is highly heterogeneous, which is not explained by known mechanisms such as simple incompatibility with adjacent grains or strain percolation through soft grains. It has been clarified that groups consisting of a few adjacent grains may deform coordinately, especially in shear and lateral deformation, and the characteristic deformation pattern is thereby formed on a mesoscopic scale.

  6. Influence of cold rolling and strain rate on plastic response of powder metallurgy and chemical vapor deposition rhenium

    International Nuclear Information System (INIS)

    Koeppel, B.J.; Subhash, G.

    1999-01-01

    The plastic response of two kinds of rhenium processed via powder metallurgy (PM) and chemical vapor deposition (CVD) were investigated under uniaxial compression over a range of strain rates. The PM rhenium, further cold rolled to 50 and 80 pct of the original thickness, was also investigated to assess the influence of cold work on the plastic behavior. A strong basal texture was detected in all the preceding materials as a result of processing and cold work. Both CVD and PM rhenium exhibited an increase in yield strength and flow stress with increasing strain rate. In PM rhenium, cold work resulted in an increase in hardness and yield strength and a decrease in the work hardening rate. The deformed microstructures revealed extensive twinning in CVD rhenium. At large strains, inhomogeneous deformation mode in the form of classical cup and cone fracture was noticed

  7. Comparison of plastic strains on AA5052 by single point incremental forming process using digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Mugendiran, V.; Gnanavelbabu, A. [Anna University, Chennai, Tamilnadu (India)

    2017-06-15

    In this study, a surface based strain measurement was used to determine the formability of the sheet metal. A strain measurement may employ manual calculation of plastic strains based on the reference circle and the deformed circle. The manual calculation method has a greater margin of error in the practical applications. In this paper, an attempt has been made to compare the formability by implementing three different theoretical approaches: Namely conventional method, least square method and digital based strain measurements. As the sheet metal was formed by a single point incremental process the etched circles get deformed into elliptical shapes approximately, image acquisition has been done before and after forming. The plastic strains of the deformed circle grids are calculated based on the non- deformed reference. The coordinates of the deformed circles are measured by various image processing steps. Finally the strains obtained from the deformed circle are used to plot the forming limit diagram. To evaluate the accuracy of the system, the conventional, least square and digital based method of prediction of the forming limit diagram was compared. Conventional method and least square method have marginal error when compared with digital based processing method. Measurement of strain based on image processing agrees well and can be used to improve the accuracy and to reduce the measurement error in prediction of forming limit diagram.

  8. Comparison of plastic strains on AA5052 by single point incremental forming process using digital image processing

    International Nuclear Information System (INIS)

    Mugendiran, V.; Gnanavelbabu, A.

    2017-01-01

    In this study, a surface based strain measurement was used to determine the formability of the sheet metal. A strain measurement may employ manual calculation of plastic strains based on the reference circle and the deformed circle. The manual calculation method has a greater margin of error in the practical applications. In this paper, an attempt has been made to compare the formability by implementing three different theoretical approaches: Namely conventional method, least square method and digital based strain measurements. As the sheet metal was formed by a single point incremental process the etched circles get deformed into elliptical shapes approximately, image acquisition has been done before and after forming. The plastic strains of the deformed circle grids are calculated based on the non- deformed reference. The coordinates of the deformed circles are measured by various image processing steps. Finally the strains obtained from the deformed circle are used to plot the forming limit diagram. To evaluate the accuracy of the system, the conventional, least square and digital based method of prediction of the forming limit diagram was compared. Conventional method and least square method have marginal error when compared with digital based processing method. Measurement of strain based on image processing agrees well and can be used to improve the accuracy and to reduce the measurement error in prediction of forming limit diagram.

  9. Plastic strain and grain size effects in the surface roughening of a model aluminum alloy

    Science.gov (United States)

    Moore, Eric Joseph

    To address issues surrounding improved automotive fuel economy, an experiment was designed to study the effect of uniaxial plastic tensile deformation on surface roughness and on slip and grain rotation. Electron backscatter diffraction (EBSD) and scanning laser confocal microscopy (SLCM) were used to track grain size, crystallographic texture, and surface topography as a function of incremental true strain for a coarse-grained binary alloy that is a model for AA5xxx series aluminum alloys. One-millimeter thick sheets were heat treated at 425°C to remove previous rolling texture and to grow grains to sizes in the range ˜10-8000 mum. At five different strain levels, 13 sample regions, containing 43 grains, were identified in both EBSD and SLCM micrographs, and crystallographic texture and surface roughness were measured. After heat treatment, a strong cube texture matrix emerged, with bands of generally non-cube grains embedded parallel to the rolling direction (RD). To characterize roughness, height profiles from SLCM micrographs were extracted and a filtered Fourier transform approach was used to separate the profiles into intergranular (long wavelength) and intragranular (short wavelength) signatures. The commonly-used rms roughness parameter (Rq) characterized intragranular results. Two important parameters assess intergranular results in two grain size regimes: surface tilt angle (Deltatheta) and surface height discontinuity (DeltazH) between neighboring grains at a boundary. In general, the magnitude of Rq and Deltatheta increase monotonically with strain and indicate that intergranular roughness is the major contributor to overall surface roughness for true strains up to epsilon = 0.12. Surface height discontinuity DeltazH is defined due to exceptions in surface tilt angle analyses. The range of observed Deltatheta= 1-10° are consistent with the observed 3-12° rotation of individual grains as measured with EBSD. For some grain boundaries with Deltatheta

  10. Job strain and vagal recovery during sleep in shift working health care professionals.

    Science.gov (United States)

    Karhula, Kati; Henelius, Andreas; Härmä, Mikko; Sallinen, Mikael; Lindholm, Harri; Kivimäki, Mika; Vahtera, Jussi; Puttonen, Sampsa

    2014-12-01

    Within sample female nurses/nurse assistants in three shift work, we explored the association of job strain with heart rate variability before and during sleep. The participants (n = 95) were recruited from the Finnish Public Sector Study, from hospital wards that belonged either to the top (high job strain [HJS], n = 42) or bottom quartiles on job strain (low job strain [LJS], n = 53) as rated by Job Content Questionnaire responses. A further inclusion criterion was that participants' own job strain was at least as high (HJS group) or low (LJS group) as their ward's average estimation. Three-week field measurements included sleep diary and actigraphy to study the participants' sleep patterns and sleep-wake rhythm. A subset of three pre-selected, circadian rhythm and recovery controlled measurement days, one morning shift, one night shift and a day off, included 24-h heart rate variability (HRV) measurements. The bootstrapped HRV parameters (HR, HF, LF, LF-to-HF-ratio and RMSSD) 30 min before and during 30 min of sleep with lowest average heart rate showed no statistically significant job strain group differences. No association of exposure to stressful work environment and HRV before and during sleep was found.

  11. Parameters identification in strain-rate and thermal sensitive visco-plastic material model for an alumina dispersion strengthened copper

    CERN Document Server

    Scapin, M; Peroni, M

    2011-01-01

    The main objective of this paper is getting strain-hardening, thermal and strain-rate parameters for a material model in order to correctly reproduce the deformation process that occurs in high strain-rate scenario, in which the material reaches also high levels of plastic deformation and temperature. In particular, in this work the numerical inverse method is applied to extract material strength parameters from experimental data obtained via mechanical tests at different strain-rates (from quasi-static loading to high strain-rate) and temperatures (between 20 C and 1000 C) for an alumina dispersion strengthened copper material, which commercial name is GLIDCOP. Thanks to its properties GLIDCOP finds several applications in particle accelerator technologies, where problems of thermal management, combined with structural requirements, play a key role. Currently, it is used for the construction of structural and functional parts of the particle beam collimation system. Since the extreme condition in which the m...

  12. Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials

    International Nuclear Information System (INIS)

    Hubert, Olivier; Lazreg, Said

    2017-01-01

    A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.

  13. Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Olivier, E-mail: olivier.hubert@lmt.ens-cachan.fr; Lazreg, Said

    2017-02-15

    A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.

  14. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential

    International Nuclear Information System (INIS)

    Briassoulis, D.; Hiskakis, M.; Babou, E.; Antiohos, S.K.; Papadi, C.

    2012-01-01

    Highlights: ► Definition of parameters characterising agricultural plastic waste (APW) quality. ► Analysis of samples to determine APW quality for recycling or energy recovery. ► Majority of APW samples from various countries have very good quality for recycling. ► Upper limit of 50% w/w soil contamination in APW acceptable for energy recovery. ► Chlorine and heavy metals content in APW below the lowest limit for energy recovery. - Abstract: A holistic environmentally sound waste management scheme that transforms agricultural plastic waste (APW) streams into labelled guaranteed quality commodities freely traded in open market has been developed by the European research project LabelAgriWaste. The APW quality is defined by the APW material requirements, translated to technical specifications, for recycling or energy recovery. The present work investigates the characteristics of the APW quality and the key factors affecting it from the introduction of the virgin product to the market to the APW stream reaching the disposer. Samples of APW from different countries were traced from their application to the field through their storage phase and transportation to the final destination. The test results showed that the majority of APW retained their mechanical properties after their use preserving a “very good quality” for recycling in terms of degradation. The degree of soil contamination concerning the APW recycling and energy recovery potential fluctuates depending on the agricultural plastic category and application. The chlorine and heavy metal content of the tested APW materials was much lower than the maximum acceptable limits for their potential use in cement industries.

  15. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    International Nuclear Information System (INIS)

    Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra

    2013-01-01

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India

  16. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    Science.gov (United States)

    Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra

    2013-12-01

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  17. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Shashank, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Tejesh, Chiruvolu Mohan, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Regalla, Srinivasa Prakash, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Suresh, Kurra, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in [Department of Mechanical Engineering, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, Andhra Pradesh (India)

    2013-12-16

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  18. Finite element implementation of strain-hardening Drucker–Prager plasticity model with application to tunnel excavation

    Directory of Open Access Journals (Sweden)

    K. Liu

    2017-09-01

    Full Text Available This paper presents a finite element implementation of a strain-hardening Drucker–Prager model and its application to tunnel excavation. The computational model was constructed based on the return mapping scheme, in which an elastic trial step was first executed, followed by plastic correction involving the Newton–Raphson method to return the predicted state of stresses to the supposed yield surface. By combining the plastic shear hardening rule and stress correction equations, the loading index for the strain-hardening Drucker–Prager model was solved. It is therefore possible to update the stresses, elastic and plastic strains, and slope of the yield locus at the end of each incremental step. As an illustrative example, an integration algorithm was incorporated into ABAQUS through the user subroutine UMAT to solve the tunnel excavation problem in strain-hardening Drucker–Prager rock formations. The obtained numerical results were found to be in excellent agreement with the available analytical solutions, thus indicating the validity and accuracy of the proposed UMAT code, as well as the finite element model.

  19. Strain-induced recovery of electronic anisotropy in 90°-twisted bilayer phosphorene

    Science.gov (United States)

    Xie, Jiafeng; Luo, Qiangjun; Jia, Lei; Zhang, Z. Y.; Shi, H. G.; Yang, D. Z.; Si, M. S.

    2018-01-01

    It is well known that anisotropy determines the preferred transport direction of carriers. To manipulate the anisotropy is an exciting topic in two-dimensional materials, where the carriers are confined within individual layers. In this work, it is found that uniaxial strain can tune the electronic anisotropy of the 90°-twisted bilayer phosphorene. In this unique bilayer structure, the zigzag direction of one layer corresponds to the armchair one of the other layer and vice versa. Owing to this complementary structure, the directional (zigzag or armchair) deformation response to strain of one layer is opposite to that of the other layer, where the in-plane positive Poisson's ratio plays a key role. As a result, the doubly degenerate highest valence bands split, followed by a recovery of anisotropy. More interestingly, such an anisotropy, namely, the ratio of the effective mass along the Γ \\text- X direction to that along the Γ \\text- Y direction, reaches as high as 6 under a small strain of 1%, and keeps nearly unchanged up to a strain of 3%. In addition, high anisotropy only holds for hole carriers as the conduction band is insensitive to strain. These findings should shed new light on the design of semiconducting devices, where the hole acts as the transport carrier.

  20. Continuum and crystal strain gradient plasticity with energetic and dissipative length scales

    Science.gov (United States)

    Faghihi, Danial

    This work, standing as an attempt to understand and mathematically model the small scale materials thermal and mechanical responses by the aid of Materials Science fundamentals, Continuum Solid Mechanics, Misro-scale experimental observations, and Numerical methods. Since conventional continuum plasticity and heat transfer theories, based on the local thermodynamic equilibrium, do not account for the microstructural characteristics of materials, they cannot be used to adequately address the observed mechanical and thermal response of the micro-scale metallic structures. Some of these cases, which are considered in this dissertation, include the dependency of thin films strength on the width of the sample and diffusive-ballistic response of temperature in the course of heat transfer. A thermodynamic-based higher order gradient framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. The concept of the thermal activation energy, the dislocations interaction mechanisms, nonlocal energy exchange between energy carriers and phonon-electrons interactions are taken into consideration in proposing the thermodynamic potentials such as Helmholtz free energy and rate of dissipation. The same approach is also adopted to incorporate the effect of the material microstructural interface between two materials (e.g. grain boundary in crystals) into the formulation. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. Some of the abovementioned responses of small scale metallic compounds are addressed by means of the numerical implementation of the developed framework within the finite element context. In this regard, both displacement and plastic strain fields are independently discretized and the numerical implementation is performed in

  1. Effect of plastic straining on the F and M centres kinetics in γ-irradiated NaCl

    International Nuclear Information System (INIS)

    Agullo Lopez, F.

    1966-01-01

    The effect of plastic straining on the room-temperature F and H growth curves in a γ-radiation field has been analyzed. Cristal are strained after F-saturation is reached and then irradiation is continued. The new F growth curve consists of an initial fast growing stage due to additional vacancies created by deformation being turned into F centre, followed by a linear stage. Its slope is higher than that prior to straining. Also the role of straining on M centre thermal decay as well as on the F→M reaction under F light, has been investigated. This reaction has been shown to preferentially occur where intense gliding has developed. (Author) 44 refs

  2. Comparison of theory and experiment for elastic-plastic plane-strain crack growth. [AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, L.; Rice, J.R.

    1980-08-01

    Recent theoretical results on elastic-plastic plane-strain crack growth are reviewed and experimental results for crack growth in a 4140 steel are discussed in terms of the theoretical concepts. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasistatically advancing crack tip in an ideally plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large-scale yielding. Nevertheless, it is sufficient for the derivation of a relation between the imposed loading and amount of crack growth prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens.

  3. EBSD-based techniques for characterization of microstructural restoration processes during annealing of metals deformed to large plastic strains

    DEFF Research Database (Denmark)

    Godfrey, A.; Mishin, Oleg; Yu, Tianbo

    2012-01-01

    Some methods for quantitative characterization of the microstructures deformed to large plastic strains both before and after annealing are discussed and illustrated using examples of samples after equal channel angular extrusion and cold-rolling. It is emphasized that the microstructures...... in such deformed samples exhibit a heterogeneity in the microstructural refinement by high angle boundaries. Based on this, a new parameter describing the fraction of regions containing predominantly low angle boundaries is introduced. This parameter has some advantages over the simpler high angle boundary...... on mode of the distribution of dislocation cell sizes is outlined, and it is demonstrated how this parameter can be used to investigate the uniformity, or otherwise, of the restoration processes occurring during annealing of metals deformed to large plastic strains. © (2012) Trans Tech Publications...

  4. Texture, residual strain, and plastic deformation around scratches in alloy 600 using synchrotron X-ray Laue micro-diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Suominen Fuller, M.L. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada)], E-mail: mfuller@uwo.ca; Klassen, R.J. [Department of Mechanical and Materials Engineering, Room 3002 Spencer Engineering Building, University of Western Ontario, London, Ontario, N6A 5B9 (Canada); McIntyre, N.S. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Gerson, A.R. [Applied Centre for Structural and Synchrotron Studies, Mawson Lakes Campus, University of South Australia, Adelaide, South Australia 5095 (Australia); Ramamurthy, S. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); King, P.J. [Babcock and Wilcox Canada, 581 Coronation Blvd., Cambridge, Ontario, N1R5V3 (Canada); Liu, W. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2008-03-15

    Deformation around two scratches in Alloy 600 (A600) was studied nondestructively using synchrotron Laue differential aperture X-ray microscopy. The orientation of grains and elastic strain distribution around the scratches were measured. A complex residual deviatoric elastic strain state was found to exist around the scratches. Heavy plastic deformation was observed up to a distance of 20 {mu}m from the scratches. In the region 20-30 {mu}m from the scratches the diffraction spots were heavily streaked and split indicating misoriented dislocation cell structures.

  5. Assessment of stress-strain data suitable for finite-element elastic--plastic analysis of shipping containers

    International Nuclear Information System (INIS)

    Rack, H.J.; Knorovsky, G.A.

    1978-09-01

    Stress-strain data which describes the influence of strain rate and temperature on the mechanical response of materials presently being used for light water reactor fuel shipping containers have been assembled. Selection of data has been limited to that which is suitable for use in finite-element elastic--plastic analysis of shipping containers (e.g., they must include complete material history profiles). Based on this information, recommendations have been made for further work which is required to complete the necessary data base

  6. A model for plasticity kinetics and its role in simulating the dynamic behavior of Fe at high strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, J D; Minich, R W; Kalantar, D H

    2007-03-29

    The recent diagnostic capability of the Omega laser to study solid-solid phase transitions at pressures greater than 10 GPa and at strain rates exceeding 10{sup 7} s{sup -1} has also provided valuable information on the dynamic elastic-plastic behavior of materials. We have found, for example, that plasticity kinetics modifies the effective loading and thermodynamic paths of the material. In this paper we derive a kinetics equation for the time-dependent plastic response of the material to dynamic loading, and describe the model's implementation in a radiation-hydrodynamics computer code. This model for plasticity kinetics incorporates the Gilman model for dislocation multiplication and saturation. We discuss the application of this model to the simulation of experimental velocity interferometry data for experiments on Omega in which Fe was shock compressed to pressures beyond the {alpha}-to-{var_epsilon} phase transition pressure. The kinetics model is shown to fit the data reasonably well in this high strain rate regime and further allows quantification of the relative contributions of dislocation multiplication and drag. The sensitivity of the observed signatures to the kinetics model parameters is presented.

  7. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, N.R.

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level...... in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength....

  8. A Finite Strain Model of Stress, Diffusion, Plastic Flow and Electrochemical Reactions in a Lithium-ion Half-cell

    OpenAIRE

    Bower, Allan F.; Guduru, Pradeep R.; Sethuraman, Vijay A.

    2011-01-01

    We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in deta...

  9. Metaplasticity and Behavior: How Training and Inflammation Affect Plastic Potential within the Spinal Cord and Recovery after Injury

    Directory of Open Access Journals (Sweden)

    James W Grau

    2014-09-01

    Full Text Available Research has shown that spinal circuits have the capacity to adapt in response to training, nociceptive stimulation and peripheral inflammation. These changes in neural function are mediated by physiological and neurochemical systems analogous to those that support plasticity within the hippocampus (e.g., long-term potentiation and the NMDA receptor. As observed in the hippocampus, engaging spinal circuits can have a lasting impact on plastic potential, enabling or inhibiting the capacity to learn. These effects are related to the concept of metaplasticity. Behavioral paradigms are described that induce metaplastic effects within the spinal cord. Uncontrollable/unpredictable stimulation, and peripheral inflammation, induce a form of maladaptive plasticity that inhibits spinal learning. Conversely, exposure to controllable or predictable stimulation engages a form of adaptive plasticity that counters these maladaptive effects and enables learning. Adaptive plasticity is tied to an up-regulation of brain derived neurotrophic factor (BDNF. Maladaptive plasticity is linked to processes that involve kappa opioids, the metabotropic glutamate (mGlu receptor, glia, and the cytokine tumor necrosis factor (TNF. Uncontrollable nociceptive stimulation also impairs recovery after a spinal contusion injury and fosters the development of pain (allodynia. These adverse effects are related to an up-regulation of TNF and a down-regulation of BDNF and its receptor (TrkB. In the absence of injury, brain systems quell the sensitization of spinal circuits through descending serotonergic fibers and the serotonin 1A (5HT 1A receptor. This protective effect is blocked by surgical anesthesia. Disconnected from the brain, intracellular Cl- concentrations increase (due to a down-regulation of the cotransporter KCC2, which causes GABA to have an excitatory effect. It is suggested that BDNF has a restorative effect because it up-regulates KCC2 and re-establishes GABA

  10. Comparison of heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion.

    Science.gov (United States)

    Zhao, Yijie; Yi, Wen; Chan, Albert P C; Chan, Daniel W M

    2017-10-01

    A hot environment combined with physically demanding tasks can subject workers to a higher risk of heat stress. A series of regulations and guidelines have been proposed to design appropriate anti-heat stress work uniform to reduce body heat strain. The present study aimed to examine heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion in the heat. 10 healthy males performed intermittent treadmill running/walking to exhaustion, followed by 30min passive recovery sitting in a climatic chamber, which simulated the hot and humid outdoor environment (34°C temperature, 60% relative humidity, 0.3m/s air velocity, and 450W/m 2 solar radiation). The participants took part in five wear trials in counter-balanced order, including Sportswear, CIC Uniform, NEW Uniform, ICEBANK Cooling Vest, and NEW Cooling Vest, which have different levels of cooling capacity. Core temperature, skin temperature, heart rate, sweat loss, ratings of perceived exertion, and thermal sensations were measured throughout the entire heat exposure period. Physiological heat strain indices, including the physiological strain index (PhSI) and the perceptual strain index (PeSI), were used as a yardstick to quantify and compare the rate of recovery. Significantly lower physiological strain was observed in the newly developed NEW Uniform and NEW Cooling Vest groups compared with the commonly worn CIC Uniform group during recovery. At the end of the recovery period, participants in NEW Cooling Vest achieved the highest recovery (42.18% in PhSI and 81.08% in PeSI), followed by ICEBANK Cooling Vest, Sportswear, NEW Uniform, and CIC Uniform. The cooling capacity of anti-heat stress clothing ensembles and the recovery time significantly affect the rate of recovery in PhSI and PeSI, which may benefit the industry by formulating the appropriate work-rest schedule by considering the clothing effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A neutron diffraction study of residual stress and plastic strain in welded beryllium rings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W.; Varma, R.; Bourke, M.A.M.; Holden, T.M. [Los Alamos National Lab., Los Alamos, NM (United States); Ely, T.; Spooner, S. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2002-07-01

    We present a study of residual stresses associated with the welding of beryllium rings. Using novel analysis techniques, information about residual stresses and plastic deformation of the base metal were obtained. In the post-welded state, the rings have a strong tensile circumferential residual stress and show evidence of significant plastic deformation. (orig.)

  12. Recovery of PET from packaging plastics mixtures by wet shaking table.

    Science.gov (United States)

    Carvalho, M T; Agante, E; Durão, F

    2007-01-01

    Recycling requires the separation of materials appearing in a mass of wastes of heterogeneous composition and characteristics, into single, almost pure, component/material flows. The separation of materials (e.g., some types of plastics) with similar physical properties (e.g., specific gravity) is often accomplished by human sorting. This is the case of the separation of packaging plastics in municipal solid wastes (MSW). The low cost of virgin plastics and low value of recycled plastics necessitate the utilization of low cost techniques and processes in the recycling of packaging plastics. An experimental study was conducted to evaluate the feasibility of production of a PET product, cleaned from PVC and PS, using a wet shaking table. The wet shaking table is an environmentally friendly process, widely used to separate minerals, which has low capital and operational costs. Some operational variables of the equipment, as well as different feed characteristics, were considered. The results show that the separation of these plastics is feasible although, similarly to the mineral field, in somewhat complex flow sheets.

  13. Constitutive modelling and identification of parameters of the plastic strain-induced martensitic transformation in 316L stainless steel at cryogenic temperatures

    CERN Document Server

    Garion, C; Sgobba, Stefano

    2006-01-01

    The present paper is focused on constitutive modelling and identification of parameters of the relevant model of plastic strain- induced martensitic transformation in austenitic stainless steels at low temperatures. The model used to describe the FCCrightward arrow BCC phase transformation in austenitic stainless steels is based on the assumption of linearization of the most intensive part of the transformation curve. The kinetics of phase transformation is described by three parameters: transformation threshold (p/sub xi/), slope (A) and saturation level (xi/sub L/). It is assumed that the phase transformation is driven by the accumulated plastic strain p. In addition, the intensity of plastic deformation is strongly coupled to the phase transformation via the description of mixed kinematic /isotropic linear plastic hardening based on the Mori-Tanaka homogenization. The theory of small strains is applied. Small strain fields, corresponding to phase transformation, are decomposed into the volumic and the shea...

  14. Pyrolysis of fibre residues with plastic contamination from a paper recycling mill: Energy recoveries

    International Nuclear Information System (INIS)

    Brown, Logan Jeremy; Collard, François-Xavier; Görgens, Johann

    2017-01-01

    Highlights: • Pyrolysis of fibre-plastics residues from paper recycling mill into fuel products. • Product with remarkable energy content up to 42.8 MJ/kg. • Influence of temperature on the product yields and fuel properties. • Effect of plastic composition on product properties. - Abstract: Pyrolysis is a promising technology for the production of marketable energy products from waste mixtures, as it decomposes heterogeneous material into homogenous fuel products. This research assessed the ability of slow pyrolysis to convert three waste streams, composed of fibre residues contaminated with different plastic mixtures, into char and tarry phase products at three different temperatures (300, 425 and 550 °C). The products were characterised in terms of mass yield, higher heating value (HHV) and gross energy conversion (EC). Significant amounts of hydrocarbon plastics in the feed materials increased the calorific values of the char (up to 32.9 MJ/kg) and tarry phase (up to 42.8 MJ/kg) products, comparable to high volatile bituminous A coal and diesel respectively. For all three waste streams converted at 300 °C, the majority of the energy in the feedstock was recovered in the char product (>80%), while deoxygenation of fibre component resulted in char with increased calorific value (up to 31.6 MJ/kg) being produced. Pyrolysis at 425 °C for two of the waste streams containing significant amounts of plastic produced both a valuable char and tarry phase, which resulted in an EC greater than 74%. Full conversion of plastic at 550 °C increased the tarry phase yield but dramatically decreased the char HHV. The influence of temperature on product yield and HHV was discussed based on the pyrolysis mechanisms and in relation to the plastic composition of the waste streams.

  15. Genome Plasticity and Polymorphisms in Critical Genes Correlate with Increased Virulence of Dutch Outbreak-Related Coxiella burnetii Strains

    Directory of Open Access Journals (Sweden)

    Runa Kuley

    2017-08-01

    in all Dutch outbreak strains compared to the NM reference strain and other strains of the CbNL12 genotype. The presence of large numbers of transposable elements and mutated genes, thereof most likely resulted in high level of genome rearrangements and genotype-specific pathogenicity of outbreak strains. Thus, the epidemic potential of Dutch outbreak strains could be linked to increased genome plasticity and mutations in critical genes involved in virulence and the evasion of the host immune system.

  16. Microstructure and annealing behavior of a modified 9Cr−1Mo steel after dynamic plastic deformation to different strains

    International Nuclear Information System (INIS)

    Zhang, Z.B.; Mishin, O.V.; Tao, N.R.; Pantleon, W.

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr−1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength

  17. Relaxation of the single-slip condition in strain-gradient plasticity.

    Science.gov (United States)

    Anguige, Keith; Dondl, Patrick W

    2014-09-08

    We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. The relaxed model can be thought of as an aid to simulating macroscopic plastic behaviour without the need to resolve arbitrarily fine spatial scales.

  18. Representative Stress-Strain Curve by Spherical Indentation on Elastic-Plastic Materials

    Directory of Open Access Journals (Sweden)

    Chao Chang

    2018-01-01

    Full Text Available Tensile stress-strain curve of metallic materials can be determined by the representative stress-strain curve from the spherical indentation. Tabor empirically determined the stress constraint factor (stress CF, ψ, and strain constraint factor (strain CF, β, but the choice of value for ψ and β is still under discussion. In this study, a new insight into the relationship between constraint factors of stress and strain is analytically described based on the formation of Tabor’s equation. Experiment tests were performed to evaluate these constraint factors. From the results, representative stress-strain curves using a proposed strain constraint factor can fit better with nominal stress-strain curve than those using Tabor’s constraint factors.

  19. Characterization of plastic strains and crystallographic properties surrounding defects in steam generator tubes by orientation imaging microscopy

    International Nuclear Information System (INIS)

    Lehockey, E.M.; Brennenstuhl, A.M.

    2002-01-01

    Orientation Imaging Microscopy (OIM) has become a valuable technique for characterizing grain boundary structure, texture, and grain size distribution, which govern material susceptibility to degenerative effects (e.g. IGSCC). Methods recently developed, by Kinectrics, have extended OIM capabilities toward mapping and quantifying residual plastic strains in materials. OIM is applied in the present work to characterize the distribution of plastic strains, that accumulate in CANDU steam generator tubing during installation and service potentially undermining the performance, reliability, and fitness-for-service of these components. Plastic strain that evolves in response to roller-expansion was characterized in simulated roll joints constructed from Alloy 600 tubing. Results underscore the effect of over-rolling in generating intense gradients with broad variations in strain that extend significant distances through the wall thickness. Of greater relevance is the orientation of these gradients in the transverse direction, relative to the tube axis and potential for the development of abnormal grain growth during post-expansion heat treatments. The magnitude and distribution of strain measured by OIM are remarkably consistent with Finite Element Analysis (FEA) predictions offering compelling evidence as to the reliability of the OIM technique. OIM offers superior resolution than can be practically achieved with FEA having particular relevance in identifying highly localized concentrations of strain surrounding metallurgical defects that can serve as precursors to stress-related degenerative effects (e.g. IGSCC). The spatial distribution of residual plastic strain was also characterized within the context of localized texture, and grain size morphology surrounding (OD) 'pits' and indentations found in ex-service Monel 400 and Alloy 800 SG tubes, respectively. An absence of strain surrounding these surface defects suggests their propensity for promoting more deleterious

  20. Cellular basis of morphological variation and temperature-related plasticity in Drosophila melanogaster strains with divergent wing shapes.

    Science.gov (United States)

    Torquato, Libéria Souza; Mattos, Daniel; Matta, Bruna Palma; Bitner-Mathé, Blanche Christine

    2014-12-01

    Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.

  1. Micromechanical analysis of martensite distribution on strain localization in dual phase steels by scanning electron microscopy and crystal plasticity simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Ziaei-Rad, S., E-mail: szrad@cc.iut.ac.ir [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Saeidi, N. [Department of Materials Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Jamshidian, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2016-07-18

    The morphology and distribution of the dispersed martensite islands in the ferrite matrix plays a key role in the formation of shear bands in dual phase steels. In this study, we investigate the relationship between the martensite dispersion and the strain localization regions due to the formation of shear bands in fine-grained DP 780 steel, employing experimental observations as well as numerical simulations. SEM studies of the deformed microstructure showed that voids nucleated at ferrite-martensite interface within larger ferrite grains and regions with low local martensite fraction. The experimental results were precisely analyzed by finite element simulations based on the theory of crystal plasticity. A parametric study was then performed to obtain a deeper insight in to the effect of martensite dispersion on the strain localization of the neighboring ferrite. Crystal plasticity simulation results revealed that in a more regular structure compared to a random structure, a greater region of the ferrite phase contributes to accommodate plasticity. In addition, these regions limit the formation of main shear bands by creating barriers against stress concentration regions, results in lower growth and interaction of stress concentration regions with each others.

  2. Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, Ayhan [Department of Chemical Engineering, Selcuk University, Konya (Turkey)

    2004-08-01

    This paper describes non-catalytic pyrolysis of plastic waste materials. Three types of waste plastics were used in this study: polystyrene (PS), polyethylene (PE) and polypropylene (PP). Under pyrolysis conditions, plastic wastes can be decomposed into three fractions: gas, liquid and solid residue. The liquid products are usually composed of higher boiling point hydrocarbons. In order to obtain useful gasoline-range hydrocarbons from the pyrolytic oil, fractional distillation is preferred for product separation. More valuable chemical raw materials including benzene, toluene and other condensed aromatic hydrocarbons may be obtained by refining the pyrolytic oil. The results showed that waste PS yielded higher liquid, and waste PE and PP yielded higher gaseous products. The dominant pyrolytic liquid product of PS waste was styrene.

  3. A new approach for elasto-plastic finite strain analysis of cantilever ...

    Indian Academy of Sciences (India)

    GЦKHAN T TAYYAR

    mental kinematic theories are not well selected according to the expected deflection. ... elasto-plastic behavior to curvature-based kinematic dis- placement theory (KDT) [11]. In KDT ..... transportation and exploitation of sea resources. London:.

  4. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential.

    Science.gov (United States)

    Briassoulis, D; Hiskakis, M; Babou, E; Antiohos, S K; Papadi, C

    2012-06-01

    A holistic environmentally sound waste management scheme that transforms agricultural plastic waste (APW) streams into labelled guaranteed quality commodities freely traded in open market has been developed by the European research project LabelAgriWaste. The APW quality is defined by the APW material requirements, translated to technical specifications, for recycling or energy recovery. The present work investigates the characteristics of the APW quality and the key factors affecting it from the introduction of the virgin product to the market to the APW stream reaching the disposer. Samples of APW from different countries were traced from their application to the field through their storage phase and transportation to the final destination. The test results showed that the majority of APW retained their mechanical properties after their use preserving a "very good quality" for recycling in terms of degradation. The degree of soil contamination concerning the APW recycling and energy recovery potential fluctuates depending on the agricultural plastic category and application. The chlorine and heavy metal content of the tested APW materials was much lower than the maximum acceptable limits for their potential use in cement industries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Plastic Flow Characteristics of Uranium-Niobium as a Function of Strain Rate and Temperature

    International Nuclear Information System (INIS)

    Cady, C.M.; Gray, G.T. III; Hecker, S.S; Thoma, D.J.; Korzekwa, D.R.; Patterson, R.A.; Dunn, P.S.; Bingert, J.F.

    1999-01-01

    The stress-strain response of uranium-niobium alloys as a function of temperature, strain-rate and stress-state was investigated. The yield and flow stresses of the U-Nb alloys were found to exhibit a pronounced strain rate sensitivity, while the hardening rates were found to be insensitive to strain rate and temperature. The overall stress-strain response of the U-6Nb exhibits a sinusoidal hardening response, which is consistent with multiple deformation modes and is thought to be related to shape-memory behavior

  6. Simulation of finite-strain inelastic phenomena governed by creep and plasticity

    Science.gov (United States)

    Li, Zhen; Bloomfield, Max O.; Oberai, Assad A.

    2017-11-01

    Inelastic mechanical behavior plays an important role in many applications in science and engineering. Phenomenologically, this behavior is often modeled as plasticity or creep. Plasticity is used to represent the rate-independent component of inelastic deformation and creep is used to represent the rate-dependent component. In several applications, especially those at elevated temperatures and stresses, these processes occur simultaneously. In order to model these process, we develop a rate-objective, finite-deformation constitutive model for plasticity and creep. The plastic component of this model is based on rate-independent J_2 plasticity, and the creep component is based on a thermally activated Norton model. We describe the implementation of this model within a finite element formulation, and present a radial return mapping algorithm for it. This approach reduces the additional complexity of modeling plasticity and creep, over thermoelasticity, to just solving one nonlinear scalar equation at each quadrature point. We implement this algorithm within a multiphysics finite element code and evaluate the consistent tangent through automatic differentiation. We verify and validate the implementation, apply it to modeling the evolution of stresses in the flip chip manufacturing process, and test its parallel strong-scaling performance.

  7. Hydrogen-induced strain localisation in oxygen-free copper in the initial stage of plastic deformation

    Science.gov (United States)

    Yagodzinskyy, Yuriy; Malitckii, Evgenii; Tuomisto, Filip; Hänninen, Hannu

    2018-03-01

    Single crystals of oxygen-free copper oriented to easy glide of dislocations were tensile tested in order to study the hydrogen effects on the strain localisation in the form of slip bands appearing on the polished specimen surface under tensile straining. It was found that hydrogen increases the plastic flow stress in Stage I of deformation. The dislocation slip localisation in the form of slip bands was observed and analysed using an online optical monitoring system and atomic force microscopy. The fine structure of the slip bands observed with AFM shows that they consist of a number of dislocation slip offsets which spacing in the presence of hydrogen is markedly reduced as compared to that in the hydrogen-free specimens. The tensile tests and AFM observations were accompanied with positron annihilation lifetime measurements showing that straining of pure copper in the presence of hydrogen results in free volume generation in the form of vacancy complexes. Hydrogen-enhanced free-volume generation is discussed in terms of hydrogen interactions with edge dislocation dipoles forming in double cross-slip of screw dislocations in the initial stage of plastic deformation of pure copper.

  8. Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents.

    Science.gov (United States)

    Galvin, Emmet; Cummins, Christy; Yoshihara, Shoichiro; Mac Donald, Bryan J; Lally, Caitríona

    2017-08-01

    Magnesium stents are a promising candidate in the emerging field of absorbable metallic stents (AMSs). In this study, the mechanical and corrosion performance of dog-bone specimens and a specific stent design of a magnesium alloy, WE43, are assessed experimentally in terms of their corrosion behaviour and mechanical integrity. It is shown that plastic strains that are induced in the struts of the stent during stent deployment have a critical influence in directing subsequent corrosion behaviour within the material. In addition, the deployment and scaffolding characteristics of the magnesium stent are elucidated and contrasted with those of a commercial stainless steel stent. The magnesium stent is found to support higher levels of cyclic strain amplitude than the stainless steel stent, even prior to degradation, and this may play a role in reducing in-stent restenosis. This study provides new insights into the experimental performance of a current AMS design and material whilst demonstrating the critical influence of plastic strain on the corrosion performance and scaffolding ability of an AMS.

  9. Effect of addition of V and C on strain recovery characteristics in Fe-Mn-Si alloy

    International Nuclear Information System (INIS)

    Lin Chengxin; Wang Guixin; Wu Yandong; Liu Qingsuo; Zhang Jianjun

    2006-01-01

    Shape recoverable strain, recovery stress and low-temperature stress relaxation characteristics in an Fe-17Mn-5Si-10Cr-4Ni (0.08C) alloy and an Fe-17Mn-2Cr-5Si-2Ni-1V (0.23C) alloy have been studied by means of X-ray diffraction, transmission electron microscopy and measurement of recoverable strain and recovery stress. The amount of stress-induced ε martensite under tensile deformation at room temperature, recoverable strain and recovery stress are increased obviously with addition V and C in Fe-Mn-Si alloy, which is owing to the influence of addition V and C on strengthening austenitic matrix. Addition of V and C in Fe-Mn-Si alloy is evidently effective to reduce the degree of low-temperature stress relaxation, for the dispersed VC particles 50-180 nm in size precipitated during annealing restrain the stress induced martensitic transformation

  10. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    Science.gov (United States)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems {010} and {110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system {001} and rotation axis [010]. The slip system {110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of

  11. Micro-scale measurements of plastic strain field, and local contributions of slip and twinning in TWIP steels during in situ tensile tests

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.K. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Laboratoire de Mécanique des Solides, Ecole Polytechnique, CNRS UMR7649, Université Paris-Saclay, 91128 Palaiseau (France); Doquet, V., E-mail: doquet@lms.polytechnique.fr [Laboratoire de Mécanique des Solides, Ecole Polytechnique, CNRS UMR7649, Université Paris-Saclay, 91128 Palaiseau (France); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-08-30

    In-situ tensile tests were carried out on Fe22Mn0.6C and Fe22Mn0.6C3Al (wt%) twinning-induced plasticity (TWIP) steels specimens covered with gold micro-grids. High resolution atomic force microscopy (AFM) and scanning electron microscope (SEM) images were periodically captured. The latter were used for measurements of the plastic strain field, using digital image correlation (DIC). Although no meso-scale localization bands appeared, some areas were deformed three times more than average. Plastic deformation inside the grains was more heterogeneous in Fe22Mn0.6C, but at meso-scale, the degree of strain heterogeneity was not higher, at least up to 12% strain. Plastic deformation started from grain boundaries or annealing twin boundaries in both materials, due to a high elastic anisotropy of the grains. An original method based on DIC was developed to estimate the twin fraction in grains that exhibit a single set of slip/twin bands. Deformation twinning accommodated 60–80% of the plastic strain in some favorably oriented grains, from the onset of plastic flow in Fe22Mn0.6C, but was not observed in the Al-bearing steel until 12% strain. The back stress was important in both materials, but significantly higher in Fe22Mn0.6C.

  12. Micro-scale measurements of plastic strain field, and local contributions of slip and twinning in TWIP steels during in situ tensile tests

    International Nuclear Information System (INIS)

    Yang, H.K.; Doquet, V.; Zhang, Z.F.

    2016-01-01

    In-situ tensile tests were carried out on Fe22Mn0.6C and Fe22Mn0.6C3Al (wt%) twinning-induced plasticity (TWIP) steels specimens covered with gold micro-grids. High resolution atomic force microscopy (AFM) and scanning electron microscope (SEM) images were periodically captured. The latter were used for measurements of the plastic strain field, using digital image correlation (DIC). Although no meso-scale localization bands appeared, some areas were deformed three times more than average. Plastic deformation inside the grains was more heterogeneous in Fe22Mn0.6C, but at meso-scale, the degree of strain heterogeneity was not higher, at least up to 12% strain. Plastic deformation started from grain boundaries or annealing twin boundaries in both materials, due to a high elastic anisotropy of the grains. An original method based on DIC was developed to estimate the twin fraction in grains that exhibit a single set of slip/twin bands. Deformation twinning accommodated 60–80% of the plastic strain in some favorably oriented grains, from the onset of plastic flow in Fe22Mn0.6C, but was not observed in the Al-bearing steel until 12% strain. The back stress was important in both materials, but significantly higher in Fe22Mn0.6C.

  13. Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda.

    Science.gov (United States)

    Silva-Brandão, Karina Lucas; Horikoshi, Renato Jun; Bernardi, Daniel; Omoto, Celso; Figueira, Antonio; Brandão, Marcelo Mendes

    2017-10-16

    Our main purpose was to evaluate the expression of plastic and evolved genes involved in ecological speciation in the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW); and to demonstrate how host plants might influence lineage differentiation in this polyphagous insect. FAW is an important pest of several crops worldwide, and it is differentiated into host plant-related strains, corn (CS) and rice strains (RS). RNA-Seq and transcriptome characterization were applied to evaluate unbiased genetic expression differences in larvae from the two strains, fed on primary (corn) and alternative (rice) host plants. We consider that genes that are differently regulated by the same FAW strain, as a response to different hosts, are "plastic". Otherwise, differences in gene expression between the two strains fed on the same host are considered constitutive differences. Individual performance parameters (larval and pupal weight) varied among conditions (strains vs. hosts). A total of 3657 contigs was related to plastic response, and 2395 contigs were differentially regulated in the two strains feeding on preferential and alternative hosts (constitutive contigs). Three molecular functions were present in all comparisons, both down- and up-regulated: oxidoreductase activity, metal-ion binding, and hydrolase activity. Metabolization of foreign chemicals is among the key functions involved in the phenotypic variation of FAW strains. From an agricultural perspective, high plasticity in families of detoxifying genes indicates the capacity for a rapid response to control compounds such as insecticides.

  14. Developing the multiple stress-strain creep recovery (MS-SCR) test

    Science.gov (United States)

    Elnasri, Mahmoud; Airey, Gordon; Thom, Nick

    2018-04-01

    While most published work from Europe has been concerned with evaluating binders' resistance to rutting based on their stiffness (deformation resistance), work originating in the US has mainly been concerned with ranking binders based on their recoverability in a multiple stress form. This paper details the design of a new modified multiple stress-strain creep recovery (MS-SCR) test. The test is designed to evaluate binders' rutting resistance based on two rutting resistance mechanisms: stiffness and recoverability. A preliminary investigation is presented in this paper followed by details of the design of the new modified test. A 40/60 penetration grade bitumen and bitumen-filler mastics prepared with three filler concentrations (35%, 50%, and 65% filler content by mass of mastic) were tested. In addition, two polymer modified bitumens (PMBs) using the same base bitumen type were examined for validation. Two parameters are introduced to characterise the short and long recovery in the new test. In terms of stiffness, the test allows the behaviour of binders at different stress levels and loading cycles to be studied and produces a new parameter that can quantify the degree of modification. Finally, a relationship between nonlinearity and normal force in the test was investigated.

  15. Plasminogen deficiency causes reduced corticospinal axonal plasticity and functional recovery after stroke in mice.

    Directory of Open Access Journals (Sweden)

    Zhongwu Liu

    Full Text Available Tissue plasminogen activator (tPA has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg into plasmin. In this study, using plasminogen knockout (Plg-/- mice and their Plg-native littermates (Plg+/+, we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA was injected into the left motor cortex to anterogradely label the corticospinal tract (CST. Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p0.82, p<0.01. Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.

  16. Using LEDs to stimulate the recovery of radiation damage to plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, J., E-mail: james-wetzel@uiowa.edu [The University of Iowa, Iowa City, IA (United States); Tiras, E. [The University of Iowa, Iowa City, IA (United States); Bilki, B. [The University of Iowa, Iowa City, IA (United States); Beykent University, Istanbul (Turkey); Onel, Y. [The University of Iowa, Iowa City, IA (United States); Winn, D. [Fairfield University, Fairfield, CT (United States)

    2017-03-15

    In this study, we consider using LEDs to stimulate the recovery of scintillators damaged from radiation in high radiation environments. We irradiated scintillating tiles of polyethylene naphthalate (PEN), Eljen brand EJ-260 (EJN), an overdoped EJ-260 (EJ2P), and a lab-produced elastomer scintillator (ES) composed of p-terphenyl (ptp) in epoxy. Two different high-dose irradiations took place, with PEN dosed to 100 kGy, and the others to 78 kGy. We found that the ‘blue’ scintillators (PEN and ES) recovered faster and maximally higher with LEDs than without. Conversely exposing the ‘green’ scintillators (EJ-260) to LED light had a nearly negligible effect on the recovery. We hypothesize that the ‘green’ scintillators require wavelengths that match their absorption and emission spectra for LED stimulated recovery.

  17. Severe plastic deformation of copper by machining: Microstructure refinement and nanostructure evolution with strain

    International Nuclear Information System (INIS)

    Swaminathan, S.; Brown, T.L.; Chandrasekar, S.; McNelley, T.R.; Compton, W.D.

    2007-01-01

    The microstructures of copper chips created by plane strain machining at ambient temperature have been analyzed using transmission electron microscopy (TEM) and orientation imaging microscopy (OIM). The strain imposed in the chips was varied by changing the tool rake angle. Characterization of orthogonal faces of the chips showed the microstructure to be essentially uniform through the chip volume, indicative also of uniform deformation

  18. A review of higher order strain gradient theories of plasticity: Origins ...

    Indian Academy of Sciences (India)

    require higher order boundary conditions that enable us to model effects of disloca- ..... where ǫ0 is a reference strain, σ0 the yield stress and n the strain hardening exponent. The ...... Petch N J 1953 J. Iron Steel Inst. London 173: 25. Pantleon ...

  19. Plasticity-induced damage in metals : nonlocal modelling at finite strains

    NARCIS (Netherlands)

    Engelen, R.A.B.

    2005-01-01

    The plasticity models that are generally adopted to predict the response of e.g. a deforming piece of metal assume that the material behaves like a true local continuum. This implies that the evolution of a state variable in a single material point only depends on the material state of that

  20. On the existence of minimisers for strain-gradient single-crystal plasticity

    Czech Academy of Sciences Publication Activity Database

    Anguige, K.; Dondl, P.; Kružík, Martin

    (2018) ISSN 0044-2267 R&D Projects: GA ČR GA14-15264S; GA ČR(CZ) GF16-34894L Institutional support: RVO:67985556 Keywords : existence of minimizers * plasticity Subject RIV: BA - General Mathematics Impact factor: 1.332, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kruzik-0481468.pdf

  1. Extractive recovery of aqueous diamines for bio-based plastics production

    NARCIS (Netherlands)

    Krzyzaniak, A.; Schuur, Boelo; de Haan, A.B.

    2013-01-01

    Background This paper reports an extractant screening study for the recovery of putrescine (butylene-1,4-diamine, BDA) and cadaverine (pentylene-1,5-diamine, PDA) from aqueous solutions (e.g. fermentation broths) by liquid–liquid extraction. Several extractants were studied, including 4-nonylphenol,

  2. Integrating a logarithmic-strain based hyper-elastic formulation into a three-field mixed finite element formulation to deal with incompressibility in finite-strain elasto-plasticity

    International Nuclear Information System (INIS)

    Dina Al Akhrass; Bruchon, Julien; Drapier, Sylvain; Fayolle, Sebastien

    2014-01-01

    This paper deals with the treatment of incompressibility in solid mechanics in finite-strain elasto-plasticity. A finite-strain model proposed by Miehe, Apel and Lambrecht, which is based on a logarithmic strain measure and its work-conjugate stress tensor is chosen. Its main interest is that it allows for the adoption of standard constitutive models established in a small-strain framework. This model is extended to take into account the plastic incompressibility constraint intrinsically. In that purpose, an extension of this model to a three-field mixed finite element formulation is proposed, involving displacements, a strain variable and pressure as nodal variables with respect to standard finite element. Numerical examples of finite-strain problems are presented to assess the performance of the formulation. To conclude, an industrial case for which the classical under-integrated elements fail is considered. (authors)

  3. Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Valdman, Jan

    2016-01-01

    Roč. 76, č. 1 (2016), s. 314-340 ISSN 0036-1399 R&D Projects: GA ČR GA13-18652S; GA ČR GA14-15264S Institutional support: RVO:67985556 ; RVO:61388998 Keywords : Prandtl-Reuss perfect plasticity * bounded-deformation space * incomplete damage Subject RIV: BA - General Mathematics Impact factor: 1.670, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/valdman-0458557.pdf

  4. On the formulations of higher-order strain gradient crystal plasticity models

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2008-01-01

    Recently, several higher-order extensions to the crystal plasticity theory have been proposed to incorporate effects of material length scales that were missing links in the conventional continuum mechanics. The extended theories are classified into work-conjugate and non-work-conjugate types. A ...... deformation. In this paper, the discussion is extended to a more general situation, i.e. the context of multiple and three-dimensional slip deformations....

  5. Studying the effect of elastic-plastic strain and hydrogen sulphide on the magnetic behaviour of pipe steels as applied to their testing

    Directory of Open Access Journals (Sweden)

    Povolotskaya Anna

    2018-01-01

    Full Text Available The paper reports results of magnetic measurements made on samples of the 12GB pipe steel (strength group X42SS designed for producing pipes to be used in media with high hydrogen sulphide content, both in the initial state and after exposure to hydrogen sulphide, for 96, 192 and 384 hours under uniaxial elastic-plastic tension. At the stage of elastic deformation there is a unique correlation between the coercive force measured on a minor hysteresis loop in weak fields and tensile stress, which enables this parameter to be used for the evaluation of elastic stresses in pipes made of the 12 GB pipe steel under different conditions, including a hydrogen sulphide containing medium. The effect of the value of preliminary plastic strain, viewed as the initial stress-strain state, on the magnetic behaviour of X70 pipe steels under elastic tension and compression is studied. Plastic strain history affects the magnetic behaviour of the material during subsequent elastic deformation since plastic strain induces various residual stresses, and this necessitates taking into account the initial stress-strain state of products when developing magnetic techniques for the determination of their stress-strain parameters during operation.

  6. Reconstruction of fiber Bragg grating strain profile used to monitor the stiffness degradation of the adhesive layer in carbon fiber–reinforced plastic single-lap joint

    OpenAIRE

    Song Chunsheng; Zhang Jiaxiang; Yang Mo; Shang Erwei; Zhang Jinguang

    2017-01-01

    The adhesive-bonded joint of carbon fiber–reinforced plastic is one of the core components in aircraft structure design. It is an effective guarantee for the safety and reliability of the aerospace aircraft structure to use effective methods for monitoring and early warning of internal failure. In this article, the mapping relation model between the strain profiles of the adherend of the carbon fiber–reinforced plastic single-lap adhesive joint and the stiffness degradation evolution of adhes...

  7. Strain-based plastic instability acceptance criteria for ferritic steel safety class 1 nuclear components under level D

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Su; Lee, Han Sang; Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Kim, Jong Sung [Dept. of Mechanical Engineering, Sunchon National University, Suncheon (Korea, Republic of); Kim, Jin Won [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2015-04-15

    This paper proposes strain-based acceptance criteria for assessing plastic instability of the safety class 1 nuclear components made of ferritic steel during level D service loads. The strain-based criteria were proposed with two approaches: (1) a section average approach and (2) a critical location approach. Both approaches were based on the damage initiation point corresponding to the maximum load-carrying capability point instead of the fracture point via tensile tests and finite element analysis (FEA) for the notched specimen under uni-axial tensile loading. The two proposed criteria were reviewed from the viewpoint of design practice and philosophy to select a more appropriate criterion. As a result of the review, it was found that the section average approach is more appropriate than the critical location approach from the viewpoint of design practice and philosophy. Finally, the criterion based on the section average approach was applied to a simplified reactor pressure vessel (RPV) outlet nozzle subject to SSE loads. The application shows that the strain-based acceptance criteria can consider cumulative damages caused by the sequential loads unlike the stress-based acceptance criteria and can reduce the over conservatism of the stress-based acceptance criteria, which often occurs for level D service loads.

  8. Strain-based plastic instability acceptance criteria for ferritic steel safety class 1 nuclear components under level D

    International Nuclear Information System (INIS)

    Kim, Ji Su; Lee, Han Sang; Kim, Yun Jae; Kim, Jong Sung; Kim, Jin Won

    2015-01-01

    This paper proposes strain-based acceptance criteria for assessing plastic instability of the safety class 1 nuclear components made of ferritic steel during level D service loads. The strain-based criteria were proposed with two approaches: (1) a section average approach and (2) a critical location approach. Both approaches were based on the damage initiation point corresponding to the maximum load-carrying capability point instead of the fracture point via tensile tests and finite element analysis (FEA) for the notched specimen under uni-axial tensile loading. The two proposed criteria were reviewed from the viewpoint of design practice and philosophy to select a more appropriate criterion. As a result of the review, it was found that the section average approach is more appropriate than the critical location approach from the viewpoint of design practice and philosophy. Finally, the criterion based on the section average approach was applied to a simplified reactor pressure vessel (RPV) outlet nozzle subject to SSE loads. The application shows that the strain-based acceptance criteria can consider cumulative damages caused by the sequential loads unlike the stress-based acceptance criteria and can reduce the over conservatism of the stress-based acceptance criteria, which often occurs for level D service loads.

  9. Determination of dynamic fracture initiation toughness of elastic-plastic materials at intermediate strain rates

    International Nuclear Information System (INIS)

    Fernandez-Saez, J.; Luna de, S.; Rubio, L.; Perez-Castellanos, J. L.; Navarro, C.

    2001-01-01

    An earlier paper dealt with the experimental techniques used to determine the dynamic fracture properties of linear elastic materials. Here we describe those most commonly used as elastoplastic materials, limiting the study to the initiation fracture toughness at the intermediate strain rate (of around 10''2 s''-1). In this case the inertial forces are negligible and it is possible to apply the static solutions. With this stipulation, the analysis can be based on the methods of testing in static conditions. The dynamic case differs basically, from the static one, in the influence of the strain rate on the properties of the material. (Author) 57 refs

  10. Log in and breathe out: internet-based recovery training for sleepless employees with work-related strain - results of a randomized controlled trial

    NARCIS (Netherlands)

    Thiart, H.; Lehr, D.; Ebert, D.D.; Berking, M.; Riper, H.

    2015-01-01

    Objectives The primary purpose of this randomized controlled trial (RCT) was to evaluate the efficacy of a guided internet-based recovery training for employees who suffer from both work-related strain and sleep problems (GET.ON Recovery). The recovery training consisted of six lessons, employing

  11. Elastic-plastic potential functionals for rates and increments of stress and strain

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Zouain, N.

    1990-03-01

    In this work attention is focused in the derivation of variational formulations of the constutive relationship in the form of conjugate potential functionals from which stress and strain rates are derived as elements of the corresponding sub-differential sets. The main result obtained is a pair of potential functionals. (A.C.A.S.) [pt

  12. Numerical simulation of elasto-plastic electro-osmosis consolidation at large strain

    NARCIS (Netherlands)

    Yuan, J.; Hicks, M.A.

    2015-01-01

    n this paper, a numerical solution for the electro-osmosis consolidation of clay in multi-dimensional domains at large strains is presented, with the coupling of the soil mechanical behaviour, pore water transport and electrical fields being considered. In particular, the Modified Cam Clay model is

  13. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery.

    Science.gov (United States)

    Sun, Shanshan; Luo, Yijing; Cao, Siyuan; Li, Wenhong; Zhang, Zhongzhi; Jiang, Lingxi; Dong, Hanping; Yu, Li; Wu, Wei-Min

    2013-09-01

    Enterobacter cloacae strain JD, which produces water-insoluble biopolymers at optimal temperature of 30°C, and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at high temperatures by protoplast fusion. The obtained fusant strain ZR3 produced exopolysaccharides at up to 45°C with optimal growth temperature at 35°C. The fusant produced exopolysaccharides of approximately 7.5 g/L or more at pH between 7.0 and 9.0. The feasibility of the enhancement of crude oil recovery with the fusant was tested in a sand-packed column at 40°C. The results demonstrated that bioaugmentation of the fusant was promising approach for MEOR. Mass growth of the fusant was confirmed in fermentor tests. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling

    Science.gov (United States)

    Aldakheel, Fadi; Wriggers, Peter; Miehe, Christian

    2017-12-01

    The modeling of failure in ductile materials must account for complex phenomena at the micro-scale, such as nucleation, growth and coalescence of micro-voids, as well as the final rupture at the macro-scale, as rooted in the work of Gurson (J Eng Mater Technol 99:2-15, 1977). Within a top-down viewpoint, this can be achieved by the combination of a micro-structure-informed elastic-plastic model for a porous medium with a concept for the modeling of macroscopic crack discontinuities. The modeling of macroscopic cracks can be achieved in a convenient way by recently developed continuum phase field approaches to fracture, which are based on the regularization of sharp crack discontinuities, see Miehe et al. (Comput Methods Appl Mech Eng 294:486-522, 2015). This avoids the use of complex discretization methods for crack discontinuities, and can account for complex crack patterns. In this work, we develop a new theoretical and computational framework for the phase field modeling of ductile fracture in conventional elastic-plastic solids under finite strain deformation. It combines modified structures of Gurson-Tvergaard-Needelman GTN-type plasticity model outlined in Tvergaard and Needleman (Acta Metall 32:157-169, 1984) and Nahshon and Hutchinson (Eur J Mech A Solids 27:1-17, 2008) with a new evolution equation for the crack phase field. An important aspect of this work is the development of a robust Explicit-Implicit numerical integration scheme for the highly nonlinear rate equations of the enhanced GTN model, resulting with a low computational cost strategy. The performance of the formulation is underlined by means of some representative examples, including the development of the experimentally observed cup-cone failure mechanism.

  15. Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Guilherme Corrêa; Gonzalez, Berenice Mendonça; Arruda Santos, Leandro de, E-mail: leandro.arruda@demet.ufmg.br

    2017-01-27

    Strain hardening behavior and microstructural evolution of non-grain oriented electrical, dual phase, and AISI 304 steels, subjected to uniaxial tensile tests, were investigated in this study. Tensile tests were performed at room temperature and the strain hardening behavior of the steels was characterized by three different parameters: modified Crussard–Jaoul stages, strain hardening rate and instantaneous strain hardening exponent. Optical microscopic analysis, X-ray diffraction measurements, phase quantification by Rietveld refinement and hardness tests were also carried out in order to correlate the microstructural and mechanical responses to plastic deformation. Distinct strain hardening stages were observed in the steels in terms of the instantaneous strain hardening exponent and the strain hardening rate. The dual phase and non-grain oriented steels exhibited a two-stage strain hardening behavior while the AISI 304 steel displayed multiple stages, resulting in a more complex strain hardening behavior. The dual phase steels showed a high work hardening capacity in stage 1, which was gradually reduced in stage 2. On the other hand, the AISI 304 steel showed high strain hardening capacity, which continued to increase up to the tensile strength. This is a consequence of its additional strain hardening mechanism, based on a strain-induced martensitic transformation, as shown by the X-ray diffraction and optical microscopic analyses.

  16. Dynamic Strength and Accumulated Plastic Strain Development Laws and Models of the Remolded Red Clay under Long-Term Cyclic Loads: Laboratory Test Results

    Directory of Open Access Journals (Sweden)

    Li Jian

    2015-09-01

    Full Text Available The dynamic strength and accumulated plastic strain are two important parameters for evaluating the dynamic response of soil. As a special clay, the remolded red clay is often used as the high speed railway subgrade filling, but studies on its dynamic characteristics are few. For a thorough analysis of the suitability of the remolded red clay as the subgrade filling, a series of long-term cyclic load triaxial test under different load histories are carried out. Considering the influence of compactness, confining pressure, consolidation ratio, vibration frequency and dynamic load to the remolded red clay dynamic property, the tests obtain the development curves of the dynamic strength and accumulated plastic strain under different test conditions. Then, through curve fitting method, two different hyperbolic models respectively for the dynamic strength and accumulated plastic strain are built, which can match the test datum well. By applying the dynamic strength model, the critical dynamic strength of the remolded red clay are gained. Meanwhile, for providing basic datum and reference for relevant projects, all key parameters for the dynamic strength and accumulated plastic strain of the remolded red clay are given in the paper.

  17. Effects of surface roughness on plastic strain localization in polycrystalline aggregates

    Directory of Open Access Journals (Sweden)

    Guilhem Yoann

    2014-06-01

    Full Text Available The surface state of mechanical components differs according to applied loadings. Industrial processes may produce specific features at the surface, such as roughness, local hardening, residual stresses or recrystallization. Under fatigue loading, all these parameters will affect the component lifetime, but in different manner. A better understanding of each surface state parameter, separately first and then all combined, will provide a better prediction of fatigue life. The study focuses on the effect of surface roughness. Crystal plasticity finite element computations have been carried out on three-dimensional polycrystalline aggregates with different roughness levels. Local mechanical fields have been analyzed both at the surface and inside the bulk to highlight the competition between crystallography and roughness to impose localization patterns. As soon as surface roughness is strong enough, classical localization bands driven by grains orientation are replaced by localizations patterns driven by the local roughness topology. Nevertheless, this effect tends to decrease gradually under the surface, and it becomes usually negligible after the first layer of grains. The discussion allows us to characterize the influence of the surface state on the local mechanical fields.

  18. The impacts of future climate change and sulphur emission reductions on acidification recovery at Plastic Lake, Ontario

    Directory of Open Access Journals (Sweden)

    J. Aherne

    2008-03-01

    Full Text Available Climate-induced drought events have a significant influence on sulphate export from forested catchments in central Ontario, subsequently delaying the recovery of surface waters from acidification. In the current study, a model chain that employed a statistical downscaling model, a hydrological model and two hydrochemical models was used to forecast the chemical recovery of Plastic Lake sub-catchment 1 (PC1 from acidification under proposed deposition reductions and the A2 emission scenario of the Intergovernmental Panel on Climate Change. Any predicted recovery in stream acid neutralising capacity and pH owing to deposition reductions were clearly offset by large acid effluxes from climate-induced drought events. By 2100, ANC is predicted to show large variations ranging between 10 and −30 μmolc L−1. Similarly, predicted pH in 2100 is lower (>0.05 of a pH unit than the value simulated for 2000 (pH 4.35. Despite emission reductions, the future scenario paints a bleak picture of reacidification at PC1 to levels commensurate with those of the late 1970s. The principal process behind this reacidification is the oxidation of previously stored (reduced sulphur compounds in wetlands during periods of low-flow (or drought, with subsequent efflux of sulphate upon re-wetting. Simulated catchment runoff under the A2 emissions scenario predictes increased intensity and frequency of low-flow events from approximately 2030 onwards. The Integrated Catchments model for Carbon indicated that stream DOC concentrations at PC1 will also increase under the future climate scenario, with temperature being the principal driver. Despite the predicted (significant increase in DOC, pH is not predicted to further decline (beyond the climate-induced oxidation scenario, instead pH shows greater variability throughout the simulation. As echoed by many recent studies, hydrochemical models and model frameworks need to incorporate the drivers

  19. Internal state variable plasticity-damage modeling of AISI 4140 steel including microstructure-property relations: temperature and strain rate effects

    Science.gov (United States)

    Nacif el Alaoui, Reda

    Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.

  20. A comparative study on adhesion and recovery of potential probiotic strains of Lactobacillus spp. by in vitro assay and analysis of human colon biopsies

    DEFF Research Database (Denmark)

    Larsen, Nadejda Nikolajevna; Michaelsen, Kim F.; Pærregaard, Anders

    2009-01-01

    Adhesion of the new Lactobacillus isolates, L. casei D12, L. casei Q85, L. casei Z11 and L. plantarum Q47, to the porcine intestinal cell line IPEC-J2 was investigated and compared to the recovery of the same bacterial strains from colon biopsies and faeces obtained from human intervention studies....... Probiotic bacteria L. rhamnosus 19070, L. reuteri 12246 and L. casei F19 were used as reference strains. The new isolates exhibited low to moderate adhesion to IPEC-J2 cells in the range of 7-26%. A large variation in the recovery of strains was observed between the persons, suggesting host specificity...... of intestinal colonization. High correlation was shown between recovery from the different sections of the colon of the same subject, indicating consistency of bacterial colonization of the epithelium. The recovery of L. casei Z11 and L. casei Q85 was highest and comparable to the reference strains of L...

  1. Machined and plastic copings in three-element prostheses with different types of implantabutment joints: a strain gauge comparative analysis

    Directory of Open Access Journals (Sweden)

    Renato Sussumu Nishioka

    2010-06-01

    Full Text Available OBJECTIVE: Using strain gauge (SG analysis, the aim of this in vitro study was quantify the strain development during the fixation of three-unit screw implant-supported fixed partial dentures, varying the types of implant-abutment joints and the type of prosthetic coping. The hypotheses were that the type of hexagonal connection would generate different microstrains and the type of copings would produce similar microstrains after prosthetic screws had been tightened onto microunit abutments. MATERIALS AND METHODS: Three dental implants with external (EH and internal (IH hexagonal configurations were inserted into two polyurethane blocks. Microunit abutments were screwed onto their respective implant groups, applying a torque of 20 Ncm. Machined Co-Cr copings (M and plastic prosthetic copings (P were screwed onto the abutments, which received standard wax patterns. The wax patterns were cast in Co-Cr alloy (n=5, forming four groups: G1 EH/M; G2 EH/P; G3 IH/M and G4 IH/P. Four SGs were bonded onto the surface of the block tangentially to the implants, SG 1 mesially to implant 1, SG 2 and SG 3 mesially and distally to implant 2, respectively, and SG 4 distally to implant 3. The superstructure's occlusal screws were tightened onto microunit abutments with 10 Ncm torque using a manual torque driver. The magnitude of microstrain on each SG was recorded in units of microstrain (µε. The data were analyzed statistically by ANOVA and Tukey's test (p0.05. The hypotheses were partially accepted. CONCLUSIONS: It was concluded that the type of hexagonal connection and coping presented similar mechanical behavior under tightening conditions.

  2. A quantitative approach to study the effect of local texture and heterogeneous plastic strain on the deformation micromechanism in RR1000 nickel-based superalloy

    International Nuclear Information System (INIS)

    Birosca, S.; Di Gioacchino, F.; Stekovic, S.; Hardy, M.

    2014-01-01

    In a weakly textured material with relatively pore-free and homogeneous microstructure, the local texture can influence primary crack propagation and secondary crack initiation, depending on specific microtexture cluster size. Moreover, the plastic strain assessment and strain quantity within individual grains are essential for understanding the material susceptibility to crack initiation and propagation at various loading conditions and temperature ranges. In the current study, electron backscatter diffraction (EBSD) is applied to measure the plastic strain present in RR1000 nickel-based superalloy microstructure following thermo-mechanical fatigue tests. The EBSD plastic strain measurements are evaluated to identify the distinctive deformation mode within individual grains. It was evident from the overall statistical analyses carried out for over 2000 grains that cube (〈0 0 1〉//loading direction) and near cube orientations (φ 1 , Φ, φ 2 : 0, 0–15, 0) behaved as “soft” grains with a high Schmid factor and contained low geometrically necessary dislocation (GND) density as a result of low strain hardening at the early stage of deformation for such grains. The near cube orientation (typically φ 1 , Φ, φ 2 : 0, 9, 0) was the softest orientation among the cube family. While the brass grains (〈1 1 1〉//loading direction) acted as “hard” grains that have the lowest Schmid factor with the highest Taylor factor and GND density compared with other oriented grains. A high GND content was found in the vicinity of the grain boundaries in the soft grains and on slip plane traces within the hard grains. It is concluded that GND absolute value for each grain can vary, as it is interrelated with deformation degree, but the GND locations within the grains give indications of the strain hardening state and deformation stages in hard and soft grains. Furthermore, the areas with random local texture contained high strain incompatibilities between neighbouring

  3. Dynamic recovery in nanocrystalline Ni

    International Nuclear Information System (INIS)

    Sun, Z.; Van Petegem, S.; Cervellino, A.; Durst, K.; Blum, W.; Van Swygenhoven, H.

    2015-01-01

    The constant flow stress reached during uniaxial deformation of electrodeposited nanocrystalline Ni reflects a quasi-stationary balance between dislocation slip and grain boundary (GB) accommodation mechanisms. Stress reduction tests allow to suppress dislocation slip and bring recovery mechanisms into the foreground. When combined with in situ X-ray diffraction it can be shown that grain boundary recovery mechanisms play an important role in producing plastic strain while hardening the microstructure. This result has a significant consequence for the parameters of thermally activated glide of dislocations, such as athermal stress and activation volume, which are traditionally derived from stress/strain rate change tests

  4. Reconstruction of fiber Bragg grating strain profile used to monitor the stiffness degradation of the adhesive layer in carbon fiber–reinforced plastic single-lap joint

    Directory of Open Access Journals (Sweden)

    Song Chunsheng

    2017-01-01

    Full Text Available The adhesive-bonded joint of carbon fiber–reinforced plastic is one of the core components in aircraft structure design. It is an effective guarantee for the safety and reliability of the aerospace aircraft structure to use effective methods for monitoring and early warning of internal failure. In this article, the mapping relation model between the strain profiles of the adherend of the carbon fiber–reinforced plastic single-lap adhesive joint and the stiffness degradation evolution of adhesive layer was achieved by finite element software ABAQUS. The fiber Bragg grating was embedded in the adherend between the first and second layers at the end of the adhesive layer to calculate the reflection spectrum of fiber Bragg grating sensor region with improved T-matrix method for reconstruction of the adherend strain profile of fiber Bragg grating sensing area with the help of genetic algorithm. According to the reconstruction results, the maximum error between the ideal and reconstructed strain profile under different tension loads did not exceed 7.43%, showing a good coincidence degree. The monitoring method of the stiffness degradation evolution of adhesive layer of the carbon fiber–reinforced plastic single-lap joint based on the reconstruction of the adherend strain profile of fiber Bragg grating sensing area thus was figured out.

  5. Mechanical stability of the cell nucleus: roles played by the cytoskeleton in nuclear deformation and strain recovery.

    Science.gov (United States)

    Wang, Xian; Liu, Haijiao; Zhu, Min; Cao, Changhong; Xu, Zhensong; Tsatskis, Yonit; Lau, Kimberly; Kuok, Chikin; Filleter, Tobin; McNeill, Helen; Simmons, Craig A; Hopyan, Sevan; Sun, Yu

    2018-05-18

    Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformation increases the risk of disrupting the nuclear envelope's integrity and causing DNA damage. Mechanical stability of the nucleus defines its capability of maintaining nuclear shape by minimizing nuclear deformation and recovering strain when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin. © 2018. Published by The Company of Biologists Ltd.

  6. Psychosocial job strain and sleep quality interaction leading to insufficient recovery.

    Science.gov (United States)

    Rydstedt, Leif W; Devereux, Jason J

    2013-11-05

    The purpose of the study was to assess the impact of job strain and sleep quality on the diurnal pattern of cortisol reactivity, measured by awakening and evening (10 PM) saliva cortisol. The sample consisted of 76 British white-collar workers (24 women, 52 men; mean age 45.8 years). Sleep quality and job strain were assessed in a survey distributed just before the cortisol sampling. Both input variables were dichotomized about the median and factorial ANOVA was used for the statistical analysis. Low sleep quality was significantly associated with lower morning cortisol secretion. While job strain had no main effects on the cortisol reactivity there was a significant interaction effect between the input variables on morning cortisol secretion. These findings tentatively support the hypothesis that lack of sleep for workers with high job strain may result in a flattened diurnal cortisol reactivity.

  7. Psychosocial Job Strain and Sleep Quality Interaction Leading to Insufficient Recovery

    Directory of Open Access Journals (Sweden)

    Leif W. Rydstedt

    2013-11-01

    Full Text Available The purpose of the study was to assess the impact of job strain and sleep quality on the diurnal pattern of cortisol reactivity, measured by awakening and evening (10 PM saliva cortisol. The sample consisted of 76 British white-collar workers (24 women, 52 men; mean age 45.8 years. Sleep quality and job strain were assessed in a survey distributed just before the cortisol sampling. Both input variables were dichotomized about the median and factorial ANOVA was used for the statistical analysis. Low sleep quality was significantly associated with lower morning cortisol secretion. While job strain had no main effects on the cortisol reactivity there was a significant interaction effect between the input variables on morning cortisol secretion. These findings tentatively support the hypothesis that lack of sleep for workers with high job strain may result in a flattened diurnal cortisol reactivity.

  8. An application of the recrystallization method for the observation of plastic strain distribution around SCC cracks in sensitized SUS 304 stainless steels

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu

    1981-01-01

    Various types of stress corrosion cracking (SCC) testing methods have been developed since the SCC was discovered in type 304 stainless steel of BWR cooling pipes. With regard to the countermeasures for SCC, it is essential to evaluate the SCC susceptibility under the simulated or accelerated testing conditions. Among various acceleration SCC tests, the slow strain rate technique (SSRT) test has been used most widely. The SCC susceptibility, in almost cases, has been evaluated not on the base of the crack behavior but of the reduction of stress or strain under the corrosive environment. It is well known that the intensively deformed zone (plastic zone) is formed at the crack tip in fatigue and creep phenomena, but such plastic zone related with the resistance of crack extention has not been studied in SCC phenomenon. The objective of this study is to confirm the existence of the plastic zone at tips of SCC cracks by the application of the recrystallization method. The shape and the distribution of the plastic zone was measured by use of optical and scanning electron microscope in sensitized specimens SSRT tested in high temperature water containing various concentrations of dissolved oxygen. Results obtained are discussed in relation to the susceptibility of SCC. (author)

  9. Psychosocial Job Strain and Sleep Quality Interaction Leading to Insufficient Recovery

    OpenAIRE

    Rydstedt, Leif W.; Devereux, Jason J.

    2013-01-01

    The purpose of the study was to assess the impact of job strain and sleep quality on the diurnal pattern of cortisol reactivity, measured by awakening and evening (10 PM) saliva cortisol. The sample consisted of 76 British white-collar workers (24 women, 52 men; mean age 45.8 years). Sleep quality and job strain were assessed in a survey distributed just before the cortisol sampling. Both input variables were dichotomized about the median and factorial ANOVA was used for the statistical analy...

  10. The elastic plastic behaviour of a 1/2% Cr Mo V steam turbine steel during high strain thermal fatigue

    International Nuclear Information System (INIS)

    Murphy, M.C.; Batte, A.D.; Stringer, M.B.

    1979-01-01

    High strain fatigue problem in steam turbine. Cyclic stress strain hysteresis loops and stress relaxation behaviour in 16 h dwell period tests. Variation of stress and strain during tests under nominally strain controlled conditions. Definition of test conditions and of criteria for crack initiation and failure. Comparison of reverse bend and push pull failure data. (orig.) 891 RW/orig. 892 RKD [de

  11. Cyclic lipopeptide signature as fingerprinting for the screening of halotolerant Bacillus strains towards microbial enhanced oil recovery.

    Science.gov (United States)

    Farias, Bárbara C S; Hissa, Denise C; do Nascimento, Camila T M; Oliveira, Samuel A; Zampieri, Davila; Eberlin, Marcos N; Migueleti, Deivid L S; Martins, Luiz F; Sousa, Maíra P; Moyses, Danuza N; Melo, Vânia M M

    2018-02-01

    Cyclic lipopeptides (CLPs) are non-ribosomal biosurfactants produced by Bacillus species that exhibit outstanding interfacial activity. The synthesis of CLPs is under genetic and environmental influence, and representatives from different families are generally co-produced, generating isoforms that differ in chemical structure and biological activities. This study to evaluate the effect of low and high NaCl concentrations on the composition and surface activity of CLPs produced by Bacillus strains TIM27, TIM49, TIM68, and ICA13 towards microbial enhanced oil recovery (MEOR). The strains were evaluated in mineral medium containing NaCl 2.7, 66, or 100 g L -1 and growth, surface tension and emulsification activity were monitored. Based on the analysis of 16S rDNA, gyrB and rpoB sequences TIM27 and TIM49 were assigned to Bacillus subtilis, TIM68 to Bacillus vallismortis, and ICA13 to Bacillus amyloliquefaciens. All strains tolerated up to 100-g L -1 NaCl, but only TIM49 and TIM68 were able to reduce surface tension at this concentration. TIM49 also showed emulsification activity at concentrations up to 66-g L -1 NaCl. ESI-MS analysis showed that the strains produced a mixture of CLPs, which presented distinct CLP profiles at low and high NaCl concentrations. High NaCl concentration favored the synthesis of surfactins and/or fengycins that correlated with the surface activities of TIM49 and TIM68, whereas low concentration favored the synthesis of iturins. Taken together, these findings suggest that the determination of CLP signatures under the expected condition of oil reservoirs can be useful in the guidance for choosing well-suited strains to MEOR.

  12. Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia

    Science.gov (United States)

    Bochner, David N.; Sapp, Richard W.; Adelson, Jaimie D.; Zhang, Siyu; Lee, Hanmi; Djurisic, Maja; Syken, Josh; Dan, Yang; Shatz, Carla J.

    2015-01-01

    During critical periods of development, the brain easily changes in response to environmental stimuli, but this neural plasticity declines by adulthood. By acutely disrupting paired immunoglobulin-like receptor B(PirB) function at specific ages, we show that PirB actively represses neural plasticity throughout life. We disrupted PirB function either by genetically introducing a conditional PirB allele into mice or by minipump infusion of a soluble PirB ectodomain (sPirB) into mouse visual cortex. We found that neural plasticity, as measured by depriving mice of vision in one eye and testing ocular dominance, was enhanced by this treatment both during the critical period and when PirB function was disrupted in adulthood. Acute blockade of PirB triggered the formation of new functional synapses, as indicated by increases in miniature excitatory postsynaptic current (mEPSC) frequency and spine density on dendrites of layer 5 pyramidal neurons. In addition, recovery from amblyopia— the decline in visual acuity and spine density resulting from long-term monocular deprivation— was possible after a 1-week infusion of sPirB after the deprivation period. Thus, neural plasticity in adult visual cortex is actively repressed and can be enhanced by blocking PirB function. PMID:25320232

  13. The role of deformation microstructure in recovery and recrystallization of heavily strained metals

    DEFF Research Database (Denmark)

    Hansen, Niels

    2012-01-01

    Metals deformed to high and ultrahigh strains are characterized by a nanoscale microstructure, a large fraction of high angle boundaries and a high dislocation density. Another characteristic of such a microstructure is a large stored energy that combines elastic energy due to dislocations and bo...

  14. Regulating strain states by using the recovery potential of lunch breaks.

    Science.gov (United States)

    Krajewski, Jarek; Wieland, Rainer; Sauerland, Martin

    2010-04-01

    The aim of the worksite study is to elucidate the strain reducing impact of different forms of spending lunch breaks. With the help of the so-called silent room cabin concept, it was possible to induce a lunch-break relaxation opportunity that provided visual and territorial privacy. To evaluate the proposed effects, 14 call center agents were assigned to either 20 min progressive muscle relaxation (PMR) or small-talk (ST) break groups. We analyzed the data in a controlled trial for a period of 6 months (every 2 months four measurements a day at 12:00, 13:00, 16:00, 20:00) using independent observer and self-report ratings of emotional, mental, motivational, and physical strain. Results indicated that only the PMR break reduced postlunchtime and afternoon strain. Although further intervention research is required, our results suggest that PMR lunch break may sustainable reduce strain states in real worksite settings. Copyright 2010 APA, all rights reserved.

  15. Contribution to the theoretical study of the plastic strain localization in porous materials; Contribution a l'etude theorique de la localisation plastique dans les poreux

    Energy Technology Data Exchange (ETDEWEB)

    Willot, F

    2007-01-15

    This work presents a study in theoretical mechanics, in the classical framework of homogenization of heterogeneous media. It addresses a notoriously problematical situation of non-linear behavior and infinite contrast between two phases, one of which is a plastic solid phase and the other one, the porosity of the medium. Its aim is to investigate how plastic strain localization manifests itself at the level of the overall effective behavior of the medium in presence of pores, and in particular in the non-trivial limit of small porosity. This question, important to the understanding of ductile damage, is examined both numerically and theoretically, in the restricted situation of bi-dimensional systems, and using a deformation theory approach of plasticity. The numerical investigations consist of quasi-exact computations of the strain and stress fields in the voided medium, by means of a Fast Fourier Transform method, and using a particular Green function. The theoretical approach makes use of exact solutions, which can be obtained in particular cases of a periodic void lattice, as well as of a recent 'second-order' nonlinear homogenization approach. The virtues of the latter are evaluated in two steps, first by studying the underlying linear anisotropic homogenization step (an essential ingredient), then by studying the nonlinear step itself. The nature and significance of the singularities of the theory which appear in the limit of small porosity, confirmed by numerical computations, are partly elucidated. Finally, original observations are presented as to the relation between plastic deformation patterns in an ideal disordered medium, and some features of the macroscopic strain/stress curve. (author)

  16. The pulverization and handling of soft plastics for energy recovery; Soenderdelning och hantering av mjuka plaster foer energiutvinning

    Energy Technology Data Exchange (ETDEWEB)

    Wiklund, Sven-Erik

    2000-10-01

    The purpose of the project has primarily been to investigate suitable equipment (mills, crushers, shredders) for the pulverization of different types of soft plastics from the agricultural sector (large sacks and silage plastic) and the peat extraction industry (plastic covers) with the aim of being able to use the plastic material as fuel in conventional solid waste-fired plants. Many of the mills that are used for pulverizing different types of biofuel have proved not to be particularly suitable for soft plastics. The project has comprised the following: * Contact with a number of plant owners with different types of plants (grate, CFB and BFB boilers) for a review of existing fuel handling and fuel feed equipment as well as the demands they make on the fuel that is to be fired. * Contact with Trio Plast concerning previous tests carried out in connection with the collection, baling, handling, pulverization and combustion of plastics from the agricultural sector. * Contact with mill suppliers for participation in the tests and for feedback on experience gained in connection with the pulverization of soft plastics. * Choice of a suitable plant for practical trials based on contact with the above plant owners as a reference group. * Practical trials in 5 mills with the pulverization of soft plastics from agriculture (silage plastic and large sacks) as well as plastic from peat extraction (plastic covers) and * Evaluation of technical, economic, energy-related and environmental preconditions. Following contact with several owners of solid waste-fired combustion plants, and after hearing their opinions, it became clear that many of them were doubtful about the combustion of plastic. They are primarily afraid of tripping superheaters, etc. Consequently, two plants without superheaters, one in Oestersund and the other in Malmoe, were chosen for the tests. The mills that were tested were: * A SIM mill from WahIkvist, Oedeshoeg Plant - a mobile slow-action pulverizer for

  17. An elasto-plastic self-consistent model with hardening based on dislocation density, twinning and de-twinning: Application to strain path changes in HCP metals

    International Nuclear Information System (INIS)

    Zecevic, Milovan; Knezevic, Marko; Beyerlein, Irene J.; Tomé, Carlos N.

    2015-01-01

    In this work, we develop a polycrystal mean-field constitutive model based on an elastic–plastic self-consistent (EPSC) framework. In this model, we incorporate recently developed subgrain models for dislocation density evolution with thermally activated slip, twin activation via statistical stress fluctuations, reoriented twin domains within the grain and associated stress relaxation, twin boundary hardening, and de-twinning. The model is applied to a systematic set of strain path change tests on pure beryllium (Be). Under the applied deformation conditions, Be deforms by multiple slip modes and deformation twinning and thereby provides a challenging test for model validation. With a single set of material parameters, determined using the flow-stress vs. strain responses during monotonic testing, the model predicts well the evolution of texture, lattice strains, and twinning. With further analysis, we demonstrate the significant influence of internal residual stresses on (1) the flow stress drop when reloading from one path to another, (2) deformation twin activation, (3) de-twinning during a reversal strain path change, and (4) the formation of additional twin variants during a cross-loading sequence. The model presented here can, in principle, be applied to other metals, deforming by multiple slip and twinning modes under a wide range of temperature, strain rate, and strain path conditions

  18. Study of the evolution of the boundary of the elastic field with strain hardening, and elastic-plastic behaviour relationships of cubic metals

    International Nuclear Information System (INIS)

    Bui, Huy Duong

    1969-01-01

    In this research thesis on metal strain hardening, the author first discusses the issue of passing from microscopic values to corresponding macroscopic values. If there is generally a correspondence between them, it is not the case for plastic strain. Thus, the author studies the general properties of the boundary of the macroscopic plastic field with respect to single-crystal elastic boundaries. In the second part, the author reports an experimental study of the evolution of the elastic field boundary. In the third part, he develops elastic-plastic behaviour laws for an aggregate of cubic crystals. The objectives are to report experimental results in a more satisfying way than previous studies, and to obtain acceptable physical laws while keeping some properties of conventional laws in order to ensure the solution uniqueness, and to establish minimum principles similar to those of Nodge-Prager and of Greenberg. In order to do so, he introduces a new hypothesis: there is a statistic scattering in initial thresholds of crystals

  19. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch.

    Science.gov (United States)

    Chakraborty, Anirban; Xiang, Mingming; Luo, Cheng

    2013-08-19

    In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles) on the inner surfaces of polystyrene (PS) microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE). Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  20. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch

    Directory of Open Access Journals (Sweden)

    Anirban Chakraborty

    2013-08-01

    Full Text Available In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles on the inner surfaces of polystyrene (PS microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE. Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  1. Valorization of spent oyster mushroom substrate and laccase recovery through successive solid state cultivation of Pleurotus, Ganoderma, and Lentinula strains.

    Science.gov (United States)

    Economou, Christina N; Diamantopoulou, Panagiota A; Philippoussis, Antonios N

    2017-06-01

    Spent mushroom substrate (SMS) of Pleurotus ostreatus was supplemented with wheat bran and soybean flour in various proportions to obtain C/N ratios of 10, 20, and 30, and their effect was evaluated in successive cultivation of Pleurotus ostreatus, Pleurotus pulmonarius, Ganoderma adspersum, Ganoderma resinaceum, and Lentinula edodes strains with respect to mycelium growth rate, biomass concentration, recovery of the enzyme laccase and crude exopolysaccharides, and also with additional fruiting body production. All fungi showed the highest growth rate on unamended SMS (C/N 30), with G. resinaceum being the fastest colonizer (Kr = 9.84 mm day -1 ), while biomass concentration maximized at C/N 10. Moreover, supplementation affected positively laccase activity, with P. pulmonarius furnishing the highest value (44,363.22 U g -1 ) at C/N 20. On the contrary, L. edodes growth, fruiting, and laccase secretion were not favored by SMS supplementation. Fruiting body formation was promoted at C/N 30 for Ganoderma and at C/N 20 for Pleurotus species. Exopolysaccharide production of further studied Pleurotus strains was favored at a C/N 20 ratio, at the initial stage of SMS colonization. The obtained results support the potential effective utilization of supplemented SMS for laccase production from Ganoderma spp. and for new fruiting body production of Pleurotus spp.

  2. A model for strain hardening, recovery, recrystallization and grain growth with applications to forming processes of nickel base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Hermann, E-mail: hermann.riedel@iwm.fraunhofer.de [Fraunhofer Institute for Materials Mechanics, Wöhlerstr. 11, 79108 Freiburg (Germany); Svoboda, Jiri, E-mail: svobj@ipm.cz [Institute of Physics of Materials, Academy of Science of the Czech Republic, Zizkova 22, Brno (Czech Republic)

    2016-05-17

    An ensemble of n spherical grains is considered, each of which is characterized by its radius r{sub i} and by a hardening variable a{sub i}. The hardening variable obeys a Chaboche-type evolution equation with dynamic and static recovery. The grain growth law includes the usual contribution of the grain boundary energy, a term for the stored energy associated with the hardening variable, and the Zener pinning force exerted by particles on the migrating grain boundaries. New grains develop by recrystallization in grains whose stored energy density exceeds a critical value. The growth or shrinkage of the particles, which restrain grain boundary migration, obeys a thermodynamic/kinetic evolution equation. This set of first order differential equations for r{sub i}, a{sub i} and the particle radius is integrated numerically. Fictitious model parameters for a virtual nickel base alloy are used to demonstrate the properties and capabilities of the model. For a real nickel alloy, model parameters are adjusted using measured stress-strain curves, as well as recrystallized volume fractions and grain size distributions. Finally the model with adjusted parameters is applied to a forming process with complex temperature-strain rate histories.

  3. Development of Process for Disposal of Plastic Waste Using Plasma Pyrolysis Technology and Option for Energy Recovery

    Czech Academy of Sciences Publication Activity Database

    Punčochář, Miroslav; Ruj, B.; Chatterj, P.K.

    2012-01-01

    Roč. 42, SI (2012), s. 420-430 E-ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague, 25.08.2012-29.08.2012] Institutional support: RVO:67985858 Keywords : plastic waste * plasma pyrolysis * syngas Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  4. Deformation mechanism study of a hot rolled Zr-2.5Nb alloy by transmission electron microscopy. I. Dislocation microstructures in as-received state and at different plastic strains

    Energy Technology Data Exchange (ETDEWEB)

    Long, Fei; Daymond, Mark R., E-mail: mark.daymond@queensu.ca; Yao, Zhongwen [Department of Mechanical and Materials Engineering, Queen' s University Kingston, Ontario K7L 3N6 (Canada)

    2015-03-07

    Thin foil dog bone samples prepared from a hot rolled Zr-2.5Nb alloy have been deformed by tensile deformation to different plastic strains. The development of slip traces during loading was observed in situ through SEM, revealing that deformation starts preferentially in certain sets of grains during the elastic-plastic transition region. TEM characterization showed that sub-grain boundaries formed during hot rolling consisted of screw 〈a〉 dislocations or screw 〈c〉 and 〈a〉 dislocations. Prismatic 〈a〉 dislocations with large screw or edge components have been identified from the sample with 0.5% plastic strain. Basal 〈a〉 and pyramidal 〈c + a〉 dislocations were found in the sample that had been deformed with 1.5% plastic strain, implying that these dislocations require larger stresses to be activated.

  5. Recovery of avirulent, thermostable Newcastle disease virus strain NDV4-C from cloned cDNA and stable expression of an inserted foreign gene

    NARCIS (Netherlands)

    Zhang, X.; Liu, H.; Liu, P.; Peeters, B.P.H.; Zhao, C.; Kong, X.

    2013-01-01

    A reverse genetics system for thermostable Newcastle disease virus (NDV) is not currently available. In this study, we developed a reverse genetics system for the avirulent and thermostable NDV4-C strain. Successful recovery of NDV4-C was achieved by using either T7 RNA polymerase or cellular RNA

  6. Quasi-plane-hypothesis of strain coordination for RC beams seismically strengthened with externally-bonded or near-surface mounted fiber reinforced plastic

    Science.gov (United States)

    Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun

    2013-03-01

    The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.

  7. Fiscal 1999 leading research report. High strain-rate super-plasticity (Leading research); 1999 nendo kosoku chososei kenkyu hokokusho. Sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For solving the global warming problem and constructing the resource recycling society, a demand for highly recyclable light-weight Mg alloys is increasing for energy saving and recycling improvement, in particular, for automobiles and electrical appliances. However, use of Mg materials is limited because its poor workability. This research targets development of the material with a rich recyclability and a rich workability for forming complex shapes, and its working technology. Leading research was made on development of the continuous high-strain rate (more than 10{sup -2}/s) super- plasticity material forming process from raw materials to products of Mg alloys, and establishment of the production technology free from technological barriers. The research result showed that for the recognition of Mg alloy as low- environment load super light-weight industrial material, establishment of the composite resource-saving energy-saving production process including recycling and reusing is necessary at the same time as establishment of the high- strain rate super-plasticity material forming process. (NEDO)

  8. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, I. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)], E-mail: Ivan.Nikitin@infineon.com; Besel, M. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)

    2008-09-15

    Mechanical surface treatments such as deep rolling are known to affect the near-surface microstructure and induce, e.g. residual stresses and/or increase the surface hardness. It is well known that, e.g. compressive residual stress states usually increase the lifetime under fatigue loading. The stress relaxation behaviour and the stability of the residual stress during fatigue loading depend on the mechanical surface treatment method. In this paper three different surface treatments are used and their effects on the low cycle fatigue behaviour of austenitic stainless steel (AISI 304) and ferritic-pearlitic steel (SAE 1045) are investigated. X-ray diffraction is applied for the non-destructive evaluation of the stress state and the microstructure. It is found that consecutive deep rolling and annealing as well as high temperature deep rolling produce more stable near-surface stress states than conventional deep rolling at room temperature. The plastic strain amplitudes during fatigue loading are measured and it is shown that they correlate well with the induced residual stress and its relaxation, respectively. Furthermore, Coffin-Manson plots are presented which clearly show the correlation between the plastic strain amplitude and the fatigue lifetime.

  9. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant.

    Science.gov (United States)

    Huang, Renliang; Guo, Hong; Su, Rongxin; Qi, Wei; He, Zhimin

    2017-03-01

    Recycling cellulases by substrate adsorption is a promising strategy for reducing the enzyme cost of cellulosic ethanol production. However, β-glucosidase has no carbohydrate-binding module (CBM). Thus, additional enzymes are required in each cycle to achieve a high ethanol yield. In this study, we report a new method of recycling cellulases without β-glucosidase supplementation using lignocellulosic substrate, an engineered strain expressing β-glucosidase and Tween 80. The cellulases and Tween 80 were added to an aqueous suspension of diluted sulfuric acid/ammonia-treated corncobs in a simultaneous saccharification and fermentation (SSF) process for ethanol production. Subsequently, the addition of fresh pretreated corncobs to the fermentation liquor and remaining solid residue provided substrates with absorbed cellulases for the next SSF cycle. This method provided excellent ethanol production in three successive SSF cycles without requiring the addition of new cellulases. For a 10% (w/v) solid loading, a cellulase dosage of 30 filter paper units (FPU)/g cellulose, 0.5% Tween 80, and 2 g/L of the engineered strain, approximately 90% of the initial ethanol concentration from the first SSF process was obtained in the next two SSF processes, with a total ethanol production of 306.27 g/kg corncobs and an enzyme productivity of 0.044 g/FPU. Tween 80 played an important role in enhancing cellulase recovery. This new enzyme recycling method is more efficient and practical than other reported methods. Biotechnol. Bioeng. 2017;114: 543-551. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery.

    Science.gov (United States)

    Alvarez, Vanessa Marques; Jurelevicius, Diogo; Marques, Joana Montezano; de Souza, Pamella Macedo; de Araújo, Livia Vieira; Barros, Thalita Gonçalves; de Souza, Rodrigo Octavio Mendonça Alves; Freire, Denise Maria Guimarães; Seldin, Lucy

    2015-12-01

    A screening for biosurfactant-producing bacteria was conducted with 217 strains that were isolated from environmental samples contaminated with crude oil and/or petroleum derivatives. Although 19 promising biosurfactant producers were detected, strain TSBSO 3.8, which was identified by molecular methods as Bacillus amyloliquefaciens, drew attention for its production of a high-activity compound that presented an emulsification activity of 63% and considerably decreased surface (28.5 mN/m) and interfacial (11.4 mN/m) tensions in Trypticase Soy Broth culture medium. TSBSO 3.8 growth and biosurfactant production were tested under different physical and chemical conditions to evaluate its biotechnological potential. Biosurfactant production occurred between 0.5% and 7% NaCl, at pH values varying from 6 to 9 and temperatures ranging from 28 to 50 °C. Moreover, biosurfactant properties remained the same after autoclaving at 121 °C for 15 min. The biosurfactant was also successful in a test to simulate microbial enhanced oil recovery (MEOR). Mass spectrometry analysis showed that the surface active compound was a surfactin, known as a powerful biosurfactant that is commonly produced by Bacillus species. The production of a high-efficiency biosurfactant, under some physical and chemical conditions that resemble those experienced in an oil production reservoir, such as high salinities and temperatures, makes TSBSO 3.8 an excellent candidate and creates good expectations for its application in MEOR. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys

    Science.gov (United States)

    Hartl, D. J.; Lagoudas, D. C.

    2009-10-01

    The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.

  12. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys

    International Nuclear Information System (INIS)

    Hartl, D J; Lagoudas, D C

    2009-01-01

    The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation

  13. The impact of elastic and plastic strain on relaxation and crystallization of Pd–Ni–P-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Mitrofanov, Yu.P.; Peterlechner, M.; Binkowski, I.; Zadorozhnyy, M.Yu.; Golovin, I.S.; Divinski, S.V.; Wilde, G.

    2015-01-01

    The effects of deformation and subsequent heat treatment on the low-temperature heat capacity, enthalpy relaxation rate and mechanical losses of two Pd–Ni–P-based bulk metallic glasses of slightly different compositions and different thermal stabilities have been investigated. It was found that the crystallization temperatures decreased significantly with imposed strain and the effect was more pronounced for the alloy with a higher thermal stability. The boson heat capacity peak increases with increasing strain in both alloys. However, after annealing treatments above room temperature, it relaxes to a lower enthalpy state as compared to that of the as-quenched state for the alloy with a lower thermal stability. The existence of two counteracting processes that might be related to different shear band structures within one homogeneously deformed sample is suggested. These results agree with the internal friction data, which indicate different regimes of mechanical damping as a function of the strain amplitude, while the critical amplitude of a transition between the regimes depends on the imposed strain. The results are interpreted within the energy landscape approach and advocate that the composition-dependent local atomic configurations affect significantly the response of the glass to an applied strain

  14. Finite strain anisotropic elasto-plastic model for the simulation of the forming and testing of metal/short fiber reinforced polymer clinch joints at room temperature

    Science.gov (United States)

    Dean, A.; Rolfes, R.; Behrens, A.; Bouguecha, A.; Hübner, S.; Bonk, C.; Grbic, N.

    2017-10-01

    There is a strong trend in the automotive industry to reduce car body-, chassis- and power-train mass in order to lower carbon emissions. More wide spread use of lightweight short fiber reinforced polymer (SFRP) is a promising approach to attain this goal. This poses the challenge of how to integrate new SFRP components by joining them to traditional sheet metal structures. Recently (1), the clinching technique has been successfully applied as a suitable joining method for dissimilar material such as SFRP and Aluminum. The material pairing PA6GF30 and EN AW 5754 is chosen for this purpose due to their common application in industry. The current contribution presents a verification and validation of a finite strain anisotropic material model for SFRP developed in (2) for the FE simulation of the hybrid clinching process. The finite fiber rotation during forming and separation, and thus the change of the preferential material direction, is represented in this model. Plastic deformations in SFRP are considered in this model via an invariant based non-associated plasticity formulation following the multiplicative decomposition approach of the deformation gradient where the stress-free intermediate configuration is introduced. The model allows for six independent characterization curves. The aforementioned material model allows for a detailed simulation of the forming process as well as a simulative prediction of the shear test strength of the produced joint at room temperature.

  15. Effect of severe plastic deformation on microstructure and mechanical properties of magnesium and aluminium alloys in wide range of strain rates

    Science.gov (United States)

    Skripnyak, Vladimir; Skripnyak, Evgeniya; Skripnyak, Vladimir; Vaganova, Irina; Skripnyak, Nataliya

    2013-06-01

    Results of researches testify that a grain size have a strong influence on the mechanical behavior of metals and alloys. Ultrafine grained HCP and FCC metal alloys present higher values of the spall strength than a corresponding coarse grained counterparts. In the present study we investigate the effect of grain size distribution on the flow stress and strength under dynamic compression and tension of aluminium and magnesium alloys. Microstructure and grain size distribution in alloys were varied by carrying out severe plastic deformation during the multiple-pass equal channel angular pressing, cyclic constrained groove pressing, and surface mechanical attrition treatment. Tests were performed using a VHS-Instron servo-hydraulic machine. Ultra high speed camera Phantom V710 was used for photo registration of deformation and fracture of specimens in range of strain rates from 0,01 to 1000 1/s. In dynamic regime UFG alloys exhibit a stronger decrease in ductility compared to the coarse grained material. The plastic flow of UFG alloys with a bimodal grain size distribution was highly localized. Shear bands and shear crack nucleation and growth were recorded using high speed photography.

  16. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M; Fink, J K [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  17. Influence of a preliminary tensile plastic strain on the first stages of oxidation of a Ni80-Cr20 alloy

    International Nuclear Information System (INIS)

    Schmitt, Jean-Francois

    1992-01-01

    This research thesis reports the study of the influence of surface, and maybe also volume, defects created by a uniaxial mechanical strain on the chemical reactivity of metal and alloy surface (adsorption, desorption, segregation, surface chemical reaction), and more particularly on their early stages of oxidation. A tensile micro-machine has been designed and manufactured to study the influence of a mechanical strain on the first stages of oxidation of sample ribbons of Ni80-Cr20 alloy. Tests have been performed under low oxygen pressures. In order to analyze the surface, each reaction is monitored by Auger electron spectrometry, and many samples are transferred to another apparatus to examine the oxide distribution. Results are interpreted in terms of evolution of nickel, chromium and oxygen Auger signals which have been recorded during oxidation experiments. The first layers of the sample alloy are simply modelled and some theoretical calculations are developed which correlate with experimental values [fr

  18. An analysis of plasticity in the rat respiratory system following cervical spinal cord injury and the application of nanotechnology to induce or enhance recovery of diaphragm function

    Science.gov (United States)

    Walker, Janelle

    Second cervical segment spinal cord hemisection (C2Hx) results in ipsilateral hemidiaphragm paralysis. However, the intact latent crossed phrenic pathway can restore function spontaneously over time or immediately following drug administration. WGA bound fluorochromes were administered to identify nuclei associated with diaphragm function in both the acute and chronic C2Hx models. WGA is unique in that it undergoes receptor mediated endocytosis and is transsynaptically transported across select physiologically active synapses. Comparison of labeling in the acutely injured to the chronically injured rat provided an anatomical map of spinal and supraspinal injury induced synaptic plasticity. The plasticity occurs over time in the chronic C2Hx model in an effort to adapt to the loss of hemidiaphragm function. Utilizing the selectivity of WGA, a nanoconjugate was developed to target drug delivery to nuclei involved in diaphragm function post C2Hx in an effort to restore lost function. Theophylline was selected due to its established history as a respiratory stimulant. Theophylline was attached to gold nanoparticles by a transient bond designed to degrade intracellularly. The gold nanoparticles were then permanently attached to WGA-HRP. Following intradiaphragmatic injection, the WGA portion was identified in the ipsilateral phrenic nuclei and bilaterally in the rVRGs. The location of WGA should reflect the location of the AuNP since the peptide bond between them is permanent. The effectiveness of the nanoconjugate was verified with EMG analysis of the diaphragm and recordings from the phrenic nerves. All doses administered in the acute C2Hx model resulted in resorted hemidiaphragm and phrenic nerve activity. A dose of 0.14mg/kg had a significantly higher percent recovery on day 3, whereas 0.03mg/kg was significantly higher on day 14. The change in most effective dose over time is likely due to the availability or concentration of the drug and location of drug release

  19. A Conservative Formulation for Plasticity

    Science.gov (United States)

    1992-01-01

    concepts that apply to a broad class of macroscopic models: plastic deformation and plastic flow rule. CONSERVATIVE PLASTICITY 469 3a. Plastic Defrrnation...temperature. We illustrate these concepts with a model that has been used to describe high strain-rate plastic flow in metals [11, 31, 32]. In the case...JOURDREN, AND P. VEYSSEYRE. Un Modele ttyperelastique- Plastique Euldrien Applicable aux Grandes Dtformations: Que/ques R~sultats 1-D. preprint, 1991. 2. P

  20. Analysis of stress-strain relationship in materials containing voids by means of plastic finite element method

    International Nuclear Information System (INIS)

    Shiraishi, Haruki; Tabuchi, Masaaki

    2000-01-01

    Applying the finite element method in two dimensions, an analysis is performed to derive the stress-strain relationship of material containing voids in matrix, and which is subjected to large deformation. The conditions assumed for the analysis are applicability of continuum body mechanics, Mises yield criterion, J2 flow theory, power work-hardening, plane stress in two-dimensional system and uniform cyclically recurring void distribution. Taking as example a case of material presenting 0.3 work-hardening, it is indicated from the analysis that: With voids arrayed in square lattice, total elongation would be little affected by change in void size; With a void spacing in lattice of 10 μ m, a uniform elongation 12-14% should be obtained in a wide range of void sizes from 0.01 to 8.0 μm; Tensile strength should start to lower at a void areal fraction of around 1%; A sharply lowered uniform elongation of a level far below 1% should be presented by material of low work-hardening exponent. The severe decline of ductility seen with 316 stainless steel upon neutron irradiation at temperatures around 600 K is interpreted as resulting from a combination of low work-hardening and the presence of voids in matrix. (author)

  1. Using Omega and NIF to Advance Theories of High-Pressure, High-Strain-Rate Tantalum Plastic Flow

    Science.gov (United States)

    Rudd, R. E.; Arsenlis, A.; Barton, N. R.; Cavallo, R. M.; Huntington, C. M.; McNaney, J. M.; Orlikowski, D. A.; Park, H.-S.; Prisbrey, S. T.; Remington, B. A.; Wehrenberg, C. E.

    2015-11-01

    Precisely controlled plasmas are playing an important role as both pump and probe in experiments to understand the strength of solid metals at high energy density (HED) conditions. In concert with theory, these experiments have enabled a predictive capability to model material strength at Mbar pressures and high strain rates. Here we describe multiscale strength models developed for tantalum and vanadium starting with atomic bonding and extending up through the mobility of individual dislocations, the evolution of dislocation networks and so on up to full scale. High-energy laser platforms such as the NIF and the Omega laser probe ramp-compressed strength to 1-5 Mbar. The predictions of the multiscale model agree well with the 1 Mbar experiments without tuning. The combination of experiment and theory has shown that solid metals can behave significantly differently at HED conditions; for example, the familiar strengthening of metals as the grain size is reduced has been shown not to occur in the high pressure experiments. Work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Lab under contract DE-AC52-07NA273.

  2. Log in and breathe out: internet-based recovery training for sleepless employees with work-related strain - results of a randomized controlled trial.

    Science.gov (United States)

    Thiart, Hanne; Lehr, Dirk; Ebert, David Daniel; Berking, Matthias; Riper, Heleen

    2015-03-01

    The primary purpose of this randomized controlled trial (RCT) was to evaluate the efficacy of a guided internet-based recovery training for employees who suffer from both work-related strain and sleep problems (GET.ON Recovery). The recovery training consisted of six lessons, employing well-established methods from cognitive behavioral therapy for insomnia (CBT-I) such as sleep restriction, stimulus control, and hygiene interventions as well as techniques targeted at reducing rumination and promoting recreational activities. In a two-arm RCT (N=128), the effects of GET.ON Recovery were compared to a waitlist-control condition (WLC) on the basis of intention-to-treat analyses. German teachers with clinical insomnia complaints (Insomnia Severity Index ≥15) and work-related rumination (Irritation Scale, cognitive irritation subscale ≥15) were included. The primary outcome measure was insomnia severity. Analyses of covariance (ANCOVA) revealed that, compared to the WLC, insomnia severity of the intervention group decreased significantly stronger (F=74.11, Ptraining significantly reduces sleep problems and fosters mental detachment from work and recreational behavior among adult stressed employees at post-test and 6-months follow up. Given the low threshold access this training could reach out to a large group of stressed employees when results are replicated in other studies.

  3. Recovery from ultraviolet light-induced inhibition of DNA synthesis requires umuDC gene products in recA718 mutant strains but not in recA+ strains of Escherichia coli

    International Nuclear Information System (INIS)

    Witkin, E.M.; Roegner-Maniscalco, V.; Sweasy, J.B.; McCall, J.O.

    1987-01-01

    Ultraviolet light (UV) inhibits DNA replication in Eschericia coli and induces the SOS response, a set of survival-enhancing phenotypes due to derepression of DNA damage-inducible genes, including recA and umuDC. Recovery of DNA synthesis after UV irradiation (induced replisome reactivation, or IRR) is an SOS function requiring RecA protein and postirradiation synthesis of additional protein(s), but this recovery does not require UmuDC protein. IRR occurs in strains carrying either recA718 (which does not reduce recombination, SOS inducibility, or UV mutagenesis) or umuC36 (which eliminates UV mutability), but not in recA718 umuC36 double mutants. In recA430 mutant strains, IRR does not occur whether or not functional UmuDC protein is present. IRR occurs in lexA-(Ind-) (SOS noninducible) strains if they carry an operator-constitutive recA allele and are allowed to synthesize proteins after irradiation. We conclude the following: (i) that UmuDC protein corrects or complements a defect in the ability of RecA718 protein (but not of RecA430 protein) to promote IRR and (ii) that in lexA(Ind-) mutant strains, IRR requires amplification of RecA+ protein (but not of any other LexA-repressed protein) plus post-UV synthesis of at least one other protein not controlled by LexA protein. We discuss the results in relation to the essential, but unidentified, roles of RecA and UmuDC proteins in UV mutagenesis

  4. Recovery of immune competence following sublethal irradiation: the role of the mouse strains, thymic function and aging

    International Nuclear Information System (INIS)

    Peterson, W.J.

    1976-01-01

    The bone marrow, thymus and lymphohematopoietic microenvironments are determining factors in recovery of immune competence following sublethal irradiation. Because of age-related degenerative changes in all of these parameters it was anticipated that immune competence of irradiated old mice would show an altered pattern of recovery. Therefore, three age groups (3-7, 15, and 23-34-months) of C57BL/6J mice were treated with either 250R, 500R or 600R. At various intervals thereafter their spleen cells were assessed for recovery of humoral and cell-mediated immunologic activity and for thymus derived (T-), bone marrow derived (B-) and stem-cell compartments. Two age groups (3-7 and 23-months) of C3H/Anf Cum mice were also treated with the two highest doses or irradiation and their spleen cells tested only for recovery of T- and B-cell compartments. The results showed that recovery of immune competence following 250R was independent of age

  5. Determination of three-dimensional stress orientations in the Wenchuan earthquake Fault Scientific Drilling (WFSD) hole-1: A preliminary result by anelastic strain recovery measurements of core samples

    Science.gov (United States)

    Cui, J.; Lin, W.; Wang, L.; Tang, Z.; Sun, D.; Gao, L.; Wang, W.

    2010-12-01

    A great and destructive earthquake (Ms 8.0; Mw 7.9), Wunchuan earthquake struck on the Longmen Shan foreland trust zone in Sichuan province, China on 12 May 2008 (Xu et al., 2008; Episodes, Vol.31, pp.291-301). As a rapid response scientific drilling project, Wenchuan earthquake Fault Scientific Drilling (WFSD) started on 6 November 2008 shorter than a half of year from the date of earthquake main shock. The first pilot borehole (hole-1) has been drilled to the target depth (measured depth 1201 m MD, vertical depth 1179 m) at Hongkou, Dujianyan, Sichuan and passed through the main fault of the earthquake around 589 m MD. We are trying to determine three dimensional in-situ stress states in the WFSD boreholes by a core-based method, anelastic strain recovery (ASR) method (Lin et al., 2006; Tectonophysics, Vol4.26, pp.221-238). This method has been applied in several scientific drilling projects (TCDP: Lin et al., 2007; TAO, Vol.18, pp.379-393; NanTtoSEIZE: Byrne et al., 2009; GRL, Vol.36, L23310). These applications confirm the validity of using the ASR technique in determining in situ stresses by using drilled cores. We collected total 15 core samples in a depth range from 340 m MD to 1180 m MD, approximately for ASR measurements. Anelastic normal strains, measured every ten minutes in nine directions, including six independent directions, were used to calculate the anelastic strain tensors. The data of the ASR tests conducted at hole-1 is still undergoing analysis. As a tentative perspective, more than 10 core samples showed coherent strain recovery over one - two weeks. However, 2 or 3 core samples cannot be re-orientated to the global system. It means that we cannot rink the stress orientation determined by the core samples to geological structure. Unfortunately, a few core samples showed irregular strain recovery and were not analyzed further. The preliminary results of ASR tests at hole-1 show the stress orientations and stress regime changes a lot with the

  6. A model for strain hardening, recovery, recrystallization and grain growth with applications to forming processes of nickel base alloys

    Czech Academy of Sciences Publication Activity Database

    Riedel, H.; Svoboda, Jiří

    2016-01-01

    Roč. 665, MAY (2016), s. 175-183 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Recrystallization * Recovery * Chaboche model Subject RIV: BJ - Thermodynamic s Impact factor: 3.094, year: 2016

  7. Recycling of packing plastics

    International Nuclear Information System (INIS)

    Gintenreiter-Koegl, S.

    2001-05-01

    The ordinance on the avoidance of packaging waste was a serious intervention in the public and private waste management in Austria. Above all the high expenses for an overall packaging waste collection and the recycling of packaging plastics were criticized. The landfill ordinance comes into force in 2004 and this means another major change in the Austrian waste management system. In the course of this change the overall collection and the recycling and recovery of waste streams, especially of the high caloric plastics waste, have to be discussed again. The goal of this work was on the one hand to develop and adapt the hydrocracking process for the recovery of mixed plastics waste and to show a possible application in Austria. On the other hand the work shows the technical, ecological and economical conditions for packaging plastics recycling and recovery in order to find optimum applications for the processes and to examine their contribution to a sustainable development. A hydrocracking test plant for the processing of mixed plastic wastes was built and had been running for about three years. The tests were carried out successfully and the suitability of the technology for the recovery of packaging plastics could be shown. Results show at least a 35 % yield of fuel. The hydrocracking technology is quite common in the oil industries and therefore an integration on a refinery site is suggested. (author)

  8. Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6

    International Nuclear Information System (INIS)

    Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.

    2017-01-01

    The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT) within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.

  9. Study on the unified constraint parameter for characterizing in-plane and out-of-plane constraint based on the equivalent plastic strain

    International Nuclear Information System (INIS)

    Yang Jie; Wang Guozhen; Xuan Fuzhen; Tu Shandong

    2013-01-01

    Background: Constraint can significantly alter the material's fracture toughness. Purpose: In order to increase accuracy of the structural integrity assessment. It needs to consider the effect of constraint on the fracture toughness of nuclear power materials and structures. A unified measure which can reflect both in-plane and out-of-plane constraint is needed. Methods: In this paper, the finite element numerical simulation method was used, a unified measure and characterization parameter of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain have been investigated. Results: The results show that the area surrounded by ε p isoline has a good relevance with the material's fracture toughness on different constraint conditions, so it may be a suitable parameter. Based on the area A PEEQ , a unified constraint characterization parameter √A p is defined. It was found that there exists a sole linear relation between the normalized fracture toughness J IC /J re f and √A p regardless of the in-plane, out-of-plane constraint and the selection of the p isolines. The sole J IC /J re f-√A p line exists for a certain material. For different materials, the slope of J IC /J re f-√A p reference line is different. The material whose slope is larger has a higher J IC /J re f and is more sensitive to constraint at the same magnitude of normalized unified parameter. Conclusions: The unified J IC /J re f -√A p reference line may be used to assess the safety of a cracked component with any constraint levels regardless of in-plane or out-of-plane constraint or both. (authors)

  10. The Effect of Specific Conditions on Cu, Ni, Zn and Al Recovery from PCBS Waste Using Acidophilic Bacterial Strains

    Directory of Open Access Journals (Sweden)

    Mrážiková A.

    2016-03-01

    Full Text Available The objective of this work was to evaluate the influence of static, stirring and shaking conditions on copper, zinc, nickel and aluminium dissolution from printed circuit boards (PCBs using the mixed acidophilic bacterial culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The results revealed that static conditions were the most effective in zinc and aluminium dissolution. Zinc was removed almost completely under static conditions, whereas maximum of nickel dissolution was reached under the stirring conditions. The highest copper recovery (36% was reached under stirring conditions. The shaking conditions appeared to be the least suitable. The relative importance of these systems for the bioleaching of copper and nickel decreased in the order: stirring, static conditions, shaking.

  11. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  12. Plastic Surgery

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Plastic Surgery KidsHealth / For Teens / Plastic Surgery What's in ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  13. Time-independent limit of a creep-recovery constitutive equation

    International Nuclear Information System (INIS)

    Chang, S.J.

    1984-01-01

    The effect of strain recovery is taken into consideration in ORNL efforts to establish unified constitutive equations for time-dependent plastic deformation for metals at elevated temperatures. Representation by internal state variables and Rice's flow potential are under consideration. Here the growth law for the internal state variables is discussed and interpreted in terms of a generalized form of the kinematic hardening condition of Prager. The yield condition is obtained from the flow potential representation of the inelastic strain rate. A consistency condition is derived from the yield condition and leads to a flow rule which assumes a slightly general form as compared with that of the classical plasticity due to the effect of strain recovery and the time-dependent property of the yield condition. Based on this representation, the time-independent limit is discussed. From a vanishing effect of recovery and a rate-independent limit for the yield condition at low temperature, this flow rule reduces to the well-known form of time-independent plasticity with a kinematic hardening condition. The duration of time (the characteristic time) required for the inelastic strain to reach its saturated value is defined for the inelastic loading condition. It provides the measure of a minimum duration of time which is required for a valid approximation made by the time-independent plasticity model

  14. Hamstring strain - aftercare

    Science.gov (United States)

    Pulled hamstring muscle; Sprain - hamstring ... There are 3 levels of hamstring strains: Grade 1 -- mild muscle strain or pull Grade 2 -- partial muscle tear Grade 3 -- complete muscle tear Recovery time depends ...

  15. Constitutively reduced sensory capacity promotes better recovery after spinal cord-injury (SCI) in blind rats of the dystrophic RCS strain.

    Science.gov (United States)

    Rink, Svenja; Bendella, Habib; Alsolivany, Kurdin; Meyer, Carolin; Woehler, Aliona; Jansen, Ramona; Isik, Zeynep; Stein, Gregor; Wennmachers, Sina; Nakamura, Makoto; Angelov, Doychin N

    2018-01-01

    We compared functional, electrophysiological and morphological parameters after SCI in two groups of rats Sprague Dawley (SD) rats with normal vision and blind rats from a SD-substrain "Royal College of Surgeons" (SD/RCS) who lose their photoreceptor cells after birth due to a genetic defect in the retinal pigment epithelium. For these animals skin-, intramuscular-, and tendon receptors are major available means to resolve spatial information. The purpose of this study was to check whether increased sensitivity in SD/RCS rats would promote an improved recovery after SCI. All rats were subjected to severe compression of the spinal cord at vertebra Th8, spinal cord segment Th10. Recovery of locomotion was analyzed at 1, 3, 6, 9, and 12 weeks after SCI using video recordings of beam walking and inclined ladder climbing. Five functional parameters were studied: foot-stepping angle (FSA), rump-height index (RHI) estimating paw placement and body weight support, respectively, number of correct ladder steps (CLS) assessing skilled hindlimb movements, the BBB-locomotor score and an established urinary bladder score (BS). Sensitivity tests were followed by electrophysiological measurement of M- and H-wave amplitudes from contractions of the plantar musculature after stimulation of the tibial nerve. The closing morphological measurements included lesion volume and expression of astro- and microglia below the lesion. Numerical assessments of BBB, FSA, BS, lesion volume and GFAP-expression revealed no significant differences between both strains. However, compared to SD-rats, the blind SD/RCS animals significantly improved RHI and CLS by 6 - 12 weeks after SCI. To our surprise the withdrawal latencies in the blind SD/RCS rats were longer and the amplitudes of M- and H-waves lower. The expression of IBA1-immunoreactivity in the lumbar enlargement was lower than in the SD-animals. The longer withdrawal latencies suggest a decreased sensitivity in the blind SD/RCS rats, which

  16. Influence of plastic strain localization on the stress corrosion cracking of austenitic stainless steels; Influence de la localisation de la deformation plastique sur la CSC d'aciers austenitiques inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Cisse, S.; Tanguy, B. [CEA Saclay, DEN, SEMI, 91 - Gif-sur-Yvette (France); Andrieu, E.; Laffont, L.; Lafont, M.Ch. [Universite de Toulouse. CIRIMAT, UPS/INPT/CNRS, 31 - Toulous (France)

    2010-03-15

    The authors present a research study of the role of strain localization on the irradiation-assisted stress corrosion cracking (IASCC) of vessel steel in PWR-type (pressurized water reactor) environment. They study the interaction between plasticity and intergranular corrosion and/or oxidation mechanisms in austenitic stainless steels with respect to sublayer microstructure transformations. The study is performed on three austenitic stainless grades which have not been sensitized by any specific thermal treatment: the A286 structurally hardened steel, and the 304L and 316L austenitic stainless steels

  17. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  18. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  19. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  20. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Mapping cortical hand motor representation using TMS: A method to assess brain plasticity and a surrogate marker for recovery of function after stroke?

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Nowak, Dennis Alexander

    2016-10-01

    Stroke is associated with reorganization within motor areas of both hemispheres. Mapping the cortical hand motor representation using transcranial magnetic stimulation may help to understand the relationship between motor cortex reorganization and motor recovery of the affected hand after stroke. A standardized review of the pertinent literature was performed. We identified 20 trials, which analyzed the relationship between the extent and/or location of cortical hand motor representation using transcranial magnetic stimulation and motor function and recovery of the affected hand. Several correlations were found between cortical reorganization and measures of hand motor impairment and recovery. A better understanding of the relationships between the extent and location of cortical hand motor representation and the motor impairment and motor recovery of the affected hand after stroke may contribute to a targeted use of non-invasive brain stimulation protocols. In the future motor mapping may help to guide brain stimulation techniques to the most effective motor area in an affected individual. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique

    International Nuclear Information System (INIS)

    Satheesh Kumar, S.S.; Raghu, T.

    2014-01-01

    Highlights: • High purity aluminium sheets constrained groove pressed up to plastic strain of 5.8. • Microstructural evolution studied by TEM and X-ray diffraction profile analysis. • Ultrafine grained structure with grain size ∼900 nm achieved in sheets. • Yield strength increased by 5.3 times and tensile strength doubled after first pass. • Enhanced deformation homogeneity seen with increased accumulated plastic strain. - Abstract: High purity aluminium sheets (∼99.9%) are subjected to intense plastic straining by constrained groove pressing method successfully up to 5 passes thereby imparting an effective plastic strain of 5.8. Transmission electron microscopy studies of constrained groove pressed sheets divulged significant grain refinement and the average grain sizes obtained after five pass is estimated to be ∼0.9 μm. In addition to that, microstructural evolution of constrained groove pressed sheets is characterized by X-ray diffraction peak profile analysis employing Williamson–Hall method and the results obtained fairly concur with electron microscopy findings. The tensile behaviour evolution with increased straining indicates substantial improvement of yield strength by ∼5.3 times from 17 MPa to 90 MPa during first pass corroborated to grain refinement observed. Marginal increase in strengths is noticed during second pass followed by minor drop in strengths attributed to predominance of dislocation recovery is noticed in subsequent passes. Quantitative assessment of degree of deformation homogeneity using microhardness profiles reveal relatively better strain homogeneity at higher number of passes

  3. Robust Return Algorithm for Anisotropic Plasticity Models

    DEFF Research Database (Denmark)

    Tidemann, L.; Krenk, Steen

    2017-01-01

    Plasticity models can be defined by an energy potential, a plastic flow potential and a yield surface. The energy potential defines the relation between the observable elastic strains ϒe and the energy conjugate stresses Τe and between the non-observable internal strains i and the energy conjugat...

  4. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required

  5. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  6. The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the biovar ovis and equi strains

    DEFF Research Database (Denmark)

    Soares, Siomar C; Silva, Artur; Trost, Eva

    2013-01-01

    , Corynebacterium pseudotuberculosis infections pose a rising worldwide economic problem in ruminants. The complete genome sequences of 15 C. pseudotuberculosis strains isolated from different hosts and countries were comparatively analyzed using a pan-genomic strategy. Phylogenomic, pan-genomic, core genomic...

  7. The role of creep in stress strain curves for copper

    International Nuclear Information System (INIS)

    Sandström, Rolf; Hallgren, Josefin

    2012-01-01

    Highlights: ► A dislocation based model takes into account both dynamic and static recovery. ► Tests at constant load and at constant strain rate modelled without fitting parameters. ► The model can describe primary and secondary creep of Cu-OFP from 75 to 250 °C. ► The temperature and strain rate dependence of stress strain curves can be modelled. ► Intended for the slow strain rates in canisters for storage of nuclear waste. - Abstract: A model for plastic deformation in pure copper taking work hardening, dynamic recovery and static recovery into account, has been formulated using basic dislocation mechanisms. The model is intended to be used in finite-element computations of the long term behaviour of structures in Cu-OFP for storage of nuclear waste. The relation between the strain rate and the maximum flow stress in the model has been demonstrated to correspond to strain rate versus stress in creep tests for oxygen free copper alloyed with phosphorus Cu-OFP. A further development of the model can also represent the primary and secondary stage of creep curves. The model is compared to stress strain curves in compression and tension for Cu-OFP. The compression tests were performed at room temperature for strain rates between 5 × 10 −5 and 5 × 10 −3 s −1 . The tests in tension covered the temperature range 20–175 °C for strain rates between 1 × 10 −7 and 1 × 10 −4 s −1 . Consequently, it is demonstrated that the model can represent mechanical test data that have been generated both at constant load and at constant strain rate without the use of any fitting parameters.

  8. Experimental investigation on transformation, reorientation and plasticity of Ni47Ti44Nb9 SMA under biaxial thermal–mechanical loading

    International Nuclear Information System (INIS)

    Chen, Xiang; Peng, Xianghe; Chen, Bin; Han, Jia; Zeng, Zhongmin; Hu, Ning

    2015-01-01

    The constitutive behavior of shape memory alloy (SMA) Ni 47 Ti 44 Nb 9 specimens subjected to different thermal–mechanical loading histories was investigated experimentally. This involved the application of strain by different proportional or non-proportional paths in the biaxial ϵ−γ plane at −60 °C (M s + 30 °C), the interaction between stress-induced martensitic transformation, reorientation and plastic deformation, temperature-induced reverse martensitic transformation and strain recovery. The results show that the equivalent stress–strain curves, as well as the pure shear and pure tensile curves, depend strongly on the thermal–mechanical loading history. For specimens deformed previously to the same equivalent strains by different paths, the equivalent recovery strains after unloading are similar, as are the spans between the reverse transformation start and final temperatures. The activated martensite variants depend strongly on loading history. The recovery of the axial strain component and that of the shear strain component due to reverse transformation occur synchronously and develop along the shortest path in the ϵ−γ plane. The results may provide some new and useful information on the effects of transformation, plasticity and loading paths for further studies and applications of such materials. (paper)

  9. Acidogenic fermentation of the organic fraction of municipal solid waste and cheese whey for bio-plastic precursors recovery - Effects of process conditions during batch tests.

    Science.gov (United States)

    Girotto, Francesca; Lavagnolo, Maria Cristina; Pivato, Alberto; Cossu, Raffaello

    2017-12-01

    The problem of fossil fuels dependency is being addressed through sustainable bio-fuels and bio-products production worldwide. At the base of this bio-based economy there is the efficient use of biomass as non-virgin feedstock. Through acidogenic fermentation, organic waste can be valorised in order to obtain several precursors to be used for bio-plastic production. Some investigations have been done but there is still a lack of knowledge that must be filled before moving to effective full scale plants. Acidogenic fermentation batch tests were performed using food waste (FW) and cheese whey (CW) as substrates. Effects of nine different combinations of substrate to inoculum (S/I) ratio (2, 4, and 6) and initial pH (5, 7, and 9) were investigated for metabolites (acetate, butyrate, propionate, valerate, lactate, and ethanol) productions. Results showed that the most abundant metabolites deriving from FW fermentation were butyrate and acetate, mainly influenced by the S/I ratio (acetate and butyrate maximum productions of 21.4 and 34.5g/L, respectively, at S/I=6). Instead, when dealing with CW, lactate was the dominant metabolite significantly correlated with pH (lactate maximum production of 15.7g/L at pH = 9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of Plastic Pre-straining on Residual Stress and Composition Profiles in Low-Temperature Surface-Hardened Austenitic Stainless Steel

    DEFF Research Database (Denmark)

    Bottoli, Federico; Christiansen, Thomas Lundin; Winther, Grethe

    2016-01-01

    The present work deals with the evaluation of the residual stress profiles in expanded austenite by applying grazing incidence X-ray diffraction (GI-XRD) combined with successive sublayer removal. Annealed and deformed (εeq=0.5) samples of stable stainless steel EN 1.4369 were nitrided...... or nitrocarburized. The residual stress profiles resulting from the thermochemical low-temperature surface treatment were measured. The results indicate high-residual compressive stresses of several GPa’s in the nitrided region, while lower-compressive stresses are produced in the carburized case. Plastic...... deformation in the steel prior to thermochemical treatment has a hardly measurable influence on the nitrogen-rich zone, while it has a measurable effect on the stresses and depth of the carbon-rich zone....

  11. Strain gradient effects in surface roughening

    DEFF Research Database (Denmark)

    Borg, Ulrik; Fleck, N.A.

    2007-01-01

    evidence for strain gradient effects. Numerical analyses of a bicrystal undergoing in-plane tensile deformation are also studied using a strain gradient crystal plasticity theory and also by using a strain gradient plasticity theory for an isotropic solid. Both theories include an internal material length...

  12. Transcranial direct current stimulation (tDCS) Paired with massed practice training to promote adaptive plasticity and motor recovery in chronic incomplete tetraplegia: a pilot study.

    Science.gov (United States)

    Potter-Baker, Kelsey A; Janini, Daniel P; Lin, Yin-Liang; Sankarasubramanian, Vishwanath; Cunningham, David A; Varnerin, Nicole M; Chabra, Patrick; Kilgore, Kevin L; Richmond, Mary Ann; Frost, Frederick S; Plow, Ela B

    2017-08-07

    Objective Our goal was to determine if pairing transcranial direct current stimulation (tDCS) with rehabilitation for two weeks could augment adaptive plasticity offered by these residual pathways to elicit longer-lasting improvements in motor function in incomplete spinal cord injury (iSCI). Design Longitudinal, randomized, controlled, double-blinded cohort study. Setting Cleveland Clinic Foundation, Cleveland, Ohio, USA. Participants Eight male subjects with chronic incomplete motor tetraplegia. Interventions Massed practice (MP) training with or without tDCS for 2 hrs, 5 times a week. Outcome Measures We assessed neurophysiologic and functional outcomes before, after and three months following intervention. Neurophysiologic measures were collected with transcranial magnetic stimulation (TMS). TMS measures included excitability, representational volume, area and distribution of a weaker and stronger muscle motor map. Functional assessments included a manual muscle test (MMT), upper extremity motor score (UEMS), action research arm test (ARAT) and nine hole peg test (NHPT). Results We observed that subjects receiving training paired with tDCS had more increased strength of weak proximal (15% vs 10%), wrist (22% vs 10%) and hand (39% vs. 16%) muscles immediately and three months after intervention compared to the sham group. Our observed changes in muscle strength were related to decreases in strong muscle map volume (r=0.851), reduced weak muscle excitability (r=0.808), a more focused weak muscle motor map (r=0.675) and movement of weak muscle motor map (r=0.935). Conclusion Overall, our results encourage the establishment of larger clinical trials to confirm the potential benefit of pairing tDCS with training to improve the effectiveness of rehabilitation interventions for individuals with SCI. Trial Registration NCT01539109.

  13. Change and anisotropy of elastic modulus in sheet metals due to plastic deformation

    Science.gov (United States)

    Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.

  14. Elastic and plastic strains and the stress corrosion cracking of austenitic stainless steels. Progress report, April 30, 1975--December 30, 1975

    International Nuclear Information System (INIS)

    Troiano, A.R.

    1975-12-01

    Homogeneous deformation of type 310 austenitic stainless steel only slightly influenced the corrosion potential in a boiling 3 percent NaCl aqueous environment. The difference in a deaerated solution was of the order of 25 mV and somewhat more for an aerated solution. Elastic strains appeared to have little or no influence on the corrosion potential for fully annealed as well as 10 percent and 25 percent homogeneously deformed 310 steel. Oxygen in the environment shifted the corrosion potential several hundred millivolts in the less active direction. The critical cracking potential in a deaerated 3 percent NaCl solution was approximately the same for the annealed and homogeneously deformed specimens at approximately -125 mV SCE

  15. Correlations between plastic deformation parameters and radiation detector quality in HgI2

    International Nuclear Information System (INIS)

    Georgeson, G.; Milstein, F.; California Univ., Santa Barbara

    1989-01-01

    Mercuric iodide radiation detectors of various grades of quality were subjected to shearing forces in the (001) crystallographic planes using a specially designed micromechanical shear testing fixture. Experimental measurements were made of (001) shear stress versus shear strain. Each of the stress-strain curves was described by two empirically determined deformation parameters, s 0 and σ, where s 0 is a measure of 'bulk yielding' and σ indicates the 'sharpness of yielding' during plastic deformation. It was observed that the deformation parameters of many HgI 2 single crystal samples fit the relation s 0 =8σ 2/3 and that significant deviation from this relation, with s 0 >8σ 2/3 , indicates poor detector quality. Work hardening by prior plastic deformation was also found to cause s 0 to depart (in an increasing manner) from the 8σ 2/3 relation. For good quality material that has not previously been plastically deformed, the deformation parameter s c =s 0 -2σ<19 psi; this parameter can be interpreted as the 'onset of plastic yielding'. The results are discussed in terms of dislocation mechanisms for plastic deformation, work hardening, and recovery of work hardening. (orig.)

  16. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  17. Grain Interactions in Crystal Plasticity

    International Nuclear Information System (INIS)

    Boyle, K.P.; Curtin, W.A.

    2005-01-01

    The plastic response of a sheet metal is governed by the collective response of the underlying grains. Intragranular plasticity depends on intrinsic variables such as crystallographic orientation and on extrinsic variables such as grain interactions; however, the role of the latter is not well understood. A finite element crystal plasticity formulation is used to investigate the importance of grain interactions on intragranular plastic deformation in initially untextured polycrystalline aggregates. A statistical analysis reveals that grain interactions are of equal (or more) importance for determining the average intragranular deviations from the applied strain as compared to the orientation of the grain itself. Furthermore, the influence of the surrounding grains is found to extend past nearest neighbor interactions. It is concluded that the stochastic nature of the mesoscale environment must be considered for a proper understanding of the plastic response of sheet metals at the grain-scale

  18. PLASTIC SURGERY

    African Journals Online (AJOL)

    Department of Plastic and Reconstructive Surgery Sefako Makgatho Health Science University, ... We report on a pilot study on the use of a circumareolar excision and the use of .... and 1 gynecomastia patient) requested reduction in NAC size.

  19. Introduction to Computational Plasticity

    International Nuclear Information System (INIS)

    Hartley, P

    2006-01-01

    The focus of the book on computational plasticity embodies techniques of relevance not only to academic researchers, but also of interest to industrialists engaged in the production of components using bulk or sheet forming processes. Of particular interest is the guidance on how to create modules for use with the commercial system Abaqus for specific types of material behaviour. The book is in two parts, the first of which contains six chapters, starting with microplasticity, but predominantly on continuum plasticity. The first chapter on microplasticty gives a brief description of the grain structure of metals and the existence of slip systems within the grains. This provides an introduction to the concept of incompressibility during plastic deformation, the nature of plastic yield and the importance of the critically resolved shear stress on the slip planes (Schmid's law). Some knowledge of the notation commonly used to describe slip systems is assumed, which will be familiar to students of metallurgy, but anyone with a more general engineering background may need to undertake additional reading to understand the various descriptions. Chapter two introduces one of several yield criteria, that normally attributed to von Mises (though historians of mechanics might argue over who was first to develop the theory of yielding associated with strain energy density), and its two or three-dimensional representation as a yield surface. The expansion of the yield surface during plastic deformation, its translation due to kinematic hardening and the Bauschinger effect in reversed loading are described with a direct link to the material stress-strain curve. The assumption, that the increment of strain is normal to the yield surface, the normality principle, is introduced. Uniaxial loading of an elastic-plastic material is used as an example in which to develop expressions to describe increments in stress and strain. The full presentation of numerous expressions, tensors and

  20. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  1. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  2. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  3. Low-temperature resistance of cyclically strained aluminum

    International Nuclear Information System (INIS)

    Segal, H.R.; Richard, T.G.

    1977-01-01

    An experimental study of the resistance changes in high-purity, reinforced aluminum due to cyclic straining is presently underway. The purpose of this work is to determine the optimum purity of aluminum to be used as a stabilizing material for superconducting magnets used for energy storage. Since pure aluminum has a low yield strength, it is not capable of supporting the stress levels in an energized magnet. Therefore, it has been bonded to a high-strength material--in this case, 6061 aluminum alloy. This bonding permits pure aluminum to be strained cyclically beyond its elastic limit with recovery of large plastic strains upon release of the load. The resistance change in this composite material is less than that of pure, unreinforced aluminum

  4. Phyllosphere yeasts rapidly break down biodegradable plastics.

    Science.gov (United States)

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-11-29

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.

  5. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  6. Evaluation of initiation behavior of stress corrosion cracking for type 316L stainless steel in high temperature water. Behavior of crack initiation and effects of distribution of plastic strain on crack initiation

    International Nuclear Information System (INIS)

    Miura, Yasufumi; Miyahara, Yuichi; Kako, Kenji; Sato, Masaru

    2011-01-01

    It is known that the initiation of stress corrosion cracking (SCC) in components such as the reactor core shroud and primary loop re-circulation piping made of L-grade stainless steel is affected by the properties of surface work hardened layer. Therefore, it is important to clarify the effect of the hardened layer on SCC initiation behavior. In this study, creviced bent beam (CBB) test using specimens made of Type 316L stainless steel with controlled distribution of surface work hardened layer was conducted in a simulated BWR environment in order to evaluate the effect of the controlled layer on SCC initiation behavior. The results obtained are as follows; (1) Micro intergranular SCC of low carbon stainless steel was initiated in 50 hours. (2) In this SCC test, it was found that only micro cracks whose depths were smaller than 50 μm were observed until 250 hours and cracks whose depths were larger than 50 μm were observed after 500 hours. (3) SCC was initiated preferentially on the region with high plastic strain gradient in the specimen with controlled distribution of work hardened layer. (author)

  7. Avalanches and plastic flow in crystal plasticity: an overview

    Science.gov (United States)

    Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr

    2018-01-01

    Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.

  8. Candidate genes in ocular dominance plasticity

    NARCIS (Netherlands)

    Rietman, M.L.; Sommeijer, J.-P.; Levelt, C.N.; Heimel, J.A.; Brussaard, A.B.; Borst, J.G.G.; Elgersma, Y.; Galjart, N.; van der Horst, G.T.; Pennartz, C.M.; Smit, A.B.; Spruijt, B.M.; Verhage, M.; de Zeeuw, C.I.

    2012-01-01

    Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated

  9. A linear model of ductile plastic damage

    International Nuclear Information System (INIS)

    Lemaitre, J.

    1983-01-01

    A three-dimensional model of isotropic ductile plastic damage based on a continuum damage variable on the effective stress concept and on thermodynamics is derived. As shown by experiments on several metals and alloys, the model, integrated in the case of proportional loading, is linear with respect to the accumulated plastic strain and shows a large influence of stress triaxiality [fr

  10. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  11. Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties

    Science.gov (United States)

    Khalili, N.; Asif, H.; Naguib, H. E.

    2018-05-01

    Electrospun polymeric fibers can be used as strain sensors due to their large surface to weight/volume ratio, high porosity and pore interconnectivity. Large strain flexible strain sensors are used in numerous applications including rehabilitation, health monitoring, and sports performance monitoring where large strain detection should be accommodated by the sensor. This has boosted the demand for a stretchable, flexible and highly sensitive sensor able to detect a wide range of mechanically induced deformations. Herein, a physically cross-linked polylactic acid (PLA) and thermoplastic polyurethane (TPU) blend is made into nanofiber networks via electrospinning. The PLA/TPU weight ratio is optimized to obtain a maximum attainable strain of 100% while maintaining its mechanical integrity. The TPU/PLA fibers also allowed for their thermally activated recovery due to shape memory properties of the substrate. This novel feature enhances the sensor’s performance as it is no longer limited by its plastic deformation. Using spray coating method, a homogeneous layer of single-walled carbon nanotube is deposited onto the as-spun fiber mat to induce electrical conductivity to the surface of the fibers. It is shown that stretching and bending the sensor result in a highly sensitive and linear response with a maximum gauge factor of 33.

  12. Magical Engineering Plastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwang Ung

    1988-01-15

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  13. Magical Engineering Plastic

    International Nuclear Information System (INIS)

    Kim, Gwang Ung

    1988-01-01

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  14. PLASTIC SURGERY

    African Journals Online (AJOL)

    fixation of fractures, wound debridement and reconstruction of soft tissue ... Soft tissue coverage of lower limb wounds may include one or the ... The recovery is lengthy, and the outcome dependent on the initial injury, the surgical procedures.

  15. Recycling of plastics in Germany

    International Nuclear Information System (INIS)

    Thienen, N. von; Patel, M.

    1999-01-01

    This article deals with the waste management of post-consumer plastics in Germany and its potential to save fossil fuels and reduce CO 2 emissions. Since most experience is available for packaging, the paper first gives an overview of the legislative background and the material flows for this sector. Then recycling and recovery processes for plastics waste from all sectors are assessed in terms of their contribution to energy saving and CO 2 abatement. Practically all the options studied show a better performance than waste treatment in an average incinerator which has been chosen as the reference case. High ecological benefits can be achieved by mechanical recycling if virgin polymers are substituted. The paper then presents different scenarios for managing plastic waste in Germany in 1995: considerable savings can be made by strongly enhancing the efficiency of waste incinerators. Under these conditions the distribution of plastics waste among mechanical recycling, feedstock recycling and energy recovery has a comparatively mall impact on the overall results. The maximum savings amount to 74 PJ of energy, i.e, 9% of the chemical sector energy demand in 1995 and 7.0 Mt CO 2 , representing 13% of the sector's emissions. The assessment does not support a general recommendation of energy recovery due to the large difference between the German average and the best available municipal waste-to-energy facilities and also due to new technological developments in the field of mechanical recycling

  16. Effect of plastic straining on the F and M centres kinetics in {gamma}-irradiated NaCl; Efecto de la deformacion plastica sobre la Cinetica de Centro de color F y M en NaCl, irradiado con rayos {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Agullo Lopez, F

    1966-07-01

    The effect of plastic straining on the room-temperature F and H growth curves in a {gamma}-radiation field has been analyzed. Cristal are strained after F-saturation is reached and then irradiation is continued. The new F growth curve consists of an initial fast growing stage due to additional vacancies created by deformation being turned into F centre, followed by a linear stage. Its slope is higher than that prior to straining. Also the role of straining on M centre thermal decay as well as on the F{yields}M reaction under F light, has been investigated. This reaction has been shown to preferentially occur where intense gliding has developed. (Author) 44 refs.

  17. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  18. Pervasive plastic

    Science.gov (United States)

    2018-05-01

    Human manipulation of hydrocarbons — as fuel and raw materials for modern society — has changed our world and the indelible imprint we will leave in the rock record. Plastics alone have permeated our lives and every corner of our planet.

  19. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  20. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  1. Plasticity - a limiting case of creep

    International Nuclear Information System (INIS)

    Cords, H.; Kleist, G.; Zimmermann, R.

    1986-11-01

    The present work is an attempt to develop further the so-called unified theory for viscoplastic constitutive equations as used for metals or metal alloys. Typically, in similar approaches creep strains and plastic strains are derived from one common stress-strain relationship for inelastic strain rates employing an internal stress function as a back stress. Some novel concepts concerning the definition of the internal stress, plastic yielding and material hardening have been introduced, formulated mathematically and tested for correspondence with a standard type of materials behaviour. As a result of the investigations a system of simultaneous differential equations is defined which has been used to elaborate a common view on a number of different material effects observed in creep and plasticity i.e. normal and inverted primary creep, recoverable creep, incubation time and anelasticity in stress reduction, negative stress relaxation, plastic yielding, perfect plasticity, negative strain rate sensitivity, serrated flow, strain hardening in monotonic and cyclic loading. The theoretical approach is mainly based on a lateral contraction movement not following rigidly the longitudinal extension of the material specimen by a prescribed constant value of Poisson's ratio as usual, but following the axial extension in a process of drag which allows for retardation and which simultaneously impedes the longitudinal straining. (orig.) [de

  2. Recrystallization induced plasticity in austenite and ferrite

    International Nuclear Information System (INIS)

    Huang Mingxin; Pineau, André; Bouaziz, Olivier; Vu, Trong-Dai

    2012-01-01

    Highlights: ► Plasticity can be induced by recrystallization in austenite and ferrite. ► Strain rate is proportional to recrystallization kinetics. ► Overall atomic flux selects a preferential direction may be the origin. - Abstract: New experimental evidences are provided to demonstrate that plastic strain can be induced by recrystallization in austenite and ferrite under an applied stress much smaller than their yield stresses. Such Recrystallization Induced Plasticity (RIP) phenomenon occurs because the overall atomic flux during recrystallization follows a preferential direction imposed by the applied stress.

  3. On generalization uniaxial stress-strain relation

    International Nuclear Information System (INIS)

    Sahay, C.; Dubey, R.N.

    1980-01-01

    Different forms of constitutive relations have been advanced for elastic, plastic and elastic-plastic behaviour of materials. It is shown that the various forms of the stress-strain relationship are specialized forms of generalization of a single stress-strain relation. For example, it is shown how the laws of elastic deformation, and the incremental and total deformation relationship for plastic behaviour are derivable from the Ramberg-Osgood relation. (orig.)

  4. plastic waste recycling

    African Journals Online (AJOL)

    Dr Ahmed

    incinerators is increasing around the world. Discarded plastic products ... Agency (EPA) estimated that the amount of plastics throw away is. 50 % greater in the ... The waste plastics were identified using the Society of the Plastic. Industry (SPI) ...

  5. Crack tip stress and strain

    International Nuclear Information System (INIS)

    Francois, D.

    1975-01-01

    The study of potential energy variations in a loaded elastic solid containing a crack leads to determination of the crack driving force G. Generalization of this concept to cases other than linear elasticity leads to definition of the integral J. In a linear solid, the crack tip stress field is characterized by a single parameter: the stress-intensity factor K. When the crack tip plastic zone size is confined to the elastic singularity J=G, it is possible to establish relationship between these parameters and plastic strain (and in particular the crack tip opening displacement delta). The stress increases because of the triaxiality effect. This overload rises with increasing strain hardening. When the plastic zone size expands, using certain hypotheses, delta can be calculated. The plastic strain intensity is exclusively dependent on parameter J [fr

  6. The effect of strain rate and temperature on the elevated temperature tensile flow behavior of service-exposed 2.25Cr-1Mo steel

    International Nuclear Information System (INIS)

    Girish Shastry, C.; Parameswaran, P.; Mathew, M.D.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2007-01-01

    The elevated temperature tensile flow behavior of service-exposed 2.25Cr-1Mo steel has been critically examined with respect to strain rate sensitivity (m) and apparent activation energy (Q) for tensile deformation. The predominant role of forest dislocations in determining the relative flow response at true plastic strains greater than 0.01 is inferred from the profile of 'm' against flow stress. The variation of 'm' with temperature and strain is discussed based on the kinetics of dislocation generation and recovery. The decrease in Q with the increase in strain rate or temperature is attributed to the increase in recovery processes like dislocation annihilation and subcell/subgrain formation. This suggestion has been supported by transmission electron microscopy

  7. Modelling of elasto-plastic material behaviour

    International Nuclear Information System (INIS)

    Halleux, J.P.

    1981-01-01

    The present report describes time-independent elasto-plastic material behaviour modelling techniques useful for implementation in fast structural dynamics computer programs. Elasto-plastic behaviour is characteristic for metallic materials such as steel and is thus of particular importance in the study of reactor safety-related problems. The classical time-independent elasto-plastic flow theory is recalled and the fundamental incremental stress-strain relationships are established for strain rate independent material behaviour. Some particular expressions useful in practice and including reversed loading are derived and suitable computational schemes are shwon. Modelling of strain rate effects is then taken into account, according to experimental data obtained from uniaxial tension tests. Finally qualitative strain rate history effects are considered. Applications are presented and illustrate both static and dynamic material behaviour

  8. Experimental evaluation of the interaction effect between plastic and creep deformation

    International Nuclear Information System (INIS)

    Ikegami, K.; Niitsu, Y.

    1985-01-01

    An experimental study of plasticity-creep interaction effects is reported. The combined stress tests are performed on thin wall tubular specimens of SUS 304 stainless steel at room temperature and high temperature (600 0 C). The plastic behaviors subsequent to creep pre-strain and creep behaviors subsequent to plastic pre-strain are obtained for loading along straight stress paths with a corner. The inelastic behaviors including both plastic and creep deformations are experimentally investigated. The interaction effects between plastic and creep deformations are quantitatively estimated with the equi-plastic strain surface. (author)

  9. Exercise and plasticize the brain

    DEFF Research Database (Denmark)

    Mala, Hana; Wilms, Inge

    Neuroscientific studies continue to shed light on brain’s plasticity and its innate mechanisms to recover. The recovery process includes re-wiring of the existing circuitry, establishment of new connections, and recruitment of peri-lesional and homologous areas in the opposite hemisphere....... The plasticity of the brain can be stimulated and enhanced through training, which serves as a fundamental element of neurorehabilitative strategies. For instance, intensive cognitive and physical training promote the activation of processes that may help the brain to adapt to new conditions and needs. However...... neurorehabilitation is to understand and define how to stimulate the injured brain to elicit the desired adaptation. Research focuses on uncovering specific elements relevant for training planning and execution in order to create an environment that stimulates and maximizes the exploitation of the brain’s plastic...

  10. Electron microscopy and plastic deformation of industrial austenitic stainless steels

    International Nuclear Information System (INIS)

    Thomas, Barry

    1976-01-01

    The different mechanisms of plastic deformation observed in austenitic stainless steels are described and the role of transmission electron microscopy in the elucidation of the mechanisms is presented. At temperatures below 0,5Tm, different variants of dislocation glide are competitive: slip of perfect and partial dislocations, mechanical twinning and strain-induced phase transformations. The predominance of one or other of these mechanisms can be rationalized in terms of the temperature and composition dependence of the stacking fault energy and the thermodynamic stability of the austenite. At temperatures above 0,5Tm dislocation climb and diffusion of point defects become increasingly important and at these temperatures recovery, recrystallization and precipitation can also occur during deformation [fr

  11. Takotsubo cardiomyopathy in the case of 72-year-old teacher after work-related psychological stress. Evolution of left ventricular longitudinal strain - Delayed but complete recovery in automated function imaging (AFI).

    Science.gov (United States)

    Wierzbowska-Drabik, Karina; Marcinkiewicz, Andrzej; Hamala, Piotr; Trzos, Ewa; Lipiec, Piotr; Kurpesa, Małgorzata; Kręcki, Radosław; Plewka, Michał; Kasprzak, Jarosław D

    2017-06-19

    Takotsubo cardiomyopathy (TC) is related to a transient systolic dysfunction of left ventricle (LV), accompanied by clinical and electrocardiographic symptoms of myocardial ischemia in the absence of hemodynamically significant coronary artery disease. Takotsubo cardiomyopathy is usually provoked by a psychologically or/and physically stressful event which may be related to occupational activities. Although visually assessed evolution of LV function is well documented, the data concerning strain changes is sparse and various patterns of deformation abnormalities are suggested. We have described a 72-year-old woman with chest pain related to a lecture given at the meeting of the Senior University, fulfilling all the Mayo Clinic criteria of the TC. The longitudinal strain analysis with automated function imaging (AFI) documented severe impairment and stepwise recovery of regional and global LV contractility. The case described confirms that accurate diagnosis, treatment and documenting of functional improvement in takotsubo cardiomyopathy may enable the return to occupational activities even for elderly persons. Int J Occup Med Environ Health 2017;30(4):681-683. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. Takotsubo cardiomyopathy in the case of 72-year-old teacher after work-related psychological stress. Evolution of left ventricular longitudinal strain – Delayed but complete recovery in automated function imaging (AFI

    Directory of Open Access Journals (Sweden)

    Karina Wierzbowska-Drabik

    2017-08-01

    Full Text Available Takotsubo cardiomyopathy (TC is related to a transient systolic dysfunction of left ventricle (LV, accompanied by clinical and electrocardiographic symptoms of myocardial ischemia in the absence of hemodynamically significant coronary artery disease. Takotsubo cardiomyopathy is usually provoked by a psychologically or/and physically stressful event which may be related to occupational activities. Although visually assessed evolution of LV function is well documented, the data concerning strain changes is sparse and various patterns of deformation abnormalities are suggested. We have described a 72-year-old woman with chest pain related to a lecture given at the meeting of the Senior University, fulfilling all the Mayo Clinic criteria of the TC. The longitudinal strain analysis with automated function imaging (AFI documented severe impairment and stepwise recovery of regional and global LV contractility. The case described confirms that accurate diagnosis, treatment and documenting of functional improvement in takotsubo cardiomyopathy may enable the return to occupational activities even for elderly persons. Int J Occup Med Environ Health 2017;30(4:681–683

  13. Biological opportunities for metal recovery

    International Nuclear Information System (INIS)

    Holmes, D.S.; Debus, S.H.

    1991-01-01

    An overview is presented of existing biological technologies for the recovery of copper and uranium. Engineering and biological challenges and opportunities in these areas are discussed. New opportunities for the bio oxidation of refractory goal ore are described. Techniques for the development of new strains of microorganisms for commercial metal recovery applications are discussed with special reference to the use of genetic manipulation for bacterial strain improvement. (author)

  14. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  15. Environmental evaluation of plastic waste management scenarios

    DEFF Research Database (Denmark)

    Rigamonti, L.; Grosso, M.; Møller, Jacob

    2014-01-01

    The management of the plastic fraction is one of the most debated issues in the discussion on integrated municipal solid waste systems. Both material and energy recovery can be performed on such a waste stream, and different separate collection schemes can be implemented. The aim of the paper....... The study confirmed the difficulty to clearly identify an optimal strategy for plastic waste management. In fact none of the examined scenarios emerged univocally as the best option for all impact categories. When moving from the P0 treatment strategy to the other scenarios, substantial improvements can...... is to contribute to the debate, based on the analysis of different plastic waste recovery routes. Five scenarios were defined and modelled with a life cycle assessment approach using the EASEWASTE model. In the baseline scenario (P0) the plastic is treated as residual waste and routed partly to incineration...

  16. High-temperature discrete dislocation plasticity

    Science.gov (United States)

    Keralavarma, S. M.; Benzerga, A. A.

    2015-09-01

    A framework for solving problems of dislocation-mediated plasticity coupled with point-defect diffusion is presented. The dislocations are modeled as line singularities embedded in a linear elastic medium while the point defects are represented by a concentration field as in continuum diffusion theory. Plastic flow arises due to the collective motion of a large number of dislocations. Both conservative (glide) and nonconservative (diffusion-mediated climb) motions are accounted for. Time scale separation is contingent upon the existence of quasi-equilibrium dislocation configurations. A variational principle is used to derive the coupled governing equations for point-defect diffusion and dislocation climb. Superposition is used to obtain the mechanical fields in terms of the infinite-medium discrete dislocation fields and an image field that enforces the boundary conditions while the point-defect concentration is obtained by solving the stress-dependent diffusion equations on the same finite-element grid. Core-level boundary conditions for the concentration field are avoided by invoking an approximate, yet robust kinetic law. Aspects of the formulation are general but its implementation in a simple plane strain model enables the modeling of high-temperature phenomena such as creep, recovery and relaxation in crystalline materials. With emphasis laid on lattice vacancies, the creep response of planar single crystals in simple tension emerges as a natural outcome in the simulations. A large number of boundary-value problem solutions are obtained which depict transitions from diffusional to power-law creep, in keeping with long-standing phenomenological theories of creep. In addition, some unique experimental aspects of creep in small scale specimens are also reproduced in the simulations.

  17. The improvement of the superconducting Y-Ba-Cu-O magnet characteristics through shape recovery strain of Fe-Mn-Si alloys

    International Nuclear Information System (INIS)

    Shimpo, Y.; Seki, H.; Wongsatanawarid, A.; Taniguchi, S.; Maruyama, T.; Kurita, T.; Murakami, M.

    2010-01-01

    Since bulk Y-Ba-Cu-O superconductors are brittle ceramics, reinforcement of mechanical properties is important for practical applications. It has been reported that bulk Y-Ba-Cu-O can be reinforced with Al or Fe based alloy ring, in that compression force acts on bulk Y-Ba-Cu-O due to a difference in thermal expansion coefficients. However, the shrinkage of the metal ring was not so large, and therefore careful adjustment of the circumference of the bulk and the metal rings was necessary. In this study, we employed Fe-Mn-Si shape memory alloy rings to reinforce bulk Y-Ba-Cu-O. The advantage of the shape memory alloy is that the shrinkage can take place on heating, and furthermore, the alloy shrinks and compresses the bulk body on cooling. Bulk Y-Ba-Cu-O superconductor 22.8 mm in diameter was inserted in a Fe-Mn-Si ring 23.0 mm in inner diameter at room temperature. Beforehand, the Fe-Mn-Si ring was expanded by 12% strain at room temperature. Then the composite was heated to 673 K. At room temperature, the Fe-Mn-Si ring firmly gripped the bulk superconductor. We then measured trapped fields before and after the ring reinforcement, and found that the trapped field was improved through the treatment.

  18. Elastic-plastic behaviour of thick-walled containers considering plastic compressibility

    International Nuclear Information System (INIS)

    Betten, J.; Frosch, H.G.

    1983-01-01

    In this paper the elastic-plastic behaviour of thick-walled pressure vessels with internal and external pressure is studied. To describe the mechanical behaviour of isotropic, plastic compressible materials we use a plastic potential which is a single-valued function of the principle stresses. For cylinders and spheres an analytic expression for the computation of stresses and residual stresses is specified. Afterwards the strains are calculated by using the finite difference method. Some examples will high-light the influence of the plastic compressibility on the behaviour of pressure vessels. (orig.) [de

  19. Plastic scintillator

    International Nuclear Information System (INIS)

    Andreeshchev, E.A.; Kilin, S.F.; Kavyrzina, K.A.

    1978-01-01

    A plastic scintillator for ionizing radiation detectors with high time resolution is suggested. To decrease the scintillation pulse width and to maintain a high light yield, the 4 1 , 4 5 -dibromo-2 1 , 2 5 , 5 1 , 5 5 -tetramethyl-n-quinquiphenyl (Br 2 Me 4 Ph) in combination with n-terphenyl (Ph 3 ) or 2, 5-diphenyloxadiazol-1, 3, 4 (PPD) is used as a luminescent addition. Taking into consideration the results of a special study, it is shown, that the following ratio of ingradients is the optimum one: 3-4 mass% Ph 3 or 4-7 mas% PPD + 2-5 mass% Br 2 Me 4 Ph + + polymeric base. The suggested scintillator on the basis of polystyrene has the light yield of 0.23-0.26 arbitrary units and the scintillation pulse duration at half-height is 0.74-0.84 ns

  20. Linking Scales in Plastic Deformation and Fracture

    DEFF Research Database (Denmark)

    Martinez-Paneda, Emilio; Niordson, Christian Frithiof; S. Deshpande, Vikram

    2017-01-01

    We investigate crack growth initiation and subsequent resistance in metallic materials by means of an implicit multi-scale approach. Strain gradient plasticity is employed to model the mechanical response of the solid so as to incorporate the role of geometrically necessary dislocations (GNDs......) and accurately capture plasticity at the small scales involved in crack tip deformation. The response ahead of the crack is described by means of a traction-separation law, which is characterized by the cohesive strength and the fracture energy. Results reveal that large gradients of plastic strain accumulatein...... the vicinity of the crack, elevating the dislocation density and the local stress. This stress elevation enhances crack propagation and significantly lowers the steady state fracture toughness with respect to conventional plasticity. Important insight is gained into fracture phenomena that cannot be explained...

  1. Toxicological Threats of Plastic

    Science.gov (United States)

    Plastics pose both physical (e.g., entanglement, gastrointestinal blockage, reef destruction) and chemical threats (e.g., bioaccumulation of the chemical ingredients of plastic or toxic chemicals sorbed to plastics) to wildlife and the marine ecosystem.

  2. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof

    singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation and strain......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation the dislocations are all of edge character and are modelled as line...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  3. On the mechanism of rapid postirradiation recovery of yeast

    International Nuclear Information System (INIS)

    Glazunov, A.V.; Kapul'tsevich, Yu.G.

    1983-01-01

    Rapid postirradiation recovery of diploid yeast Saccharomyces cerevisiae is equally effective both in water and in a liquid nutrition medium. In the haploid strains, rapid recovery occurs more readily in the log phase than in the stationary phase of growth. In the diploid strains, rapid recovery is more effective in the log phase than in the stationary phase. Rapid recovery of yeast does not require an additional protein synthesis. Damages induced by UV-light are not sub ected to rapid recovery

  4. New plastic plane stress model for concrete

    International Nuclear Information System (INIS)

    Winnicki, A.; Cichon, Cz.

    1993-01-01

    In the paper a description of concrete behaviour in the plane stress case is given on the basis of the modified bounding surface plasticity theory. Three independent plastic mechanisms have been introduced describing axiatoric and deviatoric plastic strains and their coupling. All the new analytical formulae for material functions being in agreement with experiments and loading/unloading criteria have been proposed. In addition, for the proper description of concrete behaviour in tension a new, separate function of bounding surface shrinkage has been introduced. (author)

  5. Plastic deformation of 2D crumpled wires

    International Nuclear Information System (INIS)

    Gomes, M A F; Donato, C C; Brito, V P; Coelho, A S O

    2008-01-01

    When a single long piece of elastic wire is injected through channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper this packing process is investigated but using plastic wires which give rise to completely irreversible structures of different morphology. In particular, the plastic deformation from circular to oblate configurations of crumpled wires is experimentally studied, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility and very large deformations, scaling is still observed.

  6. Integrating Hebbian and homeostatic plasticity: introduction.

    Science.gov (United States)

    Fox, Kevin; Stryker, Michael

    2017-03-05

    Hebbian plasticity is widely considered to be the mechanism by which information can be coded and retained in neurons in the brain. Homeostatic plasticity moves the neuron back towards its original state following a perturbation, including perturbations produced by Hebbian plasticity. How then does homeostatic plasticity avoid erasing the Hebbian coded information? To understand how plasticity works in the brain, and therefore to understand learning, memory, sensory adaptation, development and recovery from injury, requires development of a theory of plasticity that integrates both forms of plasticity into a whole. In April 2016, a group of computational and experimental neuroscientists met in London at a discussion meeting hosted by the Royal Society to identify the critical questions in the field and to frame the research agenda for the next steps. Here, we provide a brief introduction to the papers arising from the meeting and highlight some of the themes to have emerged from the discussions.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'. © 2017 The Author(s).

  7. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like...

  8. Disaster Debris Recovery Database - Recovery

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  9. Strain limit criteria to predict failure

    International Nuclear Information System (INIS)

    Flanders, H.E.

    1995-01-01

    In recent years extensive effort has been expended to qualify existing structures for conditions that are beyond the original design basis. Determination of the component failure load is useful for this type of evaluation. This paper presents criteria based upon strain limits to predict the load at failure. The failure modes addressed are excessive plastic deformations, localized plastic strains, and structural instability. The effects of analytical method sophistication, as built configurations, material properties degradation, and stress state are addressed by the criteria

  10. Non-uniform plastic deformation of micron scale objects

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    Significant increases in apparent flow strength are observed when non-uniform plastic deformation of metals occurs at the scale ranging from roughly one to ten microns. Several basic plane strain problems are analyzed numerically in this paper based on a new formulation of strain gradient...... plasticity. The problems are the tangential and normal loading of a finite rectangular block of material bonded to rigid platens and having traction-free ends, and the normal loading of a half-space by a flat, rigid punch. The solutions illustrate fundamental features of plasticity at the micron scale...... that are not captured by conventional plasticity theory. These include the role of material length parameters in establishing the size dependence of strength and the elevation of resistance to plastic flow resulting from constraint on plastic flow at boundaries. Details of the finite element method employed...

  11. On the formulation of higher gradient single and polycrystal plasticity

    International Nuclear Information System (INIS)

    Menzel, A.; Steinmann, P.

    1998-01-01

    This contribution aims in a geometrically linear formulation of higher gradient plasticity of single and polycrystalline material based on the continuum theory of dislocations and incompatibilities. Thereby, general continuum dislocation densities and incompatibilities are introduced from the viewpoint of continuum mechanics by considering the spatial closure failure of arbitrary line integrals of the displacement differential. Then these findings are translated to the plastic parts of the displacement gradient, the so called plastic distortion, and the plastic strain, respectively, within an elasto-plastic solid thus defining tensor fields of plastic dislocation densities and plastic incompatibilities. Next, in the case of single crystalline material the plastic dislocation density and in the case of polycrystalline material the plastic incompatibility are considered within the exploitation of the thermodynamical principle of positive dissipation. As a result, a phenomenological but physically motivated description of hardening is obtained, which incorporates for single crystals second spatial derivatives of the plastic deformation gradient and for polycrystals fourth spatial derivatives of the plastic strains into the yield condition. Moreover, these modifications mimic the characteristic structure of kinematic hardening, whereby the backstress obeys a nonlocal evolution law. (orig.)

  12. ANISOTROPIC STRAIN-HARDENING IN POLYCRYSTALLINE COPPER AND ALUMINUM

    NARCIS (Netherlands)

    HESS, F

    1993-01-01

    A new viscoplastic model for the plastic stress-strain behaviour of f.c.c. metals is presented. In this model the strain hardening results from increasing dislocation densities. The observed stagnation of strain hardening after strain reversals is explained by a lowering of the increase in

  13. Tutorial on state variable based plasticity: an Abaqus UHARD subroutine

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2012-12-01

    Full Text Available Since plasticity is path dependent, it is necessary to properly take into account the deformation, strain rate and temperature history in applications such as crash worthiness and ballistics simulations. To accurately model the evolution...

  14. Damage Recovery in Carrara Marble

    Science.gov (United States)

    Meyer, G.; Brantut, N.; Mitchell, T. M.; Meredith, P. G.

    2017-12-01

    We investigate the effect of confining pressure on the recovery of elastic wave velocities following deformation episodes in Carrara Marble. Dry Carrara Marble cores were deformed in the ductile regime (Pc = 40 MPa) up to 3% axial strain. After deformation, samples were held at constant stress conditions for extended periods of time (5-8 days) whilst continuously recording volumetric strain and seismic wave velocities. The velocity data were used to invert for microcrack densities using an effective medium approach. Finally, thin sections were produced to characterise the microstructures after recovery. During deformation, elastic wave speeds decreased with increasing strain by more than 30% of the value for the intact rock due to the formation of distributed microcracks. Under constant hydrostatic pressure, wave speeds progressively recovered 12-90% of the initial drop, depending on the applied confining pressure. In contrast, the strain recovery (deformation towards the initial shape of the sample) during holding time is negligible (of the order of 10-4). Tests performed under nonhydrostatic (triaxial) stress conditions during recovery showed some time-dependent creep deformation together with very significant recovery of wave velocities. The recovery is interpreted as a progressive reduction in crack density within the sample. The process is highly dependent on confining pressure, which favours it. We propose that the driving process for wave speed recovery is the time-dependent increase of contact area between crack surfaces due to the formation and growth of asperity contacts. We develop a micromechanical model for crack closure driven by asperity creep, which shows a good fit to the experimental data. Most of the recovery is achieved in the initial few hours, implying it is the fastest recovery or healing process, and thus occurs prior to any chemical healing or mineral precipitation. Our data corroborate field observations of post-seismic fault behavior.

  15. Transformation plasticity and hot pressing

    International Nuclear Information System (INIS)

    Chaklader, A.C.D.

    1975-01-01

    The transformation plasticity during the phase transition of quartz to cristobalite, monoclinic reversible tetragonal of zirconia, metakaolin to a spinel phase, and brucite to periclase was investigated by studying their compaction characteristics. Viscous flow was found to be the predominant mechanism of mass transport (after an initial particle rearrangement stage) in the case of quartz to cristobalite phase change where the transformation was associated with the formation of an intermediate amorphous silica phase. The results on the monoclinic reversible tetragonal transformation of zirconia indicated that it is most likely controlled by internal strain induced by the stress associated with the volume change (ΔV/V) and the flow stress of the weaker phase. Particle movement and deformation of the weaker phase (possibly tetragonal) may be the manifestation of this plasticity. The plasticity in the case of metakaolin to a spinel phase appeared to start before the exothermic reaction (generally encountered in a dta plot) and may be diffusion controlled. The plasticity encountered during brucite to periclase transformation may be the combined effect of disintegration of precursor particles, vapor-phase lubrication and some deformability of freshly formed very fine MgO particles

  16. Influence of preliminary plastic deformation on plasticity characteristics and structure of armco-iron

    International Nuclear Information System (INIS)

    Vergazov, A.N.; Rybin, V.V.; Meshkov, Yu.Ya.; Moskvina, V.A.; Serditova, T.N.

    1990-01-01

    Effect of preliminary plastic deformation (PPD) by drawing on the maximum plasticity characteristics (critical rupture strain) ε c , general δ and uniform δ p relative elongation and on the structure of armco-iron in a wide range of PPD degree change (e=0-4.6) is studied. It is ascertained that with e growth the metal plastic properties at T test =77 and 293 K change in a different way. In particular, the critical strain ε c increases monotonously at 77 K and reduces at 293 K. It is shown that all changes of mechanical characteristics observed with e increase are conditioned by the development of fragmentation process in armco-iron. The data obtained are discussed from the veiwpoint of the developed plastic deformation physics concepts

  17. Phyllosphere yeasts rapidly break down biodegradable plastics

    Science.gov (United States)

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands. PMID:22126328

  18. Disorientations and work-hardening behaviour during severe plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang

    2012-01-01

    Orientation differences develop during plastic deformation even in grains of originally uniform orientation. The evolution of these disorientations is modelled by dislocation dynamics taking into account different storage mechanisms. The predicted average disorientation angles across different ty...... pressure torsion, but also rationalizes the work-hardening behaviour at large plastic strains as well as a saturation of the flow stress....

  19. A model of shape memory alloys taking into account plasticity

    Czech Academy of Sciences Publication Activity Database

    Kružík, Martin; Zimmer, J.

    2011-01-01

    Roč. 76, č. 1 (2011), s. 193-216 ISSN 0272-4960 R&D Projects: GA AV ČR(CZ) IAA100750802 Institutional research plan: CEZ:AV0Z10750506 Keywords : elasto-plasticity * energetic solution * plastic strain gradients Subject RIV: BA - General Mathematics Impact factor: 0.776, year: 2011

  20. Three dimensional grain boundary modeling in polycrystalline plasticity

    Science.gov (United States)

    Yalçinkaya, Tuncay; Özdemir, Izzet; Fırat, Ali Osman

    2018-05-01

    At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([l]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.

  1. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M.I.; Borg, Ulrik; Niordson, Christian Frithiof

    2008-01-01

    as line singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation, the dislocations are all of edge character and are modelled...... between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be 0.325 mu m (about 10 times the slip plane spacing in the discrete dislocation models)....

  2. MM98.83 Quantification of Combined Strain Paths

    DEFF Research Database (Denmark)

    Nielsen, Morten Sturgård; Lindegren, Maria; Wanheim, Tarras

    1998-01-01

    When working with processes where large plastic deformation occurs, a way of desribing the deformation process is to view the whole deformation history as a curve in the 6-dimensional shear strain normal strain space, henceforth called a strain history curve (SHC). This paper focuses on the SHC...... 3D-plasticity. Adirect use of the SHC, is to measure the yield surface at different points at a SHC, thus establishing data describing the importance of strain rotations or even strain reversals within a process. Two subcases for displaying SHC will be mentioned:The plane strain case and the single...

  3. Effects of plastic anisotropy on crack-tip behaviour

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Tvergaard, Viggo; Kuroda, Mitsutoshi

    2002-01-01

    For a crack in a homogeneous material the effect of plastic anisotropy on crack-tip blunting and on the near-tip stress and strain fields is analyzed numerically. The full finite strain analyses are carried out for plane strain under small scale yielding conditions, with purely symmetric mode I...... loading remote from the crack-tip. In cases where the principal axes of the anisotropy are inclined to the plane of the crack it is found that the plastic zones as well as the stress and strain fields just around the blunted tip of the crack become non-symmetric. In these cases the peak strain...... on the blunted tip occurs off the center line of the crack, thus indicating that the crack may want to grow in a different direction. When the anisotropic axes are parallel to the crack symmetry is retained, but the plastic zones and the near-tip fields still differ from those predicted by standard isotropic...

  4. Radiation damage and recovery properties of common plastics PEN (Polyethylene Naphthalate) and PET (Polyethylene Terephthalate) using a 137Cs gamma ray source up to 1.4 Mrad and 14 Mrad

    Science.gov (United States)

    Wetzel, J.; Tiras, E.; Bilki, B.; Onel, Y.; Winn, D.

    2016-08-01

    Polyethylene naphthalate (PEN) and polyethylene teraphthalate (PET) are cheap and common polyester plastics used throughout the world in the manufacturing of bottled drinks, containers for foodstuffs, and fibers used in clothing. These plastics are also known organic scintillators with very good scintillation properties. As particle physics experiments increase in energy and particle flux density, so does radiation exposure to detector materials. It is therefore important that scintillators be tested for radiation tolerance at these generally unheard of doses. We tested samples of PEN and PET using laser stimulated emission on separate tiles exposed to 1 Mrad and 10 Mrad gamma rays with a 137Cs source. PEN exposed to 1.4 Mrad and 14 Mrad emit 71.4% and 46.7% of the light of an undamaged tile, respectively, and maximally recover to 85.9% and 79.5% after 5 and 9 days, respectively. PET exposed to 1.4 Mrad and 14 Mrad emit 35.0% and 12.2% light, respectively, and maximally recover to 93.5% and 80.0% after 22 and 60 days, respectively.

  5. Radiation damage and recovery properties of common plastics PEN (Polyethylene Naphthalate) and PET (Polyethylene Terephthalate) using a 137Cs gamma ray source up to 1.4 Mrad and 14 Mrad

    International Nuclear Information System (INIS)

    Wetzel, J.; Tiras, E.; Bilki, B.; Onel, Y.; Winn, D.

    2016-01-01

    Polyethylene naphthalate (PEN) and polyethylene teraphthalate (PET) are cheap and common polyester plastics used throughout the world in the manufacturing of bottled drinks, containers for foodstuffs, and fibers used in clothing. These plastics are also known organic scintillators with very good scintillation properties. As particle physics experiments increase in energy and particle flux density, so does radiation exposure to detector materials. It is therefore important that scintillators be tested for radiation tolerance at these generally unheard of doses. We tested samples of PEN and PET using laser stimulated emission on separate tiles exposed to 1 Mrad and 10 Mrad gamma rays with a 137 Cs source. PEN exposed to 1.4 Mrad and 14 Mrad emit 71.4% and 46.7% of the light of an undamaged tile, respectively, and maximally recover to 85.9% and 79.5% after 5 and 9 days, respectively. PET exposed to 1.4 Mrad and 14 Mrad emit 35.0% and 12.2% light, respectively, and maximally recover to 93.5% and 80.0% after 22 and 60 days, respectively.

  6. Dislocation Dynamics During Plastic Deformation

    CERN Document Server

    Messerschmidt, Ulrich

    2010-01-01

    The book gives an overview of the dynamic behavior of dislocations and its relation to plastic deformation. It introduces the general properties of dislocations and treats the dislocation dynamics in some detail. Finally, examples are described of the processes in different classes of materials, i.e. semiconductors, ceramics, metals, intermetallic materials, and quasicrystals. The processes are illustrated by many electron micrographs of dislocations under stress and by video clips taken during in situ straining experiments in a high-voltage electron microscope showing moving dislocations. Thus, the users of the book also obtain an immediate impression and understanding of dislocation dynamics.

  7. Modeling plasticity by non-continuous deformation

    Science.gov (United States)

    Ben-Shmuel, Yaron; Altus, Eli

    2017-10-01

    Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.

  8. Material Properties Test to Determine Ultimate Strain and True Stress-True Strain Curves for High Yield Steels

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Arpin; T.F. Trimble

    2003-04-01

    This testing was undertaken to develop material true stress-true strain curves for elastic-plastic material behavior for use in performing transient analysis. Based on the conclusions of this test, the true stress-true strain curves derived herein are valid for use in elastic-plastic finite element analysis for structures fabricated from these materials. In addition, for the materials tested herein, the ultimate strain values are greater than those values cited as the limits for the elastic-plastic strain acceptance criteria for transient analysis.

  9. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  10. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups ...

  11. The influence of non-equilibrium fluctuations on radiation damage and recovery of metals under irradiation

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Klepikov, V.F.

    2007-01-01

    In the conventional theory of radiation damage, it is assumed that the main effect of irradiation is due to formation of Frenkel pairs of vacancies and self-interstitial atoms (SIAs) and their clusters. The difference in absorption of vacancies and SIAs by primary or radiation-induced extended defects (EDs) is thought to be the main reason of microstructural evolution under irradiation. On the other hand, the recovery of radiation damage is thought to be driven exclusively by thermal fluctuations resulting in the vacancy evaporation from voids (void annealing) or dislocations (thermal creep) and in the fluctuation-driven overcoming of obstacles by gliding dislocations (plastic strain). However, these recovery mechanisms can be efficient only at sufficiently high temperatures. At lower irradiation temperatures, the main driving force of the recovery processes may be due to nonequilibrium fluctuations of energy states of the atoms surrounding EDs arising as a result of scattering of radiation-induced excitations of atomic and electronic structure at EDs. In the present paper, the mechanisms of nonequilibrium fluctuations that result in such phenomena as the void shrinkage under irradiation at low temperatures (or high dose rates), irradiation creep and irradiation-induced increase of plasticity under sub-threshold irradiation was considered

  12. Ratchetting strain prediction

    International Nuclear Information System (INIS)

    Noban, Mohammad; Jahed, Hamid

    2007-01-01

    A time-efficient method for predicting ratchetting strain is proposed. The ratchetting strain at any cycle is determined by finding the ratchetting rate at only a few cycles. This determination is done by first defining the trajectory of the origin of stress in the deviatoric stress space and then incorporating this moving origin into a cyclic plasticity model. It is shown that at the beginning of the loading, the starting point of this trajectory coincides with the initial stress origin and approaches the mean stress, displaying a power-law relationship with the number of loading cycles. The method of obtaining this trajectory from a standard uniaxial asymmetric cyclic loading is presented. Ratchetting rates are calculated with the help of this trajectory and through the use of a constitutive cyclic plasticity model which incorporates deviatoric stresses and back stresses that are measured with respect to this moving frame. The proposed model is used to predict the ratchetting strain of two types of steels under single- and multi-step loadings. Results obtained agree well with the available experimental measurements

  13. Limitations of Hollomon and Ludwigson stress-strain relations in assessing the strain hardening parameters

    International Nuclear Information System (INIS)

    Samuel, K G

    2006-01-01

    It is shown that the deviation from the ideal Hollomon relation in describing the stress-strain behaviour is characteristic of all materials at low strains. The Ludwigson relation describing the deviation from the Hollomon relation at low strains is critically analysed and it is shown that the deviation at low strains is a consequence of some unknown 'plastic strain equivalent' present in the material. Stress strain curves obeying an ideal Hollomon relation as well as that of a structurally modified (prior cold worked) material were simulated and compared. The results show that the yield strength and the flow strength of a material at constant strain rate and temperature are dictated by the magnitude of the 'plastic strain equivalent' term. It is shown that this component need not necessarily mean a prior plastic strain present in the material due to prior cold work alone and that prior cold work strain will add to this. If this component is identified, the stress-strain behaviour can be adequately described by the Swift relation. It is shown that in both formalisms, the strain hardening index is a function of the yield strength of the material

  14. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities

    OpenAIRE

    Schwarzb?ck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2016-01-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternati...

  15. Testing plastic deformations of materials in the introductory undergraduate mechanics laboratory

    International Nuclear Information System (INIS)

    Romo-Kröger, C M

    2012-01-01

    Normally, a mechanics laboratory at the undergraduate level includes an experiment to verify compliance with Hooke's law in materials, such as a steel spring and an elastic rubber band. Stress-strain curves are found for these elements. Compression in elastic bands is practically impossible to achieve due to flaccidity. A typical experiment for the complete loading-unloading cycle is to subject a tubular object to torsion. This paper suggests simple experiments for studying properties concerning elasticity and plasticity in elements of common use, subjected to stretching or compression, and also torsion reinforcing. The experiments use plastic binders, rubber bands and metal springs under a moderate load. This paper discusses an experiment with an original device to measure torsion deformations as a function of applied torques, which permitted construction of the hysteresis cycle for a rubber hose and various tubes. Another experiment was designed to define the temporal recovery of a plastic spring with initial stretching. A simple mathematical model was developed to explain this phenomenon. (paper)

  16. Plasticity analysis of nano-grain-sized NiAl alloy in an atomic scale

    International Nuclear Information System (INIS)

    Wang Jingyang; Wang Xiaowei; Rifkin, J.; Li Douxing

    2001-12-01

    The molecular dynamics method is used to simulate a uniaxial tensile deformation of 3.8nm nano-NiAl alloy with curved amorphous-like interfaces at 0K. Plastic deformation behaviour is studied by examining the strain-stress relationship and the microstructural evolution characteristic. Atomic level analysis showed that the micro-strain is essentially heterogeneous in simulated nano-phase samples. The plastic deformation is not only attributed to the plasticity of interfaces, but also accompanied with the plastic shear strain mechanism inside lattice distortion regions and grains. (author)

  17. A compact cyclic plasticity model with parameter evolution

    DEFF Research Database (Denmark)

    Krenk, Steen; Tidemann, L.

    2017-01-01

    The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...

  18. Fully plastic solutions of semi-elliptical surface cracks

    International Nuclear Information System (INIS)

    Yagawa, Genki; Yoshimura, Shinobu; Kitajima, Yasumi; Ueda, Hiroyoshi.

    1990-01-01

    Nonlinear finite element analyses of semi-elliptical surface cracks are performed under the fully plastic condition. The power-law hardening materials and the deformation theory of plasticity are assumed. Either the penalty function method or the Uzawa's algorithm is utilized to treat the incompressibility of plastic strains. The local and global J-integral values are obtained using a virtual crack extension technique for plates and cylinders with semi-elliptical surface cracks subjected to uniform tensions. The fully plastic solutions for surface cracked plates are given in the form of polynominals with geometric parameters a/t, a/c and the strain hardening exponent (n). In addition, the effects of curvature on fully plastic solutions are discussed through the comparison between the results of plates and cylinders. (author)

  19. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  20. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  1. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  2. A new strain gage method for measuring the contractile strain ratio of Zircaloy tubing

    International Nuclear Information System (INIS)

    Hwang, S.K.; Sabol, G.P.

    1988-01-01

    An improved strain gage method for determining the contractile strain ratio (CSR) of Zircaloy tubing was developed. The new method consists of a number of load-unload cyclings at approximately 0.2% plastic strain interval. With this method the CSR of Zircaloy-4 tubing could be determined accurately because it was possible to separate the plastic strains from the elastic strain involvement. The CSR values determined by use of the new method were in good agreement with those calculated from conventional post-test manual measurements. The CSR of the tubing was found to decrease with the amount of deformation during testing because of uneven plastic flow in the gage section. A new technique of inscribing gage marks by use of a YAG laser is discussed. (orig.)

  3. Surface instabilities during straining of anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Richelsen, Ann Bettina

    2006-01-01

    The development of instabilities in traction-free surfaces is investigated numerically using a unit cell model. Full finite strain analyses are conducted using isotropic as well as anisotropic yield criteria and both plane strain tension and compression are considered. In the load range of tensio...... of principal overall strain. For other orientations surface instabilities are seen when non-associated plastic flow is taken into account. Compared to tension, smaller compressive deformations are needed in order to initiate a surface instability....

  4. Effects of the Strain Rate Sensitivity and Strain Hardening on the Saturated Impulse of Plates

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Abstract This paper studies the stiffening effects of the material strain rate sensitivity and strain hardening on the saturated impulse of elastic, perfectly plastic plates. Finite element (FE code ABAQUS is employed to simulate the elastoplastic response of square plates under rectangular pressure pulse. Rigid-plastic analyses for saturated impulse, which consider strain rate sensitivity and strain hardening, are conducted. Satisfactory agreement between the finite element models (FEM and predictions of the rigid-plastic analysis is obtained, which verifies that the proposed rigid-plastic methods are effective to solve the problem including strain rate sensitivity and strain hardening. The quantitative results for the scale effect of the strain rate sensitivity are given. The results for the stiffening effects suggest that two general stiffening factors n 1 and n 2, which characterizes the strain rate sensitivity and strain hardening effect, respectively can be defined. The saturated displacement is inversely proportional to the stiffening factors (i.e. n 1 and n 2 and saturated impulse is inversely proportional to the square roots of the stiffening factors (i.e. n 1 and n 2. Formulae for displacement and saturated impulse are proposed based on the empirical analysis.

  5. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  6. New mesoscopic constitutive model for deformation of pearlitic steels up to moderate strains

    Science.gov (United States)

    Alkorta, J.; Martínez-Esnaola, J. M.; de Jaeger, P.; Gil Sevillano, J.

    2017-07-01

    A new constitutive model for deformation of pearlitic steels has been developed that describes the mechanical behaviour and microstructural evolution of lamellar multi-colony pearlite. The model, a two-phase continuum model, considers the plastic anisotropy of ferrite derived from its lamellar structure but ignores any anisotropy associated with cementite and does not consider the crystal structure of either constituent. The resulting plastic constitutive equation takes into account a dependence on both the pearlitic spacing (arising from the confined slip of dislocations in the lamellae) and on strengthening from the evolving intra-lamellar dislocation density. A Kocks-Mecking strain hardening/recovery model is used for the lamellar ferrite, whereas perfect-plastic behaviour is assumed for cementite. The model naturally captures the microstructural evolution and the internal micro-stresses developed due to the different mechanical behaviour of both phases. The model is also able to describe the lamellar evolution (orientation and interlamellar spacing) with good accuracy. The role of plastic anisotropy in the ferritic phase has also been studied, and the results show that anisotropy has an important impact on both microstructural evolution and strengthening of heavily drawn wires.

  7. Thermodynamic theory of dislocation-enabled plasticity

    International Nuclear Information System (INIS)

    Langer, J. S.

    2017-01-01

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

  8. Numerical simulation of large deformation polycrystalline plasticity

    International Nuclear Information System (INIS)

    Inal, K.; Neale, K.W.; Wu, P.D.; MacEwen, S.R.

    2000-01-01

    A finite element model based on crystal plasticity has been developed to simulate the stress-strain response of sheet metal specimens in uniaxial tension. Each material point in the sheet is considered to be a polycrystalline aggregate of FCC grains. The Taylor theory of crystal plasticity is assumed. The numerical analysis incorporates parallel computing features enabling simulations of realistic models with large number of grains. Simulations have been carried out for the AA3004-H19 aluminium alloy and the results are compared with experimental data. (author)

  9. Mechanisms of motor recovery after subtotal spinal cord injury: insights from the study of mice carrying a mutation (WldS) that delays cellular responses to injury.

    Science.gov (United States)

    Zhang, Z; Guth, L; Steward, O

    1998-01-01

    Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.

  10. Recovery mechanisms in nanostructured aluminium

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels; Huang, Xiaoxu

    2012-01-01

    Commercial purity aluminium (99.5%) has been cold rolled to a true strain of 5.5 (99.6% reduction in thickness). The material is very strong but low temperature recovery may be a limiting factor. This has been investigated by isothermal annealing treatments in the temperature range 5–100C. Hardness...

  11. Biosurfactant and enhanced oil recovery

    Science.gov (United States)

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  12. Plastic flow in weak shock waves in uranium

    International Nuclear Information System (INIS)

    Tonks, D.L.

    1992-01-01

    Measurements of the particle velocity in weak shock waves in metals are available for a number of materials. These measurements use the laser interferometer or VISAR technique in conjunction with a plate impact experiment. These measurements are important for determining the elastic -- plastic behavior of materials at high strain rates. Strain rates up to 10 7 /s are measurable with this technique, while more conventional mechanical testing machines, such as the Hopkinson bar, achieve rates only up to about 10 4 /s. In this paper, the VISAR measurements of Grady on uranium are analyzed using the weak shock analysis of Wallace to extract the plastic and total strains, the deviatoric and total stresses, and the plastic strain rates. A brief error analysis of the results will be given. 7 refs

  13. Micro-structural evolution in plastically deformed crystalline materials

    DEFF Research Database (Denmark)

    Nellemann, Christopher

    predictions for the two models to be obtained. Application of the two models to the pure shear boundary value problem is used to characterize plastic behavior, which also allows for the identification of inherent properties through closed form expressions. Single crystal Monazite containing a void is studied......Two rate-independent strain gradient crystal plasticity models are developed and applied in numerical studies designed to identify the properties inherent to model predictions of plastic deformation. The two models incorporate gradients of slip into the framework of conventional crystal plasticity...... in order to model size-dependent plasticity effects. This gradient dependence is achieved by relating a slip measure which combines both slip and their gradients to a shear hardening curve, as commonly done in conventional plasticity theories. Finite element codes are implemented which allow for numerical...

  14. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction......The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...

  15. Plastic deformation of solids viewed as a self-excited wave process

    International Nuclear Information System (INIS)

    Zuev, L.B.; Danilov, V.I.

    1998-01-01

    A self-excited wave model of plastic flow in crystalline solids is proposed. Experimental data on plastic flow in single crystals and polycrystalline solids involving different mechanisms have been correlated. The main types of strain localization in the materials investigated have been established and correlated with the respective stages of plastic flow curves. The best observing conditions have been defined for the major types of autowaves emerging by plastic deformation. The synergetic concepts of self-organization are shown to apply to description of plastic deformation. Suggested is a self-excited wave model of plastic flow in materials with different mechanisms of deformation. (orig.)

  16. Systems strategies for developing industrial microbial strains

    DEFF Research Database (Denmark)

    Lee, Sang Yup; Kim, Hyun Uk

    2015-01-01

    Industrial strain development requires system-wide engineering and optimization of cellular metabolism while considering industrially relevant fermentation and recovery processes. It can be conceptualized as several strategies, which may be implemented in an iterative fashion and in different...

  17. Genetic Analysis of Micro-environmental Plasticity in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Morgante, Fabio; Sorensen, Daniel A; Sørensen, Peter

    Quantitative genetic models recognize the potential for genotype by environment interaction, whereby different genotypes have different plastic responses to changes in macro-environmental conditions. Recently, it has been recognized that micro-environmental plasticity (‘residual’ variance) may also...... be genetically variable. This study utilized the Drosophila Genetic Reference Panel (DGRP) to accurately estimate the genetic variance of micro-environmental plasticity for chill coma recovery time and startle response. Estimates of broad sense heritabilities for both traits are substantial (from 0.51 to 0.......77), of the same order as the heritability at the level of the trait mean for startle response and even larger for chill coma recovery. Genome wide association analyses identified molecular variants (from 15 to 31 depending on the sex and the trait) associated with micro-environmental plasticity. These findings...

  18. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  19. Our plastic age.

    Science.gov (United States)

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  20. Our plastic age

    Science.gov (United States)

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  1. Tensile stress-strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    Science.gov (United States)

    Christopher, J.; Choudhary, B. K.; Isaac Samuel, E.; Mathew, M. D.; Jayakumar, T.

    2012-01-01

    Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300-873 K) at a strain rate of 1.3 × 10 -3 s -1. Ludwigson equation described true stress ( σ)-true plastic strain ( ɛ) data most accurately in the range 300-723 K. At high temperatures (773-873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate ( θ = dσ/ dɛ) and θσ with stress indicated two-stage work hardening behaviour. True stress-true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ- σ and θσ- σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  2. Plastic Pollution from Ships

    OpenAIRE

    Čulin, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  3. ENVIRONMENTAL ISSUE-PLASTIC

    OpenAIRE

    Sunita Shakle

    2017-01-01

    Polythene is the most common plastic, the annual global production is approximately 60 million tones, and its primary use is in packing. Plastic bags pollute soil and waters and kill thousands of marine generalize plastic bags are not biodegradable they clog water ways, spoil the land scape and end up in landfills. Where they may take 1000 year or more to break down into ever smaller particals that continue to pollution the soil and water.

  4. Our plastic age

    OpenAIRE

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste pl...

  5. Recovery Spirituality

    Directory of Open Access Journals (Sweden)

    Ernest Kurtz

    2015-01-01

    Full Text Available There is growing interest in Alcoholics Anonymous (A.A. and other secular, spiritual, and religious frameworks of long-term addiction recovery. The present paper explores the varieties of spiritual experience within A.A., with particular reference to the growth of a wing of recovery spirituality promoted within A.A. It is suggested that the essence of secular spirituality is reflected in the experience of beyond (horizontal and vertical transcendence and between (connection and mutuality and in six facets of spirituality (Release, Gratitude, Humility, Tolerance, Forgiveness, and a Sense of Being-at-home shared across religious, spiritual, and secular pathways of addiction recovery. The growing varieties of A.A. spirituality (spanning the “Christianizers” and “Seculizers” reflect A.A.’s adaptation to the larger diversification of religious experience and the growing secularization of spirituality across the cultural contexts within which A.A. is nested.

  6. Tensile stress–strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Christopher, J.; Choudhary, B.K.; Isaac Samuel, E.; Mathew, M.D.; Jayakumar, T.

    2012-01-01

    Highlights: ► σ–ε behaviour has been adequately described by Ludwigson and Hollomon equations. ► Instantaneous work hardening rate (θ) exhibited two-stage behaviour. ► σ–ε, flow parameters, θ and θσ vs.σ exhibited three distinct temperature regimes. ► Influence of dynamic strain ageing at intermediate temperatures has been identified. ► Dominance of dynamic recovery at high temperatures was demonstrated. - Abstract: Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300–873 K) at a strain rate of 1.3 × 10 −3 s −1 . Ludwigson equation described true stress (σ)–true plastic strain (ε) data most accurately in the range 300–723 K. At high temperatures (773–873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate (θ = dσ/dε) and θσ with stress indicated two-stage work hardening behaviour. True stress–true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ–σ and θσ–σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  7. Chapter 4. Fundamental mechanisms of the low temperature plastic deformation of metals

    International Nuclear Information System (INIS)

    Fouquet, J. de

    1976-01-01

    The influence of microstructure, grain boundaries, and strain hardening, on the low temperature plasticity of polycristals is studied. The experimental data on flow stress, work hardening, temperature and strain rate effects, alloying elements and grain size effect are firstly considered, on a macroscopic scale. The mechanisms of the low temperature plastic deformation, and the strain-stress relations are then described in terms of slip modes, mobility, configuration and distributions and interactions of dislocations [fr

  8. The issues in the study of brain plasticity after stroke

    International Nuclear Information System (INIS)

    Zuo Chuantao

    2004-01-01

    Nowadays, the study on the plasticity of the brain is one of the hotspots in nerve scientific research. PET and fMRI provided powerful weapon to study brain plasticity, but some metholody can conflict the brain function study. The review elucide the the metholody questions from the choice of pantiets and control, defining motor recovery, the choice of motor task, the effect of brian morphological, interpreting changes in activation and analysis methods of PET images. (authors)

  9. Plasticity: modeling & computation

    National Research Council Canada - National Science Library

    Borja, Ronaldo Israel

    2013-01-01

    .... "Plasticity Modeling & Computation" is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids...

  10. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  11. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  12. Strand Plasticity Governs Fatigue in Colloidal Gels

    Science.gov (United States)

    van Doorn, Jan Maarten; Verweij, Joanne E.; Sprakel, Joris; van der Gucht, Jasper

    2018-05-01

    The repeated loading of a solid leads to microstructural damage that ultimately results in catastrophic material failure. While posing a major threat to the stability of virtually all materials, the microscopic origins of fatigue, especially for soft solids, remain elusive. Here we explore fatigue in colloidal gels as prototypical inhomogeneous soft solids by combining experiments and computer simulations. Our results reveal how mechanical loading leads to irreversible strand stretching, which builds slack into the network that softens the solid at small strains and causes strain hardening at larger deformations. We thus find that microscopic plasticity governs fatigue at much larger scales. This gives rise to a new picture of fatigue in soft thermal solids and calls for new theoretical descriptions of soft gel mechanics in which local plasticity is taken into account.

  13. A Combined Precipitation, Yield Stress, and Work Hardening Model for Al-Mg-Si Alloys Incorporating the Effects of Strain Rate and Temperature

    Science.gov (United States)

    Myhr, Ole Runar; Hopperstad, Odd Sture; Børvik, Tore

    2018-05-01

    In this study, a combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys known as NaMo has been further developed to include the effects of strain rate and temperature on the resulting stress-strain behavior. The extension of the model is based on a comprehensive experimental database, where thermomechanical data for three different Al-Mg-Si alloys are available. In the tests, the temperature was varied between 20 °C and 350 °C with strain rates ranging from 10-6 to 750 s-1 using ordinary tension tests for low strain rates and a split-Hopkinson tension bar system for high strain rates, respectively. This large span in temperatures and strain rates covers a broad range of industrial relevant problems from creep to impact loading. Based on the experimental data, a procedure for calibrating the different physical parameters of the model has been developed, starting with the simplest case of a stable precipitate structure and small plastic strains, from which basic kinetic data for obstacle limited dislocation glide were extracted. For larger strains, when work hardening becomes significant, the dynamic recovery was linked to the Zener-Hollomon parameter, again using a stable precipitate structure as a basis for calibration. Finally, the complex situation of concurrent work hardening and dynamic evolution of the precipitate structure was analyzed using a stepwise numerical solution algorithm where parameters representing the instantaneous state of the structure were used to calculate the corresponding instantaneous yield strength and work hardening rate. The model was demonstrated to exhibit a high degree of predictive power as documented by a good agreement between predictions and measurements, and it is deemed well suited for simulations of thermomechanical processing of Al-Mg-Si alloys where plastic deformation is carried out at various strain rates and temperatures.

  14. Simulation of strain localization in polycrystals

    International Nuclear Information System (INIS)

    Deryugin, Ye.Ye.; Payuk, V.A.; Lasko, G.V.

    2002-01-01

    In the work simulation of plastic deformation evolution is presented for the case of polycrystals under external loading. Strain localization in polycrystal is simulated analytically following an unconventional method. The model is based on new progressive relaxation elements methods. Emphasis of the model is combining of discrete methods and continual approach. It makes possible to present local sites of plastic deformation analytically in a continuous medium and to calculate their respective no uniform stress field

  15. Recovery of the secondary raw materials, recycling

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter the recovery and recycling of secondary raw materials is explained. This chapter consists of the following parts: Paper and tetrapaks; Car wrecks; Scrap metal; Plastics; Used tires; Electrical and electronic equipment; Glass; Accumulators and batteries; Spent oil; Low-and non-waste technology.

  16. Cladding failure by local plastic instability

    International Nuclear Information System (INIS)

    Kramer, J.M.; Deitrich, L.W.

    1977-01-01

    Cladding failure is one of the major considerations in analysis of fast-reactor fuel pin behavior during hypothetical accident transients since time, location and nature of failure govern the early post-failure material motion and reactivity feedback. Out-of-Pile transient burst tests of both irradiated and unirradiated fast-reactor cladding show that local plastic instability, or bulging, often precedes rupture. To investigate the details of cladding bulging, a perturbation analysis of the equations governing the large deformation of a cylindrical shell has been developed. The overall deformation history is assumed to consist of a small perturbation epsilon of the radial displacement superimposed on large axisymmetric displacements. Computations have been carried out using high temperature properties of stainless steel in conjunction with various constitutive theories, including a generalization of the Endochronic Theory of Plasticity in which both time-independent and time-dependent plastic strains are modeled. Although the results of the calculations are all qualitatively similar, it appears that modeling of both time-independent and time-dependent plastic strains is necessary to interpret the transient burst test results. Sources for bulge formation that have been considered include initial geometric imperfections and thermal perturbations due to either eccentric fuel pellets or non-symmetric cooling. (Auth.)

  17. Sands subjected to repetitive vertical loading under zero lateral strain: accumulation models, terminal densities, and settlement

    KAUST Repository

    Chong, Song Hun; Santamarina, Carlos

    2016-01-01

    ). Repetitive vertical loading tests under zero lateral strain conditions are conducted using three different sands packed at initially low and high densities. Test results show that plastic strain accumulation for all sands and density conditions can

  18. Innovative Design of Plastic Bottle Recycling Box Based on ARM

    Directory of Open Access Journals (Sweden)

    Yuedong Xiong

    2014-04-01

    Full Text Available Aiming at the problems of on-site plastic bottles recycling and the reuse of waste, the automatic recycling system was developed on the basis of ARM. As the main controller, ARM not only controls the mechanical system of the collector to recover and break plastic bottles, but also communicates with and rewards the user by the automatic reward system through the wireless network. The experimental prototype test results show: post treated fragments of plastic bottles are small, which are convenient to transport and take advantage of; the operation of recovery is easy, and the interface of man-machine interaction is friendly which is easy to expand functions.

  19. Marine microbe with potential to adhere and degrade plastic structures

    Directory of Open Access Journals (Sweden)

    Alka Kumari

    2017-10-01

    Full Text Available Extensive usages of plastics have led to their accumulation as a contaminant in natural environment worldwide. Plastic is an inert and non-biodegradable material, due to its complex structure and hydrophobic backbone [1]. Conventional methods for reduction of plastic waste such as burning, land-filling release unwanted toxic chemicals to the environment and harming living organism of land as well as the ocean. There is growing interest in development of strategies for the degradation of plastic wastes to clean the environment [2]. Marine bacteria have evolved with the capability to adapt and grow in the diverse environmental conditions [3]. We studied the ability of marine bacteria for destabilization and utilization of different plastic films (LDPE, HDPE, PVC and PET as a sole source of carbon. An active bacterial strain AIIW2 was selected based on the triphenyl tetrazolium chloride reduction assay, and it was identified as Bacillus species based on 16S rRNA gene sequence. The viability of the strain over the plastic surface was studied and confirmed by bacLight assay with fluorescent probes. Scanning Electron Microscope and Atomic Force Microscope images suggested that bacterial interaction over the plastic surface is causing deterioration and roughness with increasing bacterial incubation time. In Fourier transform infrared spectra of treated plastic film evidenced stretching of the (-CH alkane rock chain and (-CO carbonyl region, suggested the oxidative activities of the bacteria. The results revealed that ability of bacterial strain for instigating their colonization over plastic films and deteriorating the polymeric structure in the absence of other carbon sources [4]. Moreover, production of extracellular enzymes such as esterase, laccase, and dehalogenase which are reported to support utilization of plastics was confirmed by plate assays. In concise, our results suggested that the marine bacterial strain AIIW2 have the ability to utilize

  20. Simplified theory of plastic zones based on Zarka's method

    CERN Document Server

    Hübel, Hartwig

    2017-01-01

    The present book provides a new method to estimate elastic-plastic strains via a series of linear elastic analyses. For a life prediction of structures subjected to variable loads, frequently encountered in mechanical and civil engineering, the cyclically accumulated deformation and the elastic plastic strain ranges are required. The Simplified Theory of Plastic Zones (STPZ) is a direct method which provides the estimates of these and all other mechanical quantities in the state of elastic and plastic shakedown. The STPZ is described in detail, with emphasis on the fact that not only scientists but engineers working in applied fields and advanced students are able to get an idea of the possibilities and limitations of the STPZ. Numerous illustrations and examples are provided to support the reader's understanding.

  1. Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials

    Directory of Open Access Journals (Sweden)

    Liu Lang

    2016-05-01

    Full Text Available Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.

  2. Characterization of residual stresses generated during inhomogeneous plastic deformation

    DEFF Research Database (Denmark)

    Lorentzen, T.; Faurholdt, T.; Clausen, B.

    1998-01-01

    Residual stresses generated by macroscopic inhomogeneous plastic deformation are predicted by an explicit finite element (FE) technique. The numerical predictions are evaluated by characterizing the residual elastic strains by neutron diffraction using two different (hkl) reflections. Intergranular...... compare well and verify the capability of the numerical technique as well as the possibilities of experimental validation using neutron diffraction. The presented experimental and numerical approach will subsequently be utilized for the evaluation of more complicated plastic deformation processes...

  3. Effect of embedment on the plastic behaviour of Bucket Foundations

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin; Larsen, Kim André

    2015-01-01

    studies have indicated the possibility of defining foundation response using plasticity theory. Results of multiple loading tests addressing the effect of embedment on the strain-hardening behavior of shallow bucket foundations under combined loading are reported. The kinematic mechanisms accompanying pre......-failure are presented. It is argued that the drained capacity of offshore bucket foundations and the ratio of plastic increments are largely influenced by embedment depth and the preload ratio V/Vpeak....

  4. Elastic-plastic analysis of the SS-3 tensile specimen

    International Nuclear Information System (INIS)

    Majumdar, S.

    1998-01-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior

  5. A Review on Landfill Management in the Utilization of Plastic Waste as an Alternative Fuel

    Directory of Open Access Journals (Sweden)

    Hidayah Nurul

    2018-01-01

    Full Text Available Wastes from landfills originate from many spheres of life. These are produces as a result of human activities either domestically or industrially. The global plastic production increased over years due to the vast applications of plastics in many sectors. The continuous demand of plastics caused the plastic wastes accumulation in the landfill consumed a lot of spaces that contributed to the environmental. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste of plastic. Hence, this paper aims review at utilizing of plastic as an alternative fuel.

  6. A Review on Landfill Management in the Utilization of Plastic Waste as an Alternative Fuel

    Science.gov (United States)

    Hidayah, Nurul; Syafrudin

    2018-02-01

    Wastes from landfills originate from many spheres of life. These are produces as a result of human activities either domestically or industrially. The global plastic production increased over years due to the vast applications of plastics in many sectors. The continuous demand of plastics caused the plastic wastes accumulation in the landfill consumed a lot of spaces that contributed to the environmental. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste of plastic. Hence, this paper aims review at utilizing of plastic as an alternative fuel.

  7. Evolution of oxide nanoparticles during dynamic plastic deformation of ODS steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, Nairong

    2014-01-01

    The microstructure as well as the deformation behavior of oxide nanoparticles has been analyzed in the ferritic ODS steel PM2000 after compression by dynamic plastic deformation (DPD) to different strains. A dislocation cell structure forms after deformation to a strain of 1.0. DPD to a strain of 2...

  8. Steady State Crack Propagation in Layered Material Systems Displaying Visco-plastic Behaviour

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2012-01-01

    The steady state fracture toughness of elastic visco-plastic materials is studied numerically, using both a conventional and a higher order model. Focus is on the combined effect of strain hardening, strain gradient hardening and strain rate hardening on cracking in layered material systems...

  9. Isolation and recovery of microbial polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available The deleterious environmental impacts caused by plastic wastes have attracted worldwide concern. The biobased and biodegradable polyhydroxyalkanoate (PHA appears to be one of the potential candidates to replace some conventional plastics. However, high production cost of PHAs has limited their market penetration. The major cost absorbing factors are the upstream fermentation processes and the downstream PHA recovery technologies. The latter significantly affects the overall process economics. Various recovery technologies have been proposed and studied in small scales in the laboratory as well as in industrial scales. These include solvent extraction, chemical digestion, enzymatic treatment and mechanical disruption, supercritical fluid disruption, flotation techniques, use of gamma irradiation and aqueous two-phase system. This paper reviews all the recovery methods known to date and compares their efficiency and the quality of the resulting PHA. Some of the large-scale production of PHA and the strategies employed to reduce the production cost are also discussed.

  10. Debonding analyses in anisotropic materials with strain- gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2012-01-01

    A unit cell approach is adopted to numerically analyze the effect of plastic anisotropy on damage evolution in a micro-reinforced composite. The matrix material exhibit size effects and a visco-plastic anisotropic strain gradient plasticity model accounting for such size effects is adopted....... A conventional cohesive law is extended such that both the average as well as the jump in plastic strain across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic and anisotropic materials as well as for higher order isotropic and anisotropic materials...... with and without debonding. Generally, the strain gradient enhanced material exhibits higher load carry capacity compared to the corresponding conventional material. A sudden stress drop occurs in the macroscopic stress-strain response curve due to fiber-matrix debonding and the results show that a change in yield...

  11. The Cyclic Stress-Strain Curve of Polycrystals

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Rasmussen, K. V.; Winter, A. T.

    1982-01-01

    The internal stresses implied by the Sachs model are estimated for individual PSBs at low plastic strain amplitudes and for homogeneously sheared grains at higher plastic strain amplitudes. The analysis shows that the Sachs model can account semi-quantitatively for experimentally measured cyclic...... stress-strain curves for copper. A similar approximative analysis of the Taylor model cannot account for the data. An interesting feature of the Sachs model is that, although it is assumed that the flow condition is entirely controlled by the PSBs. the predicted cyclic stress-strain curve displays...

  12. A plastic damage model with stress triaxiality-dependent hardening

    International Nuclear Information System (INIS)

    Shen Xinpu; Shen Guoxiao; Zhou Lin

    2005-01-01

    Emphases of this study were placed on the modelling of plastic damage behaviour of prestressed structural concrete, with special attention being paid to the stress-triaxiality dependent plastic hardening law and the corresponding damage evolution law. A definition of stress triaxiality was proposed and introduced in the model presented here. Drucker-Prager -type plasticity was adopted in the formulation of the plastic damage constitutive equations. Numerical validations were performed for the proposed plasticity-based damage model with a driver subroutine developed in this study. The predicted stress-strain behaviour seems reasonably accurate for the uniaxial tension and uniaxial compression compared with the experimental data reported in references. Numerical calculations of compressions under various hydrostatic stress confinements were carried out in order to validate the stress triaxiality dependent properties of the model. (authors)

  13. Cyclic plastic hinges with degradation effects for frame structures

    DEFF Research Database (Denmark)

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex...... shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each generalized stress-strain component describing yield level, ultimate stress capacity, elastic...... and stiffness parameters. The cyclic plastic hinges are introduced into a six-component equilibrium-based beam element, using additive element and hinge flexibilities. When converted to stiffness format the plastic hinges are incorporated into the element stiffness matrix. The cyclic plastic hinge model...

  14. Crystal plasticity-based modeling for predicting anisotropic behaviour and formability of metallic materials

    International Nuclear Information System (INIS)

    Pham, Son; Jeong, Youngung; Creuziger, Adam; Iadicola, Mark; Foecke, Tim; Rollett, Anthony

    2016-01-01

    Metallic materials often exhibit anisotropic behaviour under complex load paths because of changes in microstructure, e.g., dislocations and crystallographic texture. In this study, we present the development of constitutive model based on dislocations, point defects and texture in order to predict anisotropic response under complex load paths. In detail, dislocation/solute atom interactions were considered to account for strain aging and static recovery. A hardening matrix based on the interaction of dislocations was built to represent the cross-hardening of different slip systems. Clear differentiation between forward and backward slip directions of dislocations was made to describe back stresses during path changes. In addition, we included dynamic recovery in order to better account for large plastic deformation. The model is validated against experimental data for AA5754-O with path changes, e.g., Figure 1 [1] Another effort is to include microstructure in forming predictions with a minimal increase in computational time. This effort enables comprehensive investigations of the influence of texture-induced anisotropy on formability [2]. Application of these improvements to predict forming limits of various BCC textures, such as γ, ρ, α, η and ϵ fibers and a random (R) texture. These simulations demonstrate that the crystallographic texture has significant (both positive and negative) effects on the forming limit diagrams (Figure 2). For example, the y fiber texture, that is often sought through thermo-mechanical processing due to high r-value, had the highest forming limit in the balanced biaxial strain path but the lowest forming limit under the plane strain path among textures under consideration. (paper)

  15. Plastic deformation and fracture behavior of zircaloy-2 fuel cladding tubes under biaxial stress

    International Nuclear Information System (INIS)

    Maki, Hideo; Ooyama, Masatosi

    1975-01-01

    Various combinations of biaxial stress were applied on five batches of recrystallized zircaloy-2 fuel cladding tubes with different textures; elongation in both axial and circumferential directions of the specimen was measured continuously up to 5% plastic deformation. The anisotropic theory of plasticity proposed by Hill was applied to the resulting data, and anisotropy constants were obtained through the two media of plastic strain loci and plastic strain ratios. Comparison of the results obtained with the two methods proved that the plastic strain loci provide data that are more effective in predicting quantitatively the plastic deformation behavior of the zircaloy-2 tubes. The anisotropy constants change their value with progress of plastic deformation, and judicious application of the effective stress and effective strain obtained on anisotropic materials will permit the relationship between stress and strain under various biaxialities of stresses to be approximated by the work hardening law. The test specimens used in the plastic deformation experiments were then stressed to fracture under the same combination of biaxial stress as in the proceeding experiments, and the deformation in the fractured part was measured. The result proved that the tilt angle of the c-axis which serves as the index of texture is related to fracture ductility under biaxial stress. Based on this relationship, it was concluded that material with a tilt angle ranging from 10 0 to 15 0 is the most suitable for fuel cladding tubes, from the viewpoint of fracture ductility, at least in the case of unirradiated material. (auth.)

  16. Higher harmonic imaging of tensile plastic deformation in loading and reloading processes by local resonance method

    International Nuclear Information System (INIS)

    Kawashima, Koichiro; Yasui, Hajime

    2015-01-01

    We have imaged plastically deformed region in a 5052 aluminum plate under tensile loading, unloading and reloading processes by using an immersion local resonance method. By transmitting large-amplitude burst wave of which frequency is a through-thickness resonant frequency of the plate, dislocation loops in plastic zone are forced to vibrate. The higher harmonic amplitude excited by the dislocation movement is mapped for the transducer position. The extension of plastic zone under monotonically increased loading, decrease in harmonic amplitude under unloading process and marked extension of plastic zone in reloading up to 0.4% plastic strain are clearly imaged. (author)

  17. Nonlinear analysis of AS4/PEEK thermoplastic composite laminate using a one parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1990-01-01

    A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  18. A Cost-Effectiveness Analysis for Incineration or Recycling of Dutch Household Plastics

    NARCIS (Netherlands)

    R.H.J.M. Gradus (Raymond); R. van Koppen (Rick); E. Dijkgraaf (Elbert); P. Nillesen (Paul)

    2016-01-01

    textabstractThe cost-effectiveness of plastic recycling is compared to energy recovery from plastic incineration in a waste-to-energy plant using data for the Netherlands. Both options have specific benefits and costs. The benefits of recycling are the avoidance of both CO2 that otherwise would be

  19. Numerical treatment of cosserat based rate independent strain gradient plasticity theories Tratamiento numérico de una teoría de plasticidad por gradiente de deformación basada en un modelo de cosserat

    Directory of Open Access Journals (Sweden)

    Juan David Gómez C.

    2008-12-01

    Full Text Available The current trend towards miniaturization in the microelectronics industryhas pushed for the development of theories intended to explain the behaviorof materials at small scales. In the particular case of metals, a class ofavailable non–classical continuum mechanics theories has been recently employedin order to explain the wide range of observed behavior at the micronscale. The practical use of the proposed theories remains limited due to issuesin its numerical implementation. First, in displacement–based finite elementformulations the need appears for higher orders of continuity in the interpolationshape functions in order to maintain the convergence rate upon meshrefinement. This limitation places strong restrictions in the geometries of theavailable elements. Second, the available inelastic constitutive models for smallscale applications have been cast into deformation theory formulations limitingthe set of problems to those exhibiting proportional loading only. In thisarticle two contributions are made for the particular case of a Cosserat couplestress continuum. First it describes a numerical scheme based on a penaltyfunction/reduced integration approach that allows for the proper treatment ofthe higher order terms present in Cosserat like theories. This scheme results in a new finite element that can be directly implemented into commercial finiteelement codes. Second, a flow theory of plasticity incorporating size effects isproposed for the case of rate independent materials overcoming the limitationsin the deformation theory formulations. The constitutive model and its correspondingtime–integration algorithm are coupled to the new proposed finiteelement and implemented in the form of a user element subroutine into thecommercial code ABAQUS. The validity of the approach is shown via numericalsimulations of the microbending experiment on thin Nickel foils reportedin the literature.La tendencia actual hacia la miniaturización en la

  20. Stem cell plasticity.

    Science.gov (United States)

    Lakshmipathy, Uma; Verfaillie, Catherine

    2005-01-01

    The central dogma in stem cell biology has been that cells isolated from a particular tissue can renew and differentiate into lineages of the tissue it resides in. Several studies have challenged this idea by demonstrating that tissue specific cell have considerable plasticity and can cross-lineage restriction boundary and give rise to cell types of other lineages. However, the lack of a clear definition for plasticity has led to confusion with several reports failing to demonstrate that a single cell can indeed differentiate into multiple lineages at significant levels. Further, differences between results obtained in different labs has cast doubt on some results and several studies still await independent confirmation. In this review, we critically evaluate studies that report stem cell plasticity using three rigid criteria to define stem cell plasticity; differentiation of a single cell into multiple cell lineages, functionality of differentiated cells in vitro and in vivo, robust and persistent engraft of transplanted cells.

  1. Plastics and environment

    International Nuclear Information System (INIS)

    Avenas, P.

    1996-01-01

    Synthetic organic polymers, such as plastics, PVC, polyamides etc are considered less ecological than natural materials such as wood. Other artificial materials such as metals, glass or biodegradable plastics have also a better image than petroleum products. This short paper demonstrates that the manufacturing or the transport of every material uses energy and that the complete energy balance sheet of a plastic bottle, for instance, is more favourable than the one of a glass bottle. Plastic materials are also easily valorized and recycled and part of the energy spent during manufacturing can be recovered during incineration for district heating. During the life-cycle of such a synthetic material, the same petroleum quantity can be used twice which leads to less negative effects on the environment. Finally, the paper focusses on the problem of biodegradable materials which are not degradable when buried under several meters of wastes and which are a nuisance to recycling. (J.S.)

  2. Plastics: Friend or foe?

    Directory of Open Access Journals (Sweden)

    O P Gupta

    2018-01-01

    Full Text Available Plastics has been playing a very significant role in our life. Being light weight, inexpensive and heving good insulating properties it is being used in all aspects of life, from clothes to contact lenses and from mobile phones to automobiles as well as in medical equipments, However it is not biodegradable, and while degrading to fragments it gets converted in to microplastics and nanoplastics The plastic waste is being recognized as an environmental hazard, since these micr- and nanoplastics find way from landfills to water and foods, It is said that we are not only using, but we are eating, drinking and even braething the plastics. These microplastics in body release certain hazardous chemicals and found to be disrupting functions of certain endocrine organs. Whether the rising prevalence of Diabetes, thyroid disorders or infirtility etc., are realated to the plastics?

  3. Recycling of plastics

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, W; Menzel, J; Sinn, H

    1976-01-01

    Considering the shortage of raw materials and environmental pollution, the recycling of plastic waste is a very important topic. Pilot plants for research in Funabashi Japan, Franklin (Ohio) U.S.A., and the R 80-process of Krauss Maffei, W. Germany, have demonstrated the possibility of reclaiming plastics from refuse. Old tires and waste from the plastic producing and manufacturing industries are readily available. The pyrolysis of plastic yields gaseous and liquid products, and the exploitation of this cracking reaction has been demonstrated by pilot plants in Japan and Great Britain. Further laboratory scale experiments are taking place in W. Germany. In continuous fluidized beds and in molten salts, polyethylene, polypropylene, polyvinylchloride, polystyrene and rubber are pyrolysed and better than 98 percent conversion is obtained. Up to 40 percent of the feed can be obtained as aromatic compounds, and a pilot plant is under construction. As a first step PVC-containing material can be almost quantitatively dehydrochlorinated.

  4. A Plastic Menagerie

    Science.gov (United States)

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  5. Art and Plastic Surgery.

    Science.gov (United States)

    Fernandes, Julio Wilson; Metka, Susanne

    2016-04-01

    The roots of science and art of plastic surgery are very antique. Anatomy, drawing, painting, and sculpting have been very important to the surgery and medicine development over the centuries. Artistic skills besides shape, volume, and lines perception can be a practical aid to the plastic surgeons' daily work. An overview about the interactions between art and plastic surgery is presented, with a few applications to rhinoplasty, cleft lip, and other reconstructive plastic surgeries. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  6. Plastic deformation of indium nanostructures

    International Nuclear Information System (INIS)

    Lee, Gyuhyon; Kim, Ju-Young; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2011-01-01

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  7. Measuring and Inducing Brain Plasticity in Chronic Aphasia

    Science.gov (United States)

    Fridriksson, Julius

    2011-01-01

    Brain plasticity associated with anomia recovery in aphasia is poorly understood. Here, I review four recent studies from my lab that focused on brain modulation associated with long-term anomia outcome, its behavioral treatment, and the use of transcranial brain stimulation to enhance anomia treatment success in individuals with chronic aphasia…

  8. DEVELOPMENT OF PLASTIC SURGERY.

    Science.gov (United States)

    Pećanac, Marija Đ

    2015-01-01

    Plastic surgery is a medical specialty dealing with corrections of defects, improvements in appearance and restoration of lost function. Ancient times. The first recorded account of reconstructive plastic surgery was found in ancient Indian Sanskrit texts, which described reconstructive surgeries of the nose and ears. In ancient Greece and Rome, many medicine men performed simple plastic cosmetic surgeries to repair damaged parts of the body caused by war mutilation, punishment or humiliation. In the Middle Ages, the development of all medical braches, including plastic surgery was hindered. New age. The interest in surgical reconstruction of mutilated body parts was renewed in the XVIII century by a great number of enthusiastic and charismatic surgeons, who mastered surgical disciplines and became true artists that created new forms. Modern era. In the XX century, plastic surgery developed as a modern branch in medicine including many types of reconstructive surgery, hand, head and neck surgery, microsurgery and replantation, treatment of burns and their sequelae, and esthetic surgery. Contemporary and future plastic surgery will continue to evolve and improve with regenerative medicine and tissue engineering resulting in a lot of benefits to be gained by patients in reconstruction after body trauma, oncology amputation, and for congenital disfigurement and dysfunction.

  9. Laboratory simulations of the mixed solvent extraction recovery of dominate polymers in electronic waste.

    Science.gov (United States)

    Zhao, Yi-Bo; Lv, Xu-Dong; Yang, Wan-Dong; Ni, Hong-Gang

    2017-11-01

    The recovery of four dominant plastics from electronic waste (e-waste) using mixed solvent extraction was studied. The target plastics included polycarbonate (PC), polystyrene (PS), acrylonitrile butadiene styrene (ABS), and styrene acrylonitrile (SAN). The extraction procedure for multi-polymers at room temperature yielded PC, PS, ABS, and SAN in acceptable recovery rates (64%, 86%, 127%, and 143%, respectively, where recovery rate is defined as the mass ratio of the recovered plastic to the added standard polymer). Fourier transform infrared spectroscopy (FTIR) was used to verify the recovered plastics' purity using a similarity analysis. The similarities ranged from 0.98 to 0.99. Another similar process, which was denoted as an alternative method for plastic recovery, was examined as well. Nonetheless, the FTIR results showed degradation may occur over time. Additionally, the recovery cost estimation model of our method was established. The recovery cost estimation indicated that a certain range of proportion of plastics in e-waste, especially with a higher proportion of PC and PS, can achieve a lower cost than virgin polymer product. It also reduced 99.6%, 30.7% and 75.8% of energy consumptions and CO 2 emissions during the recovery of PC, PS and ABS, and reduced the amount of plastic waste disposal via landfill or incineration and associated environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Simplified Theory of Plastic Zones for cyclic loading and multilinear hardening

    International Nuclear Information System (INIS)

    Hübel, Hartwig

    2015-01-01

    The Simplified Theory of Plastic Zones (STPZ) is a direct method based on Zarka's method, primarily developed to estimate post-shakedown quantities of structures under cyclic loading, avoiding incremental analyses through a load histogram. In a different paper the STPZ has previously been shown to provide excellent estimates of the elastic–plastic strain ranges in the state of plastic shakedown as required for fatigue analyses. In the present paper, it is described how the STPZ can be used to predict the strains accumulated through a number of loading cycles due to a ratcheting mechanism, until either elastic or plastic shakedown is achieved, so that strain limits can be satisfied. Thus, a consistent means of estimating both, strain ranges and accumulated strains is provided for structural integrity assessment as required by pressure vessel codes. The computational costs involved typically consist of few linear elastic analyses and some local calculations. Multilinear kinematic hardening and temperature dependent yield stresses are accounted for. The quality of the results and the computational burden involved are demonstrated through four examples. - Highlights: • A method is provided to estimate accumulated elastic–plastic strains. • A consistent method is provided to estimate elastic–plastic strain ranges. • Effect of multilinear kinematic hardening is captured. • Temperature dependent material properties are accounted for. • Few linear elastic analyses required

  11. Perceptual learning and adult cortical plasticity.

    Science.gov (United States)

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  12. Unified creep-plasticity model for halite

    International Nuclear Information System (INIS)

    Krieg, R.D.

    1980-11-01

    There are two national energy programs which are considering caverns in geological salt (NaCl) as a storage repository. One is the disposal of nuclear wastes and the other is the storage of oil. Both short-time and long-time structural deformations and stresses must be predictable for these applications. At 300K, the nominal initial temperature for both applications, the salt is at 0.28 of the melting temperature and exhibits a significant time dependent behavior. A constitutive model has been developed which describes the behavior observed in an extensive set of triaxial creep tests. Analysis of these tests showed that a single deformation mechanism seems to be operative over the stress and temperature range of interest so that the secondary creep data can be represented by a power of the stress over the entire test range. This simple behavior allowed a new unified creep-plasticity model to be applied with some confidence. The resulting model recognizes no inherent difference between plastic and creep strains yet models the total inelastic strain reasonably well including primary and secondary creep and reverse loadings. A multiaxial formulation is applied with a back stress. A Bauschinger effect is exhibited as a consequence and is present regardless of the time scale over which the loading is applied. The model would be interpreted as kinematic hardening in the sense of classical plasticity. Comparisons are made between test data and model behavior

  13. Transformation induced plasticity in maraging steel: an experimental study

    International Nuclear Information System (INIS)

    Nagayama, K.; Kitajima, Y.; Kigami, S.; Tanaka, K.

    2000-01-01

    The deformation behavior of a maraging TRIP (transformation induced plasticity) steel (MAVAL X12) is studied experimentally under a constant load. The existence of the back stress in the axial direction is directly proved by investigating the dilatation curves. Martensite-start lines are given under tensile, compressive and shear stresses. The evolution of TRIP strain and the maximum TRIP strain are determined. The alloy response during isothermal tensile test is explained in terms of influences both by the composite and transformation. (orig.)

  14. Relationship between side necking and plastic zone size at fracture

    International Nuclear Information System (INIS)

    Kim, Do Hyung; Kang, Ki Ju; Kim, Dong Hak

    2004-01-01

    Generally, fracture of a material is influenced by plastic zone size developed near the crack tip. Hence, according to the relative size of plastic zone in the material, the mechanics as a tool for analyzing the fracture process are classified into three kinds, that is, Linear Elastic Fracture Mechanics, Elastic Plastic Fracture Mechanics, Large Deformation Fracture Mechanics. Even though the plastic zone size is such an important parameter, the practical measurement techniques are very limited and the one for in-situ measurement is not virtually available. Therefore, elastic-plastic FEA has been performed to estimate the plastic zone size. In this study, it is noticed that side necking at the surface is a consequence of plastic deformation and lateral contraction and the relation between the plastic zone and side necking is investigated. FEA for modified boundary layer models with finite thickness, various mode mixes 0 .deg., 30 deg., 60 deg., 90 .deg. and strain hardening exponent n=3, 10 are performed. The results are presented and the implication regarding to application to experiment is discussed

  15. Isothermal recovery rates in shape memory polyurethanes

    International Nuclear Information System (INIS)

    Azra, Charly; Plummer, Christopher J G; Månson, Jan-Anders E

    2011-01-01

    This work compares the time dependence of isothermal shape recovery in thermoset and thermoplastic shape memory polyurethanes (SMPUs) with comparable glass transition temperatures. In each case, tensile tests have been used to quantify the influence of various thermo-mechanical programming parameters (deformation temperature, recovery temperature, and stress and storage times following the deformation step) on strain recovery under zero load (free recovery) and stress recovery under fixed strain (constrained recovery). It is shown that the duration of the recovery event may be tuned over several decades of time with an appropriate choice of programming parameters, but that there is a trade-off between the rate of shape recovery and the recoverable stress level. The results are discussed in terms of the thermal characteristics of the SMPUs in the corresponding temperature range as characterized by modulated differential scanning calorimetry and dynamic mechanical analysis, with the emphasis on the role of the effective width of the glass transition temperature and the stability of the network that gives rise to the shape memory effect. (fast track communication)

  16. Characteristic structures and properties of nanostructured metals prepared by plastic deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2011-01-01

    This chapter focuses on describing the characteristic microstructures of nanostructured metals produced by plastic deformation to ultrahigh strains and their correlation with hardening by annealing and softening by deformation. The results suggest that optimising microstructure and the mechanical...

  17. Description of the thermoelastic/plastic computer program TEPCO. Memorandum report RSI-0040

    International Nuclear Information System (INIS)

    Pariseau, W.G.

    1975-01-01

    Presented is a description of the two-dimensional (plane strain, axial symmetry) thermoelastic/plastic computer program TEPCO used by RE/SPEC Inc. in conjunction with an investigation of rock mechanics of underground radioactive waste disposal

  18. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.

    Science.gov (United States)

    Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael

    2014-09-01

    Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Plastic Deformation of Pressured Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-11-01

    Full Text Available Although pressured metallic glass (MG has been reported in the literature; there are few studies focusing on pressure effects on the structure; dynamics and its plastic deformation. In this paper; we report on and characterize; via molecular dynamics simulation, the structure and dynamics heterogeneity of pressured MGs, and explore a causal link between local structures and plastic deformation mechanism of pressured glass. The results exhibit that the dynamical heterogeneity of metallic liquid is more pronounced at high pressure, while the MGs were less fragile after the release of external pressure, reflected by the non-Gaussian parameter (NGP. High pressure glass shows better plastic deformation; and the local strain zone distributed more uniformly than of in normal glass. Further research indicates that although the number of icosahedrons in pressured glass was much larger than that in normal glass, while the interpenetrating connections of icosahedra (ICOI exhibited spatial correlations were rather poor; In addition, the number of ‘fast’ atoms indexed by the atoms’ moving distance is larger than that in normal glass; leading to the sharp decreasing in number of icosahedrons during deformation. An uniform distribution of ‘fast’ atoms also contributed to better plastic deformation ability in the pressured glass. These findings may suggest a link between the deformation and destruction of icosahedra with short-range order.

  20. Investigation of strain heterogeneities by laser scanning extensometry in strain ageing materials: application to zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Graff, S.; Forest, S.; Strudel, J.L. [Centre des Materiaux / UMR 7633, Ecole des Mines de Paris / CNRS, BP 87, 91003 Evry (France); Dierke, H.; Neuhauser, H. [Institut fur Physik der Kondensierten Materie, 38106 Braunschweig (Germany); Prioul, C. [MSSMAT, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry (France); Bechade, J.L. [SRMA, CEA Saclay, 91191 Gif sur Yvette (France)

    2005-07-01

    Laser scanning extensometry was used to detect and characterize propagating plastic instabilities such as the Luders bands at the millimeter scale. Spatio-temporal plastic heterogeneities are due to either static or dynamic strain ageing (SSA and DSA) phenomena. Regarding zirconium alloys, different type of heterogeneities were observed: their features strongly depended on mechanical test conditions. In one case, they appeared to be non propagating but preserved along the stress-strain curve and were associated with SSA effects such as stress peaks after relaxation periods or after unloading steps with waiting times. In other case, they appeared as non propagating but were not associated with SSA effects. (authors)

  1. Investigation of strain heterogeneities by laser scanning extensometry in strain ageing materials: application to zirconium alloys

    International Nuclear Information System (INIS)

    Graff, S.; Forest, S.; Strudel, J.L.; Dierke, H.; Neuhauser, H.; Prioul, C.; Bechade, J.L.

    2005-01-01

    Laser scanning extensometry was used to detect and characterize propagating plastic instabilities such as the Luders bands at the millimeter scale. Spatio-temporal plastic heterogeneities are due to either static or dynamic strain ageing (SSA and DSA) phenomena. Regarding zirconium alloys, different type of heterogeneities were observed: their features strongly depended on mechanical test conditions. In one case, they appeared to be non propagating but preserved along the stress-strain curve and were associated with SSA effects such as stress peaks after relaxation periods or after unloading steps with waiting times. In other case, they appeared as non propagating but were not associated with SSA effects. (authors)

  2. Ratcheting deformation of advanced 316 steel under creep-plasticity condition

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Fumiko; Ishikawa, Akiyoshi; Asada, Yasuhide [Tokai Univ., Tokyo (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Tension-torsion biaxial ratcheting tests have been conducted with Advanced 316 Steel (316FR Steel) at 650 C under a cyclic strain rate of 10{sup -3} to 10{sup -5} s{sup -1}. Accumulation of ratcheting strain has been measured. Accumulated ratchet strain has shown to be much larger than predicted based on a usual method of the linear superposition of strains due to creep and plasticity. The result shows there observed the creep-plasticity interaction in the observation. (orig.)

  3. The plasticity of clays

    Science.gov (United States)

    Group, F.F.

    1905-01-01

    (1) Sand injures plasticity little at first because the grains are suspended in a plastic mass. It is only when grains are abundant enough to come in contact with their neighbors, that the effect becomes serious, and then both strength and amount of possible flow are injured. (2) Certain rare organic colloids increase the plasticity by rendering the water viscous. (3) Fineness also tends to increase plasticity. (4) Plane surfaces (plates) increase the amount of possible flow. They also give a chance for lubrication by thinner films, thus increasing the friction of film, and the strength of the whole mass. The action of plates is thus twofold ; but fineness may be carried to such an extent as to break up plate-like grains into angular fragments. The beneficial effects of plates are also decreased by the fact that each is so closely surrounded by others in the mass. (5) Molecular attraction is twofold in increasing plasticity. As the attraction increases, the coherence and strength of the mass increase, and the amount of possible deformation before crumbling also increases. Fineness increases this action by requiring more water. Colloids and crystalloids in solution may also increase the attraction. It is thus seen to be more active than any other single factor.

  4. Plastics control paraffin buildup

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-01

    Paraffin buildup in producing oil wells has been virtually eliminated by the use of plastic-coated sucker rods. The payout of the plasticing process is generally reached in less than a year, and the paraffin buildup may be inhibited for 10 yr or longer. Most of the plants applying plastic coatings to sucker rods are now fully automated, though a few still offer the hand-sprayed coating that some operators prefer. The several steps involved are described. The ideal plastic for the job is resistant to chemicals at high and low temperatures, flexible, has good adhesion, abrasion resistance, impact resistance, and a smooth glossy finish. The phenol aldehyde and epoxy resins presently offered by the industry fulfill these specifications very well; the multicoating and multibaking techniques improve their performance. Due to wide variations in the severity of the paraffin problem from one oil field to another, there is no general rule to estimate the possible savings from using plastic-coated sucker rods. The process, however, does appear to do a remarkable job in controlling paraffin buildup wherever it is a problem in producing oil by pump.

  5. ENHANCE: Enhancing Brain Plasticity for Sensorimotor Recovery in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The training programs will use the latest technology in rehabilitation, including virtual reality and robotics. The research team will apply the same training programs in three different countries: Canada, Israel, and India. In this way, the research team will combine their knowledge and skills to create training programs that can ...

  6. An implicit tensorial gradient plasticity model - formulation and comparison with a scalar gradient model

    NARCIS (Netherlands)

    Poh, L.H.; Peerlings, R.H.J.; Geers, M.G.D.; Swaddiwudhipong, S.

    2011-01-01

    Many rate-independent models for metals utilize the gradient of effective plastic strain to capture size-dependent behavior. This enhancement, sometimes termed as "explicit" gradient formulation, requires higher-order tractions to be imposed on the evolving elasto-plastic boundary and the resulting

  7. An Exact Implementation Of The Hoek–Brown Criterion For Elasto-Plastic Finite Element Calculations

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2007-01-01

    A simple stress update algorithm for generalised Hoek-Brown plasticity is presented. It is intended for use in elasto-plastic finite element computations and utilises the return mapping concept for computing the stress increment belonging to a given increment in strain at a material point. In the...

  8. Effect of pond depth and lining plastic color on growth and nitrogen ...

    African Journals Online (AJOL)

    Thus, this study evaluated the effect of pond depth and lining plastic colors on nitrogen fixing capacity of Anabaena species strain E3. Factorial combinations of four pond lining plastic colors and two depths were laid out in a complete randomized design with three replications. The ANOVA results revealed that the 20 cm ...

  9. Non-local crystal plasticity model with intrinsic SSD and GND effects

    NARCIS (Netherlands)

    Evers, L.P.; Brekelmans, W.A.M.; Geers, M.G.D.

    2004-01-01

    A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically

  10. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of two commercial austenitic stainless steels: AISI 304 and EN 1.4369. The materials were plastically deformed to different equivalent strains by uniaxial...... demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  11. Plastic Muscles TM as lightweight, low voltage actuators and sensors

    Science.gov (United States)

    Bennett, Matthew; Leo, Donald; Duncan, Andrew

    2008-03-01

    Using proprietary technology, Discover Technologies has developed ionomeric polymer transducers that are capable of long-term operation in air. These "Plastic Muscle TM" transducers are useful as soft distributed actuators and sensors and have a wide range of applications in the aerospace, robotics, automotive, electronics, and biomedical industries. Discover Technologies is developing novel fabrication methods that allow the Plastic Muscles TM to be manufactured on a commercial scale. The Plastic Muscle TM transducers are capable of generating more than 0.5% bending strain at a peak strain rate of over 0.1 %/s with a 3 V input. Because the Plastic Muscles TM use an ionic liquid as a replacement solvent for water, they are able to operate in air for long periods of time. Also, the Plastic Muscles TM do not exhibit the characteristic "back relaxation" phenomenon that is common in water-swollen devices. The elastic modulus of the Plastic Muscle TM transducers is estimated to be 200 MPa and the maximum generated stress is estimated to be 1 MPa. Based on these values, the maximum blocked force at the tip of a 6 mm wide, 35 mm long actuator is estimated to be 19 mN. Modeling of the step response with an exponential series reveals nonlinearity in the transducers' behavior.

  12. MM98.36 Strain Paths in Extrusion

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    1998-01-01

    The extrusion process has been investigated for different geometries, in order to study the strain path of different material elements during their movements through the plastic zone. This is done by using the FEM code DEFORM and physical simulation with wax togehter with the coefficient method. ....... Calculations of strain paths have also been performed by ABAQUS....

  13. Small scale plasticity and compressive properties of composites

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    in the commercial finite element code Abaqus [3]. In addition, in a supplementary study, taken into account the length scale effect of the yielding behavior using a strain gradient dependent plasticity law [4] implemented as a user element [5], it is possible investigating the scale effect on the yielding behavior...

  14. Tension and Compression Creep Apparatus for wood-Plastic Composites

    Science.gov (United States)

    Scott E. Hamel; John C. Hermanson; Steven M. Cramer

    2011-01-01

    Design of structural members made of wood-plastic composites (WPC) is not possible without accurate test data for tension and compression. The viscoelastic behavior of these materials means that these data are required for both the quasi-static stress-strain response, and the long-term creep response. Their relative incompressibility causes inherent difficulties in...

  15. Plastic deformation of the cladding of Fortissimo fuel elements

    International Nuclear Information System (INIS)

    Marbach, G.; Millet, P.; Blanchard, F.

    1979-07-01

    A study of a large number of standard Fortissimo pins, clad in solution treated 316 steel, shows that the plastic strain depends linearly on the fission gas pressure and the dose (in dpaF). The derived modulus of irradiation creep ranges from 1 to 2 x 10 -6 (MPa dpaF) -1 at 450 0 C and increases steadily with temperature. (author)

  16. Anisotropic yield surfaces in bi-axial cyclic plasticity

    International Nuclear Information System (INIS)

    Rider, R.J.; Harvey, S.J.; Breckell, T.H.

    1985-01-01

    Some aspects of the behaviour of yield surfaces and work-hardening surfaces occurring in biaxial cyclic plasticity have been studied experimentally and theoretically. The experimental work consisted of subjecting thin-walled tubular steel specimens to cyclic plastic torsion in the presence of sustained axial loads of various magnitudes. The experimental results show that considerable anisotropy is induced when the cyclic shear strains are dominant. Although the true shapes of yield and work-hardening surfaces can be very complex, a mathematical model is presented which includes both anisotropy and Bauschinger effects. The model is able to qualitatively predict the deformation patterns during a cycle of applied plastic shear strain for a range of sustained axial stresses and also indicate the material response to changes in axial stress. (orig.)

  17. Constitutive model of discontinuous plastic flow at cryogenic temperatures

    CERN Document Server

    Skoczen, B; Bielski, J; Marcinek, D

    2010-01-01

    FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. Some of these materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha) and evolution of micro-damage. The constitutive model presented in the paper is focused on the discontinuous plastic flow (serrated yielding) and takes into account the relevant thermodynamic background. The discontinuous plastic flow reflecting the DSA effect is described by the mechanism of local catastrophic failure of Lomer-Cottrell (LC) locks under the stress fields related to the accumulating edge dislocations (below the transition temperature from the screw dislocations to the edge dislocations mode T-1). The failure of LC locks leads to mass...

  18. Disaster Debris Recovery Database - Recovery

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  19. Challenges and Alternatives to Plastics Recycling in the Automotive Sector

    Directory of Open Access Journals (Sweden)

    Lindsay Miller

    2014-08-01

    Full Text Available Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products.

  20. Visual attentional load influences plasticity in the human motor cortex.

    Science.gov (United States)

    Kamke, Marc R; Hall, Michelle G; Lye, Hayley F; Sale, Martin V; Fenlon, Laura R; Carroll, Timothy J; Riek, Stephan; Mattingley, Jason B

    2012-05-16

    Neural plasticity plays a critical role in learning, memory, and recovery from injury to the nervous system. Although much is known about the physical and physiological determinants of plasticity, little is known about the influence of cognitive factors. In this study, we investigated whether selective attention plays a role in modifying changes in neural excitability reflecting long-term potentiation (LTP)-like plasticity. We induced LTP-like effects in the hand area of the human motor cortex using transcranial magnetic stimulation (TMS). During the induction of plasticity, participants engaged in a visual detection task with either low or high attentional demands. Changes in neural excitability were assessed by measuring motor-evoked potentials in a small hand muscle before and after the TMS procedures. In separate experiments plasticity was induced either by paired associative stimulation (PAS) or intermittent theta-burst stimulation (iTBS). Because these procedures induce different forms of LTP-like effects, they allowed us to investigate the generality of any attentional influence on plasticity. In both experiments reliable changes in motor cortex excitability were evident under low-load conditions, but this effect was eliminated under high-attentional load. In a third experiment we investigated whether the attentional task was associated with ongoing changes in the excitability of motor cortex, but found no difference in evoked potentials across the levels of attentional load. Our findings indicate that in addition to their role in modifying sensory processing, mechanisms of attention can also be a potent modulator of cortical plasticity.