WorldWideScience

Sample records for plastic pressure tubing

  1. Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube

    Science.gov (United States)

    Kostov, Konstantin G.; Machida, Munemasa; Prysiazhnyi, Vadym; Honda, Roberto Y.

    2015-04-01

    This work proposes an experimental configuration for the generation of a cold atmospheric pressure plasma jet at the downstream end of a long flexible plastic tube. The device consists of a cylindrical dielectric chamber where an insulated metal rod that serves as high-voltage electrode is inserted. The chamber is connected to a long (up to 4 m) commercial flexible plastic tube, equipped with a thin floating Cu wire. The wire penetrates a few mm inside the discharge chamber, passes freely (with no special support) along the plastic tube and terminates a few millimeters before the tube end. The system is flushed with Ar and the dielectric barrier discharge (DBD) is ignited inside the dielectric chamber by a low frequency ac power supply. The gas flow is guided by the plastic tube while the metal wire, when in contact with the plasma inside the DBD reactor, acquires plasma potential. There is no discharge inside the plastic tube, however an Ar plasma jet can be extracted from the downstream tube end. The jet obtained by this method is cold enough to be put in direct contact with human skin without an electric shock. Therefore, by using this approach an Ar plasma jet can be generated at the tip of a long plastic tube far from the high-voltage discharge region, which provides the safe operation conditions and device flexibility required for medical treatment.

  2. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports.

  3. Study on Thermo-Conductive Plastic Finned Tube Radiators

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    This paper discusses thermo-conductive plastic finned tube radiators used in water saving type power stations.First,the development of thermo-conductive plastics is introduced.Second,in order to determine the rational geometric dimensions of thermo-conductive plastic finned tubes,an objective function which takes the minimum volume of the consumed material for making finned tubes as an object is introduced.On the basis of the function,the economy comparison between thermo-conductive plastic finned tubes and metal finned tubes is conducted.

  4. Comparison of evaluation method for planar flaw in pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung Nam; Kim, Hyung Nam; Yoo, Hyun Joo [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Hwang, Won Gul [Chonnam National University, Gwangju (Korea, Republic of)

    2009-07-01

    CSA N285.4-94 requires the periodic inservice inspection and surveillance of pressure tubes in operating CANDU nuclear power reactors. If the inspection results reveal a flaw exceeding the acceptance criteria of the Code, the flaw must be evaluated to determine if the pressure is acceptable for continued service. Currently, the flaw evaluation methodology and acceptance criteria specified in CSA N285.8-05, 'Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors'. The Code is applicable to zirconium alloy pressure tubes. The evaluation methodology for a crack-like flaw is similar to that of FFSG(Fitness For Service Guideline for Zirconium alloy pressure in operation CANDU) used now. The object of this paper is to address the fracture initiation and plastic collapse evaluation for the planar flaw as it applies to the pressure tube on Wolsong NPP.

  5. Beyond steel : some producers give plastic production tubing a second look

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, J.

    2008-11-15

    The oil and gas sector is considering the use of plastics as an alternative to steel for production tubing. Innovations in manufacturing have made exotic plastics more available. Among these is Aramid fibre, a patented plastic marketed by PolyFlow Inc. The tubing known as Thermoflex was designed to improve gas flow out of natural gas wells where liquid loading often occurs in older wells. Plastics have the advantage of being lighter and smoother than steel. A smooth surface and less friction results in less back-pressure downhole. Plastics are inert to many grades of oil and gas, including the corrosive kinds. As such, they are well suited for sour wells. The combination of criss-crossed Aramid fibres wrapped around a Fortron plastic core makes the Thermoflex tubing much stronger than steel. The key disadvantage of Thermoflex is its operating temperature. The tubing should not be installed below -18 degrees C. Warm water must be circulated through the tubing in cold weather applications. To date, operators using Thermoflex tubing in shallow gas wells have not experienced any bitumen buildup that sometimes occurs in steel tubing. 1 ref., 2 figs.

  6. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  7. Heat-shrink plastic tubing seals joints in glass tubing

    Science.gov (United States)

    Del Duca, B.; Downey, A.

    1968-01-01

    Small units of standard glass apparatus held together by short lengths of transparent heat-shrinkable polyolefin tubing. The tubing is shrunk over glass O-ring type connectors having O-rings but no lubricant.

  8. Development of Zirconium alloys (for pressure tubes)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Choo, Ki Nam; Jung, Chung Hwan; Yim, Kyong Soo; Kim, Sung Soo; Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, Kyong Ho; Cho, Hae Dong [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Hwang, S. K.; Kim, M. H. [Inha Univ., Incheon (Korea, Republic of); Kwon, S. I [Korea Univ., Seoul (Korea, Republic of); Kim, I. S. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1997-09-01

    The objective of this research is to set up the basic technologies for the evaluation of pressure tube integrity and to develop improved zirconium alloys to prevent pressure tube failures due to DHC and hydride blister caused by excessive creep-down of pressure tubes. The experimental procedure and facilities for characterization of pressure tubes were developed. The basic research related to a better understanding of the in-reactor performances of pressure tubes leads to noticeable findings for the first time : the microstructural effect on corrosion and hydrogen pick-up behavior of Zr-2.5Nb pressure tubes, texture effect on strength and DHC resistance and enhanced recrystallization by Fe in zirconium alloys and etc. Analytical methodology for the assessment of pressure tubes with surface flaws was set up. A joint research is being under way with AECL to determine the fracture toughness of O-8 at the EOL (End of Life) that had been quadruple melted and was taken out of the Wolsung Unit-1 after 10 year operation. In addition, pressure tube with texture controlled is being made along with VNINM in Russia as a joint project between KAERI and Russia. Finally, we succeeded in developing 4 different kinds of zirconium alloys with better corrosion resistance, low hydrogen pickup fraction and higher creep strength. (author). 121 refs., 65 tabs., 260 figs

  9. Generation of Cold Argon Plasma Jet at the End of Flexible Plastic Tube

    CERN Document Server

    Kostov, Konstantin G; Prysiazhnyi, Vadym

    2014-01-01

    This brief communication reports a new method for generation of cold atmospheric pressure plasma jet at the downstream end of a flexible plastic tube. The device consists of a small chamber where dielectric barrier discharge (DBD) is ignited in Argon. The discharge is driven by a conventional low frequency AC power supply. The exit of DBD reactor is connected to a commercial flexible plastic tube (up to 4 meters long) with a thin floating Cu wire inside. Under certain conditions an Ar plasma jet can be extracted from the downstream tube end and there is no discharge inside the plastic tube. The jet obtained by this method is cold enough to be put in direct contact with human skin without electric shock and can be used for medical treatment and decontamination.

  10. Stored Energy of Plastic Deformation in Tube Bending Processes

    Science.gov (United States)

    Śloderbach, Z.; Pająk, J.

    2013-03-01

    The paper presents an aproximate analytic method for determination of the stored energy of plastic deformation during cold bending of metal tubes at bending machines. Calculations were performed for outer points of the tube layers subjected to tension and compression (the points of maximum strains). The percentage of stored energy related to the plastic strain work was determined and the results were presented in graphs. The influence and importance of the stored energy of plastic deformation on the service life of pipeline bends are discussed.

  11. Endotracheal Tube Cuff Pressure Monitoring in Children

    Directory of Open Access Journals (Sweden)

    V. V. Lazarev

    2012-01-01

    Full Text Available Objective: to estimate tracheal morphological changes in children, by using a device for the continuous monitoring and regulation of endotracheal tube cuff pressure. Subjects and methods. Two groups of children were examined. In Group A comprising 22 children aged 2 months to 16 years, the adequacy of the external control balloon palpation method was estimated to measure endotracheal tube cuff pressure. In Group B consisting of 12 children aged 5 to 18 years on mechanical ventilation for more than 3 days, the efficiency and appropriateness of applying a PressureEasy device for monitoring the pressure in the endotracheal tube cuff were assessed to prevent postintubation tracheal complications. In the latter group, the authors identified a study subgroup (BI of 8 patients where this device was employed and a control group of 4 patients (BII where it was not used. Results. Group A showed that endotracheal tube cuff pressure was 20—30 cm H2O in 31.8% of cases, greater than 30 cm H2O in 36.4%, and lower than 20 cm H2O in 31.8%. Subgroup BI displayed considerably lower macro- and microscopic histological changes than Subgroup BII. Conclusion. Determination of endotracheal tube cuff pressure by palpation of the external control balloon does not reflect its real values. The magnitude of tracheal changes is more intensive if continuous monitoring and regulation of pressure in the endotracheal tube cuff is absent. The PressureEasy device to monitor endotracheal tube cuff pressure permits its variability maintenance at a given level, by mitigating the damaging effect of the cuff on tracheal tissue. Key words: endotracheal tube, cuff, histology, ischemia, prevention, pressure, trachea.

  12. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  13. LPG based all plastic pressure sensor

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Lwin, R.; Leon-Saval, S.

    2015-01-01

    A prototype all-plastic pressure sensor is presented and characterized for potential use as an endoscope. The sensor is based on Long Period Gratings (LPG) inscribed with a CO2 laser in 6-ring microstructured PMMA fiber. Through a latex coated, plastic 3D-printed transducer pod, external pressure...

  14. Plastic Deformation of Metal Tubes Subjected to Lateral Blast Loads

    Directory of Open Access Journals (Sweden)

    Kejian Song

    2014-01-01

    Full Text Available When subjected to the dynamic load, the behavior of the structures is complex and makes it difficult to describe the process of the deformation. In the paper, an analytical model is presented to analyze the plastic deformation of the steel circular tubes. The aim of the research is to calculate the deflection and the deformation angle of the tubes. A series of assumptions are made to achieve the objective. During the research, we build a mathematical model for simply supported thin-walled metal tubes with finite length. At a specified distance above the tube, a TNT charge explodes and generates a plastic shock wave. The wave can be seen as uniformly distributed over the upper semicircle of the cross-section. The simplified Tresca yield domain can be used to describe the plastic flow of the circular tube. The yield domain together with the plastic flow law and other assumptions can finally lead to the solving of the deflection. In the end, tubes with different dimensions subjected to blast wave induced by the TNT charge are observed in experiments. Comparison shows that the numerical results agree well with experiment observations.

  15. Plasticity of pressure-sensitive materials

    CERN Document Server

    Ochsner, Andreas

    2014-01-01

    Classical plasticity theory of metals is independent of the hydrostatic pressure. However, if the metal contains voids or pores or if the structure is composed of cells, this classical assumption is no more valid and the influence of the hydrostatic pressure must be incorporated in the constitutive description. Looking at the microlevel, metal plasticity is connected with the uniform planes of atoms organized with long-range order. Planes may slip past each other along their close-packed directions. The result is a permanent change of shape within the crystal and plastic deformation. The presence of dislocations increases the likelihood of planes slipping. Nowadays, the theory of pressure sensitive plasticity is successfully applied to many other important classes of materials (polymers, concrete, bones etc.) even if the phenomena on the micro-level are different to classical plasticity of metals. The theoretical background of this phenomenological approach based on observations on the macro-level is describe...

  16. Absorbed Dose Distributions in Irradiated Plastic Tubing and Wire Insulation

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1979-01-01

    Plastic tubing and wire insulation were simulated by radiochromic dye dosimeter films having electron absorbing properties similar to the materials of interest (polyethylene and PVC). A 400-keV electron accelerator was used to irradiate from 1, 2, 3 and 4 sides simulating possible industrial...

  17. LPG based all plastic pressure sensor

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Lwin, R.; Leon-Saval, S.

    2015-01-01

    A prototype all-plastic pressure sensor is presented and characterized for potential use as an endoscope. The sensor is based on Long Period Gratings (LPG) inscribed with a CO2 laser in 6-ring microstructured PMMA fiber. Through a latex coated, plastic 3D-printed transducer pod, external pressure...... is converted to longitudinal elongation of the pod and therefore of the fiber containing the LPG. The sensor has been characterised for pressures of up to 160 mBar in an in-house built pressure chamber. Furthermore, the influence of the fiber prestrain, fiber thickness and the effect of different glues...

  18. Development of CANDU pressure tube integrity evaluation system

    Energy Technology Data Exchange (ETDEWEB)

    Kwac, S. L.; Kim, Y. J. [Sungkyunkwan Univ., Seoul (Korea, Republic of); Lee, J. S. [Kyonggi Univ., Suwon (Korea, Republic of); Park, Y. W. [KINS, Taejon (Korea, Republic of)

    1999-05-01

    The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and it's containment vessel. If a flaw or contact with their calandria tubes is found during the periodic inspection, the integrity evaluation must be carried out, and the safety requirements must be satisfied for continued service. In order to perform the integrity evaluation, complicated and iterative calculation procedures are required. Besides, a lot of data and knowledge for the evaluation are required for the integrity evaluation process. For this reason, an integrity evaluation system was developed. The developed system was built on the basis of ASME Sec. XI and FFSG(Fitness For Service Guidelines for zirconium alloy pressure tubes in operating CANDU reactors) issued by the AECL. The evaluation procedure includes the crack growth calculation both by DHC and by fatigue. It also provides the prediction of fracture initiation, plastic collapse and leak-before-break(LBB), blister formation and blister growth. This system provides various databases including the 3-D finite element analysis results on pressure tubes, inspection data and design specifications. In order to verify the developed system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.

  19. Performance of pressure tubes in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, D.; Griffiths, M.; Bickel, G.; Buyers, A.; Coleman, C.; Nordin, H.; St Lawrence, S. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The pressure tubes in CANDU reactors typically operate for times up to about 30 years prior to refurbishment. The in-reactor performance of Zr-2.5Nb pressure tubes has been evaluated by sampling and periodic inspection. This paper describes the behavior and discusses the factors controlling the behaviour of these components. The Zr–2.5Nb pressure tubes are nominally extruded at 815{sup o}C, cold worked nominally 27%, and stress relieved at 400 {sup o}C for 24 hours, resulting in a structure consisting of elongated grains of hexagonal close-packed alpha-Zr, partially surrounded by a thin network of filaments of body-centred-cubic beta-Zr. These beta-Zr filaments are meta-stable and contain about 20% Nb after extrusion. The stress-relief treatment results in partial decomposition of the beta-Zr filaments with the formation of hexagonal close-packed alpha-phase particles that are low in Nb, surrounded by a Nb-enriched beta-Zr matrix. The material properties of pressure tubes are determined by variations in alpha-phase texture, alpha-phase grain structure, network dislocation density, beta-phase decomposition, and impurity concentration that are a function of manufacturing variables. The pressure tubes operate at temperatures between 250 {sup o}C and 310 {sup o}C with coolant pressures up to about 11 MPa in fast neutron fluxes up to 4 x 10{sup 17} n·m{sup -2}·s{sup -1} (E > 1 MeV) and the properties are modified by these conditions. The properties of the pressure tubes in an operating reactor are therefore a function of both manufacturing and operating condition variables. The ultimate tensile strength, fracture toughness, and delayed hydride-cracking properties (velocity (V) and threshold stress intensity factor (K{sub IH})) change with irradiation, but all reach a nearly limiting value at a fluence of less than 10{sup 25} n·m{sup -2} (E > 1 MeV). At this point the ultimate tensile strength is raised about 200 MPa, toughness is reduced by about 50%, V increases

  20. Elasto-plastic finite element analysis of squaring circular tube

    Institute of Scientific and Technical Information of China (English)

    HUANG Yuung-ming

    2008-01-01

    The flow rule of Prandtl-Reuss was adopted and incremental elasto-plastic finite-element analysis formulation of Coulomb's friction law combining the finite deformation theory was established,and Lagrangian formulation for simulating the squaring process of circular tube was updated.Incremental Coulomb's friction law was used in the global stiffness matrix to solve the sliding-sticking state of friction at the boundary contact interface.During the squaring process,the linear factor γmin was adopted to solve the non-linear boundary problems of changing node contact and separation,elasto-plastic transient situation in an element and the non-linear constitutive behavior of material so as to make each reasonable increment of the punch meet the demand of calculation for linear increment.The squaring process of circular tube,load distribution and final shape of work piece after unloading were simulated by this mode and compared with research data.It is known that the circular tube with higller geometrical ratio (R/t) could be pressed into symmetric square tube without collapse.This result can provide reference for the analysis of this process and evaluation and improvement of product defects.

  1. Collapse of composite tubes under uniform external hydrostatic pressure

    Science.gov (United States)

    Smith, P. T.; Ross, C. T. F.; Little, A. P. F.

    2009-08-01

    This paper describes an experimental and a theoretical investigation into the collapse of 22 circular cylindrical composite tubes under external hydrostatic pressure. The investigations were on the collapse of fibre reinforced plastic tube specimens made from a mixture of three carbon and two E-glass fibre layers. The theoretical investigations were carried out using an in-house finite element computer program called BCLAM, together with the commercial computer package, namely ANSYS. It must be emphasised here that BS 5500 does not appear to exclusively cater for the buckling of composite shells under external hydrostatic pressure, so the work presented here is novel and should be useful to industry. The experimental investigations showed that the composite specimens behaved similarly to isotropic materials previously tested, in that the short vessels collapsed through axisymmetric deformation while the longer tubes collapsed through non-symmetric bifurcation buckling. Furthermore it was discovered that the models failed at changes of the composite lay-up due to the manufacturing process of these models. These changes seemed to be the weak points of the specimens.

  2. Collapse of composite tubes under uniform external hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P T; Ross, C T F; Little, A P F, E-mail: Carl.ross@ntlworld.co [University of Portsmouth, Portsmouth, PO1 3DJ (United Kingdom)

    2009-08-01

    This paper describes an experimental and a theoretical investigation into the collapse of 22 circular cylindrical composite tubes under external hydrostatic pressure. The investigations were on the collapse of fibre reinforced plastic tube specimens made from a mixture of three carbon and two E-glass fibre layers. The theoretical investigations were carried out using an in-house finite element computer program called BCLAM, together with the commercial computer package, namely ANSYS. It must be emphasised here that BS 5500 does not appear to exclusively cater for the buckling of composite shells under external hydrostatic pressure, so the work presented here is novel and should be useful to industry. The experimental investigations showed that the composite specimens behaved similarly to isotropic materials previously tested, in that the short vessels collapsed through axisymmetric deformation while the longer tubes collapsed through non-symmetric bifurcation buckling. Furthermore it was discovered that the models failed at changes of the composite lay-up due to the manufacturing process of these models. These changes seemed to be the weak points of the specimens.

  3. Failure probability estimation of flaw in CANDU pressure tube considering the dimensional change

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Sang Log; Kim, Young Jin [Sungkyunkwan Univ., Suwon (Korea, Republic of); Lee, Joon Seong [Kyonggi Univ., Suwon (Korea, Republic of); Park, Youn Won [KINS, Taejon (Korea, Republic of)

    2002-11-01

    The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and heavy water coolant. Pressure tubes are installed horizontally inside the reactor and only selected samples are periodically examined during in-service inspection. In this respect, a probabilistic safety assessment method is more appropriate for the assessment of overall pressure tube safety. The failure behavior of CANDU pressure tubes, however, is governed by delayed hydride cracking which is the major difference from pipings and reactor pressure vessels. Since the delayed hydride cracking has more widely distributed governing parameters, it is impossible to apply a general PFM methodology directly. In this paper, a PFM methodology for the safety assessment of CANDU pressure tubes is introduced by applying Monte Carlo simulation in determining failure probability. Initial hydrogen concentration, flaw shape and depth, axial and radial crack growth rate and fracture toughness were considered as probabilistic variables. Parametric study has been done under the base of pressure tube dimension and hydride precipitation temperature in calculating failure probability. Unstable fracture and plastic collapse are used for the failure assessment. The estimated failure probability showed about three-order difference with changing dimensions of pressure tube.

  4. Vibration of a prestressed tube in the presence of plastic zone

    Science.gov (United States)

    Dudarev, Vladimir V.; Mnukhin, Roman M.; Vatulyan, Alexander O.

    2016-08-01

    The paper is devoted to a problem of radial steady state vibrations for a tube taking into account the inhomogeneous residual stress (RS) field. According to the theory of ideal plasticity the RS field is caused by elastoplastic deformation due to the internal pressure and the further unloading process. Various RS distributions inside both elastic and plastic zones are described. A finding of displacement function is reduced to the numerical solving of the first-order differential equations. Within the framework of the acoustical method, the inverse problem for RS field identification is stated. On the basis of the free radial vibration problem for tube, we derived the formula for a dependency of eigenfrequency on RS distribution by using the linearization method. By using this formula for two different values of eigenfrequencies, we state the system of two equations to identify the plasticity zone radius and RS level. Examples of numerical solution of this system for different values of parameters (RS level and tube thickness) are demonstrated. The estimation accuracy of eigenfrequencies measurement for successful implementation of the proposed approach is given.

  5. Diametral creep prediction of pressure tube using statistical regression methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. [Korea Advanced Inst. of Science and Technology, Daejeon (Korea, Republic of); Lee, J.Y. [Korea Electric Power Research Inst., Daejeon (Korea, Republic of); Na, M.G. [Chosun Univ., Gwangju (Korea, Republic of); Jang, C. [Korea Advanced Inst. of Science and Technology, Daejeon (Korea, Republic of)

    2010-07-01

    Diametral creep prediction of pressure tube in CANDU reactor is an important factor for ROPT calculation. In this study, pressure tube diametral creep prediction models were developed using statistical regression method such as linear mixed model for longitudinal data analysis. Inspection and operating condition data of Wolsong unit 1 and 2 reactors were used. Serial correlation model and random coefficient model were developed for pressure tube diameter prediction. Random coefficient model provided more accurate results than serial correlation model. (author)

  6. 49 CFR 192.191 - Design pressure of plastic fittings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design pressure of plastic fittings. 192.191... Components § 192.191 Design pressure of plastic fittings. (a) Thermosetting fittings for plastic pipe must conform to ASTM D 2517, (incorporated by reference, see § 192.7). (b) Thermoplastic fittings for...

  7. Remote Pressure Control - Considering Pneumatic Tubes in Controller Design

    OpenAIRE

    Rager, David; Neumann, Rüdiger; Murrenhoff, Hubertus

    2016-01-01

    In pneumatic pressure control applications the influence of tubes that connect the valve with the control volume ist mainly neglected. This can lead to stability and robustness issues and limit either control performance or tube length. Modeling and considering tube behavior in controller design procedure allows longer tubes while maintaining the required performance and robustness properties without need for manual tuning. The author\\'s previously published Simplified Fluid Transmission Line...

  8. Endotracheal tube cuff pressure management in adult critical care ...

    African Journals Online (AJOL)

    Endotracheal tube (ETT) cuff pressure management is an essential ... convincing or sufficient evidence of effectiveness.7 The Nesibopho ... used the cuff pressure measurement (CPM) method, 24% used the palpation method or listened to air ...

  9. Research on method of pressure grouting piling of driven tube

    Institute of Scientific and Technical Information of China (English)

    Dianqi PAN; Zupei ZHANG; Diancai PAN; Yong CHEN; Maosen TAN

    2006-01-01

    The pressure grouting pile of driven tube can improve the load bearing capacity of the single pile from the mechanism of pressure grouting pile of driven tube. On the basis of analyzing the mechanism, the authors designed the machines and tools of pressure grouting, determined the operating manufacture and technology parameter on the pressure grouting secondly. The result shows that the pressure grouting pile of driven tube not only changes the pile type but also reduce the length of the pile and its engineering cost, it enhances the load bearing capacity of single pile an the same time.

  10. Pressure effect on the sensitivity of quartz Bourdon tube gauges.

    Science.gov (United States)

    Szaniszlo, A. J.

    1972-01-01

    The sensitivity change for a commercial fused quartz Bourdon tube precision pressure gauge, due to a change in absolute pressure level, has been analytically computed and experimentally confirmed. The computed differential pressure error is 2.5% of full scale at a 100 atm absolute pressure level. The experimental method compared the fused quartz Bourdon tube gauge digital output to the results obtained from a nitrogen gas pressure system which had a high pressure, well-type mercury manometer as the differential pressure reference.

  11. Fabrication of stainless steel clad tubing. [gas pressure bonding

    Science.gov (United States)

    Kovach, C. W.

    1978-01-01

    The feasibility of producing stainless steel clad carbon steel tubing by a gas pressure bonding process was evaluated. Such a tube product could provide substantial chromium savings over monolithic stainless tubing in the event of a serious chromium shortage. The process consists of the initial assembly of three component tubesets from conventionally produced tubing, the formation of a strong metallurgical bond between the three components by gas pressure bonding, and conventional cold draw and anneal processing to final size. The quality of the tubes produced was excellent from the standpoint of bond strength, mechanical, and forming properties. The only significant quality problem encountered was carburization of the stainless clad by the carbon steel core which can be overcome by further refinement through at least three different approaches. The estimated cost of clad tubing produced by this process is greater than that for monolithic stainless tubing, but not so high as to make the process impractical as a chromium conservation method.

  12. Development of an Integrity Assessment Procedure for CANDU Pressure Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Han Sub [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The pressure tubes used in a CANDU reactor are made from Zr-2.5Nb. During service the pressure tubes operate at temperatures between about 150 and 310 .deg. C, and with variable coolant pressures up to 11MPa corresponding to hoop stress of up to 130MPa. The maximum flux of fast neutrons (E>1MeV) from the fuel is about 4X10{sup 17}nm{sup -2}{sub s}{sup -1}. The pressure tubes are exposed to very severe degradation environment. The aging degradation of the pressure tubes are summarized as below. - Geometric deformation; axial elongation, diametric creep, and wall thinning. - Deuterium uptake; some fraction of the deuterium generated by the corrosion of pressure tubes is absorbed into the pressure tubes. Total equivalent hydrogen content in the pressure tube is the sum of the initial hydrogen content before operation and the deuterium uptake during operation. High concentration of hydrogen inside the pressure tubes makes the metal susceptible to Delayed Hydride Cracking. The DHC is a degradation mechanism of prime importance for CANDU pressure tubes. Mechanical properties, in particular fracture toughness, are deteriorated by high concentration of dissolved hydrogen. - Flaws; volumetric flaws are generated during operation. Wear scars by debris fretting, and bearing pad fretting are common. These volumetric flaws can be a site of crack initiation by fatigue or DHC. Cracks can propagate by DHC or fatigue crack propagation if conditions are met. - Material properties degradation; mechanical properties are affected by neutron irradiation. Yield strength and tensile strength are increased, and fracture toughness is deteriorated. The susceptibility to DHC is also affected. The integrity assessment of the pressure tube is a procedure to determine if the risk of pressure tube failure is controlled to maintain acceptably low. CSA N285.4 and 285.8 are two important guidelines regarding the integrity of pressure tubes. N285.4 is to guide in-service inspection, and N285

  13. Cuffed endotracheal tubes in children: the effect of the size of the cuffed endotracheal tube on intracuff pressure.

    Science.gov (United States)

    Krishna, Senthil G; Hakim, Mumin; Sebastian, Roby; Dellinger, Heather L; Tumin, Dmitry; Tobias, Joseph D

    2017-05-01

    In children, the size of the cuffed endotracheal tube is based on various age-based formulas. However, such formulas may over or underestimate the size of the cuffed endotracheal tube. There are no data on the impact of different-sized cuffed endotracheal tubes (ETT) on the intracuff pressure in children. The current study measures intracuff pressure with different-sized cuffed ETT. The study was conducted in an in vitro and in vivo phase. For the in vitro phase, 10 cuffed ETT of size 4.0, 4.5, and 5 mm internal diameter (ID) each were randomly placed inside a 1.0 cm ID plastic tube (mimicking the trachea), which was in turn connected to a 1 l test lung. After inflation of the cuff using the air leak test at a continuous positive airway pressure of 20 cmH2 O, the intracuff pressure was measured. The in vivo phase was conducted in 100 children (4-8 years) and were randomly divided into two groups to receive either a cuffed endotracheal tube based on the Khine formula (Group R) or a cuffed endotracheal tube that was a half-size (0.5 mm ID) smaller (Group S). Following the inflation of the cuff to seal the trachea, the intracuff pressure was measured. In the in vitro phase, the intracuff pressure was 45 ± 6, 23 ± 1, and 14 ± 6 cmH2 O with size 4.0, 4.5, and 5 mm ID cuffed ETT, respectively (F-test P pressure in Group R was 25 ± 19 cmH2 O vs 37 ± 35 cmH2 O in Group S (95% CI of difference: 1, 23; P = 0.039). If the cuffed endotracheal tube is too small, the trachea can still be sealed by inflating the cuff with additional air. However, this transforms the cuff from the intended high-volume, low-pressure cuff to an undesirable high-volume, high-pressure cuff. © 2017 John Wiley & Sons Ltd.

  14. Rupture pressure of wear degraded alloy 600 steam generator tubings

    Science.gov (United States)

    Hwang, Seong Sik; Namgung, Chan; Jung, Man Kyo; Kim, Hong Pyo; Kim, Joung Soo

    2008-02-01

    Fretting/wear degradation at the tube support in the U-bend region of a steam generator (SG) of a pressurized water reactor (PWR) has been reported. Simulated fretted flaws were machined on SG tubes of 195 mm in length. A pressure test was carried out with the tubes at room temperature by using a high pressure test facility which consisted of a water pressurizing pump, a test specimen section and a control unit. Water leak rates just after a ligament rupture or a burst were measured. Tubes degraded by up to 70% of the tube wall thickness (TW) showed a high safety margin in terms of the burst pressure during normal operating conditions. Tubes degraded by up to 50% of the TW did not show burst. Burst pressure depended on the defect depths rather than on the wrap angles. The tube with a wrap angle of 0° showed a fish mouth fracture, whereas the tube with a 45° wrap angle showed a three way fracture.

  15. Deadly pressure pneumothorax after withdrawal of misplaced feeding tube

    DEFF Research Database (Denmark)

    Andresen, Erik Nygaard; Frydland, Martin; Usinger, Lotte

    2016-01-01

    BACKGROUND: Many patients have a nasogastric feeding tube inserted during admission; however, misplacement is not uncommon. In this case report we present, to the best of our knowledge, the first documented fatality from pressure pneumothorax following nasogastric tube withdrawal. CASE PRESENTATION......: An 84-year-old Caucasian woman with dysphagia and at risk of aspiration underwent routine insertion of a nasogastric feeding tube; however, shortly after insertion she developed respiratory distress. A chest X-ray showed the tube had been misplaced into our patient's right lung. The tube was removed......, but our patient died less than an hour after withdrawal. The autopsy report stated that cause of death was tension pneumothorax, which developed following withdrawal of the misplaced feeding tube. CONCLUSIONS: The indications for insertion of nasogastric feeding tubes are many and the procedure...

  16. Deadly pressure pneumothorax after withdrawal of misplaced feeding tube

    DEFF Research Database (Denmark)

    Andresen, Erik Nygaard; Frydland, Martin; Usinger, Lotte

    2016-01-01

    BACKGROUND: Many patients have a nasogastric feeding tube inserted during admission; however, misplacement is not uncommon. In this case report we present, to the best of our knowledge, the first documented fatality from pressure pneumothorax following nasogastric tube withdrawal. CASE PRESENTATION...

  17. In-reactor performance of pressure tubes in CANDU reactors

    Science.gov (United States)

    Rodgers, D. K.; Coleman, C. E.; Griffiths, M.; Bickel, G. A.; Theaker, J. R.; Muir, I.; Bahurmuz, A. A.; Lawrence, S. St.; Resta Levi, M.

    2008-12-01

    The pressure tubes in CANDU reactors have been operating for times up to about 25 years. The in-reactor performance of Zr-2.5Nb pressure tubes has been evaluated by sampling and periodic inspection. This paper describes the behaviour and discusses the factors controlling the behaviour of these components in currently operating CANDU reactors. The mechanical properties (such as ultimate tensile strength, UTS, and fracture toughness), and delayed-hydride-cracking properties (crack growth rate Vc, and threshold stress intensity factor, KIH) change with irradiation; the former reach a limiting value at a fluence of Pressure tubes exhibit elongation and diametral expansion. The deformation behaviour is a function of operating conditions and material properties that vary from tube-to-tube and as a function of axial location. Semi-empirical predictive models have been developed to describe the deformation response of average tubes as a function of operating conditions. For corrosion and, more importantly deuterium pickup, semi-empirical predictive models have also been developed to represent the behaviour of an average tube. The effect of material variability on corrosion behaviour is less well defined compared with other properties. Improvements in manufacturing have increased fracture resistance by minimising trace elements, especially H and Cl, and reduced variability by tightening controls on forming parameters, especially hot-working temperatures.

  18. Prediction of Burst Pressure in Multistage Tube Hydroforming of Aerospace Alloys.

    Science.gov (United States)

    Saboori, M; Gholipour, J; Champliaud, H; Wanjara, P; Gakwaya, A; Savoie, J

    2016-08-01

    Bursting, an irreversible failure in tube hydroforming (THF), results mainly from the local plastic instabilities that occur when the biaxial stresses imparted during the process exceed the forming limit strains of the material. To predict the burst pressure, Oyan's and Brozzo's decoupled ductile fracture criteria (DFC) were implemented as user material models in a dynamic nonlinear commercial 3D finite-element (FE) software, ls-dyna. THF of a round to V-shape was selected as a generic representative of an aerospace component for the FE simulations and experimental trials. To validate the simulation results, THF experiments up to bursting were carried out using Inconel 718 (IN 718) tubes with a thickness of 0.9 mm to measure the internal pressures during the process. When comparing the experimental and simulation results, the burst pressure predicated based on Oyane's decoupled damage criterion was found to agree better with the measured data for IN 718 than Brozzo's fracture criterion.

  19. Correlation Between Endotracheal Tube Cuff Pressure and Tracheal Wall Pressure Using Air and Saline Filled Cuffs

    Science.gov (United States)

    2017-01-31

    AFRL-SA-WP-SR-2017-0004 Correlation Between Endotracheal Tube Cuff Pressure and Tracheal Wall Pressure Using Air - and Saline-Filled... Air Force Research Laboratory 711th Human Performance Wing U.S. Air Force School of Aerospace Medicine Aeromedical Research Department 2510 Fifth...Correlation Between Endotracheal Tube Cuff Pressure and Tracheal Wall Pressure Using Air - and Saline-Filled Cuffs 5a. CONTRACT NUMBER FA8650-14

  20. 75 FR 8114 - Pressure Sensitive Plastic Tape From Italy

    Science.gov (United States)

    2010-02-23

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Pressure Sensitive Plastic Tape From Italy AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject review. DATES: Effective Date: February 16, 2010. FOR...

  1. A numerical assessment of the load bearing capacity of externally pressurized moderately thick tubes

    Energy Technology Data Exchange (ETDEWEB)

    Corradi, Leone [Politecnico di Milano - Department of Energy, Enrico Fermi Center for Nuclear Studies (CeSNEF), via Ponzio 34/3 - 20133 Milano (Italy)], E-mail: leone.corradi@polimi.it; Di Marcello, Valentino; Luzzi, Lelio; Trudi, Fulvio [Politecnico di Milano - Department of Energy, Enrico Fermi Center for Nuclear Studies (CeSNEF), via Ponzio 34/3 - 20133 Milano (Italy)

    2009-08-15

    The collapse behavior of cylindrical shells pressurized from outside is examined. Attention is focused on tubes of moderate thickness, as required by very deep water pipelines or some innovative nuclear power plant proposals. Their collapse is expected to be dominated by yielding but, because of the decreasing nature of the post-collapse evolution, interaction with instability is likely to be significant enough to demand consideration. At present, no quantitative assessment of such effect is available, because little study has been devoted to tubes in this thickness range. Plasticity-instability interaction is activated by imperfections and to assess their influence on a systematic numerical study is undertaken. Computations produce a meaningful measure of the collapse pressure and it is proposed that the allowable pressure be determined on its basis, by introducing a suitable safety factor. This is chosen so that results reproduce those provided by presently accepted procedures in the well explored and reliable range of medium-thin tubes. When the same factor is applied to thicker tubes, the resulting allowable pressure is significantly higher than the values suggested by codes, which apparently react to the present lack of knowledge by assuming an extremely conservative attitude.

  2. Development of delayed hydride cracking resistant-pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Kim, S. S.; Yim, K. S

    2000-10-01

    For the first time, we demonstrate that the pattern of nucleation and growth of a DHC crack is governed by the precipitation of hydrides so that the DHC velocity and K{sub IH} are determined by an angle of the cracking plane and the hydride habit plane 10.7. Since texture controls the distribution of the 10.7 habit plane in Zr-2.5Nb pressure tube, we draw a conclusion that a textural change in Zr-2.5Nb tube from a strong tangential texture to the radial texture shall increase the threshold stress intensity factor, K{sub IH}, and decrease the delayed hydride cracking velocity. This conclusion is also verified by a complimentary experiment showing a linear dependence of DHCV and K{sub IH} with an increase in the basal component in the cracking plane. On the basis of the study on the DHC mechanism and the effect of manufacturing processes on the properties of Zr-2.5Nb tube, we have established a manufacturing procedure to make pressure tubes with improved DHC resistance. The main features of the established manufacturing process consist in the two step-cold pilgering process and the intermediate heat treatment in the {alpha} + {beta} phase for Zr-2.5Nb alloy and in the {alpha} phase for Zr-1Nb-1.2Sn-0.4Fe alloy. The manufacturing of DHC resistant-pressure tubes of Zr-2.5Nb and Zr-1N-1.2Sn-0.4Fe was made in the ChMP zirconium plant in Russia under a joint research with Drs. Nikulina and Markelov in VNIINM (Russia). Zr-2.5Nb pressure tube made with the established manufacturing process has met all the specification requirements put by KAERI. Chracterization tests have been jointly conducted by VNIINM and KAERI. As expected, the Zr-2.5Nb tube made with the established procedure has improved DHC resistance compared to that of CANDU Zr-2.5Nb pressure tube used currently. The measured DHC velocity of the Zr-2.5Nb tube meets the target value (DHCV <5x10{sup -8} m/s) and its other properties also were equivalent to those of the CANDU Zr-2.5Nb tube used currently. The Zr-1Nb-1

  3. Modulated pressure waves in large elastic tubes.

    Science.gov (United States)

    Mefire Yone, G R; Tabi, C B; Mohamadou, A; Ekobena Fouda, H P; Kofané, T C

    2013-09-01

    Modulational instability is the direct way for the emergence of wave patterns and localized structures in nonlinear systems. We show in this work that it can be explored in the framework of blood flow models. The whole modified Navier-Stokes equations are reduced to a difference-differential amplitude equation. The modulational instability criterion is therefore derived from the latter, and unstable patterns occurrence is discussed on the basis of the nonlinear parameter model of the vessel. It is found that the critical amplitude is an increasing function of α, whereas the region of instability expands. The subsequent modulated pressure waves are obtained through numerical simulations, in agreement with our analytical expectations. Different classes of modulated pressure waves are obtained, and their close relationship with Mayer waves is discussed.

  4. Pressure Loss across Tube Bundles in Two-phase Flow

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gun; Banzragch, Dagdan [Hannam Univ., Daejon (Korea, Republic of)

    2016-03-15

    An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.

  5. Frequency characteristics of pressure transducer kits with inserted pressure-resistant extension tubes.

    Science.gov (United States)

    Fujiwara, Shigeki; Mori, Satoshi; Tachihara, Keiichi; Yamamoto, Takeshi; Yokoe, Chizuko; Imaizumi, Uno; Morimoto, Yoshinari; Miki, Yoichiro; Toyoguchi, Izumi; Yoshida, Kazu-Ichi; Yokoyama, Takeshi

    2017-04-01

    The accurate monitoring of arterial blood pressure is important for cardiovascular management. However, the frequency characteristics of pressure transducer kits are influenced by the length of the pressure-resistant tube. To date, there have been few studies addressing the frequency characteristics of pressure transducer kits with inserted pressure-resistant extension tubes (pressure-resistant extension tube (ET) circuits). In this study, we examine ET circuits from the viewpoint of the frequency characteristics of pressure transducer kits. DT4812J transducer kits (length 150 cm; Argon Medical Devices, TX, USA) were used. Three original ET circuits were prepared, with the pressure-resistant tube of the DT4812J being extended with a 30-cm length of pressure-resistant tube (180ET circuit), a 60-cm length of pressure-resistant tube (210ET circuit), and a 90-cm length of pressure-resistant tube (240ET circuit). Each of these circuits was evaluated as part of this study. The natural frequency of the original DT4812J circuit was 45.90 Hz while the damping coefficient was 0.160. For the 180 ET circuit, the natural frequency and damping coefficient were 36.4 Hz and 0.162, respectively. For the ET210 circuit, the natural frequency and damping coefficient were 30.3 Hz and 0.175, respectively. For the ET210 circuit, the natural frequency and damping coefficient were 25.3 Hz and 0.180, respectively. As a result of extending the circuit, it was found that the natural frequency decreased drastically, while the damping coefficient increased slightly. When the extension of a pressure transducer kit is required, we should pay careful attention to the major decrease in the natural frequency, which may influence the pressure monitoring.

  6. Elasto-Plastic FEM Analysis of Residual Stress in Spun Tube

    Institute of Scientific and Technical Information of China (English)

    Fuan HUA; Yuansheng YANG; Dayong GUO; Wenhui TONG; Zhuangqi HU

    2004-01-01

    The residual stress distribution of Hastelloy C corrosion-resistant alloy tubes after power spinning was simulated with the elasto-plastic finite element method combining with the element birth and death technique, the influences of spinning parameters on the distribution of the residual stress were investigated in detail, and the formation mechanism of residual stress during tube spinning was discussed. Based on the calculation of the residual stress, the reasons for annealing cracks on the spun tube during interpass heat treatment were explored. The simulation results and the characteristics of annealing cracks show that the circumferential residual tensile stress is a main factor to cause the annealing cracks.

  7. Distribution of Energy Deposited in Plastic Tubing and Copper-Wire Insulation by Electron Beam Irradiation

    DEFF Research Database (Denmark)

    Pedersen, Walther Batsberg; Miller, Arne; Pejtersen, K.

    1978-01-01

    Scanned electron beam treatment is used to improve the physical properties of certain polymers, such as shrinkable plastic tubing and insulated wire and cable. Tubing or wires are passed at high speed under the beam scanner, and the material is irradiated to absorbed doses of several Mrad...... as uniformly as possible, usually by means of a multipass arrangement. In the present study, using irradiation by a scanned 0.4 MeV electron beam, measurements were made of high-resolution distributions of absorbed dose in polyethylene tubing and copper wire coated with polyethylene, nylon, or polyvinyl...... chloride insulation. Radiochromic dye films equivalent to the insulating materials were used as accurate dosimeters having a response independent of dose rate. Irradiations were in various geometries, wire and plastic thicknesses, positions along the beam scan, and with different backing materials near...

  8. Using a modified nasotracheal tube to prevent nasal ala pressure sore during prolonged nasotracheal intubation.

    Science.gov (United States)

    Cherng, Chen-Hwan; Chen, Yuan-Wu

    2010-12-01

    Nasotracheal tube induced nasal ala pressure sores or necrosis during prolonged nasotracheal intubation have been reported, and it is a serious but preventable complication. Here we introduce a modified nasotracheal tube to prevent this complication. This modified nasotracheal tube is composed of two parts, an oral endotracheal tube and a proximal part of a preformed nasotracheal tube, which are linked by a connector. The use of this modified nasotracheal tube can prevent nasal ala pressure sores during prolonged nasotracheal intubation.

  9. Plastic Foam Withstands Greater Temperatures And Pressures

    Science.gov (United States)

    Cranston, John A.; Macarthur, Doug

    1993-01-01

    Improved plastic foam suitable for use in foam-core laminated composite parts and in tooling for making fiber/matrix-composite parts. Stronger at high temperatures, more thermally and dimensionally stable, machinable, resistant to chemical degradation, and less expensive. Compatible with variety of matrix resins. Made of polyisocyanurate blown with carbon dioxide and has density of 12 to 15 pounds per cubic feet. Does not contibute to depletion of ozone from atmosphere. Improved foam used in cores of composite panels in such diverse products as aircraft, automobiles, railroad cars, boats, and sporting equipment like surfboards, skis, and skateboards. Also used in thermally stable flotation devices in submersible vehicles. Machined into mandrels upon which filaments wound to make shells.

  10. Calculations of plastic collapse load of pressure vessel using FEA

    Institute of Scientific and Technical Information of China (English)

    Peng-fei LIU; Jin-yang ZHENG; Li MA; Cun-jian MIAO; Lin-lin WU

    2008-01-01

    This paper proposes a theoretical method using finite element analysis (FEA) to calculate the plastic collapse loads of pressure vessels under internal pressure, and compares the analytical methods according to three criteria stated in the ASME Boiler Pressure Vessel Code. First, a finite element technique using the arc-length algorithm and the restart analysis is developed to conduct the plastic collapse analysis of vessels, which includes the material and geometry non-linear properties of vessels. Second,as the mechanical properties of vessels are assumed to be elastic-perfectly plastic, the limit load analysis is performed by employing the Newton-Raphson algorithm, while the limit pressure of vessels is obtained by the twice-elastic-slope method and the tangent intersection method respectively to avoid excessive deformation. Finally, the elastic stress analysis under working pressure is conducted and the stress strength of vessels is checked by sorting the stress results. The results are compared with those obtained by experiments and other existing models. This work provides a reference for the selection of the failure criteria and the calculation of the plastic collapse load.

  11. Decay of weak pressure waves in a low-pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Takiya, Toshio; Terada, Yukihiro; Komura, Akio [Hitachi Zosen Corp., Osaka (Japan); Higashino, Fumio; Abe, Hideaki; Ando, Masami

    1997-05-01

    In this study, the characteristics of pressure wave propagation in a vacuum tube have been investigated experimentally from the viewpoint of vacuum protection in the beamlines of a synchrotron radiation facility. Baffle plates having a single orifice of 5, 10 or 15 mm in diameter were installed in shock tubes 5 m in length and 36.6 or 68.8 mm in diameter, in order to slow the pressure wave or shock wave propagation, as a model for the beamline. To evaluate the decay of pressure waves, pressure changes with time at several locations along the side wall as well as at the end wall of the tube were measured. The results showed that the effect of the orifices on pressure wave propagation and its decay was significant. The present investigation may contribute to the design and construction of high-energy synchrotron radiation facilities with long beamlines. (author)

  12. Nondestructive examination of PHWR pressure tube using eddy current technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Jong; Choi, Sung Nam; Cho, Chan Hee; Yoo, Hyun Joo; Moon, Gyoon Young [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    A pressurized heavy water reactor (PHWR) core has 380 fuel channels contained and supported by a horizontal cylindrical vessel known as the calandria, whereas a pressurized water reactor (PWR) has only a single reactor vessel. The pressure tube, which is a pressure-retaining component, has a 103.4 mm inside diameter x 4.19 mm wall thickness, and is 6.36 m long, made of a zirconium alloy (Zr-2.5 wt% Nb). This provides support for the fuel while transporting the D2O heat-transfer fluid. The simple tubular geometry invites highly automated inspection, and good approach for all inspection. Similar to all nuclear heat-transfer pressure boundaries, the PHWR pressure tube requires a rigorous, periodic inspection to assess the reactor integrity in accordance with the Korea Nuclear Safety Committee law. Volumetric-based nondestructive evaluation (NDE) techniques utilizing ultrasonic and eddy current testing have been adopted for use in the periodic inspection of the fuel channel. The eddy current testing, as a supplemental NDE method to ultrasonic testing, is used to confirm the flaws primarily detected through ultrasonic testing, however, eddy current testing offers a significant advantage in that its ability to detect surface flaws is superior to that of ultrasonic testing. In this paper, effectiveness of flaw detection and the depth sizing capability by eddy current testing for the inside surface of a pressure tube, will be introduced. As a result of this examination, the ET technique is found to be useful only as a detection technique for defects because it can detect fine defects on the surface with high resolution. However, the ET technique is not recommended for use as a depth sizing method because it has a large degree of error for depth sizing.

  13. All-plastic fiber-based pressure sensor.

    Science.gov (United States)

    Bundalo, Ivan-Lazar; Lwin, Richard; Leon-Saval, Sergio; Argyros, Alexander

    2016-02-01

    We present a feasibility study and a prototype of an all-plastic fiber-based pressure sensor. The sensor is based on long period gratings inscribed for the first time to the best of our knowledge by a CO2 laser in polymethyl methacrylate (PMMA) microstructured fibers and coupled to a pod-like transducer that converts pressure to strain. The sensor prototype was characterized for pressures up to 150 mbars, and various parameters related to its construction were also characterized in order to enhance sensitivity. We consider this sensor in the context of future applications in endoscopic pressure sensors.

  14. All-plastic fiber-based pressure sensor

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Lwin, Richard; Leon-Saval, Sergio

    2016-01-01

    We present a feasibility study and a prototype of an all-plastic fiber-based pressure sensor. The sensor is based on long period gratings inscribed for the first time to the best of our knowledge by a CO2 laser in polymethyl methacrylate (PMMA) microstructured fibers and coupled to a pod......-like transducer that converts pressure to strain. The sensor prototype was characterized for pressures up to 150 mbars, and various parameters related to its construction were also characterized in order to enhance sensitivity. We consider this sensor in the context of future applications in endoscopic pressure...... sensors....

  15. Microhole High-Pressure Jet Drill for Coiled Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Ken Theimer; Jack Kolle

    2007-06-30

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the

  16. Automated Control of Endotracheal Tube Cuff Pressure during Simulated Flight

    Science.gov (United States)

    2016-06-21

    711th Human Performance Wing U.S. Air Force School of Aerospace Medicine Int’l Expeditionary Educ & Training Dept Air Force Expeditionary Medical ...International Expeditionary Education & Training Dept Air Force Expeditionary Medical Skills Institute/C-STARS Cincinnati 2510 Fifth St., Bldg. 840...AFRL-SA-WP-SR-2016-0008 Automated Control of Endotracheal Tube Cuff Pressure during Simulated Flight Thomas C. Blakeman

  17. PLASTIC LIMIT ANALYSIS OF DISCONTINUOUS LINING UNDERGROUND PRESSURE

    Institute of Scientific and Technical Information of China (English)

    龙春安

    1999-01-01

    Discontinuous lining is a special form of support in underground excavation. Based on the method of plastic limit analysis, it is found the upper and the lower bound solution of the pressure of circular discontinuous lining and discussed support parameter of discontinuous lining and its applicable conditions, which provides theoretical basis for the design and calculation of discontinuous lining.

  18. Quantification of five plasticizers used in PVC tubing through high performance liquid chromatographic-UV detection.

    Science.gov (United States)

    Radaniel, Tsanta; Genay, Stéphanie; Simon, Nicolas; Feutry, Frédéric; Quagliozzi, Francesca; Barthélémy, Christine; Lecoeur, Marie; Sautou, Valérie; Décaudin, Bertrand; Odou, Pascal

    2014-08-15

    Searching for alternatives to di-(2-ethylhexyl)-phthalate, a plasticizer that has been widely used in the manufacturing of PVC medical devices, has become a major challenge since a European regulation underlined some clinical risks. The aim of this study is to develop an HPLC-UV method to quantify the currently used alternative plasticizers to DEHP. Five plasticizers, acetyl tributyl citrate, di-(2-ethylhexyl)-phthalate, di-(ethylhexyl)-terephthalate, di-isononyl-1,2-cyclohexane-dicarboxylate, and trioctyl trimellitate, were separated on a C8 stationary phase (2.6 μm, 100 mm × 4.6mm) under gradient elution in 13 min. They were detected at 221 nm leading to a quantification threshold from 0.3 to 750 μg/mL as a function of the plasticizer. Within-day and between-day precisions were inferior to 0.9% and 18%, respectively. The assays were validated according to the accuracy profile method. Plasticizers were extracted from PVC-tubing by dissolving PVC in THF then precipitating it in methanol with a yield of over 90% for each plasticizer. This assay could feasibly be used to quantify plasticizers in PVC medical devices.

  19. Separation and analysis of low molecular weight plasticizers in poly(vinyl chloride) tubes

    DEFF Research Database (Denmark)

    Wang, Qian; Storm, Birgit Kjærside

    2005-01-01

    The separation of plasticizers in polyvinyl chloride (PVC) used in medical applications was carried out in different solvents and compared by studying the remaining PVC after separation using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravime...... on extracted diisooctyl phthalate (DOP) concentration were obtained from different methods. Analysis on one kind of the used tubes showed that 64-67% of DOP migrated to the patient, but bis(2-ethylhexyl) adipate (DOA) was 70-100% retained....

  20. Plastic deformation analysis and forming quality prediction of tube NC bending

    Institute of Scientific and Technical Information of China (English)

    Lu Shiqiang; Fang Jun; Wang Kelu

    2016-01-01

    Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neu-tral layer, angle of neutral layer deviation, bending moment, wall thickness variation and cross-section distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to quickly predict the forming quality of tube numerical control (NC) bending.

  1. Plastic deformation analysis and forming quality prediction of tube NC bending

    Directory of Open Access Journals (Sweden)

    Lu Shiqiang

    2016-10-01

    Full Text Available Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer deviation, bending moment, wall thickness variation and cross-section distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to quickly predict the forming quality of tube numerical control (NC bending.

  2. 75 FR 8925 - Pressure Sensitive Plastic Tape from Italy: Preliminary Results of Antidumping Duty Changed...

    Science.gov (United States)

    2010-02-26

    ... International Trade Administration Pressure Sensitive Plastic Tape from Italy: Preliminary Results of... pressure sensitive plastic tape from Italy pursuant to section 751(b) of the Tariff Act of 1930, as amended... review request. See Pressure Sensitive Plastic Tape from Italy: Notice of Initiation of Antidumping...

  3. Degradation and buckling of metal tubes under cyclic bending and external pressure

    Science.gov (United States)

    Corona, Edmundo

    The response and stability of long tubular components under bending and external pressure were investigated. The behavior of the structure under monotonic as well as cyclic bending was examined through combined experimental and analytical efforts. The experiments involved metal seamless tubes with diameter-to-thickness ratios in the range of 17 to 35. Long specimens were tested under combined bending and pressure in a specially developed test facility. Bending-pressure interaction collapse envelopes were first generated for monotonically increasing loading histories. The two loads were found to interact strongly through the ovalization of the cross section and the collapse envelopes to depend on the loading history followed. Cyclic bending under various curvature controlled and moment controlled histories was considered. The factors influencing the rate of accumulation of ovalization and the resulting instabilities were studied parametrically. Buckling under cyclic loads occurred when the ovalization of the tubes reached a critical value approximately equal to the critical value developed under the corresponding monotonically applied loads. The problem was analyzed numerically using kinematics which capture the ovalization of the cross section. The predicted response was found to be very sensitive to the elastic-plastic constitutive models used. This sensitivity was carefully analyzed using state-of-the-art models. In the case of cyclic loading histories, the hardening rules used in such models were found to play a pivotal role in the accuracy of the predictions. The reasons for this sensitivity were studied through a parallel investigation of the behavior of the material under cyclic loads.

  4. Towards a shock tube method for the dynamic calibration of pressure sensors.

    Science.gov (United States)

    Downes, Stephen; Knott, Andy; Robinson, Ian

    2014-08-28

    In theory, shock tubes provide a pressure change with a very fast rise time and calculable amplitude. This pressure step could provide the basis for the calibration of pressure transducers used in highly dynamic applications. However, conventional metal shock tubes can be expensive, unwieldy and difficult to modify. We describe the development of a 1.4 MPa (maximum pressure) shock tube made from unplasticized polyvinyl chloride pressure tubing which provides a low-cost, light and easily modifiable basis for establishing a method for determining the dynamic characteristics of pressure sensors.

  5. Plasticizers, antioxidants, and other contaminants found in air delivered by PVC tubing used in respiratory therapy.

    Science.gov (United States)

    Hill, Sandra S; Shaw, Brenda R; Wu, Alan H B

    2003-06-01

    Of the many compounds that leach from respiratory therapy tubing into air passing through it, we selected five compounds to analyze. The five compounds are known to be potentially carcinogenic, toxic or known to induce estrogenic activity. Parts-per-million and parts-per-billion concentrations of these species were found in the air passing through the tubing: the plasticizers di-(2-ethylhexyl) phthalate (DEHP) and di-ethyl phthalate (DEP), the antioxidants butylated hydroxy toluene (BHT) and p-nonylphenol (p-NP), and the contaminant (from commercial preparation of DEHP) 2-ethylhexanol (2-EH). These levels are high enough to cause some concern about exposure for patients who use oxygen on a long-term basis, those sensitive or allergic to these species, or those with asthma. A method was developed for analysis of solid tubing samples, showing great variability in concentrations of small, volatile molecules from sample to sample. A method was also developed for pre-concentration of small molecules onto Tenax adsorbants from air passing through the tubing. Both solid samples and adsorbant loaded with analyte were analyzed by direct dynamic thermal desorption gas chromatography mass spectrometry (GCMS). This study does not imply that adverse reactions by patients to chemical compounds leaching from respiratory medical tubing will occur but that further investigation is warranted.

  6. Magnetic pressure in electromagnetic tube forming with echelon coil

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-heng; YU Hai-ping; LI Chun-feng; LI Zhong

    2008-01-01

    The effects of geometrical characteristics of echelon coil on the magnetic pressure distribution and their contribution to the final shape of parts were focused and investigated through experiments and numerical simulation using FEM software ANSYS.The results show that the geometrical characteristics of echelon coil play a key role in controlling the magnetic pressure acting on the tube.They show a hump·like distribution near the interface between bigger diameter region and transition region of echelon coil,and affect the final shape of tubular parts then.With the reduction of relative diameter,the magnetic pressure in smaller diameter region decreases and its distribution gradient in transition region increases.With the augment of relative length,the magnetic pressure increases in bigger diameter region,while it almost remains constant in smaller diameter region,and the gradient in transition region enhances sharply.The distribution of magnetic pressure in the axial direction of tube agrees well with the profile of specimen.

  7. Effects of collecting blood into plastic heparinised vacutainer tubes and storage conditions on blood gas analysis values in horses.

    Science.gov (United States)

    Noël, P G; Couëtil, L; Constable, P D

    2010-11-01

    Plastic heparinised vacutainer tubes are used for blood gas analysis in horses. This collection method may not be ideal because influx of atmospheric O(2) through the permeable plastic wall of the vacutainer tube and loss of CO(2) into the gas phase above the blood sample should increase blood PO(2) and decrease PCO(2), respectively. To determine the effects of collecting blood into plastic vacutainer tubes and storage conditions on blood gas analysis values. Blood was obtained from 6 healthy horses and tonometered at 37 °C with 12% O(2) and 5% CO(2). Three ml aliquots of tonometered blood were collected using a glass syringe or vacutainer tube and stored in iced water or at room temperature for 0, 5, 15, 30, 60 and 120 min. Blood samples from vacutainer tubes were collected aerobically (tube opened for 5 s) or anaerobically (tube remained closed). Blood gas analysis was performed in duplicate using a Radiometer ABL5. Data was analysed using repeated measures analysis of variance and P < 0.05 was significant. Compared to the glass syringe, tonometered blood collected in vacutainer tubes had an immediate, significant, sustained and marked increase in PO(2) and an immediate, significant, transient but small decrease in PCO(2). Blood PO(2) and PCO(2) were higher when vacutainer tubes were stored in iced water instead of at room temperature. Measured blood pH and calculated values for plasma bicarbonate and total CO(2) concentration and base excess of extracellular fluid were similar when blood was collected in glass syringes or vacutainer tubes and values were not altered by storage temperature or time. Plastic heparinised vacutainer tubes should not be used to collect samples for measurement of blood PCO(2) and PO(2). Vacutainer tubes provide an accurate method for measuring plasma bicarbonate concentration, total CO(2) concentration and base excess. © 2010 EVJ Ltd.

  8. Gettering of hydrogen from Zr-2. 5Nb pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Cann, C.D.; Sexton, E.E.; Bahurmuz, A.A.; White, A.J.; Balness, H.R.; Ledoux, G.A. (AECL Research, Whiteshell Labs., Pinawa, Manitoba (Canada))

    1991-09-10

    Yttrium is being investigated as a hydrogen getter to prevent delayed hydride cracking in Zr-2.5Nb pressure tubes in CANDU nuclear reactors. Yttrium strips have been encapsulated in zirconium alloy and attached to the ends of hydrided pressure tube sections to determine the effect of the degree of contact between the yttrium and the encapsulation on the gettering rate. Rates for strips hot isostatically pressed into the encapsulation were in good agreement with diffusion model predictions assuming complete contact. Rates for strips brought into contact by cold rolling were slightly lower than those for the hot-pressed strips, while little gettering was observed for loose strips sealed in the encapsulation by tungsten-inert gas welding. The effect of hydrogen flux rate to the yttrium on gettering was determined at 313degC for hydrogen fluxes from three to nine times those predicted in reactor. It was found that these fluxes did not affect the gettering rate for hydrogen concentrations up to 58 at.% in the hot isostatically pressed yttrium inserts. Inserts that were thermally cycled and inserts that had not been hot pressed achieved similar gettering rates. (orig.).

  9. Some applications related to the structural integrity analyses of CANDU 6 pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Radu, V.S. [Inst. for Nuclear Research Pitesti, Pitesti (Romania)]. E-mail: vradu@nuclear.ro

    2006-07-01

    The flaws found during in-service inspection of Zr-2.5%Nb CANDU pressure tubes include fuel bundle bearing pad fretting flaws and debrise fretting flaws. In-service flaws are evaluated using fitness-for-service procedures to justify continued operation of pressure tube containing the flaw. The flaw evaluation procedures address crack initiation due to Delayed Hydride Cracking (DHC) under constant loading and also address fracture initiation and plastic collapse. The paper presents some applications related to the influence of the residual hoop stresses at roll-expanded joint region into stainless steel fittings at both ends on the structural integrity evaluation in the presence of blunt flaws. Two cases of blunt flaws were considered for evaluation: fuel bundle bearing pad fretting flaws and debrise fretting flaws. The blunt flaw geometry modeling and stress-strain analyses were performed by means finite element method (FEM) with FEA-Flaw computer code. The allowable peak flaw-tip stress and the Failure Assessment Diagram (FAD) for DHC initiation criterion were used for integrity assessment for the mentioned blunt flaws. Applications are performed as part of the research program address to evaluation of the in-service inspection results of the fuel channels from Cernavoda NPP. (author)

  10. Probabilistic integrity assessment of CANDU pressure tube for the consideration of flaw generation time

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Sang Log; Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of); Lee, Joon Seong [Kyonggi Univ., Seoul (Korea, Republic of); Park, Youn Won [KINS, Taejon (Korea, Republic of)

    2001-07-01

    This paper describes a Probabilistic Fracture Mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, Delayed Hydride Cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.

  11. Thermalhydraulics of advanced 37-element fuel bundle in crept pressure tubes

    Directory of Open Access Journals (Sweden)

    Park Joo Hwan

    2016-01-01

    Full Text Available A CANDU-6 reactor, which has 380 fuel channels of a pressure tube type, is suffering from aging or creep of the pressure tubes. Most of the aging effects for the CANDU primary heat transport system were originated from the horizontal crept pressure tubes. As the operating years of a CANDU reactor proceed, a pressure tube experiences high neutron irradiation damage under high temperature and pressure. The crept pressure tube can deteriorate the Critical Heat Flux (CHF of a fuel channel and finally worsen the reactor operating performance and thermal margin. Recently, the modification of the central subchannel area with increasing inner pitch length of a standard 37-element fuel bundle was proposed and studied in terms of the dryout power enhancement for the uncrept pressure tube since a standard 37-element fuel bundle has a relatively small flow area and high flow resistance at the central region. This study introduced a subchannel analysis for the crept pressure tubes loaded with the inner pitch length modification of a standard 37-element fuel bundle. In addition, the subchannel characteristics were investigated according to the flow area change of the center subchannels for the crept pressure tubes. Also, it was discussed how much the crept pressure tubes affected the thermalhydraulic characteristics of the fuel channel as well as the dryout power for the modification of a standard 37-element fuel bundle.

  12. Effects of Fin Shape on Condensation Heat Transfer and Pressure Drop inside Herringbone Micro Fin Tubes

    Science.gov (United States)

    Miyara, Akio; Otsubo, Yusuke; Ohtsuka, Satoshi

    Experiments of in-tube condensation of R410A have been carried out for as mooth tube, a h elical micro fin tube and five types of herringbone micro fin tubes. In the herringbone micro fin tube, the micro fins work to remove liquid at fin-diverging parts and collect liquid at fin-converging parts. In the high mass velocity region, heat transfer coefficient of all the herringbone tubes is about 2-4 times higher than that of the helical micro fin tube. In the low mass velocity region, however, the heat transfer coefficients of the herringbone micro fin tubes are equal to or smaller than those of the helical micro fin tube. Up to the fin height of 0.18 mm, the heat transfer coefficient is higher for higher fin, whereas that of ah igher fin tube is saturated. The pressure drop increases with increasing fin height. The helix angle strongly affects the heat transfer and pressure drop. Higher helix angle causes higher heat transfer coefficient and higher pressure drop. In the case of the herringbone tube which has shorter fin and/or smaller helix angle, pressure drops are equal to or lower than that of the helical micro fin tube, whereas those of other tubes are higher.

  13. Leningrad nuclear power plant pressure tube failure investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bruchertseifer, H.; Bart, G.; Restani, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Aden, V.G.; Abramov, V.Y.; Kalachikov, V.E.; Kozlov, A.V. [Research and Development Inst. of Power Engineering (RDIPE), Moscow and Sverdlovsk (Russian Federation); Subbotin, A.V.; Smirnov, E.A. [Moscow Engineering Physics Inst., Moscow (Russian Federation)

    1996-09-01

    During March 1992 a fuel pressure tube of a reactor channel of the Leningrad Nuclear Power Plant underwent a temperature excursion after a coolant flow blockage and was destroyed. In the following, within the Swiss Eastern European aid program a collaboration was set up for a project between the Moscow Research and Development Institute of Power Engineering, the designer of the RBMK-reactors, and the Paul Scherrer Institute. An intensive failure analysis program was started, based on modern equipment available at PSI for analysis of highly radioactive material and on the experience of both institutes in investing failures of reactor structure materials, with the goal of establishing the accident temperature evolution in time. This report presents the results of studies undertaken in order to determine the parameters which govern the events during the accident obtained from an analysis of the tube failure material together with evaluations of the apparent phase and structure changes. Our analysis of experimental data for oxygen distribution and the diffusion coefficient calculations showed that the temperatures exceeded 1300{sup o}C, which is much higher than results from previous studies performed in standard failure post-irradiation examination. The results obtained are important in that they have allowed to revise the previous assessments of the initial thermal conditions of the accident progression. In particular, they already served as a basis for determining the efficiency of the RBMK safety improvement measures carried out in response to the accident. (author) 8 figs., 5 refs.

  14. The Bulging Behavior of Thick-Walled 6063 Aluminum Alloy Tubes Under Double-Sided Pressures

    Science.gov (United States)

    Cui, Xiao-Lei; Wang, Xiao-Song; Yuan, Shi-Jian

    2015-05-01

    To make further exploration on the deformation behavior of tube under double-sided pressures, the thick-walled 6063 aluminum alloy tubes with an outer diameter of 65 mm and an average thickness of 7.86 mm have been used to be bulged under the combined action of internal and external pressures. In the experiment, two ends of the thick-walled tubes were fixed using the tooth and groove match. Three levels of external pressure (0 MPa, 40 MPa, and 80 MPa), in conjunction with the internal pressure, were applied on the tube outside and inside simultaneously. The effect of external pressure on the bulging behavior of the thick-walled tubes, such as the limiting expansion ratio, the bulging zone profile, and the thickness distribution, has been investigated. It is shown that the limiting expansion ratio, the bulging zone profile, and the thickness distribution in the homogeneous bulging area are all insensitive to the external pressure. However, the external pressure can make the thick-walled tube achieve a thinner wall at the fracture area. It reveals that the external pressure can only improve the fracture limit of the thick-walled 6063 tubes, but it has very little effect on their homogeneous bulging behavior. It might be because the external pressure can only increase the magnitude of the hydrostatic pressure for the tube but has no effect on the Lode parameter.

  15. Convection heat transfer and pressure drop in cross flow over finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Baran, M.; Pronobis, M.

    1984-05-15

    This paper reports the results of an experimental study on the heat transfer and pressure drop in finned tube banks. The measurements were carried out for the tubes with fins arranged parallel and a certain angle to the flow direction. The performance of such a heat exchanger with that of the conventional one i.e. plain tube heat exchanger, is compared.

  16. A pressurized drop-tube furnace for coal reactivity studies

    Science.gov (United States)

    Ouyang, Shan; Yeasmin, Hasina; Mathews, Joseph

    1998-08-01

    The design and characterization of a pressurized drop-tube furnace for investigation of coal devolatilization, gasification, and combustion are presented. The furnace is designed for high-temperature, isothermal operation in a developing laminar flow regime. It can be operated at pressures up to 1600 kPa, and temperatures up to 1673 K, with variable reaction time, particle feeding rate, and with inert and various oxidizing atmospheres. Particle residence times can be varied between ˜0.02 and ˜10 s depending upon operating conditions and positions of injection and sampling probes. Observations ports are available for sample collections and for optical investigation of the reactions or temperature measurements. Characterization of gas temperature in the furnace shows that, although the gas temperature profile in the furnace is affected by the water-cooled injection probe, the furnace is able to achieve isothermal operation in a developing laminar flow regime. Results from a series of brown coal devolatilization tests demonstrated the suitability of the furnace for experiments in coal research.

  17. Condensation inside tubes: Computer program for pressure drop in straight tubes (horizontal and vertical with downflow)

    Science.gov (United States)

    1993-12-01

    ESDU 93014 introduces a Fortran program that implements the calculation procedures of ESDU 90024 and 91023 respectively for vertical and horizontal cases. Those documents should be consulted for details of the empirical correlation used. Since vapor density is an important variable in the calculation and is usually available as a function of saturation temperature, the relationship between pressure and saturation temperature is required at points along the tube, although a constant value of vapor density may be used if the user wishes. The program provides options to use an Antoine or Wagner equation, or to provide a set of values of saturation pressure and temperature; for the vapor density the options are to use the ideal gas law, to provide a set of values of saturation temperature and density or to use a specific correlation equation (log density as a fraction of critical as a five term polynomial function of reciprocal reduced temperature minus one). For a wide range of pure compounds the ESDU Physical Data, Chemical Engineering Sub-series provides values of the constants in the correlation equations for saturation temperature and vapor density. The program (ESDUpac A9314) is provided on disc (uncompiled) in the software volume, and also compiled within ESDUview, a user-friendly shell running under MS DOS that prompts on screen for the input data. A worked example illustrates the use of the program and the formats of the input data and the output.

  18. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Y. M.; Kim, Y. S.; Gong, U. S.; Kwon, S. C.; Kim, S. S.; Choo, K.N

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described.

  19. Time-dependent permeation of carbon dioxide through a polyimide membrane above the plasticization pressure

    NARCIS (Netherlands)

    Wessling, M.; Huisman, I.; Boomgaard, van den Th.; Smolders, C.A.

    1995-01-01

    The time-dependent permeation behavior of a glassy polyimide is studied above and below the plasticization pressure with carbon dioxide as the permeating gas. The work particularly focuses on the quantification of the slow increase in permeability at feed pressures above the plasticization pressure.

  20. Interaction between plastic catheter tubings and regular insulin preparations used for continuous subcutaneous insulin-infusion therapy.

    Science.gov (United States)

    Chantelau, E; Lange, G; Gasthaus, M; Boxberger, M; Berger, M

    1987-01-01

    In search of possible interactions between plastic tubings used for insulin-pump treatment and commercial regular insulin preparations, various catheter sets made from polyvinyl chloride (PVC), polyethylene (PE), and nylon plastics were perfused at 30 degrees C in a laboratory setting for up to 72 h. The perfused insulin solutions were analyzed by high-performance liquid chromatography and atomic absorption spectroscopy. Although no plasticizer, e.g., dioctyl phthalate, or nickel or chromium ions were found in the perfusates, substantial interactions between the plastics and the insulin solutions were detected, extraction of bacteriostatic additives from the insulin solutions in particular. The PVC retained up to 88% of the bacteriostatics from the insulin preparations, whereas PE tubings retained only 10-15%. Whether the loss of preservatives during perfusion through PVC catheters predisposes to cutaneous infections during insulin-pump therapy remains to be shown.

  1. CT findings of foreign body reaction to retained endoloop ligature plastic tube mimicking acute appendicitis: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jae Hong; Kang, Chae Hoon; Choi, Soo Jung; Park, Man Soo; Jung, Seung Mun; Ryu, Dae Shick; Shin, Dong Rock [Dept. of Radiology, GangNeung Asan Hospital, University of Ulsan College of Medicine, Gangneung (Korea, Republic of)

    2016-07-15

    Many hospitals experience one or more retained surgical instrument events with risk of patient morbidity and medicolegal problems. Identification of retained surgical instrument is important. The radiologists should be familiar with imaging finding of retained surgical instrument. In a 62-year-old female with a retained plastic tube, localized peritoneal infiltration around air-containing tubular structure mimicked acute appendicitis on abdomen computed tomography (CT), one year after laparoscopic cholecystectomy. We reported CT findings of foreign body reaction related to retained Endoloop ligature plastic tube mimicking acute appendicitis.

  2. CT Findings of Foreign Body Reaction to a Retained Endoloop Ligature Plastic Tube Mimicking Acute Appendicitis: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jae Hong; Kang, Chae Hoon; Choi, Soo-Jung; Park, Man Soo; Jung, Seung Mun; Ryu, Dae Shick; Shin, Dong Rock [Department of Radiology, Asan Foundation, GangNeung Asan Hospital, University of Ulsan College of Medicine, Gangneung 25440 (Korea, Republic of)

    2016-11-01

    Many hospitals experience one or more retained surgical instrument events with risk of patient morbidity and medicolegal problems. Identification of retained surgical instrument is important. The radiologists should be familiar with imaging finding of retained surgical instrument. In a 62-year-old female with a retained plastic tube, localized peritoneal infiltration around air-containing tubular structure mimicked acute appendicitis on abdomen computed tomography (CT), one year after laparoscopic cholecystectomy. We reported CT findings of foreign body reaction related to retained Endoloop ligature plastic tube mimicking acute appendicitis.

  3. The supine-to-prone position change induces modification of endotracheal tube cuff pressure accompanied by tube displacement.

    Science.gov (United States)

    Minonishi, Toshiyuki; Kinoshita, Hiroyuki; Hirayama, Michiko; Kawahito, Shinji; Azma, Toshiharu; Hatakeyama, Noboru; Fujiwara, Yoshihiro

    2013-02-01

    To determine whether the supine-to-prone position change displaced the endotracheal tube (ETT) and, if so, whether the displacement related to this change modified ETT cuff pressure. Prospective study. Operating room of a university hospital. 132 intubated, adult, ASA physical status 1, 2, and 3 patients undergoing lumbar spine surgery. After induction of anesthesia, each patient's trachea was intubated. The insertion depth of each ETT was 23 cm for men and 21 cm for women at the upper incisors. In the supine position and after the supine-to-prone position change with the head rotated to the right, the length from the carina to ETT tip and ETT cuff pressure were measured. After the supine-to-prone position change, 91.7% patients had ETT tube displacement. Of these, 48% of patients' ETT moved ≥ 10 mm, whereas 86.3% of patients had changes in tube cuff pressure. There was a slight but significant correlation between ETT movement and change in cuff pressure. Depending on the position change, ETT cuff pressure decreased and the ETT tended to withdraw. After the supine-to-prone position change, patients had ETT tube displacement. Such ETT movement may be accompanied by a decrease in cuff pressure. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Biner, Suleyman Bulent [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Spencer, Benjamin Whiting [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  5. Fracture behaviour of finite length flaws in pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, D.R. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Shek, G.; Ho, E. [Kinectrics, Inc., Toronto, Ontario (Canada)

    2006-07-01

    Flaws encountered in nuclear pressure tubes must be evaluated to ensure that a hydride induced cracking mechanism, called delayed hydride cracking (DHC), is not initiated. The stress concentration at a flaw tip causes diffusion of hydrogen and precipitation of zirconium hydride at the flaw tip. Typically, assessment is done based on experimental data obtained from two-dimensional flaws. However, realistic lengths of flaws make the two-dimensional approach overly conservative in many cases, and costly remedial action may be prescribed unnecessarily. A fracture initiation model for DHC involves a type of process zone description to account for the interaction of hydride precipitation with the flaw tip stress distribution. Analytical techniques for this model based on weight functions are practical and accurate for two-dimensional geometry, but cannot be easily applied to the three-dimensional features of finite length flaws. Recently, a numerical rendition of the model has been incorporated into a finite element program so that arbitrary geometry and material properties can be managed. The process zone is automatically generated as hydride formation progresses, and a displacement parameter derived from the finite element distributions quantifies the response relative to an experimentally established fracture initiation threshold. The three-dimensional finite length model is applied to specific flaw geometries used in an experimental program. Comparison with corresponding two-dimensional tests demonstrates that the finite length flaw has a significantly higher threshold load than that predicted on the basis of a two-dimensional model. (author)

  6. Derivation of Relations and Analysis of Tube Bending Processes Using Discontinuous Fields of Plastic Strains

    Science.gov (United States)

    Śloderbach, Z.

    2015-05-01

    The generalized strain scheme in bending metal tubes at bending machines with the use of a mandrel presented in Śloderbach (1999; 2002; 20131,2; 2014) satisfies initial and boundary kinematic conditions of bending, conditions of continuity and inseparability of strains. This paper introduces three formal simplifications gradually imposed into forms of principal components of the generalized strain model giving suitable simplifications of the 1st, 2nd and 3rd types. Such mathematical simplifications cause that the obtained strain fields do not satisfy the condition of consistency of displacements and strain continuity. The simplified methods determine safer values of the wall thickness than those from the generalized continuous strain scheme. The condition of plastic incompressibility was used for the derivation of an expression for distribution of wall thickness of the bent elbow in the layers subjected to tension and compression for three examples of discontinuous kinematic strain fields.

  7. Field study of plastic tube cast-in-place concrete pile

    Institute of Scientific and Technical Information of China (English)

    陈永辉; 曹德洪; 王新泉; 杜海伟; 张霆

    2008-01-01

    The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on single piles with different forms of pile shoes and on their composite foundations were analyzed. The distribution patterns of axial force, shaft friction and toe resistance were studied based on the measurements taken from buried strain gauges. From the point of engineering application, the pile has merits in convenient quality control, high bearing capacity and reliable quality, showing higher reasonability, advancement and suitability than other ground improvement methods. The pile can be adopted properly to take place of ordinary ground improvement method, achieving greater economical and social benefits.

  8. Endotracheal tube cuff pressure increases significantly during anterior cervical fusion with the Caspar instrumentation system.

    Science.gov (United States)

    Sperry, R J; Johnson, J O; Apfelbaum, R I

    1993-06-01

    To determine whether endotracheal tube cuff pressure increases significantly with surgical retraction and cervical spine distraction during anterior cervical spine surgery with Caspar instrumentation, we prospectively studied 10 patients undergoing this procedure. The tracheas of all patients were intubated with a Mallinckrodt Hi-Lo endotracheal tube. Tracheal tube cuff pressures measured with a transducer system were 42.4 mm Hg +/- 7.0 mm Hg (SEM) after intubation and cuff inflation. Air was removed from the endotracheal tube cuff until the trachea was just barely sealed at a cuff pressure of 15.2 mm Hg +/- 1.6 mm Hg. The endotracheal tube cuff pressure was readjusted to "just-seal" pressure before the surgeons introduced the Caspar instrumentation. The cuff pressure with traction and distraction was 43.2 mm Hg +/- 5.0 mm Hg. This pressure was significantly increased from the "just-seal" pressure, and from the cuff pressure after instrumentation was discontinued (9.8 mm Hg +/- 2.3 mm Hg). We conclude that anterior cervical spine surgery with Caspar instrumentation is associated with a significant increase in endotracheal tube cuff pressure.

  9. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Ardhapurkar, P. M. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai, MS 400 076 India and S. S. G. M. College of Engineering Shegaon, MS 444 203 (India); Sridharan, Arunkumar; Atrey, M. D. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai, MS 400 076 (India)

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  10. Zirconium pressure tube testing: Test procedures, Production Assurance Program (Project H-700)

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.; Lewis, M. [Pacific Northwest Lab., Richland, WA (United States)

    1986-06-01

    UNC Nuclear Industries (UNC) has initiated a plan for the fabrication of zirconium alloy pressure tubes required for the future operation of N-Reactor. As part of this plan, UNC is establishing a program to qualify and develop a process capable of fabricating these pressure tubes to the requirements of UNC specification HWS 6502, REV. 4, Amendment 1. The objective of the Pressure Tube Testing Task is to support the UNC program-by performing physical, mechanical and chemical testing on prototype tube sections produced during FY-1986, 1987 and 1988 and to test samples from production runs after 1988 as may be required. The types of tests included in the Zirconium Pressure Tube Testing Program will be as follows: tensile tests; burst tests; fracture toughness tests; corrosion tests; chemical composition analyses; grain structure evaluations. The purpose of this document is to define the procedures that will be used in each type of test included in this task.

  11. Leakage Characteristics of Dual-Cannula Fenestrated Tracheostomy Tubes during Positive Pressure Ventilation: A Bench Study

    OpenAIRE

    Thomas Berlet; Mathias Marchon

    2016-01-01

    This study compared the leakage characteristics of different types of dual-cannula fenestrated tracheostomy tubes during positive pressure ventilation. Fenestrated Portex® Blue Line Ultra®, TRACOE® twist, or Rüsch® Traceofix® tracheostomy tubes equipped with nonfenestrated inner cannulas were tested in a tracheostomy-lung simulator. Transfenestration pressures and transfenestration leakage rates were measured during positive pressure ventilation. The impact of different ventilation modes, air...

  12. Plastic Limit Load Analysis of Cylindrical Pressure Vessels with Different Nozzle Inclination

    Science.gov (United States)

    Prakash, Anupam; Raval, Harit Kishorchandra; Gandhi, Anish; Pawar, Dipak Bapu

    2016-04-01

    Sudden change in geometry of pressure vessel due to nozzle cutout, leads to local stress concentration and deformation, decreasing its strength. Elastic plastic analysis of cylindrical pressure vessels with different inclination angles of nozzle is important to estimate plastic limit load. In the present study, cylindrical pressure vessels with combined inclination of nozzles (i.e. in longitudinal and radial plane) are considered for elastic plastic limit load analysis. Three dimensional static nonlinear finite element analyses of cylindrical pressure vessels with nozzle are performed for incremental pressure loading. The von Mises stress distribution on pressure vessel shows higher stress zones at shell-nozzle junction. Approximate plastic limit load is obtained by twice elastic slope method. Variation in limit pressure with different combined inclination angle of nozzle is analyzed and found to be distinct in nature. Reported results can be helpful in optimizing pressure vessel design.

  13. Analysis of plastic residues in maple sap and syrup collected from tubing systems sanitized with isopropyl alcohol.

    Science.gov (United States)

    Lagacé, Luc; Charron, Carmen; Sadiki, Mustapha

    2017-05-01

    A plastic tubing system operated under vacuum is usually used to collect sap from maple trees during spring time to produce maple syrup. This system is commonly sanitized with isopropyl alcohol (IPA) to remove microbial contamination colonizing the system during the sugar season. Questions have been raised whether IPA would contribute to the leaching of plastic residues in maple sap and syrup coming from sanitized systems. First, an extraction experiment was performed in the lab on commercial plastic tubing materials that were submitted to IPA under harsh conditions. The results of the GC-MS analysis revealed the presence of many compounds that served has target for further tests. Secondly, tests were done on early and mid-season maple sap and syrup coming from many sugarbushes using IPA or not to determine potential concentrations of plastic residues. Results obtained from sap and syrup samples showed that no quantifiable (sap run used as a rinse solution to be discarded before the season start and that were coming from non sanitized or IPA sanitized systems, showed quantifiable concentrations of chemical residue such as ultraviolet protector (octabenzone). These results show that IPA can be safely used to sanitize maple sap collection system in regards to the leaching of plastic residues in maple sap and syrup and reinforced the need to thoroughly rinse the tubing system at the beginning of the season for both sanitized and non sanitized systems.

  14. Pressure tube creep impact on the physics parameters for CANDU-6 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W. Y.; Min, B. J. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kam, S. C.; Kim, M. E. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2004-07-01

    The lattice cell calculations are performed to assess the sensitivity of the reactor physics parameters to pressure tube creep resulting from radiation aging. The physics parameters of the lattice cell are calculated by using WIMSD-5B code, WIMS- AECL code, and MCNP code. The reference model(normal state) and two perturbed models accounting for the pressure tube creep are developed on the basis of CANDU-6 lattice cell. The 2.5% and 5% values of pressure tube diameter creep are considered. Also, The effects of the analyzed lattice parameters which are the coolant void reactivity, the fuel fission density and the atom density of Pu isotopes on the lattice.

  15. Probabilistic fracture mechanics applied for DHC assessment in the cool-down transients for CANDU pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Vasile, E-mail: vasile.radu@nuclear.ro [Institute for Nuclear Research Pitesti, 1st Campului Street, 115400 Mioveni, Arges, P.O. Box 78, Mioveni (Romania); Roth, Maria [Institute for Nuclear Research Pitesti, 1st Campului Street, 115400 Mioveni, Arges, P.O. Box 78, Mioveni (Romania)

    2012-12-15

    irradiation in reactor. The paper describes a prospective way for the probabilistic approach of CANDU pressure tube failure by DHC mechanisms during cool-down cycles by using probabilistic fracture mechanics principles. The limit state functions are defined for fracture instability and plastic collapse according to the Canadian Standard N285.8-05 criteria. British Procedure R6 is used to define another limit state function based on reserve factors. Discussion of lifetime probability values obtained from both procedures is made.

  16. Plastic collapse and energy absorption of circular filled tubes under quasi-static loads by computational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beng, Yeo Kiam; Tzeng, Woo Wen [Universiti Malaysia Sabah, Sabah (Malaysia)

    2017-02-15

    This study presents the finite element analysis of plastic collapse and energy absorption of polyurethane-filled aluminium circular tubes under quasi-static transverse loading. Increasing focuses were given to impact damage of structures where energy absorbed during impact could be controlled to avoid total structure collapse of energy absorbers and devices designed to dissipate energy. ABAQUS finite element analysis application was utilized for modelling and simulating the polyurethane-filled aluminium tubes, different set of diameterto- thickness ratios and span lengths, subjected to transverse three-point-bending load. Different sets of polyurethane-filled aluminium tubes subjected to the transverse loading were modelled and simulated. The failure modes and mechanisms of filled tubes and its capabilities as energy absorbers to further improve and strengthening of empty tube were also identified. The results showed that plastic deformation response was affected by the geometric constraints and parameters of the specimens. The diameter-to-thickness ratio and span lengths had shown to play crucial role in optimizing the PU-filled tube as energy absorber.

  17. DETERMINISTIC EVALUATION OF DELAYED HYDRIDE CRACKING BEHAVIORS IN PHWR PRESSURE TUBES

    Directory of Open Access Journals (Sweden)

    YOUNG-JIN OH

    2013-04-01

    Full Text Available Pressure tubes made of Zr-2.5 wt% Nb alloy are important components consisting reactor coolant pressure boundary of a pressurized heavy water reactor, in which unanticipated through-wall cracks and rupture may occur due to a delayed hydride cracking (DHC. The Canadian Standards Association has provided deterministic and probabilistic structural integrity evaluation procedures to protect pressure tubes against DHC. However, intuitive understanding and subsequent assessment of flaw behaviors are still insufficient due to complex degradation mechanisms and diverse influential parameters of DHC compared with those of stress corrosion cracking and fatigue crack growth phenomena. In the present study, a deterministic flaw assessment program was developed and applied for systematic integrity assessment of the pressure tubes. Based on the examination results dealing with effects of flaw shapes, pressure tube dimensional changes, hydrogen concentrations of pressure tubes and plant operation scenarios, a simple and rough method for effective cooldown operation was proposed to minimize DHC risks. The developed deterministic assessment program for pressure tubes can be used to derive further technical bases for probabilistic damage frequency assessment.

  18. Leakage Characteristics of Dual-Cannula Fenestrated Tracheostomy Tubes during Positive Pressure Ventilation: A Bench Study

    Directory of Open Access Journals (Sweden)

    Thomas Berlet

    2016-01-01

    Full Text Available This study compared the leakage characteristics of different types of dual-cannula fenestrated tracheostomy tubes during positive pressure ventilation. Fenestrated Portex® Blue Line Ultra®, TRACOE® twist, or Rüsch® Traceofix® tracheostomy tubes equipped with nonfenestrated inner cannulas were tested in a tracheostomy-lung simulator. Transfenestration pressures and transfenestration leakage rates were measured during positive pressure ventilation. The impact of different ventilation modes, airway pressures, temperatures, and simulated static lung compliance settings on leakage characteristics was assessed. We observed substantial differences in transfenestration pressures and transfenestration leakage rates. The leakage rates of the best performing tubes were <3.5% of the delivered minute volume. At body temperature, the leakage rates of these tracheostomy tubes were <1%. The tracheal tube design was the main factor that determined the leakage characteristics. Careful tracheostomy tube selection permits the use of fenestrated tracheostomy tubes in patients receiving positive pressure ventilation immediately after stoma formation and minimises the risk of complications caused by transfenestration gas leakage, for example, subcutaneous emphysema.

  19. Leakage Characteristics of Dual-Cannula Fenestrated Tracheostomy Tubes during Positive Pressure Ventilation: A Bench Study.

    Science.gov (United States)

    Berlet, Thomas; Marchon, Mathias

    2016-01-01

    This study compared the leakage characteristics of different types of dual-cannula fenestrated tracheostomy tubes during positive pressure ventilation. Fenestrated Portex® Blue Line Ultra®, TRACOE® twist, or Rüsch® Traceofix® tracheostomy tubes equipped with nonfenestrated inner cannulas were tested in a tracheostomy-lung simulator. Transfenestration pressures and transfenestration leakage rates were measured during positive pressure ventilation. The impact of different ventilation modes, airway pressures, temperatures, and simulated static lung compliance settings on leakage characteristics was assessed. We observed substantial differences in transfenestration pressures and transfenestration leakage rates. The leakage rates of the best performing tubes were <3.5% of the delivered minute volume. At body temperature, the leakage rates of these tracheostomy tubes were <1%. The tracheal tube design was the main factor that determined the leakage characteristics. Careful tracheostomy tube selection permits the use of fenestrated tracheostomy tubes in patients receiving positive pressure ventilation immediately after stoma formation and minimises the risk of complications caused by transfenestration gas leakage, for example, subcutaneous emphysema.

  20. Decay of weak pressure waves in a low pressure tube; Teiatsu kannai ni okeru bisho atsuryokuha no gensui

    Energy Technology Data Exchange (ETDEWEB)

    Takiya, T.; Terada, Y.; Komura, A. [Hitachi Zosen Corp., Osaka (Japan); Higashino, F.; Abe, H. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan). Faculty of Technology; Abe, M. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1996-04-25

    The characteristics of pressure wave propagation in a vacuum tube have been investigated experimentally from the viewpoint of vacuum protection in the beam lines of a synchrotrons radiation facility. Baffle plates having a single orifice of 5, 10 or 15 mm in diameter were installed in shock tubes 5 m in length, and 36.6 or 68.8 mm in diameter, in order to show the pressure wave or shock wave propagation as a model for the beam line. To evaluate the decay of pressure waves pressure changes with time at several locations along the side wall as well as at the end wall of the tube were measured. The results show that the effect of the orifices on pressure wave propagation and its decay is significant. The present investigation may contribute to the design and construction of high energy synchrotrons radiation facilities with long beam lines. 11 refs., 9 figs., 2 tabs.

  1. Integrated probabilistic assessment for DHC initiation, growth and leak-before-break of PHWR pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Young-Jin [Power Engineering Research Institute, KEPCO Engineering and Construction, 188 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-870 (Korea, Republic of); Chang, Yoon-Suk, E-mail: yschang@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2014-08-15

    Highlights: • We develop an integrated approach for probabilistic assessment of PHWR pressure tube. • We examine probabilities of DHC initiation, growth, penetration and LBB failure. • The proposed approach is helpful to calculate rupture probabilities in reactor flaws even in the case of very low rupture probability. - Abstract: A few hundred zirconium alloy pressure tubes in a pressurized heavy water reactor (PHWR) serve as the nuclear fuel channel, as well as the reactor coolant pressure boundary. The pressure tubes are inspected periodically and a fitness-for-service assessment (FFSA) must be conducted if any flaw is detected in the inspection. A Canadian standard provides FFSA procedures of PHWR pressure tubes, which include probabilistic assessment for flaws considering delayed hydride cracking (DHC) and leak-before-break (LBB). In the present study, an integrated approach with detailed stepwise calculation procedures and integration methodology for probabilistic assessment of pressure tube was developed. In the first step of this approach, a probability of the DHC initiation, growth and penetration for single initial flaw is calculated. In the next step, a probability of LBB failure, which means tube rupture, for single through-wall crack (TWC) is calculated. Finally, a rupture probability for all initial flaws in a reactor can be calculated using the penetration probability for single flaw and the LBB failure probability for single TWC, as well as the predicted total number of initial flaw in the reactor.

  2. Lipase degradation of plasticized polyvinyl chloride endotracheal tube surfaces to create nanoscale features

    Science.gov (United States)

    Machado, Mary C; Webster, Thomas J

    2017-01-01

    Polyvinyl chloride (PVC) endotracheal tubes (ETTs) nanoetched with a fungal lipase have been shown to reduce bacterial growth and biofilm formation and could be an inexpensive solution to the complex problem of ventilator-associated pneumonia (VAP). Although bacterial growth and colonization on these nanoetched materials have been well characterized, little is known about the mechanism by which the fungal lipase degrades the PVC and, thus, alters its properties to minimize bacteria functions. This study used X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to better describe the surface chemistry of both unetched and lipase nanoetched PVC ETT. ATR-FTIR analysis of the unetched and treated surfaces showed a similar presence of a plasticizer. This was confirmed by XPS analysis, which showed an increase of carbon and the presence of oxygen on both unetched and nanoetched surfaces. A quantitative comparison of the FTIR spectra revealed significant correlations (Pearson’s correlation, R=0.997 [R2=0.994, Pinfrared peaks due to the degradation of the plasticizer by the fungal lipase. In contrast, results from this study did demonstrate significantly increased nanoscale surface features on the lipase etched compared to non-etched PVC ETTs. This led to a change in surface energetics, which altered ion adsorption to the ETTs. Thus, these results showed that PVC surfaces nanoetched with a 0.1% lipase solution for 48 hours have no significant change on surface chemistry but do significantly increase nanoscale surface roughness and alters ion adsorption, which suggests that the unique properties of these materials, including their previously reported ability to decrease bacterial adhesion and growth, are due to the changes in the degree of the nanoscale roughness, not changes in their surface chemistry. PMID:28352177

  3. A STUDY ON THE EFFECT OF RADIAL INERTIA ON THE ELASTO-PLASTIC COMBINED STRESS WAVE PROPAGATION IN THIN-WALLED TUBES

    Institute of Scientific and Technical Information of China (English)

    Li Yongchi; Huang Chengyi; Yuan Fuping; Jin Yongmei

    2001-01-01

    An in-depth analysis of propagation characteristics of elasto-plastic combined stress waves in circular thin-walled tubes has been made. In obtaining the simple-wave solution, however,most researches have ignored the influence of the circumferential stressrelated to the radial inertial effect in the tubes. In this paper the incremental elasto-plastic constitutive relations which are convenient for dynamic numerical analysis are adopted, and the finite-difference method is used to study the evolution and propagation of elasto-plastic combined stress waves in a thin-walled tube with the radial inertial effect of the tube considered. The calculation results are compared with those obtained when the radial inertial effect is not considered. The calculation results show that the radial inertial effect of a tube has a fairly great influence on the propagation of elasto-plastic combined stress waves.

  4. Analysis of plastic residues in maple sap and syrup collected from tubing systems sanitized with isopropyl alcohol

    Directory of Open Access Journals (Sweden)

    Luc Lagacé

    2017-05-01

    Full Text Available A plastic tubing system operated under vacuum is usually used to collect sap from maple trees during spring time to produce maple syrup. This system is commonly sanitized with isopropyl alcohol (IPA to remove microbial contamination colonizing the system during the sugar season. Questions have been raised whether IPA would contribute to the leaching of plastic residues in maple sap and syrup coming from sanitized systems. First, an extraction experiment was performed in the lab on commercial plastic tubing materials that were submitted to IPA under harsh conditions. The results of the GC-MS analysis revealed the presence of many compounds that served has target for further tests. Secondly, tests were done on early and mid-season maple sap and syrup coming from many sugarbushes using IPA or not to determine potential concentrations of plastic residues. Results obtained from sap and syrup samples showed that no quantifiable (< 1–75 μg/L concentration of any plastic molecules tested was determined in all samples coming from IPA treated or not treated systems. However, some samples of first sap run used as a rinse solution to be discarded before the season start and that were coming from non sanitized or IPA sanitized systems, showed quantifiable concentrations of chemical residue such as ultraviolet protector (octabenzone. These results show that IPA can be safely used to sanitize maple sap collection system in regards to the leaching of plastic residues in maple sap and syrup and reinforced the need to thoroughly rinse the tubing system at the beginning of the season for both sanitized and non sanitized systems.

  5. Surface modification of tube inner wall by transferred atmospheric pressure plasma

    Science.gov (United States)

    Chen, Faze; Liu, Shuo; Liu, Jiyu; Huang, Shuai; Xia, Guangqing; Song, Jinlong; Xu, Wenji; Sun, Jing; Liu, Xin

    2016-12-01

    Tubes are indispensable in our daily life, mechanical engineering and biomedical fields. However, the practical applications of tubes are sometimes limited by their poor wettability. Reported herein is hydrophilization of the tube inner wall by transferred atmospheric pressure plasma (TAPP). An Ar atmospheric pressure plasma jet (APPJ) is used to induce He TAPP inside polytetrafluoroethylene (PTFE) tube to perform inner wall surface modification. Optical emission spectrum (OES) is used to investigate the distribution of active species, which are known as enablers for surface modification, along the TAPP. Tubes' surface properties demonstrate that after TAPP treatment, the wettability of the tube inner wall is well improved due to the decrease of surface roughness, the removal of surface fluorine and introduction of oxygen. Notably, a deep surface modification can significantly retard the aging of the obtained hydrophilicity. The results presented here clearly demonstrate the great potential of TAPP for surface modification of the inner wall of tube or other hollow bodies, and thus a uniform, effective and long-lasting surface modification of tube with any length can be easily realized by moving the tube along its axis.

  6. A capture-gated neutron calorimeter using plastic scintillators and 3He drift tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher L [Los Alamos National Laboratory; Spaulding, Randy J [Los Alamos National Laboratory; Bacon, Jeffrey D [Los Alamos National Laboratory; Borozdin, Konstantin N [Los Alamos National Laboratory; Chung, Kiwhan [Los Alamos National Laboratory; Clark, Deborah J [Los Alamos National Laboratory; Green, Jesse A [Los Alamos National Laboratory; Greene, Steven J [Los Alamos National Laboratory; Hogan, Gary E [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Lisowski, Paul W [Los Alamos National Laboratory; Makela, Mark F [Los Alamos National Laboratory; Mariam, Fessaha G [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Murray, Matthew M [Los Alamos National Laboratory; Saunders, Alexander [Los Alamos National Laboratory; Wysocki, Frederick J [Los Alamos National Laboratory; Gray, Frederick E [REGIS UNIV.

    2010-01-01

    A segmented neutron calorimeter using nine 4-inch x 4-inch x 48-inch plastic scintillators and sixteen 2-inch-diameter 48-inch-long 200-mbar-{sup 3}He drift tubes is described. The correlated scintillator and neutron-capture events provide a means for n/{gamma} discrimination, critical to the neutron calorimetry when the {gamma} background is substantial and the {gamma} signals are comparable in amplitude to the neutron signals. A single-cell prototype was constructed and tested. It can distinguish between a {sup 17}N source and a {sup 252}Cf source when the {gamma} and the thermal neutron background are sufficiently small. The design and construction of the nine-cell segmented detector assembly follow the same principle. By recording the signals from individual scintillators, additional {gamma}-subtraction schemes, such as through the time-of-flight between two scintillators, may also be used. The variations of the light outputs from different parts of a scintillator bar are less than 10%.

  7. A comparison of the heat transfer and pressure drop performance of R-134a-lubricant mixtures in different diameter smooth tubes and micro-fin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Eckels, S.J. [Kansas State Univ., Manhattan, KS (United States). Dept. of Mechanical Engineering; Doerr, T.M.; Pate, M.B. [Iowa State Univ., Ames, IA (United States). Mechanical Engineering Dept.

    1998-10-01

    The average heat transfer coefficients and pressure drops during evaporation and condensation are reported for mixtures of R-134a and an ester lubricant in tubes of 12.7 mm (1/2 in.) outer diameter. The objective of this paper is to evaluate the performance of the R-134a-lubricant mixtures in these tubes and determine the performance benefits of the micro-fin tube. The performance benefits of the tubes with 12.7 mm (1/2 in.) outer diameter are compared to those of smaller tubes with 9.52 mm (3/8 in.) outer diameter. The lubricant used was a 169 SUS penta erythritol ester mixed-acid lubricant. The lubricant concentration was varied from 0--5.1% in the mixture. The average heat transfer coefficients in the 12.7 mm (1/2 in.) micro-fin tube were 50--150% higher than those for the 12.7 mm (1/2 in.) smooth tube, while pressure drops in the micro-fin tube were 5% to 50% higher than in the smooth tube. The addition of lubricant degraded the average heat transfer coefficients in all cases except during evaporation at low lubricant concentrations. Pressure drops were always increased with the addition of lubricant. The experimental results also indicate that tube diameter has some effect on the performance benefits of the micro-fin tube over that of the smooth tube.

  8. Endotracheal tube cuff pressures and tube position in critically injured patients on arrival at a referral centre: Avoidable harm?

    Directory of Open Access Journals (Sweden)

    Timothy C. Hardcastle

    2016-03-01

    Conclusion: Most patients, whether intubated on-scene or at hospital have ETT cuff pressures that are excessive, with the potential for ischaemic necrosis of the tracheal mucosa. ETT cuff manometry should be standard of care for all prehospital and in-hospital intubations where the tube will remain in situ for any prolonged period of time. Before inter-facility transfer ETT position should be confirmed radiologically.

  9. Successful management of occult pneumothorax without tube thoracostomy despite positive pressure ventilation.

    Science.gov (United States)

    Barrios, Cristobal; Tran, Tuan; Malinoski, Darren; Lekawa, Michael; Dolich, Matthew; Lush, Stephanie; Hoyt, David; Cinat, Marianne E

    2008-10-01

    The objective of this study was to determine whether tube thoracostomy can be safely avoided in a subset of patients with blunt occult pneumothorax. A retrospective review was performed. Management without tube thoracostomy was attempted for 59 occult pneumothoraces and was successful in 51 (86%). Observation was successful in 16 of 20 occult pneumothoraces (80%) exposed to positive pressure ventilation within 72 hours of admission. Eight delayed tube thoracostomies were required an average of 19.7 hours post admission. Patients who failed observant management had more significant physiologic derangement on admission (revised trauma score 6.96 vs 7.66, P = 0.04), were more likely to have significant multisystem trauma (88% vs 37%, P = 0.007), but were not more likely to require positive pressure ventilation (PPV) (50% vs 31%, P = 0.31). This study demonstrates that a subset of patients with blunt occult pneumothorax requiring positive pressure ventilation may be safely managed without tube thoracostomy.

  10. Results of experimental tests simulating supply pressure decrease in a K process tube

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, K.G.; Calkin, J.F.

    1957-11-13

    Simultaneous reduction of coolant to several or all reactor tubes raises concern not only for the adequacy of protection in the individual process tube but also the reactor as a whole. In event of such flow reduction, the heat generation does not decrease until at least 1.4 seconds have elapsed following the accident. Thus, the water temperature from each tube will rise, and result in an increase in the bulk water temperature. If the increase in bulk water temperature is such that saturation temperature at the top of downcomer is reached, pressurization may occur at that point and exceed the maximum recommended working pressure limit (approximately 1 to 2 psig). The purpose of this report is to present experimental data on a series of tests which were made to simulate flow reductions to a K type process tube by simulated front header pressure decreases.

  11. Simulation of the discharge propagation in a capillary tube in air at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jansky, Jaroslav; Tholin, Fabien; Bonaventura, Zdenek; Bourdon, Anne, E-mail: jaroslav.jansky@em2c.ecp.f [Ecole Centrale Paris, EM2C Laboratory, UPR 288 CNRS, Grande voie des vignes, 92295 Chatenay-Malabry Cedex (France)

    2010-10-06

    This paper presents simulations of an air plasma discharge at atmospheric pressure initiated by a needle anode set inside a dielectric capillary tube. We have studied the influence of the tube inner radius and its relative permittivity {epsilon}{sub r} on the discharge structure and dynamics. As a reference, we have used a relative permittivity {epsilon}{sub r} = 1 to study only the influence of the cylindrical constraint of the tube on the discharge. For a tube radius of 100 {mu}m and {epsilon}{sub r} = 1, we have shown that the discharge fills the tube during its propagation and is rather homogeneous behind the discharge front. When the radius of the tube is in the range 300-600 {mu}m, the discharge structure is tubular with peak values of electric field and electron density close to the dielectric surface. When the radius of the tube is larger than 700 {mu}m, the tube has no influence on the discharge which propagates axially. For a tube radius of 100 {mu}m, when {epsilon}{sub r} increases from 1 to 10, the discharge structure becomes tubular. We have noted that the velocity of propagation of the discharge in the tube increases when the front is more homogeneous and then, the discharge velocity increases with the decrease in the tube radius and {epsilon}{sub r}. Then, we have compared the relative influence of the value of the tube radius and {epsilon}{sub r} on the discharge characteristics. Our simulations indicate that the geometrical constraint of the cylindrical tube has more influence than the value of {epsilon}{sub r} on the discharge structure and dynamics. Finally, we have studied the influence of photoemission processes on the discharge structure by varying the photoemission coefficient. As expected, we have shown that photoemission, as it increases the number of secondary electrons close to the dielectric surface, promotes the tubular structure of the discharge.

  12. Microstructure and mechanical properties of an Al–Mg–Si tube processed by severe plastic deformation and subsequent annealing

    Energy Technology Data Exchange (ETDEWEB)

    Farshidi, M.H., E-mail: farshidi@um.ac.ir [Department of Materials Science and Metallurgical Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Kazeminezhad, M. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); Miyamoto, H. [Department of Mechanical Engineering, Doshisha University, Kyotanabe City, Kyoto (Japan)

    2015-07-29

    This study is aimed to realize evolution of microstructure and mechanical properties of aluminum 6061 alloy tube subjected to Severe Plastic Deformation (SPD) and subsequent annealing. For this purpose, the tube is initially processed by different passes of an SPD process called Tube Channel Pressing (TCP) and then subjected to a subsequent annealing at 473 °K for 2 h. Afterwards, tension test is used for the evaluation of mechanical properties while Electron Back-Scattered Diffraction (EBSD) equipped Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) are utilized for the microstructural characterizations. Results show that the Continuous Static Recrystallization (CSRX) is the main restoration phenomenon during annealing of aluminum 6061 alloy, even after imposing a moderate plastic strain. For instance, CSRX has been observed during annealing treatment after imposing an equivalent plastic strain as low as 1. However, the used annealing treatment causes different microstructural variations in specimens depending on the pass number of TCP. As an illustration, while the average grain size impressively decreases due to annealing of 1 pass TCPed specimen, it moderately increases after annealing of 5 passes TCPed specimen. This is due to development of a bimodal microstructure after 5 pass of TCP which leads to a different evolution of microstructure during successive annealing. It is also notable that TCPed and annealed specimens show higher strength and ductility compared with as TCPed specimens which is attributed to the occurrence of precipitation hardening besides restoration phenomenon during the annealing treatment.

  13. Effects of diameter, length, and circuit pressure on sound conductance through endotracheal tubes.

    Science.gov (United States)

    Räsänen, Jukka O; Rosenhouse, Giora; Gavriely, Noam

    2006-07-01

    We evaluated the acoustic frequency response of endotracheal tubes (ETs) to assess their effect on respiratory system sound transmission studies. White noise 150-3300 Hz was introduced into 4.0-, 6.0-, and 8.0-mm ETs and recorded at their proximal and distal ends. Four tubes of each size were studied at their original and normalized lengths, in straight and bent configurations, and at circuit pressures from 0 to 20 cmH2O. The characteristics of the sound transmission were compared using an analysis of variance for repeated measures. The average transmission amplitude varied directly with tube diameter. The position of peaks and troughs on the amplitude frequency distribution depended on tube length but not on tube diameter. The angle of the phase-frequency plot correlated well with the length of the tube and was independent of its diameter. A 90 degrees bend in the tube had no effect on its sound transmission. Increasing the circuit pressure above ambient modified the frequency response only if volume changes occurred in the test lung. When used to conduct sound into the respiratory system an ET affects the incident signal predictably depending on its length and diameter but not on its curvature or circuit pressure.

  14. In vitro evaluation of the method effectiveness to limit inflation pressure cuffs of endotracheal tubes

    Directory of Open Access Journals (Sweden)

    Rafael de Macedo Coelho

    2016-04-01

    Full Text Available ABSTRACT BACKGROUND AND OBJECTIVE: Cuffs of tracheal tubes protect the lower airway from aspiration of gastric contents and facilitate ventilation, but may cause many complications, especially when the cuff pressure exceeds 30 cm H2O. This occurs in over 30% of conventional insufflations, so it is recommended to limit this pressure. In this study we evaluated the in vitro effectiveness of a method of limiting the cuff pressure to a range between 20 and 30 cm H2O. METHOD: Using an adapter to connect the tested tube to the anesthesia machine, the relief valve was regulated to 30 cm H2O, inflating the cuff by operating the rapid flow of oxygen button. There were 33 trials for each tube of three manufacturers, of five sizes (6.5-8.5, using three times inflation (10, 15 and 20 s, totaling 1485 tests. After inflation, the pressure obtained was measured with a manometer. Pressure >30 cm H2O or <20 cm H2O were considered failures. RESULTS: There were eight failures (0.5%, 95% CI: 0.1-0.9%, with all by pressures <20 cm H2O and after 10 s inflation (1.6%, 95% CI: 0 5-2.7%. One failure occurred with a 6.5 tube (0.3%, 95% CI: -0.3 to 0.9%, six with 7.0 tubes (2%, 95% CI: 0.4-3.6%, and one with a 7.5 tube (0.3%, 95% CI: -0.3 to 0.9%. CONCLUSION: This method was effective for inflating tracheal tube cuffs of different sizes and manufacturers, limiting its pressure to a range between 20 and 30 cm H2O, with a success rate of 99.5% (95% CI: 99.1-99.9%.

  15. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Science.gov (United States)

    2010-10-01

    ... operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating... design pressure of the weakest element in the segment, determined in accordance with subparts C and D of... K of this part, if any variable necessary to determine the design pressure under the design...

  16. An improved statistical model for predicting the deuterium ingress in zirconium alloy pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, M.D., E-mail: mdpandey@uwaterloo.ca [Department of Civil and Environmental Engineering University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Xin, L. [Department of Civil and Environmental Engineering University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2012-09-15

    In the CANDU pressurized heavy water reactor (PHWR), the nuclear fuel is contained in hundreds of Zr-2.5 Nb alloy pressure tubes. The corrosion of zirconium alloy produces deuterium that is absorbed by the body of the pressure tube. The presence of this deuterium causes hydrogen embrittlement of zirconium alloy with an adverse effect on the integrity of the pressure tube. An accurate prediction of deuterium accumulation over time is an important step for ensuring the fitness-for-service of pressure tubes. Deuterium ingress data collected from in-service inspection of pressure tubes exhibit heteroscedasticity, i.e., the variance of deuterium concentration is dependent on operating time (or exposure) and temperature. The currently used model by the nuclear industry involves a logarithmic regression of deuterium content over time and temperature. Since this approach does not deal with heteroscedasticity precisely, it results in a conservative prediction of the deuterium ingress. The paper presents a new approach for predicting deuterium ingress based on a weighted least-squares (WLS) regression that overcomes the limitations of the existing model, and it provides realistic prediction bounds of deuterium ingress.

  17. THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE

    Directory of Open Access Journals (Sweden)

    A. M. Mohsen

    2012-06-01

    Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.

  18. Initiation of delayed hydride cracking in zirconium-niobium micro pressure tubes

    Science.gov (United States)

    Sundaramoorthy, Ravi Kumar

    Pressure tubes pick up hydrogen while they are in service within CANDU reactors. Sufficiently high hydrogen concentration can lead to hydride precipitation during reactor shutdown/repair at flaws, resulting in the potential for eventual rupture of the pressure tubes by a process called Delayed Hydride Cracking (DHC). The threshold stress intensity factor (KIH) below which the cracks will not grow by delayed hydride cracking of Zr-2.5Nb micro pressure tubes (MPTs) has been determined using a load increasing mode (LIM) method at different temperatures. MPTs have been used to allow easy study of the impact of properties like texture and grain size on DHC. Previous studies on MPTs have focused on creep and effects of stress on hydride orientation; here the use of MPTs for DHC studies is confirmed for the first time. Micro pressure tube samples were hydrided to a target hydrogen content of 100 ppm using an electrolytic method. For DHC testing, 3 mm thick half ring samples were cut out from the tubes using Electrical Discharge Machining (EDM) with a notch at the center. A sharp notch with a root radius of 15 microm was introduced by broaching to facilitate crack initiation. The direct current potential drop method was used to monitor crack growth during the DHC tests. For the temperature range tested the threshold stress intensity factors for the micro pressure tube used were found to be 6.5--10.5 MPa.m 1/2 with the value increasing with increasing temperature. The average DHC velocities obtained for the three different test temperatures 180, 230 and 250°C were 2.64, 10.87 and 8.45 x 10-8 m/s, respectively. The DHC data obtained from the MPTs are comparable to the data published in the literature for full sized CANDU pressure tubes.

  19. Studies on an improved indigenous pressure wave generator and its testing with a pulse tube cooler

    Science.gov (United States)

    Jacob, S.; Karunanithi, R.; Narsimham, G. S. V. L.; Kranthi, J. Kumar; Damu, C.; Praveen, T.; Samir, M.; Mallappa, A.

    2014-01-01

    Earlier version of an indigenously developed Pressure Wave Generator (PWG) could not develop the necessary pressure ratio to satisfactorily operate a pulse tube cooler, largely due to high blow by losses in the piston cylinder seal gap and due to a few design deficiencies. Effect of different parameters like seal gap, piston diameter, piston stroke, moving mass and the piston back volume on the performance is studied analytically. Modifications were done to the PWG based on analysis and the performance is experimentally measured. A significant improvement in PWG performance is seen as a result of the modifications. The improved PWG is tested with the same pulse tube cooler but with different inertance tube configurations. A no load temperature of 130 K is achieved with an inertance tube configuration designed using Sage software. The delivered PV power is estimated to be 28.4 W which can produce a refrigeration of about 1 W at 80 K.

  20. An Elastic Tube Gage for Measuring Static and Dynamic Pressures

    Science.gov (United States)

    1948-05-01

    f^pm the free ends by means of ä spring-clip With rubberrpadded jaws*. Before the Wire is wound, the tube Is coated with cement; after the winding...Compounds such as beeswax or ceresin wax were first employed for waterproofing, but their brittleness at low temperatures was found to be ob- jectionable...Engineering Company,- New Castle, Delaware, is given in the following: 1. Apply one coat of primer, with a brush or ä spray gun, and allow It to dry one-half

  1. Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of H-type Finned Tube Banks

    OpenAIRE

    2014-01-01

    H-type finned tube heat exchanger elements maintain a high capacity for heat transfer, possess superior self-cleaning properties and retain the ability to effect flue gas waste heat recovery in boiler renovations. In this paper, the heat transfer and pressure drop characteristics of H-type finned tube banks are studied via an experimental open high-temperature wind tunnel system. The effects of fin width, fin height, fin pitch and air velocity on fin efficiency, convective heat transfer coe...

  2. HeatTransfer Coefficients and Pressure Drops of The Finned Tube Heat Exchangers with Small Diameter Pipes

    Science.gov (United States)

    Tanaka, Hiroyoshi; Aoyama, Shigeo; Koma, Hachirou; Adachi, Masaaki

    In order to enhance the heat transfer coefficient of the fin used in the finned tube heat exchanger, newly designed fin surfaces, especially, with small diameter (≅4mm) pipes are developed. The experiments are made by the transient testing technique, and used the plastic fins scaling up 4 times of the actual metal fin size. The data of the heat transfer coefficient and the pressure drop are transformed to the actual metal fin data. The fin with the anomalous staggered pipe arrangement and the bridge-like cutting-out with inclined leg portion from stream line is found to have very high overall heat transfer coefficient which is about 1.8-fold increase in comparison with the conventional Louvered fin. In this paper the reason why such enhancement is caused is clarified by mean of the calculation based on the rectangular duct flow. The calculated values are coincident with the data of the experiment well.

  3. Tracheal tube and laryngeal mask cuff pressure during anaesthesia - mandatory monitoring is in need

    Directory of Open Access Journals (Sweden)

    Møller Ann M

    2010-12-01

    Full Text Available Abstract Background To prevent endothelium and nerve lesions, tracheal tube and laryngeal mask cuff pressure is to be maintained at a low level and yet be high enough to secure air sealing. Method In a prospective quality-control study, 201 patients undergoing surgery during anaesthesia (without the use of nitrous oxide were included for determination of the cuff pressure of the tracheal tubes and laryngeal masks. Results In the 119 patients provided with a tracheal tube, the median cuff pressure was 30 (range 8 - 100 cm H2O and the pressure exceeded 30 cm H2O (upper recommended level for 54 patients. In the 82 patients provided with a laryngeal mask, the cuff pressure was 95 (10 - 121 cm H2O and above 60 cm H2O (upper recommended level for 56 patients and in 34 of these patients, the pressure exceeded the upper cuff gauge limit (120 cm H2O. There was no association between cuff pressure and age, body mass index, type of surgery, or time from induction of anaesthesia to the time the cuff pressure was measured. Conclusion For maintenance of epithelia flow and nerve function and at the same time secure air sealing, this evaluation indicates that the cuff pressure needs to be checked as part of the procedures involved in induction of anaesthesia and eventually checked during surgery.

  4. Heat transfer coefficients and pressure drops for R-134a and an ester lubricant mixture in a smooth tube and a micro-fin tube

    Energy Technology Data Exchange (ETDEWEB)

    Eckels, S.J. [Kansas State Univ., Manhattan, KS (United States); Doerr, T.M.; Pate, M.B. [Iowa State Univ., Ames, IA (United States). Mechanical Engineering Dept.

    1998-10-01

    This paper reports average heat transfer coefficients and pressure drops during the evaporation and condensation of mixtures of R-134a and a 150 SUS penta erythritol ester branched-acid lubricant. The smooth tube and micro-fin tube tested in this study had outer diameters of 9.52 mm (3/8 in.). The micro-fin tube had 60 fins, a fin height of 0.2 mm (0.008 in), and a spiral angle of 18{degree}. The objective of this study is to evaluate the effectiveness of the micro-fin tube with R-134a and to determine the effect of circulating lubricant. The experimental results show that the micro-fin tube has distinct performance advantages over the smooth tube. For example, the average heat transfer coefficients during evaporation and condensation in the micro-fin tube were 50--200% higher than those for the smooth tube, while the average pressure drops were on average only 10--50% higher. The experimental results indicate that the presence of a lubricant degrades the average heat transfer coefficients during both evaporation and condensation at high lubricant concentrations. Pressure drops during evaporation increased with the addition of a lubricant in both tubes. For condensation, pressure drops were unaffected by the addition of a lubricant.

  5. Foamed plastics in buried pipes. PE tubes - unsuitable for heat pumps?; Wenn's im Erdreich schaeumt.... PE-Sonden fuer Waermepumpen ungeeignet?

    Energy Technology Data Exchange (ETDEWEB)

    Ameling, Werner [Fachhochschule Trier (Germany). Technische Gebaeudeausruestung; Omnium Technic (Germany)

    2009-06-15

    The gas permeability of plastic tubes has become a matter of discussion. The focus is currently on PE tubes of soil-to-water heat pumps. If a heat pump system with vertical probes is switched on again after a longer period of standstill, start-up problems may ensue especially in regions with underground CO2 sources or CO2 stores. (orig.)

  6. Tensile properties and fracture toughness of Zr–2.5Nb alloy pressure tubes of IPHWR220

    Energy Technology Data Exchange (ETDEWEB)

    Khandelwal, H.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Singh, R.N., E-mail: rnsingh@barc.gov.in [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Bind, A.K.; Sunil, S.; Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Ghosh, A.; Dhandharia, P.; Bhachawat, D. [Engineering Directorate, Nuclear Power Corporation of India Ltd., NUB, Anushaktinagar, Mumbai 400094 (India); Shekhar, R.; Kumar, Sunil Jai [National Centre for Compositional Characterisation of Materials, Bhabha Atomic Research Centre, ECIL (PO), Hyderabad 500 062 (India)

    2015-11-15

    Highlights: • Evaluated tensile properties & fracture toughness of Zr–2.5Nb pressure tube alloy. • Studied the effect of test temperature, sample location and ingot melting. • Quadruple melting improves fracture toughness despite variation in fabrication route. • Fracture toughness of IPHWR220 pressure tubes compared with CANDU material. - Abstract: The pressure tubes of Indian Pressurized Heavy Water Reactor (IPHWR) of 220 MWe are made of Zr–2.5Nb alloy manufactured either from Double Melted (DM) or from Quadruple Melted (QM) ingots. These pressure tubes are manufactured by hot extrusion, two stages of cold pilgering with intermediate annealing and autoclaving. To achieve good in-reactor performance, it is required to have minimum variability in the mechanical properties of the pressure tube across its length and between tube to tube. In this work, tensile properties and fracture toughness parameters (J{sub max}, dJ/da and CCL determined as per ASTM E1820-11 standard) of unirradiated Zr–2.5Nb alloy pressure tubes manufactured from DM and QM ingots using samples obtained from front and back end of the tubes is presented. The mechanical properties were evaluated in temperature range of 25–450 °C and compared with the corresponding data reported in literature for CANDU pressure tubes.

  7. PARTICULARITIES REGARDING THE OPERATING PROCESS OF THE CUTTING AND EXTRACTION DEVICE IN THE CANDU HORIZONTAL FUEL CHANNELS PRESSURE TUBE DECOMMISSIONING PART II: CUTTING AND EXTRACTING PRESSURE TUBE PROCESS

    Directory of Open Access Journals (Sweden)

    Constantin POPESCU

    2016-05-01

    Full Text Available This paper presents some details of operation process for a Cutting and Extraction Device (CED in order to achieve the decommissioning of the horizontal fuel channels pressure tube in the CANDU 6 nuclear reactor. The most important characteristic of the Cutting and Extraction Device (CED is his capability of totally operator’s protection against the nuclear radiation during pressure tube decommissioning. The cutting and extracting pressure tube processes present few particularities due to special adopted technical solutions: a special module with three cutting rollers (system driven by an actuator, a guiding-extracting and connecting module (three fixing claws which are piloted by an actuator and block the device in the connecting position with extracting plugs. The Cutting and Extraction Device (CED is a train of modules equipped with special systems to be fully automated, connected with a Programmable Logic Controller (PLC and controlled by an operator panel type Human Machine Interface (HMI. All processes are monitored by video cameras. In case of error, the process is automatically stopped, the operator receiving an error message and the last sequence could be reinitialized or aborted due to safety reasons.

  8. The effect of priming solutions and storage time on plasticizer migration in different PVC tubing types--implications for wet storage of ECMO systems.

    Science.gov (United States)

    Horne, David C; Torrance, Ida; Modine, Thomas; Gourlay, Terence

    2009-12-01

    The wet priming of extracorporeal membrane oxygenation systems and storage of these systems for rapid deployment is common practice in many clinical centers. This storage policy is, however, seen by many to be controversial due to the potential adverse effects associated with the migration of the di(2-ethylhexyl) phthalate plasticizer (DEHP) from the polyvinyl chloride (PVC) circuit tubing and issues surrounding the maintenance of sterility. This study was performed to evaluate the effects of both short and long-term storage and priming fluid type on plasticizer migration from four commonly used PVC tubes in extracorporeal membrane oxygenation therapy circuits. The four tubes incorporating three plasticizers, two DEHP, one tri(2-ethylhexyl) trimellitate (TOTM), and one dioctyl adipate (DOA) were exposed to each of the three priming fluids for a period of 28 days. Samples were taken at time intervals of 1, 4, 8, 24, and 48 hours, followed by samples at 7, 14, and 28 days. Each sample was processed using a spectrophotomer and the concentration of plasticizer leaching into each solution at each time-point determined. There was a time dependent increase in plasticizer leached from each tube. The migration was greatly affected by both the priming fluid and tubing type. The migration of DEHP was higher than that of TOTM and DOA over both the short and long-term exposure levels. Plasticizer migration occurs from all of the tubes tested over the long term. The TOTM and DOA tubes performed better than the DEHP counterparts in the short term. Selection of priming fluid has a major bearing on plasticizer migration with significant lipid and protein containing fluids promoting higher migration than simple sodium chloride .9% solution prime. The results suggest that DOA tubing and sodium chloride. 9% solution priming fluid should be selected if wet primed perfusion circuits are to be used over short terms of storage.

  9. Comparative evaluation of intraocular pressure changes subsequent to insertion of laryngeal mask airway and endotracheal tube.

    Directory of Open Access Journals (Sweden)

    Ghai B

    2001-07-01

    Full Text Available AIMS: To evaluate the intraocular pressure and haemodynamic changes subsequent to insertion of laryngeal mask airway and endotracheal tube. SUBJECTS AND METHODS: The study was conducted in 50 adult patients. A standard general anaesthesia was administered to all the patients. After 3 minutes of induction of anaesthesia baseline measurements of heart rate, non-invasive blood pressure and intraocular pressure were taken following which patients were divided into two groups: laryngeal mask airway was inserted in group 1 and tracheal tube in group 2. These measurements were repeated at 15-30 second, every minute thereafter up to 5 minutes after airway instrumentation. RESULTS: A statistically significant rise in heart rate, systolic blood pressure, diastolic blood pressure and intraocular pressure was seen in both the groups subsequent to insertion of laryngeal mask airway or endotracheal tube. Mean maximum increase was statistically more after endotracheal intubation than after laryngeal mask airway insertion. The duration of statistically significant pressure responses was also longer after endotracheal intubation. CONCLUSION: Laryngeal mask airway is an acceptable alternative technique for ocular surgeries, offering advantages in terms of intraocular pressure and cardiovascular stability compared to tracheal intubation.

  10. Middle Ear Pressure Regulation - Complementary Action of the Mastoid and Eustachian Tube

    DEFF Research Database (Denmark)

    Gaihede, Michael; Dirckx, Joris J J; Jacobsen, Henrik

    2010-01-01

    HYPOTHESIS:: Middle ear pressure (MEP) is actively regulated by both the Eustachian tube and the mastoid air cell system. BACKGROUND:: MEP is a highly significant factor involved in many clinical conditions related to otitis media. Basic knowledge on its overall regulation remains insufficient...... of these distinct mechanisms were found. CONCLUSION:: The human mastoid as well as the Eustachian tube was capable of active counter-regulation of the MEP in short-term experimental pressure changes in healthy ears. Thus, these 2 systems seemed to function in a complementary way, where the mastoid was related...

  11. Development of Evaluation Technology of the Integrity of HWR Pressure Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. M.; Kim, Y. S.; Im, K. S.; Kim, K. S.; Ahn, S. B

    2007-06-15

    Zr-2.5Nb pressure tubes are one of the most critical structural components governing the lifetime of the heavy water reactors to carry fuel bundles and heavy coolant water inside. Since they are being degraded during their operation in reactors due to dimensional changes caused by creep and irradiation growth, neutron irradiation and delayed hydride cracking, it is required to evaluate their degradation by conducting material testing and examinations on the highly irradiated pressure tubes in hot cells and to keep tracking of their degradation behavior with operation time, which are the aim of this project.

  12. The Sensitivity Analysis of Axial Pressure Tube Creep Profile for Dryout Power in PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Euiseung; Kim, Youngae [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Stern Laboratory performed the CHF tests with only one axial pressure tube creep profile per 3.3%, 5.1% peak crept channel and made CHF correlation including creep factor from the CHF test results. Wolsong nuclear power plants also have utilized the same CHF correlation derived by CNL. Pressure tube diameter creep rate is function of fast neutron, coolant temperature, and coolant pressure in a channel. It means that various axial pressure tube creep profiles exist in PHWR due to the history of operating conditions. Usually, CHF correlation is used during ROP(Regional Overpower Protection) Trip Setpoint Analysis or Safety Analysis in PHWR. The sensitivity analysis for CHF effects using various creep profiles is needed. This paper summarizes the comparison results of dryout power between CHF test creep profile and estimated creep profiles of Wolsong units. The effect of axial pressure tube creep profile for dryout power in fuel channel is evaluated by using Stern Lab. CHF test creep profile and 380 channel creep profiles of Wolsong. The dryout powers at 3.3% and 5.1% test conditions are slightly smaller when using 380 Wolsong channels creep profiles. These also show that the simulated dryout powers maintain consistency regardless of flow conditions.

  13. Eddy current monitoring of fatigue crack growth in Zr-2.5% Nb pressure tube

    Science.gov (United States)

    Krause, T. W.; Martin, A. E.; Sheppard, R. R.; Schankula, J. J.

    2000-05-01

    Zr-2.5% wt. Nb pressure tubes (PTs) form the core of the heat transport system in CANDU nuclear reactors. These 6 m long, 100 mm diameter tubes are operated at elevated temperatures (nominally 300 °C) and at pressures that produce hoop stresses that are 25% of the ultimate tensile strength of the PT (120 Mpa). Therefore, detection and characterization of flaws in these components becomes crucial for their continued pressure retaining integrity. If a flaw is detected, however, the cost of PT replacement is expensive. Periodic in-service inspection of a flaw that demonstrates no change in flaw characteristics can be used to allow a pressure tube to remain in-service. This requires confidence in the accuracy and reliability of methods used to inter flaw characteristics. Such confidence can only be developed by comparing nondestructive predictions with results from destructive examinations. In this work, eddy current testing was used to monitor the progressive stages of a fatigue crack, grown through pressure cycling from a notch on the inner surface of a PT. Results from a differential lift-off compensated eddy current probe were used to produce sizing estimates of the crack grown between 35% (base of notch) and 74% of the PT wall. A comparison with a destructive examination of the crack demonstrated sensitivity too changes in crack depth accurate to 5% of the tube wall thickness. Such results, combined with similar information obtained from ultrasonics will increase confidence in interpretation of PT inspection data.

  14. Tracheal tube and laryngeal mask cuff pressure during anaesthesia - mandatory monitoring is in need

    DEFF Research Database (Denmark)

    Rokamp, K.Z.; Secher, N.H.; Møller, Ann;

    2010-01-01

    ABSTRACT: BACKGROUND: To prevent endothelium and nerve lesions, tracheal tube and laryngeal mask cuff pressure is to be maintained at a low level and yet be high enough to secure air sealing. METHOD: In a prospective quality-control study, 201 patients undergoing surgery during anaesthesia (without...... the use of nitrous oxide) were included for determination of the cuff pressure of the tracheal tubes and laryngeal masks. RESULTS: In the 119 patients provided with a tracheal tube, the median cuff pressure was 30 (range 8 - 100) cm H2O and the pressure exceeded 30 cm H2O (upper recommended level) for 54...... patients. In the 82 patients provided with a laryngeal mask, the cuff pressure was 95 (10 - 121) cm H2O and above 60 cm H2O (upper recommended level) for 56 patients and in 34 of these patients, the pressure exceeded the upper cuff gauge limit (120 cm H2O). There was no association between cuff pressure...

  15. Low-frequency pressure wave propagation in liquid-filled, flexible tubes. (A)

    DEFF Research Database (Denmark)

    Bjørnø, Leif; Bjelland, C.

    1992-01-01

    A model has been developed for propagation of low-frequency pressure waves in viscoelastic tubes with distensibility of greater importance than compressibility of the liquid. The dispersion and attenuation are shown to be strongly dependent on the viscoelastic properties of the tube wall....... The complex, frequency-dependent moduli of relevant tube materials have been measured in a series of experiments using three different experimental procedures, and the data obtained are compared. The three procedures were: (1) ultrasonic wave propagation, (2) transversal resonance in bar samples, and (3......) moduli determined by stress wave transfer function measurements in simple extension experiments. The moduli are used in the model to produce realistic dispersion relations and frequency dependent attenuation. Signal transfer functions between positions in the liquid-filled tube can be synthesized from...

  16. Dynamic neck development in a polymer tube under internal pressure loading

    DEFF Research Database (Denmark)

    Lindgreen, Britta; Tvergaard, Viggo; Needleman, Alan

    2008-01-01

    and a short wave length imperfection. After some thinning down at the necks, the mode of deformation switches to neck propagation along the circumference of the tube. A case is shown in which the necks have propagated along the entire tube wall, so that network locking in the polymer results in high stiffness......The initiation and growth of necks in polymer tubes subjected to rapidly increasing internal pressure is analyzed numerically. Plane strain conditions are assumed to prevail in the axial direction. The polymer is characterized by a finite strain elastic-viscoplastic constitutive relation...... and the calculations are carried out using a dynamic finite element program. Numerical results for neck development are illustrated and discussed for tubes of various thicknesses. The sensitivity to the wave number of the thickness imperfections is studied with a focus on comparing a long wave length imperfection...

  17. Experimental and visual study on flow patterns and pressure drops in U-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva Lima, J. R.

    2011-07-01

    In single- and two-phase flow heat exchangers (in particular 'coils'), besides the straight tubes there are also many singularities, in particular the 180° return bends (also called return bends or U-bends). However, contrary to the literature concerning pressure drops and heat transfer in straight tubes, where many experimental data and predicting methods are available, only a limited number of studies concerning U-bends can be found. Neither reliable experimental data nor proven prediction methods are available. Indeed, flow structure, pressure drop and heat transfer in U-bends are an old unresolved design problem in the heat transfer industry. Thus, the present study aims at providing further insight on two-phase pressure drops and flows patterns in U-bends. Based on a new type of U-bend test section, an extensive experimental study was conducted. The experimental campaign covered five test sections with three internal diameters (7.8, 10.8 and 13.4 mm), five bend diameters (24.8, 31.7, 38.1, 54.8 and 66.1 mm), tested for three orientations (horizontal, vertical upflow and vertical downflow), two fluids (R134a and R410A), two saturation temperatures (5 and 10 °C) and mass velocities ranging from 150 to 1000 kg s{sup -1} m{sup -2}. The flow pattern observations identified were stratified-wavy, slug-stratified-wavy, intermittent, annular, dryout and mist flows. The effects of the U-bend on the flow patterns were also observed. A total of 5655 pressure drop data were measured at seven different locations in the test section ( straight tubes and U-bend) providing a total of almost 40,000 data points. The straight tube data were first used to improve the actual two-phase straight tube model of Moreno-Quibén and Thome. This updated model was then used to developed a two-phase U-bend pressure drop model. Based on a comparison between experimental and predicted values, it is concluded that the new two-phase frictional pressure drop model for U

  18. Experimental studies on pressure drop characteristics of cryogenic cross-counter flow coiled finned tube heat exchangers

    Science.gov (United States)

    Gupta, Prabhat Kumar; Kush, P. K.; Tiwari, Ashesh

    2010-04-01

    Cross-counter flow coiled finned tube heat exchangers used in medium capacity helium liquefiers/refrigerators were developed in our lab. These heat exchangers were developed using integrated low finned tubes. Experimental studies have been performed to know the pressure drop characteristics of tube side and shell side flow of these heat exchangers. All experiments were performed at room temperature in the Reynolds number range of 3000-30,000 for tube side and 25-155 for shell side. The results of present experiments indicate that available correlations for tube side can not be used for prediction of tube side pressure drop data due to complex surface formation at inner side of tube during formation of fins over the outer surface. Results also indicate that surface roughness effect becomes more pronounced as the value of di/ D m increases. New correlations based on present experimental data are proposed for predicting the friction factors for tube side and shell side.

  19. Switching of the electrical conductivity of plasticized PVC films under uniaxial pressure

    Science.gov (United States)

    Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtob, V. I.

    2011-11-01

    The jumplike switching of the electrical conductivity in wide-band-gap polymer (antistatic plasticized polyvinylchloride) films under uniaxial pressure is studied. In various plasticized PVC materials, the uniaxial pressure inducing a conductivity jump by four orders of magnitude or higher changes from several to several hundreds of bars, and this effect is retained at a film thickness of several hundred microns, which is two orders of magnitude larger than the critical film thicknesses known for other wide-band-gap polymers. In addition to the earlier interpretation of the conductivity anomalies in plasticized PVC, we proposed a phenomenological electron-molecular dynamic nanotrap model, in which local charge transfer is provided by mobile molecule segments in a plasticized polymer.

  20. Investigation of conductivity switching upon action of monoaxial pressure on plasticized PVC films

    CERN Document Server

    Vlasov, D V; Krystob, V I; Vlasova, T V

    2010-01-01

    The effect of conductivity switching of wideband polymers -plasticized PVC films under the influence of mono axial pressure is experimentally investigated. For various plasticizers the value of monoaxial pressure, causing jumps of conductivity on four and more orders, changes from units to hundreds bars, and the effect remains at a thickness of films of an order of hundreds micron, that is on two orders more than critical thickness for others wideband polymers. In addition to the reasons stated earlier on the interpretation of anomalies of plastic compounds conductivity, the phenomenological electron-molecular model of dynamic traps is considered, in which local transfer of charges is carried out by mobile segments of the plasticized polymer molecules.

  1. Viscous Inner and Outer Pressure Forming Method of Thin-walled Tube and Its Application

    Institute of Scientific and Technical Information of China (English)

    GAO Tiejun; LIU Yang; WANG Zhongjin

    2015-01-01

    Aiming at overcoming the difficulties in integral forming of thin-walled tubes with complex shapes, a novel forming method by inner and outer pressure through viscous was proposed. In this method, by dividing large deformation of the part into inner and outer pressure forming deformations, the limit deformation of tube part can be increased by several times. Meanwhile, the principle of viscous inner and outer pressure forming was provided, and key problems during the forming process such as reduction of the wall-thickness and instability wrinkling were analyzed. Thereby, the complex curved surface super-alloy GH3044 thin-walled tube with varying diameter ratio of 1.35 (the ratio between the maximum and minimum diameters of the part) can be integrally formed by this method. The experimental surface of the formed part is superior in quality and the wall-thickness distribution is uniform. The results show that the viscous inner and outer pressure forming can provide a new approach for integral forming of thin-walled tubes with complex shapes.

  2. Miniaturised Prandtl tube with integrated pressure sensors for micro-thruster plume characterisation

    NARCIS (Netherlands)

    Dijkstra, Marcel; Ma, Kechun; de Boer, Meint J.; Groenesteijn, Jarno; Lötters, Joost Conrad; Wiegerink, Remco J.

    2014-01-01

    A miniaturised Prandtl-tube sensor incorporating a 6 mm long 40 μm diameter microchannel with integrated pressure sensors has been realised. The sensor has been designed for the characterisation of rarefied plume flow from a MEMS-based monopropellant propulsion system for high-accuracy attitude

  3. Measurements of endotracheal tube cuff contact pressure using fibre Bragg gratings

    Science.gov (United States)

    Hernandez, F. U.; Correia, R.; Korposh, S.; Morgan, S. P.; Hayes-Gill, B. R.; James, S. W.; Evans, D.; Norris, A.

    2015-09-01

    An optical fibre Bragg grating (FBG) was used to measure local strain (due to contact pressure) at the interface of a cuffed endotracheal tube (ETT) tested in a tracheal model. The tracheal model consisted of a corrugated tube. Two FBG sensors written in a single optical fibre were attached to the outside wall of the cuff of the ETT. Intracuff endotracheal pressure was measured using a digital manometer, while the contact pressure between the model trachea and the ETT was measured using Flexiforce sensors. Changes in the Bragg wavelengths in response to the inflation of the cuff of the ETT, and concomitant pressure increase, were observed to be dependent on the location of the FBGs at the corrugations, i.e., the annular peaks and troughs of the corrugated tube. The performance of both contact pressure sensors FBG and Flexiforce suggests that FBG technology is better suited to this application as it allows the measurement of contact pressures on non-uniform surfaces such as in the tracheal model.

  4. Chemically Modified Plastic Tube for High Volume Removal and Collection of Circulating Tumor Cells.

    Directory of Open Access Journals (Sweden)

    Angelo Gaitas

    Full Text Available In this preliminary effort, we use a commercially available and chemically modified tube to selectively capture circulating tumor cells (CTCs from the blood stream by immobilizing human anti-EpCAM antibodies on the tube's interior surface. We describe the requisite and critical steps required to modify a tube into a cancer cell-capturing device. Using these simple modifications, we were able to capture or entrap about 85% of cancer cells from suspension and 44% of cancer cells from spiked whole blood. We also found that the percentage of cells captured was dependent on the tube's length and also the number of cancer cells present. It is our strong belief that with the utilization of appropriate tube lengths and procedures, we can ensure capture and removal of nearly the entire CTC population in whole blood. Importantly after a patient's entire blood volume has circulated through the tube, the tube can then be trypsinized to release the captured live CTCs for further analysis and testing.

  5. Two-Phase Critical Discharge of Initially Saturated or Subcooled Water Flowing in Sharp-Edgred Tubes at High Pressure

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    The transient critical flow experiment with sharp-deged tubes as the break geometries is conducted in high pressure convective circulation test loop of Xi'an Jiantong University.The initial Steady operation pressure is up to 22.0MPa.An empirical correlation was made to obtain the critical mass flow rates,the critical pressure ratio and the thermal nonequilibrium number were correlated as the functions of the tube length to tube diameter ratio L/D.The predicted critical mass flow rate gets a higher accureacy for short tubes with L/D 12.

  6. Crack initiation at long radial hydrides in Zr-2. 5Nb pressure tube material at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, R.; Puls, M.P. (AECL Research, Pinawa, Manitoba (Canada). Whiteshell Labs.)

    1994-05-01

    Crack initiation at hydrides in smooth tensile specimens of Zr-2.5Nb pressure tube material was investigated at elevated temperatures up to 300 C using an acoustic emission (AE) technique. The test specimens contained long, radial hydride platelets. These hydrides have their plate normals oriented in the applied stress direction. Below [approximately]100 C, widespread hydride cracking was initiated at stresses close to the yield stress. An estimate of the hydride's fracture strength from this data yielded a value of [approximately]520 MPa at 100 C. Metallography showed that up to this temperature, cracking occurred along the length of the hydrides. However, at higher temperatures, there was no clear evidence of lengthwise cracking of hydrides, and fewer of the total hydride population fractured during deformation, as indicated by the AE record and the metallography. Moreover, the hydrides showed significant plasticity by-being able to flow along with the matrix material and align themselves parallel to the applied stress direction without fracturing. Near the fracture surface of the specimen, transverse cracking of the flow-reoriented hydrides had occurred at various points along the lengths of the hydrides. These fractures appear to be the result of stresses produced by large plastic strains imposed by the surrounding matrix on the less ductile hydrides.

  7. Influence of untreated chronic plastic iridocyclitis on intraocular pressure in leprosy patients.

    Science.gov (United States)

    Karaçorlu, M A; Cakiner, T; Saylan, T

    1991-02-01

    The intraocular pressures of a total of 286 eyes of patients with lepromatous and borderline lepromatous leprosy who never had regular ophthalmological care or local eye treatment were measured. The patients were categorised according to the type of leprosy they had, and the eyes were categorised as without or with chronic plastic iridocyclitis. In patients with lepromatous and borderline lepromatous types of leprosy the intraocular pressure was significantly lower in eyes with chronic plastic iridocylitis 10.1 (3.6) mmHg than in both unaffected eyes 11.0 (3.2) mmHg and control eyes 13.5 (2.5) mmHg. It has been shown that chronic plastic iridocyclitis which remains untreated for years results in a lower intraocular pressure than normal.

  8. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  9. Determination of dislocation density in Zr-2.5Nb pressure tubes by x-ray

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Isaenkova, Perlovich; Cheong, Y. M.; Kim, S. S.; Yim, K. S.; Kwon, Sang Chul

    2000-11-01

    For X-ray determination of the dislocation density in CANDU Zr-2.5%Nb pressure tubes, a program was developed, using the Fourier analysis of X-ray line profiles and calculation of dislocation density by values of the coherent block size and the lattice distortion. The coincidence of obtained values of c- and a-dislocations with those, determined by the X-ray method for the same tube in AECL, was assumed to be the main criterion of validity of the developed program. The final variant of the program allowed to attain a rather close coincidence of calculated dislocation densities with results of AECL. The dislocation density was determined in all the zirconium grains with different orientations based on the texture of the stree-relieved CANDU tube. The complete distribution of c-dislocation density in -Zr grains depecding on their crystallographic orientations was constructed. The distribution of a-dislocation density within the texture maximum at L-direction, containing prismatic axes of all grains, was constructed as well. The analysis of obtained distributions testifies that -Zr grains of the stree-relieved CANDU tube significantly differ in their dislocation densities. Plotted diagrams of correlation between the dislocation density and the pole density allow to estimate the actual connection between texture and dislocation distribution in the studied tube. The distributions of volume fractions of all the zirconium grains depending on their dislocation density were calculated both for c- and a-dislocations. The distributions characterizes quantitatively the inhomogeneity of substructure conditions in the stress-relieved CANDU tube. the optimal procedure for determination of Nb content in {beta}-phases of CANDU Zr-2.5%Nb pressure tubes was also established.

  10. Pressure sores–a constant problem for plegic patients and a permanent challenge for plastic surgery

    Science.gov (United States)

    Marinescu, S; Florescu, IP; Jecan, C

    2010-01-01

    Pressure sores–a constant problem for plegic patients and a permanent challenge for plastic surgery Pressure sores can be defined as lesions caused by unrelieved pressure resulting in damage of the underlying tissue. They represent a common problem in the pathology of plegic patients and, plastic surgery has a significant role in their treatment. Pressure sores occur over bony prominences and so, they are most commonly seen at the sacrum and trochanters in paralyzed patients and at ischium for the patients who sit in a wheelchair for a long time. For these patients, surgical treatment is very important because on one hand, it stops the loss of nutrients and proteins at the site of the pressure sore, and on the other hand, it permits the initiation of neuromuscular recuperation treatment much faster. PMID:20968200

  11. Wrinkling behavior in tube hydroforming coupled with internal and external pressure

    Directory of Open Access Journals (Sweden)

    Cui X.L.

    2015-01-01

    Full Text Available Control and use of wrinkles is a challenge in tube hydroforming because wrinkle was always considered as one of the defects of tubes from the traditional view. In this paper, a dedicated experimental setup was designed and manufactured, using which the investigation of wrinkling behavior coupled with internal and external pressure can be realized. The effect of internal or external pressure on 5A02 aluminum alloy tubes and 0Cr18Ni9 stainless steel tubes were all investigated using this setup. It was found that the number and shape of wrinkles are strongly dependent on the internal or external pressure. More important is that the geometrical configuration of wrinkles can be perfectly characterized using the Gauss function rather than the sine function adopted in the published literature. In addition, the fitted Gauss functions for every wrinkle were integrated in order to compare their area with the corresponding area of die cavity, so as to obtain the appropriate process parameters for the useful wrinkle, which can be formed in advance and then flatted in the calibration stage.

  12. Tracheal tube and laryngeal mask cuff pressure during anaesthesia - mandatory monitoring is in need

    DEFF Research Database (Denmark)

    Rokamp, K.Z.; Secher, N.H.; Møller, Ann

    2010-01-01

    ABSTRACT: BACKGROUND: To prevent endothelium and nerve lesions, tracheal tube and laryngeal mask cuff pressure is to be maintained at a low level and yet be high enough to secure air sealing. METHOD: In a prospective quality-control study, 201 patients undergoing surgery during anaesthesia (without...... and age, body mass index, type of surgery, or time from induction of anaesthesia to the time the cuff pressure was measured. CONCLUSION: For maintenance of epithelia flow and nerve function and at the same time secure air sealing, this evaluation indicates that the cuff pressure needs to be checked...

  13. Spatial resolution of thin-walled high-pressure drift tubes

    CERN Document Server

    Davkov, V I; Tikhomirov, V O; Smirnov, S Y; Gregor, I; Senger, P; Naumann, L; Myalkovskiy, V V; Mouraviev, S V; Peshekhonov, V D; Russakovich, N A; Rufanov, I A; Rembser, C

    2011-01-01

    A small prototype detector based on high pressure thin-walled tubes (straws) has been developed and its parameters have been studied on a bench at JINR, Dubna, and SPS at CERN. The inner diameter of the straws is 9.53 mm. The pressure of the active gas mixture Ar/CO(2) (80/20) was varied from 1 to 5 bar. The best spatial resolution achieved in this pressure range is similar to 40 mu m. Both the high efficiency and high rate capability are retained. (C) 2011 Published by Elsevier B.V.

  14. Efficacy of plastic mesh tubes in reducing herbivory damage by the invasive nutria (Myocastor coypus) in an urban restoration site

    Science.gov (United States)

    Sheffels, Trevor R.; Systma, Mark D.; Carter, Jacoby; Taylor, Jimmy D.

    2014-01-01

    The restoration of stream corridors is becoming an increasingly important component of urban landscape planning, and the high cost of these projects necessitates the need to understand and address potential ecological obstacles to project success. The nutria(Myocastor coypus) is an invasive, semi-aquatic rodent native to South America that causes detrimental ecological impacts in riparian and wetland habitats throughout its introduced range, and techniques are needed to reduce nutria herbivory damage to urban stream restoration projects. We assessed the efficacy of standard Vexar® plastic mesh tubes in reducing nutria herbivory damage to newly established woody plants. The study was conducted in winter-spring 2009 at Delta Ponds, a 60-ha urban waterway in Eugene, Oregon. Woody plants protected by Vexar® tubes demonstrated 100% survival over the 3-month initial establishment period, while only 17% of unprotected plantings survived. Nutria demonstrated a preference for black cottonwood (Populus balsamifera ssp trichocarpa) over red osier dogwood (Cornussericea) and willow (Salix spp). Camera surveillance showed that nutria were more active in unprotected rather than protected treatments. Our results suggest that Vexar® plastic mesh tubing can be an effective short-term herbivory mitigation tool when habitat use by nutria is low. Additionally, planting functionally equivalent woody plant species that are less preferred by nutria, and other herbivores, may be another method for reducing herbivory and improving revegetation success. This study highlights the need to address potential wildlife damage conflicts in the planning process for stream restoration in urban landscapes.

  15. Textile Pressure Sensor Made of Flexible Plastic Optical Fibers

    Directory of Open Access Journals (Sweden)

    Frank Clemens

    2008-07-01

    Full Text Available In this paper we report the successful development of pressure sensitive textile prototypes based on flexible optical fibers technology. Our approach is based on thermoplastic silicone fibers, which can be integrated into woven textiles. As soon as pressure at a certain area of the textile is applied to these fibers they change their cross section reversibly, due to their elastomeric character, and a simultaneous change in transmitted light intensity can be detected. We have successfully manufactured two different woven samples with fibers of 0.51 and 0.98 mm diameter in warp and weft direction, forming a pressure sensitive matrix. Determining their physical behavior when a force is applied shows that pressure measurements are feasible. Their usable working range is between 0 and 30 N. Small drifts in the range of 0.2 to 4.6%, over 25 load cycles, could be measured. Finally, a sensor array of 2 x 2 optical fibers was tested for sensitivity, spatial resolution and light coupling between fibers at intersections.

  16. Variation of pressure limits of flame propagation with tube diameter for various isooctane-oxygen-nitrogen mixtures

    Science.gov (United States)

    Spakowski, Adolph, A; Belles, Frank E

    1952-01-01

    An investigation was made of the change in the pressure limits of flame propagation with tube diameter for various isooctane-oxygen-nitrogen mixtures. Pressure limits were measured in cylindrical glass tubes of four different inside diameters at six different oxygen-nitrogen ratios. Under the experimental conditions, flame propagation was found to be impossible in isooctane-oxygen mixtures with oxygen concentrations less than 11 to 12 percent. Critical tube diameters for flame propagation were calculated and the effect of pressure was determined and compared with the effect of pressure on quenching distance. Critical diameters were related to flame speeds for various isooctane-oxygen-nitrogen mixtures.

  17. Effect of Ovality on Maximum External Pressure of Helically Coiled Steam Generator Tubes with a Rectangular Wear

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong In; Lim, Eun Mo; Huh, Nam Su [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Choi, Shin Beom; Yu, Je Yong; Kim, Ji Ho; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    A structural integrity of steam generator tubes of nuclear power plants is one of crucial parameters for safe operation of nuclear power plants. Thus, many studies have been made to provide engineering methods to assess integrity of defective tubes of commercial nuclear power plants considering its operating environments and defect characteristics. As described above, the geometric and operating conditions of steam generator tubes in integral reactor are significantly different from those of commercial reactor. Therefore, the structural integrity assessment of defective tubes of integral reactor taking into account its own operating conditions and geometric characteristics, i. e., external pressure and helically coiled shape, should be made to demonstrate compliance with the current design criteria. Also, ovality is very specific characteristics of the helically coiled tube because it is occurred during the coiling processes. The wear, occurring from FIV (Flow Induced Vibration) and so on, is main degradation of steam generator tube. In the present study, maximum external pressure of helically coiled steam generator tube with wear is predicted based on the detailed 3-dimensional finite element analysis. As for shape of wear defect, the rectangular shape is considered. In particular, the effect of ovality on the maximum external pressure of helically coiled tubes with rectangular shaped wear is investigated. In the present work, the maximum external pressure of helically coiled steam generator tube with rectangular shaped wear is investigated via detailed 3-D FE analyses. In order to cover a practical range of geometries for defective tube, the variables affecting the maximum external pressure were systematically varied. In particular, the effect of tube ovality on the maximum external pressure is evaluated. It is expected that the present results can be used as a technical backgrounds for establishing a practical structural integrity assessment guideline of

  18. Temperature, Pressure and Velocity measurements on the Ranque-Hilsch Vortex Tube

    Science.gov (United States)

    Liew, R.; Zeegers, J. C. H.; Kuerten, J. G. M.; Michałek, W. R.

    2012-11-01

    Temperatures, pressures and velocities were measured in a Ranque-Hilsch vortex tube. Results show that the cooling power is larger than the heating power due to a heat loss to the surroundings. This heat loss became the more dominant thermodynamic process at large cold fractions (the ratio of cold mass flow over total mass flow). The velocities were obtained by means of Laser Doppler Anemometry. By this method, the three dimensional velocities of the gas and their standard deviations in the vortex tube are revealed by an non-intrusive measurement method. The turbulent fluctuations, characterized by the standard deviations, show that the turbulence is isotropic in the core region of the vortex tube.

  19. Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: Basic theory.

    Science.gov (United States)

    Berkouk, K; Carpenter, P W; Lucey, A D

    2003-12-01

    Our work is motivated by ideas about the pathogenesis of syringomyelia. This is a serious disease characterized by the appearance of longitudinal cavities within the spinal cord. Its causes are unknown, but pressure propagation is probably implicated. We have developed an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. This is intended as a simple model of the intraspinal cerebrospinal-fluid system. Our approach is based on the classic theory for the propagation of longitudinal waves in single, fluid-filled, elastic tubes. We show that for small-amplitude waves the governing equations reduce to the classic wave equation. The wave speed is found to be a strong function of the ratio of the tubes' cross-sectional areas. It is found that the leading edge of a transmural pressure pulse tends to generate compressive waves with converging wave fronts. Consequently, the leading edge of the pressure pulse steepens to form a shock-like elastic jump. A weakly nonlinear theory is developed for such an elastic jump.

  20. Characterization of magnetically impelled arc butt welded T11 tubes for high pressure applications

    Directory of Open Access Journals (Sweden)

    R. Sivasankari

    2015-09-01

    Full Text Available Magnetically impelled arc butt (MIAB welding is a pressure welding process used for joining of pipes and tubes with an external magnetic field affecting arc rotation along the tube circumference. In this work, MIAB welding of low alloy steel (T11 tubes were carried out to study the microstructural changes occurring in thermo-mechanically affected zone (TMAZ. To qualify the process for the welding applications where pressure could be up to 300 bar, the MIAB welds are studied with variations of arc current and arc rotation time. It is found that TMAZ shows higher hardness than that in base metal and displays higher weld tensile strength and ductility due to bainitic transformation. The effect of arc current on the weld interface is also detailed and is found to be defect free at higher values of arc currents. The results reveal that MIAB welded samples exhibits good structural property correlation for high pressure applications with an added benefit of enhanced productivity at lower cost. The study will enable the use of MIAB welding for high pressure applications in power and defence sectors.

  1. Pressure Measurements on a Deforming Surface in Response to an Underwater Explosion in a Water-Filled Aluminum Tube

    Directory of Open Access Journals (Sweden)

    G. Chambers

    2001-01-01

    Full Text Available Experiments have been conducted to benchmark DYSMAS computer code calculations for the dynamic interaction of water with cylindrical structures. Small explosive charges were suspended using hypodermic needle tubing inside Al tubes filled with distilled water. Pressures were measured during shock loading by tourmaline crystal, carbon resistor and ytterbium foil gages bonded to the tube using a variety of adhesives. Comparable calculated and measured pressures were obtained for the explosive charges used, with some gages surviving long enough to record results after cavitation with the tube wall.

  2. Dynamic Measurements of Plastic Deformation in a Water-Filled Aluminum Tube in Response to Detonation of a Small Explosives Charge

    Directory of Open Access Journals (Sweden)

    Harold Sandusky

    1999-01-01

    Full Text Available Experiments have been conducted to benchmark computer code calculations for the dynamic interaction of explosions in water with structures. Aluminum cylinders with a length slightly more than twice their diameter were oriented vertically, sealed on the bottom by a thin plastic sheet, and filled with distilled water. An explosive charge suspended in the center of the tube plastically deformed but did not rupture the wall. Tube wall velocity, displacement, and strain were directly measured. The agreement among the three sets of dynamic data and the agreement of the terminal displacement measurements with the residual deformation were excellent.

  3. Influence of untreated chronic plastic iridocyclitis on intraocular pressure in leprosy patients.

    OpenAIRE

    Karaçorlu, M A; Cakiner, T; Saylan, T

    1991-01-01

    The intraocular pressures of a total of 286 eyes of patients with lepromatous and borderline lepromatous leprosy who never had regular ophthalmological care or local eye treatment were measured. The patients were categorised according to the type of leprosy they had, and the eyes were categorised as without or with chronic plastic iridocyclitis. In patients with lepromatous and borderline lepromatous types of leprosy the intraocular pressure was significantly lower in eyes with chronic plasti...

  4. Shock tube study of n-decane ignition at low pressures

    Institute of Scientific and Technical Information of China (English)

    Xiao-Fei Nie; Ping Li; Chang-Hua Zhang; Wei Xie; Cong-Shan Li; Xiang-Yuan Li

    2012-01-01

    Ignition delay times for n-decane/O2/Ar mixtures were measured behind reflected shock waves using endwall pressure and CH* emission measurements in a heated shock tube.The initial postshock conditions cover pressures of 0.09-0.26 MPa,temperatures of 1 227-1 536 K,and oxygen mole fractions of 3.9%-20.7% with an equivalence ratio of 1.0.The correlation formula of ignition delay dependence on pressure,temperature,and oxygen mole fraction was obtained.The current data are in good agreement with available low-pressure experimental data,and they are then compared with the prediction of a kinetic mechanism.The current measurements extend the kinetic modeling targets for the n-decane combustion at low pressures.

  5. Processes of discharge ignition in long tubes at low gas pressure

    Science.gov (United States)

    Shishpanov, A. I.; Meshchanov, A. V.; Kalinin, S. A.; Ionikh, Y. Z.

    2017-06-01

    Electrical breakdown resulting in the ignition of a low-pressure low-current glow discharge is investigated in long (length much larger than the diameter) tubes. New features characterizing the breakdown are found. Breakdown begins with synchronous sharp drop of the anode voltage and the peak in the anode current, which is not accompanied by the current at the grounded cathode. This proves the existence of the first (initial) breakdown occurring between the high-voltage electrode and the nearby section of the tube wall. Simultaneously, an ionization wave starts from the anode. The cathode current initiates noticeably later, at the moment when the ionization wave reaches the cathode. The distribution of the breakdown statistic delay time is governed by the Laue law. This study has revealed a profound effect on the breakdown of illumination of the tubes by visible-spectrum light. Illumination diminishes the average breakdown delay time; for the breakdown mode when breakdown occurs at the pulse leading edge this leads to a decrease in the average breakdown voltage. The long-wavelength threshold of the effect is 520 nm. Electron photodesorption from the wall surface is supposed to be the mechanism of the effect. Quantum efficiency for this process is 0.6 × 10-9. Unlike in most previous studies, all the measurements were carried out with unshielded tubes; screening of the tube by a grounded shield has a strong influence on the breakdown characteristics.

  6. Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.

    Science.gov (United States)

    Kuzuu, K; Hasegawa, S

    2015-11-01

    A technique for estimating an acoustic field in a resonance tube is suggested. The estimation of an acoustic field in a resonance tube is important for the development of the thermoacoustic engine, and can be conducted employing two sensors to measure pressure. While this measurement technique is known as the two-sensor method, care needs to be taken with the location of pressure sensors when conducting pressure measurements. In the present study, particle image velocimetry (PIV) is employed instead of a pressure measurement by a sensor, and two-dimensional velocity vector images are extracted as sequential data from only a one- time recording made by a video camera of PIV. The spatial velocity amplitude is obtained from those images, and a pressure distribution is calculated from velocity amplitudes at two points by extending the equations derived for the two-sensor method. By means of this method, problems relating to the locations and calibrations of multiple pressure sensors are avoided. Furthermore, to verify the accuracy of the present method, the experiments are conducted employing the conventional two-sensor method and laser Doppler velocimetry (LDV). Then, results by the proposed method are compared with those obtained with the two-sensor method and LDV.

  7. Stress and integrity analysis of steam superheater tubes of a high pressure boiler

    Directory of Open Access Journals (Sweden)

    Neves Daniel Leite Cypriano

    2004-01-01

    Full Text Available Sources that can lead to deterioration of steam superheater tubes of a high pressure boiler were studied by a stress analysis, focused on internal pressure and temperature experienced by the material at real operating conditions. Loss of flame control, internal deposits and unexpected peak charge are factors that generate loads above the design limit of tube materials, which can be subjected to strain, buckling, cracks and finally rupture in service. To evaluate integrity and dependability of these components, the microstructure of selected samples along the superheater was studied by optical microscopy. Associated with this analysis, dimensional inspection, nondestructive testing, hardness measurement and deposit examination were made to determine the resultant material condition after twenty three years of operation.

  8. Experimental Study on Heat Transfer and Pressure Drop of Micro-Sized Tube Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    王秋香; 戴传山

    2014-01-01

    A micro-sized tube heat exchanger (MTHE) was fabricated, and its performance in heat transfer and pres-sure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500-1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional.

  9. Remote field eddy current technique for gap measurement of horizontal flux detector guide tube in pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hoon; Jung, Hyun Kyu; Yang, Dong Ju; Cheong, Yong Moo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2004-11-15

    The fuel channels including the pressure tube(PT) and the calandria tube(CT) are important components of the pressurized heavy water reactor(PHWR). A sagging of fuel channel increases by heat and radiation exposure with the increasing operation time. The contact of fuel channel to the Horizontal flux Detector(HFD) guide tube is needed for the power plant safety. In order to solve this safety issue, the electromagnetic technique was applied to measure the status of the guide tube. The Horizontal flux Detector(HFD) guide tube and the Calandria tube(CT) in the Pressurized Heavy Water Reactor(PHWR) are cross-aligned horizontally. The remote field eddy current(RFEC) technology is applied for gap measurement between the HFD guide tube and the CT HFD guide tube can be detected by inserting the RFEC probe into pressure tube(PT) at the crossing point directly. The RFEC signals using the volume integral method(VIM) were simulated for obtaining the optimal inspection parameters. This paper shows that the simulated eddy current signals and the experimental results in variance with the CT/HFD gap.

  10. A probabilistic method for leak-before-break analysis of CANDU reactor pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Puls, M.P.; Wilkins, B.J.S.; Rigby, G.L. [Whiteshell Labs., Pinawa (Canada)] [and others

    1997-04-01

    A probabilistic code for the prediction of the cumulative probability of pressure tube ruptures in CANDU type reactors is described. Ruptures are assumed to result from the axial growth by delayed hydride cracking. The BLOOM code models the major phenomena that affect crack length and critical crack length during the reactor sequence of events following the first indications of leakage. BLOOM can be used to develop unit-specific estimates of the actual probability of pressure rupture in operating CANDU reactors and supplement the existing leak before break analysis.

  11. Pressure losses during steam flow and condensation in tubes and channels

    Science.gov (United States)

    Leontiev, A. I.; Milman, O. O.

    2014-12-01

    Theoretical and experimental investigations have revealed the dependence of parameters of the process of steam condensation in tubes and channels on the scheme of heat-exchange fluid flow, including counter, forward, and cross flow systems. The total pressure losses in the case of counter flow are greater than those in the case of forward and cross flow. This dependence is valid for the flow of gases and plasma in channels with significant density variation (e.g., due to heating and cooling). Pressure losses have been evaluated using various computational models, and the results are compared to experimental data.

  12. Changes in intracuff pressure of cuffed endotracheal tubes while positioning for adenotonsillectomy in children.

    Science.gov (United States)

    Olsen, Griffin H; Krishna, Senthil G; Jatana, Kris R; Elmaraghy, Charles A; Ruda, James M; Tobias, Joseph D

    2016-05-01

    When using cuffed endotracheal tubes (cETTs), changes in head and neck position can lead to changes in intracuff pressure. The aim of this study was to assess the combined effect of neck extension, shoulder roll placement, and Crowe-Davis retractor use during adenotonsillectomy on the intracuff pressure of cETTs in children. Patients 30 cm H2O. The intracuff pressure decreased in 28 patients (33.3%), while no change was noted in 10 patients (11.9%). Overall, the general trend was an increase in intracuff pressure from 15.9 ± 7.8 cm H2O to 18.9 ± 11.6 cm H2O. Both increases and decreases in the intracuff pressure may occur following positioning of the pediatric patient for adenotonsillectomy. An increase in intracuff pressure may result in a higher risk of damage to the tracheal mucosa. A decrease in the intracuff pressure can result in an air leak resulting in inadequate ventilation, increased risk of aspiration, and even predispose to airway fire if oxygen-enriched gases are used. Continuous intracuff pressure monitoring or rechecking the intracuff pressure after positioning for adenotonsillectomy may be indicated. © 2016 John Wiley & Sons Ltd.

  13. Exergy analysis and performance of a counter flow Ranque-Hilsch vortex tube having various nozzle numbers at different inlet pressures of oxygen and air

    Energy Technology Data Exchange (ETDEWEB)

    Kirmaci, Volkan [Bartin University, Faculty of Engineering, Mechanical Engineering Department, 74100 Bartin (Turkey)

    2009-11-15

    An experimental investigation is made to determine the effects of the orifice nozzle number and the inlet pressure on the heating and cooling performance of the counter flow Ranque-Hilsch vortex tube when air and oxygen used as a fluid. The orifices used at these experiments are made of the polyamide plastic material. The thermal conductivity of polyamide plastic material is 0.25 W/m C. Five orifices with nozzle numbers of 2, 3, 4, 5 and 6 have been manufactured and used during the experiments. For each one of the orifices (nozzle numbers) when used with two different fluids, inlet pressures were adjusted from 150 kPa to 700 kPa with 50 kPa increments, and the exergy efficiency was determined. During the experiments, a vortex tube is used with an L/D ratio of 15, and cold mass fraction is held constant at 0.5. As a result of the experimental study, it is determined that the temperature gradient between the hot and cold fluid is decreased with increasing of the orifice nozzle number. (author)

  14. The pressure drop across the endotracheal tube in mechanically ventilated pediatric patients.

    Science.gov (United States)

    Spaeth, Johannes; Steinmann, Daniel; Kaltofen, Heike; Guttmann, Josef; Schumann, Stefan

    2015-04-01

    During mechanical ventilation, the airway pressure (Paw) is usually monitored. However, Paw comprises the endotracheal tube (ETT)-related pressure drop (∆PETT ) and thus does not reflect the pressure in the patients' lungs. Therefore, monitoring of mechanical ventilation should be based on the tracheal pressure (Ptrach ). We systematically investigated potential factors influencing ∆PETT in pediatric ETTs. In this study, the flow-dependent pressure drop across pediatric ETTs from four manufacturers [2.0-4.5 mm inner diameter (ID)] was estimated in a physical model of the upper airways. Additionally, ∆PETT was examined with the ETTs shortened to 75% of their original length and at different curvatures. In nine healthy mechanically ventilated children (aged between 9 days and 29 months), Ptrach was compared to Paw . ∆PETT was nonlinearly flow dependent. Low IDs corresponded to high ∆PETT . Differences between ETTs from different manufacturers were identified. Shortening of the ETTs' length by 25% reduced ∆PETT on average by 14% of the value at original length. Ventilation frequency and tube curvature did not influence ∆PETT to a relevant extent. In the pediatric patients, the root mean square deviation between Paw and Ptrach was 2.3 cm H2O. Paw and Ptrach differ considerably (by ∆PETT ) during mechanical ventilation of pediatric patients. The ETTs' ID, tube length, and manufacturer type are significant factors for ∆PETT and should be taken into account when Paw is valuated. For this purpose, Ptrach can be continuously calculated with good precision by means of the Rohrer approximation. © 2014 John Wiley & Sons Ltd.

  15. Statistical analysis and modelling of in-reactor diametral creep of Zr-2.5Nb pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jyrkama, Mikko I., E-mail: mjyrkama@uwaterloo.ca [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada); Bickel, Grant A., E-mail: grant.bickel@cnl.ca [Canadian Nuclear Laboratories, Chalk River Laboratories, Chalk River, ON, Canada K0J 1J0 (Canada); Pandey, Mahesh D., E-mail: mdpandey@uwaterloo.ca [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada)

    2016-04-15

    Highlights: • New and simple statistical model of pressure tube diametral creep. • Based on surveillance data of 328 pressure tubes from eight different CANDU reactors. • Uses weighted least squares (WLS) to regress out operating conditions. • The shape of the diametral creep profiles are predicted very well. • Provides insight and relative ranking of strain behaviour of in-service tubes. - Abstract: This paper presents the development of a simplified regression approach for modelling the diametral creep over time in Zr-2.5 wt% Nb pressure tubes used in CANDU reactors. The model is based on a large dataset of in-service inspection data of 328 different pressure tubes from eight different CANDU reactor units. The proposed weighted least squares (WLS) regression model is linear in time as a function of flux and temperature, with a temperature-dependent variance function. The model predicts the shape of the observed diametral creep profiles very well, and is useful not merely for prediction, but also for assessing tube-to-tube variability and manufacturing properties among the inspected tubes.

  16. Minimum Safety Factor for Evaluation of Critical Buckling Pressure of Zirconium Alloy Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Kyu; Kim, Jae Yong; Yoon, Kyung Ho; Lee, Young Ho; Lee, Kang Hee; Kang, Heung Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-03-15

    We consider the uncertainty in the elastic buckling formula for a thin tube. We take into account the measurement uncertainty of Young's modulus and Poisson's ratio and the tolerance of the tube thickness and diameter. Elastic buckling must be prohibited for a thin tube such as a nuclear fuel rod that must satisfy a self-stand criterion. Since the predicted critical buckling pressure overestimated that found in the experiment, the determination of the minimum safety factor is crucial. The uncertainty in each parameter (i.e., Young's modulus, Poisson's ratio, thickness, and diameter) is mutually independent, so the safety factor is evaluated as the sum of the inverse of each uncertainty. We found that the thickness variation greatly affects the uncertainty. The minimum safety factor of a thin tube of Zirconium alloy is evaluated as 1.547 for a thickness of 0.87 mm and 3.487 for a thickness of 0.254 mm.

  17. Cold-atmospheric pressure plasma polymerization of acetylene on wood flour for improved wood plastics composites

    Science.gov (United States)

    Lekobou, William; Pedrow, Patrick; Englund, Karl; Laborie, Marie-Pierre

    2009-10-01

    Plastic composites have become a large class of construction material for exterior applications. One of the main disadvantages of wood plastic composites resides in the weak adhesion between the polar and hydrophilic surface of wood and the non-polar and hydrophobic polyolefin matrix, hindering the dispersion of the flour in the polymer matrix. To improve interfacial compatibility wood flour can be pretreated with environmentally friendly methods such as cold-atmospheric pressure plasma. The objective of this work is therefore to evaluate the potential of plasma polymerization of acetylene on wood flour to improve the compatibility with polyolefins. This presentation will describe the reactor design used to modify wood flour using acetylene plasma polymerization. The optimum conditions for plasma polymerization on wood particles will also be presented. Finally preliminary results on the wood flour surface properties and use in wood plastic composites will be discussed.

  18. Effect of hydrogen isotope content on tensile flow behavior of Zr-2.5Nb pressure tube material between 25 and 300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Bind, A.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 (India); Sunil, S. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Singh, R.N., E-mail: rnsingh@barc.gov.in [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 (India)

    2016-08-01

    Tensile properties of autoclaved Zr-2.5Nb pressure tube material containing hydrogen isotope between 5 and 200 wppm were evaluated between 25 and 300 °C using specimens with its axis oriented along longitudinal direction of the tube. Analysis of tensile test results showed that both YS and UTS of this alloy decreased linearly with increasing test temperature. The uniform and total plastic strain decreased marginally with increase in test temperature. At all test temperatures, before necking tensile properties were unaffected by hydrogen isotope concentration whereas hydrogen isotope had clear effect on post-necking tensile properties especially at 25 and 100 °C. Post-necking ductility showed a transition behavior at 25 and 100 °C and it was able to capture the effect of hydride embrittlement in this material. - Highlights: • Tensile properties of Zr-2.5Nb pressure tube alloy were evaluated. • Effect of deuterium content and test temperature were studied. • Pre-necking tensile properties appeared to unaffected by the deuterium content. • Post-necking tensile properties captured the effect of hydride embrittlement.

  19. Pressure-induced cell wall instability and growth oscillations in pollen tubes.

    Directory of Open Access Journals (Sweden)

    Mariusz Pietruszka

    Full Text Available In the seed plants, the pollen tube is a cellular extension that serves as a conduit through which male gametes are transported to complete fertilization of the egg cell. It consists of a single elongated cell which exhibits characteristic oscillations in growth rate until it finally bursts, completing its function. The mechanism behind the periodic character of the growth has not been fully understood. In this paper we show that the mechanism of pressure--induced symmetry frustration occurring in the wall at the transition-perimeter between the cylindrical and approximately hemispherical parts of the growing pollen tube, together with the addition of cell wall material, is sufficient to release and sustain mechanical self-oscillations and cell extension. At the transition zone, where symmetry frustration occurs and one cannot distinguish either of the involved symmetries, a kind of 'superposition state' appears where either single or both symmetry(ies can be realized by the system. We anticipate that testifiable predictions made by the model (f is proportional to √P may deliver, after calibration, a new tool to estimate turgor pressure P from oscillation frequency f of the periodically growing cell. Since the mechanical principles apply to all turgor regulated walled cells including those of plant, fungal and bacterial origin, the relevance of this work is not limited to the case of the pollen tube.

  20. Improved Performance of an Indigenous Stirling Type Pulse Tube Cooler and Pressure Wave Generator

    Science.gov (United States)

    Kumar, J. Kranthi; Jacob, S.; Karunanithi, R.; Narasimham, G. S. V. L.; Damu, C.; Praveen, T.; Samir, M.

    Sustained efforts have been made in our laboratory to improve the performance of an indigenously developed pressure wave gen- erator by reducing the mechanical losses and the required input power. An acoustically matching pulse tube cooler, with a design target of 0.5 W at 80 K, was designed using Sage and experience gained from previous studies. The pulse tube cooler was fabri- cated and tested. The effect of regenerator stacking pattern on the cooler performance was studied by filling the regenerator with mesh of the same size #400 and with multi meshes #250, 325, 400. In present experiments, regenerator with #400 mesh at 30 bar filling pressure performed better with more energy efficiency. A no load temperature of 74 K was achieved with input power of 59 W corresponding to a cooling power of 0.22 W at 80 K. Parasitic heat load to the cooler was measured be 0.68 W. This heat load is primarily by heat conduction through the regenerator and pulse tube wall. By reducing the wall thickness from 0.30 mm to 0.15 mm, the parasitic loads can be reduced by 50%.

  1. Experiments of draining and filling processes in a collapsible tube at high external pressure

    Science.gov (United States)

    Flaud, P.; Guesdon, P.; Fullana, J.-M.

    2012-02-01

    The venous circulation in the lower limb is mainly controlled by the muscular action of the calf. To study the mechanisms governing the venous draining and filling process in such a situation, an experimental setup, composed by a collapsible tube under external pressure, has been built. A valve preventing back flows is inserted at the bottom of the tube and allows to model two different configurations: physiological when the fluid flow is uni-directional and pathological when the fluid flows in both directions. Pressure and flow rate measurements are carried out at the inlet and outlet of the tube and an original optical device with three cameras is proposed to measure the instantaneous cross-sectional area. The experimental results (draining and filling with physiological or pathological valves) are confronted to a simple one-dimensional numerical model which completes the physical interpretation. One major observation is that the muscular contraction induces a fast emptying phase followed by a slow one controlled by viscous effects, and that a defect of the valve decreases, as expected, the ejected volume.

  2. Structural safety of coolant channel components under excessively high pressure tube diametral expansion rate at garter spring location

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, M. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sinha, S.K., E-mail: sunilks@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-08-15

    Structural safety of coolant channel assembly in the event of high diametral expansion of pressure tube in a 220 MWe pressurised heavy water reactor was investigated using axisymmetric and 3-D finite element models. The axisymmetric analyses were performed and stresses were evaluated for pressure tube, girdle wire and calandria tube at different point of time for diametral expansion rates of 0.2%, 0.25% and 0.3% per year of the pressure tube inside diameter. The results of this study indicated that for the case of 0.3% per year of diametral expansion rate (worst case scenario), occurrence of complete circumferential interference of garter spring with calandria tube at the location of maximum expansion would take place much earlier at around 14 years or 4.2% of the total expansion of pressure tube as opposed to its anticipated design life (30 years). This fact was further corroborated by 3-D finite element analysis performed for the actual assembly configuration under actual loadings. The latter analysis revealed that net section yielding of calandria tube occurs in just 1 year after the occurrence of total circumferential interference between calandria tube and garter spring spacer. It has also been observed that the maximum stress intensity in girdle wire does not increase beyond the ultimate tensile strength even when maximum stress intensity in calandria tube reaches its yield strength. These analyses also revealed that the structural as well as functional integrity of pressure tube and the garter spring is not affected as result of this interference.

  3. MEASUREMENT OF ENDOTRACHEAL TUBE CUFF PRESSURE IN MECHANICALLYVENTILATED PATIENTS ON ARRIVAL TO INTENSIVE CARE UNIT - A CROSS-SECTIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Arun Kumar Ajjappa

    2017-04-01

    Full Text Available BACKGROUND The monitoring of Endotracheal Tube (ETT cuff pressure in intubated patients on arrival to intensive care unit is very essential. The cuff pressure must be within an optimal range of 20-30cm H2O ensuring ventilation with no complications related to cuff overinflation and underinflation. This can be measured with a cuff pressure manometer. The aim of the study is to measure the endotracheal tube cuff pressure in patients on arrival to intensive care unit and to identify prevalence of endotracheal cuff underinflation and overinflation. MATERIALS AND METHODS A cross-sectional study was done on mechanically-ventilated patients who were intubated in casualty (emergency department on arrival to intensive care unit in S.S. Institute of Medical Sciences and Research Centre, Davangere. About 50 critically-ill patients intubated with a high volume, low pressure endotracheal tube were included in the study. An analogue manometer was used to measure the endotracheal tube cuff pressure. It was compared with the recommended level. The settings of mechanical ventilation, endotracheal tube size and peak airway pressure were recorded. RESULTS It was found that the mean cuff pressure was 64.10 cm of H2O with a standard deviation of 32.049. Of the measured cuff pressures, only 2% had pressures within an optimal range (20-30cm of H2O. 88% had cuff pressures more than 30cm of H2O. The mean peak airway pressure found to be 20.50cm of H2O with a Standard Deviation (SD of 5.064. CONCLUSION This study is done to emphasise the importance of cuff pressure measurement in all mechanically-ventilated patients as cuff pressure is found to be high in most of the patients admitted to intensive care unit. Complications of overinflation and underinflation can only be prevented if the acceptable cuff pressures are achieved.

  4. Comparison of endotracheal tube cuff pressure values before and after training seminar.

    Science.gov (United States)

    Özcan, Ayça Tuba Dumanlı; Döğer, Cihan; But, Abdülkadir; Kutlu, Işık; Aksoy, Şemsi Mustafa

    2017-07-22

    It is recommended that endotracheal cuff (ETTc) pressure be between 20 and 30 cm H2O. In this present study, we intend to observe average cuff pressure values in our clinic and the change in these values after the training seminar. The cuff pressure values of 200 patients intubated following general anesthesia induction in the operating theatre were measured following intubation. One hundred patients whose values were measured before the training seminar held for all physician assistants, and 100 patients whose values were measured after the training seminar were regarded as Group 1 and Group 2, respectively. Cuff pressures of both groups were recorded, and the difference between them was shown. Moreover, cuff pressure values were explored according to the working period of the physician assistants. There was no significant difference between the groups in terms of age, gender and tube diameters. Statistically significant difference was found between cuff pressure values before and after the training (p values decreased, however no statistically significant different was found (p training seminars held at intervals would prevent high cuff pressure values and potential complications.

  5. Highly sensitive contact pressure measurements using FBG patch in endotracheal tube cuff

    Science.gov (United States)

    Correia, R.; Blackman, O. R.; Hernandez, F. U.; Korposh, S.; Morgan, S. P.; Hayes-Gill, B. R.; James, S. W.; Evans, D.; Norris, A.

    2016-05-01

    A method for measuring the contact pressure between an endotracheal tube cuff and the trachea was designed and developed by using a fibre Bragg grating (FBG) based optical fibre sensor. The FBG sensor is encased in an epoxy based UV-cured cuboid patch and transduces the transversely loaded pressure into an axial strain that induces wavelength shift of the Bragg reflection. The polymer patch was created by using a PTFE based mould and increases tensile strength and sensitivity of the bare fibre FBG to pressure to 2.10×10-2 nm/kPa. The characteristics of the FBG patch allow for continuous measurement of contact pressure. The measurement of contact pressure was demonstrated by the use of a 3D printed model of a human trachea. The influence of temperature on the measurements is reduced significantly by the use of a second FBG sensor patch that is not in contact with the trachea. Intracuff pressure measurements performed using a commercial manometer agreed well with the FBG contact pressure measurements.

  6. Finite element analysis of free expansion of aluminum alloy tube under magnetic pressure

    Institute of Scientific and Technical Information of China (English)

    YU Hai-ping; LI Chun-feng

    2005-01-01

    A link between the electromagnetic code, ANSYS/Emag and the structural code, Ls-dyna was developed, and the numerical modeling of electromagnetic forming for aluminum alloy tube expansion was performed by means of them (discharge energy 0.75 kJ). A realistic distribution of magnetic pressure was calculated. The calculated values of displacement along the tube axis and versus time are in very good agreement with the measured ones.The maximum strain rate is 1 122 s-1, which is not large enough to change the constitutive equations of aluminum alloy. With the augment of discharge energy (0. 5 - 1.0 kJ), the relative errors of the maximum deformation increase from 2.93% to 11.4%. Therefore, coupled numerical modeling of the electromagnetic field and the structural field should be performed to investigate the electromagnetic forming with larger deformation.

  7. Modeling pollen tube growth: feeling the pressure to deliver testifiable predictions.

    Science.gov (United States)

    Kroeger, Jens; Geitmann, Anja

    2011-11-01

    The frequency and amplitude of oscillatory pollen tube growth can be altered by changing the osmotic value of the surrounding medium. This has motivated the proposition that the periodic change in growth velocity is caused by changes in turgor pressure. Using mathematical modeling we recently demonstrated that the oscillatory pollen tube growth does not require turgor to change but that this behavior can be explained with a mechanism that relies on changes in the mechanical properties of the cell wall which in turn are caused by temporal variations in the secretion of cell wall precursors. The model also explains why turgor and growth rate are correlated for oscillatory growth with long growth cycles while they seem uncorrelated for oscillatory growth with short growth cycles. The predictions made by the model are testifiable by experimental data and therefore represent an important step towards understanding the dynamics of the growth behavior in walled cells.

  8. Numerical investigation of draft tube pressure pulsations in a Francis turbine with splitter blades

    Science.gov (United States)

    Kassanos, I.; Anagnostopoulos, J.; Papantonis, D.

    2017-04-01

    Operation of Francis turbines at part load conditions is related to the appearance of the draft tube helical vortex rope. Splitter blades have been employed in high head Francis turbines in order to improve performance as well as their unsteady characteristics. In this work the draft tube unsteady characteristics of a Francis runner with splitter blades are investigated numerically. Two different splitter designs were analysed, and the performance results were compared to the baseline runner with no splitter blades used. The amplitude of pressure pulsation caused by the precessing vortex rope as well as the related frequency was compared for all cases, for two different operating conditions. From the results a relationship between the pulsation frequency and splitter blade geometry was observed.

  9. Monte Carlo Study on Gas Pressure Response of He-3 Tube in Neutron Porosity Logging

    Directory of Open Access Journals (Sweden)

    TIAN Li-li;ZHANG Feng;WANG Xin-guang;LIU Jun-tao

    2016-10-01

    Full Text Available Thermal neutrons are detected by (n,p reaction of Helium-3 tube in the compensated neutron logging. The helium gas pressure in the counting area influences neutron detection efficiency greatly, and then it is an important parameter for neutron porosity measurement accuracy. The variation law of counting rates of a near detector and a far one with helium gas pressure under different formation condition was simulated by Monte Carlo method. The results showed that with the increasing of helium pressure the counting rate of these detectors increased firstly and then leveled off. In addition, the neutron counting rate ratio and porosity sensitivity increased slightly, the porosity measurement error decreased exponentially, which improved the measurement accuracy. These research results can provide technical support for selecting the type of Helium-3 detector in developing neutron porosity logging.

  10. Investigation of the reaction of liquid hydrogen with liquid air in a pressure tube

    Science.gov (United States)

    Karb, Erich H.

    1987-01-01

    A pressure tube should protect the FR-2 reactor from the consequences of a hydrogen-air reaction, which is conceivable in the breakdown of several safety devices of the planned cold neutron source Project FR-2/16. The magnitudes and time pattern of the pressures to be expected were investigated. In the geometry used and the ignition mechanism selected, which is comparable to the strongest ignition process conceivable in the reactor, the reaction proceeds with greater probability than combustion. The combustion is possibly smaller if local limited partial detonations are superimposed. The magnitude of the pressure was determined by the masses of the reaction partners, liquid H2 and liquid air, and determines their ratio to each other.

  11. Facilitating protein crystal cryoprotection in thick-walled plastic capillaries by high-pressure cryocooling.

    Science.gov (United States)

    Chen, Yi-Fan; Tate, Mark W; Gruner, Sol M

    2009-06-01

    Many steps in the X-ray crystallographic solution of protein structures have been automated. However, the harvesting and cryocooling of crystals still rely primarily on manual handling, frequently with consequent mechanical damage. An attractive alternative is to grow crystals directly inside robust plastic capillaries that may be cryocooled and mounted on the beamline goniometer. In this case, it is still desirable to devise a way to cryoprotect the crystals, which is difficult owing to the poor thermal conductivity of thick plastic capillary walls and the large thermal mass of the capillary and internal mother liquor. A method is described to circumvent these difficulties. It is shown that high-pressure cryocooling substantially reduced the minimal concentrations of cryoprotectants required to cryocool water inside capillaries without formation of ice crystals. The minimal concentrations of PEG 200, PEG 400 and glycerol necessary for complete vitrification under pressure cryocooling were determined.

  12. Pulsed electron beam propagation in gases under pressure of 6.6 kPa in drift tube

    Science.gov (United States)

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Poloskov, A. V.

    2017-02-01

    This paper presents the results of an investigation of pulsed electron beam transport propagated in a drift tube filled with different gases (He, H2, N2, Ar, SF6, and CO2). The total pressure in the drift tube was 6.6 kPa. The experiments were carried out using a TEA-500 pulsed electron accelerator. The electron beam was propagated in the drift tube composed of two sections equipped with reverse current shunts. Under a pressure of 6.6 kPa, the maximum value of the electron beam charge closed on the walls of the drift tube was recorded when the beam was propagated in hydrogen and carbon dioxide. The minimum value of the electron beam charge closed on the walls of the drift tube was recorded for sulfur hexafluoride. The visualization of the pulsed electron beam energy losses onto the walls of the drift chamber was carried out using radiation-sensitive film.

  13. Experimental determination of thermal contact conductance between pressure and calandria tubes of Indian pressurised heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dureja, A.K., E-mail: akdureja@barc.gov.in [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Pawaskar, D.N.; Seshu, P. [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai (India); Sinha, S.K. [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Sinha, R.K. [Department of Atomic Energy, OYC, Near Gateway of India, Mumbai (India)

    2015-04-01

    Highlights: • We established an experimental facility to measure thermal contact conductance between disc shaped specimens. • We measured thermal contact conductance between Zr-2.5Nb alloy pressure tube (PT) material and Zr-4 calandria tube (CT) material. • We concluded that thermal contact conductance is a linear function of contact pressure for interface of PT and CT up to 10 MPa contact pressure. • We concluded that thermal contact conductance is a weak function of interface temperature. - Abstract: Thermal contact conductance (TCC) is one of the most important parameters in determining the temperature distribution in contacting structures. Thermal contact conductance between the contacting structures depends on the mechanical properties of underlying materials, thermo-physical properties of the interstitial fluid and surface condition of the structures coming in contact. During a postulated accident scenario of loss of coolant with coincident loss of emergency core cooling system in a tube type heavy water nuclear reactor, the pressure tube is expected to sag/balloon and come in contact with outer cooler calandria tube to dissipate away the heat generated to the moderator. The amount of heat thus transferred is a function of thermal contact conductance and the nature of contact between the two tubes. An experimental facility was designed, fabricated and commissioned to measure thermal contact conductance between pressure tube and calandria tube specimens. Experiments were conducted on disc shaped specimens under axial contact pressure in between mandrels. Experimental results of TCC and a linear correlation as a function of contact pressure have been reported in this paper.

  14. Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of H-type Finned Tube Banks

    Directory of Open Access Journals (Sweden)

    Heng Chen

    2014-11-01

    Full Text Available H-type finned tube heat exchanger elements maintain a high capacity for heat transfer, possess superior self-cleaning properties and retain the ability to effect flue gas waste heat recovery in boiler renovations. In this paper, the heat transfer and pressure drop characteristics of H-type finned tube banks are studied via an experimental open high-temperature wind tunnel system. The effects of fin width, fin height, fin pitch and air velocity on fin efficiency, convective heat transfer coefficient, integrated heat transfer capacity and pressure drop are examined. The results indicate that as air velocity, fin height and fin width increase, fin efficiency decreases. Convective heat transfer coefficient is proportional to fin pitch, but inversely proportional to fin height and fin width. Integrated heat transfer capacity is related to fin efficiency, convective heat transfer coefficient and finned ratio. Pressure drop increases with the increase of fin height and fin width. Finally, predictive correlations of fin efficiency, Nusselt number and Euler Number are developed based on the experimental data.

  15. Novel method for estimating the dynamic characteristics of pressure sensor in shock tube calibration test.

    Science.gov (United States)

    Li, Qiang; Wang, Zhongyu; Wang, Zhuoran; Yan, Hu

    2015-06-01

    A shock tube is usually used to excite the dynamic characteristics of the pressure sensor used in an aircraft. This paper proposes a novel estimation method for determining the dynamic characteristic parameters of the pressure sensor. A preprocessing operation based on Grey Model [GM(1,1)] and bootstrap method (BM) is employed to analyze the output of a calibrated pressure sensor under step excitation. Three sequences, which include the estimated value sequence, upper boundary, and lower boundary, are obtained. The processing methods on filtering and modeling are used to explore the three sequences independently. The optimal estimated, upper boundary, and lower boundary models are then established. The three models are solved, and a group of dynamic characteristic parameters corresponding to the estimated intervals are obtained. A shock tube calibration test consisting of two experiments is performed to validate the performance of the proposed method. The results show that the relative errors of the dynamic characteristic parameters of time and frequency domains do not exceed 9% and 10%, respectively. Moreover, the nominal and estimated values of the parameters fall into the estimated intervals limited by the upper and lower values.

  16. Numerical simulation of the processes in the normal incidence tube for high acoustic pressure levels

    Science.gov (United States)

    Fedotov, E. S.; Khramtsov, I. V.; Kustov, O. Yu.

    2016-10-01

    Numerical simulation of the acoustic processes in an impedance tube at high levels of acoustic pressure is a way to solve a problem of noise suppressing by liners. These studies used liner specimen that is one cylindrical Helmholtz resonator. The evaluation of the real and imaginary parts of the liner acoustic impedance and sound absorption coefficient was performed for sound pressure levels of 130, 140 and 150 dB. The numerical simulation used experimental data having been obtained on the impedance tube with normal incidence waves. At the first stage of the numerical simulation it was used the linearized Navier-Stokes equations, which describe well the imaginary part of the liner impedance whatever the sound pressure level. These equations were solved by finite element method in COMSOL Multiphysics program in axisymmetric formulation. At the second stage, the complete Navier-Stokes equations were solved by direct numerical simulation in ANSYS CFX in axisymmetric formulation. As the result, the acceptable agreement between numerical simulation and experiment was obtained.

  17. Grain-size-independent plastic flow at ultrahigh pressures and strain rates.

    Science.gov (United States)

    Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T

    2015-02-13

    A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100  GPa) and strain rate (∼10(7)  s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25  μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion.

  18. Feeding tube - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  19. Heat transfer and pressure drop performance of smooth and internally finned tubes with oil and refrigerant 22 mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, L.M. (Indiana-Purdue Univ., Ft. Wayne, IN (US)); Pate, M.B. (Iowa State Univ., Ames, IA (US)); Bergles, A.E. (Rensselaer Polytechnic Inst., Troy, NY (US))

    1989-01-01

    The overall performance of a smooth tube and two augmented tubes is compared by using an enhancement performance ratio, defined as the ratio of heat transfer enhancement to pressure drop increase. The augmented tubes are compared to the smooth tube with pure R-22 and with mixtures of R-22 plus 150-or 300-SUS naphthenic mineral oil. Additionally, the performance of all three tubes with refrigerant-oil mixtures is compared to performance of the same tube with pure refrigerant. Various oil concentrations up to 5% by weight were tested and mass flux was varied from 92,000 to 294,000 lb/h{circle dot}ft{sup 2} (125 to 400 kg/m{sup 2}{circle dot}s). Nominal evaporation conditions were 37{degrees}F(3{degrees}C) with inlet and outlet qualities of 15% and 85%, respectively. The condensation conditions were 105{degrees}F (41{degrees}C) with inlet and outlet qualities of 85% and 15%, respectively. The enhancement performance ratio of the micro-fin tube is consistently higher than that of the low-fin tube with either pure refrigerant or refrigerant-oil mixtures. With pure refrigerant, the enhancement performance ratio of the augmented tubes is generally greater than unity, indicating improved performance relative to a smooth tube.

  20. Exact solution of unsteady flow generated by sinusoidal pressure gradient in a capillary tube

    Directory of Open Access Journals (Sweden)

    M. Abdulhameed

    2015-12-01

    Full Text Available In this paper, the mathematical modeling of unsteady second grade fluid in a capillary tube with sinusoidal pressure gradient is developed with non-homogenous boundary conditions. Exact analytical solutions for the velocity profiles have been obtained in explicit forms. These solutions are written as the sum of the steady and transient solutions for small and large times. For growing times, the starting solution reduces to the well-known periodic solution that coincides with the corresponding solution of a Newtonian fluid. Graphs representing the solutions are discussed.

  1. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.

    Science.gov (United States)

    Ikenaga, Yuki; Nishi, Shohei; Komagata, Yuka; Saito, Masashi; Lagrée, Pierre-Yves; Asada, Takaaki; Matsukawa, Mami

    2013-11-01

    A pulse wave is the displacement wave which arises because of ejection of blood from the heart and reflection at vascular bed and distal point. The investigation of pressure waves leads to understanding the propagation characteristics of a pulse wave. To investigate the pulse wave behavior, an experimental study was performed using an artificial polymer tube and viscous liquid. A polyurethane tube and glycerin solution were used to simulate a blood vessel and blood, respectively. In the case of the 40 wt% glycerin solution, which corresponds to the viscosity of ordinary blood, the attenuation coefficient of a pressure wave in the tube decreased from 4.3 to 1.6 dB/m because of the tube stiffness (Young's modulus: 60 to 200 kPa). When the viscosity of liquid increased from approximately 4 to 10 mPa·s (the range of human blood viscosity) in the stiff tube, the attenuation coefficient of the pressure wave changed from 1.6 to 3.2 dB/m. The hardening of the blood vessel caused by aging and the increase of blood viscosity caused by illness possibly have opposite effects on the intravascular pressure wave. The effect of the viscosity of a liquid on the amplitude of a pressure wave was then considered using a phantom simulating human blood vessels. As a result, in the typical range of blood viscosity, the amplitude ratio of the waves obtained by the experiments with water and glycerin solution became 1:0.83. In comparison with clinical data, this value is much smaller than that seen from blood vessel hardening. Thus, it can be concluded that the blood viscosity seldom affects the attenuation of a pulse wave.

  2. The effect of flexible tube vibration on pressure drop and heat transfer in heat exchangers considering viscous dissipation effects

    Science.gov (United States)

    Shokouhmand, H.; Sangtarash, F.

    2008-04-01

    The pressure drop and heat transfer coefficient in tube bundle of shell and tube heat exchangers are investigated considering viscous dissipation effects. The governing equations are solved numerically. Because of temperature-dependent viscosity the equations should be solved simultaneously. The flexible tubes vibration is modeled in a quasi-static method by taking the first tube of the row to be in 20 asymmetric positions with respect to the rest of the tubes which are assumed to be fixed and time averaging the steady state solutions corresponding to each one of these positions .The results show that the eccentricity of the first tube increases pressure drop and heat transfer coefficients significantly comparing to the case of rigid tube bundles, symmetrically placed. In addition, these vibrations not only compensate the effect of viscous dissipations on heat transfer coefficient but also increase heat transfer coefficient. The constant viscosity results obtained from our numerical method have a good agreement with the available experimental data of constant viscosity for flexible tube heat exchangers.

  3. Resonant tube for measurement of sound absorption in gases at low frequency/pressure ratios

    Science.gov (United States)

    Zuckerwar, A. J.; Griffin, W. A.

    1980-01-01

    The paper describes a resonant tube for measuring sound absorption in gases, with specific emphasis on the vibrational relaxation peak of N2, over a range of frequency/pressure ratios from 0.1 to 2500 Hz/atm. The experimental background losses measured in argon agree with the theoretical wall losses except at few isolated frequencies. Rigid cavity terminations, external excitation, and a differential technique of background evaluation were used to minimize spurious contributions to the background losses. Room temperature measurements of sound absorption in binary mixtures of N2-CO2 in which both components are excitable resulted in the maximum frequency/pressure ratio in Hz/atm of 0.063 + 123m for the N2 vibrational relaxation peak, where m is mole percent of added CO2; the maximum ratio for the CO2 peak was 34,500 268m where m is mole percent of added N2.

  4. The pressure field in the liquid column in the tube-arrest method

    Institute of Scientific and Technical Information of China (English)

    Ying Chong-Fu; Li Chao; Xu De-Long; Deng Jing-Jun

    2008-01-01

    We have been using the method of tube-arrest as a means of producing transient single cavitation bubble. In the present paper we seek to comprehend the mechanism of production and inquire into the structure of the ab initio pressure field in the arrested liquid column. The generated pressure wave is shown by combining the theoretical analysis with the experimental observation to be a slightly varied version of water hammer. With relatively clean liquid, the magnitude of the tension peak generating the TSB is likely to reach of several millions Pa. It is also shown that the so generated cavitation bubble originating from the gas-containing bulk liquid is in 'violent' motion.

  5. Unusual cause of a facial pressure ulcer: the helmet securing the Sengstaken-Blakemore tube.

    Science.gov (United States)

    Kim, S M; Ju, R K; Lee, J H; Jun, Y J; Kim, Y J

    2015-06-01

    Many medical devices, such as pulse oximetry, ventilation masks and other splints are put on critically ill patients. Although these devices are designed to deliver relatively low physical pressure to the skin of the patient, they can still cause pressure ulcers (PUs) in critically ill patients. There are reports of medical device-related PUs on the face. Here we describe forehead skin necrosis caused by the securing helmet for the Sengstaken-Blakemore tube. It is difficult to detect this kind of PU early, because most of the patients have decreased mental status or delirium due to varix bleeding. For this reason, medical staff should be aware of the risk of developing a PU by the device and take preventive measures accordingly.

  6. Plastic Deformation and Rupture of Ring-Stiffened Cylinders under Localized Pressure Pulse Loading

    Directory of Open Access Journals (Sweden)

    Michelle S. Hoo Fatt

    1994-01-01

    Full Text Available An analytical solution for the dynamic plastic deformation of a ring-stiffened cylindrical shell subject to high intensity pressure pulse loading is presented. By using an analogy between a cylindrical shell that undergoes large plastic deformation and a rigid-plastic string resting on a rigid-plastic foundation, one derives closed-form solutions for the transient and final deflection profiles and fracture initiation of the shell. Discrete masses' and springs are used to describe the ring stiffeners in the stiffened shell. The problem of finding the transient deflection profile of the central bay is reduced to solving an inhomogeneous wave equation with inhomogeneous boundary conditions using the method of eigenfunction expansion. The overall deflection profile consists of both global (stiffener and local (bay components. This division of the shell deflection profile reveals a complex interplay between the motions of the stiffener and the bay. Furthermore, a parametric study on a ring-stiffened shell damaged by a succession of underwater explosions shows that the string-on-foundation model with ring stiffeners described by lumped masses and springs is a promising method of analyzing the structure.

  7. Elastic-plastic Transition of Transversely Isotropic Thick-walled Rotating Cylinder under Internal Pressure

    Directory of Open Access Journals (Sweden)

    Sanjeev Sharma

    2009-05-01

    Full Text Available Elastic-plastic stresses for a transversely isotropic thick-walled rotating cylinder under internal pressure have been obtained by using Seth’s transition theory. It has been observed that a thick-walled circular cylinder made of isotropic material yields at the internal surface at a high pressure as compared to cylinder made of transversely isotropic material. With the increase in angular speed, much less pressure is required for initial yielding at the internal surface for transversely isotropic material as compared to isotropic material. For fullyplastic state, circumferential stress is maximum at the external surface. Thick-walled circular cylinder made of transversely isotropic material requires high percentage increase in pressure to become fully plastic as compared to isotropic cylinder. Therefore, circular cylinder made of transversely isotropic material is on the safer side of the design as compared to cylinder made of  isotropic material.Defence Science Journal, 2009, 59(3, pp.260-264, DOI:http://dx.doi.org/10.14429/dsj.59.1519

  8. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    CERN Document Server

    Schell, W R; Yoon, S R; Tobin, M J

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min . This paper presents the design features, opera...

  9. 3D TRANSIENT COUPLED THERMO-ELASTIC-PLASTIC CONTACT SEALING ANALYSIS OF REACTOR PRESSURE VESSEL

    Institute of Scientific and Technical Information of China (English)

    Du Xuesong; Li Runfang; Lin Tengjiao

    2005-01-01

    Sealing analysis of sealing system in reactor pressure vessels is relevant with multiple nonlinear coupled-field effects, so even large-scale commercial finite element software cannot finish the complicated analysis. A fmite element method of 3D transient coupled thermo-elastic-plastic contact sealing analysis for reactor pressure vessels is presented, in which the surface nonlinearity,material nonlinearity, transient heat transfer nonlinearity and multiple coupled effect are taken into account and the sealing equation is coupling solved in iterative procedure. At the same time, a computational analysis program is developed, which is applied in the sealing analysis of experimental reactor pressure vessel, and the numerical results are in good coincidence with the experimental results. This program is also successful in analyzing the practical problem in engineering.

  10. Endotracheal Tube Cuff Pressures in Patients Intubated Prior to Helicopter EMS Transport

    Directory of Open Access Journals (Sweden)

    Joseph Tennyson

    2016-11-01

    Full Text Available Introduction Endotracheal intubation is a common intervention in critical care patients undergoing helicopter emergency medical services (HEMS transportation. Measurement of endotracheal tube (ETT cuff pressures is not common practice in patients referred to our service. Animal studies have demonstrated an association between the pressure of the ETT cuff on the tracheal mucosa and decreased blood flow leading to mucosal ischemia and scarring. Cuff pressures greater than 30 cmH2O impede mucosal capillary blood flow. Multiple prior studies have recommended 30 cmH2O as the maximum safe cuff inflation pressure. This study sought to evaluate the inflation pressures in ETT cuffs of patients presenting to HEMS. Methods We enrolled a convenience sample of patients presenting to UMass Memorial LifeFlight who were intubated by the sending facility or emergency medical services (EMS agency. Flight crews measured the ETT cuff pressures using a commercially available device. Those patients intubated by the flight crew were excluded from this analysis as the cuff was inflated with the manometer to a standardized pressure. Crews logged the results on a research form, and we analyzed the data using Microsoft Excel and an online statistical analysis tool. Results We analyzed data for 55 patients. There was a mean age of 57 years (range 18–90. The mean ETT cuff pressure was 70 (95% CI= [61–80] cmH2O. The mean lies 40 cmH2O above the maximum accepted value of 30 cmH2O (p120 cmH2O, the maximum pressure on the analog gauge. Conclusion Patients presenting to HEMS after intubation by the referral agency (EMS or hospital have ETT cuffs inflated to pressures that are, on average, more than double the recommended maximum. These patients are at risk for tracheal mucosal injury and scarring from decreased mucosal capillary blood flow. Hospital and EMS providers should use ETT cuff manometry to ensure that they inflate ETT cuffs to safe pressures.

  11. Examining the response pressure along a fluid-filled elastic tube to comprehend Frank's arterial resonance model.

    Science.gov (United States)

    Lin Wang, Yuh-Ying; Sze, Wah-Keung; Lin, Chin-Chih; Chen, Jiang-Ming; Houng, Chin-Chi; Chang, Chi-Wei; Wang, Wei-Kung

    2015-04-13

    Frank first proposed the arterial resonance in 1899. Arteries are blood-filled elastic vessels, but resonance phenomena for a fluid-filled elastic tube has not drawn much attention yet. In this study, we measured the pressure along long elastic tubes in response to either a single impulsive water ejection or a periodic water input. The experimental results showed the low damped pressure oscillation initiated by a single impulsive water input; and the natural frequencies of the tube, identified by the peaks of the response in the frequency domain, were inversely proportional to the length of the tube. We found that the response to the periodic input reached a steady distributed oscillation with the same period of the input after a short transient time; and the optimal pressure response, or resonance, occurred when the pumping frequency was near the fundamental natural frequency of the system. We pointed out that the distributed forced oscillation could also be a suitable approach to analyze the arterial pressure wave. Unlike Frank's resonance model in which the whole arterial system was lumped together to a simple 0-D oscillator and got only one natural frequency, a tube has more than one natural frequency because the pressure P(z,t) is a 1-D oscillatory function of the axial position z and the time t. The benefit of having more than one natural frequency was then discussed.

  12. Pressure drop and stability of flow in Archimedean spiral tube with transverse corrugations

    Directory of Open Access Journals (Sweden)

    Đorđević Milan

    2016-01-01

    Full Text Available Isothermal pressure drop experiments were carried out for the steady Newtonian fluid flow in Archimedean spiral tube with transverse corrugations. Pressure drop correlations and stability criteria for distinguishing the flow regimes have been obtained in a continuous Reynolds number range from 150 to 15 000. The characterizing geometrical groups which take into account all the geometrical parameters of Archimedean spiral and corrugated pipe has been acquired. Before performing experiments over the Archimedean spiral, the corrugated straight pipe having high relative roughness e/d = 0.129 of approximately sinusoidal type was tested in order to obtain correlations for the Darcy friction factor. Insight into the magnitude of pressure loss in the proposed geometry of spiral solar receiver for different flow rates is important because of its effect upon the efficiency of the receiver. Although flow in spiral and corrugated geometries has the advantages of compactness and high heat transfer rates, the disadvantage of greater pressure drops makes hydrodynamic studies relevant. [Projekat Ministarstva nauke Republike Srbije, br. III 42006 i br. TR 33015

  13. Experimental study on the minimum drag coefficient of supercritical pressure water in horizontal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Xianliang, E-mail: xianlianglei@mail.xjtu.edu.cn; Li, Huixiong; Guo, YuMeng; Zhang, Qing; Zhang, Weiqiang; Zhang, Qian

    2016-05-15

    Highlights: • The minimum drag coefficient phenomenon (MDC) has been observed and further investigated. • Effects of heat flux, mass flux and pressure to MDC have been discussed. • A series of comparisons between existing correlations and data have been conducted. • Two correlations of drag coefficient are proposed for isothermal and nonisothermal flow. - Abstract: Hydraulic resistance and its components are of great importance for understanding the turbulence nature of supercritical fluid and establishing prediction methods. Under supercritical pressures, the hydraulic resistance of the fluid exhibits a “pit” in the regions near its pseudo-critical point, which is hereafter called the minimum drag coefficient phenomenon. However, this special phenomenon was paid a little attention before. Hence systematical experiments have been carried out to investigate the hydraulic resistance of supercritical pressure water in both adiabatic and heated horizontal tubes. Parametric effects of heat flux, pressure and mass fluxes to drag coefficient are further compared. It is found that almost all of the existing correlations don’t agree well with the experimental data due to the insufficient consideration of thermal-properties near the pseudocritical point. Two correlations of the drag coefficients are finally proposed by introducing the new variable of the derivative of density with respect to temperature or Prandtl number, which can better predict the drag coefficient of isothermal and nonisothermal flow respectively.

  14. An experimental investigation of pressure drop of aqueous foam in laminar tube flow

    Science.gov (United States)

    Blackwell, B. F.; Sobolik, K. B.

    1987-04-01

    This report is the first of two detailing pressure-drop and heat-transfer measurements made at the Foam Flow Heat Transfer Loop. The work was motivated by a desire to extend the application of aqueous foam from petroleum drilling to geothermal drilling. Pressure-drop measurements are detailed in this report; a forthcoming report (SAND85-1922) will describe the heat-transfer measurements. The pressure change across a 2.4-m (8-ft) length of the 2.588-cm (1.019-in.) ID test section was measured for liquid volume fractions between 0.05 and 0.35 and average velocities between 0.12 and 0.80 m/s (0.4 and 2.6 ft/s). The resulting pressure-drop/flow-rate data were correlated to a theoretical model for a Bingham plastic. Simple expressions for the dynamic viscosity and the yield stress as a function of liquid volume fraction were estimated.

  15. Correlations between controlled endotracheal tube cuff pressure and postprocedural complications: a multicenter study.

    Science.gov (United States)

    Liu, Jianhui; Zhang, Xiaoqing; Gong, Wei; Li, Shitong; Wang, Fen; Fu, Shukun; Zhang, Mazhong; Hang, Yannan

    2010-11-01

    Postoperative respiratory complications related to endotracheal intubation usually present as cough, sore throat, hoarseness, and blood-streaked expectorant. In this study, we investigated the short-term (hours) impact of measuring and controlling endotracheal tube cuff (ETTc) pressure on postprocedural complications. Five hundred nine patients from 4 tertiary care university hospitals in Shanghai, China scheduled for elective surgery under general anesthesia were assigned to a control group without measuring ETTc pressure, and a study group with ETTc pressure measured and adjusted. The duration of the procedure and duration of endotracheal intubation were recorded. Twenty patients whose duration of endotracheal intubation was between 120 and 180 minutes were selected from each group and examined by fiberoptic bronchoscopy immediately after removing the endotracheal tube. Endotracheal intubation-related complications including cough, sore throat, hoarseness, and blood-streaked expectorant were recorded at 24 hours postextubation. There was no significant difference in sex, age, height, weight, procedure duration, and duration of endotracheal intubation between the 2 groups. The mean ETTc pressure measured after estimation by palpation of the pilot balloon of the study group was 43 ± 23.3 mm Hg before adjustment (the highest was 210 mm Hg), and 20 ± 3.1 mm Hg after adjustment (P sore throat, hoarseness, and blood-streaked expectoration in the control group was significantly higher than in the study group. As the duration of endotracheal intubation increased, the incidence of sore throat and blood-streaked expectoration in the control group increased. The incidence of sore throat in the study group also increased with increasing duration of endotracheal intubation. Fiberoptic bronchoscopy in the 20 patients showed that the tracheal mucosa was injured in varying degrees in both groups, but the injury was more severe in the control group than in the study group. ETTc

  16. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  17. Consolidation Properties of Highly Plastic Clay During Osmotic Pressure Consolidation Test

    Institute of Scientific and Technical Information of China (English)

    魏静; 王建华

    2003-01-01

    For the very soft clay with high water content, its void ratio, compressibility coefficient and permeability varied with stress during consolidation. It is necessary to use large strain consolidation based on the permeabilityvoid ratio relationship and effective stressvoid ratio relationship to analyze these properties. To overcome the disadvantages of conventional oedometer test, and determine the effective stressvoid relations of this kind of soil, osmotic pressure consolidation test for highly plastic clay study and the expression of permeabilityvoid ratio are performed. Therefore, the decided properties will be reasonably used for solving the large strain consolidation equation.

  18. Performance assessment of an inline horizontal swirl tube cyclone for gas-liquid separation at high pressure

    Institute of Scientific and Technical Information of China (English)

    Nurhayati Mellon; Azmi M. Shariff

    2011-01-01

    The application of swirl tube cyclone for gas-liquid separation is attractive due to its small size and weight.However,very scarce information on the performance of the swirl tube cyclone especially at high operating pressure emulating actual field condition was published in journals.Performance assessment was usually done at a low operating pressure using either air-water,air-fine particle mixtures or dense gas such as SF6.This paper fills the existing gaps and reports the initial findings on the performance assessment of a horizontal swirl tube cyclone for gas-liquid separation operating at a flow rate of 5 MMSCFD at 40-60 bar operating pressure.

  19. Evaluation of Pressure Stable Chip-to-Tube Fittings Enabling High-Speed Chip-HPLC with Mass Spectrometric Detection.

    Science.gov (United States)

    Lotter, Carsten; Heiland, Josef J; Stein, Volkmar; Klimkait, Michael; Queisser, Marco; Belder, Detlev

    2016-08-01

    Appropriate chip-to-tube interfacing is an enabling technology for high-pressure and high-speed liquid chromatography on chip. For this purpose, various approaches, to connect pressure resistant glass chips with HPLC pumps working at pressures of up to 500 bar, were examined. Three side-port and one top-port connection approach were evaluated with regard to pressure stability and extra column band broadening. A clamp-based top-port approach enabled chip-HPLC-MS analysis of herbicides at the highest pressure and speed.

  20. FURTHER MICROSTRUCTURAL EXAMINATIONS OF V-4Cr-4Ti PRESSURIZED CREEP TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, David S.; Kurtz, Richard J.

    2004-06-30

    Pressurized thermal creep tubes of V-4Cr-4Ti have been examined following testing in the range 650 to 800°C for tests lasting ~104 h. Creep deformation was found to be controlled by climb-controlled dislocation glide at all temperatures below 800°C whereas at 800°C, sub-grain boundary structure predominated and represented the main obstacle for dislocation motion. At 650 and 700°C after ~104 h an increased density of (Ti,V) oxy-carbo-nitride precipitates near the outer surface extending inwards a distance of 30 and 70 µm, respectively, was found. At 800°C, enhanced (Ti,V) oxy-carbo-nitride precipitation was observed across the entire tube wall thickness and may have affected creep response. Also, evidence for internal precipitation associated with the dislocation structure could be identified. The discussion section addresses differences in the controlling creep mechanisms between grain boundary sliding, sub-grain boundary controlled dislocation climb and individual dislocation climb processes.

  1. Shock tube investigation of dynamic response of pressure transducers for validation of rotor performance measurements

    Science.gov (United States)

    Bershader, Daniel

    1988-01-01

    For some time now, NASA has had a program under way to aid in the validation of rotor performance and acoustics codes associated with the UH-60 rotary-wing aircraft; and to correlate results of such studies with those obtained from investigations of other selected aircraft rotor performance. A central feature of these studies concerns the dynamic measurement of surface pressure at various locations up to frequencies of 25 KHz. For this purpose, fast-response gauges of the Kulite type are employed. The latter need to be buried in the rotor; they record surface pressures which are transmitted by a pipette connected to the gauge. The other end of the pipette is cut flush with the surface. In certain locations, the pipette configuration includes a rather sharp right-angle bend. The natural question has arisen in this connection: In what way are the pipettes modifying the signals received at the rotor surface and subsequently transmitted to the sensitive Kulite transducer element. The basic details and results of the program performed and recently completed in the High Pressure Shock Tube Laboratory of the Department of Aeronautics and Astronautics at Stanford University are given.

  2. Power level effects on thorium-based fuels in pressure-tube heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, B.P.; Edwards, G.W.R., E-mail: blair.bromley@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Sambavalingam, P. [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2016-06-15

    Lattice and core physics modeling and calculations have been performed to quantify the impact of power/flux levels on the reactivity and achievable burnup for 35-element fuel bundles made with Pu/Th or U-233/Th. The fissile content in these bundles has been adjusted to produce on the order of 20 MWd/kg burnup in homogeneous cores in a 700 MWe-class pressure-tube heavy water reactor, operating on a once-through thorium cycle. Results demonstrate that the impact of the power/flux level is modest for Pu/Th fuels but significant for U-233/Th fuels. In particular, high power/flux reduces the breeding and burnup potential of U-233/Th fuels. Thus, there may be an incentive to operate reactors with U-233/Th fuels at a lower power density or to develop alternative refueling schemes that will lower the time-average specific power, thereby increasing burnup.(author)

  3. A unifying model for elongational flow of polymer melts and solutions based on the interchain tube pressure concept

    Science.gov (United States)

    Wagner, Manfred Hermann; Rolón-Garrido, Víctor Hugo

    2015-04-01

    An extended interchain tube pressure model for polymer melts and concentrated solutions is presented, based on the idea that the pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic (M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, New York, 1986). In a tube model with variable tube diameter, chain stretch and tube diameter reduction are related, and at deformation rates larger than the inverse Rouse time τR, the chain is stretched and its confining tube becomes increasingly anisotropic. Tube diameter reduction leads to an interchain pressure in the lateral direction of the tube, which is proportional to the 3rd power of stretch (G. Marrucci and G. Ianniruberto. Macromolecules 37, 3934-3942, 2004). In the extended interchain tube pressure (EIP) model, it is assumed that chain stretch is balanced by interchain tube pressure in the lateral direction, and by a spring force in the longitudinal direction of the tube, which is linear in stretch. The scaling relations established for the relaxation modulus of concentrated solutions of polystyrene in oligomeric styrene (M. H. Wagner, Rheol. Acta 53, 765-777, 2014, M. H. Wagner, J. Non-Newtonian Fluid Mech. http://dx.doi.org/10.1016/j.jnnfm.2014.09.017, 2014) are applied to the solutions of polystyrene (PS) in diethyl phthalate (DEP) investigated by Bhattacharjee et al. (P. K. Bhattacharjee et al., Macromolecules 35, 10131-10148, 2002) and Acharya et al. (M. V. Acharya et al. AIP Conference Proceedings 1027, 391-393, 2008). The scaling relies on the difference ΔTg between the glass-transition temperatures of the melt and the glass-transition temperatures of the solutions. ΔTg can be inferred from the reported zero-shear viscosities, and the BSW spectra of the solutions are obtained from the BSW spectrum of the reference melt with good accuracy. Predictions of the EIP model are compared to the steady-state elongational viscosity data of PS

  4. Experimental investigation of heat transfer and pressure drop in fin-tube waste heat recovery heat exchangers

    OpenAIRE

    2014-01-01

    The aim of this master thesis was to investigate heat transfer and pressure drop of fin-tube heat exchangers. Experimental investigations of heat transfer and pressure drop in fin-tube bundles has been performed. The main focus was to investigate the influence of the fin height and the fin tip clearance. The effect of the uneven heat transfer distribution on the heat transfer coefficient has been analyzed.A literature survey has been dedicated to investigate the influence of the fin height an...

  5. Effect of reduced pressure, vibration and orientation to simulate high altitude testing of liquid pharmaceutical glass and plastic bottles

    NARCIS (Netherlands)

    Singh, S. Paul; Burgess, Gary; Kremer, Matt; Lockhart, Hugh

    2007-01-01

    This paper discusses the impact of high-altitude shipments of glass and plastic bottles on package integrity. High altitudes are encountered when trucks travel over mountain passes and when cargo and feeder aircraft transport packages in non-pressurized or partially pressurized cargo holds. This is

  6. The effect of endotracheal tube cuff pressure change during gynecological laparoscopic surgery on postoperative sore throat: a control study.

    Science.gov (United States)

    Geng, Guiqi; Hu, Jingyi; Huang, Shaoqiang

    2015-02-01

    Postoperative respiratory complications related to endotracheal intubation usually present as cough, sore throat, hoarseness. The aim of the study was to examine the effects of endotracheal tube cuff pressure changes during gynecological laparoscopic surgery on postoperative sore throat rates. Thirty patients who underwent gynecological laparoscopic surgery and 30 patients who underwent laparotomy under general anesthesia with endotracheal intubation were included. After induction of general anesthesia and endotracheal intubation, the cuff was inflated to 25 mmHg. At 5, 15, 30, 45 and 60 min after endotracheal intubation, cuff pressure and peak airway pressure were recorded. At 2 and 24 h after surgery, the patients were assessed for complaints of a sore throat. In patients who underwent laparotomy, cuff pressure and peak airway pressure did not change significantly at different time points after intubation. In patients who received laparoscopic surgery, cuff pressure and peak airway pressure were significantly increased compared to initial pressure at all examined time points. In both groups, the endotracheal tube cuff pressure and peak airway pressure were significantly correlated (R=0.9431, Psore throat scores at both 2 and 24 h after surgery (Ppressure and cuff pressure, resulting in increased incidence of postoperative sore throat.

  7. Thermodynamic and fluid mechanic analysis of rapid pressurization in a dead-end tube

    Science.gov (United States)

    Leslie, Ian H.

    1989-01-01

    Three models have been applied to very rapid compression of oxygen in a dead-ended tube. Pressures as high as 41 MPa (6000 psi) leading to peak temperatures of 1400 K are predicted. These temperatures are well in excess of the autoignition temperature (750 K) of teflon, a frequently used material for lining hoses employed in oxygen service. These findings are in accord with experiments that have resulted in ignition and combustion of the teflon, leading to the combustion of the stainless steel braiding and catastrophic failure. The system analyzed was representative of a capped off-high-pressure oxygen line, which could be part of a larger system. Pressurization of the larger system would lead to compression in the dead-end line, and possible ignition of the teflon liner. The model consists of a large plenum containing oxygen at the desired pressure (500 to 6000 psi). The plenum is connected via a fast acting valve to a stainless steel tube 2 cm inside diameter. Opening times are on the order of 15 ms. Downstream of the valve is an orifice sized to increase filling times to around 100 ms. The total length from the valve to the dead-end is 150 cm. The distance from the valve to the orifice is 95 cm. The models describe the fluid mechanics and thermodynamics of the flow, and do not include any combustion phenomena. A purely thermodynamic model assumes filling to be complete upstream of the orifice before any gas passes through the orifice. This simplification is reasonable based on experiment and computer modeling. Results show that peak temperatures as high as 4800 K can result from recompression of the gas after expanding through the orifice. An approximate transient model without an orifice was developed assuming an isentropic compression process. An analytical solution was obtained. Results indicated that fill times can be considerably shorter than valve opening times. The third model was a finite difference, 1-D transient compressible flow model. Results from

  8. Instrumented thick-walled tube method for measuring thermal pressure in fluids and isotropic stresses in thermosetting resins

    Science.gov (United States)

    Merzlyakov, Mikhail; Simon, Sindee L.; McKenna, Gregory B.

    2005-06-01

    We have developed a method for measuring the thermal pressure coefficient and cure-induced and thermally induced stresses based on an instrumented thick-walled tube vessel. The device has been demonstrated at pressures up to 330 MPa and temperatures to 300 °C. The method uses a sealed stainless steel thick-walled tube to impose three-dimensional isotropic constraints. The tube is instrumented with strain gauges in hoop and in axial directions and can be used in open or closed configurations. By making measurements of the isotropic stresses as a function of temperature, the method allows determination of the thermal pressure coefficient in both the glassy and rubbery (or liquid) states. The method also can be used to measure isotropic stress development in thermosetting resins during cure and subsequent thermal cycling. Experimental results are presented for sucrose benzoate, di-2-ethylhexylsebacate, and an epoxy resin. The current report shows that the method provides reliable estimates for the thermal pressure coefficient. The thermal pressure coefficient is determined with resolution on the order of 10kPa/K. Among advantages of the method is that the tubes are reusable, even when measurements are made for cure response of thermosetting resins.

  9. Fountain streaming contributes to fast tip-growth through regulating the gradients of turgor pressure and concentration in pollen tubes.

    Science.gov (United States)

    Liu, ShaoBao; Liu, Han; Feng, ShangSheng; Lin, Min; Xu, Feng; Lu, Tian Jian

    2017-04-19

    Fountain streaming is a typical microfluidic pattern in plant cells, especially for cells with a high aspect ratio such as pollen tubes. Although it has been found that fountain streaming plays crucial roles in the transport of nutrients and metabolites, the positioning of organelles and the mixing of cytoplasms, its implications for the fast tip growth of pollen tubes remain a mystery. To address this, based on the observations of asiatic lily Lilium Casablanca, we developed physical models for reverse fountain streaming in pollen tubes and solved the hydrodynamics and advection-diffusion dynamics of viscous Stokes flow in the shank and apical region of pollen tubes. Theoretical and numerical results demonstrated that the gradients of turgor pressure and concentration of wall materials along the length of pollen tubes provide undamped driving force and high-efficiency materials supply, which are supposed to contribute to the fast tip-growth of pollen tubes. The sample experimental results show that the tip-growth will be abnormal when the gradients of turgor pressure change under osmotic stress induced by different concentrations of PEG-6000 (a dehydrant).

  10. Dynamic Runner Forces and Pressure Fluctuations on the Draft Tube Wall of a Model Pump-Turbine

    Science.gov (United States)

    Kirschner, O.; Ruprecht, A.; Göde, E.; Riedelbauch, S.

    2016-11-01

    When Francis-turbines and pump-turbines operate at off-design conditions, typically a vortex rope develops. The vortex rope causes pressure oscillations leading to fluctuations of the forces affecting the runner. The presence of dynamic runner forces over a long period of time might damage the bearings and possibly the runner. In this experimental investigation, the fluctuating part of the runner forces and the pressure oscillations on the draft tube wall were measured on a model pump-turbine with a simplified straight cone draft tube in different operating conditions. The investigation focuses on the correlation of the pressure fluctuations frequency measured at the draft tube wall with the frequency of the fluctuating forces on the runner. The comparison between pressure fluctuations and dynamic forces shows a significant correlation in all operating points. For the comparison of different components in the spatial directions of the forces, the pressure fluctuations were separated in a synchronous part and a rotating part for operating points with higher amplitudes. The rotating pressure fluctuations correlate with the radial forces especially in the operating points with a rotating vortex rope. At frequencies with higher amplitudes in the pressure fluctuations caused by the vortex rope movement, there are also higher amplitudes in the radial forces at the same frequencies.

  11. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    Science.gov (United States)

    Vaibhaw, Kumar; Rao, S. V. R.; Jha, S. K.; Saibaba, N.; Jayaraj, R. N.

    2008-12-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (˜300 °C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation ( F n) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process.

  12. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vaibhaw, Kumar [Nuclear Fuel Complex, ECIL Post, Hyderabad 500 062 (India)], E-mail: krvaibhaw@yahoo.co.in; Rao, S.V.R.; Jha, S.K.; Saibaba, N.; Jayaraj, R.N. [Nuclear Fuel Complex, ECIL Post, Hyderabad 500 062 (India)

    2008-12-15

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition ({approx}300 deg. C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation (F{sub n}) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process.

  13. Limit analysis of viscoplastic thick-walled cylinder and spherical shell under internal pressure using a strain gradient plasticity theory

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plastic-itv theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.

  14. Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear

    Science.gov (United States)

    Javanbakht, Mahdi; Levitas, Valery I.

    2016-12-01

    Pressure and shear strain-induced phase transformations (PTs) in a nanograined bicrystal at the evolving dislocations pile-up have been studied utilizing a phase field approach (PFA). The complete system of PFA equations for coupled martensitic PT, dislocation evolution, and mechanics at large strains is presented and solved using the finite element method (FEM). The nucleation pressure for the high-pressure phase (HPP) under hydrostatic conditions near a single dislocation was determined to be 15.9 GPa. Under shear, a dislocation pile-up that appears in the left grain creates strong stress concentration near its tip and significantly increases the local thermodynamic driving force for PT, which causes nucleation of HPP even at zero pressure. At pressures of 1.59 and 5 GPa and shear, a major part of a grain transforms to HPP. When dislocations are considered in the transforming grain as well, they relax stresses and lead to a slightly smaller stationary HPP region than without dislocations. However, they strongly suppress nucleation of HPP and require larger shear. Unexpectedly, the stationary HPP morphology is governed by the simplest thermodynamic equilibrium conditions, which do not contain contributions from plasticity and surface energy. These equilibrium conditions are fulfilled either for the majority of points of phase interfaces or (approximately) in terms of stresses averaged over the HPP region or for the entire grain, despite the strong heterogeneity of stress fields. The major part of the driving force for PT in the stationary state is due to deviatoric stresses rather than pressure. While the least number of dislocations in a pile-up to nucleate HPP linearly decreases with increasing applied pressure, the least corresponding shear strain depends on pressure nonmonotonously. Surprisingly, the ratio of kinetic coefficients for PT and dislocations affect the stationary solution and the nanostructure. Consequently, there are multiple stationary solutions

  15. Methods of evaluation of accuracy with multiple essential parameters for eddy current measurement of pressure tube to calandria tube gap in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shokralla, S., E-mail: shaddy.shokralla@opg.com [Ontario Power Generation, IMS NDE Projects, Ajax, Ontario (Canada); Krause, T.W., E-mail: thomas.krause@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2014-01-15

    The purpose of inspection qualification of a particular inspection system is to show that it meets applicable inspection specification requirements. Often a requirement of the inspection system is that it meets a particular accuracy. In the case of a system with multiple inputs accompanied by additional influential parameters, calculation of the system's output accuracy can be formidable. Measurement of pressure-tube to calandria tube gap in CANDU reactors using an eddy current based technique is presented as a particular example of a system where multiple essential parameters combine to generate a final uncertainty for the inspection system. This paper outlines two possible methods of calculating such a system's accuracy, and discusses the advantages and disadvantages of each. (author)

  16. Anomalous memory effect in the breakdown of low-pressure argon in a long discharge tube

    Energy Technology Data Exchange (ETDEWEB)

    Meshchanov, A. V.; Korshunov, A. N.; Ionikh, Yu. Z., E-mail: y.ionikh@spbu.ru [St. Petersburg State University (Russian Federation); Dyatko, N. A. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2015-08-15

    The characteristics of breakdown of argon in a long tube (with a gap length of 75 cm and diameter of 2.8 cm) at pressures of 1 and 5 Torr and stationary discharge currents of 5–40 mA were studied experimentally. The breakdown was initiated by paired positive voltage pulses with a rise rate of ∼10{sup 8}–10{sup 9} V/s and duration of ∼1–10 ms. The time interval between pairs was varied in the range of Τ ∼ 0.1–1 s, and that between pulses in a pair was varied from τ = 0.4 ms to ≈Τ/2. The aim of this work was to detect and study the so-called “anomalous memory effect” earlier observed in breakdown in nitrogen. The effect consists in the dynamic breakdown voltage in the second pulse in a pair being higher than in the first pulse (in contrast to the “normal” memory effect, in which the relation between the breakdown voltages is opposite). It is found that this effect is observed when the time interval between pairs of pulses is such that the first pulse in a pair is in the range of the normal memory effect of the preceding pair (under the given conditions, Τ ≈ 0.1–0.4 s). In this case, at τ ∼ 10 ms, the breakdown voltage of the second pulse is higher than the reduced breakdown voltage of the first pulse. Optical observations of the ionization wave preceding breakdown in a long tube show that, in the range of the anomalous memory effect and at smaller values of τ, no ionization wave is detected before breakdown in the second pulse. A qualitative interpretation of the experimental results is given.

  17. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure

    DEFF Research Database (Denmark)

    Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... that exhibits anisotropic yield properties with a pressure dependence. At the microscale free energy includes both elastic strains and plastic strain gradients, and the theory demands higher order boundary conditions in terms of plastic strain or work conjugate higher order tractions. The mechanical response...... of the composite is inclined compared to a standard pressure independent yield surfaces. The evolution of the macroscopic yield surface is investigated by quantifying both anisotropic hardening (expansion) and kinematic hardening (translation), where the coefficients of anisotropy and the Bauschinger stress...

  18. Experiments of Brittle-Plastic Transition and Instability Modes of Juyongguan Granite at Different Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    Zhou Yongsheng; Jiang Haikun; He Changrong

    2003-01-01

    Three groups of experiments on brittle-plastic transition and instability modes of granite wereperformed in a triaxial vessel with solid pressure medium at high temperature and highpressure. The results of experiments show that brittle faulting is the major failure mode attemperature < 300℃, but crystal-plastic deformation is dominate at temperature > 800℃, andthere is a transition with increasing temperature from semi-brittle faulting to cataclnstic flowand semi-brittle flow at temperatures of 300 ~ 800℃. So, temperature is the most influentialfactor in brittle-plastic transition of granite and confining pressure is the second factor. Theresults also show that progressive failure of granite occurs at lower pressure or hightemperature where there is crystal plasticity, and sudden instability occurs at room temperatureand high pressure ( > 300MPa) or high temperature and great pressure(550℃600MPa ~ 650℃700MPa), and a broad regime of quasi-sudden instability exists between the T-P condition ofprogressive failure and sudden instability. So, instability modes of granite dependsimnitaneonsly on the pressure and temperature.

  19. Plastic deformation of FeSi at high pressures: implications for planetary cores

    Science.gov (United States)

    Kupenko, Ilya; Merkel, Sébastien; Achorner, Melissa; Plückthun, Christian; Liermann, Hanns-Peter; Sanchez-Valle, Carmen

    2017-04-01

    The cores of terrestrial planets is mostly comprised of a Fe-Ni alloy, but it should additionally contain some light element(s) in order to explain the observed core density. Silicon has long been considered as a likely candidate because of geochemical and cosmochemical arguments: the Mg/Si and Fe/Si ratios of the Earth does not match those of the chondrites. Since silicon preferentially partition into iron-nickel metal, having 'missing' silicon in the core would solve this problem. Moreover, the evidence of present (e.g. Mercury) or ancient (e.g. Mars) magnetic fields on the terrestrial planets is a good indicator of (at least partially) liquid cores. The estimated temperature profiles of these planets, however, lay below iron melting curve. The addition of light elements in their metal cores could allow reducing their core-alloy melting temperature and, hence, the generation of a magnetic field. Although the effect of light elements on the stability and elasticity of Fe-Ni alloys has been widely investigated, their effect on the plasticity of core materials remains largely unknown. Yet, this information is crucial for understanding how planetary cores deform. Here we investigate the plastic deformation of ɛ-FeSi up to 50 GPa at room temperature employing a technique of radial x-ray diffraction in diamond anvil cells. Stoichiometric FeSi endmember is a good first-order approximation of the Fe-FeSi system and a good starting material to develop new experimental perspectives. In this work, we focused on the low-pressure polymorph of FeSi that would be the stable phase in the cores of small terrestrial planets. We will present the analysis of measured data and discuss their potential application to constrain plastic deformation in planetary cores.

  20. Visual inspection technology of the narrow and small confined area for monitoring feederpipe support of pressure tube in calandria reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Wan; Lee, Nam Ho; Choi, Young Soo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    There are 760 feederpipes, which they are connected to inlet/outlet of the 380 pressure tube channels on the front of the calandria, in CANDU-type Reactor of Wolsung Nuclear Power Plant. As an ISI(In-Service Inspection) and PSI (Post-Service Inspection) requirements, maintenance activities of measuring the thickness of curvilinear part of feederpipe and inspecting the feederpipe support area within calandria are needed to ensure continued reliable operation of nuclear power plant. And ultrasonic probe is used to measure the thickness of curvilinear part of feederpipe, however workers are exposed to radioactivity irradiation during the measurement period. But, it is exposed to radioactivity irradiation during the measurement period. But, it is impossible to inspect feederpipe support area thoroughly because of narrow and confined accessibility, that is , an inspection space between the pressure tube channels is less than 100 mm and pipes in feederpipe support area are congested. And also, workers involved in inspecting feederpipe support area are under the jeopardy of high-level radiation exposure. Concerns about sliding home, which make the move of feederpipe connected to pressure tube channel smooth as pressure tube expands and contracts in its axial direction, stuck to feedeerpipe support and some of the structural components have made necessary the development of video inspection probe system with narrow and confined accessibility to observe and inspect feederpipe support area more close. Using video inspection probe system, it is possible to inspect and repair abnormality of feederpipe support connected to pressure tube channels of the calandria more accurate and quantative than naked eye. Therefore, that will do much for ensuring safety of CANDU-type nuclear power plant. 45 figs.,31 tabs. (Author)

  1. Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Torii, K.; Kwak, K.M.; Nishino, K. [Yokohama National Univ. (Japan). Dept. of Mechanical Engineering

    2002-08-01

    This paper proposes a novel technique that can augment heat transfer but nevertheless can reduce pressure-loss in a fin-tube heat exchanger with circular tubes in a relatively low Reynolds number flow, by deploying delta winglet-type vortex generators. The winglets are placed with a heretofore-unused orientation for the purpose of augmentation of heat transfer. This orientation is known as ''common flow up'' configuration. The proposed configuration causes significant separation delay, reduces form drag, and removes the zone of poor heat transfer from the near-wake of the tubes. This enhancement strategy has been successfully verified by experiments in the proposed configuration. In case of staggered tube banks, the heat transfer was augmented by 30% to 10%, and yet the pressure loss was reduced by 55% to 34% for the Reynolds number (based on two times channel height) ranging from 350 to 2100, when the present winglets were added. In case of in-line tube banks, these were found to be 20% to 10% augmentation, and 15% to 8% reduction, respectively. (author)

  2. EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER AND PRESSURE DROP CHARACTERISTICS OF AIR FLOW OVER A STAGGERED FLAT TUBE BANK IN CROSSFLOW

    Directory of Open Access Journals (Sweden)

    M. Ishak

    2013-06-01

    Full Text Available This paper presents an experimental investigation into the heat transfer and pressure drop characteristics of air flow in a staggered flat tube bank in crossflow with laminar-forced convection. Measurements were conducted for sixteen tubes in the direction of flow and four tubes in rows. The air velocity varies between 0.6–1.0 m/s and the Reynolds number varied from 373 to 623. The total heat flux supplied in all tubes are changed from 967.92 to 3629.70 W/m2. The results indicate that the average Nusselt number for all the flat tubes increased by 11.46–46.42%, with the Reynolds numbers varying from 373 to 623 at the fixed heat flux. The average Nusselt number increased by 21.39–84%, and the total heat flux varyied between 967.92–3629.70 W/m2 with a constant Reynolds number Re = 498. In addition, the pressure drop decreased with an increase in the Reynolds number. A new mean Nusselt number-Reynolds number correlation was found, and the correlation yielded good predictions for the measured data with a confidence interval of 98.9%.

  3. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    Science.gov (United States)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  4. Atomic and dislocation dynamics simulations of plastic deformation in reactor pressure vessel steel

    Science.gov (United States)

    Monnet, Ghiath; Domain, Christophe; Queyreau, Sylvain; Naamane, Sanae; Devincre, Benoit

    2009-11-01

    The collective behavior of dislocations in reactor pressure vessel (RPV) steel involves dislocation properties on different phenomenological scales. In the multiscale approach, adopted in this work, we use atomic simulations to provide input data for larger scale simulations. We show in this paper how first-principles calculations can be used to describe the Peierls potential of screw dislocations, allowing for the validation of the empirical interatomic potential used in molecular dynamics simulations. The latter are used to compute the velocity of dislocations as a function of the applied stress and the temperature. The mobility laws obtained in this way are employed in dislocation dynamics simulations in order to predict properties of plastic flow, namely dislocation-dislocation interactions and dislocation interactions with carbides at low and high temperature.

  5. Atomic and dislocation dynamics simulations of plastic deformation in reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Monnet, Ghiath, E-mail: ghiathmonnet@yahoo.f [EDF-R and D, MMC, Avenue des Renardieres, 77818 Moret sur Loing (France); Domain, Christophe; Queyreau, Sylvain; Naamane, Sanae [EDF-R and D, MMC, Avenue des Renardieres, 77818 Moret sur Loing (France); Devincre, Benoit [LEM, CNRS-ONERA, 29 av. de la division Leclerc, 92130 Chatillon (France)

    2009-11-15

    The collective behavior of dislocations in reactor pressure vessel (RPV) steel involves dislocation properties on different phenomenological scales. In the multiscale approach, adopted in this work, we use atomic simulations to provide input data for larger scale simulations. We show in this paper how first-principles calculations can be used to describe the Peierls potential of screw dislocations, allowing for the validation of the empirical interatomic potential used in molecular dynamics simulations. The latter are used to compute the velocity of dislocations as a function of the applied stress and the temperature. The mobility laws obtained in this way are employed in dislocation dynamics simulations in order to predict properties of plastic flow, namely dislocation-dislocation interactions and dislocation interactions with carbides at low and high temperature.

  6. Computational analysis of heat transfer and pressure drop performance for internally finned tubes with three different longitudinal wavy fins

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiu-Wang; Lin, Mei; Zeng, Min; Tian, Lin [Xi' an Jiaotong University, State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an, Shaanxi (China)

    2008-12-15

    Turbulent pressure drop and heat transfer characteristics in tubes with three different kinds of internally longitudinal fin patterns (interrupted wavy, sinusoidal wavy and plain) are numerically investigated for Re=904-4,520. The channel velocity, temperature, and turbulence fields are obtained to discern the mechanisms of heat transfer enhancement. Numerical results indicate that the steady and spatially periodic growth and disruption of cross-sectional vortices occur near the tube/fin walls along the streamwise locations. The thermal boundary layers near the tube/fin surfaces are thereby periodically interrupted, with heat transfer near the recirculation zones being enhanced. The overall heat transfer coefficients in wavy channels are higher than those in a plain fin channel, while with larger pressure drop penalties. At the same waviness, the interrupted wavy fin tube could enhance heat transfer by 72-90%, with more than 2-4 times of pressure drop penalty. Among the fins studied, the sinusoidal wavy fin has the best comprehensive performance. (orig.)

  7. Temperature increase of Zircaloy-4 cladding tubes due to plastic heat dissipation during tensile tests at 0.1-10 s-1 strain rates

    Science.gov (United States)

    Hellouin de Menibus, Arthur; Auzoux, Quentin; Besson, Jacques; Crépin, Jérôme

    2014-11-01

    This study is focused on the impact of rapid Reactivity Initiated Accident (RIA) representative strain rates (about 1 s-1 NEA, 2010) on the behavior and fracture of unirradiated cold work stress relieved Zircaloy-4 cladding tubes. Uniaxial ring tests (HT) and plane strain ring tensile tests (PST) were performed in the 0.1-10 s-1 strain rate range, at 25 °C. The local temperature increase due to plastic dissipation was measured with a high-speed infrared camera. Limited temperature increases were measured at 0.1 s-1 strain rate. Limited but not strongly localized temperature increases were measured at 1 s-1. Large temperature increase were measured at 5 and 10 s-1 (142 °C at 5 s-1 strain rate in HT tests). The local temperature increase induced heterogeneous temperature fields, which enhanced strain localization and resulted in a reduction of the plastic elongation at fracture.

  8. Characteristics of two-phase flow pattern transitions and pressure drop of five refrigerants in horizontal circular small tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pamitran, A.S. [Department of Mechanical Engineering, University of Indonesia, Kampus Baru UI, Depok 16424 (Indonesia); Choi, Kwang-Il [Graduate School, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Oh, Jong-Taek [Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Hrnjak, Pega [Department of Mechanical Science and Engineering, ACRC, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States)

    2010-05-15

    An experimental investigation on the characteristics of two-phase flow pattern transitions and pressure drop of R-22, R-134a, R-410A, R-290 and R-744 in horizontal small stainless steel tubes of 0.5, 1.5 and 3.0 mm inner diameters is presented. Experimental data were obtained over a heat flux range of 5-40 kW/m{sup 2}, mass flux range of 50-600 kg/(m{sup 2} s), saturation temperature range of 0-15 C, and quality up to 1.0. Experimental data were evaluated with Wang et al. and Wojtan et al. [Wang, C.C., Chiang, C.S., Lu, D.C., 1997. Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube. Exp. Therm. Fluid Sci. 15, 395-405; Wojtan, L., Ursenbacher, T., Thome, J.R., 2005. Investigation of flow boiling in horizontal tubes: part I - a new diabatic two-phase flow pattern map. Int. J. Heat Mass Transfer 48, 2955-2969.] flow pattern maps. The effects of mass flux, heat flux, saturation temperature and inner tube diameter on the pressure drop of the working refrigerants are reported. The experimental pressure drop was compared with the predictions from some existing correlations. A new two-phase pressure drop model that is based on a superposition model for two-phase flow boiling of refrigerants in small tubes is presented. (author)

  9. Effects of decreasing endotracheal tube cuff pressures during neck retraction for anterior cervical spine surgery.

    Science.gov (United States)

    Ratnaraj, Jebadurai; Todorov, Alexandre; McHugh, Tom; Cheng, Mary Ann; Lauryssen, Carl

    2002-09-01

    The authors' goal was to determine whether the incidence of postoperative sore throat, hoarseness, and dysphagia associated with anterior spine surgery is reduced by maintaining endotracheal tube cuff pressure (ETCP) at 20 mm Hg during the period of neck retraction. Fifty-one patients scheduled for anterior cervical spine surgery were enrolled. After intubation, ETCP was adjusted to 20 mm Hg in all patients. Following placement of neck retractors, ETCP was measured. Patients were randomized to a control (no adjustment) or treatment group (ETCP adjusted to 20 mm Hg). A blinded observer questioned the patients about the presence of sore throat, dysphagia, and hoarseness at 1 hour, 24 hours, and 1 week postoperatively. No differences between groups at 1 hour postoperatively were demonstrated. At 24 hours, 51% of patients in the treatment group complained of sore throat compared with 74% of control patients (p predictors of postoperative throat discomfort following anterior cervical spine surgery in which neck retraction is performed: increased ETCP during neck retraction (sore throat), neck retraction time (dysphagia), and female sex (sore throat and hoarseness). The simple maneuver of decreasing ETCP to 20 mm Hg may be helpful in improving patient comfort following anterior cervical spine surgery.

  10. High-pressure {sup 4}He drift tubes for fissile material detection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui, E-mail: zwang@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Bacon, J.D.; Brockwell, M.I.; Chang, D.Y.; Chung, K.; Dai, W.G.; Greene, S.J.; Hogan, G.E.; Lisowski, P.W.; Makela, M.F.; Mariam, F.G.; McGaughey, P.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mendenhall, M. [California Institute of Technology, Pasadena, CA 91125 (United States); Milner, E.C.; Miyadera, H.; Murray, M.M.; Perry, J.O.; Roybal, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); and others

    2013-03-01

    A detector efficiency model based on energy extraction from neutrons is described and used to compare {sup 4}He detectors with liquid scintillators (EJ301/NE-213). Detector efficiency can be divided into three regimes: single neutron scattering, multiple neutron scattering, and a transition regime in-between. For an average fission neutron of 2 MeV, the amount of {sup 4}He needed would be about 1/4 of the amount of the mass of EJ301/NE-213 in the single-scattering regime. For about 50% neutron energy extraction (1 MeV out of 2 MeV), the two types of detectors ({sup 4}He in the transition regime, EJ301 still in the single-scattering regime) have comparable mass, but {sup 4}He detectors can be much larger depending on the number density. A six-tube 11-bar-pressure {sup 4}He detector prototype is built and tested. Individual electrical pulses from the detector are recorded using a 12-bit digitizer. Differences in pulse rise time and amplitudes, due to different energy loss of neutrons and gamma rays, are used for neutron/gamma separation. Several energy spectra are also obtained and analyzed.

  11. Development of Evaluation Technology of the Integrity of HWR Pressure Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Jeong, Y. M.; Ahn, S. B. (and others)

    2005-03-15

    Major degradation of the feeder pipe is the thinning due to the flow accelerated corrosion and the cracking in the bent region due to the stress corrosion cracking. The feeder pipe in a PHWR is a pipe to supply the coolant to the pressure tube and the heated coolant to the steam generator for power generation. Approximately 380 pipes are installed on the inlet side and outlet side each with two bent regions in the 600 MW-class PHWR. After a leakage in the bent region of the feeder pipe, it is required to examine all the pipes in order to ensure the integrity of the pressure boundaries. It is not easy, however, to examine all the pipes with the conventional ultrasonic method, because of a high dose of radiation exposure and a limited accessibility to the pipe. In order to get rid of the limited accessibility, the ultrasonic guided wave method are developed for detection and evaluation of the cracks in the feeder pipe. The dispersion mode analysis was performed for the development of long-range guided wave inspection for the feeder pipe. An analytical approach for the straight pipe as well as numerical approach for the bent pipe with 2-D FFT were accomplished. A computer program for the calculation of the dispersion curves and wave structures was developed. Based on the dispersion curves and wave structure of the feeder pipe, candidates for the optimal parameters on the frequencies and vibration modes were selected. A time-frequency analysis methodology was developed for the mode identification of received ultrasonic signal. A high power tone-burst ultrasonic system has been setup for the generation of guided waves. Various artificial notches were fabricated on the bent feeder pipes for the experiment on the flaw detection. Considering the results of dispersion analysis and field condition, the torsional vibration mode, T(0,1) is selected for the first choice. An array of electromagnetic acoustic transducers (EMAT) was designed and fabricated for the generation of T

  12. Heat transfer and pressure drop characteristics of plain finned heat exchangers having 5.0 mm tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nae Hyun; Ham, Jung Ho; Oh, Wang Ku [Incheon Univ., Incheon (Korea, Republic of); Choi, Yong Hwa; Gaku, Hayase [Samsung Electric Company, Suwon (Korea, Republic of)

    2007-07-01

    In this study, pressure drop and heat transfer characteristics of plain finned heat exchangers having 5.0 diameter (fin collar 5.3 mm) tubes were investigated. Six samples having different fin pitches and tube rows were tested. The fin pitch had a negligible effect on j and f factors. Both j and f factors decreased as the number of tube row increased, although the difference was not significant for the f factor. When compared with the previous 7.3 mm diameter data, both the present j and f factors yielded lower values. However, the j/f ratio was larger at low Reynolds numbers. Possible reasoning is provided from the flow pattern consideration. Comparison with existing correlations were made.

  13. J-integral elastic plastic fracture mechanics evaluation of the stability of cracks in nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M. P.; McMeeking, R. M.; Parks, D. M.

    1980-06-01

    Contributions were made toward developing a new methodology to assess the stability of cracks in pressure vessels made from materials that exhibit a significant increase in toughness during the early increments of crack growth. It has a wide range of validity from linear elastic to fully plastic behavior.

  14. Is sealing cuff pressure, easy, reliable and safe technique for endotracheal tube cuff inflation?: A comparative study

    Directory of Open Access Journals (Sweden)

    Roshdi R Al-metwalli

    2011-01-01

    Full Text Available Objective: To compare the three common methods of endotracheal tube cuff inflation (sealing pressure, precise standard pressure or finger estimation regarding the effective tracheal seal and the incidence of post-intubation airway complications. Methods: Seventy-five adult patients scheduled for N 2 O free general anesthesia were enrolled in this study. After induction of anesthesia, endotracheal tubes size 7.5 mm for female and 8.0 mm for male were used. Patients were randomly assigned into one of three groups. Control group (n=25, the cuff was inflated to a pressure of 25 cm H 2 O; sealing group (n=25, the cuff was inflated to prevent air leaks at airway pressure of 20 cm H 2 O and finger group (n=25, the cuff was inflated using finger estimation. Tracheal leaks, incidence of sore throat, hoarseness and dysphagia were tested. Results: Although cuff pressure was significantly low in the sealing group compared to the control group (P<0.001, the incidence of sore throat was similar in both groups. On the other hand, cuff pressure as well as the incidence of sore throat were significantly higher in the finger group compared to both the control and the sealing group (P<0.001 and P=0.008. The incidence of dysphagia and hoarseness were similar in the three groups. None of the patients in the three groups developed air leak around the endotracheal tube cuff. Conclusions: In N 2 O, free anesthesia sealing cuff pressure is an easy, undemanding and safe alternative to the standard technique, regarding effective sealing and low incidence of sore throat.

  15. [Changes in intracuff pressure of endotracheal tubes permeable or resistant to nitrous oxide and incidence of postoperative sore throat].

    Science.gov (United States)

    Sato, Koji; Tanaka, Makoto; Nishikawa, Toshiaki

    2004-07-01

    We assessed the nitrous oxide (N2O) gas-barrier properties of a new endotracheal tube cuff, the Profile Soft-Seal Cuff (Resistant: R) (Sims Portex, Kent, UK). The tracheas of randomly selected patients were intubated with the Profile Cuff (Permeable: P) (Sims Portex) tuble or with Portex Soft-Seal Cuff (R) (n=20 each) endotracheal tube. Cuffs were inflated with air, and intracuff pressure was measured during anesthesia using 67% N2O. Postoperative sore throat was assessed. In addition, the volume-pressure relationship of the cuff was determined in vitro. Cuff pressure increased gradually during anesthesia in both groups. The mean cuff pressure of the group R was significantly lower than that of the group P from 10 minutes to 230 minutes. The inflated gas and the deflated gas were not significantly different in both groups. The incidence of postoperative sore throat was not significantly different between the two groups. In vitro, the mean cuff pressure of the group R was significantly lower than that of the group P. The difference of cuff pressure is considered due to the difference in cuff compliance.

  16. Changes in endotracheal tube cuff pressure during laparoscopic surgery in head-up or head-down position

    Science.gov (United States)

    2014-01-01

    Background The abdominal insufflation and surgical positioning in the laparoscopic surgery have been reported to result in an increase of airway pressure. However, associated effects on changes of endotracheal tube cuff pressure are not well established. Methods 70 patients undergoing elective laparoscopic colorectal tumor resection (head-down position, n = 38) and laparoscopic cholecystecomy (head-up position, n = 32) were enrolled and were compared to 15 patients undergoing elective open abdominal surgery. Changes of cuff and airway pressures before and after abdominal insufflation in supine position and after head-down or head-up positioning were analysed and compared. Results There was no significant cuff and airway pressure changes during the first fifteen minutes in open abdominal surgery. After insufflation, the cuff pressure increased from 26 ± 3 to 32 ± 6 and 27 ± 3 to 33 ± 5 cmH2O in patients receiving laparoscopic cholecystecomy and laparoscopic colorectal tumor resection respectively (both p < 0.001). The head-down tilt further increased cuff pressure from 33 ± 5 to 35 ± 5 cmH2O (p < 0.001). There six patients undergoing colorectal tumor resection (18.8%) and eight patients undergoing cholecystecomy (21.1%) had a total increase of cuff pressure more than 10 cm H2O (18.8%). There was no significant correlation between increase of cuff pressure and either the patient's body mass index or the common range of intra-abdominal pressure (10-15 mmHg) used in laparoscopic surgery. Conclusions An increase of endotracheal tube cuff pressure may occur during laparoscopic surgery especially in the head-down position. PMID:25210501

  17. Time-resolved detection of temperature, concentration, and pressure in a shock tube by intracavity absorption spectroscopy

    Science.gov (United States)

    Fjodorow, Peter; Fikri, Mustapha; Schulz, Christof; Hellmig, Ortwin; Baev, Valery M.

    2016-06-01

    In this paper, we demonstrate the first application of intracavity absorption spectroscopy (ICAS) for monitoring species concentration, total pressure, and temperature in shock-tube experiments. ICAS with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of absorption spectra of shock-heated C2H2. The measurements are performed in a spectral range between 6512 and 6542 cm-1, including many absorption lines of C2H2, with a time resolution of 100 µs and an effective absorption path length of 15 m. Up to 18-times increase of the total pressure and a temperature rise of up to 1200 K have been monitored. Due to the ability of simultaneously recording many absorption lines in a broad spectral range, the presented technique can also be applied to multi-component analysis of transient single-shot processes in reactive gas mixtures in shock tubes, pulse detonation engines, or explosions.

  18. Post-irradiation examinations of a Zr2.5Nb pressure tube of the Karachi nuclear power plant (KANUPP)

    Science.gov (United States)

    Zaheer, Mohammed Sajjad; Akhtar, Javed Iqbal; Ahmad, Ejaz; Saleem, Muhammad; Hussain, Syed Mukarrum; Qureshi, Masroor Ahmad; Khan, Azmatullah; Ali, Rafaqat; Zafarullah, Muhammad

    1996-09-01

    The results of post-irradiation examinations of a pressure tube of fuel channel No. G-12 of KANUPP have been described. A detailed study was made in Canada by AECL. A parallel investigation on its seven rings of about 50 mm length each was also carried out at PINSTECH. Visual inspection showed normal oxidation effects. Gamma spectrometry showed the presence of 95Zr and 95Nb. Microstructural study revealed the characteristic alpha plus a transformed beta phase structure.

  19. Analysis of stress-induced Burgers vector anisotropy in pressurized tube specimens of irradiated ferritic-martensitic steel: JLF-1

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Shibayama, T. [Univ. of Hokkaido, Oarai, Ibaraki (Japan). Inst. for Materials Research

    1998-09-01

    A procedure for determining the Burgers vector anisotropy in irradiated ferritic steels allowing identification of all a<100> and all a/2<111> dislocations in a region of interest is applied to a pressurized tube specimen of JLF-1 irradiated at 430 C to 14.3 {times} 10{sup 22} n/cm{sup 2} (E > 0.1 MeV) or 61 dpa. Analysis of micrographs indicates large anisotropy in Burgers vector populations develop during irradiation creep.

  20. Convective Heat and Mass Transfer in Water at Super—Critical Pressures under Heating or Cooling Conditions in Vertical Tubes

    Institute of Scientific and Technical Information of China (English)

    Pei-XueJiang; Ze-PeiRen; 等

    1995-01-01

    Forced and mixed convection heat and mass transfer are studied numerically for water containing metallic corrosion products in a heated or cooled vertical tube with variable thermophysical properties at super-citical pressures.the fouling mechanisms and fouling models are presented.The influence of variable properties at super-critical pressures on forced or mixed convection has been analyzed.The differences between heat and mass transfer under heating and cooling conditions are discussed.It is found that variable properties,especially buoyancy,greatly influence the fluid flow and heat mass fransfer.

  1. A novel thermobaric analyser: in situ measurement of gas pressure during synthesis in sealed quartz tube at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, A.G.; Orlando, M.T.D. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil); Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150-Urca, 22290-180 Rio de Janeiro (Brazil); Sin, A.; Granados, X.; Calleja, A.; Pinol, S.; Obradors, X. [Institut de Ciencia de Materials de Barcelona (CSIC), Campus de la UAB, Bellaterra E-08193, Barcelona (Spain); Emmerich, F.G. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150-Urca, 22290-180 Rio de Janeiro (Brazil)

    2000-11-01

    We have developed a novel technique (thermobaric analysis or TBA) to measure, in situ up to 900 deg. C, the pressure of gases such as Hg and O{sub 2} in sealed quartz tubes. The pressure determination in closed systems enables us to obtain information on the synthesis of compounds which involve solid-gas reactions. The concept of the TBA set-up is described, including the calibration method and the verification with HgO decomposition. The technique is applied to the optimized synthesis of the ceramic Hg, Re-1223 superconductor. (author)

  2. Effects of user experience and method in the inflation of endotracheal tube pilot balloon on cuff pressure.

    Science.gov (United States)

    Ozer, A B; Demirel, I; Gunduz, G; Erhan, O L

    2013-01-01

    Endotracheal tube cuff pressure (ETCP) is recommended to be maintained between 20-30 cm H2O limits. While insufficient inflation of ETC may cause aspirations, over-inflation of it may lead to damage in tracheal epithelium. We planned to investigate the effects of user experience and cuff pressure inflation method differences following endotracheal tube cuff pressure and complaints about it. Two hundred and fifty patients planned for general anaesthesia were included in this study. ETC was inflated by users with different experience according to leakage or pilot balloon palpation techniques. ETCPs were measured by manometer at three periods (5 and 60 minutes after endotracheal intubation, and before extubation). Complaints about it were recorded in post anaesthetic care unit and 24 hours postoperatively. Though we found experience of user had significant effect on the ETCP regulations, we observed inflation methods did not have any effect. However we found ETCP was higher than normal range with experienced users. A correlation was observed between cuff pressure and anaesthesia duration with postoperative complaints. Our study concluded that the methods used do not have any significant advantage over one another. While ETC inflated at normal pressure increases as user's experience increases, experience alone is not enough in adjusting ETCP. A manometer should be used in routine inflation of ETC instead of conventional methods. CP and anaesthesia duration have correlations with some postoperative complaints.

  3. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    Science.gov (United States)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  4. Intraocular pressure and haemodynamic responses to insertion of the i-gel, laryngeal mask airway or endotracheal tube.

    Science.gov (United States)

    Ismail, Salah A; Bisher, Neama A; Kandil, Hazem W; Mowafi, Hany A; Atawia, Hayam A

    2011-06-01

    We hypothesised that the effects of insertion of an i-gel supraglottic airway management device on intraocular pressure (IOP) and haemodynamic variables would be milder than those associated with insertion of a laryngeal mask airway (LMA) or an endotracheal tube. This study evaluated IOP and haemodynamic responses following insertion of an i-gel airway, LMA or endotracheal tube. This was a randomised controlled study in a tertiary care centre in which 60 adults scheduled for elective non-ophthalmic procedures under general anaesthesia were allocated to one of three groups. Patients with pre-existing glaucoma, cardiovascular, pulmonary or metabolic diseases or anticipated difficult intubation were excluded. Following induction of general anaesthesia, an endotracheal tube, LMA or i-gel device was inserted. IOP, SBP, DBP, heart rate (HR) and perfusion index were measured before induction of anaesthesia and before and after insertion of the airway device. Insertion of the i-gel did not increase IOP. Insertion of an endotracheal tube increased IOP from 11.6 ± 1.6 to 16.5 ± 1.7 mmHg (P intubation significantly increased HR, SBP and DBP. Insertion of the LMA significantly increased HR and SBP. These increases were significantly higher than those which followed insertion of the i-gel device. Insertion of the endotracheal tube or LMA resulted in a significant decrease in perfusion index which was maintained for 5 min following tracheal intubation and for 2 min after insertion of the LMA. Insertion of the i-gel device did not change perfusion index significantly. Insertion of the i-gel device provides better stability of IOP and the haemodynamic system compared with insertion of an endotracheal tube or LMA in patients undergoing elective non-ophthalmic surgery.

  5. PARTICULARITIES REGARDING THE OPERATING PROCESS OF THE CUTTING AND EXTRACTION DEVICE IN THE CANDU HORIZONTAL FUEL CHANNELS PRESSURE TUBE DECOMMISSIONING PART I: MOVEMENT AND FIXING DEVICE INSIDE THE PRESSURE TUBE

    Directory of Open Access Journals (Sweden)

    Constantin POPESCU

    2016-05-01

    Full Text Available This paper presents some details of operation process for a Cutting and Extraction Device (CED in order to achieve the decommissioning of the horizontal fuel channels pressure tube in the CANDU 6 nuclear reactor. The most important characteristic of the Cutting and Extraction Device (CED is his capability of totally operator’s protection against the nuclear radiation during pressure tube decommissioning. The movement and fixing processes present few particularities due to special adopted technical solutions: train guiding-fixing modules equipped with elastic guiding rollers and fixing claws, traction modules with elastic rollers and variable pitch, also with propriety to adapt the system according to various dimensions of the tube. The Cutting and Extraction Device (CED is a train of modules equipped with special systems to be fully automated, connected with a Programmable Logic Controller (PLC and controlled by an operator panel type Human Machine Interface (HMI. All processes are monitored by video cameras. In case of error, the process is automatically stopped, the operator receiving an error message and the last sequence could be reinitialized or aborted due to safety reasons

  6. Modeling and experiments with low-frequency pressure wave propagation in liquid-filled, flexible tubes

    DEFF Research Database (Denmark)

    Bjelland, C; Bjarnø, Leif

    1992-01-01

    A model for wave propagation in a liquid-filled viscoelastic tube with arrays of receivers inside, is being used to analyze the influence of noise generated by in-line vibrational noise sources. In this model, distensibility is of greater importance than compressibility of the liquid....... The dispersion and attenuation is shown to be strongly dependent on the viscoelastic properties of the tube wall. The complex, frequency-dependent moduli of relevant tube materials have been measured in stress wave transfer function experiments. The moduli are used in the model to produce realistic dispersion...... relations and frequency-dependent attenuation. A 12-m-long, liquid-filled tube with interior stress members and connectors in each end is hanging vertically from an upper fixture. The lower end connector is excited by a power vibrator to generate the relevant wave modes. Measurements with reference...

  7. Recycling of plastics from stockpiles performed by means of low-pressure injection

    Directory of Open Access Journals (Sweden)

    J. Gintowt

    2010-07-01

    Full Text Available A viability analysis of manufacturing goods out of plastics, from stockpiles and municipal residues, has been carried out. The analysispertains goods in the form of inserts manufactured in light molds of big-sizes, by means of low-pressure injection. The cost analysis of the investment and manufacturing suggests that those goods are not price-competitive, as compared to other ones used in similar situations. Exploitation analysis proves that the goods, used outdoors are easily damaged on the surface by UV exposure, temperature differences of 24-hour cycle, as well as by water and plants. Re-recycling, and especially, the grinding of the product poses another challenge in the future. An analysis of the environmental impact of energy acquisition during the manufacturing of those goods was also carried out. The analysis also pertains the method of identifying the type of raw-material, in the process of segregation that stems from the necessity of a complex content training of staff running waste segregation posts.

  8. Atmospheric pressure cold plasma treatment of cellulose based fillers for wood plastic composites

    Science.gov (United States)

    Lekobou, William; Englund, Karl; Pedrow, Patrick; Scudiero, Louis

    2011-10-01

    The main challenge of wood plastic composites (WPC) resides in the low interfacial adhesion due to incompatibility between the cellulose based filler that has a polar surface and most common matrixes, polyolefins which are non-polar. Plasma treatment is a promising technique for surface modification and its implementation into the processing of WPC would provide this industry with a versatile and nearly environmentally benign manufacturing tool. Our investigation aims at designing a cold atmospheric pressure plasma reactor for coating fillers with a hydrophobic material prior to compounding with the matrix. Deposition was achieved with our reactor that includes an array of high voltage needles, a grounded metal mesh, Ar as carrier gas and C2H2 as the precursor molecule. Parameters studied have included gas feed rates and applied voltage; FTIR, ESCA, AFM and SEM imaging were used for film diagnostics. We will also report on deposition rate and its dependence on radial and axial position as well as the effects of plasma-polymerized acetylene on the surface free energy of cellulose based substrates.

  9. Elasto-plasticity and pore-pressure coupled analysis on the pullout behaviors of a plate anchor

    Directory of Open Access Journals (Sweden)

    Cun Hu

    2015-03-01

    Full Text Available A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pullout behaviors of a plate anchor. The bounding-surface plasticity (BSP model combined with Biot’s consolidation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-plate anchor system.

  10. Draft tube discharge fluctuation during self-sustained pressure surge: fluorescent particle image velocimetry in two-phase flow

    Science.gov (United States)

    Müller, A.; Dreyer, M.; Andreini, N.; Avellan, F.

    2013-04-01

    Hydraulic machines play an increasingly important role in providing a secondary energy reserve for the integration of renewable energy sources in the existing power grid. This requires a significant extension of their usual operating range, involving the presence of cavitating flow regimes in the draft tube. At overload conditions, the self-sustained oscillation of a large cavity at the runner outlet, called vortex rope, generates violent periodic pressure pulsations. In an effort to better understand the nature of this unstable behavior and its interaction with the surrounding hydraulic and mechanical system, the flow leaving the runner is investigated by means of particle image velocimetry. The measurements are performed in the draft tube cone of a reduced scale model of a Francis turbine. A cost-effective method for the in-house production of fluorescent seeding material is developed and described, based on off-the-shelf polyamide particles and Rhodamine B dye. Velocity profiles are obtained at three streamwise positions in the draft tube cone, and the corresponding discharge variation in presence of the vortex rope is calculated. The results suggest that 5-10 % of the discharge in the draft tube cone is passing inside the vortex rope.

  11. Adsorption of xenobiotics to plastic tubing incorporated into dynamic in vitro systems used in pharmacological research--limits and progress.

    Science.gov (United States)

    Unger, J K; Kuehlein, G; Schroers, A; Gerlach, J C; Rossaint, R

    2001-07-01

    Commonly used materials incorporated into dynamic culture systems typically show the feature of adsorption of lipophilic xenobiotics. Yet, this phenomenon is strongly limiting the use of dynamic culture models and ex vivo organ perfusions in pharmacological and toxicological research. The aim of the study was to characterize different materials with respect to their capacity for drug adsorption and to find methods or materials to reduce the loss of substrate by adsorption in order to improve the use of dynamic in vitro systems. The adsorption of different xenobiotics (lidocaine, midazolam, lormetazepam, phenobarbital, testosterone, ethoxyresoroufine) to tubes used in dynamic in vitro systems (polyvinyl-chloride, silicone) were investigated and compared to a new material (silicone-caoutchouc-mixture). In addition, the role of protein deposition onto the tubing was studied and it was investigated whether it was possible to reach saturation of the inner tube surface by pre-loading it with the test compound. We found that silicone tubes provided the highest comfort with respect to handling and reusability, but they also demonstrated the highest capacity for substrate adsorption. Polyvinyl-chloride was the second best in handling but also demonstrated a high complexity in its adsorption behavior. The silicone-caoutchouc-mixture reached acceptable experimental results with respect to its handling and demonstrated a very low capacity for substrate adsorption.

  12. Experimental study of heat transfer of ultra-supercritical pressure water in vertical upward internally ribbed tube

    Institute of Scientific and Technical Information of China (English)

    Wang Weishu; Chen Tingkuan; Luo Yushan; Gu Hongfang; Yin Fei

    2007-01-01

    Under ultra-supercritical pressure, the heat transfer characteristics of water in vertical upward 4-head internally ribbed tubes with a diameter of 28.65mm and thickness of 8mm were experimentally studied.The experiments were performed at P=25~34MPa,G=450~1800kg/(m2·s)and q=200~600kW/m2. The results show that the pressure has only a moderate effect on the heat transfer of ultra-supercritical water when the water temperature is below the pseudocritical point. Sharp rise of the wall temperature near the pesudocritical region occurs earlier at a higher pressure. Increasing the mass velocity improves the heat transfer with a much stronger effect below the pesudocritical point than that above the pesudocritical point. For given pressure and mass velocity, the inner wall heat flux also shows a significant effect on the inner wall temperature, with a higher inner wall heat flux leading to a higher inner wall temperature. Increasing of inner wall heat flux leads to an early occurrence of sharp rise of the wall temperature. Correlations of heat transfer coefficients are also presented for vertical upward internally ribbed tubes.

  13. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    Science.gov (United States)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  14. Measurement of mechanical properties of a reactor operated Zr–2.5Nb pressure tube using an in situ cyclic ball indentation system

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S., E-mail: subrata@barc.gov.in; Panwar, Sanjay; Madhusoodanan, K.

    2015-07-15

    Highlights: • Measurement of mechanical properties of pressure tube is required for its fitness assessment. • Pressure tube removal from the core consumes large amount of radiation for laboratory test. • A remotely operable In situProperty Measurement System has been designed in house. • The tool head is capable to carry out in situ ball indentation trials inside pressure tube. • The paper describes the theory and results of the trials conducted on irradiated pressure tube. - Abstract: Periodic measurement of mechanical properties of pressure tubes of Indian Pressurised Heavy Water Reactors is required for assessment of their fitness for continued operation. Removal of pressure tube from the core for preparation of specimens to test for mechanical properties in laboratories consumes large amounts of radiation and hence is to be avoided as far as possible. In the field of in situ estimation of properties of materials, cyclic ball indentation is an emerging technique. Presently, commercial systems are available for doing indentation test either on outside surface of a component at site or on a test piece in a laboratory. However, these systems cannot be used inside a pressure tube for carrying out ball indentation trials under in situ condition. Considering this, a remotely operable hydraulic In situProperty Measurement System (IProMS) based on cyclic ball indentation technique has been designed and developed in house. The tool head of IProMS can be located inside a pressure tube at any axial location under in situ condition and the properties can be estimated from an analysis of the data on load and depth of indentation, recorded during the test. In order to qualify the system, a number of experimental trials have been conducted on spool pieces and specimens prepared from Zr–2.5Nb pressure tube having different mechanical properties. Based on the encouraging results obtained from the qualification trials, IProMS has been used inside a reactor operated

  15. The effect of user experience and inflation technique on endotracheal tube cuff pressure using a feline airway simulator.

    Science.gov (United States)

    White, Donna M; Redondo, José I; Mair, Alastair R; Martinez-Taboada, Fernando

    2017-02-24

    The effect of user experience and inflation technique on endotracheal tube cuff pressure using a feline airway simulator. Prospective, experimental clinical study. Participants included veterinary students at the beginning (group S1) and end (group S2) of their 2-week anaesthesia rotation and veterinary anaesthetists (group A). The feline airway simulator was designed to simulate an average size feline trachea, intubated with a 4.5 mm low-pressure, high-volume cuffed endotracheal tube, connected to a Bain breathing system with oxygen flow of 2 L minute(-1). Participants inflated the on-endotracheal tube cuff by pilot balloon palpation and by instilling the minimum occlusive volume (MOV) required for loss of airway leaks during manual ventilation. Intracuff pressures were measured by manometers obscured to participants and ideally were 20-30 cm H2O. Student t, Fisher exact, and Chi-squared tests were used where appropriate to analyse data (p < 0.05). Participants were 12 students and eight anaesthetists. Measured intracuff pressures for palpation and MOV, respectively, were 19 ± 12 and 29 ± 19 cm H2O for group S1, 10 ± 5 and 20 ± 11 cm H2O for group S2 and 13 ± 6 and 29 ± 18 cm H2O for group A. All groups performed poorly at achieving intracuff pressures within the ideal range. There was no significant difference in intracuff pressures between techniques. Students administered lower (p = 0.02) intracuff pressures using palpation after their training. When using palpation and MOV for cuff inflation operators rarely achieved optimal intracuff pressures. Experience had no effect on this skill and, as such, a cuff manometer is recommended. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  16. Effect of pressure on the lean limit flames of H2-CH4-air mixture in tubes

    KAUST Repository

    Zhou, Zhen

    2017-05-25

    The lean limit flames of H2-CH4-air mixtures stabilized inside tubes in a downward flow are experimentally and numerically investigated at elevated pressures ranging from 2 to 5 bar. For the shapes of lean limit flames, a change from ball-like flame to cap-like flame is experimentally observed with the increase of pressure. This experimentally observed phenomenon is qualitatively predicted by numerical simulations. The structure of ball-like and cap-like lean limit flames at all tested pressures is analysed in detail based on the numerical predictions. The results show that the lean limit flames are located inside a recirculation zone at all tested pressures. For the leading edges of the lean limit flames at all tested pressures, the fuel transport is controlled by both convection and diffusion. For the trailing edge of the ball-like lean limit flame at 2 bar, the fuel transport is dominated by diffusion. However, with increasing pressure, the transport contribution caused by convection in the trailing edges of the lean limit flames increases. Finally, the influence of transport and chemistry on the predicted ultra lean flames and lean flammability limit is analysed at elevated pressures.

  17. Research on the internal pressure behavior of metal gas distribution pipelines with different types of tubing defects

    Directory of Open Access Journals (Sweden)

    Filip Stefan Mihai

    2017-01-01

    Full Text Available The paper aims to approach an important subject related to natural gas distribution networks which, depending on the expansion of the localities, are composed of intercommunicating pipes, pressure reducing stations and branch connections fittings. The urban networks are the most complex ones and the rural areas networks are the simplest. However, irrespective of their installation, they must meet the safety operating requirements as much as possible. According to standards, all these components must be tight and pressure resistant. In this regard, we intend to approach a very important issue related to the behavior of the tubular steel material showing corrosion and/or material defects, and to the internal stress caused by the gas pressure on the walls of the tubing material.

  18. Tracheostomy tubes.

    Science.gov (United States)

    Hess, Dean R; Altobelli, Neila P

    2014-06-01

    Tracheostomy tubes are used to administer positive-pressure ventilation, to provide a patent airway, and to provide access to the lower respiratory tract for airway clearance. They are available in a variety of sizes and styles from several manufacturers. The dimensions of tracheostomy tubes are given by their inner diameter, outer diameter, length, and curvature. Differences in dimensions between tubes with the same inner diameter from different manufacturers are not commonly appreciated but may have important clinical implications. Tracheostomy tubes can be cuffed or uncuffed and may be fenestrated. Some tracheostomy tubes are designed with an inner cannula. It is important for clinicians caring for patients with a tracheostomy tube to appreciate the nuances of various tracheostomy tube designs and to select a tube that appropriately fits the patient. The optimal frequency of changing a chronic tracheostomy tube is controversial. Specialized teams may be useful in managing patients with a tracheostomy. Speech can be facilitated with a speaking valve in patients with a tracheostomy tube who are breathing spontaneously. In mechanically ventilated patients with a tracheostomy, a talking tracheostomy tube, a deflated cuff technique with a speaking valve, or a deflated cuff technique without a speaking valve can be used to facilitate speech. Copyright © 2014 by Daedalus Enterprises.

  19. Pressure attenuation during high-frequency airway clearance therapy across different size endotracheal tubes: An in vitro study.

    Science.gov (United States)

    Smallwood, Craig D; Bullock, Kevin J; Gouldstone, Andrew

    2016-08-01

    High-frequency airway clearance therapy is a positive pressure secretion clearance modality used in pediatric and adult applications. However, pressure attenuation across different size endotracheal tubes (ETT) has not been adequately described. This study quantifies attenuation in an in vitro model. The MetaNeb® System was used to deliver high-frequency pressure pulses to 3.0, 4.0, 6.0 and 8.0mm ID ETTs connected to a test lung during mechanical ventilation. The experimental setup included a 3D-printed trachea model and imbedded pressure sensors. The pressure attenuation (Patt%) was calculated: Patt%=[(Pproximal-Pdistal)/Pproximal]x100. The effect of pulse frequency on Pdistal and Pproximal was quantified. Patt% was inversely and linearly related to ETT ID and (y=-7.924x+74.36; R(2)=0.9917, P=.0042 for 4.0Hz pulse frequency and y=-7.382+9.445, R(2)=0.9964, P=.0018 for 3.0Hz pulse frequency). Patt% across the 3.0, 4.0, 6.0 and 8.0mm I.D. ETTs was 48.88±10.25%, 40.87±5.22%, 27.97±5.29%, and 9.90±1.9% respectively. Selecting the 4.0Hz frequency mode demonstrated higher Pproximal and Pdistal compared to the 3.0Hz frequency mode (P=.0049 and P=.0065). Observed Pdistal was <30cmH2O for all experiments. In an in vitro model, pressure attenuation was linearly related to the inner diameter of the endotracheal tube; with decreasing attenuation as the ETT size increased. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Investigation of the effect of a bend in a transfer line that separates a pulse tube cold head and a pressure wave generator

    Science.gov (United States)

    Dev, A. A.; Atrey, M. D.; Vanapalli, S.

    2017-02-01

    A transfer line between a pulse tube cold head and a pressure wave generator is usually required to isolate the cold head from the vibrations of the compressor. Although it is a common practice to use a thin and narrow straight tube, a bent tube would allow design flexibility and easy mounting of the cold head, such as in a split Stirling type pulse tube cryocooler. In this paper, we report a preliminary investigation on the effect of the bending of the tube on the flow transfer characteristics. A numerical study using commercial computational fluid dynamics model is performed to gain insight into the flow characteristics in the bent tube. Oscillating flow experiments are performed with a straight and a bent tube at a filling pressure of 15 bar and an operating frequency of 40, 50 and 60 Hz. The data and the corresponding numerical simulations point to the hypothesis that the secondary flow in the bent tube causes a decrease in flow at a fixed pressure amplitude.

  1. Analysis of the impact of coolant density variations in the high efficiency channel of a pressure tube super critical water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scriven, M.G.; Hummel, D.W.; Novog, D.R.; Luxat, J.C. [McMaster Univ., Hamilton, Ontario (Canada)

    2012-07-01

    The Pressure Tube (PT) Supercritical Water Reactor (SCWR) is based on a light water coolant operating at pressures above the thermodynamic critical pressure; a separate low temperature and low pressure moderator. The coolant density changes by an order of magnitude depending on its local enthalpy in the porous ceramic insulator tube. This causes significant changes in the neutron transport characteristics, axially and radially, in the fuel channel. This work performs lattice physics calculations for a 78-element Pu-Th fuel at zero burnup and examines the effect of assumptions related to coolant density in the radial direction of a HEC, using the neutron transport code WIMS-AECL. (author)

  2. Comparison of the cuff pressure of a TaperGuard endotracheal tube and a cylindrical endotracheal tube after lateral rotation of head during middle ear surgery

    Science.gov (United States)

    Choi, Eunkyung; Park, Yongmin; Jeon, Younghoon

    2017-01-01

    Abstract Background: Positional change affects the cuff pressure of an endotracheal tube (ETT) in treacheally intubated patients. We compared the cuff pressure of a TaperGuard ETT and a cylindrical ETT after lateral rotation of head during middle ear surgery. Methods: Fifty-two patients aged 18–70 years underwent a tympanomastoidectomy under general anesthesia were randomly allocated to receive endotracheal intubation with cylindrical (group C, n = 26) or TaperGuard ETTs (group T, n = 26). After endotracheal intubation, the ETT cuff pressure was set at 22 cmH2O in the neutral position of head. After lateral rotation of head, the cuff pressure was measured again and readjusted to 22 cmH2O. In addition, the change of distance from the carina to the tip of the ETT was measured before and after the positional change. The incidence of cough, sore throat, and hoarseness was assessed at 30 minutes, 6 hours, and 24 hours after surgery. Results: There was no difference in demographic data between groups. After lateral rotation of head, the cuff pressure significantly increased in group T (11.9 ± 2.3 cmH2O) compared with group C (6.0 ± 1.9 cmH2O) (P 30 cmH2O was higher in group T (96.2%) than in group C (30.8%) (P < 0.001). In addition, the degree of displacement of an ETT was greater in group T (11.0 ± 1.7 mm) than in group C (7.2 ± 2.6 mm) (P < 0.001). The overall incidences of postoperative sore throat, hoarseness, and cough at 30 minutes, 6 hours, and 24 hours after surgery were comparable between two groups. Conclusion: The cuff pressure was higher in the TaperGuard ETT than in the cylindrical ETT after positional change of head from neutral to lateral rotation. In addition, after a positional change, the extent of displacement of ETT was greater in the TaperGuard ETT than in the cylindrical ETT. PMID:28272230

  3. Experimental Research on Heat Transfer and Pressure Drop of Two Configurations of Pin Finned—Tubes in an In—line Array

    Institute of Scientific and Technical Information of China (English)

    ShouGuangYao; DeShuZhu

    1994-01-01

    In this paper,a local simulation method is employed to investigate the heat transfer and pressure drop characteristics of two configurations of pin finned tubes deployed in an in-line array,In this research,heat pipes are adopted as heating elements.Therefore,the experimental equipment becomes simple and has an advantage of sufficient reducibility.The air-side heat transfer and pressure drop correlations for each type of pin fin surface including the effect of the tube-row number are obtained in the Reynolds number range commonly encountered in engineering.These correlations may be used in the design of pin finned tube heat exchangers.

  4. Does sealing endotracheal tube cuff pressure diminish the frequency of postoperative laryngotracheal complaints after nitrous oxide anesthesia?

    Science.gov (United States)

    Braz, José Reinaldo Cerqueira; Volney, Alexandre; Navarro, Laís Helena Camacho; Braz, Leandro Gobbo; Nakamura, Giane

    2004-08-01

    To study endotracheal tube (ETT) cuff pressures during nitrous oxide (N2O) anesthesia when the cuffs are inflated with air to achieve sealing pressure, and to evaluate the frequency of postoperative laryngotracheal complaints. Prospective, randomized, blind study. Metropolitan teaching hospital. 50 ASA physical status I and II patients scheduled for elective abdominal surgery. Patients received standard general anesthesia with 66% N2O in oxygen. In 25 patients, the ETT cuff was inflated with air to achieve a sealing pressure (Pseal group). In 25 patients, the ETT cuff was inflated with air to achieve a pressure of 25 cm H2O (P25 group). ETT intracuff pressures were recorded before (control) and at 30, 60, 90, 120, and 150 minutes during N2O administration. We investigated the frequency and intensity of sore throat, hoarseness, and dysphagia in patients in the Post-Anesthesia Care Unit (PACU) and 24 hours following tracheal extubation. The cuff pressures in the Pseal group were significantly lower than in the P25 group at all time points studied (p pressures exceeded the critical pressure of 30 cm H2O only after 90 minutes in the Pseal group and already by 30 minutes in the P25 group. The frequency and intensity of sore throat, hoarseness, and dysphagia were similar in both groups in the PACU and 24 hours after tracheal extubation (p > 0.05). Minimum ETT sealing cuff pressure during N2O anesthesia did not prevent, but instead attenuated, the increase in cuff pressure and did not decrease postoperative laryngotracheal complaints. Copyright 2004 Elsevier Inc.

  5. Investigation on short-term burst pressure of plastic pipes reinforced by cross helically wound steel wires

    Institute of Scientific and Technical Information of China (English)

    Jin-yang ZHENG; Yong-jian GAO; Xiang LI; Xiu-feng LIN; Yu-bin LU; Yan-cong ZHU

    2008-01-01

    Plastic pipes reinforced by cross helically wound steel wires (PSP), which have exhibited excellent mechanical performance, consist of inner polyethylene (PE) layer, winding layer and outer PE layer. The winding layer is composed of two monolayers where steel wires are cross helically wound. An analytical procedure is developed to predict the short-term burst pressure of PSP as the monolayer is assumed to be elastic and orthotropic. The 3D anisotropic elasticity and Maximum Stress Failure Criterion are employed in the formulation of the elasticity problem. Good agreement between the theoretical results and the experimental data shows that the proposed approach can well predict the short-term burst pressure of PSP.

  6. Resurrecting complexity: the interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water flea Daphnia magna.

    Science.gov (United States)

    Stoks, Robby; Govaert, Lynn; Pauwels, Kevin; Jansen, Bastiaan; De Meester, Luc

    2015-12-09

    A resurrection ecology reconstruction of 14 morphological, life history and behavioural traits revealed that a natural Daphnia magna population rapidly tracked changes in fish predation by integrating phenotypic plasticity and widespread evolutionary changes both in mean trait values and in trait plasticity. Increased fish predation mainly generated rapid adaptive evolution of plasticity (especially in the presence of maladaptive ancestral plasticity) resulting in an important change in the magnitude and direction of the multivariate reaction norm. Subsequent relaxation of the fish predation pressure resulted in reversed phenotypic plasticity and mainly caused evolution of the trait means towards the ancestral pre-fish means. Relaxation from fish predation did, however, not result in a complete reversal to the ancestral fishless multivariate phenotype. Our study emphasises that the study population rapidly tracked environmental changes through a mosaic of plasticity, evolution of trait means and evolution of plasticity to generate integrated phenotypic changes in multiple traits. © 2015 John Wiley & Sons Ltd/CNRS.

  7. Exergoeconomic optimization of coaxial tube evaporators for cooling of high pressure gaseous hydrogen during vehicle fuelling

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Rothuizen, Erasmus Damgaard; Markussen, Wiebke Brix

    2014-01-01

    Gaseous hydrogen as an automotive fuel is reaching the point of commercial introduction. Development of hydrogen fuelling stations considering an acceptable fuelling time by cooling the hydrogen to -40 C has started. This paper presents a design study of coaxial tube ammonia evaporators for three...

  8. Linear and nonlinear viscoelastic properties of bidisperse linear polymers: Mixing law and tube pressure effect

    DEFF Research Database (Denmark)

    van Ruymbeke, E.; Nielsen, J.; Hassager, Ole

    2010-01-01

    In this manuscript, we extend the tube-based model that we developed for predicting the linear viscoelasticity of entangled polymers [van Ruymbeke et al., J. Non-Newtonian Fluid Mech. 128, 7-22 (2005)] to the prediction of the extensional rheology of monodisperse and bidisperse linear polymers...

  9. Maintaining endotracheal tube cuff pressure at 20 mm Hg to prevent dysphagia after anterior cervical spine surgery; protocol of a double-blind randomised controlled trial.

    Science.gov (United States)

    Arts, Mark P; Rettig, Thijs C D; de Vries, Jessica; Wolfs, Jasper F C; in't Veld, Bas A

    2013-09-25

    In anterior cervical spine surgery a retractor is obligatory to approach the spine. Previous studies showed an increase of endotracheal tube cuff pressure after placement of a retractor. It is known that high endotracheal tube cuff pressure increases the incidence of postoperative dysphagia, hoarseness, and sore throat. However, until now no evidence supports the fact whether adjusting the endotracheal tube cuff pressure during anterior cervical spine surgery will prevent this comorbidity. We present the design of a randomized controlled trial to determine whether adjusting endotracheal tube cuff pressure after placement of a retractor during anterior cervical spine surgery will prevent postoperative dysphagia. 177 patients (aged 18-90 years) scheduled for anterior cervical spine surgery on 1 or more levels will be included. After intubation, endotracheal tube cuff pressure is manually inflated to 20 mm Hg in all patients. Patients will be randomized into two groups. In the control group endotracheal tube cuff pressure is not adjusted after retractor placement. In the intervention group endotracheal tube cuff pressure after retractor placement is maintained at 20 mm Hg and air is withdrawn when cuff pressure exceeds 20 mm Hg. Endotracheal tube cuff pressure is measured after intubation, before and after placement and removal of the retractor. Again air is inflated if cuff pressure sets below 20 mmHg after removal of the retractor. The primary outcome measure is postoperative dysphagia. Other outcome measures are postoperative hoarseness, postoperative sore throat, degree of dysphagia, length of hospital stay, and pneumonia. The study is a single centre double blind randomized trial in which patients and research nurses will be kept blinded for the allocated treatment during the follow-up period of 2 months. Postoperative dysphagia occurs frequently after anterior cervical spine surgery. This may be related to high endotracheal tube cuff pressure. Whether

  10. Comparing intra-abdominal pressures in different body positions via a urinary catheter and nasogastric tube: a pilot study.

    Science.gov (United States)

    Rooban, Nirooshan; Regli, Adrian; Davis, Wendy A; De Keulenaer, Bart L

    2012-07-05

    Intra-abdominal pressure (IAP) is most commonly measured via the bladder with the patient in the supine position. In the ICU, patients are nursed with the head of the bed elevated at 30° (HOB30) to reduce the risk of ventilator-associated pneumonia. This study investigated whether gastric pressure at HOB30 can be used as a surrogate measure of IAP via the bladder in the supine position. A prospective observational study was conducted in a single-centre intensive care unit. A total of 20 patients were included. IAP was recorded simultaneously via the bladder catheter (bladder pressure, IBP) and via nasogastric tube (gastric pressures, IGP) in the supine and HOB30 position. Each patient had three sets of IAP measurements performed at least 4 h apart. In the supine position, mean IBP was 12.3 ± 4.5 mmHg compared to IGP of 11.8 ± 4.7 mmHg. The bias between the two groups was 0.5 and precision of 3.7 (LA, -6.8 to 7.5 mmHg). At 30 degrees, mean IBP was 15.8 ± 4.9 mmHg compared to IGP of 13.1 ± 6.1 mmHg. The bias between both groups was 2.7 with a precision of 5.5 (LA, -8.0 to 13.5). Comparing IBP in the supine position with IGP at 30° showed a bias of -0.8 and precision of 5.6 (LA, -10.1 to 11.6 mmHg). IAP measured via a nasogastric tube was less influenced by changing the body position from supine to HOB30 than was bladder pressure.

  11. Effects of extrusion-billet preheating on the microstructure and properties of Zr-2.5Nb pressure tube materials

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, R.; Cann, C.D. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada). Whiteshell Labs.; Aldridge, S.A. [Nu-Tech Precision Metals, Inc., Arnprior, Ontario (Canada); Theaker, J.R.; Coleman, C.E. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada). Chalk River Labs.

    1996-12-31

    The effects of extrusion temperature and pre-heat soak time for billets on the mechanical properties of Zr-2.5Nb pressure tubes for CANDU reactors have been examined. The {beta}-quenched billets from a quadruple-melted ingot containing approximately 1,200 ppm of oxygen were extruded at 780, 815, and 850 C with pre-heat soak times of 15 to 300 min. The extruded hollows were finished by cold drawing (with a 28% reduction in area) and then stress relieving at 400 C. The {alpha}-phase grain structure, tensile strength, and fracture toughness properties were found to vary with the pre-heat temperature and soak time. All the materials were tough because embrittling impurities were absent. The tubes with 780 C preheat had a very fine and uniform {alpha}-grain structure, giving high strength and toughness at all soak times. The opposite was true for the 850 C soaks; the grain structure was coarse and inhomogeneous and the materials tended to be less strong and less touch. The tubes with the 815 C soaks showed intermediate values of strength and toughness. These variations in mechanical properties are discussed in terms of {alpha}-grain refinement and oxygen enrichment.

  12. Development of Evaluation Technology of the Integrity of HWR Pressure Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Jeong, Y. M.; Ahn, S. B. (and others)

    2005-03-15

    Major degradation of the feeder pipe is the thinning due to the flow accelerated corrosion and the cracking in the bent region due to the stress corrosion cracking. The feeder pipe in a PHWR is a pipe to supply the coolant to the pressure tube and the heated coolant to the steam generator for power generation. Approximately 380 pipes are installed on the inlet side and outlet side each with two bent regions in the 600 MW-class PHWR. After a leakage in the bent region of the feeder pipe, it is required to examine all the pipes in order to ensure the integrity of the pressure boundaries. It is not easy, however, to examine all the pipes with the conventional ultrasonic method, because of a high dose of radiation exposure and a limited accessibility to the pipe. In order to get rid of the limited accessibility, the ultrasonic guided wave method are developed for detection and evaluation of the cracks in the feeder pipe. The dispersion mode analysis was performed for the development of long-range guided wave inspection for the feeder pipe. An analytical approach for the straight pipe as well as numerical approach for the bent pipe with 2-D FFT were accomplished. A computer program for the calculation of the dispersion curves and wave structures was developed. Based on the dispersion curves and wave structure of the feeder pipe, candidates for the optimal parameters on the frequencies and vibration modes were selected. A time-frequency analysis methodology was developed for the mode identification of received ultrasonic signal. A high power tone-burst ultrasonic system has been setup for the generation of guided waves. Various artificial notches were fabricated on the bent feeder pipes for the experiment on the flaw detection. Considering the results of dispersion analysis and field condition, the torsional vibration mode, T(0,1) is selected for the first choice. An array of electromagnetic acoustic transducers (EMAT) was designed and fabricated for the generation of T

  13. The evaluation of validity of the RELAP5/Mod3 flow regime map for horizontal small diameter tubes at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Agafonova, N. [St. Petersburg State Technical Univ. (Russian Federation); Banati, J. [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    RELAP5/MOD3 code was developed for Western type power water reactors with vertical steam generators. Thus, this code should be validated also for WWER design with horizontal steam generators. In application for horizontal steam generators the situation with two-phase flow inside small diameter tubes is possible when the first circuit pressure drops in accident below the pressure level in the boiling water. It is known that computer codes have not always modelled correctly the two-phase flow inside horizontal tubes at low pressures (less than 4-6 MPa). It may be the result of erroneous prediction of the flow regime. Correct prediction of the flow regime is especially important for the fully or partly stratified flow in horizontal tubes. The aim of this study is the attempt of verification of the flow regime map, which is used in the RELAP5/MOD3 computer code for two-phase flow in horizontal small diameter tubes. `Small diameter tube` means according RELAP5/MOD3 that the inner diameter of the tube is less (or equal) than 0.018 m. The inner tube diameter in horizontal steam generators is equal 0.013 m. (orig.). 19 refs.

  14. Amorphous carbon film deposition on inner surface of tubes using atmospheric pressure pulsed filamentary plasma source

    CERN Document Server

    Pothiraja, Ramasamy; Awakowicz, Peter

    2011-01-01

    Uniform amorphous carbon film is deposited on the inner surface of quartz tube having the inner diameter of 6 mm and the outer diameter of 8 mm. A pulsed filamentary plasma source is used for the deposition. Long plasma filaments (~ 140 mm) as a positive discharge are generated inside the tube in argon with methane admixture. FTIR-ATR, XRD, SEM, LSM and XPS analyses give the conclusion that deposited film is amorphous composed of non-hydrogenated sp2 carbon and hydrogenated sp3 carbon. Plasma is characterized using optical emission spectroscopy, voltage-current measurement, microphotography and numerical simulation. On the basis of observed plasma parameters, the kinetics of the film deposition process is discussed.

  15. Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hao; Ding, Guoliang; Jiang, Weiting; Hu, Haitao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, 381 Huaihaizhong Road, Shanghai 200020 (China)

    2009-11-15

    The objective of this paper is to investigate the effect of nanoparticle on the frictional pressure drop characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, and to present a correlation for predicting the frictional pressure drop of refrigerant-based nanofluid. R113 refrigerant and CuO nanoparticle were used for preparing refrigerant-based nanofluid. Experimental conditions include mass fluxes from 100 to 200 kg m{sup -2} s{sup -1}, heat fluxes from 3.08 to 6.16 kW m{sup -2}, inlet vapor qualities from 0.2 to 0.7, and mass fractions of nanoparticles from 0 to 0.5 wt%. The experimental results show that the frictional pressured drop of refrigerant-based nanofluid increases with the increase of the mass fraction of nanoparticles, and the maximum enhancement of frictional pressure drop is 20.8% under above conditions. A frictional pressure drop correlation for refrigerant-based nanofluid is proposed, and the predictions agree with 92% of the experimental data within the deviation of {+-}15%. (author)

  16. Experimental study of vapor local characteristics in upward low pressure boiling tube

    Institute of Scientific and Technical Information of China (English)

    SUN Qi; ZHAO Hua; XI Zhao; YANG Rui-Chang

    2003-01-01

    Radial distribution of vapor local parameters, including local void fraction, interfacial velocity, bubblesize, bubble frequency and interfacial area concentration, are investigated through the measurement in an upwardboiling tube using dual-sensor optical probe. In addition, a new local parameter -"local bubble number concentra-tion" is developed on the basis of bubble frequency. The analysis shows that this parameter can reflect bubble numberdensity in space, and has clear physical meaning.

  17. Fabrication of Zr-2.5Nb pressure tubes to minimize the harmful effects of trace elements

    Energy Technology Data Exchange (ETDEWEB)

    Theaker, J.R.; Coleman, C.E. [AECL Research, Chalk River, Ontario (Canada). Chalk River Labs.; Choubey, R. [AECL Research, Pinawa, Manitoba (Canada). Whiteshell Labs.; Moan, G.D. [AECL CANDU, Mississauga, Ontario (Canada); Aldridge, S.A. [Nu-Tech Precision Metals Inc., Arnprior, Ontario (Canada); Davis, L.; Graham, R.A. [Teledyne Wah Chang Albany, OR (United States)

    1994-12-31

    Trace elements can reduce the fracture resistance of Zr-2.5Nb pressure tubes. The effects of hydrogen as hydrides and oxygen as an alloy-strengthening agent are well known, but the contributions of carbon, phosphorus, chlorine, and segregated oxygen have only recently been recognized. Carbides and phosphides are brittle particles, while chlorine segregates to form planes of weakness that produce fissures on the fracture face of test specimens. A high density of fissures is associated with low toughness. With long hold times in the ({alpha} + {beta}) region, oxygen partitions into the {alpha}-grains; such grains are hard and, if they survive fabrication, may reduce the toughness of the finished tube. Through a cooperative program involving AECL and the manufacturers, a series of manufacturing innovations and controls has been introduced that minimizes these harmful effects. Hydrogen is present in the zirconium sponge as water, can be absorbed at each stage of tube fabrication, and needs to be carefully controlled, particularly during ingot breakdown and subsequent forging. Hydrogen concentrations in finished tubes have been reduced by a factor of three through the optimization of manufacturing processes and the implementation of new technology. Multiple vacuum arc melting, use of selected raw materials, and intermediate ingot surface conditioning have resulted in much improved fracture toughness through the reduction of chlorine and phosphorus concentrations. Optimum distribution of oxygen may be achieved through changes to the extrusion process cycle. An understanding of the Zr-2.5Nb-C phase diagram, particularly the solubility of carbon at low concentrations, has resulted in the specification of a lower carbon concentration.

  18. Pressure drop measurements in the transition region for a circular tube with a square-edged entrance

    Science.gov (United States)

    Ghajar, Afshin J.; Augustine, Jody R.

    1990-06-01

    Pressure drop measurements were made in a horizontal circular straight tube with a square-edged entrance under isothermal flow conditions. The experiments covered a Reynolds number range from 512 to 14,970. A total of thirty-three sets of experimental data for the twenty pressure tap locations along the 20 ft length of the test section were gathered. For the square-edged entrance the range of Reynolds number for which transition flow exists was determined to be between 2070 to 2840. A correlation for prediction of fully developed skin friction coefficient in this region is recommended. In the entrance region the length required for the friction factor to become fully developed in both the laminar and turbulent regions was found to be inversely proportional to the Reynolds number, with the turbulent data showing a stronger dependency. A correlation for prediction of entrance length in the turbulent region is offered.

  19. Design and analysis of 19 pin annular fuel rod cluster for pressure tube type boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Deokule, A.P., E-mail: abhijit.deokule1986@gmail.com [Homi Bhabha National Institute, Trombay 400 085, Mumbai (India); Vishnoi, A.K.; Dasgupta, A.; Umasankari, K.; Chandraker, D.K.; Vijayan, P.K. [Bhabha Atomic Research Centre, Trombay 400 085, Mumbai (India)

    2014-09-15

    Highlights: • Development of 19 pin annular fuel rod cluster. • Reactor physics study of designed annular fuel rod cluster. • Thermal hydraulic study of annular fuel rod cluster. - Abstract: An assessment of 33 pin annular fuel rod cluster has been carried out previously for possible use in a pressure tube type boiling water reactor. Despite the benefits such as negative coolant void reactivity and larger heat transfer area, the 33 pin annular fuel rod cluster is having lower discharge burn up as compared to solid fuel rod cluster when all other parameters are kept the same. The power rating of this design cannot be increased beyond 20% of the corresponding solid fuel rod cluster. The limitation on the power is not due to physics parameters rather it comes from the thermal hydraulics side. In order to increase power rating of the annular fuel cluster, keeping same pressure tube diameter, the pin diameter was increased, achieving larger inside flow area. However, this reduces the number of annular fuel rods. In spite of this, the power of the annular fuel cluster can be increased by 30% compared to the solid fuel rod cluster. This makes the nineteen pin annular fuel rod cluster a suitable option to extract more power without any major changes in the existing design of the fuel. In the present study reactor physics and thermal hydraulic analysis carried out with different annular fuel rod cluster geometry is reported in detail.

  20. Shock Tube Investigation of Pressure and Ion Sensors Used in Pulse Detonation Engine Research

    Science.gov (United States)

    2004-06-01

    is a gas which follows the equation RTP ρ= and is generally applied to gases at low temperatures and pressures ( Cengel and Boles, 2002:88). A non...ideal or real gas does not follow this equation at sufficiently high temperature or pressure ( Cengel and Boles, 2002:622). This is the case when the

  1. Plastic-PDMS bonding for high pressure hydrolytically stable active microfluidics.

    Science.gov (United States)

    Lee, Kevin S; Ram, Rajeev J

    2009-06-07

    We explore the application of organofunctional silanes for bonding plastic substrates to PDMS membranes. Such devices would enable actuated membrane microfluidics in plastic devices. Bond strength degradation in aqueous environments can be reduced by using bis-silanes with larger alkoxy end groups to promote organofunctional bond formation with the plastic substrate. Hydrolytic failure can also result from low silane crosslink density or interface hydrophilicity. A test device consisting of three-valve peristaltic pumps is fabricated out of polycarbonate (PC) and bonded to PDMS through isopropoxy modified bis-trimethoxy-silyl-propyl-amine. Valves operated up to 60 psi in aqueous environments without failure. Solutions of DI water and 1 M HCl were also pumped through the device via peristaltic actuation at 18 psi for 2 weeks without bond failure. 1 M NaOH was also tested but resulted in bond failure after 115 hours.

  2. Water-storage-tube systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  3. Reliable experimental setup to test the pressure modulation of Baerveldt Implant tubes for reducing post-operative hypotony

    Science.gov (United States)

    Ramani, Ajay

    Glaucoma encompasses a group of conditions that result in damage to the optic nerve and can cause loss of vision and blindness. The nerve is damaged due to an increase in the eye's internal (intraocular) pressure (IOP) above the nominal range of 15 -- 20 mm Hg. There are many treatments available for this group of diseases depending on the complexity and stage of nerve degradation. In extreme cases where drugs or laser surgery do not create better conditions for the patient, ophthalmologists use glaucoma drainage devices to help alleviate the IOP. Many drainage implants have been developed over the years and are in use; but two popular implants are the Baerveldt Glaucoma Implant and the Ahmed Glaucoma Valve Implant. Baerveldt Implants are non-valved and provide low initial resistance to outflow of fluid, resulting in post-operative complications such as hypotony, where the IOP drops below 5 mm of Hg. Ahmed Glaucoma Valve Implants are valved implants which initially restrict the amount of fluid flowing out of the eye. The long term success rates of Baerveldt Implants surpass those of Ahmed Valve Implants because of post-surgical issues; but Baerveldt Implants' initial effectiveness is poor without proper flow restriction. This drives the need to develop new ways to improve the initial effectiveness of Baerveldt Implants. A possible solution proposed by our research team is to place an insert in the Baerveldt Implant tube of inner diameter 305 microns. The insert must be designed to provide flow resistance for the early time frame [e.g., first 30 -- 60 post-operative days] until sufficient scar tissue has formed on the implant. After that initial stage with the insert, the scar tissue will provide the necessary flow resistance to maintain the IOP above 5 mm Hg. The main objective of this project was to develop and validate an experimental apparatus to measure pressure drop across a Baerveldt Implant tube, with and without inserts. This setup will be used in the

  4. Study of a high-temperature and high-pressure FBG sensor with Al2O3 thin-wall tube substrate

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong; QIAO Xue-guang; WANG Hong-liang; FENG De-quan; WANG Wei

    2008-01-01

    A fiber Bragg grating (FBG) high-temperature and high pressure sensor has been designed and fabricated by using the Al2O3 thin-wall tube as a substrate. The test results show that the sensor can withstand a pressure range of 0-45 MPa and a temperature range of-10-300℃, and has a pressure sensitivity of 0.0426 nm/MPa and a temperature sensitivity of 0.0112nm/℃

  5. Application of automatic inspection system to nondestructive test of heat transfer tubes of primary pressurized water cooler in the high temperature engineering test reactor. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Takeshi; Furusawa, Takayuki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Miyamoto, Satoshi [Japan Atomic Power Company, Tokyo (Japan)

    2001-07-01

    Heat transfer tubes of a primary pressurized water cooled (PPWC) in the high temperature engineering test reactor (HTTR) form the reactor pressure boundary of the primary coolant, therefore are important from the viewpoint of safety. To establish inspection techniques for the heat transfer tubes of the PPWC, an automatic inspection system was developed. The system employs a bobbin coil probe, a rotating probe for eddy current testing (ECT) and a rotating probe for ultrasonic testing (UT). Nondestructive test of a half of the heat transfer tubes of the PPWC was carried out by the automatic inspection system during reactor shutdown period of the HTTR (about 55% in the maximum reactor power in this paper). The nondestructive test results showed that the maximum signal-to-noise ratio was 1.8 in ECT. Pattern and phase of Lissajous wave, which were obtained for the heat transfer tube of the PPWC, were different from those obtained for the artificially defected tube. In UT echo amplitude of the PPWC tubes inspected was lower than 20% of distance-amplitude calibration curve. Thus, it was confirmed that there was no defect in depth, which was more than the detecting standard of the probes, on the outer surface of the heat transfer tubes of the PPWC inspected. (author)

  6. Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 2: Mechanisms for the pathogenesis of syringomyelia.

    Science.gov (United States)

    Carpenter, P W; Berkouk, K; Lucey, A D

    2003-12-01

    Our aim in this paper is to use a simple theoretical model of the intraspinal cerebrospinal-fluid system to investigate mechanisms proposed for the pathogenesis of syringomyelia. The model is based on an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. According to this model, the leading edge of a pressure pulse tends to steepen and form an elastic jump, as it propagates up the intraspinal cerebrospinal-fluid system. We show that when an elastic jump is incident on a stenosis of the spinal subarachnoid space, it reflects to form a transient, localized region of high pressure within the spinal cord that for a cough-induced pulse is estimated to be 50 to 70 mm Hg or more above the normal level in the spinal subarachnoid space. We propose this as a new mechanism whereby pressure pulses created by coughing or sneezing can generate syrinxes. We also use the same analysis to investigate Williams' suck mechanism. Our results do not support his concept, nor, in cases where the stenosis is severe, the differential-pressure-propagation mechanism recently proposed by Greitz et al. Our analysis does provide some support for the piston mechanism recently proposed by Oldfield et al. and Heiss et al. For instance, it shows clearly how the spinal cord is compressed by the formation of elastic jumps over part of the cardiac cycle. What appears to be absent for this piston mechanism is any means whereby the elastic jumps can be focused (e.g., by reflecting from a stenosis) to form a transient, localized region of high pressure within the spinal cord. Thus it would seem to offer a mechanism for syrinx progression, but not for its formation.

  7. Effects of gasket on coupled plastic flow and strain-induced phase transformations under high pressure and large torsion in a rotational diamond anvil cell

    Science.gov (United States)

    Feng, Biao; Levitas, Valery I.

    2016-01-01

    Combined plastic flow and strain-induced phase transformations (PTs) under high pressure in a sample within a gasket subjected to three dimensional compression and torsion in a rotational diamond anvil cell (RDAC) are studied using a finite element approach. The results are obtained for the weaker, equal-strength, and stronger high-pressure phases in comparison with low-pressure phases. It is found that, due to the strong gasket, the pressure in the sample is relatively homogenous and the geometry of the transformed zones is mostly determined by heterogeneity in plastic flow. For the equal-strength phases, the PT rate is higher than for the weaker and stronger high-pressure phases. For the weaker high-pressure phase, transformation softening induces material instability and leads to strain and PT localization. For the stronger high-pressure phase, the PT is suppressed by strain hardening during PT. The effect of the kinetic parameter k that scales the PT rate in the strain-controlled kinetic equation is also examined. In comparison with a traditional diamond anvil cell without torsion, the PT progress is much faster in RDAC under the same maximum pressure in the sample. Finally, the gasket size and strength effects are discussed. For a shorter and weaker gasket, faster plastic flow in radial and thickness directions leads to faster PT kinetics in comparison with a longer and stronger gasket. The rates of PT and plastic flows are not very sensitive to the modest change in a gasket thickness. Multiple experimental results are reproduced and interpreted. Obtained results allow one to design the desired pressure-plastic strain loading program in the experiments for searching new phases, reducing PT pressure by plastic shear, extracting kinetic properties from experiments with heterogeneous fields, and controlling homogeneity of all fields and kinetics of PTs.

  8. Shock-tube calibration of a fast-response pressure transducer

    Science.gov (United States)

    Chung, Kung-Ming; Lu, Frank K.

    1990-01-01

    The sensitivity of a miniature fast-response piezoresistive pressure transducer determined dynamically was found to be slightly higher than that determined statically. Thus, mean pressures in a turbulent or unsteady flowfield that are measured using statically-calibrated pressure transducers would be slightly above true values. Unsteady pressure measurements to obtain space-time correlations and spectra can, however, be properly performed if the slight error is acceptable. These measurements are, obviously, subjected to limitations imposed by the bandwidth and the spatial resolution of the transducer. The noise spectrum revealed that the noise is predominantly above the transducer's resonant frequency. Filtering to improve the signal-to-noise ratio is particularly necessary when using the transducers at their low range. Transducer drift increases the signal-to-noise ratio and can adversely affect mean measurements.

  9. Pressure-induced wall thickness variations in multi-layered wall of a pollen tube and Fourier decomposition of growth oscillations.

    Science.gov (United States)

    Pietruszka, Mariusz; Haduch-Sendecka, Aleksandra

    2015-04-01

    The augmented growth equation introduced by Ortega is solved for the apical portion of the pollen tube as an oscillating volume, which we approach in the framework of a two-fluid model in which the two fluids represent the constant pressure and the fluctuating features of the system. Based on routine Fourier analysis, we calculate the energy spectrum of the oscillating pollen tube, and discuss the resonant frequency problem of growth rate oscillations. We also outline a descriptive model for cell wall thickness fluctuations associated with small, yet regular variations (~ 0.01 MPa) observed in turgor pressure. We propose that pressure changes must lead to the sliding of wall layers, indirectly resulting in a wave of polarization of interlayer bonds. We conclude that pollen tube wall thickness may oscillate due to local variations in cell wall properties and relaxation processes. These oscillations become evident because of low amplitude/high frequency pressure fluctuations δP being superimposed on turgor pressure P. We also show that experimentally determined turgor pressure oscillates in a strict periodical manner. A solitary frequency f0 ≈ 0.066 Hz of these (~ 0.01 MPa in magnitude) oscillations for lily pollen tubes was established by the discrete Fourier transform and Lorentz fit.

  10. Numerical Study on the Heat Transfer of Carbon Dioxide in Horizontal Straight Tubes under Supercritical Pressure.

    Directory of Open Access Journals (Sweden)

    Mei Yang

    Full Text Available Cooling heat transfer of supercritical CO2 in horizontal straight tubes with wall is numerically investigated by using FLUENT. The results show that almost all models are able to present the trend of heat transfer qualitatively, and the stand k-ε with enhanced wall treatment model shows the best agreement with the experimental data, followed by LB low Re turbulence model. Then further studies are discussed on velocity, temperature and turbulence distributions. The parameters which are defined as the criterion of buoyancy effect on convection heat transfer are introduced to judge the condition of the fluid. The relationships among the inlet temperature, outlet temperature, the mass flow rate, the heat flux and the diameter are discussed and the difference between the cooling and heating of CO2 are compared.

  11. Numerical Study on the Heat Transfer of Carbon Dioxide in Horizontal Straight Tubes under Supercritical Pressure.

    Science.gov (United States)

    Yang, Mei

    2016-01-01

    Cooling heat transfer of supercritical CO2 in horizontal straight tubes with wall is numerically investigated by using FLUENT. The results show that almost all models are able to present the trend of heat transfer qualitatively, and the stand k-ε with enhanced wall treatment model shows the best agreement with the experimental data, followed by LB low Re turbulence model. Then further studies are discussed on velocity, temperature and turbulence distributions. The parameters which are defined as the criterion of buoyancy effect on convection heat transfer are introduced to judge the condition of the fluid. The relationships among the inlet temperature, outlet temperature, the mass flow rate, the heat flux and the diameter are discussed and the difference between the cooling and heating of CO2 are compared.

  12. Atmospheric pressure argon surface discharges propagated in long tubes: physical characterization and application to bio-decontamination

    Science.gov (United States)

    Kovalova, Zuzana; Leroy, Magali; Jacobs, Carolyn; Kirkpatrick, Michael J.; Machala, Zdenko; Lopes, Filipa; Laux, Christophe O.; DuBow, Michael S.; Odic, Emmanuel

    2015-11-01

    Pulsed corona discharges propagated in argon (or in argon with added water vapor) at atmospheric pressure on the interior surface of a 49 cm long quartz tube were investigated for the application of surface bio-decontamination. H2O molecule dissociation in the argon plasma generated reactive species (i.e. OH in ground and excited states) and UV emission, which both directly affected bacterial cells. In order to facilitate the evaluation of the contribution of UV radiation, a DNA damage repair defective bacterial strain, Escherichia coli DH-1, was used. Discharge characteristics, including propagation velocity and plasma temperature, were measured. Up to ~5.5 and ~5 log10 reductions were observed for E. coli DH-1 bacteria (from 106 initial load) exposed 2 cm and 44 cm away from the charged electrode, respectively, for a 20 min plasma treatment. The factors contributing to the observed bactericidal effect include desiccation, reactive oxygen species (OH) plus H2O2 accumulation in the liquid phase, and UV-B (and possibly VUV) emission in dry argon. The steady state temperature measured on the quartz tube wall did not exceeded 29 °C the contribution of heating, along with that of H2O2 accumulation, was estimated to be low. The effect of UV-B emission alone or in combination with the other stress factors of the plasma process was examined for different operating conditions.

  13. Experimental investigation of heat transfer and pressure drop of turbulent flow inside tube with inserted helical coils

    Science.gov (United States)

    Sharafeldeen, M. A.; Berbish, N. S.; Moawed, M. A.; Ali, R. K.

    2016-08-01

    The heat transfer and pressure drop were experimentally investigated in a coiled wire inserted tube in turbulent flow regime in the range of Reynolds number of 14,400 ≤ Re ≤ 42,900. The present work aims to extend the experimental data available on wire coil inserts to cover wire diameter ratio of 0.044 ≤ e/d ≤ 0.133 and coil pitch ratio of 1 ≤ p/d ≤ 5. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The effects of Reynolds number and wire diameter and coil pitch ratios on the Nusselt number and friction factor were studied. The enhancement efficiency and performance criteria ranges are of (46.9-82.6 %) and (100.1-128 %) within the investigated range of the different parameters, respectively. Correlations are obtained for the average Nusselt number and friction factor utilizing the present measurements within the investigated range of geometrical parameters and Re. The maximum deviation between correlated and experimental values for Nusselt number and friction factor are ±5 and ±6 %, respectively.

  14. An empirical investigation on thermal characteristics and pressure drop of Ag-oil nanofluid in concentric annular tube

    Science.gov (United States)

    Abbasian Arani, A. A.; Aberoumand, H.; Aberoumand, S.; Jafari Moghaddam, A.; Dastanian, M.

    2016-08-01

    In this work an experimental study on Silver-oil nanofluid was carried out in order to present the laminar convective heat transfer coefficient and friction factor in a concentric annulus with constant heat flux boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. The average sizes of particles were 20 nm. Nanofluids with various particle Volume fractions of 0.011, 0.044 and 0.171 vol% were employed. The nanofluid flowing between the tubes is heated by an electrical heating coil wrapped around it. The effects of different parameters such as flow Reynolds number, tube diameter ratio and nanofluid particle concentration on heat transfer coefficient are studied. Results show that, heat transfer coefficient increased by using nanofluid instead of pure oil. Maximum enhancement of heat transfer coefficient occurs in 0.171 vol%. In addition the results showed that, there are slight increases in pressure drop of nanofluid by increasing the nanoparticle concentration of nanofluid in compared to pure oil.

  15. Direct probe atmospheric pressure photoionization/atmospheric pressure chemical ionization high-resolution mass spectrometry for fast screening of flame retardants and plasticizers in products and waste.

    Science.gov (United States)

    Ballesteros-Gómez, A; Brandsma, S H; de Boer, J; Leonards, P E G

    2014-04-01

    In this study, we develop fast screening methods for flame retardants and plasticizers in products and waste based on direct probe (DP) atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI) coupled to a high-resolution (HR) time-of-flight mass spectrometer. DP-APPI is reported for the first time in this study, and DP-APCI that has been scarcely exploited is optimized for comparison. DP-APPI was more selective than DP-APCI and also more sensitive for the most hydrophobic compounds. No sample treatment was necessary, and only a minimal amount of sample (few milligrams) was used for analysis that was performed within a few minutes. Both methods were applied to the analysis of plastic products, electronic waste, and car interiors. Polybrominated diphenylethers, new brominated flame retardants, and organophosphorus flame retardants were present in most of the samples. The combination of DP with HR mass spectra and data processing based on mass accuracy and isotopic patterns allowed the unambiguous identification of chemicals at low levels of about 0.025 % (w/w). Under untargeted screening, resorcinol bis(biphenylphosphate) and bisphenol A bis(bisphenylphosphate) were identified in many of the consumer products of which literature data are still very limited.

  16. Cohesive zone laws for void growth — II. Numerical field projection of elasto-plastic fracture processes with vapor pressure

    Science.gov (United States)

    Chew, Huck Beng; Hong, Soonsung; Kim, Kyung-Suk

    2009-08-01

    Modeling ductile fracture processes using Gurson-type cell elements has achieved considerable success in recent years. However, incorporating the full mechanisms of void growth and coalescence in cohesive zone laws for ductile fracture still remains an open challenge. In this work, a planar field projection method, combined with equilibrium field regularization, is used to extract crack-tip cohesive zone laws of void growth in an elastic-plastic solid. To this end, a single row of void-containing cell elements is deployed directly ahead of a crack in an elastic-plastic medium subjected to a remote K-field loading; the macroscopic behavior of each cell element is governed by the Gurson porous material relation, extended to incorporate vapor pressure effects. A thin elastic strip surrounding this fracture process zone is introduced, from which the cohesive zone variables can be extracted via the planar field projection method. We show that the material's initial porosity induces a highly convex traction-separation relationship — the cohesive traction reaches the peak almost instantaneously and decreases gradually with void growth, before succumbing to rapid softening during coalescence. The profile of this numerically extracted cohesive zone law is consistent with experimentally determined cohesive zone law in Part I for multiple micro-crazing in HIPS. In the presence of vapor pressure, both the cohesive traction and energy are dramatically lowered; the shape of the cohesive zone law, however, remains highly convex, which suggests that diffusive damage is still the governing failure mechanism.

  17. Measurements of Speed of Sound in Lean and Rich Natural Gas Mixtures at Pressures up to 37 MPa Using a Specialized Rupture Tube

    Science.gov (United States)

    Botros, K. K.

    2010-12-01

    Measurements of the speed of sound in 42 different compositions of lean, medium, and rich natural-gas mixtures using a specialized high-pressure rupture tube have been conducted. The rupture tube is made of stainless steel (internal diameter = 38.1 mm and length = 42 m), and is instrumented with 13 high-frequency-response dynamic pressure transducers (Endevco) mounted very close to the rupture end and along the length of the tube to capture the pressure-time traces of the decompression wave. Tests were conducted for initial pressures ranging from 10 MPa to 37 MPa and a temperature range from -25°C to+68°C. Gas mixture compositions were controlled by mixing conventional natural-gas mixtures from an adjacent gas pipeline with richer components of alkanes. Temperature control is achieved by a heat tracer along the tube with a set point at the desired gas temperature of the particular test. Uncertainty analysis indicated that the uncertainty in the experimentally determined speed of sound in the undisturbed gas mixture at the initial pressure and temperature is on the order of 0.306 %. The measured speeds of sound were compared to predictions by five equations of state, namely; the Benedict-Webb-Rubin-Starling (BWRS), AGA-8, Peng-Robinson (PR), Redlich-Kwong-Soave (RK-Soave), and Groupe Européen de Recherches Gaziéres (GERG-2004) equations.

  18. Pressure and Thrust Measurements of a High-Frequency Pulsed Detonation Tube

    Science.gov (United States)

    Nguyen, N.; Cutler, A. D.

    2008-01-01

    This paper describes measurements of a small-scale, high-frequency pulsed detonation tube. The device utilized a mixture of H2 fuel and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at about 600 Hz, for the quarter wave mode of resonance. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to H2 flow based specific impulse of 2970 s. This value is comparable to measurements in H2-fueled pulsed detonation engines (PDEs). The injection and detonation frequency for this new experimental case was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the device and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 pounds per cubic inch, and compares favorably with other experiments, which typically have thrust-per-unit-volume of order 0.01 pound per cubic inch. This much higher volumetric efficiency results in a potentially much more practical device than the typical PDE, for a wide range of potential applications, including high-speed boundary layer separation control, for example in hypersonic engine inlets, and propulsion for small aircraft and missiles.

  19. Pressure dependence and branching ratios in the decomposition of 1-pentyl radicals: shock tube experiments and master equation modeling.

    Science.gov (United States)

    Awan, Iftikhar A; Burgess, Donald R; Manion, Jeffrey A

    2012-03-22

    The decomposition and intramolecular H-transfer isomerization reactions of the 1-pentyl radical have been studied at temperatures of 880 to 1055 K and pressures of 80 to 680 kPa using the single pulse shock tube technique and additionally investigated with quantum chemical methods. The 1-pentyl radical was generated by shock heating dilute mixtures of 1-iodopentane and the stable products of its decomposition have been observed by postshock gas chromatographic analysis. Ethene and propene are the main olefin products and account for >97% of the carbon balance from 1-pentyl. Also produced are very small amounts of (E)-2-pentene, (Z)-2-pentene, and 1-butene. The ethene/propene product ratio is pressure dependent and varies from about 3 to 5 over the range of temperatures and pressures studied. Formation of ethene and propene can be related to the concentrations of 1-pentyl and 2-pentyl radicals in the system and the relative rates of five-center intramolecular H-transfer reactions and β C-C bond scissions. The 3-pentyl radical, formed via a four-center intramolecular H transfer, leads to 1-butene and plays only a very minor role in the system. The observed (E/Z)-2-pentenes can arise from a small amount of beta C-H bond scission in the 2-pentyl radical. The current experimental and computational results are considered in conjunction with relevant literature data from lower temperatures to develop a consistent kinetics model that reproduces the observed branching ratios and pressure effects. The present experimental results provide the first available data on the pressure dependence of the olefin product branching ratio for alkyl radical decomposition at high temperatures and require a value of = (675 ± 100) cm(-1) for the average energy transferred in deactivating collisions in an argon bath gas when an exponential-down model is employed. High pressure rate expressions for the relevant H-transfer reactions and β bond scissions are derived and a Rice Ramsberger

  20. Safety and reliability of the sealing cuff pressure of the Microcuff pediatric tracheal tube for prevention of post-extubation morbidity in children: A comparative study.

    Science.gov (United States)

    Al-Metwalli, Roshdi Roshdi; Sadek, Sayed

    2014-10-01

    The objective of this study is to evaluate the efficacy and safety of sealing pressure as an inflation technique of the Microcuff pediatric tracheal cuffed tube. A total of 60 children were enrolled in this study. After induction of anesthesia and intubation with Microcuff pediatric tracheal tube, patients were randomly assigned, to one of the three groups. Control group (n = 20) the cuff was inflated to a cuff pressure of 20 cm H2O; sealing group (n = 20) the cuff was inflated to prevent the air leak at peak airway pressure of 20 cm H2O and the finger group (n = 20) the cuff was inflated to a suitable pressure using the finger estimation. Tracheal leak, incidence and severity of post-extubation cough, stridor, sore throat and hoarseness were recorded. The cuff pressure as well as the volume of air to fill the cuff was significantly low in the sealing group when compared with the control group (P sore throat were significantly high in the finger group compared with both the control and the sealing group (P = 0.0009 and P = 0.0026). Three patients in the control group developed air leak around the endotracheal tube cuff. The incidence and severity of other complications were similar in the three groups. In pediatric N2O, free general anesthesia using Microcuff pediatric tracheal tub, sealing cuff pressure is safer than finger palpation technique regarding post-extubation morbidities and more reliable than recommended safe pressure in prevention of the air leak.

  1. Influence of temperature on threshold stress for reorientation of hydrides and residual stress variation across thickness of Zr-2.5Nb alloy pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R.N. [Materials Science, Technology and Society, Malmo University, SE20506 (Sweden) and Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: ram.singh@ts.mah.se; Lala Mikin, R. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee 247 667, Uttaranchal (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sah, D.N. [Post Irradiation Examination Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Batra, I.S. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Stahle, P. [Materials Science, Technology and Society, Malmo University, SE20506 (Sweden)

    2006-12-15

    Threshold stress, {sigma} {sub th}, for reorientation of hydrides in cold worked and stress-relieved (CWSR) Zr-2.5Nb pressure tube material was determined in the temperature range of 523-673 K. Using tapered gage tensile specimen, mean value of {sigma} {sub th} was experimentally determined by two methods, half thickness method and area compensation method. The difference between local values of {sigma} {sub th} measured across the thickness of the tube and the mean {sigma} {sub th} values yielded the residual stress variation across the tube thickness. It was observed that both the mean threshold stress and residual stress decrease with increase in reorientation temperature. Also, the maximum value of residual stresses was observed near the midsection of the tube.

  2. Structural plasticity: how intermetallics deform themselves in response to chemical pressure, and the complex structures that result.

    Science.gov (United States)

    Berns, Veronica M; Fredrickson, Daniel C

    2014-10-06

    Interfaces between periodic domains play a crucial role in the properties of metallic materials, as is vividly illustrated by the way in which the familiar malleability of many metals arises from the formation and migration of dislocations. In complex intermetallics, such interfaces can occur as an integral part of the ground-state crystal structure, rather than as defects, resulting in such marvels as the NaCd2 structure (whose giant cubic unit cell contains more than 1000 atoms). However, the sources of the periodic interfaces in intermetallics remain mysterious, unlike the dislocations in simple metals, which can be associated with the exertion of physical stresses. In this Article, we propose and explore the concept of structural plasticity, the hypothesis that interfaces in complex intermetallic structures similarly result from stresses, but ones that are inherent in a defect-free parent structure, rather than being externally applied. Using DFT-chemical pressure analysis, we show how the complex structures of Ca2Ag7 (Yb2Ag7 type), Ca14Cd51 (Gd14Ag51 type), and the 1/1 Tsai-type quasicrystal approximant CaCd6 (YCd6 type) can all be traced to large negative pressures around the Ca atoms of a common progenitor structure, the CaCu5 type with its simple hexagonal 6-atom unit cell. Two structural paths are found by which the compounds provide relief to the Ca atoms' negative pressures: a Ca-rich pathway, where lower coordination numbers are achieved through defects eliminating transition metal (TM) atoms from the structure; and a TM-rich path, along which the addition of spacer Cd atoms provides the Ca coordination environments greater independence from each other as they contract. The common origins of these structures in the presence of stresses within a single parent structure highlights the diverse paths by which intermetallics can cope with competing interactions, and the role that structural plasticity may play in navigating this diversity.

  3. A Shock Tube Study of the CO + OH Reaction Near the Low-Pressure Limit

    KAUST Repository

    Nasir, Ehson Fawad

    2016-05-16

    Rate coefficients for the reaction between carbon monoxide and hydroxyl radical were measured behind reflected shock waves over 700 – 1230 K and 1.2 – 9.8 bar. The temperature/pressure conditions correspond to the predicted low-pressure limit of this reaction, where the channel leading to carbon dioxide formation is dominant. The reaction rate coefficients were inferred by measuring the formation of carbon dioxide using quantum cascade laser absorption near 4.2 µm. Experiments were performed under pseudo-first order conditions with tert-butyl hydroperoxide (TBHP) as the OH precursor. Using ultraviolet laser absorption by OH radicals, the TBHP decomposition rate was measured to quantify potential facility effects under extremely dilute conditions used here. The measured CO + OH rate coefficients are provided in Arrhenius form for three different pressure ranges: kCO+OH (1.2 – 1.6 bar) = 9.14 x 10-13 exp(-1265/T) cm3 molecule-1 s-1 kCO+OH (4.3 – 5.1 bar) = 8.70 x 10-13 exp(-1156/T) cm3 molecule-1 s-1 kCO+OH (9.6 – 9.8 bar) = 7.48 x 10-13 exp(-929/T) cm3 molecule-1 s-1 The measured rate coefficients are found to be lower than the master equation modeling results by Weston et al. [J. Phys. Chem. A, 117 (2013) 821] at 819 K and in closer agreement with the expression provided by Joshi and Wang [Int. J. Chem. Kinet., 38 (2006) 57].

  4. A Shock-Tube Study of the CO + OH Reaction Near the Low-Pressure Limit.

    Science.gov (United States)

    Nasir, Ehson F; Farooq, Aamir

    2016-06-09

    Rate coefficients for the reaction between carbon monoxide and hydroxyl radical were measured behind reflected shock waves over 700-1230 K and 1.2-9.8 bar. The temperature/pressure conditions correspond to the predicted low-pressure limit of this reaction, where the channel leading to carbon dioxide formation is dominant. The reaction rate coefficients were inferred by measuring the formation of carbon dioxide using quantum cascade laser absorption near 4.2 μm. Experiments were performed under pseudo-first-order conditions with tert-butyl hydroperoxide (TBHP) as the OH precursor. Using ultraviolet laser absorption by OH radicals, the TBHP decomposition rate was measured to quantify potential facility effects under extremely dilute conditions used here. The measured CO + OH rate coefficients are provided in Arrhenius form for three different pressure ranges: kCO+OH(1.2-1.6 bar) = (9.14 ± 2.17) × 10(-13) exp(-(1265 ± 190)/T) cm(3) molecule(-1) s(-1); kCO+OH(4.3-5.1 bar) = (8.70 ± 0.84) × 10(-13) exp(-(1156 ± 83)/T) cm(3) molecule(-1) s(-1); and kCO+OH(9.6-9.8 bar) = (7.48 ± 1.92) × 10(-13) exp(-(929 ± 192)/T) cm(3) molecule(-1) s(-1). The measured rate coefficients are found to be lower than the master equation modeling results by Weston et al. [J. Phys. Chem. A, 2013, 117, 821] at 819 K and in closer agreement with the expression provided by Joshi and Wang [Int. J. Chem. Kinet., 2006, 38, 57].

  5. Numerical Simulations of Pressure Spikes within a Cylindrical Launch Tube due to a Bursting Helium Flask

    Science.gov (United States)

    2011-11-09

    Above 50 atm pressure, the system deviates from ideal gas law behavior as shown by the red curve. This curve was obtained using the Cheetah 6.0...equation of state for Helium6 and calculating 1 1 2 2PV PV directly from the 8 Harold D. Ladouceur and Benjamin Gould Cheetah output. Note...that the Cheetah code utilizes the ideal gas law to calculate A as indicated by the black dots in Figure 6. A key point of this figure is the

  6. Effects of temperature and pressure on the glass transitions of plastic bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, M.S.; Garcia, D.; Idar, D.

    1998-12-31

    Various plastic bonded explosives (PBXs) contain about 5-wt% polymer, plasticizer, and stabilizer as binder. The glass-transition temperature (T{sub g}) determines, in part, if the binder will reduce or increase the sensitivity of the PBX to impact. A soft binder reduces the impact sensitivity; however, too soft a binder compromises the mechanical strength below that desirable for dimensional stability. Glass transitions were measured by temperature modulated DSC for PBXs before and after pressing. Pressing temperature was 90 C. The T{sub g} of Estane, a polyester/polyurethane used in some PBX binders, was investigated. Only small changes were observed in the low temperature T{sub g} of the soft segments but larger changes were seen in the higher temperature transitions due to the relaxation of the hard segments. The T{sub g} of Kel F 800, a binder used in insensitive PBX 9502, was observed near ambient temperature. The PBX 9502 had a lower T{sub g} than the neat polymer. Mechanical strength will be measured for the samples.

  7. Heat transfer enhancement and pressure drop analysis in a helically coiled tube using Al{sub 2}O{sub 3} / water nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. C. Mukesh; Tamilarasan, R.; Nathan, S. Sendhil [University College of Engineering Pattukkottai, Rajamadam (India); Kumar, J. [Sasurie College of Engineering, Tiruppur (India); Suresh, S. [National Institute of Technology, Tiruchirappalli (India)

    2014-05-15

    In this experimental investigation, the heat transfer and pressure drop analysis of a shell and helically coiled tube heat exchanger by using Al{sub 2}O{sub 3} / water nanofluids have been carried out under turbulent flow condition. The Al{sub 2}O{sub 3} / water nanofluids of 0.1%, 0.4%, and 0.8% particle volume concentration have been prepared by using two step method. The tube side experimental Nusselt number of 0.1%, 0.4% and 0.8% nanofluids were found to be 28%, 36% and 56%, respectively higher than water. These enhancements are due to higher thermal conductivity of nanofluid, better fluid mixing and strong secondary flow formation in coiled tube. The pressure drop of 0.1%, 0.4% and 0.8% were found to be 4%, 6%, and 9%, respectively higher than water. The increase in pressure drop is due to increase in nanofluid viscosity while adding nanoparticles. The measurement of nanofluid thermal performance factor is found to be greater than unity. It is concluded that the Al{sub 2}O{sub 3} nanofluid can be applied as a coolant in helically coiled tube heat exchanger to enhance heat transfer with negligible pressure drop.

  8. Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator

    KAUST Repository

    Shahzad, Muhammad Wakil

    2013-01-01

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This article presents the heat transfer behavior for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93-3.60 kPa (corresponding solution saturation temperatures of 279-300 K) as well as seawater salinity of 15,000 to 90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the article is motivated by the importance of evaporative film boiling in the desalination processes such as the multi-effect distillation (MED) or multi-stage flashing (MSF): It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 298 K (3.1 kPa). Such micro bubbles are generated near to the tube wall surfaces and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapor, i.e., dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this article and it shows good agreement to the measured data with an experimental uncertainty of 8% and regression RMSE of 3.5%. © 2012 Elsevier Ltd. All rights reserved.

  9. Low flow anesthesia: Efficacy and outcome of laryngeal mask airway versus pressure-optimized cuffed-endotracheal tube

    Directory of Open Access Journals (Sweden)

    El-Seify Zeinab

    2010-01-01

    Full Text Available Background: Low flow anesthesia can lead to reduction of anesthetic gas and vapor consumption. Laryngeal mask airway (LMA has proved to be an effective and safe airway device. The aim of this study is to assess the feasibility of laryngeal mask airway during controlled ventilation using low fresh gas flow (1.0 L/min as compared to endotracheal tube (ETT. Patients and Methods : Fifty nine non-smoking adult patients; ASA I or II, being scheduled for elective surgical procedures, with an expected duration of anesthesia 60 minutes or more, were randomly allocated into two groups - Group I (29 patients had been ventilated using LMA size 4 for females and 5 for males respectively; and Group II (30 patients were intubated using ETT. After 10 minutes of high fresh gas flow, the flow was reduced to 1 L/min. Patients were monitored for airway leakage, end-tidal CO 2 (ETCO 2 , inspiratory and expiratory isoflurane and nitrous oxide fraction concentrations, and postoperative airway-related complications Results : Two patients in the LMA-group developed initial airway leakage (6.9% versus no patient in ETT-group. Cough and sore throat were significantly higher in ETT patients. There were no evidences of differences between both groups regarding ETCO 2 , uptake of gases, nor difficulty in swallowing. Conclusion : The laryngeal mask airway proved to be effective and safe in establishing an airtight seal during controlled ventilation under low fresh gas flow of 1 L/min, inducing less coughing and sore throat during the immediate postoperative period than did the ETT, with continuous measurement and readjustment of the tube cuff pressure.

  10. FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

    Directory of Open Access Journals (Sweden)

    GYUN-HO GIM

    2014-10-01

    Full Text Available In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI. The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency of pump, and fluid-structure interaction.

  11. Standard practice for acoustic emission examination of pressurized containers made of fiberglass reinforced plastic with balsa wood cores

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers guidelines for acoustic emission (AE) examinations of pressurized containers made of fiberglass reinforced plastic (FRP) with balsa cores. Containers of this type are commonly used on tank trailers for the transport of hazardous chemicals. 1.2 This practice is limited to cylindrical shape containers, 0.5 m [20 in.] to 3 m [120 in.] in diameter, of sandwich construction with balsa wood core and over 30 % glass (by weight) FRP skins. Reinforcing material may be mat, roving, cloth, unidirectional layers, or a combination thereof. There is no restriction with regard to fabrication technique or method of design. 1.3 This practice is limited to containers that are designed for less than 0.520 MPa [75.4 psi] (gage) above static pressure head due to contents. 1.4 This practice does not specify a time interval between examinations for re-qualification of a pressure container. 1.5 This practice is used to determine if a container is suitable for service or if follow-up NDT is needed before that...

  12. Remote field Eddy Current Technique Development for Gap Measurement of Neighboring Tubes of Nuclear Fuel Channel in Pressurized Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. K.; Lee, D. H.; Lee, Y. S.; Huh, H.; Cheong, Y. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2004-04-15

    Liquid Injection Nozzle(LIN) tube and Calandria tube(CT) in pressurized Heavy Water Reactor (PHWR) are cross-aligned horizontally. These neighboring tubes can contact each other due to the sag of the calandria tube resulting from the irradiation creep and thermal creep, and fuel load, etc. In order to judge the contact which might be the safety concern, the remote field eddy current (RFEC) technology is applied for the gap measurement in this paper. LIN can be detected by inserting the RFEC probe into pressure tube (PT) at the crossing point directly. To obtain the optimal conditions of the RFEC inspection, the sensitivity, penetration and noise signals are considered simultaneously. The optimal frequency and coil spacing are 1kHz and 200mm respectively. Possible noises during LIN signal acquisition are caused by lift-off, PT thickness variation, and gap variation between PT and CT. The simulated noise signals were investigated by the Volume Integral Method(VIM). Signal analysis on the voltage plane describes the amplitude and shape of LIN and possible defects at several frequencies. All the RFEC measurements in the laboratory were done in variance with the CT/LIN gap and showed the relationship between the LIN gap and the signal parameters by analyzing the voltage plane signals

  13. PRESSURE FORCE CONTROL FOR FABRICATION OF PLASTIC MICROFLUIDIC CHIPS WITH HOT EMBOSSING METHOD

    Institute of Scientific and Technical Information of China (English)

    LIU Chong; LIAO Junfeng; WANG Xiaodong; WANG Liding

    2007-01-01

    A pressure force control system for hot embossing of microfluidic chips is designed with a moment motor and a ball bearing lead screw. Based on the numeric PID technique, the algorithm of pulsant integral accelerated PID control is presented and the negative effects of nonlinearity from friction, clearance and saturation are eliminated. In order to improve the quick-response characteristic, independent thread technique is adopted. The method of pressure force control based on pulsant integral accelerated PID control and independent thread technique is applied with satisfactory control performance.

  14. Effect of tube size on electromagnetic tube bulging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The commercial finite code ANSYS was employed for the simulation of the electromagnetic tube bulging process. The finite element model and boundary conditions were thoroughly discussed. ANSYS/EMAG was used to model the time varying electromagnetic field in order to obtain the radial and axial magnetic pressure acting on the tube. The magnetic pressure was then used as boundary conditions to model the high velocity deformation of various length tube with ANSYS/LSDYNA. The time space distribution of magnetic pressure on various length tubes was presented. Effect of tube size on the distribution of radial magnetic pressure and axial magnetic pressure and high velocity deformation were discussed. According to the radial magnetic pressure ratio of tube end to tube center and corresponding dimensionless length ratio of tube to coil, the free electromagnetic tube bulging was studied in classification. The calculated results show good agreements with practice.

  15. 75 FR 27706 - Pressure Sensitive Plastic Tape From Italy: Final Results of Antidumping Duty Changed...

    Science.gov (United States)

    2010-05-18

    ... percent. On March 12, 2010, we received comments from 3M Company (3M), a U.S. producer of the domestic.... (See Pressure Sensitive Tape from Italy: Comments of 3M Company on the Preliminary Results of the... companies were entitled to file a changed circumstances review request. Accordingly, it argues, 3M's...

  16. Proof of Concept of Crack Localization Using Negative Pressure Waves in Closed Tubes for Later Application in Effective SHM System for Additive Manufactured Components

    Directory of Open Access Journals (Sweden)

    Michaël F. Hinderdael

    2016-01-01

    Full Text Available Additive manufactured components have a different metallurgic structure and are more prone to fatigue cracks than conventionally produced metals. In earlier papers, an effective Structural Health Monitoring solution was presented to detect fatigue cracks in additive manufactured components. Small subsurface capillaries are embedded in the structure and pressurized (vacuum or overpressure. A crack that initiated at the component’s surface will propagate towards the capillary and finally breach it. One capillary suffices to inspect a large area of the component, which makes it interesting to locate the crack on the basis of the pressure measurements. Negative pressure waves (NPW arise from the abrupt encounter of high pressure fluid with low pressure fluid and can serve as a basis to locate the crack. A test set-up with a controllable leak valve was built to investigate the feasibility of using NPW to localize a leak in closed tubes with small lengths. Reflections are expected to occur at the ends of the tube, possibly limiting the localization accuracy. In this paper, the results of the tests on the test set-up are reported. It will be shown that the crack could be localized with high accuracy (millimeter accuracy which proves the concept of crack localization on basis of NPW in a closed tube of small length.

  17. 针翅管传热与压降特性研究%Research on Heat Transfer and Pressure Drop Characteristics of Integral Pin-Fin Tube

    Institute of Scientific and Technical Information of China (English)

    石帅; 阎昌琪; 牛广林; 陈哲雨

    2012-01-01

    以润滑油为换热介质,对整体针翅管传热与阻力特性进行了理论分析与试验研究,研究结果可为针翅管的优化设计提供参考.在换热介质纵向冲刷换热管的条件下,对不同针翅长度的3种整体针翅管与光管进行了传热与阻力试验.结果表明:整体针翅管对润滑油换热具有很好的强化能力,在本试验范围内,整体针翅管对油流体扰动强烈,换热强度是同条件下光管的2~6倍;针翅长度是影响针翅管压降的主要因素,在雷诺数达300时,压降曲线出现转折.%Taking lubricating oil as the heat transfer medium, heat transfer and pressure drop characteristics of integral pin-fin tubes were researched both in terms of theoretical and experiments. The results can provide a reference for pin-fin tube optimization. Under the condition of heat transfer medium longitudinally flushing the heat exchanger tube surface, the heat transfer and resistance experiments of plain tube and integral pin-fin tubes (in three different length) were carried out in the present work. The results show that the integral pin-fin tubes can improve the heat transfer ability of lubricating oil. The oil flow fluctuation caused by integral pin-fin tubes is intense and the heat transfer intension of integral pin-fin tubes is 2-6 times of plain tube at the same experiment condition. The length of fin makes main influence on pressure drop, and the pressure drop curve turns around when the values of Reynolds number reaches to 300.

  18. Probable causes of damage of heat-exchange tubes of low-pressure-exchanges of PND-3 type and repair methods

    Science.gov (United States)

    Trifonov, N. N.; Esin, S. B.; Nikolaenkova, E. K.; Sukhorukov, Yu. G.; Svyatkin, F. A.; Sintsova, T. G.; Modestov, V. S.

    2017-08-01

    The structures of low-pressure heaters (LPH), which are installed at nuclear power plants with the K-1000-60/1500 type turbine plants are considered. It was revealed that only the PND-3 type low-pressure heaters have the damages of the heat exchange tubes. For a short operation life, the number of the damaged heat-exchange tubes of PND-3 is approximately 50 pcs for Kalinin NPP and 100-150 pcs for Balakovo NPP. The low-pressure heaters were manufactured at AO Ural Plant of Chemical Machine-Building "Uralkhimmash," OAO Taganrog Boiler-Making Works "Krasny Kotelshchik," and Vitkovice Machinery Group, but the damage nature of the heat-exchange tubes is identical for all PND-3. The damages occur in the place of passage of the heat exchange tubes through the first, the second, and the third partitions over the lower tube plate (the first path of the turbine condensate). Hydraulic shocks can be one of the possible causes of the damage of the heat-exchange tubes of PND-3. The analysis of the average thermal and dynamic loads of the tube systems of PND-1-PND-4 revealed that PND-3 by the thermal power are loaded 1.4-1.6 times and by the dynamic effects are loaded 1.8-2.0 times more than the remaining LPHs. Another possible cause of damage can be the cascaded drain of the separate into PND-4 and then through the drainage heat exchange into PND-3. An additional factor can be the structure of the condensate drainage unit. The advanced system of the heating steam flow and pumping scheme of the separate drain using the existing drainage pumps of PND-3 for K-1000-60/1500 turbine plants for Balakovo and Kalinin NPPs were proposed. The considered decisions make it possible to reduce the flow rate of the heating steam condensate from PND-3 into PND-4 and the speed of the heating steam in the tube space of PND-3 and eliminate the occurrence of hydraulic shocks and damages of the heat exchanger tubes.

  19. Heat transfer and pressure drop of surfactant solutions at crossflown finned helical tubes. Waermeuebergang und Druckverlust waessriger Tensidloesungen an einer querangestroemten berippten Rohrwendel

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M. (Huels AG, Marl (Germany)); Kleuker, H.H.; Steiff, A.; Weinspach, P.M. (Dortmund Univ. (Germany). Lehrstuhl fuer Thermische Verfahrenstechnik)

    1992-09-01

    The addition of suitable drag reducers to water in district heating networks either reduces the pressure drop significantly or the electrical power consumption of the conveying pump can be reduced at the same flow rate. New surfactant additive systems accomplish the requirements on the thermal and mechanical capacitance of district heating systems. One of the important aspects for the application of surfactant solutions is the influence on the heat transfer in the installed heat exchangers in district heating networks. In earlier publications heat transfer and pressure drop of surfactant solutions in straight pipes and in helical tubes have been discussed. Developing from the scientific findings heat transfer and pressure drop at crossflown finned helical tubes were investigated in this work. The main purpose is the presentation of the occurred effects of drag reducing solutions. Due to the complex flow conditions a prediction could not be developed as yet. (orig.).

  20. Influence of Fe content on corrosion and hydrogen pick up behavior of Zr–2.5Nb pressure tube material

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Gargi, E-mail: gargi@barc.gov.in [Quality Assurance Division, BARC, Mumbai 400 085 (India); Jagannath [Theoretical Physics Division, BARC, Mumbai 400 085 (India); Kiran Kumar, M.; Kain, V.; Srivastava, D. [Material Science Division, BARC, Mumbai 400 085 (India); Basu, S. [Solid State Physics Division, BARC, Mumbai 400 085 (India); Shah, B.K. [Quality Assurance Division, BARC, Mumbai 400 085 (India); Saibaba, N. [Nuclear Fuel Complex, Hyderabad 500 062 (India); Dey, G.K. [Material Science Division, BARC, Mumbai 400 085 (India)

    2013-10-15

    The effects of Fe addition in the range of 300–1250 ppm in cold worked stress-relieved Zr–2.5Nb pressure tube on oxidation and hydrogen pick up behavior have been studied after 415 °C steam autoclaving. Microstructure and micro-chemistry of second phase and precipitates were characterized using electron microscope. Addition of 800 ppm Fe in Zr–2.5Nb alloy led to better oxidation resistance. With further addition of Fe no significant improvement of oxidation resistance was observed but hydrogen-pickup was found to increase. Zr–Nb–Fe bearing precipitates were observed in Zr–2.5Nb alloy containing 800 ppm Fe. Further addition of Fe led to formation of Zr–Fe intermetallic. The chemical state of oxide has been determined by X-ray photo electron spectroscopy. Grazing Incidence X-ray Diffraction revealed that oxide in alloys with higher Fe, contained a higher fraction of tetragonal-Zirconia which is indicative of a protective oxide film and hence better oxidation resistance of the alloy.

  1. An Effective Approach for Coupling Direct Analysis in Real Time with Atmospheric Pressure Drift Tube Ion Mobility Spectrometry

    Science.gov (United States)

    Keelor, Joel D.; Dwivedi, Prabha; Fernández, Facundo M.

    2014-09-01

    Drift tube ion mobility spectrometry (DTIMS) has evolved as a robust analytical platform routinely used for screening small molecules across a broad suite of chemistries ranging from food and pharmaceuticals to explosives and environmental toxins. Most modern atmospheric pressure IM detectors employ corona discharge, photoionization, radioactive, or electrospray ion sources for efficient ion production. Coupling standalone DTIMS with ambient plasma-based techniques, however, has proven to be an exceptional challenge. Device sensitivity with near-ground ambient plasma sources is hindered by poor ion transmission at the source-instrument interface, where ion repulsion is caused by the strong electric field barrier of the high potential ion mobility spectrometry (IMS) inlet. To overcome this shortfall, we introduce a new ion source design incorporating a repeller point electrode used to shape the electric field profile and enable ion transmission from a direct analysis in real time (DART) plasma ion source. Parameter space characterization studies of the DART DTIMS setup were performed to ascertain the optimal configuration for the source assembly favoring ion transport. Preliminary system capabilities for the direct screening of solid pharmaceuticals are briefly demonstrated.

  2. Research on the Squeezing and Plastic Deformed Model of Single Workplace and Multiple Force Point of Tube%管壳体单工多力点挤压塑变模型研究

    Institute of Scientific and Technical Information of China (English)

    李红军; 严龙; 闫久江; 陈伟; 李燕

    2014-01-01

    Under existing squeezing machine of the tube, the quality of clasp mark of the tube is unstable,the movable squee-zing plate is important components to ensure stability of clasp mark of the tube, if transforming the location of force of cylinder on the movable squeezing plate, different quality of clasp mark of the tube is got, using the diverse forcing way which is single workplace and multiple force point to structure the squeezing and plastic deformed model of the tube, and use the professional analysis software Inventor to carry out analysis of stress,displacement,deformation for the movable squeezing plate, and the squeezing and plastic deformed model of single workplace and multiple force point of tube is built, a big difference is made on improving the traditional squeezing way of tube, at the same time greatly improving stability of clasp mark of the tube.%在现有的管壳体挤压机中,管壳体卡痕质量不稳定,挤压活动板是管壳体挤压机中保证卡痕稳定性的重要构件,如果改变向上推力在挤压活动板上的作用点位置,可能获取不同的管壳体卡痕质量,笔者采用单工位多平均施力点的发散施力方式构建管壳体挤压塑变模型,并运用专业分析软件Inventor对挤压活动板进行内应力、位移、形变、管壳塑变等分析,建立了管壳体单工位多力点挤压塑变模型,对于改善传统管壳体挤压方式产生了较大的影响,同时极大的提高了管壳卡痕稳定性。

  3. [Variations in the internal pressure of the pneumatic cuffs of endotracheal tubes according to their contents and the anesthetic mixtures used. Experimental study].

    Science.gov (United States)

    de Santos, P; Castillo, J; Bogdanovich, A; Nalda, M A

    1989-01-01

    With the purpose of measuring pressure changes in the pneumatic cuffs of endotracheal tubes when the composition of the mixture of gases used for ventilation had to change for the same content, we designed a model of artificial respiration that consisted of a tube with a low pressure pneumatic cuff measuring 8.5 mm in inner diameter introduced in a replica of a human trachea, adjusted to two anesthetic bags. The cuff valve was connected to a pressure transducer by a three-ended stopcock and, after aspiration of its content, it was inflated with air, saline or nitrous oxide and oxygen at 60% up to a basal pressure of 20 mmHg. The tube was connected to a respirator adjusted to inflate 10 l/min at a rate of 15 insufflations/min of: oxygen 100% for 5 minutes, then nitrous oxide and oxygen at 60% for 30 minutes and oxygen 100% again for 15 minutes. When inflating the pneumatic cuff with air and ventilating with nitrous oxide and oxygen at 60%, its pressure reached a maximum mean value of 58 mmHg (190% with respect to base values). When insufflating with saline and ventilating in the same conditions, pressure reached a maximum mean value of 33 mmHg (65% with respect to base values). When the pneumatic cuff was inflated with nitrous oxide and oxygen at 60%, important changes in pressure were observed when the characteristics of the inspired gases were modified. We conclude that some method for monitoring pneumatic cuff pressure should be systematized.

  4. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity.

    Science.gov (United States)

    Jacoby, Elad; Nguyen, Sang M; Fountaine, Thomas J; Welp, Kathryn; Gryder, Berkley; Qin, Haiying; Yang, Yinmeng; Chien, Christopher D; Seif, Alix E; Lei, Haiyan; Song, Young K; Khan, Javed; Lee, Daniel W; Mackall, Crystal L; Gardner, Rebecca A; Jensen, Michael C; Shern, Jack F; Fry, Terry J

    2016-07-27

    Adoptive immunotherapy using chimeric antigen receptor (CAR) expressing T cells targeting the CD19 B lineage receptor has demonstrated marked success in relapsed pre-B-cell acute lymphoblastic leukaemia (ALL). Persisting CAR-T cells generate sustained pressure against CD19 that may drive unique mechanisms of resistance. Pre-B ALL originates from a committed pre-B cell or an earlier progenitor, with potential to reprogram into other hematopoietic lineages. Here we report changes in lineage markers including myeloid conversion in patients following CD19 CAR therapy. Using murine ALL models we study the long-term effects of CD19 CAR-T cells and demonstrate partial or complete lineage switch as a consistent mechanism of CAR resistance depending on the underlying genetic oncogenic driver. Deletion of Pax5 or Ebf1 recapitulates lineage reprogramming occurring during CD19 CAR pressure. Our findings establish lineage switch as a mechanism of CAR resistance exposing inherent plasticity in genetic subtypes of pre-B-cell ALL.

  5. Free Piston Double Diaphragm Shock Tube

    OpenAIRE

    OGURA, Eiji; FUNABIKI, Katsushi; SATO, Shunichi; Abe, Takashi; 小倉, 栄二; 船曳, 勝之; 佐藤, 俊逸; 安部, 隆士

    1997-01-01

    A free piston double diaphragm shock tube was newly developed for generation of high Mach number shock wave. Its characteristics was investigated for various operation parameters; such as a strength of the diaphragm at the end of the comparession tube, an initial pressure of low pressure tube, an initial pressure of medium pressure tube and the volume of compression tube. Under the restriction of fixed pressures for the driver high pressure tube (32×10^5Pa) and the low pressure tube (40Pa) in...

  6. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    Science.gov (United States)

    Kabeel, A. E.; Abdelgaied, Mohamed

    2016-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  7. Topical negative pressure therapy Recent experience of the department of plastic surgery at Ibn Sina University Hospital, Rabat, Morocco

    Directory of Open Access Journals (Sweden)

    Abdelmoughit Echchaoui

    2014-12-01

    Full Text Available IntroductionThe topical negative pressure therapy (TNP is a non-invasive method to treat chronic and acute wounds locally, using a continuous or intermittent negative pressure.The objective of this study is to present the first experience of this type of treatment used in clinical cases in our department. By presenting these cases, we highlight indication and efficiency of this new technique applied in relatively complicated situations, at the same time it also allows a significant improvement in treating injuries and chronic wounds.Materials and methodsIn this study, we present the recent experience of the Department of Reconstructive and Plastic Surgery of the University Hospital Center of Avicenne in Rabat. This therapy was used for the first time this year (in 2014, in three young patients who presented with chronic wounds associated with local and general factors that are unfavorable for the healing process.ResultsIn all three of our cases we obtained highly satisfactory clinical results.TNP allows wounds to bud in a shorter time, as well as a fast healing by second intention due to controlled wound healing or split-skin graft without using flaps. This enables to decrease the margin of error, the time and the number of dressing replacements, and to reduce the length of hospital stay.ConclusionThis is an expensive and specific equipment. However, the cost-benefit ratio analysis shows that it is an essential method that should be part of our therapeutic strategies.Keywords: loss of substance, negative pressure, budding, healing.  

  8. Study of atmospheric pressure weakly ionized plasma as surface compatibilization technique for improved plastic composites loaded with cellulose based fillers

    Science.gov (United States)

    Lekobou, William Pimakouon

    Atmospheric pressure plasmas have gained considerable interest from researchers recently for their unique prospective of engineering surfaces with plasma without the need of vacuum systems. They offer the advantage of low energy consumption, minimal capital cost and their simplicity as compared to conventional low pressure plasmas make them easy to upscale from laboratory to industry size. The present dissertation summarizes results of our attempt at applying atmospheric pressure weakly ionized plasma (APWIP) to the engineering of plastic composites filled with cellulose based substrates. An APWIP reactor was designed and built based on a multipoint-to-grounded ring and screen configurations. The carrier gas was argon and acetylene serves as the precursor molecule. The APWIP reactors showed capability of depositing plasma polymerized coating rich in carbon on substrates positioned within the electrode gap as well as downstream of the plasma discharge into the afterglow region. Our findings show that films grow by forming islands which for prolonged deposition time grow into thin films showing nodules, aggregates of nodules and microspheres. They also show chemical structure similar to films deposited from hydrocarbons with other conventional plasma techniques. The plasma polymerized deposits were used on substrates to modify their surface properties. Results show the surface of wood veneer and wood flour can be finely tuned from hydrophilic to hydrophobic. It was achieved by altering the topography of the surfaces along with their chemical composition. The wettability of wood veneer was investigated with contact angle measurements on capacitive drops and the capillary effect was utilized to assess surface properties of wood flour exposed to the discharges.

  9. Safety and reliability of the sealing cuff pressure of the Microcuff pediatric tracheal tube for prevention of post-extubation morbidity in children: A comparative study

    Directory of Open Access Journals (Sweden)

    Roshdi Roshdi Al-Metwalli

    2014-01-01

    Full Text Available Objectives: The objective of this study is to evaluate the efficacy and safety of sealing pressure as an inflation technique of the Microcuff pediatric tracheal cuffed tube. Materials and Methods: A total of 60 children were enrolled in this study. After induction of anesthesia and intubation with Microcuff pediatric tracheal tube, patients were randomly assigned, to one of the three groups. Control group (n = 20 the cuff was inflated to a cuff pressure of 20 cm H 2 O; sealing group (n = 20 the cuff was inflated to prevent the air leak at peak airway pressure of 20 cm H 2 O and the finger group (n = 20 the cuff was inflated to a suitable pressure using the finger estimation. Tracheal leak, incidence and severity of post-extubation cough, stridor, sore throat and hoarseness were recorded. Results: The cuff pressure as well as the volume of air to fill the cuff was significantly low in the sealing group when compared with the control group (P < 0.001; however, their values were significantly high in the finger group compared with both the control and the sealing group (P < 0.001. The incidence and severity of sore throat were significantly high in the finger group compared with both the control and the sealing group (P = 0.0009 and P = 0.0026. Three patients in the control group developed air leak around the endotracheal tube cuff. The incidence and severity of other complications were similar in the three groups. Conclusion: In pediatric N 2 O, free general anesthesia using Microcuff pediatric tracheal tub, sealing cuff pressure is safer than finger palpation technique regarding post-extubation morbidities and more reliable than recommended safe pressure in prevention of the air leak.

  10. Endotracheal tube resistance and inertance in a model of mechanical ventilation of newborns and small infants-the impact of ventilator settings on tracheal pressure swings.

    Science.gov (United States)

    Hentschel, Roland; Buntzel, Julia; Guttmann, Josef; Schumann, Stefan

    2011-09-01

    Resistive properties of endotracheal tubes (ETTs) are particularly relevant in newborns and small infants who are generally ventilated through ETTs with a small inner diameter. The ventilation rate is also high and the inspiratory time (ti) is short. These conditions effectuate high airway flows with excessive flow acceleration, so airway resistance and inertance play an important role. We carried out a model study to investigate the impact of varying ETT size, lung compliance and ventilator settings, such as peak inspiratory pressure (PIP), positive end expiratory pressure (PEEP) and inspiratory time (ti) on the pressure-flow characteristics with respect to the resistive and inertive properties of the ETT. Pressure at the Y piece was compared to direct measurement of intratracheal pressure (P(trach)) at the tip of the ETT, and pressure drop (ΔP(ETT)) was calculated. Applying published tube coefficients (Rohrer's constants and inertance), P(trach) was calculated from ventilator readings and compared to measured P(trach) using the root-mean-square error. The most relevant for ΔP(ETT) was the ETT size, followed by (in descending order) PIP, compliance, ti and PEEP, with gas flow velocity being the principle in common for all these parameters. Depending on the ventilator settings ΔP(ETT) exceeded 8 mbar in the smallest 2.0 mm ETT. Consideration of inertance as an additional effect in this setting yielded a better agreement of calculated versus measured P(trach) than Rohrer's constants alone. We speculate that exact tracheal pressure tracings calculated from ventilator readings by applying Rohrer's equation and the inertance determination to small size ETTs would be helpful. As an integral part of ventilator software this would (1) allow an estimate of work of breathing and implementation of an automatic tube compensation, and (2) be important for gentle ventilation in respiratory care, especially of small infants, since it enables the physician to estimate

  11. Irradiation creep and density changes observed in MA957 pressurized tubes irradiated to doses of 40-110 dpa at 400-750 °C in FFTF

    Science.gov (United States)

    Toloczko, M. B.; Garner, F. A.; Maloy, S. A.

    2012-09-01

    An irradiation creep and swelling study was performed on tubing constructed from the yttrium/titanium oxide dispersion strengthened (ODS) ferritic steel MA957. As a result of the reduction operations during manufacture, the grains in the tubing were highly elongated in the direction of the tubing longitudinal axis. Pressurized creep tubes were irradiated in the Fast Flux Test Facility (FFTF) to doses ranging from 40 dpa to 110 dpa at target temperatures ranging from 400 to 750 °C. The diametral strains produced during irradiation exhibit primary (transient) creep strains that are dependent on stress and increase with irradiation temperature and are followed by a temperature-independent steady-state creep rate of ˜0.75 × 10-6 (MPa dpa)-1, a value similar to that of traditional tempered ferritic/martensitic steels. Contributions to primary creep strains may arise not only from classical thermal creep or irradiation creep considerations, but also may result from an irradiation-stimulated growth process whereby the highly elongated grain structure shrinks somewhat in the elongated direction, reducing the tubing aspect ratio to produce slightly fatter grains and thereby increasing the tube diameter. One manifestation of this process is a change in tube diameter that is not accompanied by a density change characteristic of either void swelling or precipitation-induced changes in lattice parameter. These results provide the first demonstration that resistance to irradiation creep can be extended to higher temperatures by dispersoid addition, and most importantly, this resistance is maintained to high radiation damage levels at least for temperatures of 600 °C or less.

  12. Experimental investigation of syngas flame stability using a multi-tube fuel injector in a high pressure combustor

    Science.gov (United States)

    Maldonado, Sergio Elzar

    Over 92% of the coal consumed by power plants is used to generate electricity in the United States (U.S.). The U.S. has the world's largest recoverable reserves of coal, it is estimated that reserves of coal will last more than 200 years based in current production and demand levels. Integrated Gasification Combined Cycle (IGCC) power plants aim to reduce the amount of pollutants by gasifying coal and producing synthesis gas. Synthesis gas, also known as syngas, is a product of coal gasification and can be used in gas turbines for energy production. Syngas is primarily a mixture of hydrogen and carbon monoxide and is produced by gasifying a solid fuel feedstock such as coal or biomass. The objective of the thesis is to create a flame stability map by performing various experiments using high-content hydrogen fuels with varying compositions of hydrogen representing different coal feedstocks. The experiments shown in this thesis were performed using the High-Pressure Combustion facility in the Center for Space Exploration Technology Research (CSETR) at the University of Texas at El Paso (UTEP). The combustor was fitted with a novel Multi-Tube fuel Injector (MTI) designed to improve flame stability. This thesis presents the results of testing of syngas fuels with compositions of 20, 30, and 40% hydrogen concentrations in mixtures with carbon monoxide. Tests were completed for lean conditions ranging from equivalence ratios between 0.6 and 0.9. The experimental results showed that at an equivalence ratio of 0.6, a stable flame was not achieved for any of the fuel mixtures tested. It was also observed that the stability region of the syngas flame increased as equivalence ratio and the hydrogen concentration in syngas fuel increases with the 40% hydrogen-carbon monoxide mixture demonstrating the greatest stability region. Design improvements to the MTI are also discussed as part of the future work on this topic.

  13. 管内高压智能封堵机器人%The In-tube Pressurized Intelligent Plugging Robot

    Institute of Scientific and Technical Information of China (English)

    刘华洁; 张策; 张仕民; 朱吉祥

    2013-01-01

    为满足国内管道快速维修的需要,开展了管道智能封堵技术研究.在介绍管内智能封堵机器人的封堵作业流程后,描述了封堵机器人的结构组成,包括双向清管式封堵单元、远程控制系统和地面控制中心,给出了主要技术参数.随后简要介绍和分析了封堵机器人的性能试验情况,包括通过性能试验、双向通信和压力试验以及解封试验.试验证明封堵机器人可在一段管道内实现多次封堵和解堵作业,大大缩短管道停输时间,且操作简单,封堵性能良好,能够封堵20MPa的高压,无渗漏.该智能封堵机器人的研制成功为国内管道维抢修技术提供了补充.%To meet the domestic needs of fast maintenance ot pipeline,research on the plugging technology ofpipeline was conducted.The paper first introduces the plugging process of in-tube intelligent plugging robot,describes the structural composition of the robot,including two-way pigging plugging unit,remote control system and ground control center,and offers the main technological parameters.Then,it briefly introduces and analyzes the performance test of the robot,including passage capacity test,two-way communication,pressure test and plug re-moval test.The tests have proved that the robot can achieve multiple plugging and plug removal operations in a sec-tion of pipeline.This remarkably shortens the pipeline shutdown time.The operation is simple and the plugging per-formance is desirable.The robot can plug as high as 20 MPa pressure with no leakage.The successful developmentof the robot serves as a supplementation for domestic pipeline maintenance technology.

  14. Tube bending on the roll machine

    Science.gov (United States)

    Nepershin, Rostislav I.

    2013-10-01

    Computer simulation of the elastic-plastic tube bending by pushing on three-roll machine with work hardening effect consideration is presented. Non-steady tube bending process for specified curvature is simulated with axis of bending roll displacement, followed by transfer to the steady-state bending process. Estimation of curvature, constrained by tube section elliptical distortion modeled by plastic hinge mechanism is given. Elastic-plastic bending moment versus curvature and critical curvature estimation reasonably correlated with experiments.

  15. Diagnostic technology for degradation of feeder pipes and fuel channels in CANDU reactor; development of aging assessment technology for CANDU pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Yun Jae; Huh, Nam Su; Kwak, Sang Log; Lee, Kyu Ho [Sungkyunkwan University, Seoul (Korea)

    2002-04-01

    This research project attempts to resolve two issues related to integrity assessment of CANDU pressure tubes; (1) FE analysis of blister formation and growth, and (2) engineering estimation scheme to predict creep deflection of pressure tubes. Results for blister formation and growth can be summarised as follows. Comparing the results from the FE analysis, developed within this project, with experimental data shows some differences ranging from 10-57%. Such difference results from two possible sources. One source is neglecting two phase diffusion. The present FE analysis considers only single phase diffusion, and thus blister growth can not be accurately modeled. The other source would be inherent errors associated with experimental measurement. Thus it has been concluded that further efforts should be made on two phase diffusion modeling. For developing mechanistic model of creep deflection, the proposed reference stress based model is simple to use. Extensive validation against creep FE results shows that the proposed model is also quite accurate. More important aspect of the proposed method is that it can be easily generalized to more complex problems. Thus it is believed that the present results provide a sound basis for sagging assessment of CANDU pressure tubes. 16 refs., 12 figs., 6 tabs. (Author)

  16. High Pressure Pneumatic Forming of Ti-3Al-2.5V Titanium Tubes in a Square Cross-Sectional Die

    Directory of Open Access Journals (Sweden)

    Gang Liu

    2014-08-01

    Full Text Available A new high strain rate forming process for titanium alloys is presented and named High Pressure Pneumatic Forming (HPPF, which might be applicable to form certain tubular components with irregular cross sections with high efficiency, both with respect to energy cost and time consumption. HPPF experiments were performed on Ti-3Al-2.5V titanium alloy tubes using a square cross-sectional die with a small corner radius. The effects of forming of pressure and temperature on the corner filling were investigated and the thickness distributions after the HPPF processes at various pressure levels are discussed. At the same time, the stress state, strain and strain rate distribution during the HPPF process were numerically analyzed by the finite element method. Microstructure evolution of the formed tubes was also analyzed by using electron back scattering diffraction (EBSD. Because of different stress states, the strain and strain rate are very different at different areas of the tube during the corner filling process, and consequently the microstructure of the formed component is affected to some degree. The results verified that HPPF is a potential technology to form titanium tubular components with complicated geometrical features with high efficiency.

  17. Functional analyses reveal extensive RRE plasticity in primary HIV-1 sequences selected under selective pressure.

    Directory of Open Access Journals (Sweden)

    Francesc Cunyat

    Full Text Available HIV-1 Rev response element (RRE is a functional region of viral RNA lying immediately downstream to the junction of gp120 and gp41 in the env coding sequence. The RRE is essential for HIV replication and binds with the Rev protein to facilitate the export of viral mRNA from nucleus to cytoplasm. It has been suggested that changes in the predicted secondary structure of primary RRE sequences impact the function of the RREs; however, functional assays have not yet been performed. The aim of this study was to characterize the genetic, structural and functional variation in the RRE primary sequences selected in vivo by Enfuvirtide pressure.Multiple RRE variants were obtained from viruses isolated from patients who failed an Enfuvirtide-containing regimen. Different alterations were observed in the predicted RRE secondary structures, with the abrogation of the primary Rev binding site in one of the variants. In spite of this, most of the RRE variants were able to bind Rev and promote the cytoplasmic export of the viral mRNAs with equivalent efficiency in a cell-based assay. Only RRE45 and RRE40-45 showed an impaired ability to bind Rev in a gel-shift binding assay. Unexpectedly, this impairment was not reflected in functional capacity when RNA export was evaluated using a reporter assay, or during virus replication in lymphoid cells, suggesting that in vivo the RRE would be highly malleable.The Rev-RRE functionality is unaffected in RRE variants selected in patients failing an ENF-containing regimen. Our data show that the current understanding of the Rev-RRE complex structure does not suffice and fails to rationally predict the function of naturally occurring RRE mutants. Therefore, this data should be taken into account in the development of antiviral agents that target the RRE-Rev complex.

  18. Prompt improvement of a pressure ulcer by the administration of high viscosity semi-solid nutrition via a nasogastric tube in a man with tuberculosis: a case report

    Directory of Open Access Journals (Sweden)

    Hatsuda Kazuyoshi

    2010-01-01

    Full Text Available Abstract Introduction Semi-solid nutrition with high viscosity has the advantage of reducing gastroesophageal reflux and diarrhea and shortens the duration of administration compared with liquid nutrition. This is the first report describing the administration of semi-solid nutrition with high viscosity via a nasogastric tube, which achieved a remarkable improvement in the patient's nutritional state. Case presentation A 67-year-old man (mongoloid race, Japanese with tuberculosis, a pressure ulcer and malnutrition was admitted to our hospital. He also had right hemiplegia, dysphagia and aphasia as sequelae of a cerebral hemorrhage. Before his admission, he had been treated at another hospital with 600 kcal/day of liquid nutrition via a nasogastric tube, which was insufficient and induced severe malnutrition. After he was admitted to our hospital, we increased the quantity of his liquid nutrition without success because of complications, specifically diarrhea and gastroesophageal reflux. As it was difficult to confirm whether or not he would accept gastrostomy feeding, we administered semi-solid nutrition with high viscosity (20,000 mPa x s via a large-bore nasogastric tube (18 French. Soon after he was started on semi-solid nutrition, his pressure ulcer and malnutrition improved without diarrhea or complications accompanying the large-bore nasogastric tube. Conclusion When patients have problems with liquid nutrition, such as diarrhea or gastroesophageal reflux, semi-solid nutrition via a nasogastric tube is a useful method of achieving improvements in nutritional state in a short period of time.

  19. Accurate measurement of dispersion data through short and narrow tubes used in very high-pressure liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2015-09-04

    An original method is proposed for the accurate and reproducible measurement of the time-based dispersion properties of short Ldispersion in vHPLC; however, their dispersion characteristics cannot be accurately measured at such flow rates due to system dispersion contribution of vHPLC injector and detector. It is shown that using longer and wider tubes (>10μL) enables a reliable measurement of the dispersion data. We confirmed that the dimensionless plot of the reduced dispersion coefficient versus the reduced linear velocity (Peclet number) depends on the aspect ratio, L/rc, of the tube, and unexpectedly also on the diffusion coefficient of the analyte. This dimensionless plot could be easily obtained for a large volume tube, which has the same aspect ratio as that of the short and narrow tube, and for the same diffusion coefficient. The dispersion data for the small volume tube are then directly extrapolated from this plot. For instance, it is found that the maximum volume variances of 75μm×30.5cm and 100μm×30.5cm prototype finger-tightened connecting tubes are 0.10 and 0.30μL(2), respectively, with an accuracy of a few percent and a precision smaller than seven percent. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Dynamic earthquake sequence simulations with fault constitutive law accounting for brittle-plastic transition and pressure solution-precipitation creep

    Science.gov (United States)

    Noda, Hiroyuki; Shimamoto, Toshihiko

    2015-04-01

    Fault mechanical behavior is presumably dictated by a pressure-sensitive friction law in the brittle regime where cataclastic deformation dominates, and by a pressure-insensitive flow law in the plastic regime where milonytes are generated. A fault constitutive law in the transitional regime is of great importance in considering earthquake cycles as evidenced by field observations of repeating brittle and ductile deformations [e.g., Sibson 1980]. Shimamoto and Noda [2014] proposed an empirical method of connecting the friction law and the flow law without introducing a new parameter, and demonstrated 2-D dynamic earthquake sequence simulations for a strike-slip fault [e.g., Lapusta et al., 2000] with the friction-to-flow law. A logarithmic rate- and state-dependent friction law (aging law) and a rate- and state-dependent flow law (power law) [Noda and Shimamoto, 2010] with a quartzite steady-state flow law (power exponent n = 4) [Hirth et al., 2001] were adopted for the friction law and the flow law, respectively. Our numerical models are realization of conceptual fault models [e.g., Scholz, 1988]. "Christmas tree" stress profiles appear as a result of evolution of the system, and fluctuate with time. During the interseismic periods, creep fronts penetrated into the locked depth, slow slip events were generated, and then nucleation of dynamic rupture took place either in the shallower or deeper creeping region. The dynamic ruptures spanned the locked depth, reaching the ground surface and extending downwards even deeper than the depth of maximum pre-stress where the deformation mode was in the transitional regime preseismically where S-C mylonitic texture was expected [Shimamoto, 1989]. The coseismic deformation was in the frictional regime because the pure flow law predicts tremendously high flow stress at high strain rate and "the weaker wins". Our simulations reproduced repeating overprint of brittle and ductile deformations. We attempt here to include pressure

  1. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    Science.gov (United States)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-10-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  2. Development of Bundle Position-Wise Linear Model for Predicting the Pressure Tube Diametral Creep in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Yong [Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of); Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)

    2011-08-15

    Diametral creep of the pressure tube (PT) is one of the principal aging mechanisms governing the heat transfer and hydraulic degradation of a heat transport system. PT diametral creep leads to diametral expansion that affects the thermal hydraulic characteristics of the coolant channels and the critical heat flux. Therefore, it is essential to predict the PT diametral creep in CANDU reactors, which is caused mainly by fast neutron irradiation, reactor coolant temperature and so forth. The currently used PT diametral creep prediction model considers the complex interactions between the effects of temperature and fast neutron flux on the deformation of PT zirconium alloys. The model assumes that long-term steady-state deformation consists of separable, additive components from thermal creep, irradiation creep and irradiation growth. This is a mechanistic model based on measured data. However, this model has high prediction uncertainty. Recently, a statistical error modeling method was developed using plant inspection data from the Bruce B CANDU reactor. The aim of this study was to develop a bundle position-wise linear model (BPLM) to predict PT diametral creep employing previously measured PT diameters and HTS operating conditions. There are twelve bundles in a fuel channel and for each bundle, a linear model was developed by using the dependent variables, such as the fast neutron fluxes and the bundle temperatures. The training data set was selected using the subtractive clustering method. The data of 39 channels that consist of 80 percent of a total of 49 measured channels from Units 2, 3 and 4 were used to develop the BPLM models. The remaining 10 channels' data were used to test the developed BPLM models. The BPLM was optimized by the maximum likelihood estimation method. The developed BPLM to predict PT diametral creep was verified using the operating data gathered from the Units 2,3 and 4 in Korea. Two error components for the BPLM, which are the

  3. Ultrasonic water level determination of the high-pressure boilers tubes; Determinacao do nivel d'agua em tubos verticais de caldeiras aquatubulares por ultra-som

    Energy Technology Data Exchange (ETDEWEB)

    Goettems, Felipe Samuel; Reolon, Amon Marques; Avancini, Flavio; Braga, Rubem Manoel de; Reguly, Afonso [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Lab. de Metalurgia Fisica], e-mail: fgoettems@demet.ufrgs.br

    2006-07-01

    Electric power is very important to our society and thermoelectric power plant. They are especially important mainly in the summer when there is a scarcity in water supply to hydroelectric power plants. Southern Brazilian thermoelectric power plants employ high-pressure boilers in order to generate water vapor which, in turn, moves turbines to produce electricity. These high-pressure boilers must work in a continuous way to avoid damages caused by emergency halts. To accomplish this, some actions must be taken. The water height inside of the tubes must be kept in a strict level to avoid thermal gradient in both water walls and super-heater header. In this water walls the water become in vapor. The best way to regulate the valves that command the water level is through the control of the water height and this is the main purpose of this work. The ultrasound is a nondestructive test which is able in doing this control without damaging the tube. This method allows determining the water level, improving the system performance and reducing the maintenance costs caused by tube collapse. (author)

  4. THE INSIDE PRESSURE OF STENT TUBE ON CHOLEDOCO-JEJUNOSTOMY SCAR: A STUDY ON SCAR TISSUE COLLAGEN

    Institute of Scientific and Technical Information of China (English)

    郭善禹; 周林斌; 姚德成; 孙建民

    2002-01-01

    Objective As the beneficial effect to the skin scar under external bandage compression, intra-choledocal stent must have the same effect on splanchnic scar formation. The experiment consists to work out the time optimum to yield a minimum scar formation. Methods By means of transmitting electronic microscope (TEM), computer assisted three-dimensional morphometry (CAM), and biochemical analysis to determine the extracellular collagen volume density (ECVD) and biochemical collagen content (BCC), to analyze the ultrastructure and components within scar tissues removed from the specimens in 3 groups of experimental animals were detailed. Results In the animals of simple choledoco-jejunostomy (CJ) group, active scar proliferation was seen in all specimens excised within one year after operation. In the stent group, decreasing collagen fibers arranged in orientation began to appear in the 6-month specimens and scar maturation existed in the 9- and 12-month specimens. In periodic tube withdrawal group, 3 months following tube ablation, scar proliferation recurred in the 6th month tube retaining animals, whereas scar maturation without recurrence happened in animals following 9 to 12 months tube retaining. Conclusion 9~12 months of tube stent is necessary for stable scar maturation.

  5. Comparison of the cuff pressure of a TaperGuard endotracheal tube and a cylindrical endotracheal tube after lateral rotation of head during middle ear surgery: A single-blind, randomized clinical consort study.

    Science.gov (United States)

    Choi, Eunkyung; Park, Yongmin; Jeon, Younghoon

    2017-03-01

    Positional change affects the cuff pressure of an endotracheal tube (ETT) in treacheally intubated patients. We compared the cuff pressure of a TaperGuard ETT and a cylindrical ETT after lateral rotation of head during middle ear surgery. Fifty-two patients aged 18-70 years underwent a tympanomastoidectomy under general anesthesia were randomly allocated to receive endotracheal intubation with cylindrical (group C, n = 26) or TaperGuard ETTs (group T, n = 26). After endotracheal intubation, the ETT cuff pressure was set at 22 cmH2O in the neutral position of head. After lateral rotation of head, the cuff pressure was measured again and readjusted to 22 cmH2O. In addition, the change of distance from the carina to the tip of the ETT was measured before and after the positional change. The incidence of cough, sore throat, and hoarseness was assessed at 30 minutes, 6 hours, and 24 hours after surgery. There was no difference in demographic data between groups. After lateral rotation of head, the cuff pressure significantly increased in group T (11.9 ± 2.3 cmH2O) compared with group C (6.0 ± 1.9 cmH2O) (P pressure >30 cmH2O was higher in group T (96.2%) than in group C (30.8%) (P sore throat, hoarseness, and cough at 30 minutes, 6 hours, and 24 hours after surgery were comparable between two groups. The cuff pressure was higher in the TaperGuard ETT than in the cylindrical ETT after positional change of head from neutral to lateral rotation. In addition, after a positional change, the extent of displacement of ETT was greater in the TaperGuard ETT than in the cylindrical ETT.

  6. Plastic casting resin poisoning

    Science.gov (United States)

    ... the stool Heart and blood vessels Low blood pressure (develops rapidly) Collapse Skin Irritation Burns Holes in the skin or ... signs, including temperature, pulse, breathing rate, and blood pressure. ... oxygen, a tube through the mouth into the throat, and a ...

  7. Investigation of the effects of baffle orientation, baffle cut and fluid viscosity on shell side pressure drop and heat transfer coefficient in an e-type shell and tube heat exchanger

    OpenAIRE

    Mohammadi, Koorosh

    2011-01-01

    The commercial CFD code FLUENT is used to determine the effect of baffle orientation and baffle cut as well as viscosity of the working fluid on the shell-side heat transfer and pressure drop of a shell and tube heat exchanger. The shell and tube heat exchangers considered follow the TEMA standards. The investigation has been completed in three stages: 1. The shell and tube heat exchanger consists of 660 plain tubes with fixed outside diameter which are arranged in a triangular layout. Hor...

  8. Improvement of life and NO{sub x} emission of radiant tube heating system by elastic-plastic creep analysis; Dansosei kuripu kaiseki ni yoru hosha dennetsukan kanetsu shisutemu no jumyo to NO{sub x} haishutsuryo no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuguhiko; Nuta, Kunihiro [Kawasaki Steel Corp., Okayama, (Japan). Mizushima Warks

    1999-03-10

    The radiant tube heating system has been widely applied to the furnaces which require isolation of the heating atmosphere from the combustion atmosphere. However, the conventional system has a short life and it is difficult to reduce NO{sub x} emission when it is used at a high furnace temperature under high combustion load, because the fuel is burned in a small space. In order to solve this problem, we have studied the cause of radiant tube life depends on the uniformity of the temperature distribution along the radiant tube. We have developed a new burner using a two-stage combustion method with exhaust gas self-recirculation. As a result, the file of the new system has been increased by a factor of two or more, and NO{sub x} emission has been reduced by 20 % from previous levels. This paper presents an outline of the elastic-plastic creep analysis and the new burner, and describes the effect of its use on system life. (author)

  9. Ear Tubes

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media ... and throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through ...

  10. Study on Production Method of Electric Detonator Insulation Plastic Head by Reusing of Waste High-pressure Polyethylene%废高压聚乙烯循环利用生产电雷管绝缘塑头的方法研究

    Institute of Scientific and Technical Information of China (English)

    李树彬; 陈良友

    2013-01-01

    The production method of electric detonator insulation plastic head by reusing of detonating tube via crushing, digestion, rinse and drying was studied. Through adding liquid additive X in waste high-pressure polyethylene, replacing small discharge duct of injection molding machine, installing micro mixer in the injection molding machine, melting point index of treated plastic reached to 1.85 g / 10 min, tensile strength was12 MPa, melting temperature was 110 ℃, injection temperature was 188 ℃.So the treated plastic can be used to produce safe and reliable electric detonator insulation plastic head.%  研究了废导爆管经粉碎、蒸煮、漂洗、烘干生产电雷管绝缘塑头的方法.采用在废高压聚乙烯中加入液体添加剂X、更换注塑机狭小的下料管、在注塑机上安装微型搅拌机等方法,使废塑料的熔点指数达到1.85 g/10 min,拉伸强度12 MPa,熔化温度110℃,注塑温度188℃,使废塑料安全、可靠的生产电管雷绝缘塑头.

  11. Compact exhaust gas boilers. Investigation of heat transfer and pressure drop for serrated finned tubes. (Abbreviated edition); Kompakte avgasskjeler. Undersoekelse av varmeovergang og trykktap for serraterte finnede roer. (Forkortet utgave.)

    Energy Technology Data Exchange (ETDEWEB)

    Midtbust, H.O.; Naess, E.

    1995-07-03

    This report discusses investigations of pressure drops and heat transfer in cross-current flow of gases (air) on bundles of serrated finned tubes. For the various geometries the tube spacing and tube diameter varied while the geometry of the fins remained unchanged. Pressure drop and heat transfer were measured at six different air flows for each geometry, and the results compared with available correlations from the literature. The measurements are at variance with the correlations and indicate that the pressure loss coefficient for all the tested geometries are less influenced by the flow conditions (air speed) than predicted by the correlations. Compared with the correlation recommended by the tube supplier (Weierman`s correlation) the measured results are mostly somewhat higher than predicted for the larger air flows. The maximum observed deviation is 70%. The deviation between the published pressure loss correlations is also considerable. The heat transfer measurements agree qualitatively with the published correlations with respect to the flow conditions. Comparison with the heat transfer correlation recommended by the tube supplier indicates that the correlation over-predicts the heat transfer quite considerably. The deviation increases systematically with reduced tube diameter and with increased angle of the tube arrangement. 16 figs., 7 tabs.

  12. Heat transfer and pressure drop comparison of louver- and plain-finned heat exchangers where one fluid passes through flattened tubes

    Directory of Open Access Journals (Sweden)

    J.M. Gorman

    2015-03-01

    Full Text Available Louvered fins constitute a major methodology for heat transfer enhancement. Of critical significance in evaluating the worthiness of such fins is the comparison between the heat transfer and pressure drop for a thus-finned heat exchanger with the baseline case of a counterpart plain-finned heat exchanger. Up to the present, it appears that such comparisons are confined to heat exchangers in which one of the participating fluids passes through circular tubes. In another basic geometry in which louvered fins have been employed, the aforementioned participating fluid passes through flattened tubes which are virtually rectangular in cross section. The focus of the present paper is to obtain results for the latter basic geometry for both louver-fin-based heat exchangers and counterpart plain-fin-based heat exchangers. The results were obtained by means of numerical simulation over a range of Reynolds numbers spanning approximately a factor of five. Over this range, enhancements of the heat transfer rate ranged from factors of approximately 2.2–2.8. Over this same Reynolds number range, the pressure drop increased by factors of 2.3–3.6. This outcome is attributable to the fact that the rate of heat transfer is less sensitive to the velocity than is the pressure drop.

  13. The analysis of the bending stiffness and intensity of cylindrical tubes

    Institute of Scientific and Technical Information of China (English)

    SONG YuQuan; GUAN ZhiPing; NIE YuQin; GUAN XiaoFang

    2007-01-01

    Based on the mechanics of material, the bending stiffness and intensity of cylindrical bar and tube are analyzed. By comparing the cylindrical tube whose ratio of outside diameter to internal diameter is 0.7 with the cylindrical bar, it is concluded that when both of them have the same mass, the section stiffness of the cylindrical tube is three times that of the cylindrical bar; when both of them have the same external diameter, the mass of the cylindrical tube is only 1/2 that of the cylindrical bar, but the section stiffness of the cylindrical tube is 3/4 that of the cylindrical bar.By virtue of the elemental elastic-plastic theory, the yield stress of the liquid-filled cylindrical tube is investigated. Due to the incompressibility of liquid and the strain hardening effect of material, the yield stress of the liquid-filled tube is enlarged compared with the hollow tube, thus raising its bending intensity. Under the dynamic load, compared with the hollow tube, the impact resistance of the liquid-filled tube is also raised due to elastic recovery. Because the hydraulic pressures perpendicular to the inner surface are identical everywhere, the local stress concentration resulting from the ovalisation of the tube would be decreased, and the resistance to buckling would be improved.

  14. The analysis of the bending stiffness and intensity of cylindrical tubes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the mechanics of material,the bending stiffness and intensity of cylin-drical bar and tube are analyzed. By comparing the cylindrical tube whose ratio of outside diameter to internal diameter is 0.7 with the cylindrical bar,it is concluded that when both of them have the same mass,the section stiffness of the cylindrical tube is three times that of the cylindrical bar;when both of them have the same external diameter,the mass of the cylindrical tube is only 1/2 that of the cylindrical bar,but the section stiffness of the cylindrical tube is 3/4 that of the cylindrical bar. By virtue of the elemental elastic-plastic theory,the yield stress of the liquid-filled cylindrical tube is investigated. Due to the incompressibility of liquid and the strain hardening effect of material,the yield stress of the liquid-filled tube is enlarged compared with the hollow tube,thus raising its bending intensity. Under the dy-namic load,compared with the hollow tube,the impact resistance of the liquid-filled tube is also raised due to elastic recovery. Because the hydraulic pressures per-pendicular to the inner surface are identical everywhere,the local stress concen-tration resulting from the ovalisation of the tube would be decreased,and the re-sistance to buckling would be improved.

  15. Experimental Study on Heat Transfer and Pressure Drop Characteristics of Four Types of Plate Fin-and-Tube Heat Exchanger Surfaces

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    In this paper,air side heat transfer and pressure drop characteristics of twelve three-row plate fin-and-tube heat exchanger cores of four types of fin configurations have been experimentally investigated .The heat transfer and friction factor correlations for the twelve cores are provided in a wide range of Reynolds number.It is found that in the range of Reynolds number tested.the Nusselt number of the slotted fin surface is the largest and that of the plain plate fin is the lowest while the Nusselt numbers of two types of wavy fins are somewhere in between.

  16. A randomized prospective controlled trial comparing the laryngeal tube suction disposable and the supreme laryngeal mask airway: the influence of head and neck position on oropharyngeal seal pressure.

    Science.gov (United States)

    Somri, Mostafa; Vaida, Sonia; Fornari, Gustavo Garcia; Mendoza, Gabriela Renee; Charco-Mora, Pedro; Hawash, Naser; Matter, Ibrahim; Swaid, Forat; Gaitini, Luis

    2016-10-06

    The Laryngeal Tube Suction Disposable (LTS-D) and the Supreme Laryngeal Mask Airway (SLMA) are second generation supraglottic airway devices (SADs) with an added channel to allow gastric drainage. We studied the efficacy of these devices when using pressure controlled mechanical ventilation during general anesthesia for short and medium duration surgical procedures and compared the oropharyngeal seal pressure in different head and-neck positions. Eighty patients in each group had either LTS-D or SLMA for airway management. The patients were recruited in two different institutions. Primary outcome variables were the oropharyngeal seal pressures in neutral, flexion, extension, right and left head-neck position. Secondary outcome variables were time to achieve an effective airway, ease of insertion, number of attempts, maneuvers necessary during insertion, ventilatory parameters, success of gastric tube insertion and incidence of complications. The oropharyngeal seal pressure achieved with the LTS-D was higher than the SLMA in, (extension (p=0.0150) and right position (p=0.0268 at 60 cm H2O intracuff pressures and nearly significant in neutral position (p = 0.0571). The oropharyngeal seal pressure was significantly higher with the LTS-D during neck extension as compared to SLMA (p= 0.015). Similar oropharyngeal seal pressures were detected in all other positions with each device. The secondary outcomes were comparable between both groups. Patients ventilated with LTS-D had higher incidence of sore throat (p = 0.527). No major complications occurred. Better oropharyngeal seal pressure was achieved with the LTS-D in head-neck right and extension positions , although it did not appear to have significance in alteration of management using pressure control mechanical ventilation in neutral position. The fiberoptic view was better with the SLMA. The post-operative sore throat incidence was higher in the LTS-D. ClinicalTrials.gov ID: NCT02856672 , Unique

  17. Achieving a Safe Endotracheal Tube Cuff Pressure in the Prehospital Setting: Is It Time to Revise the Standard Cuff Inflation Practice?

    Science.gov (United States)

    Carhart, Elliot; Stuck, Logan H; Salzman, Joshua G

    2016-01-01

    Numerous studies have reported unsafe endotracheal tube (ETT) cuff pressures (CP) in the prehospital environment. The purpose of this study was to identify an optimal cuff inflation volume (CIV) to achieve a safe CP (20-30 cmH2O). This observational study utilized 30 recently harvested ovine tracheae, which were warmed from refrigeration in a water bath at 85°F prior to testing. Each trachea was intubated with five different ETT sizes (6.0-8.0 mm), and each size tube was tested with six cuff inflation volumes (5-10 cc). The order of ETT size for each trachea and CIV for each size ETT was randomly pre-assigned. Data were descriptively summarized and categorized before mixed-effects logistic regression was used to determine optimal CIV. Only 113 CP measurements (12.6%, N = 900) were within the optimal range (M = 54.75 cmH2O, SD = 38.52), all of which resulted from a CIV 6 or 7 cc (61% and 39%, respectively). CIVs of 5 cc (n = 150) resulted in underinflation (30 cmH2O) in all instances, regardless of ETT size. The odds of achieving a safe CP were greater with CIV of 6 cc for tube sizes 6.0 (OR = 15.9, 95% CI = 3.85-65.58, p safe CP between CIV of 6 and 7 cc for tube sizes 7.0, 7.5, or 8.0 mm. Neither trachea circumference (M = 7.11 cm, SD = 0.40), nor tissue temperature (M = 81.32°F, SD = 0.93) were found to be significant predictors of CP (p = 0.20 and 0.81, respectively). Our study showed a high frequency of CP measurements outside of the desired norms. The CIV range of 6-7 cc resulted in the highest likelihood of achieving the desired cuff pressure range, while cuffs inflated with 8-10 cc resulted in dangerously high CPs in all instances. In the absence of a more ideal solution, the results of this study suggest that narrowing the recommended CIV from 5-10 cc to 6-7 cc might be a reasonable target for any tube size.

  18. Effect of the sequence of tube rolling in a tube bundle of a shell and tube heat exchanger on the stress-deformed state of the tube sheet

    Science.gov (United States)

    Tselishchev, M. F.; Plotnikov, P. N.; Brodov, Yu. M.

    2015-11-01

    Rolling the tube sheet of a heat exchanger with U-shaped tubes, as exemplified by the vapor cooler GP-24, was simulated. The simulation was performed using the finite element method with account of elas- tic-plastic properties of the tube and tube sheet materials. The simulation consisted of two stages; at the first stage, maximum and residual contact stress in the conjunction of a separate tube and the tube sheet was determined using the "equivalent sleeve" model; at the second stage, the obtained contact stress was applied to the hole surface in the tube sheet. Thus, different tube rolling sequences were simulated: from the center to the periphery of the tube sheet and from the periphery to the center along a spiral line. The studies showed that the tube rolling sequence noticeably influences the value of the tube sheet residual deflection for the same rolling parameters of separate tubes. Residual deflection of the tube sheet in different planes was determined. It was established that the smallest residual deflection corresponds to the tube rolling sequence from the periphery to the center of the tube sheet. The following dependences were obtained for different rolling sequences: maximum deformation of the tube sheet as a function of the number of rolled tubes, residual deformation of the tube sheet along its surface, and residual deflection of the tube sheet as a function of the rotation angle at the periphery. The preferred sequence of tube rolling for minimizing the tube sheet deformation is indicated.

  19. Computational investigation of heat transfer and pressure drop in a typical louver fin-and-tube heat exchanger for various louver angles and fin pitches

    Directory of Open Access Journals (Sweden)

    Okbaz Abdulkerim

    2017-01-01

    Full Text Available In this study 3-D numerical simulations on heat transfer and pressure drop characteristics for a typical louver fin-and- double-row tube heat exchanger were carried out. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles, fin pitch and Reynolds number, and reported in terms of Colburn j-factor and Fanning friction factor f. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles between 20° ≤Ө≤ 30°, louver pitch of Lp=3.8 mm and frontal velocities of U between 1.22 m/s - 3 m/s. In addition, flow visualization of detailed flow features results, such as velocity vectors, streamlines and temperature counters have been shown to understand heat transfer enhancement mechanism. The present results indicated that louver angle and fin pitch noticeably affected the thermal and hydraulic performance of heat exchanger. It has been seen that increasing louver angle, increases thermal performance while decreasing hydraulic performance associated to pressure drop for fin pitches of 3.2 mm and 2.5 mm. Fin pitch determines the flow behaviour that for fin pitch of 2 mm, increasing louver angle decreased heat transfer and pressure drop. Velocity vectors and streamlines give considerable information about the flow whether it is duct directed or louver directed. For all conditions the flow is louver directed.

  20. Modification of carbon fabrics by radio-frequency capacitive discharge at low pressure to regulate mechanical properties of carbon fiber reinforced plastics based on it

    Science.gov (United States)

    Garifullin, A. R.; Krasina, I. V.; Skidchenko, E. A.; Shaekhov, M. F.; Tikhonova, N. V.

    2017-01-01

    To increase the values of mechanical properties of carbon fiber (CF) composite materials used in sports equipment production the method of radio-frequency capacitive (RFC) low-pressure plasma treatment in air was proposed. Previously it was found that this type of modification allows to effectively regulate the surface properties of fibers of different nature. This treatment method differs from the traditional ones by efficiency and environmental friendliness as it does not require the use of aggressive, environmentally hazardous chemicals. In this paper it was established that RFC low-pressure air plasma treatment of carbon fabrics enhances the interlaminar shear strength (ILSS) of carbon fiber reinforced plastic (CFRP). As a result of experimental studies of CF by Fourier Transform Infrared (FTIR) spectroscopy method it was proved that after radio-frequency capacitive plasma treatment at low pressure in air the oxygen-containing functional groups is grafted on the surface. These groups improve adhesion at the interface “matrix-fiber”.

  1. Examination of parameters affecting overload fracture behavior of flaw-tip hydrides in Zr-2.5Nb pressure tubes in Candu reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J.; Shek, G.K. [Kinectrics Inc., Toronto, Ontario (Canada); Wang, Z.R. [Toronto Univ., Dept. of Materials Science and Engineering, Toronto, Ontario (Canada)

    2007-07-01

    Service-induced flaws in Zr-2.5Nb alloy pressure tubes in Candu (Canada Deuterium Uranium Reactors) nuclear reactors are susceptible to a crack initiation and growth mechanism known as Delayed Hydride Cracking (DHC), which is a repetitive process that involves hydrogen diffusion, hydride precipitation, growth and fracture of a hydride region at the flaw-tip under a constant load. Crack initiation may also occur under another loading condition when the hydride region is subjected to an overload. An overload occurs when the hydride region at the flaw tip is loaded to a stress higher than that at which this region is formed such as when the reactor experiences a transient pressure higher than the normal operating pressure where the hydride region is formed. Flaw disposition requires justification that the hydride region overload will not fracture the hydride region, and initiate DHC. In this work, monotonically increasing load experiments were performed on unirradiated Zr-2.5Nb pressure tube specimens containing simulated debris frets (V-notch) and bearing pad frets (BPF, U-shape notch) to examine overload fracture behavior of flaw-tip hydrides formed under hydride ratcheting conditions. Hydride cracking in the overload tests was detected by the acoustic emission technique and confirmed by post-test metallurgical examination. Test results indicate that the resistance to overload fracture is affected by a number of parameters including hydride formation stress, flaw shape (V-notch vs. BPF) and flaw radius (0.015 mm vs. 0.1 mm). The notch-tip hydride morphologies were examined by optical microscopy and scanning electron microscopy (SEM) which show that they are affected by the hydride formation conditions, resulting in different overload fracture resistance. Finite element stress analyses were also performed to obtain flaw-tip stress distributions for interpretation of the test results. (authors)

  2. 测压管路动态特性实测技术研究%Study on measurement technology of dynamics characteristics of typical tubes for pressure measurements

    Institute of Scientific and Technical Information of China (English)

    余世策; 韩新刚; 冀晓华; 屠荣伟; 蒋建群

    2012-01-01

    利用声音振动发生原理研制了多功能声音振动发生装置,开发了测压管路动态特性的实测技术,并对风洞试验中典型测压管路的频响特性进行了实测.采用正弦压力波对不同的测压管路进行激励,采用多点联合扫描技术提高采样频率,得到完整的正弦波动曲线.实验研究结果表明,该实验技术可以得到高频的动态压力信号和准确的频响特性曲线,为误差修正提供了依据.%By using independently developed sound vibration generating device, the measurement technology of dynamics characteristics of typical tubes for pressure measurements was developed, and the frequency response characteristics of typical tubes for fluctuating wind pressure measurements were measured. By using principle of sound vibrations, a multi-function sound vibration generating device was developed. Different pipes were excited by sine pressure waves, multi-point scanning technology was used to improve the sampling frequency for getting full curves of sine waves. Experimental results show that the experimental technique developed can be ' used to obtain high-frequency dynamic pressure signals and accurate frequency response curve for providing a basis for the error correction.

  3. Does objective measurement of tracheal tube cuff pressures minimise adverse effects and maintain accurate cuff pressures? A systematic review and meta-analysis.

    Science.gov (United States)

    Hockey, C A; van Zundert, A A J; Paratz, J D

    2016-09-01

    Correct inflation pressures of the tracheal cuff are recommended to ensure adequate ventilation and prevent aspiration and adverse events. However there are conflicting views on which measurement to employ. The aim of this review was to examine whether adjustment of cuff pressure guided by objective measurement, compared with subjective measurement or observation of the pressure value alone, was able to prevent patient-related adverse effects and maintain accurate cuff pressures. A search of PubMed, Web of Science, Embase, CINAHL and ScienceDirect was conducted using keywords 'cuff pressure' and 'measure*' and related synonyms. Included studies were randomised or pseudo-randomised controlled trials investigating mechanically ventilated patients both in the intensive care unit and during surgery. Outcomes included adverse effects and the comparison of pressure measurements. Pooled analyses were performed to calculate risk ratios, effect sizes and 95% confidence intervals. Meta-analysis found preliminary evidence that adjustment of cuff pressure guided by objective measurement as compared with subjective measurement or observation of the pressure value alone, has benefit in preventing adverse effects. These included cough at two hours (odds ratio [OR] 0.42, confidence interval [CI] 0.23 to 0.79, P=0.007), hoarseness at 24 hours (OR 0.49, CI 0.31 to 0.76, P measurement to guide adjustment or observation of the pressure value alone may lead to patient-related adverse effects and inaccuracies. It is recommended that an objective form of measurement be used.

  4. Method of Measuring the Vapor Pressure and Concentration of Fluids using VLE and Vibrating Tube Densitometer Apparatuses

    OpenAIRE

    Abdalla, Momin Elhadi; Pannir, Siddharth

    2016-01-01

    This work presents the vapor pressure and concentration measurement of newly discovered environmentally friendly refrigerants 1, 1-difluoroethane (R152a) and 1,1,1,3,3-Pentafluorbutane (R365mfc), besides their mixture. The experimental procedure used in this work was a VLE recirculation type apparatus in which the liquid phase is circulating around the equilibrium cell. Special attention was given to enable a highly accurate vapor pressure measurement up to maximum pressure of 25 bar. The li...

  5. Influences of guide-tube and bluff-body on advanced atmospheric pressure plasma source for single-crystalline polymer nanoparticle synthesis at low temperature

    Science.gov (United States)

    Kim, Dong Ha; Park, Choon-Sang; Kim, Won Hyun; Shin, Bhum Jae; Hong, Jung Goo; Park, Tae Seon; Seo, Jeong Hyun; Tae, Heung-Sik

    2017-02-01

    The use of a guide-tube and bluff-body with an advanced atmospheric pressure plasma source is investigated for the low-temperature synthesis of single-crystalline high-density plasma polymerized pyrrole (pPPy) nano-materials on glass and flexible substrates. Three process parameters, including the position of the bluff-body, Ar gas flow rate, and remoteness of the substrate from the intense and broadened plasma, are varied and examined in detail. Plus, for an in-depth understanding of the flow structure development with the guide-tube and bluff-body, various numerical simulations are also conducted using the same geometric conditions as the experiments. As a result, depending on both the position of the bluff-body and the Ar gas flow rate, an intense and broadened plasma as a glow-like discharge was produced in a large area. The production of the glow-like discharge played a significant role in increasing the plasma energy required for full cracking of the monomers in the nucleation region. Furthermore, a remote growth condition was another critical process parameter for minimizing the etching and thermal damage during the plasma polymerization, resulting in single- and poly-crystalline pPPy nanoparticles at a low temperature with the proposed atmospheric pressure plasma jet device.

  6. A machine-independent method to have active removal of 5,000 centistokes silicone oil using plastic infusion tube and 23-gauge microcannulas

    OpenAIRE

    Zhang, Zhaotian; Wei, Yantao; Jiang, Xintong; Qiu, Suo; Zhang, Shaochong

    2015-01-01

    Background To describe one modified method of having machine-independent removal of 5,000 centistokes silicone oil through 23-gauge trocar-cannulas. Methods Consecutive patients with silicone oil tamponade for more than four months and with complete retinal reattachment were included. Two 23-gauge trocars were used to make sclerotomies while the microcannulas remained in situ for intravitreous infusion and silicone oil drainage. A short section of infusion tube was connected with a 10 ml syri...

  7. Burst strength of tubing and casing based on twin shear unified strength theory.

    Science.gov (United States)

    Lin, Yuanhua; Deng, Kuanhai; Sun, Yongxing; Zeng, Dezhi; Liu, Wanying; Kong, Xiangwei; Singh, Ambrish

    2014-01-01

    The internal pressure strength of tubing and casing often cannot satisfy the design requirements in high pressure, high temperature and high H2S gas wells. Also, the practical safety coefficient of some wells is lower than the design standard according to the current API 5C3 standard, which brings some perplexity to the design. The ISO 10400: 2007 provides the model which can calculate the burst strength of tubing and casing better than API 5C3 standard, but the calculation accuracy is not desirable because about 50 percent predictive values are remarkably higher than real burst values. So, for the sake of improving strength design of tubing and casing, this paper deduces the plastic limit pressure of tubing and casing under internal pressure by applying the twin shear unified strength theory. According to the research of the influence rule of yield-to-tensile strength ratio and mechanical properties on the burst strength of tubing and casing, the more precise calculation model of tubing-casing's burst strength has been established with material hardening and intermediate principal stress. Numerical and experimental comparisons show that the new burst strength model is much closer to the real burst values than that of other models. The research results provide an important reference to optimize the tubing and casing design of deep and ultra-deep wells.

  8. 复合材料力矩管扭转性能的研究%A Study on the Torsional Properties of Glass Fibre Reinforced Plastic Tubes

    Institute of Scientific and Technical Information of China (English)

    吴非; 王翔; 蔡浩鹏; 朱泉尧

    2011-01-01

    Glass fiber reinforced epoxy resin tubes were made by wet filament winding process with different winding angles in this paper and the influence of torsion properties of composite with different winding angles were also discussed in order to practical application. The factors which effect the torsion performance of tubes were analyzed by testing the buckling torque and compared with theoretical value in this paper. As shown in the research, the failure model of winding tube was in-plane shear buckling,with the increase of winding angles between 25°to 60°, the shear behavior of composite tube was gradually weakened, and the thickness was decreased accompanied with delamination after buckling. The torsion performance was best when the winding angles achieved to 25°, the maximum torque reached 118 N·m,and the corresponding shear strength was also up to 209 MPa.%为了研究缠绕角度对玻璃纤维增强复合材料管(GFRP)扭转性能的影响和给在实际应用中提供依据,本文研究采用湿法缠绕成型工艺制得了具有不同缠绕角度的GFRP管.通过测试缠绕管的破坏扭矩来分析影响复合材料缠绕管扭转性能的各项因素,并与理论计算值进行了比较.研究结果表明,缠绕管扭转破坏的主要形式为面内剪切破坏.当缠绕角度在25°至60°范围内变化时,随着缠绕角度的增大,复合材料缠绕管的壁厚逐渐减小,抗剪性能逐渐减弱且扭转破坏形式有分层情况出现.当缠绕角是25°时,缠绕管的抗扭性能最佳,最大扭矩为118N·m,对应的扭转强度为209 MPa.

  9. The pressure exerted on the tracheal wall by two endotracheal tube cuffs: A prospective observational bench-top, clinical and radiological study

    Directory of Open Access Journals (Sweden)

    Blunt Mark

    2010-12-01

    Full Text Available Abstract Background The Lotrach endotracheal tube has a unique low-volume, low-pressure (LVLP cuff, which has been designed to prevent pressure injury to the tracheal wall. We aimed to estimate the pressure exerted on the tracheal wall by the LVLP cuff and a conventional cuff in a bench-top, clinical and radiological study. Method In the bench-top study, a model trachea was intubated with the LVLP cuff and the conventional cuff. The cuff pressure was controlled using a constant pressure device. We assessed the pressure exerted on the tracheal wall by measuring the ability of the cuffs to support a column of water using a standard protocol. In the clinical study, we tested the ability of both cuffs to prevent air leak during a staged recruitment manoeuvre. In the radiological study, we recorded the degree of anatomical distortion of the trachea from both cuffs in the antero-posterior (AP and transverse tracheal diameters. We performed statistical analysis using non-inferiority tests. Results In the bench-top study, the LVLP cuff achieved a plateau at a mean height of 25.2 cmH2O (SD 0.34. In contrast, the conventional cuff failed to maintain any water above the cuff and a plateau could not be measured. In the clinical study, the mean pressure at which air leak occurred was 30.0 +/- 0.8 cmH2O (SD 3.8 using the LVLP cuff and 32.4 +/- 0.7 cmH2O (SD 3.0 using the conventional cuff. In the radiological study, the mean degree of anatomical distortion of the trachea in AP and transverse tracheal diameter was 2.9 +/- 2.2 mm (SD 2.1 and 1.8 +/- 1.4 mm (SD 1.4 using the LVLP cuff and 4.4 +/- 1.3 mm (SD 1.4 and 2.6 +/- 1.5 mm (SD 1.6 using the conventional cuff. Conclusions The bench-top and clinical studies both demonstrated that the LVLP cuff exerted approximately 30 cmH2O of pressure on the tracheal wall. These results are supported by our radiological study. We conclude that the LVLP cuff exerts an acceptable amount of pressure on the tracheal wall when

  10. Tracheal tube cuff inflation guided by pressure volume loop closure associated with lower postoperative cuff-related complications: Prospective, randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Waleed A Almarakbi

    2014-01-01

    Full Text Available Background: The main function of an endotracheal tube (ETT cuff is to prevent aspiration. High cuff pressure is usually associated with postoperative complications. We tried to compare cuff inflation guided by pressure volume loop closure (PV-L with those by just to seal technique (JS and assess the postoperative incidence of sore throat, cough and hoarseness. Materials and Methods: In a prospective, randomized clinical trial, 100 patients′ tracheas were intubated. In the first group (n = 50, ETT cuff inflation was guided by PV-L, while in the second group (n. = 50 the ETT cuff was inflated using the JS technique. Intracuff pressures and volumes were measured. The incidence of postoperative cuff-related complications was reported. Results: Demographic data and durations of intubation were comparable between the groups. The use of PV-L was associated with a lesser amount of intracuff air [4.05 (3.7-4.5 vs 5 (4.8-5.5, P < 0.001] and lower cuff pressure than those in the JS group [18.25 (18-19 vs 33 (32-35, P ≤ 0.001]. The incidence of postextubation cuff-related complications was significantly less frequent among the PV-L group patients as compared with the JS group patients (P ≤ 0.009, except for hoarseness of voice, which was less frequent among the PV-L group, but not statistically significant (P ≤ 0.065. Multiple regression models for prediction of intra-cuff pressure after intubation and before extubation revealed a statistically significant association with the technique used for cuff inflation (P < 0.0001. Conclusions : The study confirms that PV-L-guided ETT cuff inflation is an effective way to seal the airway and associates with a lower ETT cuff pressure and lower incidence of cuff-related complications.

  11. Tracheal tube cuff inflation guided by pressure volume loop closure associated with lower postoperative cuff-related complications: Prospective, randomized clinical trial

    Science.gov (United States)

    Almarakbi, Waleed A.; Kaki, Abdullah M.

    2014-01-01

    Background: The main function of an endotracheal tube (ETT) cuff is to prevent aspiration. High cuff pressure is usually associated with postoperative complications. We tried to compare cuff inflation guided by pressure volume loop closure (PV-L) with those by just to seal technique (JS) and assess the postoperative incidence of sore throat, cough and hoarseness. Materials and Methods: In a prospective, randomized clinical trial, 100 patients’ tracheas were intubated. In the first group (n = 50), ETT cuff inflation was guided by PV-L, while in the second group (n. = 50) the ETT cuff was inflated using the JS technique. Intracuff pressures and volumes were measured. The incidence of postoperative cuff-related complications was reported. Results: Demographic data and durations of intubation were comparable between the groups. The use of PV-L was associated with a lesser amount of intracuff air [4.05 (3.7-4.5) vs 5 (4.8-5.5), P pressure than those in the JS group [18.25 (18-19) vs 33 (32-35), P ≤ 0.001]. The incidence of postextubation cuff-related complications was significantly less frequent among the PV-L group patients as compared with the JS group patients (P ≤ 0.009), except for hoarseness of voice, which was less frequent among the PV-L group, but not statistically significant (P ≤ 0.065). Multiple regression models for prediction of intra-cuff pressure after intubation and before extubation revealed a statistically significant association with the technique used for cuff inflation (P pressure and lower incidence of cuff-related complications. PMID:25191181

  12. Plastic Surgery

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A A ... forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word "plastic" ...

  13. 气管导管壳聚糖涂膜的制备与性能研究%Preparation and Characterization of Chitosan Plastics Coated on the Endotracheal Tube

    Institute of Scientific and Technical Information of China (English)

    王彦荣; 白锡波; 高敬华; 董爱琴; 胡金树; 顾吉顺

    2011-01-01

    Objective: To prepare chitosan film coated on the endotracheal tube which can inhibit formation of bacterial biofilm effectively.Methods: The chitosan plastics were prepared and coated on the endotracheal tube with molecular weight of 5 000 and 1 000 000(in ratio of 2∶1),the filming effect and adhesion to endotracheal tube were investigated by in vitro study.E.colibio films of 7 days were established adopting the blank tubes, tubes coated chitosans with molecular weigh 5000 and 1000000 respectively, which arranged as the first and second group.Each group was carried out on bacterial counting, biofilm ration and observation under SEM respectively.Results: The adhesion time was 18d of the chitosan plastics in physiological environment.The bacterial quantity of group 1,2,were 2.29×107 CFU/ml, 1.19×107 CFU/ml respectively.The absorbency value of group 1,2 were 0.137,0.050 respectively.Under the circumstance of SEM, there were uniform and intensive bacteria on photograph of group 1.The bacterias had smooth cell wall, the regular body.There were few bacteria showing gathering state on photograph of group 2.The bacteria had sinking or scarred body.Conclusion: Film prepared by this method had good film forming properties, adhesion and inhibition on formation of bacterial biofilm.%目的:制备能有效抑制细菌生物被膜(BF)生成的壳聚糖气管导管涂膜.方法:以分子量5000和100万的壳聚糖为原料制备在气管导管内壁制膜(按2:1比例混合后涂膜),考察壳聚糖膜的成膜性、与气管导管的黏附性.以空白导管(对照组)和涂膜后的导管为载体,依次设为第1、2实验组,构建形成7d的大肠埃希菌生物被膜,然后细菌计数、生物被膜定量、扫描电镜(SEM)观察.结果:涂膜可紧密贴台在气管导管内壁,生理条件下与气管导管黏附时间为18d.对照组和实验组的细菌计数分别是2.29×10CFU/ml、1.19×10CFU/ml;吸光度为0.137、0.050;扫描电镜下,对照组的细菌密

  14. Tracheostomy tubes and related appliances.

    Science.gov (United States)

    Hess, Dean R

    2005-04-01

    Tracheostomy tubes are used to administer positive-pressure ventilation, to provide a patent airway, to provide protection from aspiration, and to provide access to the lower respiratory tract for airway clearance. They are available in a variety of sizes and styles, from several manufacturers. The dimensions of tracheostomy tubes are given by their inner diameter, outer diameter, length, and curvature. Differences in length between tubes of the same inner diameter, but from different manufacturers, are not commonly appreciated but may have important clinical implications. Tracheostomy tubes can be angled or curved, a feature that can be used to improve the fit of the tube in the trachea. Extra proximal length tubes facilitate placement in patients with large necks, and extra distal length tubes facilitate placement in patients with tracheal anomalies. Several tube designs have a spiral wire reinforced flexible design and have an adjustable flange design to allow bedside adjustments to meet extra-length tracheostomy tube needs. Tracheostomy tubes can be cuffed or uncuffed. Cuffs on tracheostomy tubes include high-volume low-pressure cuffs, tight-to-shaft cuffs, and foam cuffs. The fenestrated tracheostomy tube has an opening in the posterior portion of the tube, above the cuff, which allows the patient to breathe through the upper airway when the inner cannula is removed. Tracheostomy tubes with an inner cannula are called dual-cannula tracheostomy tubes. Several tracheostomy tubes are designed specifically for use with the percutaneous tracheostomy procedure. Others are designed with a port above the cuff that allows for subglottic aspiration of secretions. The tracheostomy button is used for stoma maintenance. It is important for clinicians caring for patients with a tracheostomy tube to understand the nuances of various tracheostomy tube designs and to select a tube that appropriately fits the patient.

  15. Exploring the polymerization of bioactive nano-cones on the inner surface of an organic tube by an atmospheric pressure pulsed micro-plasma jet

    Science.gov (United States)

    Xu, H. M.; Yu, J. S.; Chen, G. L.; Qiu, X. P.; Hu, W.; Chen, W. X.; Bai, H. Y.

    2015-12-01

    In this paper, the successful deposition of acrylic acid polymer (PAA) nano-cones on the inner surface of a polyvinyl chloride (PVC) tube using an atmospheric pressure pulsed plasma jet (APPJ) with acrylic acid (AA) monomer is presented. Optical emission spectroscopy (OES) measurements indicated that various reactive radicals, such as rad OH and rad O, existed in the plasma jet. Moreover, the pulsed current proportionally increased with the increase in the applied voltage. The strengthened stretching vibration of the carbonyl group (Cdbnd O) at 1700 cm-1, shown in the ATR-FTIR spectra, clearly indicated that the PAA was deposited on the PVC surface. The maximum height of the PAA nano-cones deposited by this method ranged from 150 to 200 nm. FTIR and XPS results confirmed the enhanced exposure of the carboxyl groups on the modified PVC surface, which was considered highly beneficial for successfully immobilizing a high density of biomolecules. The XPS data showed that the carbon ratios of the Csbnd OH/R and COOH/R groups increased from 7.03% and 2.6% to 18.69% and 6.81%, respectively (more than doubled) when an Ar/O2 plasma with AA monomer was applied to treat the inner surface of the PVC tube. Moreover, the enhanced attachment density of MC3T3-E1 bone cells was observed on the PVC inner surface coated with PAA nano-cones.

  16. Sensitivity Analysis of Dousing Spray Trip on Radioactive Release in Pressure Tube Rupture Accident with Both End Fitting Failures

    Energy Technology Data Exchange (ETDEWEB)

    Jang, M. S.; Kang, H. S; Kim, S. R. [NESS, Daejeon (Korea, Republic of)

    2015-10-15

    We analyzed the sensitivity analysis of dousing spray trip conditions on radioactive release. In terms of conservativeness, the set 1 trip would be more appropriate in RR analysis than set 2 trip, which is the general condition of RR analysis. Radioactive releases from the containment building is related to containment air pressure, which increases by the coolant discharge from loss of coolant accident and the actuation conditions of dousing spray and so on. In LOCA analysis, the dousing spray trip conditions are set for the analysis objectives; for peak pressure (PP), for pressure signal (PS), for radioactive release (RR) and etc. In RR analysis, we would determine the dousing spray trip condition to increase radioactive release to the public for conservatism. Therefore, we carried out the sensitivity analysis of dousing spray trip condition on radioactive release from containment building using GOTHIC and SMART program for CANDU.

  17. A comparison of intraocular pressure and hemodynamic responses to insertion of laryngeal mask airway or endotracheal tube using anesthesia with propofol and remifentanil in cataract surgery

    Directory of Open Access Journals (Sweden)

    Mohsen Ziyaeifard

    2012-01-01

    Full Text Available Background: The aim of this study was to evaluate intraocular pressure (IOP and hemodynamic responses following insertion of laryngeal mask airway (LMA or endotracheal tube (ETT after anesthesia induction with propofol and remifentanil in cataract surgery. Materials and Methods: In a randomized controlled study, 50 adults scheduled for elective cataract extraction procedure under general anesthesia were allocated to LMA insertion (n = 25 or ETT (n = 25 groups. IOP, systolic blood pressure (SBP, diastolic blood pressure (DBP, and heart rate (HR were measured after insertion of the airway device every minute up to 5 min. Results: There were no significant differences between LMA and ETT groups in SBP, DBP, HR, and IOP immediately after airway instrumentation up to 5 min, except in 4th min in DBP, 2nd min in HR, and 5th min in IOP (7.9 ± 2.3 mmHg in LMA and 9.4 ± 2.5 mmHg in ETT group; P = 0.030. There was good surgeon satisfaction for providing acceptable surgical field in both groups (88% in LMA and 80% in ETT group; P = 0.702. Conclusion: Propofol combined with remifentanil provides good and excellent conditions for insertion of LMA or ETT with minimal hemodynamic disturbances in cataract surgery. Considering LMA insertion is less traumatic than ETT, using LMA may be better than ETT for airway securing in these patients.

  18. On the exploitation of Armstrong-Frederik type nonlinear kinematic hardening in the numerical integration and finite-element implementation of pressure dependent plasticity models

    Science.gov (United States)

    Metzger, Mario; Seifert, Thomas

    2013-09-01

    In this paper, an unconditionally stable algorithm for the numerical integration and finite-element implementation of a class of pressure dependent plasticity models with nonlinear isotropic and kinematic hardening is presented. Existing algorithms are improved in the sense that the number of equations to be solved iteratively is significantly reduced. This is achieved by exploitation of the structure of Armstrong-Frederik-type kinematic hardening laws. The consistent material tangent is derived analytically and compared to the numerically computed tangent in order to validate the implementation. The performance of the new algorithm is compared to an existing one that does not consider the possibility of reducing the number of unknowns to be iterated. The algorithm is used to implement a time and temperature dependent cast iron plasticity model, which is based on the pressure dependent Gurson model, in the finite-element program ABAQUS. The implementation is applied to compute stresses and strains in a large-scale finite-element model of a three cylinder engine block. This computation proofs the applicability of the algorithm in industrial practice that is of interest in applied sciences.

  19. Fuel composition optimization in a 78-element fuel bundle for use in a pressure tube type supercritical water-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, D.W.; Novog, D.R. [McMaster Univ., Hamilton, Ontario (Canada)

    2012-07-01

    A 78-element fuel bundle containing a plutonium-thorium fuel mixture has been proposed for a Generation IV pressure tube type supercritical water-cooled reactor. In this work, using a lattice cell model created with the code DRAGON,the lattice pitch, fuel composition (fraction of PuO{sub 2} in ThO{sub 2}) and radial enrichment profile of the 78-element bundle is optimized using a merit function and a metaheuristic search algorithm.The merit function is designed such that the optimal fuel maximizes fuel utilization while minimizing peak element ratings and coolant void reactivity. A radial enrichment profile of 10 wt%, 11 wt% and 20 wt% PuO{sub 2} (inner to outer ring) with a lattice pitch of 25.0 cm was found to provide the optimal merit score based on the aforementioned criteria. (author)

  20. The dependence on pressure of the plastic flow of rocksalt in the temperature range 25-250° C: implications for the rate controlling mechanism

    Science.gov (United States)

    Muhammad, Nawaz; Spiers, Chris; De Bresser, Hans; Peach, Colin

    2014-05-01

    Despite the large body of data that already exists, the question what microphysical mechanisms govern plastic flow of natural rocksalt at in situ conditions has not yet been answered to full satisfaction. In particular, the exact mechanism controlling dislocation motion at relatively low temperature is still insufficiently understood. As a result, uncertainties exist regarding the appropriate mechanism-based flow-law for low temperature, hampering reliable extrapolation of lab creep data to in situ strain rates. Such extrapolation is required for the modelling of the long term behaviour of salt for geomechanical purposes (e.g. subsidence prognosis). Several dislocation models have been proposed to control plastic flow of rocksalt, such as dislocation climb, cross-slip and (impurity-controlled) glide, but none of these have been rigorously verified. One way to test which model is appropriate is by investigating the pressure dependence of flow of rocksalt. Dislocation glide is expected to be hardly affected by pressure, cross slip (controlled by constriction of partial dislocations) will become easier with increasing pressure, and dislocation climb will become more difficult. We performed conventional axi-symmetric compression tests on synthetic polycrystalline salt samples with an average grain size of 300 μm. The samples were dry, in order to eliminate the possible influence of pressure solution creep. The experiments were carried out at temperatures in the range 25-250° C, i.e. 0.28-0.48Tm, and at pressure ranging 50-600 MPa, which is a range not previously covered for polycrystalline rocksalt. Argon gas was used as the pressure medium. With confining pressure increasing from 50 to 600 MPa, the rocksalt remained of the same strength at RT, but became about 60% stronger at 125oC and about 80% stronger at 250oC at strain rate 10-6 s-1 (at 15% strain). Using a conventional (Dorn-type) power law to describe the mechanical behaviour, stress exponents (n) were found

  1. Manufacturers of Copper Tube for Central Air Conditioner Use Face Mounting Pressure in the Final Quarter of the Year

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>This year,the investment growth rate of real estate industry continued to slow down,sold area of commercial housing also dropped significantly,which brought huge pressure to the domestic air conditioning manufactures.In the first half of the year,by relying on high growth in national financial expenditure,along with investment in public infrastructure

  2. Blood Pressure Associated with Arsenic Methylation and Arsenic Metabolism Caused by Chronic Exposure to Arsenic in Tube Well Water.

    Science.gov (United States)

    Wei, Bing Gan; Ye, Bi Xiong; Yu, Jiang Ping; Yang, Lin Sheng; Li, Hai Rong; Xia, Ya Juan; Wu, Ke Gong

    2017-05-01

    The effects of arsenic exposure from drinking water, arsenic metabolism, and arsenic methylation on blood pressure (BP) were observed in this study. The BP and arsenic species of 560 participants were determined. Logistic regression analysis was applied to estimate the odds ratios of BP associated with arsenic metabolites and arsenic methylation capability. BP was positively associated with cumulative arsenic exposure (CAE). Subjects with abnormal diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) usually had higher urinary iAs (inorganic arsenic), MMA (monomethylated arsenic), DMA (dimethylated arsenic), and TAs (total arsenic) than subjects with normal DBP, SBP, and PP. The iAs%, MMA%, and DMA% differed slightly between subjects with abnormal BP and those with normal BP. The PMI and SMI were slightly higher in subjects with abnormal PP than in those with normal PP. Our findings suggest that higher CAE may elevate BP. Males may have a higher risk of abnormal DBP, whereas females have a higher risk of abnormal SBP and PP. Higher urinary iAs may increase the risk of abnormal BP. Lower PMI may elevate the BP. However, higher SMI may increase the DBP and SBP, and lower SMI may elevate the PP. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  3. Towards a more comprehensive microstructural analysis of Zr-2.5Nb pressure tubing using image analysis and electron backscattered diffraction (EBSD)

    Energy Technology Data Exchange (ETDEWEB)

    Hovington, P., E-mail: hovington.pierre@ireq.c [Materials Science, Institut de recherche d' Hydro-Quebec, 1800 Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Pinard, P.T. [Mining and Materials Engineering Department, McGill University, 3610 University St., Montreal, Quebec, H3A 2B2 (Canada); Lagace, M.; Rodrigue, L. [Materials Science, Institut de recherche d' Hydro-Quebec, 1800 Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Gauvin, R. [Mining and Materials Engineering Department, McGill University, 3610 University St., Montreal, Quebec, H3A 2B2 (Canada); Trudeau, M.L. [Materials Science, Institut de recherche d' Hydro-Quebec, 1800 Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada)

    2009-08-15

    Zr-2.5Nb pressure tubes used in CANDU (CANada Deuterium Uranium) reactors have a very complex microstructure, with two major crystallographic phases, {alpha} and {beta}. These phases include a fair amount of deformation from the extrusion process and the cold working ({approx}25%) performed at the end of the manufacturing process. This microstructure (texture, grain aspect ratio, etc.) changes along the tube's length and differs from tube to tube. In order to better understand the deformation mechanisms, these microstructural differences must be statistically characterized. Scanning electron microscopy combined with direct image analysis or with electron backscattered diffraction (EBSD) are good techniques for carrying out such a measurement. However it is not possible, using specimen preparation methods specific for each of these techniques, to reveal all of the grain and phase boundaries. We have thus developed post-treatment algorithms to be able to partially analyze the revealed Zr-2.5Nb microstructure. The first algorithm was used for image analysis treatments of micrographs taken at 5 kV on the radial-tangential plane of etched samples using a reactive ion etch (RIE, CF{sub 4} + O{sub 2}). The second was developed for EBSD grain mapping and can be used to characterize {alpha}-Zr grain shape and orientation. The two techniques are complementary: EBSD gives information about the micro-texture and the relationship between the microstructure and micro-texture while image analyses of SEM micrographs reveal the direction and distribution of the {alpha}-Zr lamellae more easily and over a greater sample area than EBSD. However, the SEM micrographs that were used did not reveal any grain boundary (only phase boundary). An analysis of EBSD grain maps reveals that the average {alpha}-Zr grain size, mainly in the elongated direction (tangential), is smaller than what is normally obtained from an image analysis of SEM micrographs. The grain size distribution of type

  4. Differential Scanning Calorimetry Analysis of the Effects of Heat and Pressure on Protein Denaturation in Soy Flour Mixed with Various Types of Plasticizers.

    Science.gov (United States)

    Kweon, Meera; Slade, Louise; Levine, Harry

    2017-02-01

    The effects of heat and pressure on protein denaturation in soy flour were explored by an experimental design that used pressure (atmospheric to 600 MPa), temperature (room to 90 °C), time (1 to 60 min), and type of aqueous plasticizer (NaCl, sucrose, betaine, and lactobionic acid (LBA)) as factors. When 50% (w/w) soy flour-water paste was high hydrostatic pressure (HHP)-treated for 20 min at 25 °C, the treatment at 200 MPa showed a small effect on denaturation of only the 7S soy globulin, but the treatment at 600 MPa showed a significant effect on denaturation of both the 7S and 11S soy globulins. The treatment at 60 °C showed a less-pronounced effect on denaturation of the 11S globulin, even at 600 MPa, but that at 90 °C showed a similar extent of denaturation of the 11S globulin at 600 MPa to that at 25 °C. Chaotropic 2N NaCl, 50% sucrose-, 50% betaine-, or 50% LBA-water solutions showed protective effects on protein denaturation during HHP treatment at 25 °C. Although LBA enhanced the extent of thermostability of soy protein less than did 2N NaCl, LBA exhibited better stabilization against pressure. The results from DSC analysis demonstrated that thermostable soy proteins were not always barostable. © 2017 Institute of Food Technologists®.

  5. 21 CFR 888.4230 - Cement ventilation tube.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted...

  6. 变截面管管内传热与阻力性能研究%The Experimental Performance of Heat Transfer and Pressure Drop in Variable Cross-section Tube

    Institute of Scientific and Technical Information of China (English)

    甄亮; 江楠; 徐百平

    2000-01-01

    On the basis of the orthogonal experiment, nine groups of structure parameters of variable cross-section tubes are issued. After the regression analysis of the experimental data, the correlation of heat transfer and pressure drop of variable cross-section tube in the tube side are obtained in this article. The optimal structure parameter of variable cross-section tube is recommended in the last part of the paper.%根据正交实验设计提出了9种变截面管强化传热管的结构尺寸,并由实验结果回归得到了变截面管的传热与阻力关联式.经过管型的分析比较,筛选出性能比较好的变截面管尺寸参数.

  7. Evaluation of the effect of the concentration of plasticizer di(2-ethylhexyl) phthalate on the quantity of residual monomer vinyl chloride in PVC chest drainage tubes.

    Science.gov (United States)

    Kicheva, Y I; Richter, H; Popova, E

    2004-08-01

    The effect of amount of plasticizer di(2-ethylhexyl) phthalate (DEHP) amount on the amount of residual monomer vinyl chloride (VC) was determined in samples of plasticised polyvinyl chloride (PVC) with different concentration of plasticiser (22.32-33.05%), before and after sterilisation by a titrimetric method. The titrimetric method was used to determine the VC concentration in a KMnO4 solution where the samples were kept immersed under the same conditions for 2 h. The influence of PVC film extracts with different amounts of DEHP on mouse fibroblast cells L-929 in a culture medium was evaluated by using quantitative tests: the amount of cells (protein determination), viability (MTT test) and proliferation (incorporation of bromodeoxyuridine (BrDU). The amount of vinyl chloride before and after heat sterilisation at 120 degrees C for 30 min was found to be almost the same for all samples and without any dependence on the concentration of DEHP. The extracts of the PVC films which were tested have no toxic effect on cells in a culture medium.

  8. Conceptual design of a passive moderator cooling system for a pressure tube type natural circulation boiling water cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Pal, Eshita, E-mail: eshi.pal@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Nayak, Arun K.; Vijayan, Pallipattu K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-09-15

    Highlights: • Passive moderator cooling system is designed to cool moderator passively during SBO. • PMCS is a system of two natural circulation loops, coupled via a heat exchanger. • RELAP5 analyses show that PMCS maintains moderator within safe limits for 7 days. - Abstract: The recent Fukushima accident has raised strong concern and apprehensions about the safety of reactors in case of a prolonged Station Black Out (SBO) continuing for several days. In view of this, a detailed study was performed simulating this condition in Advanced Heavy Water Reactor. In this study, a novel concept of moderator cooling by passive means has been introduced in the reactor design. The Passive Moderator Cooling System (PMCS) consists of a shell and tube heat exchanger designed to remove 2 MW heat from the moderator inside Calandria. The heat exchanger is located at a suitable elevation from the Calandria of the reactor, such that the hot moderator rises due to buoyancy into the heat exchanger and upon cooling from shell side water returns to Calandria forming a natural circulation loop. The shell side of the heat exchanger is also a natural circulation loop connected to an overhead large water reservoir, namely the GDWP. The objective of the PMCS is to remove the heat from the moderator in case of an SBO and maintaining its temperature below the permissible safe limit (100 °C) for at least 7 days. The paper first describes the concept of the PMCS. The concept has been assessed considering a prolonged SBO for at least 7 days, through an integrated analysis performed using the code RELAP5/MOD3.2 considering all the major components of the reactor. The analysis shows that the PMCS is able to maintain the moderator temperature below boiling conditions for 7 days.

  9. 高效传热管内凝结换热性能及阻力性能的实验研究%EXPERIMENTAL~INVESTIGATION~ ON~ CONDENSATION HEAT TRANSFER COEFFICIENT AND PRESSURE DROP IN HIGH PERFORMANCE HEAT TRANSFER TUBE

    Institute of Scientific and Technical Information of China (English)

    解旭斌; 王维城; 王栋

    2000-01-01

    Using HFC134a and HCFC22 as the working fluid, the comparative experimentalstudies on horizontal condensation in smooth tube and two other augumented heattransfer tubes with different groove shapes (DAE-2 tube and DAEC tube)areconducted. As the experimental results indicated, compared with the smoothtube, the average heat transfer coefficient of DAE-2 is improved by140%to 170% and the pressure drop per unit length increased by 50%to100%. In addition, the average heat transfer coefficient of DAEC tube isenhanced by 160%to 200% and the pressure drop per unit length increased by70% to 130%. Further more, the empirical formulas about average heat transfercoefficient and pressure drop of the DAE-2 tube and DAEC tube are given inthis paper,which can be used to design condensers%本文以HFC134a和HCFC22为工质对光管及两种不同槽型的强化传热管(DAE-2管与DAEC管)的水平管内凝结换热进行了对比实验研究。研究发现,DAE-2管平均换热系数比光管提高了140%170%, 而单位长度阻力损失增加了50%100%, DAEC管平均换热系数比光管提高了160%200%, 同时单位长度阻力损失增加了70%130%。此外,本文给出了DAE-2管和DAEC管平均换热系数及阻力损失的计算关联式,可用于冷凝器设计

  10. Improvement on life and NO{sub x} discharge of radiant heat transfer tube heating system by the elasto-plasticity creep analysis; Dansosei kuripukaiseki ni yoru hosha dennetsukan kanetsu shisutemu no jumyo to NO{sub x} haishutsuryo no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Futahiko; Ikaruda, Kunihiro; Abe, Yoshio; Arai, Norio

    1999-06-05

    Combustion thermal process using the radiant heat transfer tube has widely been applied as a heating method which separates the combustion atmosphere from the heating-e atmosphere in various heating furnace such as iron and steel industry. In this thermal process, in order to burn the fuel in tight space in radiant heat transfer service area, radiant heat transfer tube and burner life were short under high temperature and high-load combustion, and there was a problem that that and, burning characteristic such as NO{sub x} generation rate are improved was difficult. In this study, large temperature distribution by the combustion in the radiant heat transfer tube clarified that the life of the radiant heat transfer tube was shortened by elasto-plasticity creep analysis of the radiant heat transfer tube. Then, two steps combustion burner of the exhaust gas self recycling type was developed as a method for reducing the NO{sub x} generation rate, while the temperature distribution of the radiant heat transfer tube was equalized. As the result, it was possible to reduce over 20% in comparison with conventional two steps combustion burner, while radiant heat transfer tube and life of the burner are extended over the conventional double, in respect of the NO{sub x} generation rate. (translated by NEDO)

  11. Forming of tubes and bars of alumina/LY12 composites by liquid extrusion process

    Institute of Scientific and Technical Information of China (English)

    齐乐华; 李贺军; 崔培玲; 史忠科

    2003-01-01

    Tube and bar products of aluminum alloy composites reinforced by alumina short-fiber were formed in a single process with liquid extrusion technology. The microstructure verifies that the reinforcing effect is obvious in the deformation direction since fibers are distributed along this direction, which is resulted from the flow and crystallization under pressure of liquid metal and large plastic deformation of solidified metal in the process. The interface between fiber and matrix belongs to mechanical bonding. The fractograph demonstrates ductile mode. Liquid extrusion process opens up a new way for fabricating tube, bar and shaped products.

  12. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  13. Transcriptome of the NTS in exercise-trained spontaneously hypertensive rats: implications for NTS function and plasticity in regulating blood pressure.

    Science.gov (United States)

    Waki, Hidefumi; Gouraud, Sabine S; Bhuiyan, Mohammad E R; Takagishi, Miwa; Yamazaki, Toshiya; Kohsaka, Akira; Maeda, Masanobu

    2013-01-01

    The nucleus tractus solitarii (NTS) controls the cardiovascular system during exercise, and alteration of its function may underlie exercise-induced cardiovascular adaptation. To understand the molecular basis of the NTS's plasticity in regulating blood pressure (BP) and its potential contribution to the antihypertensive effects, we characterized the gene expression profiles at the level of the NTS after long-term daily wheel running in spontaneously hypertensive rats (SHRs). Genome-wide microarray analysis was performed to screen for differentially expressed genes in the NTS between exercise-trained (12 wk) and control SHRs. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes database revealed that daily exercise altered the expression levels of NTS genes that are functionally associated with metabolic pathways (5 genes), neuroactive ligand-receptor interactions (4 genes), cell adhesion molecules (3 genes), and cytokine-cytokine receptor interactions (3 genes). One of the genes that belonged to the neuroactive ligand-receptor interactions category was histamine receptor H(1). Since we confirmed that the pressor response induced by activation of this receptor is increased after long-term daily exercise, it is suggested that functional plasticity in the histaminergic system may mediate the facilitation of blood pressure control in response to exercise but may not be involved in the lowered basal BP level found in exercise-trained SHRs. Since abnormal inflammatory states in the NTS are known to be prohypertensive in SHRs, altered gene expression of the inflammatory molecules identified in this study may be related to the antihypertensive effects in exercise-trained SHRs, although such speculation awaits functional validation.

  14. influence of the molecular structures on the high-pressure and low-temperature phase transitions of plastic crystals.

    Science.gov (United States)

    Wunschel, Markus; Dinnebier, Robert E; Carlson, Stefan; Bernatowicz, Piotr; van Smaalen, Sander

    2003-02-01

    The crystal structures of tert-butyl-tris(trimethylsilyl)silane, Si[C(CH(3))(3)](1)[Si(CH(3))(3)](3) (Bu1), and di-tert-butyl-bis(trimethylsilyl)silane, Si[C(CH(3))(3)](2)[Si(CH(3))(3)](2) (Bu2), at room temperature and at 105 K have been determined by X-ray powder diffraction; the high-pressure behavior for pressures between 0 and 5 GPa is reported. The room-temperature structures have cubic Fm3m symmetry (Z = 4) with a = 13.2645 (2) A, V = 2333.87 (4) A(3) for Bu1 and a = 12.9673 (1) A, V = 2180.46 (3) A(3) for Bu2. The molecules are arranged in a cubic close packing (c.c.p.) and exhibit at least 48-fold orientational disorder. Upon cooling both compounds undergo a first-order phase transition at temperatures T(c) = 230 (5) K (Bu1) and T(c) = 250 (5) K (Bu2) into monoclinic structures with space group P2(1)/n. The structures at 105 K have a = 17.317 (1), b = 15.598 (1), c = 16.385 (1) A, gamma = 109.477 (4) degrees, V = 4172.7 (8) A(3) and Z = 8 for Bu1and a = 17.0089 (9), b = 15.3159 (8), c = 15.9325 (8) A, gamma = 110.343 (3) degrees, V = 3891.7 (5) A(3) and Z = 8 for Bu2. The severe disorder of the room-temperature phase is significantly decreased and only a two- or threefold rotational disorder of the molecules remains at 105 K. First-order phase transitions have been observed at pressures of 0.13-0.28 GPa for Bu1 and 0.20-0.24 GPa for Bu2. The high-pressure structures are isostructural to the low-temperature structures. The pressure dependencies of the unit-cell Volumes were fitted with Vinet equations of state and the bulk moduli were obtained. At still higher pressures further anomalies in the pressure dependencies of the lattice parameters were observed. These anomalies are explained as additional disorder-order phase transitions.

  15. Stability of pressurized long inelastic cylinders under radial transverse loads

    Science.gov (United States)

    Karamanos, S. A.

    1996-10-01

    In the present paper, the structural capacity of relatively thick inelastic steel cylindrical tubes under external or internal pressure and concentrated radial loads is investigated, through a rigorous finite element analysis, as well as using a simplified analytical model. For zero pressure, the tubes exhibit inelastic cross-sectional deformation and are capable of dissipating a significant amount of plastic energy. The energy absorption capacity, as well as the ultimate transverse load, are reduced in the presence of external pressure. The effects of internal pressure are also examined. Results are reported in the form of load-deflection curves for different pressure levels. In addition, collapse envelops showing the interaction of pressure versus radial transverse loads are presented. The conclusions of this study are important for the structural integrity of cylindrical steel tubulars for pipeline and other offshore applications.

  16. Elastic-brittle-plastic mechanical model for rock with confining pressure%考虑围压影响的岩石弹脆塑力学模型

    Institute of Scientific and Technical Information of China (English)

    张春会; 徐晓攀; 王锡朝; 赵全胜

    2015-01-01

    To model effects of confining pressure on the post-peak mechanical properties for rock such as the degradation of strength and modulus, and dilatancy, the deformation process is simplified into three phases including linear-elastic, brittle degradation and perfect plasticity. Degradation index and dilatancy index are employed to reflect the effects of confining pressure on the peak-post mechanical properties for rock in this paper, and an elastic-brittle-plastic model with confining pressure is presented. Based on the transformation relationship between Hoek-Brown failure criterion and Mohr-Column fail-ure criterion, how to obtain the calculation parameters of the peak-post mechanical model in this paper is presented. The Fish function method within FLAC is adopted to realize the elastic-brittle-plastic me-chanical model model in this paper. In numerical case study the peak-post mechanical properties of rock under varied confining pressure including the degradation of strength and modulus, and dilatancy are modelled. The results show that the model can perfectly describe the deformation process and the effects of confining pressure on peak-post mechanical properties of rock.%为模拟围压对岩石峰后强度、模量退化和剪胀的影响,将岩石的变形过程简化为线弹性变形、脆性跌落和理想塑性3个阶段,利用退化指数和扩容指数描述围压对岩石峰后强度、模量退化和剪胀的影响,建立了考虑围压影响的岩石弹脆塑力学模型。通过Hoek-Brown和Mohr-Column准则之间参数的转换关系,给出了模型峰后力学参数的确定方法。在 FLAC 软件下,利用 Fish函数方法实现了建立的弹脆塑性力学模型。在数值算例中,利用本文模型分析了不同围压下岩石的峰后力学特性劣化和剪胀扩容特征,结果表明本文模型不仅能较好地模拟岩石峰前、峰后全程变形发展过程,而且能较好地考虑围压对岩石峰后力学特性的影响。

  17. Two-Phase condensation Heat Transfer Coefficients Heat Transfer Coefficients and Pressure drops of R-404A for different Condensing Temperatures in a smooth and Micro-Fin Tube

    Directory of Open Access Journals (Sweden)

    DR. S.N. Sapali

    2009-11-01

    Full Text Available Two phase heat transfer coefficients and pressure drops of R-404A in a smooth (8.56 mm ID and micro-fin tube (8.96 mm ID are experimentally investigated. Different from previous studies, the present experiments are performed for different condensing temperatures, with superheating and sub cooling and using hermetically sealed compressor. The test runs are done at average saturated condensing temperatures ranging from 35oC to 60oC. The mass fluxes are between 90 and 800 kg m-2s-1 . The experimental results from both smooth and micro-fin tubes show that the average heat transfer coefficient and pressure drop increases with mass flux but decreases with increasing condensing temperature. The average heat transfer coefficient is 30-210% higher for micro-fin tube than that of smooth tube, with moderate increase in pressure drop ranging from 10-55%. New correlations based on the data gathered during the experimentation for predicting condensation heat transfer coefficients are proposed for wide range of practical applications.

  18. The formation, structure, and properties of the Au-Co alloys produced by severe plastic deformation under pressure

    Science.gov (United States)

    Tolmachev, T. P.; Pilyugin, V. P.; Ancharov, A. I.; Chernyshov, E. G.; Patselov, A. M.

    2016-02-01

    The mechanical alloying of Au-Co mixtures, which are systems with high positive mixing enthalpy, is studied following high-pressure torsion deformation at room and cryogenic temperatures. X-ray diffractometry in synchrotron radiation and scanning microscopy are used to investigate the sequence of structural changes in the course of deforming the mixtures up to the end state of the fcc substitutional solid solution based on gold. The mechanical properties of the alloys are measured both during mixture processing and after mechanical alloying. Microfractographic studies are performed. Factors that facilitate the solubility of Co in Au, namely, increased processing pressure, cobalt concentration in a charge mixture, true strain, and temperature decreased to cryogenic level have been identified.

  19. Numerical simulation of pressure drop characteristics in a circular tube with self-rotating twisted tape inserts%内置自旋扭带圆管内压降特性的数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    冯振飞; 孙瑞娟; 林清宇

    2013-01-01

      为了直观地描述内置自旋扭带圆管内压降的特性,采用RNG k-ε湍流模型对内置静止扭带、自旋扭带圆管及空管的压降特性进行数值模拟研究,并进行了内置3种型号自旋扭带圆管压降特性的数值模拟和试验研究。研究表明:自旋扭带管的压力降约为空管的2倍,而静止扭带管的压力降差不多达到空管的3倍;在含有自旋扭带或静止扭带的管段内,压力沿轴线方向线性变化,与理论分析趋势一致;扭带压降(流体与自旋扭带的摩擦力引起的压力降)的理论计算值、数值结果均与试验结果比较一致;影响扭带压降的因素是流体轴向流速、扭带宽度及扭带节距;流体轴向流速增大,扭带压降也增大;扭带宽度增大,扭带压降也增大;扭带节距增大,扭带压降略有下降。%In order to visually describe the pressure drop characteristics in a circular tube with self-rotating twisted tape inserts , the RNG k-ε turbulent model was used to simulate the pressure drop characteristics in a circular tube with self-rotating twisted tape , static twisted tape or none inserts . The numerical simulation and experimental study of pressure drop characteristics in a circular tube with 3 types of self-rotating twisted tape inserts were presented .The results indicated that the pres-sure drop of the tube with self-rotating twisted tape is about twice of the empty tube and the pressure drop of the tube with static twisted tape is nearly three times of the empty tube .In the section of tube with self-rotating twisted tape or static twisted tape inserts , the pressure shows a linear variation along the axial direction , which is consistent with the theoretical analysis .The theoretical and nu-merical results of pressure drop caused by friction resistance between the fluid and the twisted tape are consistent with the experimental results .The flow axial velocity , the width and the half

  20. Soret Effect Study on High-Pressure CO2-Water Solutions Using UV-Raman Spectroscopy and a Concentric-Tube Optical Cell

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Charles F.; McGrail, B. Peter; Maupin, Gary D.

    2012-01-01

    Spatially resolved deep-UV Raman spectroscopy was applied to solutions of CO2 and H2O (or D2O), which were subject to a temperature gradient in a thermally regulated high-pressure concentric-tube Raman cell in an attempt to measure a Soret effect in the vicinity of the critical point of CO2. Although Raman spectra of solutions of CO2 dissolved in D2O at 10 MPa and temperatures near the critical point of CO2 had adequate signal-to-noise and spatial resolution to observe a Soret effect with a Soret coefficient with magnitude of |ST| > 0.03, no evidence for an effect of this size was obtained for applied temperature gradients up to 19oC. The presence of 1 M NaCl did not make a difference. In contrast, the concentration of CO2 dissolved in H2O was shown to vary significantly across the temperature gradient when excess CO2 was present, but the results could be explained simply by the variation in CO2 solubility over the temperature range and not to kinetic factors. For mixtures of D2O dissolved in scCO2 at 10 MPa and temperatures close to the critical point of CO2, the Raman peaks for H2O were too weak to measure with confidence even at the limit of D2O solubility.

  1. Effect of heavy ion irradiation and α+β phase heat treatment on oxide of Zr-2.5Nb pressure tube material

    Science.gov (United States)

    Choudhuri, Gargi; Mukherjee, P.; Gayathri, N.; Kain, V.; Kiran Kumar, M.; Srivastava, D.; Basu, S.; Mukherjee, D.; Dey, G. K.

    2017-06-01

    Effect of heavy-ion irradiation on the crystalline phase transformation of oxide of Zr-2.5Nb alloys has been studied. The steam-autoclaved oxide of pressure tube is irradiated with 306 KeV Ar+9 ions at a dose of 3 × 1019 Ar+9/m2. The damage profile has been estimated using ;Stopping and Range of Ions in Matter; computer program. The variation of the crystal structure along the depth of the irradiated oxide have been characterized non-destructively by Grazing Incidence X-ray Diffraction technique and compared with unirradiated-oxide. The effect of different base metal microstructures on the characteristic of oxide has also been studied. Base metal microstructure as well as the cross-sectional oxide have been characterized using transmission electron microscope. Heavy ion irradiation can significantly alter the distribution of phases in the oxide of the alloy. The difference in chemical state of alloying element has also been found between unirradiated-oxide with that of irradiated-oxide using X-ray photo electron spectroscopy. Chemical state of Nb in steam autoclaved oxide is also altered when the base metal is α + β heat treated.

  2. Deformation of Forsterite Polycrystals at Mantle Pressure. Comparison with Fe-bearing Olivine and the Effect of Iron on its Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, Caroline [CNRS Lille University of Science and Technology (France); Merkel, Sebastien [CNRS Lille University of Science and Technology (France); Cordier, Patrick [CNRS Lille University of Science and Technology (France); Raterron, Paul [CNRS Lille University of Science and Technology (France)

    2014-12-23

    Rheology of polycrystalline forsterite was investigated in the Deformation-DIA (D-DIA) using insitu X-ray diffraction at pressure between 3.1 and 8.1 GPa, temperature in the 1373–1673 K range, and at steady-state strain rate ranging from 0.5 × 10-5 to 5.5 × 10-5 s-1. Microscopic observations of the run products show characteristic microstructures of the so-called “dislocation creep regime” in wet conditions. Based on the present data at 1473 K, the pressure effect on forsterite plasticity is quantified using an activation volume V*F0 = 12.1±3.0 cm3 mol-1. Moreover, a comparison between the strain rates of San Carlos olivine and forsterite specimens deformed together indicates that, at the experimental conditions, they compare with each other within less than half an order of magnitude. Our comparison also allows for the determination of the stress exponent of forsterite of nFo = 2.3 ± 0.6. Our results, combined with data from the literature, indicate a clear trend of increasing stress exponent with Fe content in olivine.

  3. Elasto-Plastic-Creep Constitutive Equation of an Al-Si-Cu High-Pressure Die Casting Alloy for Thermal Stress Analysis

    Science.gov (United States)

    Motoyama, Yuichi; Shiga, Hidetoshi; Sato, Takeshi; Kambe, Hiroshi; Yoshida, Makoto

    2016-11-01

    Accurate simulation of residual stress and deformation is necessary to optimize the design and lifetime of casting components. Therefore, the recovery and strain-rate dependence of the stress-strain curve have been incorporated into empirical constitutive equations to improve the thermal stress analysis accuracy. Nevertheless, these equations present several difficulties related to the determination of material constants and their physical bases. This study suggested an empirical elasto-plastic-creep constitutive equation incorporating these phenomena. To determine the material parameters used in this constitutive equation, this study investigated tensile test methods to obtain stress-strain curves that most closely resemble those during or immediately after casting for the Al-Si-Cu high-pressure die-casting alloy JIS ADC 12 (A383.0), which exhibits natural aging. Results show that solution heat treatment with subsequent cooling to the test temperature should be applied to obtain stress-strain curves used for the thermal stress analysis of high-pressure die casting process of this alloy. The yield stresses obtained using the conventional heating method were 50-64 pct higher than those of the method described above. Therefore, the conventional method is expected to overestimate the overestimation of the predicted residual stress in die castings. Evaluation of the developed equation revealed that it can represent alloy recovery and strain-rate dependence.

  4. Manually operated piston-driven shock tube

    OpenAIRE

    Reddy, KPJ; Sharath, N

    2013-01-01

    A simple hand-operated shock tube capable of producing Mach 2 shock waves is described. Performance of this miniature shock tube using compressed high pressure air created by a manually operated piston in the driver section of the shock tube as driver gas with air at 1 atm pressure as the test gas in the driven tube is presented. The performance of the shock tube is found to match well with the theoretically estimated values using normal shock relations. Applications of this shock tube named ...

  5. Deformation behaviors of 21-6-9 stainless steel tube numerical control bending under different friction conditions

    Institute of Scientific and Technical Information of China (English)

    方军; 鲁世强; 王克鲁; 姚正军

    2015-01-01

    For contact dominated numerical control (NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional (3D) elastic-plastic finite element (FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die−tube reduces the wrinkling wave ratioη and cross section deformation degreeΔD and increases the wall thinning degreeΔt. The large friction of mandrel−tube causes largeη,Δt andΔD, and the onset of wrinkling near clamp die. The large friction of pressure die−tube reducesΔt andΔD, and the friction on this interface has little effect onη. The large friction of bending die−tube reducesη andΔD, and the friction on this interface has little effect onΔt. The reasonable friction coefficients on wiper die−tube, mandrel−tube, pressure die−tube and bending die−tube of 21-6-9 (0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05−0.15, 0.05−0.15, 0.25−0.35 and 0.25−0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.

  6. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  7. Using Omega and NIF to Advance Theories of High-Pressure, High-Strain-Rate Tantalum Plastic Flow

    Science.gov (United States)

    Rudd, R. E.; Arsenlis, A.; Barton, N. R.; Cavallo, R. M.; Huntington, C. M.; McNaney, J. M.; Orlikowski, D. A.; Park, H.-S.; Prisbrey, S. T.; Remington, B. A.; Wehrenberg, C. E.

    2015-11-01

    Precisely controlled plasmas are playing an important role as both pump and probe in experiments to understand the strength of solid metals at high energy density (HED) conditions. In concert with theory, these experiments have enabled a predictive capability to model material strength at Mbar pressures and high strain rates. Here we describe multiscale strength models developed for tantalum and vanadium starting with atomic bonding and extending up through the mobility of individual dislocations, the evolution of dislocation networks and so on up to full scale. High-energy laser platforms such as the NIF and the Omega laser probe ramp-compressed strength to 1-5 Mbar. The predictions of the multiscale model agree well with the 1 Mbar experiments without tuning. The combination of experiment and theory has shown that solid metals can behave significantly differently at HED conditions; for example, the familiar strengthening of metals as the grain size is reduced has been shown not to occur in the high pressure experiments. Work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Lab under contract DE-AC52-07NA273.

  8. Plasticity in breathing and arterial blood pressure following acute intermittent hypercapnic hypoxia in infant rat pups with a partial loss of 5-HT neurons.

    Science.gov (United States)

    Magnusson, Jennifer; Cummings, Kevin J

    2015-11-15

    The role of serotonin (5-HT) neurons in cardiovascular responses to acute intermittent hypoxia (AIH) has not been studied in the neonatal period. We hypothesized that a partial loss of 5-HT neurons would reduce arterial blood pressure (BP) at rest, increase the fall in BP during hypoxia, and reduce the long-term facilitation of breathing (vLTF) and BP following AIH. We exposed 2-wk-old, 5,7-dihydroxytryptamine-treated and controls to AIH (10% O2; n = 13 control, 14 treated), acute intermittent hypercapnia (5% CO2; n = 12 and 11), or acute intermittent hypercapnic hypoxia (AIHH; 10% O2, 5% CO2; n = 15 and 17). We gave five 5-min challenges of AIH and acute intermittent hypercapnia, and twenty ∼20-s challenges of AIHH to mimic sleep apnea. Systolic BP (sBP), diastolic BP, mean arterial pressure, heart rate (HR), ventilation (V̇e), and metabolic rate (V̇o2) were continuously monitored. 5,7-Dihydroxytryptamine induced an ∼35% loss of 5-HT neurons from the medullary raphe. Compared with controls, pups deficient in 5-HT neurons had reduced resting sBP (∼6 mmHg), mean arterial pressure (∼5 mmHg), and HR (56 beats/min), and experienced a reduced drop in BP during hypoxia. AIHH induced vLTF in both groups, reflected in increased V̇e and V̇e/V̇o2, and decreased arterial Pco2. The sBP of pups deficient in 5-HT neurons, but not controls, was increased 1 h following AIHH. Our data suggest that a relatively small loss of 5-HT neurons compromises resting BP and HR, but has no influence on ventilatory plasticity induced by AIHH. AIHH may be useful for reversing cardiorespiratory defects related to partial 5-HT system dysfunction.

  9. Total hemispherical emissivity of pre-oxidized and un-oxidized Zr-2.5Nb pressure-tube materials at 600 {sup o}C to 1000 {sup o}C under vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L.; Paine, M.; Nitheanandan, T., E-mail: randy.fong@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The emissivity of pre-oxidized and un-oxidized pressure-tube specimens has been measured at high temperatures under vacuum. The emissivity values of un-oxidized tube specimens decreased only slightly from 0.34 at 600 {sup o}C to 0.30 at 800 {sup o}C and changed gradually to 0.25 at 1000 {sup o}C. In comparison, the emissivity of pre-oxidized pressure-tube specimens decreased drastically from 0.70 at 600 {sup o}C to 0.35 at 800 {sup o}C, and gradually decreased to 0.25 at 1000 {sup o}C. The oxide layer of the pre-oxidized tube specimens dissolved into the metal matrix when heated to 700 {sup o}C and higher. Using these results, 2 linear correlations were obtained for emissivity with the oxide thickness measured by scanning electron microscopy and secondary ion mass spectroscopy analysis. (author)

  10. Processing biobased polymers using plasticizers: Numerical simulations versus experiments

    Science.gov (United States)

    Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa

    2016-03-01

    In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.

  11. Computer-Aided Thermohydraulic Design of TEMA Type E Shell and Tube Heat Exchangers for Use in Low Pressure, Liquid-to-Liquid, Single Phase Applications.

    Science.gov (United States)

    1985-04-01

    subroutine contains data on friction factors correlated by Sieder and Tate for fluids which are being heated or cooled in tubes. The subroutine uses a linear...inter- -". polation algorithm to calculate the friction factor depending on the Reynolds Number of the tube-side fluid. The Sieder and Tate correlated

  12. Casing and tubing design for sour oil and gas field

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. [CCDC Drilling and Production Technology Research Inst., Guanghan (China). Drilling and Completion Research and Design Center; State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu (China); Lin, Y.; Shi, T.; Zhu, D. [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu (China); Wang, Z.; You, X.; Zhang, G.; Liu, H. [CCDC Drilling and Production Technology Research Inst., Guanghan (China). Drilling and Completion Research and Design Center

    2009-07-01

    Environmental fractures are the main cause of casing and tubing yield failures in sour gas and oil wells. This paper discussed casing and tubing designs for high pressure high temperature (HPHT) environments containing hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and water wells. A fracture mechanics methods was used to establish yield design criterion for a conventional sulfur resistance casing T95 and a quasi-resistance casing C110. Sulfide stress corrosion (SSC) tests, A-uniaxial tensile tests, and double cantilever beam tests were conducted to determine the potential for failures caused by the unstable propagation of a pre-existing crack and failures caused by the initiation and stable growth of cracks. Elasto-plastic equations were developed to calculate the pressure at which a pipe will fail due to the propagation of a pre-existing sharp crack. Results of the tests indicated that the predictive fracture pressures for the C110 casing and tubing samples were lower than those observed for the T95 sample. 17 refs., 4 figs.

  13. An ice rink refrigeration system based on CO{sub 2} as secondary fluid in copper tubes

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Khuram [Royal Inst. of Technology, Stockholrn (Sweden). Dept. of Energy Technology

    2006-06-15

    This report is a study of the use of copper tubes with CO{sub 2} as heat transfer fluid in ice rink applications. Copper tubes can be rolled rather easily up to the required length which decreases installation cost and simplifies the procedure. A test ice rink was built at IUC Ref Centre, Katrineholm with copper tubes. FEMLAB and EES are two softwares that were used for analysis. The comparison between 12.7 mm diameter copper tubes with and without plastic foil cover, 9.5 mm diameter copper tubes with and without plastic foil cover, 21.3 mm diameter steel pipes and 25 mm diameter plastic pipes is presented in the report. The reason to have plastic foil over copper tubes is to avoid the minor risk of chemical corrosion. Furthermore the foil serves as mechanical wear protection as well, which in this case could appear if rubbing would occur due to thermal expansion and contraction. It is found that 12.7 mm copper tube with plastic foil is good choice in terms of heat transfer. At rated heat flux of 100 W/m{sup 2} and with a pitch of 100 mm, it is 0.18 deg C better than 9.5 mm copper tube with plastic foil. This report includes the investigation which shows that there is no danger of movement of copper tubes inside the rink bed due to thermal expansion and contraction during operation. It also includes the comparison of average Friedel pressure drop model and average homogeneous pressure drop model with experimental results. Average Friedel pressure drop method gave good results. It predicted 20 to 25 % higher pressure drop at lower CR and about 60 % at higher CR than the experimental results for 120 meter long and 12.7 mm diameter copper tubes. 120 meter long copper tubes are good choice; as header can be placed on short side of the ice rink. It will reduce the header length and connections to half. FEMLAB modelling for conduction heat transfer gave good results and can be used as a tool for design and optimization. The optimization of the pitch of the copper tubes

  14. [Airway problem during the operation with beach-chair position: a case of arytenoid dislocation and the relationship between intra-cuff pressure of endotrachial tube and the neck position].

    Science.gov (United States)

    Habe, Kazutoshi; Kawasaki, Takashi; Horishita, Takafumi; Sata, Takeyoshi

    2011-06-01

    Shoulder arthroscopy has been performed in beach-chair position. In our hospital, the postoperative complications of the airway were reported in the patients who had undergone the operation in this position (hoarseness: 4 cases, paralysis of recurrent nerve: 2 cases, arytenoids dislocation: 1 case). We assumed that the neck bending during operation causes these complications. We investigated the relationship between the neck position and the intra-cuff pressure of endotrachial tube. The results showed that the neck bending significantly increases the intra-cuff pressure of endotrachial tube. Therefore, we conclude that it is necessary to pay attention to neck position to avoid postoperative complications of the airway in the patients who have the operation in beach-chair position.

  15. Magnesium tube hydroforming

    Energy Technology Data Exchange (ETDEWEB)

    Liewald, M.; Pop, R. [Institute for Metal Forming Technology (IFU), Stuttgart (Germany)

    2008-04-15

    Magnesium alloys reveal a good strength-to-weight ratio in the family of lightweight metals and gains potential to provide up to 30% mass savings compared to aluminium and up to 75 % compared to steel. The use of sheet magnesium alloys for auto body applications is however limited due to the relatively low formability at room temperature. Within the scope of this paper, extruded magnesium tubes, which are suitable for hydroforming applications, have been investigated. Results obtained at room temperature using magnesium AZ31 tubes show that circumferential strains are limited to a maximal value of 4%. In order to examine the influence of the forming temperature on tube formability, investigations have been carried out with a new die set for hot internal high pressure (IHP) forming at temperatures up to 400 C. Earlier investigations with magnesium AZ31 tubes have shown that fractures occur along the welding line at tubes extruded over a spider die, whereby a non-uniform expansion at bursting with an elongation value of 24% can be observed. A maximum circumferential strain of approx. 60% could be attained when seamless, mechanically pre-expanded and annealed tubes of the same alloy have been used. The effect of annealing time on materials forming properties shows a fine grained structure for sufficient annealing times as well as deterioration with a large increase at same time. Hence, seamless ZM21 tubes have been used in the current investigations. With these tubes, an increased tensile fracture strain of 116% at 350 C is observed as against 19% at 20 C, obtained by tensile testing of milled specimens from the extruded tubes. This behaviour is also seen under the condition of tool contact during the IHP forming process. To determine the maximum circumferential strain at different forming temperatures and strain rates, the tubes are initially bulged in a die with square cross-section under plane stress conditions. Thereafter, the tubes are calibrated by using an

  16. Skin perfusion pressure measured with a photo sensor in an air-filled plastic balloon: validity and reproducibility on the lower leg in normal subjects and patients suspected of obliterative arterial disease

    DEFF Research Database (Denmark)

    Nielsen, Steen Levin; Nielsen, Anne Lerberg; Vind, Susanne Haase

    2011-01-01

    An inflatable small plastic bag including a photo sensor was constructed for measurement of skin perfusion pressure avoiding the rim of the photo sensor over bony and tendineous surfaces of the tibia below the knee, at the ankle, and on the dorsal forefoot. Compression was obtained using a conical...... pressure device thus had acceptable validity and reproducibility for estimation of the skin perfusion pressure and can be used on bony and tendineous sites on the lower limb in regions where critical wound healing is frequent, e.g. ankle and forefoot....

  17. Reliability of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Kadokami, E. [Mitsubishi Heavy Industries Ltd., Hyogo-ku (Japan)

    1997-02-01

    The author presents results on studies made of the reliability of steam generator (SG) tubing. The basis for this work is that in Japan the issue of defects in SG tubing is addressed by the approach that any detected defect should be repaired, either by plugging the tube or sleeving it. However, this leaves open the issue that there is a detection limit in practice, and what is the effect of nondetectable cracks on the performance of tubing. These studies were commissioned to look at the safety issues involved in degraded SG tubing. The program has looked at a number of different issues. First was an assessment of the penetration and opening behavior of tube flaws due to internal pressure in the tubing. They have studied: penetration behavior of the tube flaws; primary water leakage from through-wall flaws; opening behavior of through-wall flaws. In addition they have looked at the question of the reliability of tubing with flaws during normal plant operation. Also there have been studies done on the consequences of tube rupture accidents on the integrity of neighboring tubes.

  18. Development and formability analysis of TRIP seamless steel tube

    Institute of Scientific and Technical Information of China (English)

    Zhang Zicheng; Zhu Fuxian

    2014-01-01

    In this paper, the production technology of transformation induced plasticity (TRIP) steel was first introduced into the steel tube manufacture field to produce the steel tubes with high strength and plasticity. The TRIP seamless steel tubes with the microstructure of ferrite, bainite, retained austenite and a little martensite were successfully fabricated using a cold-drawn steel tube with two-stage heat treatment technique and continu- ous heat treatment process, respectively. The ring tensile test and cold bend test were carried out to study the formability of the newly developed TRIP seamless steel tube. The results showed that the TRIP seamless steel tubes have a good cold formability, and they are available to be used in the tube hydroforming process. In ad- dition, the equipment of continuous heat treatment developed in the current study can be used to produce TRIP steel tube, and it may serve as an important reference for the industrial production of TRIP steel tube.

  19. Thermal creep properties of Ti-stabilized DIN 1.4970 (15-15Ti) austenitic stainless steel pressurized cladding tubes

    Science.gov (United States)

    Cautaerts, Niels; Delville, Rémi; Dietz, Wolfgang; Verwerft, Marc

    2017-09-01

    This paper presents a large database of thermal creep data from pressurized unirradiated DIN 1.4970 Ti-stabilized austenitic stainless steel (i.e. EN 1515CrNiMoTiB or ;15-15Ti;) cladding tubes from more than 1000 bi-axial creep tests conducted during the fast reactor R&D program of the DeBeNe (Deutschland-Belgium-Netherlands) consortium between the 1960's to the late 1980's. The data comprises creep rate and time-to-rupture between 600 and 750 °C and a large range of stresses. The data spans tests on material from around 70 different heats and 30 different melts. Around one fourth of the data was obtained from cold worked material, the rest was obtained on cold worked + aged (800 °C, 2 h) material. The data are graphically presented in log-log graphs. The creep rate data is fit with a sinh correlation, the time to rupture data is fit with a modified exponential function through the Larson-Miller parameter. Local equivalent parameters to Norton's law are calculated and compared to literature values for these types of steels and related to possible creep mechanisms. Some time to rupture data above 950 °C is compared to literature dynamic recrystallization data. Time to rupture data between 600 and 750 °C is also compared to literature data from 316 steel. Time to rupture was correlated directly to creep rate with the Monkman-Grant relationship at different temperatures.

  20. Pressure-assisted forming of non-concentric tubular cross sections with solid medium

    DEFF Research Database (Denmark)

    Alves, Luis M.; Silva, Carlos M.A.; Nielsen, Chris V.

    2016-01-01

    hydroforming) or elastomers (tube rubber forming) as pressuring medium, the subject matter of this article is centred in the utilization of low melting point, recyclable, metallic alloys as solid pressurizing medium. The aims and scope of the article are centred on the feasibility of forming straight carbon...... plastic deformation and prevent collapse can be successfully and effectively employed to fabricate non-concentric tubular cross sections for prototypes and small batches of lightweight components....

  1. Yielding Torque-Tube System Reduces Crash Injuries

    Science.gov (United States)

    Mcsmith, D. G.

    1982-01-01

    Yielding torque-tube system minimizes injuries by limiting load transferred to occupant in crash. When properly integrated into seat structure, torque tube yields in plastic deformation stage of material and maintains a relatively constant resistance to applied torque for many degrees of rotation. Yielding torque-tube system is expected to find application in aircraft and automobile industries.

  2. Material modeling for multistage tube hydroforming process simulation

    Science.gov (United States)

    Saboori, Mehdi

    strain on the nucleation, growth and coalescence of voids are investigated through a new user material for burst prediction during tube hydroforming. A numerical procedure for both plasticity and fracture is developed and implemented into 3D explicit commercial finite element software (LS-DYNA) through a new user material subroutine. The FLDs and predicted bursting pressure results are compared to the experimental data to validate the models. Finally, the new user material model is used to predict the bursting point of some real tube hydroforming parts such as round to square and round to V parts. Then, the predicted bursting pressure results are compared to the experimental data to validate the models in real and multistep tube hydroforming processes.

  3. Plastic Jellyfish.

    Science.gov (United States)

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  4. McGrath-5型视频喉镜引导气管导管不同前端塑形角度对肥胖患者经口气管插管的效果比较%Comparison of different front plastic angle with reinforced plastic endotracheal tube guidance by McGrath -5 video laryngoscope for orotracheal intubation in obesity

    Institute of Scientific and Technical Information of China (English)

    严峰; 李军; 王浩杰; 沈荣荣; 费莉

    2015-01-01

    Objective To compare the different front plastic angle with reinforced plastic endotracheal tube guidance by McGrath -5 video laryngoscope for orotracheal intubation in obesity.Methods 1 20 cases with obesity undergoing general anesthesia,ASA gradeⅠ -Ⅲ who planned intubation guidance by McGrath -5 video laryngo-scope,were randomly divided into three group according to different front plastic angle for endotracheal tube:group A (catheter 60°),group B(catheter 75°),C group(catheter 90°),40 cases in each group.General information and air-way evaluation indexes such as Mallampati classification,the degree of open mouth,neck circumference,thyromental distance,atlanto -occipital joint stretch degree preoperatively were recorded.C /L classification with laryngoscopic exposure,the successful rate of first intubation,time of first intubation,cases of second intubation,the incidence of blood stained catheter and postoperative sore throat and hoarseness were recorded also.Results There were no signif-icant differences of patients with general information and airway evaluating indexes such as Mallampati classification, the degree of open mouth,neck circumference,thyromental distance,atlanto -occipital joint stretch degree among three groups(P >0.05).The successful rate of catheter alignment glottal was 97.5% in group B,which was signifi-cantly higher than that of group A(80.0%)and group C(85.0%)(χ2 =8.36,P 0.05).Conclusion McGrath -5 video laryngoscope which guided endotracheal tube with front plastic angle at 75°degree has highest success rate of intubation,shortest intubation time,least compli-cation and is suitable for the application of tracheal intubation in obese patients.%目的:比较 McGrath-5型视频喉镜引导加强型气管导管不同前端塑形角度对肥胖患者经口气管插管效果的影响。方法选取肥胖患者120例,ASA 分级Ⅰ~Ⅲ级,用 McGrath-5型视频喉镜插管,气管导管前端塑形一定角度,按数字

  5. Field based plastic contamination sensing

    Science.gov (United States)

    The United States has a long-held reputation of being a dependable source of high quality, contaminant-free cotton. Recently, increased incidence of plastic contamination from sources such as shopping bags, vegetable mulch, surface irrigation tubing, and module covers has threatened the reputation o...

  6. Alternate tube plugging criteria for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Cueto-Felgueroso, C.; Aparicio, C.B. [Tecnatom, S.A., Madrid (Spain)

    1997-02-01

    The tubing of the Steam Generators constitutes more than half of the reactor coolant pressure boundary. Specific requirements governing the maintenance of steam generator tubes integrity are set in Plant Technical Specifications and in Section XI of the ASME Boiler and Pressure Vessel Code. The operating experience of Steam Generator tubes of PWR plants has shown the existence of some types of degradatory processes. Every one of these has an specific cause and affects one or more zones of the tubes. In the case of Spanish Power Plants, and depending on the particular Plant considered, they should be mentioned the Primary Water Stress Corrosion Cracking (PWSCC) at the roll transition zone (RTZ), the Outside Diameter Stress Corrosion Cracking (ODSCC) at the Tube Support Plate (TSP) intersections and the fretting with the Anti-Vibration Bars (AVBs) or with the Support Plates in the preheater zone. The In-Service Inspections by Eddy Currents constitutes the standard method for assuring the SG tubes integrity and they permit the monitoring of the defects during the service life of the plant. When the degradation reaches a determined limit, called the plugging limit, the SG tube must be either repaired or retired from service by plugging. Customarily, the plugging limit is related to the depth of the defect. Such depth is typically 40% of the wall thickness of the tube and is applicable to any type of defect in the tube. In its origin, that limit was established for tubes thinned by wastage, which was the predominant degradation in the seventies. The application of this criterion for axial crack-like defects, as, for instance, those due to PWSCC in the roll transition zone, has lead to an excessive and unnecessary number of tubes being plugged. This has lead to the development of defect specific plugging criteria. Examples of the application of such criteria are discussed in the article.

  7. [Effect of oxygen tubing connection site on percutaneous oxygen partial pressure and percutaneous carbon dioxide partial pressure in patients with chronic obstructive pulmonary disease during noninvasive positive pressure ventilation].

    Science.gov (United States)

    Mi, S; Zhang, L M

    2017-04-12

    Objective: We evaluated the effects of administering oxygen through nasal catheters inside the mask or through the mask on percutaneous oxygen partial pressure (PcO(2))and percutaneous carbon dioxide partial pressure (PcCO(2)) during noninvasive positive pressure ventilation (NPPV) to find a better way of administering oxygen, which could increase PcO(2) by increasing the inspired oxygen concentration. Methods: Ten healthy volunteers and 9 patients with chronic obstructive pulmonary disease complicated by type Ⅱ respiratory failure were included in this study. Oxygen was administered through a nasal catheter inside the mask or through the mask (oxygen flow was 3 and 5 L/min) during NPPV. PcO(2) and PcCO(2) were measured to evaluate the effects of administering oxygen through a nasal catheter inside the mask or through the mask, indirectly reflecting the effects of administering oxygen through nasal catheter inside the mask or through the mask on inspired oxygen concentration. Results: Compared to administering oxygen through the mask during NPPV, elevated PcO(2) was measured in administering oxygen through the nasal catheter inside the mask, and the differences were statistically significant (P0.05). Conclusion: Administering oxygen through a nasal catheter inside the mask during NPPV increased PcO(2) by increasing the inspired oxygen concentration but did not increase PcCO(2). This method of administering oxygen could conserve oxygen and be suitable for family NPPV. Our results also provided theoretical basis for the development of new masks.

  8. Crack growth of throughwall flaw in Alloy 600 tube during leak testing

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Chi Bum, E-mail: bahn@pusan.ac.kr [Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Majumdar, Saurin [Argonne National Laboratory, Lemont, IL 60439 (United States)

    2015-04-01

    Graphical abstract: - Highlights: • A series of leak testing was conducted at a constant pressure and room temperature. • The time-dependent increase in the leak rate was observed. • The fractography revealed slip offsets and crystallographic facets. • Time-dependent plasticity at the crack tip caused the slip offsets. • Fatigue by jet/structure interaction caused the crystallographic facets. - Abstract: We examined the issue of whether crack growth in a full thickness material can occur in a leaking crack. A series of leak tests was conducted at a room temperature and constant pressure (17.3 MPa) with Alloy 600 tube specimens containing a tight rectangular throughwall axial fatigue crack. To exclude a potential pulsation effect by a high pressure pump, the test water was pressurized by using high pressure nitrogen gas. Fractography showed that crack growth in the full thickness material can occur in the leaking crack by two mechanisms: time-dependent plasticity at the crack tip and fatigue induced by jet/structure interaction. The threshold leak rate at which the jet/structure interaction was triggered was between 1.3 and 3.3 L/min for the specific heat of the Alloy 600 tube tested.

  9. The scope of plastic surgery

    African Journals Online (AJOL)

    2013-08-03

    Aug 3, 2013 ... areas of surgery (especially general surgery), plastic surgeons are arguably the .... Who do you feel are experts in laparoscopic surgery? e (general surgeons) a. Maxillofacial .... of pressure sore. ORIF = open reduction internal fixation. ... Plastic versus cosmetic surgery: What's the difference? Plast Reconstr.

  10. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Minoru E-mail: mtakahas@nr.titech.ac.jp; Momozaki, Yoichi

    2000-11-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall.

  11. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... the recovery room, sometimes called the "post-op" (post-operative) room or PACU (post-anesthesia care unit), and ... site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site ...

  12. Vortex tube optimization theory

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, Jeffery [Cambridge Univ., Magdalene Coll., Cambridge (United Kingdom); Bejan, Adrian [Duke Univ., Dept. of Mechanical Engineering and Materials Science, Durham, NC (United States)

    1999-11-01

    The Ranque-Hilsch vortex tube splits a single high pressure stream of gas into cold and warm streams. Simple models for the vortex tube combined with regenerative precooling are given from which an optimisation can be undertaken. Two such optimisations are needed: the first shows that at any given cut or fraction of the cold stream, the best refrigerative load, allowing for the temperature lift, is nearly half the maximum loading that would result in no lift. The second optimisation shows that the optimum cut is an equal division of the vortex streams between hot and cold. Bounds are obtainable within this theory for the performance of the system for a given gas and pressure ratio. (Author)

  13. Friction role in deformation behaviors of high-strength TA18 tubes in numerical control bending

    Science.gov (United States)

    Fang, Jun; Liang, Chuang; Lu, Shiqiang; Wang, Kelu; Zheng, Deliang

    2017-09-01

    In order to reveal the friction role in deformation behaviors of high-strength TA18 tubes in numerical control (NC) bending, a three dimensional (3D) elastic-plastic finite element (FE) model of high-strength TA18 tubes for whole process in NC bending was established based on ABAQUS code, and its reliability was validated by the experimental results in literature. Then, the bending deformation behaviors under different friction coefficients between tube and various dies were studied with respect to multiple defects such as wall thinning, wall thickening and cross section deformation. The results show that the wall thinning ratio and cross section deformation ratio increase with the increase of the friction coefficient between mandrel and tube f m or decrease of the friction coefficient between pressure die and tube f p, while the friction coefficient between bending die and tube f b has no obvious effect on these. The wall thickening ratio decreases with the increase of f b, f m or decrease of f p.

  14. Incident shock wave attenuation in oscillatory tube and influence on performance of pressure wave refrigerator%振荡管内入射激波衰减及其对冷效应的影响

    Institute of Scientific and Technical Information of China (English)

    郑闽锋; 刘曦; 黄成; 林跃东; 雷晓健; 李学来

    2014-01-01

    The pressure wave refrigerator represents a simple arrangement for gas cooling by its decompression and has many applications in chemical processes and energy transformation. The mechanism of the cooling effect of oscillatory tube is the conversion of the pressure energy of gas to heat through the movement of pressure waves, which are moving shock wave and unsteady expansion wave. In the present paper, the regular pattern of incident shock wave attenuation and its influence on the performance of pressure wave refrigerator are investigated by means of a single-tube set up. In the experiments, the expansion ratio is from 2.0 to 6.0, the relative length of the oscillatory tube L/d is from 87 to 737, and the exciting frequency is from 10 Hz to 240 Hz. The experimental results show that the relative strength of incident shock wave is reduced with the increase of relative position in length x/L because the energy of the reflected shock wave is exhausted by the viscosity and friction of the gas inside the tube. The other reason is the result of the gas in the tube pressurized and heated by the shock wave. The shock wave strength is also influenced by transmission and reflection effects resulted from the reflected shock wave. When the tube is relatively short, the relative strength of incident shock wave is less reduced as the tube length decreases, while the strength of the reflected shock wave at the closed end of the tube increases. The maximum refrigeration efficiencyηmax of the refrigerator increases with the tube length, but the value ofηmax is not affected obviously when the tube length increases to some value. The recommended optimal tube length L/d is 300-435 for the tube in this experiment. It helps to improve the performance of the pressure wave refrigerator under variable work condition when the amplitude of the refrigeration efficiency fluctuation is reduced as the length increases. The relative strength of the incident shock wave attenuation is concerned

  15. CO2-induced plasticization phenomena in glassy polymers

    NARCIS (Netherlands)

    Bos, A.; Punt, Ineke G.M.; Wessling, Matthias; Strathmann, H.

    1999-01-01

    A typical effect of plasticization of glassy polymers in gas permeation is a minimum in the relationship between the permeability and the feed pressure. The pressure corresponding to the minimum is called the plasticization pressure. Plasticization phenomena significantly effect the membrane perform

  16. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full -- Part 4: Venturi tubes

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    ISO 5167-4:2003 specifies the geometry and method of use (installation and operating conditions) of Venturi tubes when they are inserted in a conduit running full to determine the flowrate of the fluid flowing in the conduit. ISO 5167-4:2003 also provides background information for calculating the flow-rate and is applicable in conjunction with the requirements given in ISO 5167-1. ISO 5167-4:2003 is applicable only to Venturi tubes in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, each of these devices can only be used within specified limits of pipe size, roughness, diameter ratio and Reynolds number. ISO 5167-4:2003 is not applicable to the measurement of pulsating flow. It does not cover the use of Venturi tubes in pipes sized less than 50 mm or more than 1 200 mm, or for where the pipe Reynolds numbers are below 20 000. ISO 5167-4:2003 deals with the three types of classical Venturi tubes: cast, machined and rough welde...

  17. Experimental Study on Pressure Drop of Falling Film Flow Across Tube Bundles in Rotated Square Arrangement%转角正方形管束有降膜流动时的压降实验

    Institute of Scientific and Technical Information of China (English)

    刘华; 沈胜强; 陈石; 龚路远; 刘瑞; 陈学

    2013-01-01

    To study the effects of flow resistance in large-scale seawater desalination facility on the performance itself,an experimental setup was built to simulate the steam flow process in a horizontal-tube falling film evaporator,so as to analyze the influence of saturated steam temperature and spray density on the flow resistance in the tube bundle.The new parameter (Reynolds number of spray water) was used to fit the experimental results,and subsequently a pressure drop coefficient formula was obtained for the steam flow across the tube bundle in rotated square arrangement.Results show that for a constant steam flow and spray density,the pressure drop reduces with rising saturated steam temperature,and the error of differential pressure is within-± 15% between predicted value and actual measurement.%为了深入研究大型海水淡化装置中流动阻力对装置性能的影响,建立了大型水平管束降膜流动特性实验台,模拟了水平管降膜蒸发器内蒸汽的流动过程,分析了饱和蒸汽温度和喷淋密度对管束流动阻力的影响,引入新的参数(喷淋雷诺数)对实验数据进行了拟合,得出蒸汽横掠有降膜流动的转角正方形管束的压降系数公式.结果表明:在相同的蒸汽质量流量和喷淋密度下,压降随饱和蒸汽温度的升高而降低;压差预测值与实验值的误差小于±15%.

  18. 负压吸引配合咽鼓管吹张治疗分泌性中耳炎临床经验%Clinical Effect of Negative Pressure Suction with Eustachian Tube in Treatment of Secretory Otitis Media

    Institute of Scientific and Technical Information of China (English)

    马进学

    2013-01-01

      目的:探讨负压吸引配合咽鼓管吹张治疗分泌性中耳炎的临床疗效.方法:回顾性分析我院使用负压吸引配合咽鼓管吹张治疗分泌性中耳炎病例193例并观察其疗效.结果:痊愈164例,显效27例,无效2例,总有效率98.96%.结论:负压吸引配合咽鼓管吹张治疗分泌性中耳炎疗效好,复发率低,患者易于接受,是治疗中耳炎较好的方法之一.%Objective:To explore the clinical effect of negative pressure suction with eustachian tube in treatment of secretory otitis media. Methods:Retrospective analysis of our hospital uses neg-ative pressure suction with eustachian tube in treating secretory otitis media in 193 patients, and ob-serve its curative effect. Results:164 cases were cured, 27 cases markedly effective, 2 cases ineffec-tive, the total efficiency of 98.96%. Conclusion:Negative pressure suction with the eustachian tube in treating secretory otitis media has good curative effect, low recurrence rate, and is easily accept-ed by patients, is one of the better therapy of otitis media.

  19. Dual-tube continuous negative pressure drainage in radical mastectomy%双管持续中心负压引流在乳腺癌根治术中的应用观察

    Institute of Scientific and Technical Information of China (English)

    张刚; 伍万权

    2011-01-01

    Objective: To observe the effect of dual-tube continuous negative pressure drainage on patients receiving radical mastectomy. Methods:Forty-three patients with breast cancer underwent radical mastectomy, and the dual-tube continuous negative pressure drainage was applied. Subcutaneous fluid collection and skin flap necrosis were observed after the operation. Results: Primary healing was reached in 35 cases; subcutaneous fluid collection was detected in 5 cases, 3 of which were in the axilla and 2 in the parasternal;skin flap necrosis occurred in 3 cases,which was mainly in the middle edge of the incision;2 cases suffered from both fluid collection and skin flap necrosis. Conclusions:After radical mastectomy, dual-tube continuous negative pressure drainage can reduce the subcutaneous fluid collection and skin flap necrosis.%目的:观察双管持续中心负压引流在乳腺癌根治术中的应用效果.方法:对43例乳腺癌患者行乳腺癌根治术并双管持续中心负压引流,观察术后皮下积液及皮瓣坏死的情况.结果:术后35例切口一期愈合;并发皮下积液5例,其中位于腋窝处3例,胸骨旁2例;皮瓣坏死3例,主要集中在切口中段边缘,其中皮下积液合并皮瓣坏死2例.结论:乳腺癌根治术后应用双管持续中心负压引流,可减少皮下积液和皮瓣坏死的发生.

  20. Film holder for radiographing tubing

    Science.gov (United States)

    Davis, Earl V.; Foster, Billy E.

    1976-01-01

    A film cassette is provided which may be easily placed about tubing or piping and readily held in place while radiographic inspection is performed. A pair of precurved light-impervious semi-rigid plastic sheets, hinged at one edge, enclose sheet film together with any metallic foils or screens. Other edges are made light-tight with removable caps, and the entire unit is held securely about the object to be radiographed with a releasable fastener such as a strip of Velcro.

  1. Experimental investigation of friction coefficient in tube hydroforming

    Institute of Scientific and Technical Information of China (English)

    Hyae Kyung YI; Hong Sup YIM; Gun Yeop LEE; Sung Mun LEE; Gi Suk CHUNG; Young-Hoon MOON

    2011-01-01

    The friction coefficient between tube and die in guide zone of tube hydroforming was obtained. In hydroforming, the tube is expanded by an internal pressure against the tool wall. By pushing the tube through tool, a friction force at the contact surface between the tube and the tool occurs. In guiding zone, the friction coefficients between tube and die can be estimated from the measured axial feeding forces. In expansion zone, the friction coefficients between tube and die can be evaluated from the measured geometries of expanded tubes and FE analysis.

  2. Plastics Technology.

    Science.gov (United States)

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  3. 基于弹塑性理论带肋填砂管桩承载力的研究与应用%Study and Application on Bearing Capacity of Ribbed and Sand-filled Tube Pile Based on Elastic-plastic Theory

    Institute of Scientific and Technical Information of China (English)

    戴庆斌

    2012-01-01

    带肋填砂管桩是对普通预应力混凝土管桩改进后形成的一种新的管桩应用类型。基于弹塑性理论的带肋填砂管桩沉降计算方法,既考虑桩身在荷载传递作用下的弹性压缩沉降,也考虑桩端以下土层的弹性和弹塑性变形沉降,并给出端阻力和桩侧阻力的分配系数确定方法。根据该模型计算结果,可进一步分析有关数据的特点及其产生的原理。结果表明,该模型的计算结果与实测结果较吻合,具有一定的应用价值。%Ribbed and sand-filled tube pile is a new applied tube pile after the improvement of the general prestressed concrete pile. The settlement calculation of ribbed and sand-filled tube pile based on elastic-plastic theory not only takes into account of the compression settlement under the load transfer of the pile, but also the soil elastic and plastic settlement below the pile tip, and the method of coefficients between resistances of the pile tip and the pile side is presented. According to the result, the relevant statistics and their principle can be studied. Results indicates that the calculation agrees well with the measurement, and is of practical value.

  4. Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir

    Science.gov (United States)

    Gedeon, David R. (Inventor)

    2008-01-01

    An improved pulse tube cooler having a resonator tube connected in place of a compliance volume or reservoir. The resonator tube has a length substantially equal to an integer multiple of 1/4 wavelength of an acoustic wave in the working gas within the resonator tube at its operating frequency, temperature and pressure. Preferably, the resonator tube is formed integrally with the inertance tube as a single, integral tube with a length approximately 1/2 of that wavelength. Also preferably, the integral tube is spaced outwardly from and coiled around the connection of the regenerator to the pulse tube at a cold region of the cooler and the turns of the coil are thermally bonded together to improve heat conduction through the coil.

  5. Dynamic Experimental Study of a Multi—bypass Pulse Tube Refrigerator with Two—bypass Tubes

    Institute of Scientific and Technical Information of China (English)

    YonglinJu; ChaoWang; 等

    1998-01-01

    A dynamic experimental apparatus to measure the instantaneous velocity and pressure in the multibypass pulse tube refrigerator(MPTR) was designed and constructed.Some important experimental results of the instantaneous measurements of the velocity and the pressure in the MPTR with twobypass tubes during actual operation are prsented.The effects of the middle-bypass version on the dynamic pressure and mass flow rate at the cold end of the pulse tube are ev aluated from experimental measurements.DC-flow phenomena are observed in this MPTR.The reasons of the multi-bypass version improved the performance of pulse tube refrigertor are given.

  6. Experimental investigation of heat transfer and pressure drop characteristics of non-Newtonian nanofluids flowing in the shell-side of a helical baffle heat exchanger with low-finned tubes

    Science.gov (United States)

    Tan, Yunkai; He, Zhenbin; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo

    2017-09-01

    An aqueous solution of Xanthan Gum (XG) at a weight fraction as high as 0.2% was used as the base liquid, the stable MWCNTs-dispersed non-Newtonian nanofluids at different weight factions of MWCNTs was prepared. The base fluid and all nanofluids show pseudoplastic (shear-thinning) rheological behavior. Experiments were performed to compare the shell-side forced convective heat transfer coefficient and pressure drop of non-Newtonian nanofluids to those of non-Newtonian base fluid in an integrally helical baffle heat exchanger with low-finned tubes. The experimental results showed that the enhancement of the convective heat transfer coefficient increases with an increase in the Peclet number and the nanoparticle concentration. For nanofluids with 1.0, 0.5 and 0.2 wt% of multi-walled carbon nanotubes (MWCNTs), the heat transfer coefficients respectively augmented by 24.3, 13.2 and 4.7% on average and the pressure drops become larger than those of the base fluid. The comprehensive thermal performance factor is higher than one and increases with an increasing weight fraction of MWCNTs. A remarkable heat transfer enhancement in the shell side of helical baffle heat exchanger with low-finned tubes can be obtained by adding MWCNTs into XG aqueous solution based on thermal resistance analysis. New correlations have been suggested for the shell-side friction coefficient and the Nusselt numbers of non-Newtonian nanofluids and give very good agreement with experimental data.

  7. Effects of Two Types of Nasogastric Tube Fixation on Incidence of Nasal Alar Pressure Ulcers%两种鼻胃管固定方法对鼻翼部压疮发生率的影响

    Institute of Scientific and Technical Information of China (English)

    宋瑞梅; 钱火红; 高青; 刘一; 颜哲; 赵彩霞

    2013-01-01

    目的 观察胃切除术后留置鼻胃管患者鼻翼部压疮的发生情况,寻找更好的鼻胃管固定方法.方法 方便性抽样选取第二军医大学长海医院普外科胃切除术后留置胃管行胃肠减压患者1869例,按患者住院先后时间分为:对照组826例,采用易撕敷料(3M transporeTM white)胶带交叉粘贴于胃管再固定于鼻翼部;观察组1043例,采用黏着性棉布伸缩包带(3M multipore-light brown)“Y”型粘贴于鼻翼部再交叉粘贴于胃管上;统计两组患者留置胃管3~6 d和7~20d时段中鼻翼部压疮发生率.结果 对照组与观察组鼻翼部压疮总体发生率差异有统计学意义(P<0.01),但两组内留置胃管3~6 d和7~20 d鼻翼部压疮发生率的差异无统计学意义(P>0.05).结论 采用黏着性棉布伸缩包带“Y”型固定鼻胃管,可降低鼻胃管留置患者鼻翼部压疮的发生率,值得临床推广应用.%Objective To statistically analyze the incidence of nasal ala pressure ulcers in patients with postoperative nasogastric tube fixation after gastric operation so as to find the causes for nasal ala pressure ulcers. Methods Of 1869 patients undergoing postoperative nasogastric tube fixation after gastric surgery treatment were taken as control group tapped with 3M transpore? white adhesive tape to fix the nasogastric tube on the nasal ala. Then 1043 patients were taken as experimental group tapped with "Y" shaped 3M multipore-light brown adhesive tape to fix the nasogastric tube on the nasal ala. The incidence of nasal ala pressure ulcers in the duration of nasogastric tube from 3 to 6 days and 7 to 20 days were calculated. Results Significant statistical difference was found on the total incidence of nasal ala pressure ulcers between the two groups(P0. 05). Conclusion "Y"shaped 3M multipore-light brown adhesive tape can decrease the incidence of necrosis of nasal ala pressure ulcers.

  8. Chest tube insertion

    Science.gov (United States)

    ... tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Kirsch TD, Sax J. Tube thoracostomy. In: Roberts JR, ed. Roberts and ... . 6th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 10.

  9. Jejunostomy feeding tube

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000181.htm Jejunostomy feeding tube To use the sharing features on this ... vomiting Your child's stomach is bloated Alternate Names Feeding - jejunostomy tube; G-J tube; J-tube; Jejunum ...

  10. Split radius-form blocks for tube benders

    Science.gov (United States)

    Lange, D. R.; Seiple, C. W.

    1970-01-01

    Two-piece, radius-form block permits accurate forming and removing of parts with more than a 180 degree bend. Tube bender can shape flexible metal tubing in applications dealing with plumbing, heating, and pressure transmission lines.

  11. Plastic bronchitis

    National Research Council Canada - National Science Library

    Singhi, Anil Kumar; Vinoth, Bharathi; Kuruvilla, Sarah; Sivakumar, Kothandam

    2015-01-01

    Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics...

  12. Classification and Analysis of Tube Hydroforming Processes with Respect to Adaptive FEM Simulations

    Institute of Scientific and Technical Information of China (English)

    Sebastian; MOTSCH; Matteo; STRANO

    2002-01-01

    Tube hydroforming process is a relative new process f or production of structural parts of low weight and high rigidity. The successfu lness of the process depends largely on the a proper selection of loading path w hich is axial feeding distance as related to the applied internal pressure. Due to the complicated nature of plastic deformation, a optimum loading path which w ill guarantee good hydroformed parts free of winkle and fracture has often to be determined by finite element analysis. In order to ...

  13. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  14. Plastic Bridge

    Institute of Scientific and Technical Information of China (English)

    履之

    1994-01-01

    Already ubiquitous in homes and cars, plastic is now appearing inbridges. An academic-industrial consortium based at the University ofCalifornia in San Diego is launching a three-year research program aimed atdeveloping the world’s first plastic highway bridge, a 450-foot span madeentirely from glass-,carbon,and polymer-fiber-reinforced composite mate-rials, the stuff of military aircraft. It will cross Interstate 5 to connect thetwo sides of the school’s campus.

  15. 综采面支承压力及塑性区变化规律数值模拟研究%Numerical simulation on the variation of support pressure and plastic deformation zone in fully mechanized mining face

    Institute of Scientific and Technical Information of China (English)

    乔军伟

    2011-01-01

    以白坪矿二,煤层为具体原始条件,利用三维数值模拟软件FLAC^3D,分析了随采高不同,综采工作面前方支承压力及煤壁塑性区分布特征和变化规律。%Using three-dimensional numerical simulation software FLAC^3D, the paper analyzed the variation of support pressure and plastic deformation zone in the different mining height in fully mechanized mining face.

  16. Development of P22 Tube Blank Steel for High Pressure Boiler Tube%高压锅炉管用P22管坯钢的开发生产

    Institute of Scientific and Technical Information of China (English)

    袁淑君; 李业才

    2016-01-01

    Based on the technology of steel requirements, the chemical composition and internal control requirements of the steel were designed. Using clean steel technology to control S, P and inclusion, selecting high-quality scrap and molten iron to control As, Sn, Pb, Sb, Bi and other harmful elements, and the Ca treatment can reduce the harm of the inclusion. P22 tube blank steel was produced by the process“EAF-LF-VD-CC”in Laiwu Steel, physical quality inspection shows that the steel is pure, the trace harmful elements are low, the temper brittleness sensitivity coefficient J and the CEF value were controlled ideal, the macrostructure and surface quality of the round billet are better.%依据钢的技术要求,设计了钢的化学成分及内控要求,采用纯净钢技术控制S、P及夹杂物,选用优质废钢和铁水控制As、Sn、Pb、Sb、Bi等有害元素,并通过Ca处理降低夹杂物的危害,莱钢采用EAF-LF-VD-CC工艺流程开发了P22管坯钢。实物质量检测表明,钢质纯净,微量有害元素低,回火脆性敏感系数J、CEF控制理想,圆坯低倍组织和表面质量良好。

  17. Experimental investigation of flow boiling heat transfer and pressure drops characteristic of R1234ze(E, R600a, and a mixture of R1234ze(E/R32 in a horizontal smooth tube

    Directory of Open Access Journals (Sweden)

    Jinyou Qiu

    2015-09-01

    Full Text Available The saturated flow boiling heat transfer coefficients and frictional pressure drops characteristics of R1234ze(E, R600a, and L-41b (R1234ze(E/R32 (27/73 mass % inside an 8 mm inner diameter horizontal tube were investigated. The experiment was carried out at the saturation temperature of 20°C with heat flux ranging from 5.0 to 10.0 kW·m−2 and mass flux ranging from 200 to 400 kg·m−2·s−1. The influence of mass flux, heat flux, and quality on the heat transfer coefficients and frictional pressure drops were examined and discussed. The results show that the local heat transfer coefficients of R1234ze(E are averagely 33% and 18% lower than those of R600a and L-41b, respectively. The frictional pressure drops of R1234ze(E are 21% lower than those of R600a but 6% greater than those of L-41b. Meanwhile, the experimental data of local heat transfer coefficients and frictional pressure drops are compared with some well-known correlations available in literatures.

  18. Characterization and antimicrobial efficacy against E. coli of a helium/air plasma at atmospheric pressure created in a plastic package

    Science.gov (United States)

    Connolly, J.; Valdramidis, V. P.; Byrne, E.; Karatzas, K. A.; Cullen, P. J.; Keener, K. M.; Mosnier, J. P.

    2013-01-01

    A plasma source, sustained by the application of a floating high voltage (±15 kV) to parallel-plate electrodes at 50 Hz, has been achieved in a helium/air mixture at atmospheric pressure (P = 105 Pa) contained in a zip-locked plastic package placed in the electrode gap. Some of the physical and antimicrobial properties of this apparatus were established with a view to ascertain its performance as a prototype for the disinfection of fresh produce. The current-voltage (I-V) and charge-voltage (Q-V) characteristics of the system were measured as a function of gap distance d, in the range (3 × 103 ⩽ Pd ⩽ 1.0 × 104 Pa m). The electrical measurements showed this plasma source to exhibit the characteristic behaviour of a dielectric barrier discharge in the filamentary mode and its properties could be accurately interpreted by the two-capacitance in series model. The power consumed by the discharge and the reduced field strength were found to decrease quadratically from 12.0 W to 4.5 W and linearly from 140 Td to 50 Td, respectively, in the range studied. Emission spectra of the discharge were recorded on a relative intensity scale and the dominant spectral features could be assigned to strong vibrational bands in the 2+ and 1- systems of N2 and N_2^+ , respectively, with other weak signatures from the NO and OH radicals and the N+, He and O atomic species. Absolute spectral intensities were also recorded and interpreted by comparison with the non-equilibrium synthetic spectra generated by the computer code SPECAIR. At an inter-electrode gap of 0.04 m, this comparison yielded typical values for the electron, vibrational and translational (gas) temperatures of (4980 ± 100) K, (2700 ± 200) K and (300 ± 100) K, respectively and an electron density of 1.0 × 1017 m-3. A Boltzmann plot also provided a value of (3200 ± 200 K) for the vibrational temperature. The antimicrobial efficacy was assessed by studying the resistance of both Escherichia coli K12 its isogenic

  19. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  20. Going flat out : Collin Morris, a former roughneck-turned inventor, develops a radically different form of coiled tubing

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2009-11-15

    This article described a radically reshaped coiled tubing product developed by an engineer with CJS Coiled Tubing Supply Ltd. The method encapsulates multiple conduits and electric wires within a single coiled tubing umbilical. The product is manufactured in Texas where coiled tubing strings are braided and encased within a wrapping. The strings have to be braided to maintain uniform lengths when the tubing is spooled. CJS has developed a reputation as a technical coiled tubing problem solver, particularly for low-pressure gas wells where produced water must be removed in order to avoid build up. Round pipe is particularly difficult to braid if the various conduits are of different sizes and materials. The CJS solution is called FLATpak in which multiple conduits sit side by side, encased within a rectangular matrix of thermo plastic. Several configurations of conduit are possible, including various diameters and different electric wire. FLATpak is pressure-extruded as a single piece. The rectangular product coils tighter on a coiled tubing spool than round pipe, thereby reducing transportation costs. Steel blowout preventer (BOP) rams can be switched easily to the new shape as long as the rectangular form is solid and rounded at the corners. Many producers recognize the need to deploy artificial lift systems in low-rate gas wells. CJS has installed 30 permanent FLATpak systems in Canada, more than 10 in the United States, and is adding 4 or 5 more per month. CJS is also working to proof its umbilicals for higher pressures and temperatures, for possible offshore potential. 2 figs.

  1. Successful tubes treatment of esophageal fistula

    OpenAIRE

    Zhou, Ning; Chen, Wei-Xing; Li, You-ming; Xiang, Zhun; Gao, Ping; Fang, Ying

    2007-01-01

    Aim: To discuss the merits of “tubes treatment” for esophageal fistula (EF). Methods: A 66-year-old female who suffered from a bronchoesophageal and esophagothoratic fistula underwent a successful “three tubes treatment” (close chest drainage, negative pressure suction at the leak, and nasojejunal feeding tube), combination of antibiotics, antacid drugs and nutritional support. Another 55-year-old male patient developed an esophagopleural fistula (EPF) after esophageal carcinoma operation. He...

  2. Acoustical studies on corrugated tubes

    Science.gov (United States)

    Balaguru, Rajavel

    Corrugated tubes and pipes offer greater global flexibility combined with local rigidity. They are used in numerous engineering applications such as vacuum cleaner hosing, air conditioning systems of aircraft and automobiles, HVAC control systems of heating ducts in buildings, compact heat exchangers, medical equipment and offshore gas and oil transportation flexible riser pipelines. Recently there has been a renewed research interest in analyzing the flow through a corrugated tube to understand the underlying mechanism of so called whistling, although the whistling in such a tube was identified in early twentieth century. The phenomenon of whistling in a corrugated tube is interesting because an airflow through a smooth walled tube of similar dimensions will not generate any whistling tones. Study of whistling in corrugated tubes is important because, it not only causes an undesirable noise problem but also results in flow-acoustic coupling. Such a coupling can cause significant structural vibrations due to flow-acoustic-structure interaction. This interaction would cause flow-induced vibrations that could result in severe damage to mechanical systems having corrugated tubes. In this research work, sound generation (whistling) in corrugated tubes due to airflow is analyzed using experimental as well as Computational Fluid Dynamics-Large Eddy Simulation (CFD-LES) techniques. Sound generation mechanisms resulting in whistling have been investigated. The whistling in terms of frequencies and sound pressure levels for different flow velocities are studied. The analytical and experimental studies are carried out to understand the influence of various parameters of corrugated tubes such as cavity length, cavity width, cavity depth, pitch, Reynolds numbers and number of corrugations. The results indicate that there is a good agreement between theoretically calculated, computationally predicted and experimentally measured whistling frequencies and sound pressure levels

  3. 49 CFR 192.123 - Design limitations for plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  4. Experimental Investigation on Heat Transfer and Frictional Characteristics of Shell-and-tube Heat exchangers with Different Baffles and Tubes

    Science.gov (United States)

    Wang, C.; Zhu, J. G.; Sang, Z. F.

    2010-03-01

    In this study, the heat transfer and tube frictional characteristics of the helixchangers (shell-and-tube heat exchanger with helical baffles) with spirally corrugated and smooth tubes and the conventional shell-and-tube heat exchanger with smooth tubes were experimentally obtained. The results show that the helixchangers with the spirally corrugated tube and the smooth tubes enhance the total heat transfer coefficient about 26% and 7% on the average than the segmental baffled heat exchanger. In the tube side, the spirally corrugated tube leads to about 28% average increase on convective heat transfer performance and about 24% average increase on pressure drop than the smooth tube, but its conversion efficiency is still higher. The helical baffle could enhance the shell-side condensation coefficient by 13%, and the spirally corrugated tube could help the helixchanger with it enhance remarkably the condensation performance by 53% than the segmental baffled heat exchanger.

  5. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  6. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  7. Designing a feedback control algorithm for the tube hydroforming process

    DEFF Research Database (Denmark)

    Endelt, Benny Ørtoft; Cheng, Ming; Zhang, Shihong

    2013-01-01

    to the dynamic behavior of the system and the numerical tests show that it is possible to control the quality and plastic deformation of the tube. Numerical simulations show that the control system can eliminate both rupture and irreversible wrinkling - which are the two major failure modes in tube hydroforming....

  8. Cutting Under Pressure Technology for the Tubing String with Dual Packer in Gas Well%带压切割气井双封分压管柱工艺技术∗

    Institute of Scientific and Technical Information of China (English)

    谢涛; 杨红斌; 徐迎新

    2015-01-01

    复杂多个大直径工具管柱、腐蚀管柱和带喷砂器的管柱带压起钻工艺尚无有效方法,为此,研发了带压切割气井双封分压管柱工艺技术。该工艺技术采用专门的带压切割装置,利用切割刀具在装置内逐段切割,带压起出切割掉的油管,下带压密封捞矛打捞切割掉的油管鱼头,逐级起出复杂管柱。现场试验结果表明,气井带压切割工艺可以实现ø73�0 mm N80油管双封分压管柱的带压切割;对于腐蚀穿孔和双封分压以上复杂管柱可以采取装置内分段切割、密封打捞及分级起出的技术方案。%There is still no effective method of tripping out complex multiple large diameter tool string, corro⁃sion string and string with sandblast under pressure, to address the issue, a technology of cutting dual packer iso⁃lation string in gas well has been developed�A special device capable of cutting string under pressure is used to cut the string by cutter�After tripping out the cut tubing string section, run fishing spear for snubbing operation to fish the tubing string in well, thus, tripping out the complex string piece by piece�Field tests show that the cutting un⁃der pressure technology for gas well is fully capable of cutting the ø73�0 mm N80 tubing string with dual packer un⁃der pressure�For corrosion perforation and the complex string upper dual packer, cutting into piece, fishing with sealing and tripping out piece by piece could be a solution.

  9. Coupled micro-faulting and pressure solution creep overprinted on quartz schist deformed by intracrystalline plasticity during exhumation of the Sambagawa metamorphic rocks, southwest Japan

    OpenAIRE

    Takeshita, Toru; El-Fakharani, Abdel-Hamid

    2013-01-01

    In the Sambagawa schist, southwest Japan, while ductile deformation pervasively occurred at D1 phase during exhumation, low-angle normal faulting was locally intensive at D2 phase under the conditions of frictional-viscous transition of quartz (c. 300 ℃) during further exhumation into the upper crustal level. Accordingly, the formation of D2 shear bands was overprinted on type I crossed girdle quartz c-axis fabrics and microstructures formed by intracrystalline plasticity at D1 phase in some ...

  10. Performance of multi tubes in tube helically coiled as a compact heat exchanger

    Science.gov (United States)

    Nada, S. A.; El Shaer, W. G.; Huzayyin, A. S.

    2014-12-01

    Multi tubes in tube helically coiled heat exchanger is proposed as a compact heat exchanger. Effects of heat exchanger geometric parameters and fluid flow parameters; namely number of inner tubes, annulus hydraulic diameter, Reynolds numbers and input heat flux, on performance of the heat exchanger are experimentally investigated. Different coils with different numbers of inner tubes, namely 1, 3, 4 and 5 tubes, were tested. Results showed that coils with 3 inner tubes have higher values of heat transfer coefficient and compactness parameter (bar{h} Ah ). Pressure drop increases with increasing both of Reynolds number and number of inner tubes. Correlations of average Nusselt number were deduced from experimental data in terms of Reynolds number, Prandtl number, Number of inner coils tubes and coil hydraulic diameter. Correlations prediction was compared with experimental data and the comparison was fair enough.

  11. Sound absorption and reflection with coupled tubes

    NARCIS (Netherlands)

    Eerden, van der Frits

    2000-01-01

    This paper describes a special sound absorbing technique with an accompanying efficient numerical design tool. As a basis pressure waves in a single narrow tube or pore are considered. In such a tube the viscosity and the thermal conductivity of the air, or any other fluid, can have a significant ef

  12. Effects of drawing and high-pressure sintering on the superconducting properties of (Ba,K)Fe2As2 powder-in-tube wires

    Science.gov (United States)

    Pyon, Sunseng; Yamasaki, Yuji; Kajitani, Hideki; Koizumi, Norikiyo; Tsuchiya, Yuji; Awaji, Satoshi; Watanabe, Kazuo; Tamegai, Tsuyoshi

    2015-12-01

    The evolution of the superconducting properties of round wires of (Ba,K)Fe2As2 fabricated by the powder-in-tube (PIT) method is systematically studied. After establishing the method to obtain the largest transport critical current density (J c) in round wires using the hot isostatic press technique, we investigated how the transition temperature (T c), J c, and microstructures change at each step of the wire fabrication. Unexpectedly, we find that superconducting properties of the wire core are significantly damaged by the drawing process. Systematic measurements of J c and T c of the core superconductor after each drawing and sintering process clarified the evolution of degradation by the drawing process and recovery by heat treatment.

  13. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the