WorldWideScience

Sample records for plastic honeycomb-type structures

  1. Development of honeycomb type orifices for flow zoning in PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G.K., E-mail: gkpandey@igcar.gov.in; Ramdasu, D.; Padmakumar, G.; Prakash, V.; Rajan, K.K.

    2013-09-15

    Highlights: • Cavitation free flow zoning devices are developed for reactor core in PFBR. • These devices are experimentally investigated for their hydraulic characteristics. • Pressure drop and cavitation are two main characteristics to be investigated. • Various configurations of devices utilized in different zones are discussed. • Loss coefficient for each configuration is compared and reported. -- Abstract: The prototype fast breeder reactor (PFBR) is in its advanced phase of construction at Kalpakkam, India. It is a sodium cooled, pool type reactor with two loop concept where each loop have one primary sodium pump (PSP), one secondary sodium pump (SSP) and two intermediate heat exchangers (IHX). PFBR core subassemblies (SA) are supported vertically inside the sleeves provided in the grid plate (GP). The GP acts as a coolant header through which flow is distributed among the SA to remove fission heat. Since the power profile of the reactor core is not uniform, it is necessary to distribute the coolant flow (called flow zoning) to each subassembly according to their power levels to get maximum mean outlet temperature of sodium at core outlet. To achieve this, PFBR core is divided into 15 zones such as fuel, blanket, reflector, storage, etc. according to their respective power levels. The flow zoning in the different SAs of the reactor core is achieved by installing permanent pressure dropping devices in the foot of the subassembly. Orifices having honey-comb type geometry were developed to meet the flow zoning requirements of fuel zone. These orifices being of very complex geometry requires precision methods of manufacturing to achieve the desired shape under specified tolerances. Investment casting method was optimized to manufacture this orifice plate successfully. Hydraulics of these orifices is important in achieving the required pressure drop without cavitation. The pressure drop across these orifice geometries depends mainly on geometrical factors and Reynolds number (Re) of the flow. Experiments were carried out on full scale model using water as simulant. Re and Eu (Euler number) similitude was followed for the experiments. Cavitation test were carried out to find the incipient cavitation index and were compared to operating cavitation index to find the suitability of these devices in the PFBR. This paper presents the details of the need for these devices, manufacturing methods, similarity criteria followed for the experiment, experimental methodology, instrumentation involved and the results obtained from the experiments with their transposability to the reactor conditions.

  2. Astrocyte-Synapse Structural Plasticity

    Directory of Open Access Journals (Sweden)

    Yann Bernardinelli

    2014-01-01

    Full Text Available The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmission. Astrocytic structures are frequently observed in close association with glutamatergic synapses, providing a morphological entity for bidirectional interactions with synapses. Experimental evidence indicates that astrocytes sense neuronal activity by elevating their intracellular calcium in response to neurotransmitters and may communicate with neurons. The precise role of astrocytes in regulating synaptic properties, function, and plasticity remains however a subject of intense debate and many aspects of their interactions with neurons remain to be investigated. A particularly intriguing aspect is their ability to rapidly restructure their processes and modify their coverage of the synaptic elements. The present review summarizes some of these findings with a particular focus on the mechanisms driving this form of structural plasticity and its possible impact on synaptic structure and function.

  3. Reliability of Elasto-Plastic Structural Systems

    DEFF Research Database (Denmark)

    Delmar, M. V.; Sørensen, John Dalsgaard

    1990-01-01

    This paper proposes a method for generating safety margins and failure mode equations for elasto-plastic structures where interaction of load effects is taken into account. Structural failure is defined by large nodal displacements or plastic collapse. A branch-and-bound technique is used...

  4. SYNTHESIS OF PLASTIC PIGMENT WITH MULTIHOLLOW STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    Liqiang Jin; Qinghua Xu; Zonglin Liu

    2004-01-01

    The polymer particle possessing hollow structure are playing an increasingly important role in industry.The latex particle with hollow structure as plastic pigment has a low density, strong spreading capacity and good glossiness. So it has been utilized for the manufacture of LWC in paper-making. In this paper,we prepared a kind of novel plastic pigment by the soapless seeded emulsion polymerization, this product with polyacrylate as core and with polystyrene as shell (PA/PS) had hollow structure after dryness. The preparation, characterization and properties of the latex were studied in detail by chemistry analysis and apparatus analysis such as TEM,FTIR,DLS.

  5. SYNTHESIS OF PLASTIC PIGMENT WITH MULTIHOLLOW STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    LiqiangJin; QinghuaXu; ZonglinLiu

    2004-01-01

    The polymer particle possessing hollow structure are playing an increasingly important role in industry. The latex particle with hollow structure as plastic pigment has a low density, strong spreading capacity and good glossiness. So it has been utilized for the manufacture of LWC in paper-making. In this paper, we prepared a kind of novel plastic pigment by the soapless seeded emulsion polymerization, this product with polyacrylate as core and with polystyrene as shell (PA/PS) had hollow structure after dryness. The preparation, characterization and properties of the latex were studied in detail by chemistry analysis and apparatus analysis such as TEM,FTIR,DLS.

  6. Structural plasticity mechanisms and developmental psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Dominique eMuller

    2014-11-01

    Full Text Available Synaptic plasticity mechanisms are usually discussed in terms of changes in synaptic strength. The capacity of excitatory synapses to rapidly modify the membrane expression of glutamate receptors in an activity-dependent manner plays a critical role in learning and memory processes by re-distributing activity within neuronal networks. Recent work has however also shown that functional plasticity properties are associated with a rewiring of synaptic connections and a selective stabilization of activated synapses. These structural aspects of plasticity have the potential to continuously modify the organization of synaptic networks and thereby introduce specificity in the wiring diagram of cortical circuits. Recent work has started to unravel some of the molecular mechanisms that underlie these properties of structural plasticity, highlighting an important role of signaling pathways that are also major candidates for contributing to developmental psychiatric disorders. We review here some of these recent advances and discuss the hypothesis that alterations of structural plasticity could represent a common mechanism contributing to the cognitive and functional defects observed in diseases such as intellectual disability, autism spectrum disorders and schizophrenia.

  7. Plasmonic Structural Colors for Plastic Consumer Products

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Mortensen, N. Asger; Kristensen, Anders

    2014-01-01

    Today colorants, such as pigments or dyes, are used to color plastic-based consumer products, either as base for solid colored bulk polymer or in inks for surface decoration. After usage, the products must be mechanically sorted by color before recycling, limiting any large-scale efficient...... recycling effort. As an alternative to chemistry-based coloring, nano-scale structural coloring has been proposed to reduce the number of materials needed and to increase pattern resolution. Here colors are created by structural based light-matter interactions in the surface. Thereby, the sorting by color...... can be avoided in the recycling state. Plasmon color technology based on aluminum has recently been firmly established as a route towards structural coloring of polymeric materials. We report on the fabrication of colors by localized surface plasmon resonances (LSPR) using roll-to-roll printing...

  8. Opposing Effects of Neuronal Activity on Structural Plasticity.

    Science.gov (United States)

    Fauth, Michael; Tetzlaff, Christian

    2016-01-01

    The connectivity of the brain is continuously adjusted to new environmental influences by several activity-dependent adaptive processes. The most investigated adaptive mechanism is activity-dependent functional or synaptic plasticity regulating the transmission efficacy of existing synapses. Another important but less prominently discussed adaptive process is structural plasticity, which changes the connectivity by the formation and deletion of synapses. In this review, we show, based on experimental evidence, that structural plasticity can be classified similar to synaptic plasticity into two categories: (i) Hebbian structural plasticity, which leads to an increase (decrease) of the number of synapses during phases of high (low) neuronal activity and (ii) homeostatic structural plasticity, which balances these changes by removing and adding synapses. Furthermore, based on experimental and theoretical insights, we argue that each type of structural plasticity fulfills a different function. While Hebbian structural changes enhance memory lifetime, storage capacity, and memory robustness, homeostatic structural plasticity self-organizes the connectivity of the neural network to assure stability. However, the link between functional synaptic and structural plasticity as well as the detailed interactions between Hebbian and homeostatic structural plasticity are more complex. This implies even richer dynamics requiring further experimental and theoretical investigations.

  9. The molecular interfacial structure and plasticizer migration behavior of "green" plasticized poly(vinyl chloride).

    Science.gov (United States)

    Zhang, Xiaoxian; Li, Yaoxin; Hankett, Jeanne M; Chen, Zhan

    2015-02-14

    Tributyl acetyl citrate (TBAC), a widely-used "green" plasticizer, has been extensively applied in products for daily use. In this paper, a variety of analytical tools including sum frequency generation vibrational spectroscopy (SFG), coherent anti-Stokes Raman spectroscopy (CARS), contact angle goniometry (CA), and Fourier transform infrared spectroscopy (FTIR) were applied together to investigate the molecular structures of TBAC plasticized poly(vinyl chloride) (PVC) and the migration behavior of TBAC from PVC-TBAC mixtures into water. We comprehensively examine the effects of oxygen and argon plasma treatments on the surface structures of PVC-TBAC thin films containing various bulk percentages of plasticizers and the leaching behavior of TBAC into water. It was found that TBAC is a relatively stable PVC plasticizer compared to traditional non-covalent plasticizers but is also surface active. Oxygen plasma treatment increased the hydrophilicity of TBAC-PVC surfaces, but did not enhance TBAC leaching. However, argon plasma treatment greatly enhanced the leaching of TBAC molecules from PVC plastics to water. Based on our observations, we believe that oxygen plasma treatment could be applied to TBAC plasticized PVC products to enhance surface hydrophilicity for improving the biocompatibility and antibacterial properties of PVC products. The structural information obtained in this study will ultimately facilitate a molecular level understanding of plasticized polymers, aiding in the design of PVC materials with improved properties.

  10. Structural plasticity of axon terminals in the adult.

    Science.gov (United States)

    Gogolla, Nadine; Galimberti, Ivan; Caroni, Pico

    2007-10-01

    There is now conclusive evidence for widespread ongoing structural plasticity of presynaptic boutons and axon side-branches in the adult brain. The plasticity complements that of postsynaptic spines, but axonal plasticity samples larger volumes of neuropil, and has a larger impact on circuit remodeling. Axons from distinct neurons exhibit unique ratios of stable (t1/2>9 months) and dynamic (t1/2 5-20 days) boutons, which persist as spatially intermingled subgroups along terminal arbors. In addition, phases of side-branch dynamics mediate larger scale remodeling guided by synaptogenesis. The plasticity is most pronounced during critical periods; its patterns and outcome are controlled by Hebbian mechanisms and intrinsic neuronal factors. Novel experience, skill learning, life-style, and age can persistently modify local circuit structure through axonal structural plasticity.

  11. Plastic deformation modelling of tempered martensite steel block structure by a nonlocal crystal plasticity model

    Directory of Open Access Journals (Sweden)

    Martin Boeff

    2014-01-01

    Full Text Available The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investigated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pronounced strain gradients occur in the grain boundary region even under homogeneous loading. The isotropic hardening of strain gradients strongly influences the global stress–strain diagram while the kinematic hardening of strain gradients influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.

  12. Formation of disorientations in dislocation structures during plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, W.

    2002-01-01

    Disorientations developing during plastic deformation in dislocation structures are investigated. Based on expected mechanisms for the formation of different types of dislocation boundaries (statistical trapping of dislocations or differently activated slip systems) the formation of the disorient...

  13. Earthquake excited elasto-plastic structures

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Heuer, R.

    1996-01-01

    Studies of the single degree of freedom elasto-plastic oscillator is well-known in the literature. Some of these works use an associated linear system to describe special features in non-linear domains. One very successful work of this kind uses the socalled Slepian model process related to the a...

  14. Structural features of plastic deformation in bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Scudino, S., E-mail: s.scudino@ifw-dresden.de; Shakur Shahabi, H.; Stoica, M.; Kühn, U. [IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden (Germany); Kaban, I.; Escher, B.; Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany); Vaughan, G. B. M. [European Synchrotron Radiation Facilities ESRF, BP220, 38043 Grenoble (France)

    2015-01-19

    Spatially resolved strain maps of a plastically deformed bulk metallic glass (BMG) have been created by using high-energy X-ray diffraction. The results reveal that plastic deformation creates a spatially heterogeneous atomic arrangement, consisting of strong compressive and tensile strain fields. In addition, significant shear strain is introduced in the samples. The analysis of the eigenvalues and eigenvectors of the strain tensor indicates that considerable structural anisotropy occurs in both the magnitude and direction of the strain. These features are in contrast to the behavior observed in elastically deformed BMGs and represent a distinctive structural sign of plastic deformation in metallic glasses.

  15. An Online Structural Plasticity Rule for Generating Better Reservoirs

    OpenAIRE

    Roy, Subhrajit; Basu, Arindam

    2016-01-01

    In this article, a novel neuro-inspired low-resolution online unsupervised learning rule is proposed to train the reservoir or liquid of Liquid State Machine. The liquid is a sparsely interconnected huge recurrent network of spiking neurons. The proposed learning rule is inspired from structural plasticity and trains the liquid through formation and elimination of synaptic connections. Hence, the learning involves rewiring of the reservoir connections similar to structural plasticity observed...

  16. Structural plasticity of the nuclear envelope and the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Sheval E. V.

    2014-09-01

    Full Text Available The nuclear envelope is a double membrane structure, continuous with endoplasmic reticulum, and the morphological organization of both these structures is quite conservative. However, nuclear envelope and endoplasmic reticulum demonstrate distinct structural plasticity, i. e., based on common organization, cells may form various non-canonical membrane structures that are observed only in specialized types of cells or appear in different pathologies. In this review, we will discuss the mechanisms of the biogenesis of such non-canonical structures, and the possible role of this plasticity in the development of pathological processes.

  17. Homeostatic Plasticity of Subcellular Neuronal Structures: From Inputs to Outputs.

    Science.gov (United States)

    Wefelmeyer, Winnie; Puhl, Christopher J; Burrone, Juan

    2016-10-01

    Neurons in the brain are highly plastic, allowing an organism to learn and adapt to its environment. However, this ongoing plasticity is also inherently unstable, potentially leading to aberrant levels of circuit activity. Homeostatic forms of plasticity are thought to provide a means of controlling neuronal activity by avoiding extremes and allowing network stability. Recent work has shown that many of these homeostatic modifications change the structure of subcellular neuronal compartments, ranging from changes to synaptic inputs at both excitatory and inhibitory compartments to modulation of neuronal output through changes at the axon initial segment (AIS) and presynaptic terminals. Here we review these different forms of structural plasticity in neurons and the effects they may have on network function. Copyright © 2016. Published by Elsevier Ltd.

  18. Structural plasticity upon learning: regulation and functions.

    Science.gov (United States)

    Caroni, Pico; Donato, Flavio; Muller, Dominique

    2012-07-01

    Recent studies have provided long-sought evidence that behavioural learning involves specific synapse gain and elimination processes, which lead to memory traces that influence behaviour. The connectivity rearrangements are preceded by enhanced synapse turnover, which can be modulated through changes in inhibitory connectivity. Behaviourally related synapse rearrangement events tend to co-occur spatially within short stretches of dendrites, and involve signalling pathways partially overlapping with those controlling the functional plasticity of synapses. The new findings suggest that a mechanistic understanding of learning and memory processes will require monitoring ensembles of synapses in situ and the development of synaptic network models that combine changes in synaptic function and connectivity.

  19. Evaluation of engineering plastic for rollover protective structure (ROPS) mounting.

    Science.gov (United States)

    Comer, R S; Ayers, P D; Liu, J

    2007-04-01

    Agriculture has one of the highest fatality rates of any industry in America. Tractor rollovers are a significant contributor to the high death rate. Rollover protective structures (ROPS) have helped lower these high fatality rates on full-size tractors. However, a large number of older tractors still do not use ROPS due to the difficulty of designing and creating a mounting structure. To help reduce this difficulty, engineering plastics were evaluated for use in a ROPS mounting structure on older tractors. The use of engineering plastics around axle housings could provide a uniform mounting configuration as well as lower costs for aftermarket ROPS. Various plastics were examined through shear testing, scale model testing, and compressive strength testing. Once a material was chosen based upon strength and cost, full-scale testing of the plastic's strength on axle housings was conducted. Finally, a mounting structure was tested in static ROPS tests, and field upset tests were performed in accordance with SAE Standard J2194. Initial tests revealed that the ROPS mounting structure and axle housing combination had higher torsional strength with less twisting than the axle housing alone. An engineering plastic ROPS mounting structure was easily successful in withstanding the forces applied during the static longitudinal and lateral ROPS tests. Field upset testing revealed that the mounting structure could withstand the impact loads seen during actual upsets without a failure. During both static testing and field upset testing, no permanent twisting of the mounting structure was found. Engineering plastic could therefore be a viable option for a universal ROPS mounting structure for older tractors.

  20. Human Structural Plasticity at Record Speed

    Science.gov (United States)

    Johansen-Berg, Heidi; Baptista, Cassandra Sampaio; Thomas, Adam G.

    2012-01-01

    How rapidly does learning shape our brains? A new study using diffusion magnetic resonance imaging in both humans and rats suggests that just two hours of spatial learning is sufficient to change brain structure. PMID:22445333

  1. Rigid-plastic seismic design of reinforced concrete structures

    DEFF Research Database (Denmark)

    Costa, Joao Domingues; Bento, R.; Levtchitch, V.

    2007-01-01

    In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...

  2. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  3. Reliability Analysis of Elasto-Plastic Structures

    DEFF Research Database (Denmark)

    1984-01-01

    . Failure of this type of system is defined either as formation of a mechanism or by failure of a prescribed number of elements. In the first case failure is independent of the order in which the elements fail, but this is not so by the second definition. The reliability analysis consists of two parts...... are described and the two definitions of failure can be used by the first formulation, but only the failure definition based on formation of a mechanism by the second formulation. The second part of the reliability analysis is an estimate of the failure probability for the structure on the basis...... are obtained if the failure mechanisms are used. Lower bounds can be calculated on the basis of series systems where the elements are the non-failed elements in a non-failed structure (see Augusti & Baratta [3])....

  4. Fibre Reinforced Plastic Concepts for Structural Chassis Parts

    OpenAIRE

    Deißer, Oliver; Friedrich, Horst E.; Kopp, Gundolf

    2014-01-01

    Abstract Fibre reinforced plastics (FRP) have a high potential for reducing masses of automotive parts, but are seldom used for structural parts in the chassis. If the whole chassis concept is adapted to the new material, then a high weight saving potential can be gained and new body concepts can result. DLR Institute of Vehicle Concepts designed and dimensioned a highly stressed structural part in FRP. A topology optimisation of a defined working space with the estimated loads was perform...

  5. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Carmen E Flores

    2014-10-01

    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  6. Filopodia: A Rapid Structural Plasticity Substrate for Fast Learning

    Directory of Open Access Journals (Sweden)

    Ahmet S. Ozcan

    2017-06-01

    Full Text Available Formation of new synapses between neurons is an essential mechanism for learning and encoding memories. The vast majority of excitatory synapses occur on dendritic spines, therefore, the growth dynamics of spines is strongly related to the plasticity timescales. Especially in the early stages of the developing brain, there is an abundant number of long, thin and motile protrusions (i.e., filopodia, which develop in timescales of seconds and minutes. Because of their unique morphology and motility, it has been suggested that filopodia can have a dual role in both spinogenesis and environmental sampling of potential axonal partners. I propose that filopodia can lower the threshold and reduce the time to form new dendritic spines and synapses, providing a substrate for fast learning. Based on this proposition, the functional role of filopodia during brain development is discussed in relation to learning and memory. Specifically, it is hypothesized that the postnatal brain starts with a single-stage memory system with filopodia playing a significant role in rapid structural plasticity along with the stability provided by the mushroom-shaped spines. Following the maturation of the hippocampus, this highly-plastic unitary system transitions to a two-stage memory system, which consists of a plastic temporary store and a long-term stable store. In alignment with these architectural changes, it is posited that after brain maturation, filopodia-based structural plasticity will be preserved in specific areas, which are involved in fast learning (e.g., hippocampus in relation to episodic memory. These propositions aim to introduce a unifying framework for a diversity of phenomena in the brain such as synaptogenesis, pruning and memory consolidation.

  7. Crack monitoring capability of plastic optical fibers for concrete structures

    Science.gov (United States)

    Zhao, Jinlei; Bao, Tengfei; Chen, Rui

    2015-08-01

    Optical fibers have been widely used in structural health monitoring. Traditional silica fibers are easy to break in field applications due to their brittleness. Thus, silica fibers are proposed to be replaced by plastic optical fibers (POFs) in crack monitoring in this study. Moreover, considering the uncertainty of crack propagation direction in composite materials, the influence of the angles between fibers and cracks on the monitoring capability of plastic optical fibers is studied. A POF sensing device was designed and the relationship between light intensity loss and crack width under different fiber/crack angles was first measured through the device. Then, three-point bend tests were conducted on concrete beams. POFs were glued to the bottom surfaces of the beams and light intensity loss with crack width was measured. Experimental results showed that light intensity loss in plastic optical fibers increased with crack width increase. Therefore, application of plastic optical fibers in crack monitoring is feasible. Moreover, the results also showed that the sensitivity of the POF crack sensor decreased with the increase of angles between fibers and cracks.

  8. Structural plasticity with preserved topology in the postsynaptic protein network

    OpenAIRE

    Blanpied, Thomas A.; Kerr, Justin M.; Ehlers, Michael D.

    2008-01-01

    The size, shape, and molecular arrangement of the postsynaptic density (PSD) determine the function of excitatory synapses in the brain. Here, we directly measured the internal dynamics of scaffold proteins within single living PSDs, focusing on the principal scaffold protein PSD-95. We found that individual PSDs undergo rapid, continuous changes in morphology driven by the actin cytoskeleton and regulated by synaptic activity. This structural plasticity is accompanied by rapid fluctuations i...

  9. Paradoxical signaling regulates structural plasticity in dendritic spines

    OpenAIRE

    2016-01-01

    Transient spine enlargement (3- to 5-min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation. We have identified that a key featur...

  10. Collapse Probability for Elasto-Plastic Beam Structures

    DEFF Research Database (Denmark)

    Delmar, M.V.; Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1989-01-01

    In present design practice considerations on structural safety are usually concentrated on failure states corresponding to initial failure of an element. For a frame structure that means failure of a cross-section of the structure. Sufficient reliability with respect to this limit state is expected...... to be achieved by designing the structure on an element basis such that each member has at least a presctibed reliability. Most structures are redundant in the sense that failure of the first single element merely leads to redistribution of the load. The system reliability of the structure is in this paper...... defined as formation of a yield mechanism. System reliability aspects can be important in structural design and it is therefore relevant to consider limit state progressive failure in a probabilistic setting. In reliability studies of progressive failures the analysis with respect to plastic collapse...

  11. Nanosized CuO and ZnO Catalyst Supported on Honeycomb-Typed Monolith for Hydrogenation of Carbon Dioxide to Methyl Alcohol.

    Science.gov (United States)

    Park, Chul-Min; Ahn, Won-Ju; Jo, Woong-Kyu; Song, Jin-Hun; Oh, Chang-Yeop; Jeong, Young-Shin; Chung, Min-Chul; Park, Kwon-Pil; Kim, Ki-Joong; Jeong, Woon-Jo; Sohn, Bo-Kyun; Jung, Sang-Chul; Lee, Do-Jin; Ahn, Byeong-Kwon; Ahn, Ho-Geun

    2015-01-01

    The greenhouse effect of carbon dioxide (CO2) has been recognized as one of the most serious problems in the world. Conversion of CO2 to methyl alcohol (CH3OH) was studied using catalytic chemical methods. Honeycomb-typed monolith used as catalyst support was 400 cell/inch2. Pretreatment of the monolith surface was carried out by thermal treatment and acid treatment. Monolith-supported nanosized CuO-ZnO catalysts were prepared by wash-coat method. The prepared catalysts were characterized by using SEM, TEM, and XRD. The catalytic activity for CO2 hydrogenation to CH3OH was investigated using a flow-type reactor with varying reaction temperature, reaction pressure and contact time. Conversion of CO2 was increased with increasing reaction temperature, but selectivity to CH3OH was decreased. Optimum reaction temperature was about 250 degrees C under 20 atm. Because of the reverse water gas shift reaction.

  12. Technology and future prospects for lightweight plastic vehicle structures

    Energy Technology Data Exchange (ETDEWEB)

    Stodolsky, F.; Cuenca, R.M.; Bonsignore, P.V.

    1997-08-01

    The state of the technology and the materials and processing issues of using plastics in vehicle body applications (structural and semistructural) were assessed. Plastics are significantly lighter in weight, more easily fabricated into complex shapes, and more corrosion resistance than sheet steel, high-strength steel, or aluminum. However, at their current stage of development, plastics are deficient in one or more necessary properties: heat resistance and dimensional stability, stiffness and tensile strength, toughness, and impact resistance. To upgrade their physical properties for automotive chassis/body applications, plastics need to be compounds with suitable reinforcing fibers. As a short-term approach, the material of choice is a composite structure made with low-cost glass-fiber reinforcement, such as that made in the resin-transfer-molding (RTM) process and used in the body of the Dodge Viper. However, RTM technology based on thermosets requires a processing cycle time that is too long for large production runs. Adaptation of RTM to the formation of thermoplastic composite bodies could have a significant advantage over thermoset technology. Cyclic oligomers, which are precursors to thermoplastic matrix polymers, show promise for this application. Farther on the horizon are advanced composites compounds with the much more expensive (but stronger and stiffer) carbon-fiber reinforcement. However, significant price reductions of precursor materials and advances in processing and fabrication would be needed. Other materials holding promise are liquid crystal polymers (LCP) and LCP blends with other polymers (molecular composites). However, the cost of monomers and the subsequent polymerization technology also remains a considerable drawback to the widespread and increasing acceptance of LCPs.

  13. Structural Transformations in Metallic Materials During Plastic Deformation

    Science.gov (United States)

    Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.

    2017-03-01

    In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.

  14. Structural Transformations in Metallic Materials During Plastic Deformation

    Science.gov (United States)

    Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.

    2017-02-01

    In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.

  15. The new structure of fibre glass reinforced plastics bolt

    Institute of Scientific and Technical Information of China (English)

    马念杰; 刘社育

    2003-01-01

    The develop actuality and direction of FRP(fibre glass reinforced plastics) bolt in the world are analyzed. The new type structure of FRP bolt was designed. Trial data indicate that, all kinds of capability target of this FRP bolt all achieve and exceed the country standard, substitute present metal bolt,wood bolt and bamboo bolt and other side bolt, it can gain magnitude technology and economy benefit. FRP bolt mechanization product line produce efficiency is high, its throughput a day are 750 base, this can meet demand of hit-small mining company.

  16. Formation and subdivision of deformation structures during plastic deformation

    DEFF Research Database (Denmark)

    Jakobsen, B.; Poulsen, H.F.; Lienert, U.;

    2006-01-01

    During plastic deformation of metals and alloys, dislocations arrange in ordered patterns. How and when these self-organization processes take place have remained elusive, because in situ observations have not been feasible. We present an x-ray diffraction method that provided data on the dynamics...... of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting behavior....... Insight into these processes is relevant for an understanding of the strength and work-hardening of deformed materials....

  17. Thermal and Structural Properties of Silk Biomaterials Plasticized by Glycerol.

    Science.gov (United States)

    Brown, Joseph E; Davidowski, Stephen K; Xu, Dian; Cebe, Peggy; Onofrei, David; Holland, Gregory P; Kaplan, David L

    2016-12-12

    The molecular interactions of silk materials plasticized using glycerol were studied, as these materials provide options for biodegradable and flexible protein-based systems. Plasticizer interactions with silk were analyzed by thermal, spectroscopic, and solid-state NMR analyses. Spectroscopic analysis implied that glycerol was hydrogen bonded to the peptide matrix, but may be displaced with polar solvents. Solid-state NMR indicated that glycerol induced β-sheet formation in the dried silk materials, but not to the extent of methanol treatment. Fast scanning calorimetry suggested that β-sheet crystal formation in silk-glycerol films appeared to be less organized than in the methanol treated silk films. We propose that glycerol may be simultaneously inducing and interfering with β-sheet formation in silk materials, causing some improper folding that results in less-organized silk II structures even after the glycerol is removed. This difference, along with trace residual glycerol, allows glycerol extracted silk materials to retain more flexibility than methanol processed versions.

  18. Development of recycled plastic composites for structural applications from CEA plastics

    Science.gov (United States)

    Bhalla, Agrim

    Plastic waste from consumer electronic appliances (CEAs) such as computer and printer parts including Polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), Polystyrene (PS) and PC/ABS were collected using handheld FTIR Spectrophotometer. The blends of these plastics with High Density Polyethylene (HDPE) are manufactured under special processing conditions in a single screw compounding injection molding machine. The blends are thermoplastics have high stiffness and strength, which may enhance the mechanical properties of HDPE like tensile modulus, ultimate tensile strength, tensile break and tensile yield. These composites have a potential to be used for the future application of recycled plastic lumber, thus replacing the traditional wood lumber.

  19. Structural plasticity in human heterochromatin protein 1β.

    Directory of Open Access Journals (Sweden)

    Francesca Munari

    Full Text Available As essential components of the molecular machine assembling heterochromatin in eukaryotes, HP1 (Heterochromatin Protein 1 proteins are key regulators of genome function. While several high-resolution structures of the two globular regions of HP1, chromo and chromoshadow domains, in their free form or in complex with recognition-motif peptides are available, less is known about the conformational behavior of the full-length protein. Here, we used NMR spectroscopy in combination with small angle X-ray scattering and dynamic light scattering to characterize the dynamic and structural properties of full-length human HP1β (hHP1β in solution. We show that the hinge region is highly flexible and enables a largely unrestricted spatial search by the two globular domains for their binding partners. In addition, the binding pockets within the chromo and chromoshadow domains experience internal dynamics that can be useful for the versatile recognition of different binding partners. In particular, we provide evidence for the presence of a distinct structural propensity in free hHP1β that prepares a binding-competent interface for the formation of the intermolecular β-sheet with methylated histone H3. The structural plasticity of hHP1β supports its ability to bind and connect a wide variety of binding partners in epigenetic processes.

  20. 蜂窝型双金属复合锤头铸造工艺%Casting Technology of Honeycomb-type Bimetallic Composite Hammer

    Institute of Scientific and Technical Information of China (English)

    王华

    2012-01-01

    Aimed at the failure characteristics of the hammer used in counterattack-type crusher due to wear, a type of honeycomb-type bimetallic hammer was developed. The hammer was made by taking high manganese steel as the hammer body and high chromium cast iron as the wear-rods, and using a special insert-cast process to inserting the wear rods into the end of the hammer. The wear rods and the hammer body have a solid combination and strong impact, improving its life of hammer, reducing the use cost ofhammer.%针对反击式破碎机专用锤头因磨损而失效的特点,研发了一种蜂窝型双金属复合型锤头.该锺头以高锰钢作锤体,高铬铸铁作耐磨棒,并采用特殊镶铸工艺,将耐磨棒弥散分布于锤头端部.锤头内耐磨棒与基体结合牢固、抗冲击能力强,大幅度提高了锤头使用寿命,从而降低了锤头综合使用成本.

  1. Slepian Simulations of Plastic Displacements of Randomly Excited Hysteretic Structures

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov

    2003-01-01

    noise excited linear oscillator obtained from the elasto-plastic oscillator by totally removing the plastic domain. Thus the key to the applicability of the method is that the oscillator has a linear domain within which the response stays for a sufficiently long time to make the random response behave...

  2. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    Science.gov (United States)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  3. RELIABILITY OF ELASTO-PLASTIC STRUCTURE USING FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    刘宁; 邓汉忠; 卓家寿

    2002-01-01

    A solution of probabilistic FEM for elastic-plastic materials is pre-sented based on the incremental theory of plasticity and a modified initial stressmethod. The formulations are deduced through a direct differentiation scheme. Par-tial differentiation of displacement, stress and the performance function can be it-eratively performed with the computation of the mean values of displacement andstress. The presented method enjoys the efficiency of both the perturbation methodand the finite difference method, but avoids the approximation during the partial dif-ferentiation calculation. In order to improve the efficiency, the adjoint vector methodis introduced to calculate the differentiation of stress and displacement with respectto random variables. In addition, a time-saving computational method for reliabilityindex of elastic-plastic materials is suggested based upon the advanced First OrderSecond Moment (FOSM) and by the usage of Taylor expansion for displacement. Thesuggested method is also applicable to 3-D cases.

  4. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus.

    Science.gov (United States)

    Wiera, Grzegorz; Mozrzymas, Jerzy W

    2015-01-01

    Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed long-term potentiation (LTP) that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tissue plasminogen activator (tPA)/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  5. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus

    Directory of Open Access Journals (Sweden)

    Grzegorz eWiera

    2015-11-01

    Full Text Available Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed LTP that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tPA/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1 and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  6. STRUCTURAL ASPECTS OF PLASTICITY LOWERING OF HIGH-STRENGTH WIRE AT BIG CUMULATIVE COMPRESSIONS

    Directory of Open Access Journals (Sweden)

    V. P. Fetisov

    2012-01-01

    Full Text Available It is shown that decrease of plasticity of high-strength wire at big total cobbings is connected with reduction of mobility of dislocations in the substructure formed at loss of perlite lamellar structure.

  7. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  8. INJECTION MOLDING AND STRUCTURAL ANALYSIS IN METAL TO PLASTIC CONVERSION OF BOLTED FLANGE JOINT BY CAE

    Directory of Open Access Journals (Sweden)

    Marian Blaško

    2014-12-01

    Full Text Available Many metal parts in various applications are being replaced by plastic parts. There are several reasons for that depending on actual application - minimize part cost, enhance corrosion resistance, integrating more components into one part etc. Most important steps of metal to plastic conversion are material selection and design of plastic part. Plastic part has to withstand the same load as metal part. To fulfill this requirement fiber reinforced engineering plastics are often used. Also it is convenient to substitute heavy wall sections with ribbed structure to increase load-carrying ability of part and decrease cycle time, eliminate voids, sink marks etc. Mechanical properties of such part could be highly affected by fiber orientation. Results of fiber orientation from injection molding filling analysis can be used in stress analysis for better prediction of part response to mechanical load. Such coupled analysis is performed here in this case study on bolted flange joint.

  9. Redistribution of Kv1 and Kv7 enhances neuronal excitability during structural axon initial segment plasticity.

    Science.gov (United States)

    Kuba, Hiroshi; Yamada, Rei; Ishiguro, Go; Adachi, Ryota

    2015-11-19

    Structural plasticity of the axon initial segment (AIS), the trigger zone of neurons, is a powerful means for regulating neuronal activity. Here, we show that AIS plasticity is not limited to structural changes; it also occurs as changes in ion-channel expression, which substantially augments the efficacy of regulation. In the avian cochlear nucleus, depriving afferent inputs by removing cochlea elongated the AIS, and simultaneously switched the dominant Kv channels at the AIS from Kv1.1 to Kv7.2. Due to the slow activation kinetics of Kv7.2, the redistribution of the Kv channels reduced the shunting conductance at the elongated AIS during the initiation of action potentials and effectively enhanced the excitability of the deprived neurons. The results indicate that the functional plasticity of the AIS works cooperatively with the structural plasticity and compensates for the loss of afferent inputs to maintain the homeostasis of auditory circuits after hearing loss by cochlea removal.

  10. Optical coating and nano-structuring on plastics

    Institute of Scientific and Technical Information of China (English)

    U.Schulz; P.Munzert; A.Kaless; N.Kaiser

    2005-01-01

    The coating of plastics for optical applications is intended to improve the mechanical durability of soft polymers and to serve an antireflection function. Usually a classic four-layer antireflection system is added on top of a single-layer hard coating. With needle optimisation,an alternative coating design has been developed. Plasma ion assisted deposition was used to deposit coatings upon polymers. Uniform antireflection and high scratch resistance have been achieved.

  11. Can plasticity make spatial structure irrelevant in individual-tree models?

    Directory of Open Access Journals (Sweden)

    Oscar García

    2014-08-01

    Full Text Available Background Distance-dependent individual-tree models have commonly been found to add little predictive power to that of distance-independent ones. One possible reason is plasticity, the ability of trees to lean and to alter crown and root development to better occupy available growing space. Being able to redeploy foliage (and roots into canopy gaps and less contested areas can diminish the importance of stem ground locations. Methods Plasticity was simulated for 3 intensively measured forest stands, to see to what extent and under what conditions the allocation of resources (e.g., light to the individual trees depended on their ground coordinates. The data came from 50 × 60 m stem-mapped plots in natural monospecific stands of jack pine, trembling aspen and black spruce from central Canada. Explicit perfect-plasticity equations were derived for tessellation-type models. Results Qualitatively similar simulation results were obtained under a variety of modelling assumptions. The effects of plasticity varied somewhat with stand uniformity and with assumed plasticity limits and other factors. Stand-level implications for canopy depth, distribution modelling and total productivity were examined. Conclusions Generally, under what seem like conservative maximum plasticity constraints, spatial structure accounted for less than 10% of the variance in resource allocation. The perfect-plasticity equations approximated well the simulation results from tessellation models, but not those from models with less extreme competition asymmetry. Whole-stand perfect plasticity approximations seem an attractive alternative to individual-tree models.

  12. Upper bound limit and shakedown analysis of elastic plastic bounded linearly kinematic hardening structures

    OpenAIRE

    2011-01-01

    This thesis develops a new FEM based algorithm for shakedown analysis of structures made of elastic plastic bounded linearly kinematic hardening material. Its concept can be briefly described as: Hardening law is simulated using a two-surface plastic model. One yield surface is the initial surface, defined by yield stress sigma_y, and the other one is the bounding surface, defined by ultimate strength sigma_u. The initial surface can translate inside the bounding surface without changing its ...

  13. Strain gradient crystal plasticity: A continuum mechanics approach to modeling micro-structural evolution

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2015-01-01

    In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurring...... between the cells. This behavior is not typical for strain gradient crystal plasticity models. The present study employs a higher order extension of conventional crystal plasticity theory in which the viscous slip rate is influenced by the gradients of GND densities through a back stress...

  14. Strain gradient crystal plasticity: A continuum mechanics approach to modeling micro-structural evolution

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2015-01-01

    In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurring...... between the cells. This behavior is not typical for strain gradient crystal plasticity models. The present study employs a higher order extension of conventional crystal plasticity theory in which the viscous slip rate is influenced by the gradients of GND densities through a back stress...

  15. Chromosome structuring limits genome plasticity in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Emilie Esnault

    2007-12-01

    Full Text Available Chromosome organizations of related bacterial genera are well conserved despite a very long divergence period. We have assessed the forces limiting bacterial genome plasticity in Escherichia coli by measuring the respective effect of altering different parameters, including DNA replication, compositional skew of replichores, coordination of gene expression with DNA replication, replication-associated gene dosage, and chromosome organization into macrodomains. Chromosomes were rearranged by large inversions. Changes in the compositional skew of replichores, in the coordination of gene expression with DNA replication or in the replication-associated gene dosage have only a moderate effect on cell physiology because large rearrangements inverting the orientation of several hundred genes inside a replichore are only slightly detrimental. By contrast, changing the balance between the two replication arms has a more drastic effect, and the recombinational rescue of replication forks is required for cell viability when one of the chromosome arms is less than half than the other one. Macrodomain organization also appears to be a major factor restricting chromosome plasticity, and two types of inverted configurations severely affect the cell cycle. First, the disruption of the Ter macrodomain with replication forks merging far from the normal replichore junction provoked chromosome segregation defects. The second major problematic configurations resulted from inversions between Ori and Right macrodomains, which perturb nucleoid distribution and early steps of cytokinesis. Consequences for the control of the bacterial cell cycle and for the evolution of bacterial chromosome configuration are discussed.

  16. Mechanism of plasticity Development for Ceramic Dough (Part 2). Investigation on Plasticity by Particle Packing Structure; Seramiku nendo no kasakusei hatsugen mekanizumu 2. Nendo juten kozo to kasakusei

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Shuji. [Wet Forming of Ceramics Technology Research Association, Aichi (Japan); Ichikawa, Yukari.; Ishida, Hideki. [INAX Corporation, Aichi (Japan); Shibasaki, Yasuo.; Oda, Kiichi. [National Industrial Research Institute of Nagoya, Aichi (Japan)

    1999-01-01

    Plasticity and packing structure of clay and alumina dough, and of alumina mixed with water-soluble and non-water-soluble plasticizers were investigated. It was found that both plastic clay dough and alumina dough with plasticizers showed a two-peak pore population. When the larger-sized pores increased in volume, the fluidity of the dough was improved. On the otherhand, when the smaller-sized pores decreased in volume, a high rigidity was showed. An aggregate structure was observed in the clay and the dough mixed with water-soluble plasticizer like methyl cellulose. Plasticity was generated when the aggregates were deformed by using the larger-sized pores among each aggregate. The non-water-soluble curdlan did not dissolve in the dough and remained in gel. The larger-sized pores were formed by the gel, whose deformation produced plasticity. It was understood that plasticity is fenerated when either the aggregates or the gel act as a buffer in the dough and enhance deformation of the dough. (author)

  17. Elasto-Plasticity Critical Corrosive Ratio Model for RC Structure Corrosive Expanding Crack

    Institute of Scientific and Technical Information of China (English)

    CHEN Yueshun; LU Yiyan; LIU Li

    2007-01-01

    The parameter of filling expanding ratio n, plasticity factor k1 and deformation parameter k2 is raised, and then the elasto-plasticity critical corrosive ratio model for RC structure corrosive expanding crack based on elasto-plasticity theory is constructed in this paper. The influences of parameters such as filling expansion ratio n, plasticity factor k1, deformation parameter k2, Poisson ratio of concrete v, diameter of reinforced bar d and protective layer thickness c on the critical corrosive ratio are researched by theory analysis and experiments. The experimental results validate the accuracy of the model. According to the experimental study, the least squares solution is calculated as n=1.8,k1 =0.61,k2 =0.5.

  18. Influence of Plastic Deformation Process on the Structure and Properties of Alloy WE43

    Directory of Open Access Journals (Sweden)

    Bednarczyk I.

    2016-03-01

    Full Text Available The paper describes the results of structure and properties tests of flat bars made of alloy WE43 obtained in the process of extrusion with the use of KOBO method. An analysis of structure changes was conducted both in initial state and after plastic deformation.

  19. Chronic fluoxetine treatment alters the structure, connectivity and plasticity of cortical interneurons.

    Science.gov (United States)

    Guirado, Ramon; Perez-Rando, Marta; Sanchez-Matarredona, David; Castrén, Eero; Nacher, Juan

    2014-10-01

    Novel hypotheses suggest that antidepressants, such as the selective serotonin reuptake inhibitor fluoxetine, induce neuronal structural plasticity, resembling that of the juvenile brain, although the underlying mechanisms of this reopening of the critical periods still remain unclear. However, recent studies suggest that inhibitory networks play an important role in this structural plasticity induced by fluoxetine. For this reason we have analysed the effects of a chronic fluoxetine treatment in the hippocampus and medial prefrontal cortex (mPFC) of transgenic mice displaying eGFP labelled interneurons. We have found an increase in the expression of molecules related to critical period plasticity, such as the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), GAD67/65 and synaptophysin, as well as a reduction in the number of parvalbumin expressing interneurons surrounded by perineuronal nets. We have also described a trend towards decrease in the perisomatic inhibitory puncta on pyramidal neurons in the mPFC and an increase in the density of inhibitory puncta on eGFP interneurons. Finally, we have found that chronic fluoxetine treatment affects the structure of interneurons in the mPFC, increasing their dendritic spine density. The present study provides evidence indicating that fluoxetine promotes structural changes in the inhibitory neurons of the adult cerebral cortex, probably through alterations in plasticity-related molecules of neurons or the extracellular matrix surrounding them, which are present in interneurons and are known to be crucial for the development of the critical periods of plasticity in the juvenile brain.

  20. Effect of alternate magnetic field on LY12 structure properties after thermal plastic forming

    Institute of Scientific and Technical Information of China (English)

    陈革新; 付宇明; 尹京; 肖宏

    2008-01-01

    The powerful alternate magnetic field treatment is an effective not-heat treatment, which improves the coriaceous performance of the material. In order to reveal the effect rule of the powerful alternate magnetic field on the structure capability after thermal plastic forming, the experimental methods were adopted to compare the microcosmic structure of the LY12 aluminium alloy test pieces before and after the powerful alternate magnetic field treatment. The mechanism of the structure refining was analyzed theoretically. According to the effect rule of the alternate magnetic field on critical grain growth work and the magnetic vibration-constriction mechanism, the structure dynamics factors were analyzed. The results show that, after a certain powerful alternate magnetic field treatment, the mechanical capability of the LY12 aluminium alloy after thermal plastic forming can be reinforced, the structure intertwist deriving from the thermal plastic forming becomes even and the branch crystal is also smashed, consequently refines the structure. The powerful alternate magnetic field treatment can be regarded as an effective method to improve metal structure performance after heat plastic forming.

  1. The impact of early environmental interventions on structural plasticity of the axon initial segment in neocortex.

    Science.gov (United States)

    Nozari, Masoumeh; Suzuki, Toshimitsu; Rosa, Marcello G P; Yamakawa, Kazuhiro; Atapour, Nafiseh

    2017-01-01

    Plasticity of the axon initial segment (AIS) is a newly discovered type of structural plasticity that regulates cell excitability. AIS plasticity has been reported to happen during normal development of neocortex and also in a few pathological conditions involving disruption of the inhibition/excitation balance. Here we report on the impact of early environmental interventions on structural plasticity of AIS in the mouse neocortex. C57BL/6 mice were raised in standard or enriched environment (EE) from birth up to the time of experiments and were injected with saline or MK-801 [N-Methyl-D-Aspartate (NMDA) receptor antagonist, 1 mg/kg] on postnatal days (P) 6-10. We used Ankyrin G immunoreactivity to mark the AIS of cortical neurons in two sub-regions of frontal cortex (frontal association area, FrA and secondary motor cortex, M2) and in the secondary visual cortex (V2). In 1-month-old mice, the mean AIS length differed between three areas, with the shortest AISs being observed in V2. Postnatal MK-801 or EE led to shortening of AIS only in the frontal areas. However, exposure to EE restored AIS shortening induced by MK-801. Chronic postnatal MK-801 results in structural plasticity of AIS exclusive to the frontal cortex. EE may modify underlying neuronal mechanisms resulting in restoration of AIS length. © 2016 Wiley Periodicals, Inc.

  2. Structural synaptic plasticity has high memory capacity and can explain graded amnesia, catastrophic forgetting, and the spacing effect.

    Directory of Open Access Journals (Sweden)

    Andreas Knoblauch

    Full Text Available Although already William James and, more explicitly, Donald Hebb's theory of cell assemblies have suggested that activity-dependent rewiring of neuronal networks is the substrate of learning and memory, over the last six decades most theoretical work on memory has focused on plasticity of existing synapses in prewired networks. Research in the last decade has emphasized that structural modification of synaptic connectivity is common in the adult brain and tightly correlated with learning and memory. Here we present a parsimonious computational model for learning by structural plasticity. The basic modeling units are "potential synapses" defined as locations in the network where synapses can potentially grow to connect two neurons. This model generalizes well-known previous models for associative learning based on weight plasticity. Therefore, existing theory can be applied to analyze how many memories and how much information structural plasticity can store in a synapse. Surprisingly, we find that structural plasticity largely outperforms weight plasticity and can achieve a much higher storage capacity per synapse. The effect of structural plasticity on the structure of sparsely connected networks is quite intuitive: Structural plasticity increases the "effectual network connectivity", that is, the network wiring that specifically supports storage and recall of the memories. Further, this model of structural plasticity produces gradients of effectual connectivity in the course of learning, thereby explaining various cognitive phenomena including graded amnesia, catastrophic forgetting, and the spacing effect.

  3. Learning Structure of Sensory Inputs with Synaptic Plasticity Leads to Interference

    Directory of Open Access Journals (Sweden)

    Joseph eChrol-Cannon

    2015-08-01

    Full Text Available Synaptic plasticity is often explored as a form of unsupervised adaptationin cortical microcircuits to learn the structure of complex sensoryinputs and thereby improve performance of classification and prediction. The question of whether the specific structure of the input patterns is encoded in the structure of neural networks has been largely neglected. Existing studies that have analyzed input-specific structural adaptation have used simplified, synthetic inputs in contrast to complex and noisy patterns found in real-world sensory data.In this work, input-specific structural changes are analyzed forthree empirically derived models of plasticity applied to three temporal sensory classification tasks that include complex, real-world visual and auditory data. Two forms of spike-timing dependent plasticity (STDP and the Bienenstock-Cooper-Munro (BCM plasticity rule are used to adapt the recurrent network structure during the training process before performance is tested on the pattern recognition tasks.It is shown that synaptic adaptation is highly sensitive to specific classes of input pattern. However, plasticity does not improve the performance on sensory pattern recognition tasks, partly due to synaptic interference between consecutively presented input samples. The changes in synaptic strength produced by one stimulus are reversed by thepresentation of another, thus largely preventing input-specific synaptic changes from being retained in the structure of the network.To solve the problem of interference, we suggest that models of plasticitybe extended to restrict neural activity and synaptic modification to a subset of the neural circuit, which is increasingly found to be the casein experimental neuroscience.

  4. Simultaneous imaging of structural plasticity and calcium dynamics in developing dendrites and axons.

    Science.gov (United States)

    Siegel, Friederike; Lohmann, Christian

    2013-11-01

    During nervous system development, the formation of synapses between pre- and postsynaptic neurons is a remarkably specific process. Both structural and functional plasticity are critical for the selection of synaptic partners and for the establishment and maturation of synapses. To unravel the respective contributions of structural and functional mechanisms as well as their interactions during synaptogenesis, it is important to directly observe structural changes and functional signaling simultaneously. Here, we present an imaging approach to simultaneously follow changes in structure and function. Differential labeling of individual cells and the neuronal network with distinct dyes allows the study of structural plasticity and changes in calcium signaling associated with neural activity at the same time and with high resolution. This is achieved by bulk loading of neuronal populations with a calcium-sensitive indicator in combination with electroporation of individual cells with a calcium indicator and an additional noncalcium-sensitive dye with a different excitation spectrum. Recordings of the two differently labeled structures can be acquired simultaneously using confocal microscopy. Thus, structural plasticity and calcium dynamics of the individually labeled neuron and the surrounding network can be related to each other. This combined imaging approach can be applied to virtually all systems of neuronal networks to study structure and function. We provide a comprehensive description of the labeling procedure, the imaging parameters, and the important aspects of analysis for simultaneous recordings of structure and function in individual neurons.

  5. Validity of a structured method of selecting abstracts for a plastic surgical scientific meeting

    NARCIS (Netherlands)

    van der Steen, LPE; Hage, JJ; Kon, M; Monstrey, SJ

    In 1999, the European Association of Plastic Surgeons accepted a structured method to assess and select the abstracts that are submitted for its yearly scientific meeting. The two criteria used to evaluate whether such a selection method is accurate were reliability and validity. The authors

  6. Hippocampal Structural Plasticity Accompanies the Resulting Contextual Fear Memory Following Stress and Fear Conditioning

    Science.gov (United States)

    Giachero, Marcelo; Calfa, Gaston D.; Molina, Victor A.

    2013-01-01

    The present research investigated the resulting contextual fear memory and structural plasticity changes in the dorsal hippocampus (DH) following stress and fear conditioning. This combination enhanced fear retention and increased the number of total and mature dendritic spines in DH. Intra-basolateral amygdala (BLA) infusion of midazolam prior to…

  7. Learning to Perceive Structure from Motion and Neural Plasticity in Patients with Alzheimer's Disease

    Science.gov (United States)

    Kim, Nam-Gyoon; Park, Jong-Hee

    2010-01-01

    Recent research has demonstrated that Alzheimer's disease (AD) affects the visual sensory pathways, producing a variety of visual deficits, including the capacity to perceive structure-from-motion (SFM). Because the sensory areas of the adult brain are known to retain a large degree of plasticity, the present study was conducted to explore whether…

  8. Effects of plasticization and shear stress on phase structure development and properties of soy protein blends.

    Science.gov (United States)

    Chen, Feng; Zhang, Jinwen

    2010-11-01

    In this study, soy protein concentrate (SPC) was used as a plastic component to blend with poly(butylene adipate-co-terephthalate) (PBAT). Effects of SPC plasticization and blend composition on its deformation during mixing were studied in detail. Influence of using water as the major plasticizer and glycerol as the co-plasticizer on the deformation of the SPC phase during mixing was explored. The effect of shear stress, as affected by SPC loading level, on the phase structure of SPC in the blends was also investigated. Quantitative analysis of the aspect ratio of SPC particles was conducted by using ImageJ software, and an empirical model predicting the formation of percolated structure was applied. The experimental results and the model prediction showed a fairly good agreement. The experimental results and statistic analysis suggest that both SPC loading level and its water content prior to compounding had significant influences on development of the SPC phase structure and were correlated in determining the morphological structures of the resulting blends. Consequently, physical and mechanical properties of the blends greatly depended on the phase morphology and PBAT/SPC ratio of the blends.

  9. Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2009-01-01

    The presence of a dislocation structure associated with low-angle dislocation boundaries and interior dislocations is a common and characteristic feature in nanostructured metals produced by plastic deformation, and plays an important role in determining both the strength and ductility of the nan...

  10. Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke

    Directory of Open Access Journals (Sweden)

    Markus eButz

    2014-10-01

    Full Text Available After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation, inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion site may alter their connectivity---a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when their activity is too high and by providing new synaptic contacts when their activity becomes too low. Using our Model of Structural Plasticity, we explored the consequences of local changes in connectivity induced by a focal loss of input for global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the model network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, their degree distributions became more tailed, indicating the emergence of hub neurons. Deafferented neurons also showed an increase in their global but a decrease in their local efficiency. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization. Computational models with structural plasticity may therefore provide novel insights into the mechanics of brain recovery and inspire novel treatments of brain damage.

  11. Lifetime Reliability Estimate and Extreme Permanent Deformations of Randomly Excited Elasto-Plastic Structures

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1983-01-01

    A method is presented for life-time reliability' estimates of randomly excited yielding systems, assuming the structure to be safe, when the plastic deformations are confined below certain limits. The accumulated plastic deformations during any single significant loading history are considered...... to be the outcome of identically distributed, independent stochastic variables,for which a model is suggested. Further assuming the interarrival times of the elementary loading histories to be specified by a Poisson process, and the duration of these to be small compared to the designed life-time, the accumulated...... plastic deformation during several loadings can be modelled as a filtered Poisson process. Using the Markov property of this quantity the considered first-passage problem as well as the related extreme distribution problems are then solved numerically, and the results are compared to simulation studies....

  12. An Improved Plasticity-Based Distortion Analysis Method for Large Welded Structures

    Science.gov (United States)

    Yang, Yu-Ping; Athreya, Badrinarayan P.

    2013-05-01

    The plasticity-based distortion prediction method was improved to address the computationally intensive nature of welding simulations. Plastic strains, which are typically first computed using either two-dimensional (2D) or three-dimensional (3D) thermo-elastic-plastic analysis (EPA) on finite element models of simple weld geometry, are mapped to the full structure finite element model to predict distortion by conducting a linear elastic analysis. To optimize welding sequence to control distortion, a new theory was developed to consider the effect of weld interactions on plastic strains. This improved method was validated with experimental work on a Tee joint and tested on two large-scale welded structures—a light fabrication and a heavy fabrication—by comparing against full-blown distortion predictions using thermo-EPA. 3D solid and shell models were used for the heavy and light fabrications, respectively, to compute plastic strains due to each weld. Quantitative comparisons between this method and thermo-EPA indicate that this method can predict distortions fairly accurately—even for different welding sequences—and is roughly 1-2 orders of magnitude faster. It was concluded from these findings that, with further technical development, this method can be an ideal solver for optimizing welding sequences.

  13. Binocular vision in amblyopia: structure, suppression and plasticity.

    Science.gov (United States)

    Hess, Robert F; Thompson, Benjamin; Baker, Daniel H

    2014-03-01

    The amblyopic visual system was once considered to be structurally monocular. However, it now evident that the capacity for binocular vision is present in many observers with amblyopia. This has led to new techniques for quantifying suppression that have provided insights into the relationship between suppression and the monocular and binocular visual deficits experienced by amblyopes. Furthermore, new treatments are emerging that directly target suppressive interactions within the visual cortex and, on the basis of initial data, appear to improve both binocular and monocular visual function, even in adults with amblyopia. The aim of this review is to provide an overview of recent studies that have investigated the structure, measurement and treatment of binocular vision in observers with strabismic, anisometropic and mixed amblyopia.

  14. Persistent Structural Plasticity Optimizes Sensory Information Processing in the Olfactory Bulb.

    Science.gov (United States)

    Sailor, Kurt A; Valley, Matthew T; Wiechert, Martin T; Riecke, Hermann; Sun, Gerald J; Adams, Wayne; Dennis, James C; Sharafi, Shirin; Ming, Guo-Li; Song, Hongjun; Lledo, Pierre-Marie

    2016-07-20

    In the mammalian brain, the anatomical structure of neural circuits changes little during adulthood. As a result, adult learning and memory are thought to result from specific changes in synaptic strength. A possible exception is the olfactory bulb (OB), where activity guides interneuron turnover throughout adulthood. These adult-born granule cell (GC) interneurons form new GABAergic synapses that have little synaptic strength plasticity. In the face of persistent neuronal and synaptic turnover, how does the OB balance flexibility, as is required for adapting to changing sensory environments, with perceptual stability? Here we show that high dendritic spine turnover is a universal feature of GCs, regardless of their developmental origin and age. We find matching dynamics among postsynaptic sites on the principal neurons receiving the new synaptic inputs. We further demonstrate in silico that this coordinated structural plasticity is consistent with stable, yet flexible, decorrelated sensory representations. Together, our study reveals that persistent, coordinated synaptic structural plasticity between interneurons and principal neurons is a major mode of functional plasticity in the OB.

  15. Micro structure processing on plastics by accelerated hydrogen molecular ions

    Science.gov (United States)

    Hayashi, H.; Hayakawa, S.; Nishikawa, H.

    2017-08-01

    A proton has 1836 times the mass of an electron and is the lightest nucleus to be used for accelerator in material modification. We can setup accelerator with the lowest acceleration voltage. It is preferable characteristics of Proton Beam Writer (PBW) for industrial applications. On the contrary ;proton; has the lowest charge among all nuclei and the potential impact to material is lowest. The object of this research is to improve productivity of the PBW for industry application focusing on hydrogen molecular ions. These ions are generated in the same ion source by ionizing hydrogen molecule. There is no specific ion source requested and it is suitable for industrial use. We demonstrated three dimensional (3D) multilevel micro structures on polyester base FPC (Flexible Printed Circuits) using proton, H2+ and H3+. The reactivity of hydrogen molecular ions is much higher than that of proton and coincident with the level of expectation. We can apply this result to make micro devices of 3D multilevel structures on FPC.

  16. Plasticization effect of triacetin on structure and properties of starch ester film.

    Science.gov (United States)

    Zhu, Jie; Li, Xiaoxi; Huang, Chen; Chen, Ling; Li, Lin

    2013-05-15

    The aim of this work was to evaluate the plasticizing effect of triacetin on the structure and properties of starch ester film and further establish the structure-property relationships. The presence of triacetin resulted in multiple structure changes of the film. The mobility of macromolecular chain was increased to form scattered crystallite during the film formation process. The amorphous region was enlarged to contain more triacetin squeezed from crystalline region. The plasticization of triacetin and restriction of crystallite oppositely influenced the mobility of macromolecular chains in different regions. The thermal stability of triacetin changed along with its fluctuant interaction with macromolecules. Comparatively, the enhanced ether bond and the restriction from crystalline regions on the mobility of the amorphous chain consequently improved the thermal stability of the film matrix. The interaction between triacetin and starch ester was essential to film forming but unexpectedly lowered the triacetin stability.

  17. Thermoelectric plastics: from design to synthesis, processing and structure-property relationships.

    Science.gov (United States)

    Kroon, Renee; Mengistie, Desalegn Alemu; Kiefer, David; Hynynen, Jonna; Ryan, Jason D; Yu, Liyang; Müller, Christian

    2016-11-07

    Thermoelectric plastics are a class of polymer-based materials that combine the ability to directly convert heat to electricity, and vice versa, with ease of processing. Potential applications include waste heat recovery, spot cooling and miniature power sources for autonomous electronics. Recent progress has led to surging interest in organic thermoelectrics. This tutorial review discusses the current trends in the field with regard to the four main building blocks of thermoelectric plastics: (1) organic semiconductors and in particular conjugated polymers, (2) dopants and counterions, (3) insulating polymers, and (4) conductive fillers. The design and synthesis of conjugated polymers that promise to show good thermoelectric properties are explored, followed by an overview of relevant structure-property relationships. Doping of conjugated polymers is discussed and its interplay with processing as well as structure formation is elucidated. The use of insulating polymers as binders or matrices is proposed, which permit the adjustment of the rheological and mechanical properties of a thermoelectric plastic. Then, nanocomposites of conductive fillers such as carbon nanotubes, graphene and inorganic nanowires in a polymer matrix are introduced. A case study examines poly(3,4-ethylenedioxythiophene) (PEDOT) based materials, which up to now have shown the most promising thermoelectric performance. Finally, a discussion of the advantages provided by bulk architectures e.g. for wearable applications highlights the unique advantages that thermoelectric plastics promise to offer.

  18. Micro-Structural Evolution and Size-Effects in Plastically Deformed Single Crystals: Strain Gradient Continuum Modeling

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah

    , to focus on their ability to capture realistic micro-structural evolution. This challenge is the main focus of the present thesis, which takes as starting point a non-work conjugate type back stress based higher order crystal plasticity theory. Within this framework, several possibilities for the back......An extensive amount of research has been devoted to the development of micro-mechanics based gradient plasticity continuum theories, which are necessary for modeling micron-scale plasticity when large spatial gradients of plastic strain appear. While many models have proven successful in capturing...... the macroscopic effects related to strain gradients, most predict smooth micro-structures. The evolution of dislocation micro-structures, during plastic straining of ductile crystalline materials, is highly complex and nonuniform. Published experimental measurements on deformed metal crystals show distinct...

  19. Bidirectional Synaptic Structural Plasticity after Chronic Cocaine Administration Occurs through Rap1 Small GTPase Signaling.

    Science.gov (United States)

    Cahill, Michael E; Bagot, Rosemary C; Gancarz, Amy M; Walker, Deena M; Sun, HaoSheng; Wang, Zi-Jun; Heller, Elizabeth A; Feng, Jian; Kennedy, Pamela J; Koo, Ja Wook; Cates, Hannah M; Neve, Rachael L; Shen, Li; Dietz, David M; Nestler, Eric J

    2016-02-03

    Dendritic spines are the sites of most excitatory synapses in the CNS, and opposing alterations in the synaptic structure of medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a primary brain reward region, are seen at early versus late time points after cocaine administration. Here we investigate the time-dependent molecular and biochemical processes that regulate this bidirectional synaptic structural plasticity of NAc MSNs and associated changes in cocaine reward in response to chronic cocaine exposure. Our findings reveal key roles for the bidirectional synaptic expression of the Rap1b small GTPase and an associated local synaptic protein translation network in this process. The transcriptional mechanisms and pathway-specific inputs to NAc that regulate Rap1b expression are also characterized. Collectively, these findings provide a precise mechanism by which nuclear to synaptic interactions induce "metaplasticity" in NAc MSNs, and we reveal the specific effects of this plasticity on reward behavior in a brain circuit-specific manner.

  20. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    Science.gov (United States)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive

  1. Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke.

    Science.gov (United States)

    Butz, Markus; Steenbuck, Ines D; van Ooyen, Arjen

    2014-01-01

    After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity-a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.

  2. Mitigation of blast loadings on structures by an anti-blast plastic water wall

    Institute of Scientific and Technical Information of China (English)

    张力; 陈力; 方秦; 张亚栋

    2016-01-01

    Seven in-situ tests were carried out in far field to study the blast mitigation effect of a kind of water filled plastic wall. Test results show that the mitigation effect of water filled plastic wall is remarkable. The maximum reduction of peak reflected overpressure reaches up to 94.53%, as well as 36.3% of the minimum peak reflected overpressure reduction in the scaled distance ranging from 1.71 m/kg1/3 to 3.42 m/kg1/3. Parametric studies were also carried out. The effects of the scaled gauge height, water/charge scaled distance (the distance between the explosive charge and the water wall), water wall scaled height and water/structure scaled distance (the distance between the water wall and the structure) were systematically investigated and compared with the usual rigid anti-blast wall. It is concluded that these parameters affect the mitigation effects of plastic water wall on blast loadings significantly, which is basically consistent to the trend of usual rigid anti-blast wall. Some formulae are also derived based on the numerical and test results, providing a simple but reliable prediction model to evaluate the peak overpressure of mitigated blast loadings on the structures.

  3. Effect of fluoride solutions on the structure and hardness of plastic brackets.

    Science.gov (United States)

    Tziafa, Christina; Zinelis, Spiros; Makou, Margarita; Eliades, Theodore; Eliades, George

    2010-01-01

    To investigate the surface morphology, structure, molecular and elemental composition, and hardness of plastic brackets exposed to fluoride solutions. Two types of plastic brackets (Silkon Plus and SpiritMB) were exposed to three fluoride solutions 10 times for 1 minute each and then subjected to attenuated total relectance-Fournier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), x-ray energy dispersive microanalysis (EDS), and Vickers hardness (HV) testing. Hardness data were analyzed via two-way ANOVA and Tukey tests at the .05 level of significance with brackets and fluoride solution as predictors. ATR-FTIR spectroscopy showed that both bracket types consisted of polycarbonate. After treatment with acidulated phosphate fluoride, an increased contribution of -OH peaks at 3,200 cm-1(stretching [str]) and 1,640 cm-1 (a type of vibration [b]) was observed in both brackets. SEM revealed that the acidulated phosphate fluoride solution had a strong effect on the morphology and surface structure of the two brackets; a general deterioration with projections of the reinforcing fibers was observed. EDS showed evidence of aluminum, calcium, silicon, magnesium, and titanium, which could be attributed to the reinforcing glass fiber constituents. Hardness ranged in the order of 20 HV with no difference among the two bracket types and the three fluoride exposures. Repeated exposure of plastic brackets to fluoride solutions has a pronounced effect on their structure and morphology, but not their hardness. © 2010 BY QUINTESSENCE PUBLISHING CO, INC.

  4. Elastic-Plastic Strain Acceptance Criteria for Structures Subject to Rapidly Applied Transient Dynamic Loading

    Energy Technology Data Exchange (ETDEWEB)

    W.R. Solonick

    2003-04-01

    Rapidly applied transient dynamic loads produce stresses and deflections in structures that typically exceed those from static loading conditions. Previous acceptance criteria for structures designed for rapidly applied transient dynamic loading limited stresses to those determined from elastic analysis. Different stress limits were established for different grades of structure depending upon the amount of permanent set considered acceptable. Structure allowed to sustain very limited permanent set is designed to stress limits not significantly greater than yield stress. Greater permanent set in structure under rapidly applied transient dynamic loading conditions is permitted by establishing stress limits that are significantly greater than yield stress but still provide adequate safety margin (with respect to failure). This paper presents a strain-based elastic-plastic (i.e., inelastic) analysis criterion developed as an alternative to the more conservative stress-based elastic analysis stress criterion for structures subjected to rapidly applied transient dynamic loading. The strain limits established are based on material ductility considerations only and are set as a fraction of the strain at ultimate stress obtained from an engineering stress/strain curve of the material. Strains limits are categorized by type as membrane or surface and by region as general, local , or concentrated. The application of the elastic-plastic criterion provides a more accurate, less conservative design/analysis basis for structures than that used in elastic stress-based analysis criteria, while still providing adequate safety margins.

  5. Activity-dependent structural plasticity after aversive experiences in amygdala and auditory cortex pyramidal neurons.

    Science.gov (United States)

    Gruene, Tina; Flick, Katelyn; Rendall, Sam; Cho, Jin Hyung; Gray, Jesse; Shansky, Rebecca

    2016-07-22

    The brain is highly plastic and undergoes changes in response to many experiences. Learning especially can induce structural remodeling of dendritic spines, which is thought to relate to memory formation. Classical Pavlovian fear conditioning (FC) traditionally pairs an auditory cue with an aversive footshock, and has been widely used to study neural processes underlying associative learning and memory. Past research has found dendritic spine changes after FC in several structures. But, due to heterogeneity of cells within brain structures and limitations of traditional neuroanatomical techniques, it is unclear if all cells included in analyses were actually active during learning processes, even if known circuits are isolated. In this study, we employed a novel approach to analyze structural plasticity explicitly in neurons activated by exposure to either cued or uncued footshocks. We used male and female Arc-dVenus transgenic mice, which express the Venus fluorophore driven by the activity-related Arc promoter, to identify neurons that were active during either scenario. We then targeted fluorescent microinjections to Arc+ and neighboring Arc- neurons in the basolateral area of the amygdala (BLA) and auditory association cortex (TeA). In both BLA and TeA, Arc+ neurons had reduced thin and mushroom spine densities compared to Arc- neurons. This effect was present in males and females alike and also in both cued and uncued shock groups. Overall, this study adds to our understanding of how neuronal activity affects structural plasticity, and represents a methodological advance in the ways we can directly relate structural changes to experience-related neural activity.

  6. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood

    Directory of Open Access Journals (Sweden)

    Aaron D Levy

    2014-10-01

    Full Text Available Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix (ECM, composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults.

  7. Computer simulation of model cohesive powders: Plastic consolidation, structural changes, and elasticity under isotropic loads

    Science.gov (United States)

    Gilabert, F. A.; Roux, J.-N.; Castellanos, A.

    2008-09-01

    The quasistatic behavior of a simple two-dimensional model of a cohesive powder under isotropic loads is investigated by discrete element simulations. We ignore contact plasticity and focus on the effect of geometry and collective rearrangements on the material behavior. The loose packing states, as assembled and characterized in a previous numerical study [Gilabert, Roux, and Castellanos, Phys. Rev. E 75, 011303 (2007)], are observed, under growing confining pressure P , to undergo important structural changes, while solid fraction Φ irreversibly increases (typically, from 0.4-0.5 to 0.75-0.8). The system state goes through three stages, with different forms of the plastic consolidation curve, i.e., Φ as a function of the growing reduced pressure P*=Pa/F0 , defined with adhesion force F0 and grain diameter a . In the low-confinement regime (I), the system undergoes negligible plastic compaction, and its structure is influenced by the assembling process. In regime II the material state is independent of initial conditions, and the void ratio varies linearly with lnP [i.e., Δ(1/Φ)=λΔ(lnP*) ], as described in the engineering literature. Plasticity index λ is reduced in the presence of a small rolling resistance (RR). In the last stage of compaction (III), Φ approaches an asymptotic, maximum solid fraction Φmax , as a power law Φmax-Φ∝(P*)-α , with α≃1 , and properties of cohesionless granular packs are gradually retrieved. Under consolidation, while the range ξ of fractal density correlations decreases, force patterns reorganize from self-balanced clusters to force chains, with correlative evolutions of force distributions, and elastic moduli increase by a large amount. Plastic deformation events correspond to very small changes in the network topology, while the denser regions tend to move like rigid bodies. Elastic properties are dominated by the bending of thin junctions in loose systems. For growing RR those tend to form particle chains, the

  8. DESIGN OPTIMIZATION FOR TRUSS STRUCTURES UNDER ELASTO-PLASTIC LOADING CONDITION

    Institute of Scientific and Technical Information of China (English)

    Liu Tao; Deng Zichen

    2006-01-01

    In this paper, a method for the design optimization of elasto-plastic truss structures is proposed based on parametric variational principles (PVPs). The optimization aims to find the minimum weight/volume solution under the constraints of allowable node displacements. The design optimization is a formulation of mathematical programming with equilibrium constraints (MPECs). To overcome the numerical difficulties of the complementary constraints in optimization, an iteration process, comprising a quadratic programming (QP) and an updating process,is employed as the optimization method. Furthermore, the elasto-plastic buckling of truss members is considered as a constraint in design optimization. A combinational optimization strategy is proposed for the displacement constraints and the buckling constraint, which comprises the method mentioned above and an optimal criterion. Three numerical examples are presented to show the validity of the methods proposed.

  9. Length of Acupuncture Training and Structural Plastic Brain Changes in Professional Acupuncturists.

    Directory of Open Access Journals (Sweden)

    Minghao Dong

    Full Text Available The research on brain plasticity has fascinated researchers for decades. Use/training serves as an instrumental factor to influence brain neuroplasticity. Parallel to acquisition of behavioral expertise, extensive use/training is concomitant with substantial changes of cortical structure. Acupuncturists, serving as a model par excellence to study tactile-motor and emotional regulation plasticity, receive intensive training in national medical schools following standardized training protocol. Moreover, their behavioral expertise is corroborated during long-term clinical practice. Although our previous study reported functional plastic brain changes in the acupuncturists, whether or not structural plastic changes occurred in acupuncturists is yet elusive.Cohorts of acupuncturists (N = 22 and non-acupuncturists (N = 22 were recruited. Behavioral tests were delivered to assess the acupuncturists' behavioral expertise. The results confirmed acupuncturists' tactile-motor skills and emotion regulation proficiency compared to non-acupuncturists. Using the voxel-based morphometry technique, we revealed larger grey matter volumes in acupuncturists in the hand representation of the contralateral primary somatosensory cortex (SI, the right lobule V/VI and the bilateral ventral anterior cingulate cortex/ventral medial prefrontal cortex. Grey matter volumes of the SI and Lobule V/VI positively correlated with the duration of acupuncture practice.To our best knowledge, this study provides first evidence for the anatomical alterations in acupuncturists, which would possibly be the neural correlates underlying acupuncturists' exceptional skills. On one hand, we suggest our findings may have ramifications for tactile-motor rehabilitation. On the other hand, our results in emotion regulation domain may serve as a target for our future studies, from which we can understand how modulations of aversive emotions elicited by empathic pain develop in the context

  10. ANALYSIS OF DEPENDENCE OF THE FLOW TEMPERATURE OF THE PLASTICIZED POLYMER ON THE CHEMICAL STRUCTURE AND CONCENTRATION OF THE POLYMER AND THE PLASTICIZER

    Directory of Open Access Journals (Sweden)

    Askadskiy Andrey Aleksandrovich

    2012-10-01

    Full Text Available Polymeric materials are widely used in construction. The properties of polymeric construction materials vary to a substantial extent; their durability, thermal stability, frost resistance, waterproof and dielectric properties are particularly pronounced. Their properties serve as the drivers of the high market demand for these products. These materials are applied as finishing materials, molded sanitary engineering products and effective thermal insulation and water proofing materials. The authors analyze the influence of the chemical structure and structural features of polymers on their properties. The authors consider flow and vitrification temperatures of polymers. These temperatures determine the parameters of polymeric products, including those important for the construction process. The analysis of influence of concentration of the plasticizer on the vitrification temperature is based on the two basic theories. In accordance with the first one, reduction of the vitrification temperature is proportionate to the molar fraction of the injected plasticizer. According to the second concept, reduction of the vitrification temperature is proportionate to the volume fraction of the injected solvent. Dependencies of the flow temperature on the molecular weight and the molar fraction of the plasticizer are derived for PVC. As an example, two plasticizers were considered, including dibutyl sebacate and dioctylftalatalate. The basic parameters of all mixtures were calculated through the employment of "Cascade" software programme (A.N. Nesmeyanov Institute of Organoelemental Connections, Russian Academy of Sciences.

  11. Structural homeostasis in the nervous system: A balancing act for wiring plasticity and stability

    Directory of Open Access Journals (Sweden)

    Jun eYin

    2015-01-01

    Full Text Available Experience-dependent modifications of neural circuits provide the cellular basis for functional adaptation and learning, while presenting significant challenges to the stability of neural networks. The nervous system copes with these perturbations through a variety of compensatory mechanisms with distinct spatial and temporal profiles. Mounting evidence suggests that structural plasticity, through modifications of the number and structure of synapses, or changes in local and long-range connectivity, might contribute to the stabilization of network activity and serve as an important component of the homeostatic regulation of the nervous system. Conceptually similar to the homeostatic regulation of synaptic strength and efficacy, homeostatic structural plasticity has a profound and lasting impact on the intrinsic excitability of the neuron and circuit properties, yet remains largely unexplored. In this review, we examine recent reports describing structural modifications associated with functional compensation in both developing and adult nervous systems, and discuss the potential role for structural homeostasis in maintaining network stability and its implications in physiological and pathological conditions of the nervous systems.

  12. Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity

    Science.gov (United States)

    Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon

    2011-01-01

    Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800

  13. [Independence in Plastic Surgery - Benefit or Barrier? Analysis of the Publication Performance in Academic Plastic Surgery Depending on Varying Organisational Structures].

    Science.gov (United States)

    Schubert, C D; Leitsch, S; Haertnagl, F; Haas, E M; Giunta, R E

    2015-08-01

    Despite its recognition as an independent specialty, at German university hospitals the field of plastic surgery is still underrepresented in terms of independent departments with a dedicated research focus. The aim of this study was to analyse the publication performance within the German academic plastic surgery environment and to compare independent departments and dependent, subordinate organisational structures regarding their publication performance. Organisational structures and number of attending doctors in German university hospitals were examined via a website analysis. A pubmed analysis was applied to assess the publication performance (number of publications, cumulative impact factor, impact factor/publication, number of publications/MD, number of publications/unit) between 2009 and 2013. In a journal analysis the distribution of the cumulative impact factor and number of publications in different journals as well as the development of the impact factor in the top journals were analysed. Out of all 35 university hospitals there exist 12 independent departments for plastic surgery and 8 subordinate organisational structures. In 15 university hospitals there were no designated plastic surgery units. The number of attending doctors differed considerably between independent departments (3.6 attending doctors/unit) and subordinate organisational structures (1.1 attending doctors/unit). The majority of publications (89.0%) and of the cumulative impact factor (91.2%) as well as most of the publications/MD (54 publications/year) and publications/unit (61 publications/year) were created within the independent departments. Only in departments top publications with an impact factor > 5 were published. In general a negative trend regarding the number of publications (- 13.4%) and cumulative impact factor (- 28.9%) was observed. 58.4% of all publications were distributed over the top 10 journals. Within the latter the majority of articles were published in

  14. Structural plasticity: how intermetallics deform themselves in response to chemical pressure, and the complex structures that result.

    Science.gov (United States)

    Berns, Veronica M; Fredrickson, Daniel C

    2014-10-06

    Interfaces between periodic domains play a crucial role in the properties of metallic materials, as is vividly illustrated by the way in which the familiar malleability of many metals arises from the formation and migration of dislocations. In complex intermetallics, such interfaces can occur as an integral part of the ground-state crystal structure, rather than as defects, resulting in such marvels as the NaCd2 structure (whose giant cubic unit cell contains more than 1000 atoms). However, the sources of the periodic interfaces in intermetallics remain mysterious, unlike the dislocations in simple metals, which can be associated with the exertion of physical stresses. In this Article, we propose and explore the concept of structural plasticity, the hypothesis that interfaces in complex intermetallic structures similarly result from stresses, but ones that are inherent in a defect-free parent structure, rather than being externally applied. Using DFT-chemical pressure analysis, we show how the complex structures of Ca2Ag7 (Yb2Ag7 type), Ca14Cd51 (Gd14Ag51 type), and the 1/1 Tsai-type quasicrystal approximant CaCd6 (YCd6 type) can all be traced to large negative pressures around the Ca atoms of a common progenitor structure, the CaCu5 type with its simple hexagonal 6-atom unit cell. Two structural paths are found by which the compounds provide relief to the Ca atoms' negative pressures: a Ca-rich pathway, where lower coordination numbers are achieved through defects eliminating transition metal (TM) atoms from the structure; and a TM-rich path, along which the addition of spacer Cd atoms provides the Ca coordination environments greater independence from each other as they contract. The common origins of these structures in the presence of stresses within a single parent structure highlights the diverse paths by which intermetallics can cope with competing interactions, and the role that structural plasticity may play in navigating this diversity.

  15. Structural plasticity in the dentate gyrus- revisiting a classic injury model.

    Science.gov (United States)

    Perederiy, Julia V; Westbrook, Gary L

    2013-01-01

    The adult brain is in a continuous state of remodeling. This is nowhere more true than in the dentate gyrus, where competing forces such as neurodegeneration and neurogenesis dynamically modify neuronal connectivity, and can occur simultaneously. This plasticity of the adult nervous system is particularly important in the context of traumatic brain injury or deafferentation. In this review, we summarize a classic injury model, lesioning of the perforant path, which removes the main extrahippocampal input to the dentate gyrus. Early studies revealed that in response to deafferentation, axons of remaining fiber systems and dendrites of mature granule cells undergo lamina-specific changes, providing one of the first examples of structural plasticity in the adult brain. Given the increasing role of adult-generated new neurons in the function of the dentate gyrus, we also compare the response of newborn and mature granule cells following lesioning of the perforant path. These studies provide insights not only to plasticity in the dentate gyrus, but also to the response of neural circuits to brain injury.

  16. Structuring policy problems for plastics, the environment and human health: reflections from the UK.

    Science.gov (United States)

    Shaxson, Louise

    2009-07-27

    How can we strengthen the science-policy interface for plastics, the environment and human health? In a complex policy area with multiple stakeholders, it is important to clarify the nature of the particular plastics-related issue before trying to understand how to reconcile the supply and demand for evidence in policy. This article proposes a simple problem typology to assess the fundamental characteristics of a policy issue and thus identify appropriate processes for science-policy interactions. This is illustrated with two case studies from one UK Government Department, showing how policy and science meet over the environmental problems of plastics waste in the marine environment and on land. A problem-structuring methodology helps us understand why some policy issues can be addressed through relatively linear flows of science from experts to policymakers but why others demand a more reflexive approach to brokering the knowledge between science and policy. Suggestions are given at the end of the article for practical actions that can be taken on both sides.

  17. Low-grade inflammation disrupts structural plasticity in the human brain.

    Science.gov (United States)

    Szabó, C; Kelemen, O; Kéri, S

    2014-09-05

    Increased low-grade inflammation is thought to be associated with several neuropsychiatric disorders characterized by decreased neuronal plasticity. The purpose of the present study was to investigate the relationship between structural changes in the human brain during cognitive training and the intensity of low-grade peripheral inflammation in healthy individuals (n=56). A two-month training (30 min/day) with a platformer video game resulted in a significantly increased volume of the right hippocampal formation. The number of stressful life events experienced during the past year was associated with less pronounced enlargement of the hippocampus. However, the main predictor of hippocampal volume expansion was the relative peripheral expression of Nuclear Factor-κB (NF-κB), a transcription factor playing a central role in the effect of pro-inflammatory cytokines. Interleukin-6 (IL-6) and C-reactive protein levels were not related to hippocampal plasticity when NF-κB was taken into consideration. These results suggest that more intensive peripheral inflammation is associated with weaker neuronal plasticity during cognitive training. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Interaction of underwater explosion bubble with complex elastic-plastic structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG A-man; YAO Xiong-liang

    2008-01-01

    Considering the elastic-plasticity of the structure, the combination of bound-ary element method and finite element method (FEM) is employed to present the calcu-lation method for solving the complex coupled dynamic problem of bubble, elastic-plastic structure and the free surface, and the complete three-dimensional calculation program is developed as well. The error between the calculated result and the experimental re- sult is within 10%. Taking a surface ship for example, the three-dimensional calculation program is extended to engineering filed. By employing the program, the response of the ship under the bubble loading is analyzed. From the stress-time history curves of typical elements of the structure, it can be seen that the pressure reaches its maximum when the bubble collapses and this validates that the pressure generated by the bubble collapse and the jet can cause serious damage on the ship structure. From the dynamic process of the interaction between the three-dimensional bubble and the ship, the low order vertical mode of the ship is provoked and the ship presents whip-shaped motion. And the ship does elevation and subsidence movement with the expansion and shrinkage of the bubble. Some rules and conclusions which can be applied to the engineering problems are obtained from the analysis in this paper.

  19. Structural studies on Mycobacterium tuberculosis RecA: Molecular plasticity and interspecies variability

    Indian Academy of Sciences (India)

    Anu V Chandran; J Rajan Prabu; Astha Nautiyal; K Neelakanteshwar Patil; K Muniyappa; M Vijayan

    2015-03-01

    Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP is central for all the biochemical activities of RecA. The strengths of interaction of the ligands with the P-loop reveal significant differences. This in turn affects the magnitude of the motion of the `switch’ residue, Gln195 in M. tuberculosis RecA, which triggers the transmission of ATP-mediated allosteric information to the DNA binding region. M. tuberculosis RecA is substantially rigid compared with its counterparts from M. smegmatis and E. coli, which exhibit concerted internal molecular mobility. The interspecies variability in the plasticity of the two mycobacterial proteins is particularly surprising as they have similar sequence and 3D structure. Details of the interactions of ligands with the protein, characterized in the structures reported here, could be useful for design of inhibitors against M. tuberculosis RecA.

  20. Molecular surface structural changes of plasticized PVC materials after plasma treatment.

    Science.gov (United States)

    Zhang, Xiaoxian; Zhang, Chi; Hankett, Jeanne M; Chen, Zhan

    2013-03-26

    In this research, a variety of analytical techniques including sum frequency generation vibrational spectroscopy (SFG), coherent anti-Stokes Raman spectroscopy (CARS), and X-ray photoelectron spectroscopy (XPS) have been employed to investigate the surface and bulk structures of phthalate plasticized poly(vinyl chloride) (PVC) at the molecular level. Two types of phthalate molecules with different chain lengths, diethyl phthalate (DEP) and dibutyl phthalate (DBP), mixed with PVC in various weight ratios were examined to verify their different surface and bulk behaviors. The effects of oxygen and argon plasma treatment on PVC/DBP and PVC/DEP hybrid films were investigated on both the surface and bulk of films using SFG and CARS to evaluate the different plasticizer migration processes. Without plasma treatment, SFG results indicated that more plasticizers segregate to the surface at higher plasticizer bulk concentrations. SFG studies also demonstrated the presence of phthalates on the surface even at very low bulk concentration (5 wt %). Additionally, the results gathered from SFG, CARS, and XPS experiments suggested that the PVC/DEP system was unstable, and DEP molecules could leach out from the PVC under low vacuum after several minutes. In contrast, the PVC/DBP system was more stable; the migration process of DBP out of PVC could be effectively suppressed after oxygen plasma treatment. XPS results indicated the increase of C═O/C-O groups and decrease of C-Cl functionalities on the polymer surface after oxygen plasma treatment. The XPS results also suggested that exposure to argon plasma induced chemical bond breaking and formation of cross-linking or unsaturated groups with chain scission on the surface. Finally, our results indicate the potential risk of using DEP molecules in PVC since DEP can easily leach out from the polymeric bulk.

  1. NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons

    Directory of Open Access Journals (Sweden)

    Marta Perez-Rando

    2017-06-01

    Full Text Available N-methyl-D-aspartate receptors (NMDARs are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to adult mice which constitutively express enhanced green fluorescent protein (EGFP in these cells. We have behaviorally tested the animals, confirming effects of the drug on locomotion and anxiety-related behaviors. NMDARs were expressed in the somata and dendritic spines of somatostatin-expressing interneurons. Twenty-four hours after the injection, the density of spines did not vary, but we found a significant increase in the density of their en passant boutons (EPB. We have also used entorhino-hippocampal organotypic cultures to study these interneurons in real-time. There was a rapid decrease in the apparition rate of spines after MK-801 administration, which persisted for 24 h and returned to basal levels afterwards. A similar reversible decrease was detected in spine density. Our results show that both spines and axons of interneurons can undergo remodeling and highlight NMDARs as regulators of this plasticity. These results are specially relevant given the importance of all these players on hippocampal physiology and the etiopathology of certain psychiatric disorders.

  2. New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons.

    Science.gov (United States)

    Bonfanti, Luca; Nacher, Juan

    2012-07-01

    The mammalian central nervous system, due to its interaction with the environment, must be endowed with plasticity. Conversely, the nervous tissue must be substantially static to ensure connectional invariability. Structural plasticity can be viewed as a compromise between these requirements. In adult mammals, brain structural plasticity is strongly reduced with respect to other animal groups in the phylogenetic tree. It persists under different forms, which mainly consist of remodeling of neuronal shape and connectivity, and, to a lesser extent, the production of new neurons. Adult neurogenesis is mainly restricted within two neurogenic niches, yet some gliogenic and neurogenic processes also occur in the so-called non-neurogenic tissue, starting from parenchymal progenitors. In this review we focus on a population of immature, non-newly generated neurons in layer II of the cerebral cortex, which were previously thought to be newly generated since they heavily express the polysialylated form of the neural cell adhesion molecule and doublecortin. These unusual neurons exhibit characteristics defining an additional type of structural plasticity, different from either synaptic plasticity or adult neurogenesis. Evidences concerning their morphology, antigenic features, ultrastructure, phenotype, origin, fate, and reaction to different kind of stimulations are gathered and analyzed. Their possible role is discussed in the context of an enriched complexity and heterogeneity of mammalian brain structural plasticity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Analysis of a ceramic filled bio-plastic composite sandwich structure

    Energy Technology Data Exchange (ETDEWEB)

    Habib Ullah, M. [Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, Bangi Selangor 43600 (Malaysia); Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia, Bangi 43600 (Malaysia); Islam, M. T. [Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, Bangi Selangor 43600 (Malaysia)

    2013-11-25

    Design and analysis of a ceramic-filled bio-plastic composite sandwich structure is presented. This proposed high-dielectric structure is used as a substrate for patch antennas. A meandered-strip line-fed fractal-shape patch antenna is designed and fabricated on a copper-laminated sandwich-structured substrate. Measurement results of this antenna show 44% and 20% of bandwidths with maximum gains of 3.45 dBi and 5.87 dBi for the lower and upper bands, respectively. The half-power beam widths of 104° and 78° have been observed from the measured radiation pattern at the two resonance frequencies 0.9 GHz and 2.5 GHz.

  4. Structural synaptic plasticity in the hippocampus induced by spatial experience and its implications in information processing.

    Science.gov (United States)

    Carasatorre, M; Ramírez-Amaya, V; Díaz Cintra, S

    2016-10-01

    Long-lasting memory formation requires that groups of neurons processing new information develop the ability to reproduce the patterns of neural activity acquired by experience. Changes in synaptic efficiency let neurons organise to form ensembles that repeat certain activity patterns again and again. Among other changes in synaptic plasticity, structural modifications tend to be long-lasting which suggests that they underlie long-term memory. There is a large body of evidence supporting that experience promotes changes in the synaptic structure, particularly in the hippocampus. Structural changes to the hippocampus may be functionally implicated in stabilising acquired memories and encoding new information. Copyright © 2012 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Joining of Metal-Plastics-Hybrid Structures Using Laser Radiation by Considering the Surface Structure of the Metal

    Directory of Open Access Journals (Sweden)

    Christian Hopmann

    2016-01-01

    Full Text Available Lightweight construction is a central technology in today’s industrial production. One way to achieve the climate goals is the production of hybrid compounds of metal and plastic. The manufacturing process for these hybrid parts can be divided into in-mold assembly and postmold assembly. The postmold assembly includes thermal joining by laser, which is applied in the context of this paper. For the investigations, four plastics (MABS, PA6.6-GF35, PP, and PC, which differ in their properties, and three metals (unalloyed steel, stainless steel, and aluminum are combined and analyzed. These materials have been used, since they have a huge significance in the automotive industry. Preliminary studies showed that an adhesive bond between the two materials is achieved using metal with a structured surface. According to these studies, three structuring processes for metals (selective laser melting (SLM, NRX, and a welded metallic tissue are tested. The quality of the material/structure combinations is tested in tensile-shear-tests, microscopy images, and alternating climate tests. Compounds with SLM-Structure achieve highest strength, while compounds with aluminum are much more complex to manufacture.

  6. Structural recovery in plastic crystals by time-resolved non-linear dielectric spectroscopy.

    Science.gov (United States)

    Riechers, Birte; Samwer, Konrad; Richert, Ranko

    2015-04-21

    The dielectric relaxation of several different plastic crystals has been examined at high amplitudes of the ac electric fields, with the aim of exploring possible differences with respect to supercooled liquids. In all cases, the steady state high field loss spectrum appears to be widened, compared with its low field limit counterpart, whereas peak position and peak amplitude remain almost unchanged. This field induced change in the loss profile is explained on the basis of two distinct effects: an increased relaxation time due to reduced configurational entropy at high fields which affects the low frequency part of the spectrum, and accelerated dynamics at frequencies above the loss peak position resulting from the added energy that the sample absorbs from the external electric field. From the time-resolved assessment of the field induced changes in fictive temperatures at relatively high frequencies, we find that this structural recovery is slaved to the average rather than mode specific structural relaxation time. In other words, the very fast relaxation modes in the plastic crystal cannot adjust their fictive temperatures faster than the slower modes, the equivalent of time aging-time superposition. As a result, an explanation for this single fictive temperature must be consistent with positional order, i.e., translational motion or local density fluctuations do not govern the persistence time of local time constants.

  7. Causal measures of structure and plasticity in simulated and living neural networks.

    Directory of Open Access Journals (Sweden)

    Alex J Cadotte

    Full Text Available A major goal of neuroscience is to understand the relationship between neural structures and their function. Recording of neural activity with arrays of electrodes is a primary tool employed toward this goal. However, the relationships among the neural activity recorded by these arrays are often highly complex making it problematic to accurately quantify a network's structural information and then relate that structure to its function. Current statistical methods including cross correlation and coherence have achieved only modest success in characterizing the structural connectivity. Over the last decade an alternative technique known as Granger causality is emerging within neuroscience. This technique, borrowed from the field of economics, provides a strong mathematical foundation based on linear auto-regression to detect and quantify "causal" relationships among different time series. This paper presents a combination of three Granger based analytical methods that can quickly provide a relatively complete representation of the causal structure within a neural network. These are a simple pairwise Granger causality metric, a conditional metric, and a little known computationally inexpensive subtractive conditional method. Each causal metric is first described and evaluated in a series of biologically plausible neural simulations. We then demonstrate how Granger causality can detect and quantify changes in the strength of those relationships during plasticity using 60 channel spike train data from an in vitro cortical network measured on a microelectrode array. We show that these metrics can not only detect the presence of causal relationships, they also provide crucial information about the strength and direction of that relationship, particularly when that relationship maybe changing during plasticity. Although we focus on the analysis of multichannel spike train data the metrics we describe are applicable to any stationary time series in which

  8. Research on Increasing Temperature of Biogas Tank Using Transparent Honeycomb Typed Freshwater Solar Pond%蜂窝型淡水太阳池对沼气池增补温效果的试验研究

    Institute of Scientific and Technical Information of China (English)

    崔彦如; 高海; 毛倩; 张永锋; 庞凤仙; 殷涌光

    2012-01-01

    文章是在北方冬季寒冷地区利用蜂窝型淡水太阳池对沼气进行增、补温的试验研究.以太阳池内液体深度h,蜂窝孔径高比(D/H),池底蓄热材料为因素,进行正交试验.通过优化试验得出最优参数为:蜂窝型太阳池液体深度h40 cm,蜂窝孔径高度比D/H 0.1,池底蓄热材料为炉灰渣,2010年12月~2011年2月,太阳池平均温度为43℃,冬季沼气池平均温度达到28.1℃,沼气容积产气率0.26 m3·m-3d-1.%The paper studied parameter optimizing of transparent honeycomb typed freshwater solar pond (THFSP) for increasing the digester temperature in winter in the cold north China. The depth of solar pond( h), ratio of honeycomb diameter/ thickness(D/H) ,and thermal storage material in the solar pond were used as parameters for the orthogonal test. The result showed the optimum parameter of h 40cm, D/H 0.1 and with the thermal furnace ash as the heat storage material, at which the biogas yield reached up to 0.26 m3 · m-3d-1 during 12/2010 -2/2011, The temperature of solar pond and biogas digester were 43 ℃ and 28.1℃ , respectively.

  9. PLASTIC LIMIT ANALYSIS OF DUCTILE COMPOSITE STRUCTURES FROM MICRO-TO MACRO-MECHANICAL ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Hongtao Zhang; Yinghua Liu; Bingye Xu

    2009-01-01

    The load-bearing capacity of ductile composite structures comprised of periodic composites is studied by a combined micro/macromechanical approach. Firstly, on the microscopic level, a representative volume element (RVE) is selected to reflect the microstructures of the composite materials and the constituents are assumed to be elastic perfectly-plastic. Based on the homogenization theory and the static limit theorem, an optimization formulation to directly calculate the macroscopic strength domain of the RVE is obtained. The finite element modeling of the static limit analysis is formulated as a nonlinear mathematical programming and solved by the sequential quadratic programming method, where the temperature parameter method is used to construct the self-stress field. Secondly, Hill's yield criterion is adopted to connect the micromechanical and macromechanical analyses. And the limit loads of composite structures are worked out on the macroscopic scale. Finally, some examples and comparisons are shown.

  10. The effect of plastic constraint on the initiation of ductile tears in shipbuilding structural steels

    Institute of Scientific and Technical Information of China (English)

    LI Qing-fen; WANG Peng; REN Zheng-yi; LONG Ping

    2003-01-01

    In this paper, the effect of plastic constraint on the initiation of ductile tears in four different shipbuilding structural steels has been experimentally studied by measuring the J-integral and crack opening displacement COD at initiation in three-point bend specimens with deep and shallow notches. Experimental results of seven groups of different strength alloy steels show that both δì and Jì values of ductile tear from the shallow crack specimens which have less constraint flow field are significantly higher than those of deeply notched specimens. Slip-line-field analysis shows that, for shallow crack, the hydrostatic stress is lower than that from standard deeply cracked bend specimen, which develops a high level of crack tip constraint, provides a lower bound estimate of toughness, and will ensure an unduly conservative approach when applied to structural defects, especially if initiation values of COD and J-integral are used.

  11. Structure of Plastic Crystalline Succinonitrile: High-Resolution in situ Powder Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hore, S.; Dinnebier, R; Wen, W; Hanson, J; Maier, J

    2009-01-01

    The temperature dependent (150-290 K) crystal structure of the low-temperature -phase, and high temperature -phase, of succinonitrile has been determined by high resolution in situ powder diffraction. The -phase has a monoclinic unit cell that contains four gauche molecules and belongs to the P21/a space group. The crystal undergoes a reversible first-order phase transition at 233 K into the high temperature -phase. The lattice parameters increase with temperature and the phase transition leads to an abrupt 6.7 % increase in volume. The -phase crystallizes into a bcc-structure that belongs to the space group. The high temperature phase; however, is a highly disordered plastic crystal at room temperature that contains both gauche and trans molecules. The non-linearity in the overall isotropic temperature-factor indicates other possible phase transitions in the temperature range of 233-250 K

  12. Altering strength and plastic deformation behavior via alloying and laminated structure in nanocrystalline metals

    Energy Technology Data Exchange (ETDEWEB)

    Gu, C. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, F., E-mail: wangfei@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, P., E-mail: huangping@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Lu, T.J. [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China); MOE Key Laboratory for Multifunctional Materials and Structures, Xi' an Jiaotong University, Xi' an 710049 (China); Xu, K.W. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-07-29

    Nanoindentation and electron microscope techniques have been performed on sputtering deposited monolayered nanocrystalline CuNb and multilayered CuNb/Cu thin films. Microstructural features, hardness and surface morphologies of residual indentation have been evaluated to identify the effects of alloying and laminated structure on strength and plastic deformation behavior of nanocrystalline metals. By altering the content of Nb in CuNb alloy and adding crystalline Cu layers into CuNb alloy, the volume fraction of amorphous phase in CuNb alloy and interface structures changed dramatically, resulting in various trends that are related to hardness, indentation induced pileup and shear banding deformation. Based on the experimental results, the dominant deformation mechanisms of the CuNb and CuNb/Cu thin films with various Nb contents were proposed and extended to be discussed.

  13. Structural plasticity in mesencephalic dopaminergic neurons produced by drugs of abuse: critical role of BDNF and dopamine.

    Directory of Open Access Journals (Sweden)

    Ginetta eCollo

    2014-11-01

    Full Text Available Mesencephalic dopaminergic neurons were suggested to be a critical physiopathology substrate for addiction disorders. Among neuroadaptive processes to addictive drugs, structural plasticity has attracted attention. While structural plasticity occurs at both pre- and post-synaptic levels in the mesolimbic dopaminergic system, the present review focuses only on dopaminergic neurons. Exposures to addictive drugs determine two opposite structural responses, hypothrophic plasticity produced by opioids and cannabinoids (in particular during the early withdrawal phase and hypertrophic plasticity, mostly driven by psychostimulants and nicotine. In vitro and in vivo studies indentified BDNF and extracellular dopamine as two critical factors in determining structural plasticity, the two molecules sharing similar intracellular pathways involved in cell soma and dendrite growth, the MEK-ERK1/2 and the PI3K-Akt-mTOR, via preferential activation of TrkB and dopamine D3 receptors, respectively. At present information regarding specific structural changes associated to the various stages of the addiction cycle is incomplete. Encouraging neuroimaging data in humans indirectly support the preclinical evidence of hypotrophic and hypertrophic effects, suggesting a possible differential engagement of dopamine neurons in parallel and partially converging circuits controlling motivation, stress and emotions.

  14. Kek-6: A truncated-Trk-like receptor for Drosophila neurotrophin 2 regulates structural synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Suzana Ulian-Benitez

    2017-08-01

    Full Text Available Neurotrophism, structural plasticity, learning and long-term memory in mammals critically depend on neurotrophins binding Trk receptors to activate tyrosine kinase (TyrK signaling, but Drosophila lacks full-length Trks, raising the question of how these processes occur in the fly. Paradoxically, truncated Trk isoforms lacking the TyrK predominate in the adult human brain, but whether they have neuronal functions independently of full-length Trks is unknown. Drosophila has TyrK-less Trk-family receptors, encoded by the kekkon (kek genes, suggesting that evolutionarily conserved functions for this receptor class may exist. Here, we asked whether Keks function together with Drosophila neurotrophins (DNTs at the larval glutamatergic neuromuscular junction (NMJ. We tested the eleven LRR and Ig-containing (LIG proteins encoded in the Drosophila genome for expression in the central nervous system (CNS and potential interaction with DNTs. Kek-6 is expressed in the CNS, interacts genetically with DNTs and can bind DNT2 in signaling assays and co-immunoprecipitations. Ligand binding is promiscuous, as Kek-6 can also bind DNT1, and Kek-2 and Kek-5 can also bind DNT2. In vivo, Kek-6 is found presynaptically in motoneurons, and DNT2 is produced by the muscle to function as a retrograde factor at the NMJ. Kek-6 and DNT2 regulate NMJ growth and synaptic structure. Evidence indicates that Kek-6 does not antagonise the alternative DNT2 receptor Toll-6. Instead, Kek-6 and Toll-6 interact physically, and together regulate structural synaptic plasticity and homeostasis. Using pull-down assays, we identified and validated CaMKII and VAP33A as intracellular partners of Kek-6, and show that they regulate NMJ growth and active zone formation downstream of DNT2 and Kek-6. The synaptic functions of Kek-6 could be evolutionarily conserved. This raises the intriguing possibility that a novel mechanism of structural synaptic plasticity involving truncated Trk

  15. Closed-form critical earthquake response of elastic-plastic structures on compliant ground under near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2016-01-01

    Full Text Available The double impulse is introduced as a substitute of the fling-step near-fault ground motion. A closed-form solution of the elastic-plastic response of a structure on compliant (flexible ground by the ‘critical double impulse’ is derived for the first time based on the solution for the corresponding structure with fixed base. As in the case of fixed-base model, only the free-vibration appears under such double impulse and the energy approach plays an important role in the derivation of the closed-form solution of a complicated elastic-plastic response on compliant ground. It is remarkable that no iteration is needed in the derivation of the critical elastic-plastic response. It is shown via the closed-form expression that, in the case of a smaller input level of double impulse to the structural strength, as the ground stiffness becomes larger, the maximum plastic deformation becomes larger. On the other hand, in the case of a larger input level of double impulse to the structural strength, as the ground stiffness becomes smaller, the maximum plastic deformation becomes larger. The criticality and validity of the proposed theory are investigated through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.

  16. Cocaine activates Rac1 to control structural and behavioral plasticity in caudate putamen.

    Science.gov (United States)

    Li, Juan; Zhang, Lei; Chen, Zhenzhong; Xie, Minjuan; Huang, Lu; Xue, Jinhua; Liu, Yutong; Liu, Nuyun; Guo, Fukun; Zheng, Yi; Kong, Jiming; Zhang, Lin; Zhang, Lu

    2015-03-01

    Repeated exposure to cocaine was previously found to cause sensitized behavioral responses and structural remodeling on medium spiny neurons of the nucleus accumbens (NAc) and caudate putamen (CPu). Rac1 has emerged as a key integrator of environmental cues that regulates dendritic cytoskeletons. In this study, we investigated the role of Rac1 in cocaine-induced dendritic and behavioral plasticity in the CPu. We found that Rac1 activation was reduced in the NAc but increased in the CPu following repeated cocaine treatment. Inhibition of Rac1 activity by a Rac1-specific inhibitor NSC23766, overexpression of a dominant negative mutant of Rac1 (T17N-Rac1) or local knockout of Rac1 attenuated the cocaine-induced increase in dendrites and spine density in the CPu, whereas overexpression of a constitutively active Rac1 exert the opposite effect. Moreover, NSC23766 reversed the increased number of asymmetric spine synapses in the CPu following chronic cocaine exposure. Downregulation of Rac1 activity likewise attenuates behavioral reward responses to cocaine exposure, with activation of Rac1 producing the opposite effect. Thus, Rac1 signaling is differentially regulated in the NAc and CPu after repeated cocaine treatment, and induction of Rac1 activation in the CPu is important for cocaine exposure-induced dendritic remodeling and behavioral plasticity.

  17. Synaptic plasticity in a cerebellum-like structure depends on temporal order

    Science.gov (United States)

    Bell, Curtis C.; Han, Victor Z.; Sugawara, Yoshiko; Grant, Kirsty

    1997-05-01

    Cerebellum-like structures in fish appear to act as adaptive sensory processors, in which learned predictions about sensory input are generated and subtracted from actual sensory input, allowing unpredicted inputs to stand out1-3. Pairing sensory input with centrally originating predictive signals, such as corollary discharge signals linked to motor commands, results in neural responses to the predictive signals alone that are Negative images' of the previously paired sensory responses. Adding these 'negative images' to actual sensory inputs minimizes the neural response to predictable sensory features. At the cellular level, sensory input is relayed to the basal region of Purkinje-like cells, whereas predictive signals are relayed by parallel fibres to the apical dendrites of the same cells4. The generation of negative images could be explained by plasticity at parallel fibre synapses5-7. We show here that such plasticity exists in the electrosensory lobe of mormyrid electric fish and that it has the necessary properties for such a model: it is reversible, anti-hebbian (excitatory postsynaptic potentials (EPSPs) are depressed after pairing with a postsynaptic spike) and tightly dependent on the sequence of pre- and postsynaptic events, with depression occurring only if the postsynaptic spike follows EPSP onset within 60 ms.

  18. Solvation structure around the Li(+) ion in succinonitrile-lithium salt plastic crystalline electrolytes.

    Science.gov (United States)

    Shen, Yuneng; Deng, Gang-Hua; Ge, Chuanqi; Tian, Yuhuan; Wu, Guorong; Yang, Xueming; Zheng, Junrong; Yuan, Kaijun

    2016-06-01

    Herein, we discuss the study of solvation dynamics of lithium-succinonitrile (SN) plastic crystalline electrolytes by ultrafast vibrational spectroscopy. The infrared absorption spectra indicated that the CN stretch of the Li(+) bound and unbound succinonitrile molecules in a same solution have distinct vibrational frequencies (2276 cm(-1)vs. 2253 cm(-1)). The frequency difference allowed us to measure the rotation decay times of solvent molecules bound and unbound to Li(+) ion. The Li(+) coordination number of the Li(+)-SN complex was found to be 2 in the plastic crystal phase (22 °C) and 2.5-3 in the liquid phase (80 °C), which is independent of the concentration (from 0.05 mol kg(-1) to 2 mol kg(-1)). The solvation structures along with DFT calculations of the Li(+)-SN complex have been discussed. In addition, the dissociation percentage of lithium salt was also determined. In 0.5 mol kg(-1) LiBF4-SN solutions at 80 °C, 60% ± 10% of the salt dissociates into Li(+), which is bound by 2 or 3 solvent molecules. In the 0.5 mol kg(-1) LiClO4-SN solutions at 80 °C, the salt dissociation ratio can be up to 90% ± 10%.

  19. Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity.

    Science.gov (United States)

    Suri, D; Vaidya, V A

    2013-06-01

    Glucocorticoids serve as key stress response hormones that facilitate stress coping. However, sustained glucocorticoid exposure is associated with adverse consequences on the brain, in particular within the hippocampus. Chronic glucocorticoid exposure evokes neuronal cell damage and dendritic atrophy, reduces hippocampal neurogenesis and impairs synaptic plasticity. Glucocorticoids also alter expression and signaling of the neurotrophin, brain-derived neurotrophic factor (BDNF). Since BDNF is known to promote neuroplasticity, enhance cell survival, increase hippocampal neurogenesis and cellular excitability, it has been hypothesized that specific adverse effects of glucocorticoids may be mediated by attenuating BDNF expression and signaling. The purpose of this review is to summarize the current state of literature examining the influence of glucocorticoids on BDNF, and to address whether specific effects of glucocorticoids arise through perturbation of BDNF signaling. We integrate evidence of glucocorticoid regulation of BDNF at multiple levels, spanning from the well-documented glucocorticoid-induced changes in BDNF mRNA to studies examining alterations in BDNF receptor-mediated signaling. Further, we delineate potential lines of future investigation to address hitherto unexplored aspects of the influence of glucocorticoids on BDNF. Finally, we discuss the current understanding of the contribution of BDNF to the modulation of structural and functional plasticity by glucocorticoids, in particular in the context of the hippocampus. Understanding the mechanistic crosstalk between glucocorticoids and BDNF holds promise for the identification of potential therapeutic targets for disorders associated with the dysfunction of stress hormone pathways.

  20. Aging and demographic plasticity in response to experimental age structures in honeybees (Apis mellifera L).

    Science.gov (United States)

    Rueppell, Olav; Linford, Robyn; Gardner, Preston; Coleman, Jennifer; Fine, Kari

    2008-08-01

    Honeybee colonies are highly integrated functional units characterized by a pronounced division of labor. Division of labor among workers is mainly age-based, with younger individuals focusing on in-hive tasks and older workers performing the more hazardous foraging activities. Thus, experimental disruption of the age composition of the worker hive population is expected to have profound consequences for colony function. Adaptive demography theory predicts that the natural hive age composition represents a colony-level adaptation and thus results in optimal hive performance. Alternatively, the hive age composition may be an epiphenomenon, resulting from individual life history optimization. We addressed these predictions by comparing individual worker longevity and brood production in hives that were composed of a single age cohort, two distinct age cohorts, and hives that had a continuous, natural age distribution. Four experimental replicates showed that colonies with a natural age composition did not consistently have a higher life expectancy and/or brood production than the single cohort or double cohort hives. Instead, a complex interplay of age structure, environmental conditions, colony size, brood production, and individual mortality emerged. A general trade-off between worker life expectancy and colony productivity was apparent, and the transition from in-hive tasks to foraging was the most significant predictor of worker lifespan irrespective of the colony age structure. We conclude that the natural age structure of honeybee hives is not a colony-level adaptation. Furthermore, our results show that honeybees exhibit pronounced demographic plasticity in addition to behavioral plasticity to react to demographic disturbances of their societies.

  1. Postsynaptic density 95 (PSD-95) serine 561 phosphorylation regulates a conformational switch and bidirectional dendritic spine structural plasticity.

    Science.gov (United States)

    Wu, Qian; Sun, Miao; Bernard, Laura P; Zhang, Huaye

    2017-09-29

    Postsynaptic density 95 (PSD-95) is a major synaptic scaffolding protein that plays a key role in bidirectional synaptic plasticity, which is a process important for learning and memory. It is known that PSD-95 shows increased dynamics upon induction of plasticity. However, the underlying structural and functional changes in PSD-95 that mediate its role in plasticity remain unclear. Here we show that phosphorylation of PSD-95 at Ser-561 in its guanylate kinase (GK) domain, which is mediated by the partitioning-defective 1 (Par1) kinases, regulates a conformational switch and is important for bidirectional plasticity. Using a fluorescence resonance energy transfer (FRET) biosensor, we show that a phosphomimetic mutation of Ser-561 promotes an intramolecular interaction between GK and the nearby Src homology 3 (SH3) domain, leading to a closed conformation, whereas a non-phosphorylatable S561A mutation or inhibition of Par1 kinase activity decreases SH3-GK interaction, causing PSD-95 to adopt an open conformation. In addition, S561A mutation facilitates the interaction between PSD-95 and its binding partners. Fluorescence recovery after photobleaching imaging reveals that the S561A mutant shows increased stability, whereas the phosphomimetic S561D mutation increases PSD-95 dynamics at the synapse. Moreover, molecular replacement of endogenous PSD-95 with the S561A mutant blocks dendritic spine structural plasticity during chemical long-term potentiation and long-term depression. Endogenous Ser-561 phosphorylation is induced by synaptic NMDA receptor activation, and the SH3-GK domains exhibit a Ser-561 phosphorylation-dependent switch to a closed conformation during synaptic plasticity. Our results provide novel mechanistic insight into the regulation of PSD-95 in dendritic spine structural plasticity through phosphorylation-mediated regulation of protein dynamics and conformation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Evolution of the health of concrete structures by electrically conductive GFRP (glass fiber reinforced plastic) composites

    Science.gov (United States)

    Shin, Soon-Gi

    2002-02-01

    The function and performance of self-diagnostic composites embedded in concrete blocks and piles were investigated by bending tests and electrical resistance measurement. Carbon powder (CP) and carbon fiber (CF) were introduced into glass fiber reinforced plastic (GFRP) composites to provide electrical conductivity. The CPGFRP composite displays generally good performance in various bending tests of concrete block and piles compared to the CFGFRP composite. The electrical resistance of the CPGFRP composite increases remarkably at small strains in response to microcrack formation at about 200 μm strain, and can be used to detect smaller deformations before crack formation. The CPGFRP composite shows continuous change in resistance up to a large strain level just before the final fracture for concrete structures reinforced by steel bars. It is concluded that self-diagnostic composites can be used to predict damage and fracture in concrete blocks and piles.

  3. A period of structural plasticity at the axon initial segment in developing visual cortex

    Directory of Open Access Journals (Sweden)

    Annika eGutzmann

    2014-03-01

    Full Text Available Cortical networks are shaped by sensory experience and are most susceptible to modifications during critical periods characterized by enhanced plasticity at the structural and functional level. A system particularly well-studied in this context is the mammalian visual system. Plasticity has been documented for the somatodendritic compartment of neurons in detail. A neuronal microdomain not yet studied in this context is the axon initial segment (AIS located at the proximal axon segment. It is a specific electrogenic axonal domain and the site of action potential generation. Recent studies showed that structure and function of the AIS can be dynamically regulated. Here we hypothesize that the AIS shows a dynamic regulation during maturation of the visual cortex. We therefore analyzed AIS length development from embryonic day (E 12.5 to adulthood in mice. A tri-phasic time course of AIS length remodeling during development was observed. AIS first appeared at E14.5 and increased in length throughout the postnatal period to a peak between postnatal day (P 10 to P15 (eyes open P13-14. Then, AIS length was reduced significantly around the beginning of the critical period for ocular dominance plasticity (CP, P21. Shortest AIS were observed at the peak of the CP (P28, followed by a moderate elongation towards the end of the CP (P35. To test if the dynamic maturation of the AIS is influenced by eye opening (onset of activity, animals were deprived of visual input before and during the CP. Deprivation for 1 week prior to eye opening did not affect AIS length development. However, deprivation from P0-P28 and P14-P28 resulted in AIS length distribution similar to the peak at P15. In other words, deprivation from birth prevents the transient shortening of the AIS and maintains an immature AIS length. These results are the first to suggest a dynamic maturation of the AIS in cortical neurons and point to novel mechanisms in the development of neuronal

  4. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Carol F., E-mail: carol-webb@omrf.org [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ratliff, Michelle L., E-mail: michelle-ratliff@omrf.org [Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Powell, Rebecca, E-mail: rebeccapowell@gmail.com [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Wirsig-Wiechmann, Celeste R., E-mail: celeste-wirsig@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Lakiza, Olga, E-mail: olga-lakiza@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Obara, Tomoko, E-mail: tomoko-obara@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  5. Structural plasticity in the language system related to increased second language proficiency.

    Science.gov (United States)

    Stein, Maria; Federspiel, Andrea; Koenig, Thomas; Wirth, Miranka; Strik, Werner; Wiest, Roland; Brandeis, Daniel; Dierks, Thomas

    2012-04-01

    While functional changes linked to second language learning have been subject to extensive investigation, the issue of learning-dependent structural plasticity in the fields of bilingualism and language comprehension has so far received less notice. In the present study we used voxel-based morphometry to monitor structural changes occurring within five months of second language learning. Native English-speaking exchange students learning German in Switzerland were examined once at the beginning of their stay and once about five months later, when their German language skills had significantly increased. We show that structural changes in the left inferior frontal gyrus are correlated with the increase in second language proficiency as measured by a paper-and-pencil language test. Contrary to the increase in proficiency and grey matter, the absolute values of grey matter density and second language proficiency did not correlate (neither on first nor on second measurement). This indicates that the individual amount of learning is reflected in brain structure changes, regardless of absolute proficiency.

  6. The changing health care marketplace: current industry trends, new provider organizational structures, and effects on plastic surgeons.

    Science.gov (United States)

    Krieger, L M

    1998-09-01

    Current market forces are driving the health care industry in new directions. The managed care industry is currently undergoing a market shakeout, as manifested by consolidation, increased competition, and lower profits. Medicare is fighting to remain solvent by lowering fees paid to providers, driving patients into managed care plans, and cracking down on billing irregularities. For providers, the combined effect of these trends is lower fees, increased risk-sharing, and increased overhead. Plastic surgeons face new demands in this environment. They must increase their efficiency and form new alliances with other providers. These alliances allow plastic surgeons to maintain a steady stream of patients, to manage risk, to negotiate more lucrative contracts with managed care organizations, and to increase efficiency. To achieve these alliances, plastic surgeons must alter the organizational structure of their practices. Several corporate practice models are becoming more prevalent; these include large group practices, physician practice management companies, and integrated delivery systems. Each structure has advantages for plastic surgeons, but each also requires plastic surgeons to trade varying degrees of financial and professional autonomy for market strength.

  7. Effect of initial plastic strain on mechanical training of non-modulated Ni–Mn–Ga martensite structure

    Energy Technology Data Exchange (ETDEWEB)

    Szczerba, M.J., E-mail: m.szczerba@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków (Poland); Chulist, R. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków (Poland); Kopacz, S.; Szczerba, M.S. [Department of Materials Science and Non-Ferrous Metals Engineering, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków (Poland)

    2014-08-12

    The influence of plastic pre-straining on the mechanical training process of Ni–Mn–Ga single crystals with a non-modulated martensite structure was examined using uniaxial quasi static compression tests and electron backscatter diffraction technique. Firstly, the optimal pre-straining temperature, for which a large plastic strain can be imposed to as-grown crystals with low flow stress and low rate of strain hardening, was established. Then, the maximum value of plastic pre-straining which allows performing successful room temperature mechanical training was found to be of about 20% of total sample thickness reduction. Below this value, training process leads to single variant state, which is able to accommodate true plastic strain of about 0.14 in each step of further training. Above 20% of deformation a multiple martensite variant state of characteristic triangular arrangements is generated. The latter structure cannot practically afford any plastic accommodation during further training; thus the training process fails to operate.

  8. The influences of soil and nearby structures on dispersion characteristics of wave propagating along buried plastic pipes

    Science.gov (United States)

    Liu, Shuyong; Jiang, J.; Parr, Nicola

    2016-09-01

    Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.

  9. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    Directory of Open Access Journals (Sweden)

    Karsten eMueller

    2015-07-01

    Full Text Available Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM and white matter (WM that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training three days per week over a period of three months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI, reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C, and alterations of serum brain-derived neurotrophic factor (BDNF concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing.

  10. Evidence for training-induced plasticity in multisensory brain structures: an MEG study.

    Directory of Open Access Journals (Sweden)

    Evangelos Paraskevopoulos

    Full Text Available Multisensory learning and resulting neural brain plasticity have recently become a topic of renewed interest in human cognitive neuroscience. Music notation reading is an ideal stimulus to study multisensory learning, as it allows studying the integration of visual, auditory and sensorimotor information processing. The present study aimed at answering whether multisensory learning alters uni-sensory structures, interconnections of uni-sensory structures or specific multisensory areas. In a short-term piano training procedure musically naive subjects were trained to play tone sequences from visually presented patterns in a music notation-like system [Auditory-Visual-Somatosensory group (AVS], while another group received audio-visual training only that involved viewing the patterns and attentively listening to the recordings of the AVS training sessions [Auditory-Visual group (AV]. Training-related changes in cortical networks were assessed by pre- and post-training magnetoencephalographic (MEG recordings of an auditory, a visual and an integrated audio-visual mismatch negativity (MMN. The two groups (AVS and AV were differently affected by the training. The results suggest that multisensory training alters the function of multisensory structures, and not the uni-sensory ones along with their interconnections, and thus provide an answer to an important question presented by cognitive models of multisensory training.

  11. Evidence for training-induced plasticity in multisensory brain structures: an MEG study.

    Science.gov (United States)

    Paraskevopoulos, Evangelos; Kuchenbuch, Anja; Herholz, Sibylle C; Pantev, Christo

    2012-01-01

    Multisensory learning and resulting neural brain plasticity have recently become a topic of renewed interest in human cognitive neuroscience. Music notation reading is an ideal stimulus to study multisensory learning, as it allows studying the integration of visual, auditory and sensorimotor information processing. The present study aimed at answering whether multisensory learning alters uni-sensory structures, interconnections of uni-sensory structures or specific multisensory areas. In a short-term piano training procedure musically naive subjects were trained to play tone sequences from visually presented patterns in a music notation-like system [Auditory-Visual-Somatosensory group (AVS)], while another group received audio-visual training only that involved viewing the patterns and attentively listening to the recordings of the AVS training sessions [Auditory-Visual group (AV)]. Training-related changes in cortical networks were assessed by pre- and post-training magnetoencephalographic (MEG) recordings of an auditory, a visual and an integrated audio-visual mismatch negativity (MMN). The two groups (AVS and AV) were differently affected by the training. The results suggest that multisensory training alters the function of multisensory structures, and not the uni-sensory ones along with their interconnections, and thus provide an answer to an important question presented by cognitive models of multisensory training.

  12. Simple structures test for elastic-plastic strain acceptance criterion validation

    Energy Technology Data Exchange (ETDEWEB)

    Trimble, T.F. [Electric Boat Corp., Groton, CT (United States); Krech, G.R. [Wyle Labs., Inc., Huntsville, AL (United States)

    1997-11-01

    A Simple Structures Test Program was performed where several cantilevered beam and fixed-end beam test specimens (fabricated from HY-80 steel) were subjected to a series of analytically predetermined rapidly applied transient dynamic input loads. The primary objective of the test program was to obtain dynamic nonlinear response for simple structures subjected to these load inputs. Data derived from these tests was subsequently used to correlate to analysis predictions to assess the capability to analytically predict elastic-plastic nonlinear material behavior in structures using typical time-dependent (transient) design methods and the ABAQUS finite element analysis code. The installation of a significant amount of instrumentation on these specimens and post-test measurements enabled the monitoring and recording of strain levels, displacements, accelerations, and permanent set. An assessment of modeling parameters such as the element type and mesh refinement was made using these test results. In addition, currently available material models and the incremental time step procedure used in the transient analyses were evaluated. Comparison of test data to analysis results shows that displacements, accelerations, and peak strain can be predicted with a reasonable level of accuracy using detailed solid models of the tested specimens. Permanent set is overpredicted by a factor of approximately two. However, the accuracy of the prediction of permanent set is being enhanced by updating material modeling in the ABAQUS code to account for effects of strain reversal in oscillatory behavior of dynamically loaded specimens.

  13. Demonstrating the Effects of Processing on the Structure and Physical Properties of Plastic Using Disposable PETE Cups

    Science.gov (United States)

    Erk, Kendra A.; Rhein, Morgan; Krafcik, Matthew J.; Ydstie, Sophie

    2015-01-01

    An educational activity is described in which the structure and physical properties of disposable plastic cups were directly related to the method of processing. The mechanical properties of specimens cut from the walls of poly(ethylene terephthalate) (PETE) cups, oriented parallel and perpendicular to the thermoforming direction, were measured in…

  14. ELASTO-PLASTIC CONSTITUTIVE MODEL OF SOIL-STRUCTURE INTERFACE IN CONSIDERATION OF STRAIN SOFTENING AND DILATION

    Institute of Scientific and Technical Information of China (English)

    Aizhao Zhou; Tinghao Lu

    2009-01-01

    The behavior of soil-structure interface plays a major role in the definition of soil-structure interaction. In this paper a bi-potential surface elasto-plastic model for soil-structure interface is proposed in order to describe the interface deformation behavior, including strain softening and normal dilatancy. The model is formulated in the framework of generalized potential theory, in which the soil-structure interface problem is regard as a two-dimensional mathematical problem in stress field, and plastic state equations are used to replace the traditional field surface. The relation curves of shear stress and tangential strain are fitted by a piecewise function composed by hyperbolic functions and hyperbolic secant functions, while the relation curves of normal strain and tangential strain are fitted by another piecewise function composed by quadratic functions and hyperbolic secant functions. The approach proposed has the advantage of deriving an elasto-plastic constitutive matrix without postulating the plastic potential functions and yield surface. Moreover, the mathematical principle is clear, and the entire model parameters can be identified by experimental tests. Finally, the predictions of the model have been compared with experimental results obtained from simple shear tests under normal stresses, and results show the model is reasonable and practical.

  15. Learning Discloses Abnormal Structural and Functional Plasticity at Hippocampal Synapses in the APP23 Mouse Model of Alzheimer's Disease

    Science.gov (United States)

    Middei, Silvia; Roberto, Anna; Berretta, Nicola; Panico, Maria Beatrice; Lista, Simone; Bernardi, Giorgio; Mercuri, Nicola B.; Ammassari-Teule, Martine; Nistico, Robert

    2010-01-01

    B6-Tg/Thy1APP23Sdz (APP23) mutant mice exhibit neurohistological hallmarks of Alzheimer's disease but show intact basal hippocampal neurotransmission and synaptic plasticity. Here, we examine whether spatial learning differently modifies the structural and electrophysiological properties of hippocampal synapses in APP23 and wild-type mice. While…

  16. Polymerization and Structure of Bio-Based Plastics: A Computer Simulation

    Science.gov (United States)

    Khot, Shrikant N.; Wool, Richard P.

    2001-03-01

    We recently examined several hundred chemical pathways to convert chemically functionalized plant oil triglycerides, monoglycerides and reactive diluents into high performance plastics with a broad range of properties (US Patent No. 6,121,398). The resulting polymers had linear, branched, light- and highly-crosslinked chain architectures and could be used as pressure sensitive adhesives, elastomers and high performance rigid thermoset composite resins. To optimize the molecular design and minimize the number of chemical trials in this system with excess degrees of freedom, we developed a computer simulation of the free radical polymerization process. The triglyceride structure, degree of chemical substitution, mole fractions, fatty acid distribution function, and reaction kinetic parameters were used as initial inputs on a 3d lattice simulation. The evolution of the network fractal structure was computed and used to measure crosslink density, dangling ends, degree of reaction and defects in the lattice. The molecular connectivity was used to determine strength via a vector percolation model of fracture. The simulation permitted the optimal design of new bio-based materials with respect to monomer selection, cure reaction conditions and desired properties. Supported by the National Science Foundation

  17. Mmp1 processing of the PDF neuropeptide regulates circadian structural plasticity of pacemaker neurons.

    Science.gov (United States)

    Depetris-Chauvin, Ana; Fernández-Gamba, Agata; Gorostiza, E Axel; Herrero, Anastasia; Castaño, Eduardo M; Ceriani, M Fernanda

    2014-10-01

    In the Drosophila brain, the neuropeptide PIGMENT DISPERSING FACTOR (PDF) is expressed in the small and large Lateral ventral neurons (LNvs) and regulates circadian locomotor behavior. Interestingly, PDF immunoreactivity at the dorsal terminals changes across the day as synaptic contacts do as a result of a remarkable remodeling of sLNv projections. Despite the relevance of this phenomenon to circuit plasticity and behavior, the underlying mechanisms remain poorly understood. In this work we provide evidence that PDF along with matrix metalloproteinases (Mmp1 and 2) are key in the control of circadian structural remodeling. Adult-specific downregulation of PDF levels per se hampers circadian axonal remodeling, as it does altering Mmp1 or Mmp2 levels within PDF neurons post-developmentally. However, only Mmp1 affects PDF immunoreactivity at the dorsal terminals and exerts a clear effect on overt behavior. In vitro analysis demonstrated that PDF is hydrolyzed by Mmp1, thereby suggesting that Mmp1 could directly terminate its biological activity. These data demonstrate that Mmp1 modulates PDF processing, which leads to daily structural remodeling and circadian behavior.

  18. Experimental febrile seizures induce age-dependent structural plasticity and improve memory in mice.

    Science.gov (United States)

    Tao, K; Ichikawa, J; Matsuki, N; Ikegaya, Y; Koyama, R

    2016-03-24

    Population-based studies have demonstrated that children with a history of febrile seizure (FS) perform better than age-matched controls at hippocampus-dependent memory tasks. Here, we report that FSs induce two distinct structural reorganizations in the hippocampus and bidirectionally modify future learning abilities in an age-dependent manner. Compared with age-matched controls, adult mice that had experienced experimental FSs induced by hyperthermia (HT) on postnatal day 14 (P14-HT) performed better in a cognitive task that requires dentate granule cells (DGCs). The enhanced memory performance correlated with an FS-induced persistent increase in the density of large mossy fiber terminals (LMTs) of the DGCs. The memory enhancement was not observed in mice that had experienced HT-induced seizures at P11 which exhibited abnormally located DGCs in addition to the increased LMT density. The ectopic DGCs of the P11-HT mice were abolished by the diuretic bumetanide, and this pharmacological treatment unveiled the masked memory enhancement. Thus, this work provides a novel basis for age-dependent structural plasticity in which FSs influence future brain function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Structural Plasticity of Malaria Dihydroorotate Dehydrogenase Allows Selective Binding of Diverse Chemical Scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiaoyi; Gujjar, Ramesh; El Mazouni, Farah; Kaminsky, Werner; Malmquist, Nicholas A.; Goldsmith, Elizabeth J.; Rathod, Pradipsinh K.; Phillips, Margaret A.; (UWASH); (UTSMC)

    2010-01-20

    Malaria remains a major global health burden and current drug therapies are compromised by resistance. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) was validated as a new drug target through the identification of potent and selective triazolopyrimidine-based DHODH inhibitors with anti-malarial activity in vivo. Here we report x-ray structure determination of PfDHODH bound to three inhibitors from this series, representing the first of the enzyme bound to malaria specific inhibitors. We demonstrate that conformational flexibility results in an unexpected binding mode identifying a new hydrophobic pocket on the enzyme. Importantly this plasticity allows PfDHODH to bind inhibitors from different chemical classes and to accommodate inhibitor modifications during lead optimization, increasing the value of PfDHODH as a drug target. A second discovery, based on small molecule crystallography, is that the triazolopyrimidines populate a resonance form that promotes charge separation. These intrinsic dipoles allow formation of energetically favorable H-bond interactions with the enzyme. The importance of delocalization to binding affinity was supported by site-directed mutagenesis and the demonstration that triazolopyrimidine analogs that lack this intrinsic dipole are inactive. Finally, the PfDHODH-triazolopyrimidine bound structures provide considerable new insight into species-selective inhibitor binding in this enzyme family. Together, these studies will directly impact efforts to exploit PfDHODH for the development of anti-malarial chemotherapy.

  20. Mmp1 processing of the PDF neuropeptide regulates circadian structural plasticity of pacemaker neurons.

    Directory of Open Access Journals (Sweden)

    Ana Depetris-Chauvin

    2014-10-01

    Full Text Available In the Drosophila brain, the neuropeptide PIGMENT DISPERSING FACTOR (PDF is expressed in the small and large Lateral ventral neurons (LNvs and regulates circadian locomotor behavior. Interestingly, PDF immunoreactivity at the dorsal terminals changes across the day as synaptic contacts do as a result of a remarkable remodeling of sLNv projections. Despite the relevance of this phenomenon to circuit plasticity and behavior, the underlying mechanisms remain poorly understood. In this work we provide evidence that PDF along with matrix metalloproteinases (Mmp1 and 2 are key in the control of circadian structural remodeling. Adult-specific downregulation of PDF levels per se hampers circadian axonal remodeling, as it does altering Mmp1 or Mmp2 levels within PDF neurons post-developmentally. However, only Mmp1 affects PDF immunoreactivity at the dorsal terminals and exerts a clear effect on overt behavior. In vitro analysis demonstrated that PDF is hydrolyzed by Mmp1, thereby suggesting that Mmp1 could directly terminate its biological activity. These data demonstrate that Mmp1 modulates PDF processing, which leads to daily structural remodeling and circadian behavior.

  1. Structural plasticity of climbing fibers and the growth-associated protein GAP-43

    Directory of Open Access Journals (Sweden)

    Giorgio eGrasselli

    2013-02-01

    Full Text Available Structural plasticity occurs physiologically or after brain damage to adapt or re-establish proper synaptic connections. This capacity depends on several intrinsic and extrinsic determinants that differ between neuron types. We reviewed the significant endogenous regenerative potential of the neurons of the inferior olive in the adult rodent brain and the structural remodeling of the terminal arbor of their axons the climbing fiber under various experimental conditions, focusing on the growth-associated protein GAP-43. Climbing fibers undergo remarkable collateral sprouting in the presence of denervated Purkinje cells that are available for new innervation. In addition, severed olivo-cerebellar axons regenerate across the white matter through a graft of embryonic Schwann cells. In contrast, climbing fibers undergo a regressive modification when their target is deleted. In vivo knockdown of GAP-43 in olivary neurons, leads to the atrophy of their climbing fibers and a reduction in the ability to sprout toward surrounding denervated Purkinje cells. These findings demonstrate that GAP-43 is essential for promoting denervation-induced sprouting and maintaining normal climbing fiber architecture.

  2. A new numerical method for determining collapse load-carrying capacity of structure made of elasto-plastic material

    Institute of Scientific and Technical Information of China (English)

    钟志鹏; 任大龙; 万水

    2014-01-01

    Determination of collapse load-carrying capacity of elasto-plastic material is very important in designing structure. The problem is commonly solved by elasto-plastic finite element method (FEM). In order to deal with material nonlinear problem involving strain softening problem effectively, a new numerical method-damped Newton method was proposed. The iterative schemes are discussed in detail for pure equilibrium models. In the equilibrium model, the plasticity criterion and the compatibility of the strains are verified, and the strain increment and plastic factor are treated as independent unknowns. To avoid the stiffness matrix being singularity or condition of matrix being ill, a damping factor α was introduced to adjust the value of plastic consistent parameter automatically during the iterations. According to the algorithm, the nonlinear finite element program was complied and its numerical example was calculated. The numerical results indicate that this method converges very fast for both small load steps and large load steps. Compared with those results obtained by analysis and experiment, the predicted ultimate bearing capacity from the proposed method is identical.

  3. Modeling of plastic zones before the crack's peak of given structure constructional materials

    Directory of Open Access Journals (Sweden)

    Т.І. Матченко

    2005-01-01

    Full Text Available  The basic kinds of deformation in plastic zones near top of a crack are determined.Zones are determined, in which the sliding in crystals ,between grains sliding and plastic deformation of a continuous body is typical.

  4. A plastic-composite-plastic structure high performance flexible energy harvester based on PIN-PMN-PT single crystal/epoxy 2-2 composite

    Science.gov (United States)

    Zeng, Zhou; Gai, Linlin; Wang, Xian; Lin, Di; Wang, Sheng; Luo, Haosu; Wang, Dong

    2017-03-01

    We present a high performance flexible piezoelectric energy harvester constituted by a Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal/epoxy 2-2 composite flake, a polyethylene terephthalate (PET) substrate, and a PET cover, which is capable of harvesting energy from biomechanical movements. Electrical properties of the device under different epoxy volume fractions, load resistances, and strains are studied systematically. Both theoretical and experimental results show that the plastic-composite-plastic structure contributes to the flexibility of the device, and a high performance bulk PIN-PMN-PT single crystal (a thickness of 50 μm) results in its high electrical output. At a low excitation frequency of 4.2 Hz, the optimal flexible energy harvester (with ve = 21%) can generate a peak voltage of 12.9 V and a maximum power density of 0.28 mW/cm3 under a bending radius of 10.5 mm, and maintain its performance after 40 000 bending-unbending cycles. High flexibility and excellent electrical output at low operational frequency demonstrate the promise of the device in biomechanical motion energy harvesting for wireless and portable low-power electronics.

  5. PLCγ-activated signalling is essential for TrkB mediated sensory neuron structural plasticity

    Directory of Open Access Journals (Sweden)

    Rocha-Sanchez Sonia M

    2010-10-01

    Full Text Available Abstract Background The vestibular system provides the primary input of our sense of balance and spatial orientation. Dysfunction of the vestibular system can severely affect a person's quality of life. Therefore, understanding the molecular basis of vestibular neuron survival, maintenance, and innervation of the target sensory epithelia is fundamental. Results Here we report that a point mutation at the phospholipase Cγ (PLCγ docking site in the mouse neurotrophin tyrosine kinase receptor TrkB (Ntrk2 specifically impairs fiber guidance inside the vestibular sensory epithelia, but has limited effects on the survival of vestibular sensory neurons and growth of afferent processes toward the sensory epithelia. We also show that expression of the TRPC3 cation calcium channel, whose activity is known to be required for nerve-growth cone guidance induced by brain-derived neurotrophic factor (BDNF, is altered in these animals. In addition, we find that absence of the PLCγ mediated TrkB signalling interferes with the transformation of bouton type afferent terminals of vestibular dendrites into calyces (the largest synaptic contact of dendrites known in the mammalian nervous system on type I vestibular hair cells; the latter are normally distributed in these mutants as revealed by an unaltered expression pattern of the potassium channel KCNQ4 in these cells. Conclusions These results demonstrate a crucial involvement of the TrkB/PLCγ-mediated intracellular signalling in structural aspects of sensory neuron plasticity.

  6. Structural plasticity of methyllysine recognition by the tandem Tudor domain of 53BP1

    Science.gov (United States)

    Tong, Qiong; Cui, Gaofeng; Botuyan, Maria Victoria; Rothbart, Scott B.; Hayashi, Ryo; Musselman, Catherine A.; Singh, Namit; Appella, Ettore; Strahl, Brian D.; Mer, Georges; Kutateladze, Tatiana G.

    2014-01-01

    SUMMARY p53 is dynamically regulated through various posttranslational modifications (PTMs), which differentially modulate its function and stability. The dimethylated marks p53K370me2 and p53K382me2 are associated with p53 activation or stabilization and both are recognized by the tandem Tudor domain (TTD) of 53BP1, a p53 co-factor. Here we detail the molecular mechanisms for the recognition of p53K370me2 and p53K382me2 by 53BP1. The solution structures of TTD in complex with the p53K370me2 and p53K382me2 peptides show a remarkable plasticity of 53BP1 in accommodating these diverse dimethyllysine-containing sequences. We demonstrate that dimeric TTDs are capable of interacting with the two PTMs on a single p53K370me2K382me2 peptide, greatly strengthening the 53BP1-p53 interaction. Analysis of binding affinities of TTD toward methylated p53 and histones reveals strong preference of 53BP1 for p53K382me2, H4K20me2, and H3K36me2 and suggests a possible role of multivalent contacts of 53BP1 in p53 targeting to and accumulation at the sites of DNA damage. PMID:25579814

  7. Experience-dependent plasticity in white matter microstructure: Reasoning training alters structural connectivity

    Directory of Open Access Journals (Sweden)

    Allyson P Mackey

    2012-08-01

    Full Text Available Diffusion tensor imaging (DTI techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA, have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n=23 who were enrolled in a course to prepare for the Law School Admission Test (LSAT, a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n=22. DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD in white matter connecting frontal cortices, and in mean diffusivity (MD within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination.

  8. Dynamics of supercooled liquid and plastic crystalline ethanol: Dielectric relaxation and AC nanocalorimetry distinguish structural α- and Debye relaxation processes

    Science.gov (United States)

    Chua, Y. Z.; Young-Gonzales, A. R.; Richert, R.; Ediger, M. D.; Schick, C.

    2017-07-01

    Physical vapor deposition has been used to prepare glasses of ethanol. Upon heating, the glasses transformed into the supercooled liquid phase and then crystallized into the plastic crystal phase. The dynamic glass transition of the supercooled liquid is successfully measured by AC nanocalorimetry, and preliminary results for the plastic crystal are obtained. The frequency dependences of these dynamic glass transitions observed by AC nanocalorimetry are in disagreement with conclusions from previously published dielectric spectra of ethanol. Existing dielectric loss spectra have been carefully re-evaluated considering a Debye peak, which is a typical feature in the dielectric loss spectra of monohydroxy alcohols. The re-evaluated dielectric fits reveal a prominent dielectric Debye peak, a smaller and asymmetrically broadened peak, which is identified as the signature of the structural α-relaxation and a Johari-Goldstein secondary relaxation process. This new assignment of the dielectric processes is supported by the observation that the AC nanocalorimetry dynamic glass transition temperature, Tα, coincides with the dielectric structural α-relaxation process rather than the Debye process. The combined results from dielectric spectroscopy and AC nanocalorimetry on the plastic crystal of ethanol suggest the occurrence of a Debye process also in the plastic crystal phase.

  9. Plastic Surgery

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A A ... forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word "plastic" ...

  10. Biodegradability of Plastics

    OpenAIRE

    Yutaka Tokiwa; Calabia, Buenaventurada P.; Charles U. Ugwu; Seiichi Aiba

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical ...

  11. Closed-form dynamic stability criterion for elastic-plastic structures under near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2016-03-01

    Full Text Available A dynamic stability criterion for elastic-plastic structures under near-fault ground motions is derived in closed-form. A negative post-yield stiffness is treated in order to consider the P-delta effect. The double impulse is used as a substitute of the fling-step near-fault ground motion. Since only the free-vibration appears under such double impulse, the energy approach plays a critical role in the derivation of the closed-form solution of a complicated elastic-plastic response of structures with the P-delta effect. It is remarkable that no iteration is needed in the derivation of the closed-form dynamic stability criterion on the critical elastic-plastic response. It is shown via the closed-form expression that several patterns of unstable behaviors exist depending on the ratio of the input level of the double impulse to the structural strength and on the ratio of the negative post-yield stiffness to the initial elastic stiffness. The validity of the proposed dynamic stability criterion is investigated by the numerical response analysis for structures under double impulses with stable or unstable parameters. Furthermore the reliability of the proposed theory is tested through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.

  12. Structural modifications induced by compressive plastic deformation in single-step and sequentially irradiated UHMWPE for hip joint components.

    Science.gov (United States)

    Puppulin, Leonardo; Sugano, Nobuhiko; Zhu, Wenliang; Pezzotti, Giuseppe

    2014-03-01

    Structural modifications were studied at the molecular scale in two highly crosslinked UHMWPE materials for hip-joint acetabular components, as induced upon application of (uniaxial) compressive strain to the as-manufactured microstructures. The two materials, quite different in their starting resins and belonging to different manufacturing generations, were a single-step irradiated and a sequentially irradiated polyethylene. The latter material represents the most recently launched gamma-ray-irradiated polyethylene material in the global hip implant market. Confocal/polarized Raman spectroscopy was systematically applied to characterize the initial microstructures and the microstructural response of the materials to plastic deformation. Crystallinity fractions and preferential orientation of molecular chains have been followed up during in vitro deformation tests on unused cups and correlated to plastic strain magnitude and to the recovery capacity of the material. Moreover, analyses of the in vivo deformation behavior of two short-term retrieved hip cups are also presented. Trends of preferential orientation of molecular chains as a function of residual strain were similar for both materials, but distinctly different in their extents. The sequentially irradiated material was more resistant to plastic deformation and, for the same magnitude of residual plastic strain, possessed a higher capacity of recovery as compared to the single-step irradiated one.

  13. EphA4 signaling in juveniles establishes topographic specificity of structural plasticity in the hippocampus.

    Science.gov (United States)

    Galimberti, Ivan; Bednarek, Ewa; Donato, Flavio; Caroni, Pico

    2010-03-11

    The formation and loss of synapses is involved in learning and memory. Distinct subpopulations of permanent and plastic synapses coexist in the adult brain, but the principles and mechanisms underlying the establishment of these distinctions remain unclear. Here we show that in the hippocampus, terminal arborizations (TAs) with high plasticity properties are specified at juvenile stages, and account for most synapse turnover of adult mossy fibers. Out of 9-12 giant terminals along CA3, distinct subpopulations of granule neurons revealed by mouse reporter lines exhibit 0, 1, or >2 TAs. TA specification involves a topographic rule based on cell body position and EphA4 signaling. Upon disruption of EphA4 signaling or PSA-NCAM in juvenile circuits, single-TA mossy fibers establish >2 TAs, suggesting that intra-axonal competition influences plasticity site selection. Therefore, plastic synapse specification in juveniles defines sites of synaptic remodeling in the adult, and hippocampal circuit plasticity follows unexpected topographic principles.

  14. Elastic-plastic deformation of fiber composites with a tetragonal structure

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, E.IU.; Svistkova, L.A. (Permskii Politekhnicheskii Institut, Perm (USSR))

    1991-02-01

    Results of numerical solutions are presented for elastic-plastic problems concerning arbitrary loading of unidirectional composites in the transverse plane. The nucleation and evolution of microplastic zones in the matrix and the effect of this process on the macroscopic characteristics of the composite are discussed. Attention is also given to the effect of the fiber shape on the elastic-plastic deformation of the matrix and to deformation paths realized in simple microdeformation processes. The discussion is illustrated by results obtained for a composite consisting of a VT1-0 titanium alloy matrix reinforced by Ti-Mo fibers.

  15. Stress-induced structural plasticity of medial amygdala stellate neurons and rapid prevention by a candidate antidepressant

    Science.gov (United States)

    Lau, T.; Bigio, B.; Zelli, D.; McEwen, BS.; Nasca, C.

    2016-01-01

    The adult brain is capable of adapting to internal and external stressors by undergoing structural plasticity, and failure to be resilient and preserve normal structure and function is likely to contribute to depression and anxiety disorders. While the hippocampus has provided the gateway for understanding stress effects on the brain, less is known about the amygdala, a key brain area involved in the neural circuitry of fear and anxiety. Here, in mice more vulnerable to stressors, we demonstrate structural plasticity within the medial and basolateral regions of the amygdala in response to prolonged 21day chronic restraint stress (CRS). Three days before the end of CRS, treatment with the putative, rapidly acting antidepressant, acetyl-L-carnitine (LAC) in the drinking water opposed the direction of these changes. Behaviorally, the LAC treatment during the last part of CRS enhanced resilience, opposing the effects of CRS, as shown by an increased social interaction and reduced passive behavior in a forced swim test. Furthermore, CRS mice treated with LAC show resilience of the CRS-induced structural remodeling of medial amygdala (MeA) stellate neurons. Within the basolateral (BLA) amygdala, LAC did not reduce, but slightly enhanced, the CRS-increased length and number of intersections of pyramidal neurons. No structural changes were observed in MeA bipolar neurons, BLA stellate neurons, or in lateral amygdala (LA) stellate neurons. Our findings identify MeA stellate neurons as an important component in the responses to stress and LAC action and show that LAC can promote structural plasticity of the MeA. This may be useful as a model for increasing resilience to stressors in at risk populations. PMID:27240534

  16. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity.

    Science.gov (United States)

    Zhang, Y S; Zhao, Y H; Zhang, W; Lu, J W; Hu, J J; Huo, W T; Zhang, P X

    2017-01-06

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  17. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity

    Science.gov (United States)

    Zhang, Y. S.; Zhao, Y. H.; Zhang, W.; Lu, J. W.; Hu, J. J.; Huo, W. T.; Zhang, P. X.

    2017-01-01

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  18. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  19. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  20. Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice.

    Science.gov (United States)

    Ma, Jun; Zhang, Zhanchi; Kang, Lin; Geng, Dandan; Wang, Yanyong; Wang, Mingwei; Cui, Huixian

    2014-10-01

    Normal aging is characteristic with the gradual decline in cognitive function associated with the progressive reduction of structural and functional plasticity in the hippocampus. Repetitive transcranial magnetic stimulation (rTMS) has developed into a novel neurological and psychiatric tool that can be used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency rTMS (≤1Hz) affects synaptic plasticity in rats with vascular dementia (VaD), and it ameliorates the spatial cognitive ability in mice with Aβ1-42-mediated memory deficits, but there are little concerns about the effects of rTMS on normal aging related cognition and synaptic plasticity changes. Thus, the current study investigated the effects of rTMS on spatial memory behavior, neuron and synapse morphology in the hippocampus, and synaptic protein markers and brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) in normal aging mice, to illustrate the mechanisms of rTMS in regulating cognitive capacity. Relative to adult animals, aging caused hippocampal-dependent cognitive impairment, simultaneously inhibited the activation of the BDNF-TrkB signaling pathway, reduced the transcription and expression of synaptic protein markers: synaptophysin (SYN), growth associated protein 43 (GAP43) and post-synaptic density protein 95 (PSD95), as well as decreased synapse density and PSD (post-synaptic density) thickness. Interestingly, rTMS with low intensity (110% average resting motor threshold intensity, 1Hz, LIMS) triggered the activation of BDNF and TrkB, upregulated the level of synaptic protein markers, and increased synapse density and thickened PSD, and further reversed the spatial cognition dysfunction in aging mice. Conversely, high-intensity magnetic stimulation (150% average resting motor threshold intensity, 1Hz, HIMS) appeared to be detrimental, inducing thinning of PSDs, disordered synaptic structure, and a large number of

  1. New disordering mode for TFSI- anions: the nonequilibrium, plastic crystalline structure of Et4NTFSI.

    Science.gov (United States)

    Henderson, Wesley A; Herstedt, Marie; Young, Victor G; Passerini, Stefano; De Long, Hugh C; Trulove, Paul C

    2006-02-20

    A new TFSI- anion disordering mode has been discovered in a supercooled plastic crystalline phase of Et4NTFSI, which may, in part, account for the low melting points of TFSI- salts with organic cations, thereby forming ionic liquids, and the intriguing properties of LiTFSI for lithium battery applications.

  2. A plastic stress intensity factor approach to turbine disk structural integrity assessment

    Directory of Open Access Journals (Sweden)

    V. Shlyannikov

    2016-07-01

    Full Text Available This study based on a new fracture mechanics parameter is concerned with assessing the integrity of cracked steam turbine disk which operate under startup-shutdown cyclic loading conditions. Damage accumulation and growth in service have occurred on the inner surface of slot fillet of key. In order to determine elastic-plastic fracture mechanics parameters full-size stress-strain state analysis of turbine disk was performed for a quote-elliptical part-through cracks under considering loading conditions. As a result distributions of elastic and plastic stress intensity factors along crack front in slot fillet of key of turbine disk depending on surface crack form are defined. An engineering approach to the prediction of carrying capacity of cracked turbine disk which is sensitive to the loading history at maintenance is proposed. The predictions of the rate of crack growth and residual lifetime of steam turbine disk are compared for elastic and elastic-plastic solutions. It is shown that the previously proposed elastic crack growth models provide overestimate the lifetime with respect to the present one. An advantage to use the plastic stress intensity factor to characterize the fracture resistance as the self-dependent unified parameter for a variety of turbine disk configurations rather than the magnitude of the elastic stress intensity factors alone is discussed.

  3. Self-assembled structures in diblock copolymers with hydrogen-bonded amphiphilic plasticizing compounds

    NARCIS (Netherlands)

    Valkama, Sami; Ruotsalainen, Teemu; Nykanen, Antti; Laiho, Ari; Kosonen, Harri; ten Brinke, Gerrit; Ikkala, Olli; Ruokolainen, Janne; Nykänen, Antti

    2006-01-01

    Hydrogen-bonding amphiphilic low molecular weight plasticizing compounds to one block of diblock copolymers to form supramolecular comblike blocks leads to hierarchical self-assembly at the block copolymer (long) and amphiphile (short) length scales, in which lamellar-in-lamellar order and the

  4. Nogo-A controls structural plasticity at dendritic spines by rapidly modulating actin dynamics

    NARCIS (Netherlands)

    Kellner, Yves; Fricke, Steffen; Kramer, Stella; Iobbi, Cristina; Wierenga, Corette J; Schwab, Martin E; Korte, Martin; Zagrebelsky, Marta

    Nogo-A and its receptors have been shown to control synaptic plasticity, including negatively regulating long-term potentiation (LTP) in the cortex and hippocampus at a fast time scale and restraining experience-dependent turnover of dendritic spines over days. However, the molecular mechanisms and

  5. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    Energy Technology Data Exchange (ETDEWEB)

    Cozar, O. [Academy of Romanian Scientists, Splaiul Independentei 54, 050094, Bucharest, Romania and National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry - INMA Bucureşti - Cluj-Napoca Branch (Romania); Filip, C.; Tripon, C. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Cioica, N.; Coţa, C.; Nagy, E. M. [National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry - INMA Bucureşti - Cluj-Napoca Branch, RO-400458 Cluj-Napoca (Romania)

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  6. Constitutive Relations Analyses of Plastic Flow in Dual-Phase Steels to Elucidate Structure-Strength-Ductility Correlations

    Science.gov (United States)

    Saimoto, S.; Timokhina, I. B.; Pereloma, E. V.

    2017-07-01

    The structure-strength characterization is typically performed by correlating the structure with x-ray, electron, or atomic imaging devices to the bulk mechanical tensile parameters of yield stress and the plastic yielding response. The problem is that structure parameters embedded in the stress-strain data cannot be revealed without an analyzable constitutive relation. New functional slip-based constitutive formulation with precise digital fitting parameters can replicate the measured data with at least two loci. Thus, this study examines the possibility of identifying the mechanical response as a result of the various microstructure components. The key parameter, the mean slip distance, can be calibrated from the initial work-hardening slope at 0.2% strain from which all the fit parameters can be determined. In this process, a newly derived friction stress is defined to separate the yield phenomenon from the plastic strains beyond yield-point elongation. This methodology has been applied to dual-phase steel specimens that resulted in excellent predictive correlations with prior structure-strength characterization. Hence, the structure-strength-ductility changes resulting from processing conditions can be more precisely surmised from mechanical testing. Thus, a method to delineate the nanostructure evolution with deformation using mesoscopic mechanical parameters has been introduced.

  7. Structure and plasticity potential of neural networks in the cerebral cortex

    Science.gov (United States)

    Fares, Tarec Edmond

    In this thesis, we first described a theoretical framework for the analysis of spine remodeling plasticity. We provided a quantitative description of two models of spine remodeling in which the presence of a bouton is either required or not for the formation of a new synapse. We derived expressions for the density of potential synapses in the neuropil, the connectivity fraction, which is the ratio of actual to potential synapses, and the number of structurally different circuits attainable with spine remodeling. We calculated these parameters in mouse occipital cortex, rat CA1, monkey V1, and human temporal cortex. We found that on average a dendritic spine can choose among 4-7 potential targets in rodents and 10-20 potential targets in primates. The neuropil's potential for structural circuit remodeling is highest in rat CA1 (7.1-8.6 bits/mum3) and lowest in monkey V1 (1.3-1.5 bits/mum 3 We next studied the role neuron morphology plays in defining synaptic connectivity. As previously stated it is clear that only pairs of neurons with closely positioned axonal and dendritic branches can be synaptically coupled. For excitatory neurons in the cerebral cortex, ). We also evaluated the lower bound of neuron selectivity in the choice of synaptic partners. Post-synaptic excitatory neurons in rodents make synaptic contacts with more than 21-30% of pre-synaptic axons encountered with new spine growth. Primate neurons appear to be more selective, making synaptic connections with more than 7-15% of encountered axons. We next studied the role neuron morphology plays in defining synaptic connectivity. As previously stated it is clear that only pairs of neurons with closely positioned axonal and dendritic branches can be synaptically coupled. For excitatory neurons in the cerebral cortex, such axo-dendritic oppositions, or potential synapses, must be bridged by dendritic spines to form synaptic connections. To explore the rules by which synaptic connections are formed within

  8. High affinity antigen recognition of the dual specific variants of herceptin is entropy-driven in spite of structural plasticity.

    Directory of Open Access Journals (Sweden)

    Jenny Bostrom

    Full Text Available The antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2 antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called "structural plasticity". Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens. We showed that while bH1 and the affinity-improved bH1-44, in particular, maintained many properties of Herceptin including binding affinity, kinetics and the use of residues for antigen recognition, they differed in the binding thermodynamics. The interactions of bH1 and its variants with both antigens were characterized by large favorable entropy changes whereas the Herceptin/HER2 interaction involved a large favorable enthalpy change. By dissecting the total entropy change and the energy barrier for dual interaction, we determined that the significant structural plasticity of the bH1 antibodies demanded by the dual specificity did not translate into the expected increase of entropic penalty relative to Herceptin. Clearly, dual antigen recognition of the Herceptin variants involves divergent antibody conformations of nearly equivalent energetic states. Hence, increasing the structural plasticity of an antigen-binding site without increasing the entropic cost may play a role for antibodies to evolve multi-specificity. Our report represents the first comprehensive biophysical analysis of a high affinity dual specific antibody binding two unrelated protein antigens, furthering our understanding of the thermodynamics that drive the vast antigen recognition capacity of the antibody repertoire.

  9. Experimental and Numerical Analysis of Thermal and Hygrometric Characteristics of Building Structures Employing Recycled Plastic Aggregates and Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Francesco Colangelo

    2013-11-01

    Full Text Available The correct estimation of building energy consumptions is assuming an always increasing importance, and a detailed reproduction of building structures, with all the single components involved, is necessary to achieve this aim. In addition, the current ecological development tries to limit the use of natural raw materials as building components, in favor of alternative (waste materials, which ensure significant advantages from the economic, energetic and environmental point of views. In this work, dynamic heat and vapor transport in a typical three-dimensional (3D building structure, involving different types of environmental-friendly concrete mixtures, have been simulated by using finite elements. In particular, the authors propose to substitute part of the aggregates with plastic waste and to use a fly ash based geopolymeric binder for the production of low conductivity concrete, to be employed in eco-efficient buildings. Concrete produced with natural limestone aggregates has been considered as the reference benchmark. The whole characterization of the different types of concrete tested in the present work has been obtained through laboratory experiments. The structure taken into account in the simulations is a 3D thermal bridge, typical of building envelopes. The thermal and hygrometric transient behavior of this structure, employing plastic waste in different percentages and geopolymer concrete, has been analyzed by the authors.

  10. Elasto-plasticity of frame structure elements modeling and simulation of rods and beams

    CERN Document Server

    Öchsner, Andreas

    2014-01-01

    The finite element method is a powerful tool even for non-linear materials’ modeling. But commercial solutions are limited and many novel materials do not follow standard constitutive equations on a macroscopic scale. Thus, is it required that new constitutive equations are implemented into the finite element code. However, it is not sufficient to simply implement only the equations but also an appropriate integration algorithm for the constitutive equation must be provided. This book is restricted to one-dimensional plasticity in order to reduce and facilitate the mathematical formalism and theory and to concentrate on the basic ideas of elasto-plastic finite element procedures. A comprehensive set of completely solved problems is designed for the thorough understand of the presented theory. After working with this new book and reviewing the provided solved and supplementary problems, it should be much easier to study and understand the advanced theory and the respective text books.

  11. Requirement for Plk2 in orchestrated ras and rap signaling, homeostatic structural plasticity, and memory.

    Science.gov (United States)

    Lee, Kea Joo; Lee, Yeunkum; Rozeboom, Aaron; Lee, Ji-Yun; Udagawa, Noriko; Hoe, Hyang-Sook; Pak, Daniel T S

    2011-03-10

    Ras and Rap small GTPases are important for synaptic plasticity and memory. However, their roles in homeostatic plasticity are unknown. Here, we report that polo-like kinase 2 (Plk2), a homeostatic suppressor of overexcitation, governs the activity of Ras and Rap via coordination of their regulatory proteins. Plk2 directs elimination of Ras activator RasGRF1 and Rap inhibitor SPAR via phosphorylation-dependent ubiquitin-proteasome degradation. Conversely, Plk2 phosphorylation stimulates Ras inhibitor SynGAP and Rap activator PDZGEF1. These Ras/Rap regulators perform complementary functions to downregulate dendritic spines and AMPA receptors following elevated activity, and their collective regulation by Plk2 profoundly stimulates Rap and suppresses Ras. Furthermore, perturbation of Plk2 disrupts Ras and Rap signaling, prevents homeostatic shrinkage and loss of dendritic spines, and impairs proper memory formation. Our study demonstrates a critical role of Plk2 in the synchronized tuning of Ras and Rap and underscores the functional importance of this regulation in homeostatic synaptic plasticity. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study

    Directory of Open Access Journals (Sweden)

    Michael eVilliger

    2015-05-01

    Full Text Available Rehabilitative training has shown to improve significantly motor outcomes and functional walking capacity in patients with incomplete spinal cord injury (iSCI. However, whether performance improvements during rehabilitation relate to brain plasticity or whether it is based on functional adaptation of movement strategies remain uncertain. This study assessed training improvement-induced structural brain plasticity in chronic iSCI patients using longitudinal MRI.We used tensor-based morphometry (TBM to analyze longitudinal brain volume changes associated with intensive virtual reality (VR-augmented lower limb training in nine traumatic iSCI patients. The MRI data was acquired before and after a 4-week training period (16-20 training sessions. Before training, voxel-based morphometry (VBM and voxel-based cortical thickness (VBCT assessed baseline morphometric differences in nine iSCI patients compared to 14 healthy controls. The intense VR-augmented training of limb control improved significantly balance, walking speed, ambulation, and muscle strength in patients. Retention of clinical improvements was confirmed by the 3-4 months follow-up. In patients relative to controls, reductions in VBM of white matter volume within the brainstem and cerebellum and VBCT showed cortical thinning in the primary motor cortex. Over time, TBM revealed significant improvement-induced increases in the left middle temporal and occipital gyrus, left temporal pole and fusiform gyrus, both hippocampi, cerebellum, corpus callosum, and brainstem in iSCI patients. This study demonstrates structural plasticity at the cortical and brainstem level as a consequence of VR-augmented training in iSCI patients. These structural changes may serve as neuroimaging biomarkers of VR-augmented lower limb neurorehabilitation in addition to performance measures to detect improvements in rehabilitative training.

  13. Role of synaptic structural plasticity in impairments of spatial learning and memory induced by developmental lead exposure in Wistar rats.

    Directory of Open Access Journals (Sweden)

    Yongmei Xiao

    Full Text Available Lead (Pb is found to impair cognitive function. Synaptic structural plasticity is considered to be the physiological basis of synaptic functional plasticity and has been recently found to play important roles in learning and memory. To study the effect of Pb on spatial learning and memory at different developmental stages, and its relationship with alterations of synaptic structural plasticity, postnatal rats were randomly divided into three groups: Control; Pre-weaning Pb (Parents were exposed to 2 mM PbCl2 3 weeks before mating until weaning of pups; Post-weaning Pb (Weaned pups were exposed to 2 mM PbCl2 for 9 weeks. The spatial learning and memory of rats was measured by Morris water maze (MWM on PND 85-90. Rat pups in Pre-weaning Pb and Post-weaning Pb groups performed significantly worse than those in Control group (p<0.05. However, there was no significant difference in the performance of MWM between the two Pb-exposure groups. Before MWM (PND 84, the number of neurons and synapses significantly decreased in Pre-weaning Pb group, but not in Post-weaning Pb group. After MWM (PND 91, the number of synapses in Pre-weaning Pb group increased significantly, but it was still less than that of Control group (p<0.05; the number of synapses in Post-weaning Pb group was also less than that of Control group (p<0.05, although the number of synapses has no differences between Post-weaning Pb and Control groups before MWM. In both Pre-weaning Pb and Post-weaning Pb groups, synaptic structural parameters such as thickness of postsynaptic density (PSD, length of synaptic active zone and synaptic curvature increased significantly while width of synaptic cleft decreased significantly compared to Control group (p<0.05. Our data demonstrated that both early and late developmental Pb exposure impaired spatial learning and memory as well as synaptic structural plasticity in Wistar rats.

  14. Finite deformation analysis of continuum structures with time dependent anisotropic elastic plastic material behavior (LWBR/AWBA Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Hutula, D.N.

    1980-03-01

    A finite element procedure is presented for finite deformation analysis of continuum structures with time-dependent anisotropic elastic-plastic material behavior. An updated Lagrangian formulation is used to describe the kinematics of deformation. Anisotropic constitutive relations are referred, at each material point, to a set of three mutually orthogonal axes which rotate as a unit with an angular velocity equal to the spin at the point. The time-history of the solution is generated by using a linear incremental procedure with residual force correction, along with an automatic time step control algorithm which chooses time step sizes to control the accuracy and numerical stability of the solution.

  15. Structure-property relation in HPMC polymer films plasticized with Sorbitol

    Science.gov (United States)

    Prakash, Y.; Somashekarappa, H.; Mahadevaiah, Somashekar, R.

    2013-06-01

    A correlation study on physical and mechanical properties of Hydroxy propyl-methylcellulose (HPMC) polymer films plasticized with different weight ratio of Sorbitol, prepared using solution casting method, was carried out using wide angle X-ray technique and universal testing machine. It is found that the crystallanity decreases as the concentration of Sorbitol increases up to a certain concentration and there afterwards increases. Measured Physical Properties like tensile strength decreases and elongation (%) increases indicating increase in the flexibility of the films. These observations confirm the correlation between microstructal parameters and mechanical properties of films. These films are suitable for packaging food products.

  16. Overexpression of Mineralocorticoid Receptors Partially Prevents Chronic Stress-Induced Reductions in Hippocampal Memory and Structural Plasticity.

    Directory of Open Access Journals (Sweden)

    Sofia Kanatsou

    Full Text Available Exposure to chronic stress is a risk factor for cognitive decline and psychopathology in genetically predisposed individuals. Preliminary evidence in humans suggests that mineralocorticoid receptors (MRs may confer resilience to these stress-related changes. We specifically tested this idea using a well-controlled mouse model for chronic stress in combination with transgenic MR overexpression in the forebrain. Exposure to unpredictable stressors for 21 days in adulthood reduced learning and memory formation in a low arousing hippocampus-dependent contextual learning task, but enhanced stressful contextual fear learning. We found support for a moderating effect of MR background on chronic stress only for contextual memory formation under low arousing conditions. In an attempt to understand potentially contributing factors, we studied structural plasticity. Chronic stress altered dendritic morphology in the hippocampal CA3 area and reduced the total number of doublecortin-positive immature neurons in the infrapyramidal blade of the dentate gyrus. The latter reduction was absent in MR overexpressing mice. We therefore provide partial support for the idea that overexpression of MRs may confer resilience to the effects of chronic stress on hippocampus-dependent function and structural plasticity.

  17. Effect of Severe Plastic Deformation on Structure and Properties of Al-Sc-Ta and Al-Sc-Ti Alloys.

    Science.gov (United States)

    Berezina, Alla; Monastyrska, Tetiana; Davydenko, Olexandr; Molebny, Oleh; Polishchuk, Sergey

    2017-12-01

    The comparative analysis of the effect of monotonous and non-monotonous severe plastic deformations (SPD) on the structure and properties of aluminum alloys has been carried out. Conventional hydrostatic extrusion (HE) with a constant deformation direction and equal-channel angular hydroextrusion (ECAH) with an abrupt change in the deformation direction were chosen for the cases of monotonous and non-monotonous SPD, respectively. Model cast hypoeutectic Al-0.3%Sc alloys and hypereutectic Al-0.6%Sc alloys with Ta and Ti additives were chosen for studying. It was demonstrated that SPD of the alloys resulted in the segregation of the material into active and inactive zones which formed a banded structure. The active zones were shown to be bands of localized plastic deformation. The distance between zones was found to be independent of the accumulated strain degree and was in the range of 0.6-1 μm. Dynamic recrystallization in the active zones was observed using TEM. The dynamic recrystallization was accompanied by the formation of disclinations, deformation bands, low-angle, and high-angle boundaries, i.e., rotational deformation modes developed. The dynamic recrystallization was more intense during the non-monotonous deformation as compared with the monotonous one, which was confirmed by the reduction of texture degree in the materials after ECAH.

  18. Overexpression of Mineralocorticoid Receptors Partially Prevents Chronic Stress-Induced Reductions in Hippocampal Memory and Structural Plasticity.

    Science.gov (United States)

    Kanatsou, Sofia; Fearey, Brenna C; Kuil, Laura E; Lucassen, Paul J; Harris, Anjanette P; Seckl, Jonathan R; Krugers, Harm; Joels, Marian

    2015-01-01

    Exposure to chronic stress is a risk factor for cognitive decline and psychopathology in genetically predisposed individuals. Preliminary evidence in humans suggests that mineralocorticoid receptors (MRs) may confer resilience to these stress-related changes. We specifically tested this idea using a well-controlled mouse model for chronic stress in combination with transgenic MR overexpression in the forebrain. Exposure to unpredictable stressors for 21 days in adulthood reduced learning and memory formation in a low arousing hippocampus-dependent contextual learning task, but enhanced stressful contextual fear learning. We found support for a moderating effect of MR background on chronic stress only for contextual memory formation under low arousing conditions. In an attempt to understand potentially contributing factors, we studied structural plasticity. Chronic stress altered dendritic morphology in the hippocampal CA3 area and reduced the total number of doublecortin-positive immature neurons in the infrapyramidal blade of the dentate gyrus. The latter reduction was absent in MR overexpressing mice. We therefore provide partial support for the idea that overexpression of MRs may confer resilience to the effects of chronic stress on hippocampus-dependent function and structural plasticity.

  19. Dynamic rupture simulations on complex fault zone structures with off-fault plasticity using the ADER-DG method

    Science.gov (United States)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Igel, Heiner

    2015-04-01

    In dynamic rupture models, high stress concentrations at rupture fronts have to to be accommodated by off-fault inelastic processes such as plastic deformation. As presented in (Roten et al., 2014), incorporating plastic yielding can significantly reduce earlier predictions of ground motions in the Los Angeles Basin. Further, an inelastic response of materials surrounding a fault potentially has a strong impact on surface displacement and is therefore a key aspect in understanding the triggering of tsunamis through floor uplifting. We present an implementation of off-fault-plasticity and its verification for the software package SeisSol, an arbitrary high-order derivative discontinuous Galerkin (ADER-DG) method. The software recently reached multi-petaflop/s performance on some of the largest supercomputers worldwide and was a Gordon Bell prize finalist application in 2014 (Heinecke et al., 2014). For the nonelastic calculations we impose a Drucker-Prager yield criterion in shear stress with a viscous regularization following (Andrews, 2005). It permits the smooth relaxation of high stress concentrations induced in the dynamic rupture process. We verify the implementation by comparison to the SCEC/USGS Spontaneous Rupture Code Verification Benchmarks. The results of test problem TPV13 with a 60-degree dipping normal fault show that SeisSol is in good accordance with other codes. Additionally we aim to explore the numerical characteristics of the off-fault plasticity implementation by performing convergence tests for the 2D code. The ADER-DG method is especially suited for complex geometries by using unstructured tetrahedral meshes. Local adaptation of the mesh resolution enables a fine sampling of the cohesive zone on the fault while simultaneously satisfying the dispersion requirements of wave propagation away from the fault. In this context we will investigate the influence of off-fault-plasticity on geometrically complex fault zone structures like subduction

  20. Influence of severe plastic deformation on the structure and properties of ultrahigh carbon steel wire

    Energy Technology Data Exchange (ETDEWEB)

    Leseur, D R; Sherby, O D; Syn, C K

    1999-07-01

    Ultrahigh-carbon steel wire can achieve very high strength after severe plastic deformation, because of the fine, stable substructures produce. Tensile strengths approaching 6000 MPa are predicted for UHCS containing 1.8%C. This paper discusses the microstructural evolution during drawing of UHCS wire, the resulting strength produced and the factors influencing fracture. Drawing produces considerable alignment of the pearlite plates. Dislocation cells develop within the ferrite plates and, with increasing strain, the size normal to the axis ({lambda}) decreases. These dislocation cells resist dynamic recovery during wire drawing and thus extremely fine substructures can be developed ({lambda} < 10 nm). Increasing the carbon content reduces the mean free ferrite path in the as-patented wire and the cell size developed during drawing. For UHCS, the strength varies as {lambda}{sup {minus}5}. Fracture of these steels was found to be a function of carbide size and composition. The influence of processing and composition on achieving high strength in these wires during severe plastic deformation is discussed.

  1. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...... the relation between consciousness and brain functions. If consciousness is connected to specific brain structures (as a function or in identity) what happens to consciousness when those specific underlying structures change? It is therefore possible that the understanding and theories of neural plasticity can...

  2. When music and long-term memory interact: effects of musical expertise on functional and structural plasticity in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Mathilde Groussard

    Full Text Available The development of musical skills by musicians results in specific structural and functional modifications in the brain. Surprisingly, no functional magnetic resonance imaging (fMRI study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music. Thus, using fMRI, we examined for the first time this process during a musical familiarity task (i.e., semantic memory for music. Musical expertise induced supplementary activations in the hippocampus, medial frontal gyrus, and superior temporal areas on both sides, suggesting a constant interaction between episodic and semantic memory during this task in musicians. In addition, a voxel-based morphometry (VBM investigation was performed within these areas and revealed that gray matter density of the hippocampus was higher in musicians than in nonmusicians. Our data indicate that musical expertise critically modifies long-term memory processes and induces structural and functional plasticity in the hippocampus.

  3. When music and long-term memory interact: effects of musical expertise on functional and structural plasticity in the hippocampus.

    Science.gov (United States)

    Groussard, Mathilde; La Joie, Renaud; Rauchs, Géraldine; Landeau, Brigitte; Chételat, Gaël; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis; Platel, Hervé

    2010-10-05

    The development of musical skills by musicians results in specific structural and functional modifications in the brain. Surprisingly, no functional magnetic resonance imaging (fMRI) study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music. Thus, using fMRI, we examined for the first time this process during a musical familiarity task (i.e., semantic memory for music). Musical expertise induced supplementary activations in the hippocampus, medial frontal gyrus, and superior temporal areas on both sides, suggesting a constant interaction between episodic and semantic memory during this task in musicians. In addition, a voxel-based morphometry (VBM) investigation was performed within these areas and revealed that gray matter density of the hippocampus was higher in musicians than in nonmusicians. Our data indicate that musical expertise critically modifies long-term memory processes and induces structural and functional plasticity in the hippocampus.

  4. Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1.

    Science.gov (United States)

    Zhang, Wei; Tyl, Marek; Ward, Richard; Sobott, Frank; Maman, Joseph; Murthy, Andal S; Watson, Aleksandra A; Fedorov, Oleg; Bowman, Andrew; Owen-Hughes, Tom; El Mkami, Hassane; Murzina, Natalia V; Norman, David G; Laue, Ernest D

    2013-01-01

    The mechanisms by which histones are disassembled and reassembled into nucleosomes and chromatin structure during DNA replication, repair and transcription are poorly understood. A better understanding of the processes involved is, however, crucial if we are to understand whether and how histone variants and post-translationally modified histones are inherited in an epigenetic manner. To this end we have studied the interaction of the histone H3-H4 complex with the human retinoblastoma-associated protein RbAp48 and their exchange with a second histone chaperone, anti-silencing function protein 1 (ASF1). Exchange of histones H3-H4 between these two histone chaperones has a central role in the assembly of new nucleosomes, and we show here that the H3-H4 complex has an unexpected structural plasticity, which is important for this exchange.

  5. Ripples Make Waves: Binding Structured Activity and Plasticity in Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Josef H. L. P. Sadowski

    2011-01-01

    Full Text Available Establishing novel episodic memories and stable spatial representations depends on an exquisitely choreographed, multistage process involving the online encoding and offline consolidation of sensory information, a process that is largely dependent on the hippocampus. Each step is influenced by distinct neural network states that influence the pattern of activation across cellular assemblies. In recent years, the occurrence of hippocampal sharp wave ripple (SWR oscillations has emerged as a potentially vital network phenomenon mediating the steps between encoding and consolidation, both at a cellular and network level by promoting the rapid replay and reactivation of recent activity patterns. Such events facilitate memory formation by optimising the conditions for synaptic plasticity to occur between contingent neural elements. In this paper, we explore the ways in which SWRs and other network events can bridge the gap between spatiomnemonic processing at cellular/synaptic and network levels in the hippocampus.

  6. The importance of material structure in the laser cutting of glass fiber reinforced plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Caprino, G. (Univ. di Napoli (Italy). Dipt. di Ingegneria dei Materiali e della Produzione); Tagliaferri, V. (Univ. di Salerno (Italy). Istituto di Ingegneria Meccanica); Covelli, L. (IMU-Consiglio Nazionale delle Ricerche, Milano (Italy))

    1995-01-01

    A previously proposed micromechanical formula, aiming to predict the vaporization energy Q[sub v] of composite materials as a function of fiber and matrix properties and fiber volume ratio, was assessed. The experimental data, obtained on glass fiber reinforced plastic panels with different fiber contents cut by a medium power CO[sub 2] cw laser, were treated according to a procedure previously suggested, in order to evaluate Q[sub v]. An excellent agreement was found between experimental and theoretical Q[sub v] values. Theory was then used to predict the response to laser cutting of a composite material with a fiber content varying along the thickness. The theoretical predictions indicated that, in this case, the interpretation of the experimental results may be misleading, bringing to errors in the evaluation of the material thermal properties, or in the prediction of the kerf depth. Some experimental data were obtained, confirming the theoretical findings.

  7. Mouse Social Network Dynamics and Community Structure are Associated with Plasticity-Related Brain Gene Expression.

    Science.gov (United States)

    Williamson, Cait M; Franks, Becca; Curley, James P

    2016-01-01

    Laboratory studies of social behavior have typically focused on dyadic interactions occurring within a limited spatiotemporal context. However, this strategy prevents analyses of the dynamics of group social behavior and constrains identification of the biological pathways mediating individual differences in behavior. In the current study, we aimed to identify the spatiotemporal dynamics and hierarchical organization of a large social network of male mice. We also sought to determine if standard assays of social and exploratory behavior are predictive of social behavior in this social network and whether individual network position was associated with the mRNA expression of two plasticity-related genes, DNA methyltransferase 1 and 3a. Mice were observed to form a hierarchically organized social network and self-organized into two separate social network communities. Members of both communities exhibited distinct patterns of socio-spatial organization within the vivaria that was not limited to only agonistic interactions. We further established that exploratory and social behaviors in standard behavioral assays conducted prior to placing the mice into the large group was predictive of initial network position and behavior but were not associated with final social network position. Finally, we determined that social network position is associated with variation in mRNA levels of two neural plasticity genes, DNMT1 and DNMT3a, in the hippocampus but not the mPOA. This work demonstrates the importance of understanding the role of social context and complex social dynamics in determining the relationship between individual differences in social behavior and brain gene expression.

  8. Scanning laser optical tomography resolves structural plasticity during regeneration in an insect brain.

    Directory of Open Access Journals (Sweden)

    René Eickhoff

    Full Text Available BACKGROUND: Optical Projection Tomography (OPT is a microscopic technique that generates three dimensional images from whole mount samples the size of which exceeds the maximum focal depth of confocal laser scanning microscopes. As an advancement of conventional emission-OPT, Scanning Laser Optical Tomography (SLOTy allows simultaneous detection of fluorescence and absorbance with high sensitivity. In the present study, we employ SLOTy in a paradigm of brain plasticity in an insect model system. METHODOLOGY: We visualize and quantify volumetric changes in sensory information procession centers in the adult locust, Locusta migratoria. Olfactory receptor neurons, which project from the antenna into the brain, are axotomized by crushing the antennal nerve or ablating the entire antenna. We follow the resulting degeneration and regeneration in the olfactory centers (antennal lobes and mushroom bodies by measuring their size in reconstructed SLOTy images with respect to the untreated control side. Within three weeks post treatment antennal lobes with ablated antennae lose as much as 60% of their initial volume. In contrast, antennal lobes with crushed antennal nerves initially shrink as well, but regain size back to normal within three weeks. The combined application of transmission-and fluorescence projections of Neurobiotin labeled axotomized fibers confirms that recovery of normal size is restored by regenerated afferents. Remarkably, SLOTy images reveal that degeneration of olfactory receptor axons has a trans-synaptic effect on second order brain centers and leads to size reduction of the mushroom body calyx. CONCLUSIONS: This study demonstrates that SLOTy is a suitable method for rapid screening of volumetric plasticity in insect brains and suggests its application also to vertebrate preparations.

  9. The application of static elastic-plastic analysis in frame structures%静力弹塑性分析在框架结构中的运用

    Institute of Scientific and Technical Information of China (English)

    汤晓刚; 吕冬春

    2016-01-01

    This paper elaborated the basic principle of static elastic-plastic analysis method,taking to a frame structure as an example,using the finite element analysis software ETABS,this paper made static elastic-plastic analysis on this structure,evaluated the structure seismic perform-ance,pointed out that the static elastic-plastic analysis method had good engineering practical value and broad development prospects.%阐述了静力弹塑性分析方法的基本原理,以某框架结构为例,利用有限元软件ETABS,对该结构进行了静力弹塑性分析,评估了结构的抗震性能,指出这种静力弹塑性分析方法具有较好的工程实用价值,发展前景广阔.

  10. Plastic Jellyfish.

    Science.gov (United States)

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  11. Determination of structural and mechanical properties, diffractometry, and thermal analysis of chitosan and hydroxypropylmethylcellulose (HPMC films plasticized with sorbitol

    Directory of Open Access Journals (Sweden)

    Jefferson Rotta

    2011-06-01

    Full Text Available In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v in water and chitosan (2% w/v in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100 of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM, differential scanning calorimetry (DSC, and thermal gravimetric analysis (TGA. The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.

  12. Basal tissue structure in the earliest euconodonts: Testing hypotheses of developmental plasticity in euconodont phylogeny

    Science.gov (United States)

    Dong, X.-P.; Donoghue, P.C.J.; Repetski, J.E.

    2005-01-01

    The hypothesis that conodonts are vertebrates rests solely on evidence of soft tissue anatomy. This has been corroborated by microstructural, topological and developmental evidence of homology between conodont and vertebrate hard tissues. However, these conclusions have been reached on the basis of evidence from highly derived euconodont taxa and the degree to which they are representative of plesiomorphic euconodonts remains an open question. Furthermore, the range of variation in tissue types comprising the euconodont basal body has been used to establish a hypothesis of developmental plasticity early in the phylogeny of the clade, and a model of diminishing potentiality in the evolution of development systems. The microstructural fabrics of the basal tissues of the earliest euconodonts (presumed to be the most plesiomorphic) are examined to test these two hypotheses. It is found that the range of microstructural variation observed hitherto was already apparent among plesiomorphic euconodonts. Thus, established histological data are representative of the most plesiomorphic euconodonts. However, although there is evidence of a range in microstructural fabrics, these are compatible with the dentine tissue system alone, and the degree of variation is compatible with that seen in clades of comparable diversity. ?? The Palaeontological Association.

  13. CHARACTERIZATION OF PLASTICALLY-INDUCED STRUCTURAL CHANGES IN A Zr-BASED BULK METALLIC GLASS USING POSITRON ANNIHILATION SPECTROCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Flores, K M; Kanungo, B P; Glade, S C; Asoka-Kumar, P

    2005-09-16

    Flow in metallic glasses is associated with stress-induced cooperative rearrangements of small groups of atoms involving the surrounding free volume. Understanding the details of these rearrangements therefore requires knowledge of the amount and distribution of the free volume and how that distribution evolves with deformation. The present study employs positron annihilation spectroscopy to investigate the free volume change in Zr{sub 58.5}Cu{sub 15.6}Ni{sub 12.8}Al{sub 10.3}Nb{sub 2.8} bulk metallic glass after inhomogeneous plastic deformation by cold rolling and structural relaxation by annealing. Results indicate that the size distribution of open volume sites is at least bimodal. The size and concentration of the larger group, identified as flow defects, changes with processing. Following initial plastic deformation the size of the flow defects increases, consistent with the free volume theory for flow. Following more extensive deformation, however, the size distribution of the positron traps shifts, with much larger open volume sites forming at the expense of the flow defects. This suggests that a critical strain is required for flow defects to coalesce and form more stable nanovoids, which have been observed elsewhere by high resolution TEM. Although these results suggest the presence of three distinct open volume size groups, further analysis indicates that all groups have the same line shape parameter. This is in contrast to the distinctly different interactions observed in crystalline materials with multiple defect types. This similarity may be due to the disordered structure of the glass and positron affinity to particular atoms surrounding open-volume regions.

  14. NF-kappaB in long-term memory and structural plasticity in the adult mammalian brain

    Directory of Open Access Journals (Sweden)

    Barbara eKaltschmidt

    2015-11-01

    Full Text Available The transcription factor nuclear factor kappaB (NF-κB is a well known regulator of inflammation, stress and immune responses as well as cell survival. In the nervous system NF-κB is one of the crucial components in the molecular switch, that converts short- to long-term memory, a process requiring de novo gene expression. Here, we will review published research on NF-κB and downstream target genes in mammals, which are necessary for structural plasticity and long-term memory, both under normal and pathological conditions in the brain. Genetic evidence has revealed that NF-κB does regulate neuroprotection, neuronal transmission and long-term memory. Additionally, after genetic ablation of all NF-κB subunits, a severe defect in hippocampal adult neurogenesis was observed during aging. Proliferation of neural precursors is increased, however axon outgrowth, synaptogenesis and tissue homeostasis of the dentate gyrus is hampered. In this process, the NF-κB target gene PKAcat and other downstream target genes such as Igf2 are critically involved. Thus, NF-κB activity seems to be crucial in regulating structural plasticity and replenishment of granule cells within the hippocampus throughout life. In addition to the function of NF-κB in neurons we will discuss data on a neuro-inflammatory role of the transcription factor in glia. Finally a model for NF-κB homeostasis on the molecular level is presented, in order to explain seemingly contradictory the friend or foe role of NF-κB in the nervous system.

  15. Taurine content in different brain structures during ageing: effect on hippocampal synaptic plasticity.

    Science.gov (United States)

    Suárez, Luz M; Muñoz, María-Dolores; Martín Del Río, Rafael; Solís, José M

    2016-05-01

    A reduction in taurine content accompanies the ageing process in many tissues. In fact, the decline of brain taurine levels has been associated with cognitive deficits whereas chronic administration of taurine seems to ameliorate age-related deficits such as memory acquisition and retention. In the present study, using rats of three age groups (young, adult and aged) we determined whether the content of taurine and other amino acids (glutamate, serine, glutamine, glycine, alanine and GABA) was altered during ageing in different brain areas (cerebellum, cortex and hippocampus) as well non-brain tissues (heart, kidney, liver and plasma). Moreover, using hippocampal slices we tested whether ageing affects synaptic function and plasticity. These parameters were also determined in aged rats fed with either taurine-devoid or taurine-supplemented diets. With age, we found heterogeneous changes in amino acid content depending on the amino acid type and the tissue. In the case of taurine, its content was reduced in the cerebellum of adult and aged rats, but it remained unchanged in the hippocampus, cortex, heart and liver. The synaptic response amplitude decreased in aged rats, although the late phase of long-term synaptic potentiation (late-LTP), a taurine-dependent process, was not altered. Our study highlights the stability of taurine content in the hippocampus during ageing regardless of whether taurine was present in the diet, which is consistent with the lack of changes detected in late-LTP. These results indicate that the beneficial effects of taurine supplementation might be independent of the replenishment of taurine stores.

  16. Neural plasticity expressed in central auditory structures with and without tinnitus

    Directory of Open Access Journals (Sweden)

    Larry E Roberts

    2012-05-01

    Full Text Available Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To address this question, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by EEG are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR and P2 transient response known to localize to primary and nonprimary auditory cortex, respectively. P2 amplitude increased with training equally in participants with tinnitus and in control subjects, suggesting normal remodeling of nonprimary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls ASSR phase advanced toward the stimulus waveform by about ten degrees over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not nonprimary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected.

  17. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Lushnikova, Irina; Skibo, Galina; Muller, Dominique; Nikonenko, Irina

    2011-04-01

    Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic inhibitory inputs triggered by a brief oxygen-glucose deprivation (OGD) episode, a condition associated with a synaptic enhancement referred to as anoxic LTP and a structural remodeling of excitatory synapses. Three-dimensional reconstruction of inhibitory axo-somatic synapses at different times before and after brief OGD revealed important morphological changes. The PSD area significantly and markedly increased at synapses with large and complex PSDs, but not at synapses with simple, macular PSDs. Activity-related changes of PSD size and presynaptic bouton volume developed in a strongly correlated manner. Analyses of single and serial sections further showed that the density of inhibitory synaptic contacts on the cell soma did not change within 1 h after OGD. In contrast, the proportion of the cell surface covered with inhibitory PSDs, as well as the complexity of these PSDs significantly increased, with less macular PSDs and more complex, segmented shapes. Together, these data reveal a rapid activity-related restructuring of somatic inhibitory synapses characterized by an enlargement and increased complexity of inhibitory PSDs, providing a new mechanism for a quick adjustment of the excitatory-inhibitory balance. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.

  18. Cortical and Subcortical Structural Plasticity Associated with the Glioma Volumes in Patients with Cerebral Gliomas Revealed by Surface-Based Morphometry

    Directory of Open Access Journals (Sweden)

    Jinping Xu

    2017-06-01

    Full Text Available Postlesional plasticity has been identified in patients with cerebral gliomas by inducing a large functional reshaping of brain networks. Although numerous non-invasive functional neuroimaging methods have extensively investigated the mechanisms of this functional redistribution in patients with cerebral gliomas, little effort has been made to investigate the structural plasticity of cortical and subcortical structures associated with the glioma volume. In this study, we aimed to investigate whether the contralateral cortical and subcortical structures are able to actively reorganize by themselves in these patients. The compensation mechanism following contralateral cortical and subcortical structural plasticity is considered. We adopted the surface-based morphometry to investigate the difference of cortical and subcortical gray matter (GM volumes in a cohort of 14 healthy controls and 13 patients with left-hemisphere cerebral gliomas [including 1 patients with World Health Organization (WHO I, 8 WHO II, and 4 WHO III]. The glioma volume ranges from 5.1633 to 208.165 cm2. Compared to healthy controls, we found significantly increased GM volume of the right cuneus and the left thalamus, as well as a trend toward enlargement in the right globus pallidus in patients with cerebral gliomas. Moreover, the GM volumes of these regions were positively correlated with the glioma volumes of the patients. These results provide evidence of cortical and subcortical enlargement, suggesting the usefulness of surface-based morphometry to investigate the structural plasticity. Moreover, the structural plasticity might be acted as the compensation mechanism to better fulfill its functions in patients with cerebral gliomas as the gliomas get larger.

  19. Evaluation of three types of structured floating plastic media in moving bed biofilters for total ammonia nitrogen removal in a low salinity hatchery recirculating aquaculture system

    Science.gov (United States)

    Three different commercially available structural plastic media were evaluated in triplicate in moving bed toriod filters under low salinity (11-12 ppt) warm water culture conditions and two different feed loading rates. The culture system consisted of nine separate modules that include a double dra...

  20. A QSPR for the plasticization efficiency of polyvinylchloride plasticizers.

    Science.gov (United States)

    Chandola, Mridula; Marathe, Sujata

    2008-01-01

    A simple quantitative structure property relationship (QSPR) for correlating the plasticization efficiency of 25 polyvinylchloride (PVC) plasticizers was obtained using molecular modeling. The plasticizers studied were-aromatic esters (phthalate, terephthalate, benzoate, trimellitate), aliphatic esters (adipate, sebacate, azelate), citrates and a phosphate. The low temperature flex point, Tf, of plasticized polyvinylchloride resins was considered as an indicator of plasticization efficiency. Initially, we attempted to predict plasticization efficiency of PVC plasticizers from physical and structural descriptors derived from the plasticizer molecule alone. However, the correlation of these descriptors with Tf was not very good with R=0.78 and r2=0.613. This implied that the selected descriptors were unable to predict all the interactions between PVC and plasticizer. Hence, to account for these interactions, a model containing two polyvinylchloride (PVC) chain segments along with a plasticizer molecule in a simulation box was constructed, using molecular mechanics. A good QSPR equation correlating physical and structural descriptors derived from the model to Tf of the plasticized resins was obtained with R=0.954 and r2=0.909.

  1. Mitochondrial dynamics in visual cortex are limited in vivo and not affected by axonal structural plasticity.

    NARCIS (Netherlands)

    Smit-Rigter, L.A.; Rajendran, Rajeev; Silva, Catia A.P.; Spierenburg, Liselot; Groeneweg, Femke; Ruimschotel, E.; Van Versendaal, D.; van der Togt, C.; Eysel, Ulf T.; Heimel, J.A.; Lohmann, C.; Levelt, C.N.

    2016-01-01

    Mitochondria buffer intracellular Ca2+ and provide energy [1]. Because synaptic structures with high Ca2+ buffering [2–4] or energy demand [5] are often localized far away from the soma, mitochondria are actively transported to these sites [6–11]. Also, the removal and degradation of mitochondria ar

  2. The role of plasticity in the integrated approach of subsequent simulations of car structures

    NARCIS (Netherlands)

    Rietman, B.; Kose, K.

    2002-01-01

    In the development of car structures the performance (i.e. dynamic behavior, fatigue life) is analyzed by prototype testing and simulation. Nowadays, the simulations are based on the geometry that is obtained directly from the CAD construction. It is known however, that forming can change the materi

  3. Re-evaluation of all-plastic organic dye laser with DFB structure fabricated using photoresists

    Science.gov (United States)

    Tsutsumi, Naoto; Nagi, Saori; Kinashi, Kenji; Sakai, Wataru

    2016-10-01

    Organic solid-state lasers (OSSLs) with distributed feedback structures can detect nanoscale materials and therefore offer an attractive sensing platform for biological and medical applications. Here we investigate the lasing characteristics, i.e., the threshold and slope efficiency, as a function of the grating depth in OSSL devices with distributed feedback (DFB) structure fabricated using photoresists. Two types of photoresists were used for the DFB structures: a negative photoresist, SU-8 2002, and a positive photoresist, ma-P 1275. The DFB structure was fabricated using a Lloyd-mirror configuration. The active layer was a rhodamine 6G-doped cellulose acetate waveguide. The threshold for the first order mode (m  = 1) was lower than that for the second and third order modes (m = 2, and 3). A low threshold of 27 μJ cm-2 pulse-1 (58 nJ) was obtained using SU-8 2002, with m = 1. The slope efficiency was evaluated as a function of grating depth for each mode and increased as the grating depth increased.

  4. The Structural Plasticity of White Matter Networks Following Anterior Temporal Lobe Resection

    Science.gov (United States)

    Yogarajah, Mahinda; Focke, Niels K.; Bonelli, Silvia B.; Thompson, Pamela; Vollmar, Christian; McEvoy, Andrew W.; Alexander, Daniel C.; Symms, Mark R.; Koepp, Matthias J.; Duncan, John S.

    2010-01-01

    Anterior temporal lobe resection is an effective treatment for refractory temporal lobe epilepsy. The structural consequences of such surgery in the white matter, and how these relate to language function after surgery remain unknown. We carried out a longitudinal study with diffusion tensor imaging in 26 left and 20 right temporal lobe epilepsy…

  5. Multiscale Analysis of Structurally-Graded Microstructures Using Molecular Dynamics, Discrete Dislocation Dynamics and Continuum Crystal Plasticity

    Science.gov (United States)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri

    2014-01-01

    A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.

  6. Taking control! Structural and behavioural plasticity in response to game-based inhibition training in older adults.

    Science.gov (United States)

    Kühn, Simone; Lorenz, Robert C; Weichenberger, Markus; Becker, Maxi; Haesner, Marten; O'Sullivan, Julie; Steinert, Anika; Steinhagen-Thiessen, Elisabeth; Brandhorst, Susanne; Bremer, Thomas; Gallinat, Jürgen

    2017-08-01

    While previous attempts to train self-control in humans have frequently failed, we set out to train response inhibition using computer-game elements. We trained older adults with a newly developed game-based inhibition training on a tablet for two months and compared them to an active and passive control group. Behavioural effects reflected in shorter stop signal response times that were observed only in the inhibition-training group. This was accompanied by structural growth in cortical thickness of right inferior frontal gyrus (rIFG) triangularis, a brain region that has been associated with response inhibition. The structural plasticity effect was positively associated with time spent on the training-task and predicted the final percentage of successful inhibition trials in the stop task. The data provide evidence for successful trainability of inhibition when game-based training is employed. The results extend our knowledge on game-based cognitive training effects in older age and may foster treatment research in psychiatric diseases related to impulse control. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The long-term structural plasticity of cerebellar parallel fiber axons and its modulation by motor learning.

    Science.gov (United States)

    Carrillo, Jennifer; Cheng, Shao-Ying; Ko, Kwang Woo; Jones, Theresa A; Nishiyama, Hiroshi

    2013-05-08

    Presynaptic axonal varicosities, like postsynaptic spines, are dynamically added and eliminated even in mature neuronal circuitry. To study the role of this axonal structural plasticity in behavioral learning, we performed two-photon in vivo imaging of cerebellar parallel fibers (PFs) in adult mice. PFs make excitatory synapses on Purkinje cells (PCs) in the cerebellar cortex, and long-term potentiation and depression at PF-PC synapses are thought to play crucial roles in cerebellar-dependent learning. Time-lapse vital imaging of PFs revealed that, under a control condition (no behavioral training), ∼10% of PF varicosities appeared and disappeared over a period of 2 weeks without changing the total number of varicosities. The fraction of dynamic PF varicosities significantly diminished during training on an acrobatic motor skill learning task, largely because of reduced addition of new varicosities. Thus, this form of motor learning was associated with greater structural stability of PFs and a slight decrease in the total number of varicosities. Together with prior findings that the number of PF-PC synapses increases during similar training, our results suggest that acrobatic motor skill learning involves a reduction of some PF inputs and a strengthening of others, probably via the conversion of some preexisting PF varicosities into multisynaptic terminals.

  8. Structural plasticity and in vivo activity of Cas1 from the type I-F CRISPR-Cas system.

    Science.gov (United States)

    Wilkinson, Max E; Nakatani, Yoshio; Staals, Raymond H J; Kieper, Sebastian N; Opel-Reading, Helen K; McKenzie, Rebecca E; Fineran, Peter C; Krause, Kurt L

    2016-04-15

    CRISPR-Cas systems are adaptive immune systems in prokaryotes that provide protection against viruses and other foreign DNA. In the adaptation stage, foreign DNA is integrated into CRISPR (clustered regularly interspaced short palindromic repeat) arrays as new spacers. These spacers are used in the interference stage to guide effector CRISPR associated (Cas) protein(s) to target complementary foreign invading DNA. Cas1 is the integrase enzyme that is central to the catalysis of spacer integration. There are many diverse types of CRISPR-Cas systems, including type I-F systems, which are typified by a unique Cas1-Cas2-3 adaptation complex. In the present study we characterize the Cas1 protein of the potato phytopathogen Pectobacterium atrosepticum, an important model organism for understanding spacer acquisition in type I-F CRISPR-Cas systems. We demonstrate by mutagenesis that Cas1 is essential for adaptation in vivo and requires a conserved aspartic acid residue. By X-ray crystallography, we show that although P. atrosepticum Cas1 adopts a fold conserved among other Cas1 proteins, it possesses remarkable asymmetry as a result of structural plasticity. In particular, we resolve for the first time a flexible, asymmetric loop that may be unique to type I-F Cas1 proteins, and we discuss the implications of these structural features for DNA binding and enzymatic activity.

  9. Developmental plasticity in covariance structure of the skull: effects of prenatal stress.

    Science.gov (United States)

    Gonzalez, Paula N; Hallgrímsson, Benedikt; Oyhenart, Evelia E

    2011-02-01

    Environmental perturbations of many kinds influence growth and development. Little is known, however, about the influence of environmental factors on the patterns of phenotypic integration observed in complex morphological traits. We analyze the changes in phenotypic variance-covariance structure of the rat skull throughout the early postnatal ontogeny (from birth to weaning) and evaluate the effect of intrauterine growth retardation (IUGR) on this structure. Using 2D coordinates taken from lateral radiographs obtained every 4 days, from birth to 21 days old, we show that the pattern of covariance is temporally dynamic from birth to 21 days. The environmental perturbation provoked during pregnancy altered the skull growth, and reduced the mean size of the IUGR group. These environmental effects persisted throughout lactancy, when the mothers of both groups received a standard diet. More strikingly, the effect grew larger beyond this point. Altering environmental conditions did not affect all traits equally, as revealed by the low correlations between covariance matrices of treatments at the same age. Finally, we found that the IUGR treatment increased morphological integration as measured by the scaled variance of eigenvalues. This increase coincided and is likely related to an increase in morphological variance in this group. This result is expected if somatic growth is a major determinant of covariance structure of the skull. In summary, our findings suggest that environmental perturbations experienced in early ontogeny alter fundamental developmental processes and are an important factor in shaping the variance-covariance structure of complex phenotypic traits. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.

  10. Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses Using Structural Plasticity

    OpenAIRE

    Hussain, Shaista; Basu, Arindam

    2016-01-01

    The development of power-efficient neuromorphic devices presents the challenge of designing spike pattern classification algorithms which can be implemented on low-precision hardware and can also achieve state-of-the-art performance. In our pursuit of meeting this challenge, we present a pattern classification model which uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic processing to achieve high classification accuracy. A rate-based structural learning rule f...

  11. Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses using Structural Plasticity

    OpenAIRE

    Shaista eHussain; Arindam eBasu

    2016-01-01

    The development of power-efficient neuromorphic devices presents the challenge of designing spike pattern classification algorithms which can be implemented on low-precision hardware and can also achieve state-of-the-art performance. In our pursuit of meeting this challenge, we present a pattern classification model which uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic processing to achieve high classification accuracy. A rate-based structural learning rule f...

  12. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis.

    Science.gov (United States)

    Tibbs, Zachary E; Rohn-Glowacki, Katie Jo; Crittenden, Frank; Guidry, Amber L; Falany, Charles N

    2015-02-01

    The cytosolic sulfotransferases (SULTs) are dimeric enzymes that help maintain homeostasis through the modulation of hormone and drug activity by catalyzing their transformation into hydrophilic sulfate esters and increasing their excretion. Each of the thirteen active human SULT isoforms displays a unique substrate specificity pattern that underlies its individual role in our bodies. These specificities have proven to be complex, in some cases masking the biological role of specific isoforms. The first part of this review offers a short summary of historical underpinnings of human SULTs, primarily centered on the characterization of each isoform's kinetic and structural properties. Recent structural investigations have revealed each SULT has an active site "lid" that undergoes restructuring once the cofactor/sulfonate donor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), binds to the enzyme. This structural rearrangement can alter substrate-binding profiles, therefore complicating enzyme/substrate interactions and making substrate/cosubstrate concentrations and binding order important considerations in enzyme functionality. Molecular dynamic simulations have recently been employed to describe this restructuring in an attempt to offer insight to its effects on substrate selectivity. In addition to reviewing new data on SULT molecular dynamics, we will discuss the contribution of PAPS concentrations and SULT dimerization in the regulation of SULT activity within the human body.

  13. Structural and functional plasticity specific to musical training with wind instruments

    Directory of Open Access Journals (Sweden)

    Uk-Su eChoi

    2015-10-01

    Full Text Available Numerous neuroimaging studies have shown structural and functional changes resulting from musical training. Among these studies, changes in primary sensory areas are mostly related to motor functions. In this study, we looked for some similar functional and structural changes in other functional modalities, such as somatosensory function, by examining the effects of musical training with wind instruments. We found significant changes in two aspects of neuroplasticity, cortical thickness and resting-state neuronal networks. A group of subjects with several years of continuous musical training and who are currently playing in university wind ensembles showed differences in cortical thickness in lip- and tongue-related brain areas versus non-music playing subjects. Cortical thickness in lip-related brain areas was significantly thicker and that in tongue-related areas was significantly thinner in the music playing group compared with that in the non-music playing group. Association analysis of lip-related areas in the music playing group showed that the increase in cortical thickness was caused by musical training. In addition, seed-based correlation analysis showed differential activation in the precentral gyrus and supplementary motor areas between the music and non-music playing groups. These results suggest that high-intensity training with specific musical instruments could induce structural changes in related anatomical areas and could also generate a new functional neuronal network in the brain.

  14. Dynamic response of Cu4Zr54 metallic glass to high strain rate shock loading: plasticity, spall and atomic-level structures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shengnian [Los Alamos National Laboratory; Arman, Bedri [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Cagin, Tahir [TEXAS A& M UNIV

    2009-01-01

    We investigate dynamic response of Cu{sub 46}Zr{sub 54} metallic glass under adiabatic planar shock wave loading (one-dimensional strain) wjth molecular dynamics simulations, including Hugoniot (shock) states, shock-induced plasticity and spallation. The Hugoniot states are obtained up to 60 CPa along with the von Mises shear flow strengths, and the dynamic spall strength, at different strain rates and temperatures. The spall strengths likely represent the limiting values achievable in experiments such as laser ablation. For the steady shock states, a clear elastic-plastic transition is identified (e.g., in the shock velocity-particle velocity curve), and the shear strength shows strain-softening. However, the elastic-plastic transition across the shock front displays transient stress overshoot (hardening) above the Hugoniot elastic limit followed by a relatively sluggish relaxation to the steady shock state, and the plastic shock front steepens with increasing shock strength. The local von Mises shear strain analysis is used to characterize local deformation, and the Voronoi tessellation analysis, the corresponding short-range structures at various stages of shock, release, tension and spallation. The plasticity in this glass is manifested as localized shear transformation zones and of local structure rather than thermal origin, and void nucleation occurs preferentially at the highly shear-deformed regions. The Voronoi and shear strain analyses show that the atoms with different local structures are of different shear resistances that lead to shear localization (e.g., the atoms indexed with (0,0,12,0) are most shear-resistant, and those with (0,2,8,1) are highly prone to shear flow). The dynamic changes in local structures are consistent with the observed deformation dynamics.

  15. Realization of Ultraflat Plastic Film Using Dressed-Photon-Phonon-Assisted Selective Etching of Nanoscale Structures

    Directory of Open Access Journals (Sweden)

    Takashi Yatsui

    2015-01-01

    Full Text Available We compared dressed-photon-phonon (DPP etching to conventional photochemical etching and, using a numerical analysis of topographic images of the resultant etched polymethyl methacrylate (PMMA substrate, we determined that the DPP etching resulted in the selective etching of smaller scale structures in comparison with the conventional photochemical etching. We investigated the wavelength dependence of the PMMA substrate etching using an O2 gas. As the dissociation energy of O2 is 5.12 eV, we applied a continuous-wave (CW He-Cd laser (λ= 325 nm, 3.81 eV for the DPP etching and a 5th-harmonic Nd:YAG laser (λ= 213 nm, 5.82 eV for the conventional photochemical etching. From the obtained atomic force microscope images, we confirmed a reduction in surface roughness, Ra, in both cases. However, based on calculations involving the standard deviation of the height difference function, we confirmed that the conventional photochemical etching method etched the larger scale structures only, while the DPP etching process selectively etched the smaller scale features.

  16. Hierarchical fiber-optic delamination detection system for carbon fiber reinforced plastic structures

    Science.gov (United States)

    Minakuchi, Shu; Banshoya, Hidehiko; Shingo, Ii; Takeda, Nobuo

    2012-10-01

    This study develops a delamination detection system by extending our previous approach for monitoring surface cracks in a large-scale composite structure. In the new system, numerous thin glass capillaries are embedded into a composite structure, and internal pressure in the built-in capillary sensors, based on comparative vacuum monitoring (CVM), is maintained as a vacuum. When delamination is induced, the capillary sensors located within the delaminated area are breached, and atmospheric air flows into the capillaries. The consequent pressure change within the capillaries is then converted into axial strain in a surface-mounted optical fiber through a transducing mechanism, which is connected to the capillaries. By monitoring the strain distribution along the optical fiber, it is possible to identify a transducing mechanism in which the pressure change occurred and thus to specify the location of the delamination. This study begins by establishing a novel sensor embedding/extracting method. The airflow characteristic in the capillary sensors is then comprehensively evaluated, determining the basic performance of the new system. The proposed detection technique is validated by taking a step-by-step approach, and finally the hierarchical fiber-optic delamination detection system is demonstrated. A further advance to be combined with a self-healing concept is also discussed.

  17. Plastics Technology.

    Science.gov (United States)

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  18. Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    2003-01-01

    to estimate the probability of exceeding a critical event, defined by a so-called limit state function. The limit state function is obtained implicitly by non-linear FEM analysis from a realization of random material properties. As the latter can be modeled as random fields varying continuously over......, the gradient of the limit state function with respect to the random material variables is needed, or equivalently, the design sensitivities of the output to the FEM analysis with respect to the input. To this end, the Conditional Derivative Method (CDM) is used, which is a specialized Direct Differentiation...... the structure, a discretisation into random elements/variables is introduced. To this purpose, both the Midpoint (MP) and the Spatial Average (SA) approach are considered. The failure probability is obtained iteratively based on a first order Taylor series expansion of the limit state function. Thus...

  19. Plasticity in queen number and social structure in the invasive Argentine ant (Linepithema humile).

    Science.gov (United States)

    Ingram, Krista K

    2002-10-01

    In many polygynous social insect societies, ecological factors such as habitat saturation promote high queen numbers by increasing the cost of solitary breeding. If polygyny is associated with constrained environments, queen number in colonies of invasive social insects should increase as saturation of their new habitat increases. Here I describe the variation in queen number, nestmate relatedness, and nest size along a gradient of time since colonization in an invading population of Argentine ants (Linepithema humile) in Haleakala, Hawaii. Nest densities in this population increase with distance from the leading edge of the invasion, reaching a stable density plateau approximately 80 m from the edge (> 2 years after colonization). Although the number of queens per nest in Haleakala is generally lower than previously reported for Argentine ants, there is significant variation in queen number across this population. Both the observed and effective queen numbers increase across the density gradient, and nests in the center of the population contain queen numbers three to nine times higher than those on the edge of the invasion. The number of workers per nest is correlated with queen number, and nests in the center are six times larger than nests at the edge. Microsatellite analysis of relatedness among nestmates reveals that all nests in the Haleakala population are characterized by low relatedness and have evidence of multiple reproducing queens. Relatedness values are significantly lower in nests in the center of the population, indicating that the number of reproducing queens is greater in areas of high nest density. The variation in queen number and nestmate relatedness in this study is consistent with expectations based on changes in ecological constraints during the invasion of a new habitat, suggesting that the social structure of Argentine ant populations is strongly influenced by ecological factors. Flexibility in social structure may facilitate persistence

  20. Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game.

    Science.gov (United States)

    Kühn, S; Gleich, T; Lorenz, R C; Lindenberger, U; Gallinat, J

    2014-02-01

    Video gaming is a highly pervasive activity, providing a multitude of complex cognitive and motor demands. Gaming can be seen as an intense training of several skills. Associated cerebral structural plasticity induced has not been investigated so far. Comparing a control with a video gaming training group that was trained for 2 months for at least 30 min per day with a platformer game, we found significant gray matter (GM) increase in right hippocampal formation (HC), right dorsolateral prefrontal cortex (DLPFC) and bilateral cerebellum in the training group. The HC increase correlated with changes from egocentric to allocentric navigation strategy. GM increases in HC and DLPFC correlated with participants' desire for video gaming, evidence suggesting a predictive role of desire in volume change. Video game training augments GM in brain areas crucial for spatial navigation, strategic planning, working memory and motor performance going along with evidence for behavioral changes of navigation strategy. The presented video game training could therefore be used to counteract known risk factors for mental disease such as smaller hippocampus and prefrontal cortex volume in, for example, post-traumatic stress disorder, schizophrenia and neurodegenerative disease.

  1. Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses using Structural Plasticity

    Directory of Open Access Journals (Sweden)

    Shaista eHussain

    2016-03-01

    Full Text Available The development of power-efficient neuromorphic devices presents the challenge of designing spike pattern classification algorithms which can be implemented on low-precision hardware and can also achieve state-of-the-art performance. In our pursuit of meeting this challenge, we present a pattern classification model which uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic processing to achieve high classification accuracy. A rate-based structural learning rule for multiclass classification is proposed which modifies a connectivity matrix of binary synaptic connections by choosing the best k out of d inputs to make connections on every dendritic branch (k<

  2. Nanoscale Structural Plasticity of the Active Zone Matrix Modulates Presynaptic Function.

    Science.gov (United States)

    Glebov, Oleg O; Jackson, Rachel E; Winterflood, Christian M; Owen, Dylan M; Barker, Ellen A; Doherty, Patrick; Ewers, Helge; Burrone, Juan

    2017-03-14

    The active zone (AZ) matrix of presynaptic terminals coordinates the recruitment of voltage-gated calcium channels (VGCCs) and synaptic vesicles to orchestrate neurotransmitter release. However, the spatial organization of the AZ and how it controls vesicle fusion remain poorly understood. Here, we employ super-resolution microscopy and ratiometric imaging to visualize the AZ structure on the nanoscale, revealing segregation between the AZ matrix, VGCCs, and putative release sites. Long-term blockade of neuronal activity leads to reversible AZ matrix unclustering and presynaptic actin depolymerization, allowing for enrichment of AZ machinery. Conversely, patterned optogenetic stimulation of postsynaptic neurons retrogradely enhanced AZ clustering. In individual synapses, AZ clustering was inversely correlated with local VGCC recruitment and vesicle cycling. Acute actin depolymerization led to rapid (5 min) nanoscale AZ matrix unclustering. We propose a model whereby neuronal activity modulates presynaptic function in a homeostatic manner by altering the clustering state of the AZ matrix. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. In-situ compositional and structural analysis of plastic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Duren, J.K.J. van; Hummelen, J.C.; Janssen, R.A.J. [Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands); Loos, J. [Eindhoven Polymer Laboratories and Dutch Polymer Institute, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands); Morrissey, F. [FEI company, P.O. Box 80066, NL-5600 KA Eindhoven (Netherlands); Leewis, C.M.; Kivits, K.P.H.; IJzendoorn, L.J. van [Centre for Plasmaphysics and Radiation Technology, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands); Rispens, M.T. [Stratingh Institute and Materials Science Centre, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands)

    2002-10-01

    Bulk-heterojunction photovoltaic cells consisting of a photoactive layer of poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and a C{sub 60} derivative, (1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerene), (PCBM), sandwiched between an indium tin oxide (ITO) anode covered with poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and an aluminum cathode have been analyzed using transmission electron microscopy (TEM) and cryogenic Rutherford backscattering spectrometry (RBS) to assess the structural and elemental composition of these devices. TEM of cross sections of fully processed photovoltaic cells, prepared using a focused ion beam, provide a clear view of the individual layers and their interfaces. RBS shows that during preparation diffusion of indium into the PEDOT:PSS occurs while the diffusion of aluminum into the polymer layers is negligible. An iodinated C{sub 60} derivative (I-PCBM) was used to determine the concentration profile of this derivative in the vertical direction of a 100 nm active layer. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  4. Multiple keys for a single lock: the unusual structural plasticity of the nucleotidyltransferase (4')/kanamycin complex.

    Science.gov (United States)

    Matesanz, Ruth; Diaz, José Fernando; Corzana, Francisco; Santana, Andrés G; Bastida, Agatha; Asensio, Juan Luis

    2012-03-05

    The most common mode of bacterial resistance to aminoglycoside antibiotics is the enzyme-catalysed chemical modification of the drug. Over the last two decades, significant efforts in medicinal chemistry have been focused on the design of non- inactivable antibiotics. Unfortunately, this strategy has met with limited success on account of the remarkably wide substrate specificity of aminoglycoside-modifying enzymes. To understand the mechanisms behind substrate promiscuity, we have performed a comprehensive experimental and theoretical analysis of the molecular-recognition processes that lead to antibiotic inactivation by Staphylococcus aureus nucleotidyltransferase 4'(ANT(4')), a clinically relevant protein. According to our results, the ability of this enzyme to inactivate structurally diverse polycationic molecules relies on three specific features of the catalytic region. First, the dominant role of electrostatics in aminoglycoside recognition, in combination with the significant extension of the enzyme anionic regions, confers to the protein/antibiotic complex a highly dynamic character. The motion deduced for the bound antibiotic seem to be essential for the enzyme action and probably provide a mechanism to explore alternative drug inactivation modes. Second, the nucleotide recognition is exclusively mediated by the inorganic fragment. In fact, even inorganic triphosphate can be employed as a substrate. Third, ANT(4') seems to be equipped with a duplicated basic catalyst that is able to promote drug inactivation through different reactive geometries. This particular combination of features explains the enzyme versatility and renders the design of non-inactivable derivatives a challenging task.

  5. Structural plasticity in the topology of the membrane-interacting domain of HIV-1 gp41.

    Science.gov (United States)

    Kyrychenko, Alexander; Freites, J Alfredo; He, Jing; Tobias, Douglas J; Wimley, William C; Ladokhin, Alexey S

    2014-02-04

    We use a number of computational and experimental approaches to investigate the membrane topology of the membrane-interacting C-terminal domain of the HIV-1 gp41 fusion protein. Several putative transmembrane regions are identified using hydrophobicity analysis based on the Wimley-White scales, including the membrane-proximal external region (MPER). The MPER region is an important target for neutralizing anti-HIV monoclonal antibodies and is believed to have an interfacial topology in the membrane. To assess the possibility of a transmembrane topology of MPER, we examined the membrane interactions of a peptide corresponding to a 22-residue stretch of the MPER sequence (residues 662-683) using fluorescence spectroscopy and oriented circular dichroism. In addition to the previously reported interfacial location, we identify a stable transmembrane conformation of the peptide in synthetic lipid bilayers. All-atom molecular dynamics simulations of the MPER-derived peptide in a lipid bilayer demonstrate a stable helical structure with an average tilt of 24 degrees, with the five tryptophan residues sampling different environments inside the hydrocarbon core of the lipid bilayer, consistent with the observed spectral properties of intrinsic fluorescence. The degree of lipid bilayer penetration obtained by computer simulation was verified using depth-dependent fluorescence quenching of a selectively attached fluorescence probe. Overall, our data indicate that the MPER sequence can have at least two stable conformations in the lipid bilayer, interfacial and transmembrane, and suggest a possibility that external perturbations can switch the topology during physiological functioning.

  6. Structural plasticity of calmodulin on the surface of CaF2 nanoparticles preserves its biological function

    Science.gov (United States)

    Astegno, Alessandra; Maresi, Elena; Marino, Valerio; Dominici, Paola; Pedroni, Marco; Piccinelli, Fabio; Dell'Orco, Daniele

    2014-11-01

    Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous calcium sensor calmodulin has been investigated in order to assess the potential of these particles to serve as suitable surface protein carriers. Calmodulin is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells by changing its conformation in a calcium-dependent manner. Isothermal titration calorimetry and circular dichroism studies have shown that the interaction between calmodulin and CaF2 nanoparticles occurs with physiologically relevant affinity and that the binding process is fully reversible, occurring without significant alterations in protein secondary and tertiary structures. Experiments performed with a mutant form of calmodulin having an impaired Ca2+-binding ability in the C-terminal lobe suggest that the EF-hand Ca2+-binding motifs are directly involved in the binding of calmodulin to the CaF2 matrix. The residual capability of nanoparticle-bound calmodulin to function as a calcium sensor protein, binding to and altering the activity of a target protein, was successfully probed by biochemical assays. Even if efficiently carried by CaF2 nanoparticles, calmodulin may dissociate, thus retaining the ability to bind the peptide encompassing the putative C-terminal calmodulin-binding domain of glutamate decarboxylase and activate the enzyme. We conclude that the high flexibility and structural plasticity of calmodulin are responsible for the preservation of its function when bound in high amounts to a nanoparticle surface.Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous

  7. Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses Using Structural Plasticity.

    Science.gov (United States)

    Hussain, Shaista; Basu, Arindam

    2016-01-01

    The development of power-efficient neuromorphic devices presents the challenge of designing spike pattern classification algorithms which can be implemented on low-precision hardware and can also achieve state-of-the-art performance. In our pursuit of meeting this challenge, we present a pattern classification model which uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic processing to achieve high classification accuracy. A rate-based structural learning rule for multiclass classification is proposed which modifies a connectivity matrix of binary synaptic connections by choosing the best "k" out of "d" inputs to make connections on every dendritic branch (k learning only modifies connectivity, the model is well suited for implementation in neuromorphic systems using address-event representation (AER). We develop an ensemble method which combines several dendritic classifiers to achieve enhanced generalization over individual classifiers. We have two major findings: (1) Our results demonstrate that an ensemble created with classifiers comprising moderate number of dendrites performs better than both ensembles of perceptrons and of complex dendritic trees. (2) In order to determine the moderate number of dendrites required for a specific classification problem, a two-step solution is proposed. First, an adaptive approach is proposed which scales the relative size of the dendritic trees of neurons for each class. It works by progressively adding dendrites with fixed number of synapses to the network, thereby allocating synaptic resources as per the complexity of the given problem. As a second step, theoretical capacity calculations are used to convert each neuronal dendritic tree to its optimal topology where dendrites of each class are assigned different number of synapses. The performance of the model is evaluated on classification of handwritten digits from the benchmark MNIST dataset and compared with other spike classifiers. We

  8. On the Structural Design of Car Audio Plastic Buttons%浅谈车载音响塑料按键结构设计

    Institute of Scientific and Technical Information of China (English)

    梁甲全

    2014-01-01

    按键在车载音响中是必不可少的结构件,合理的按键分布是车载音响的一个卖点。按键一般来说分两种,橡胶类和塑料类。其中塑料类按键整体好造型、后期处理方便、组装简单等特点深受到产品设计者欢迎。塑料按键结构主要包括按键的间隙、悬臂和定位,所以塑料按键是车载音响中很重要的设计。%Buttons are essential components in car audio , and the rational distribution is a key selling point for car audio . Buttons are generally divided into two kinds: rubber and plastics . Generally speaking , plastic buttons' good shape , convenient post processing and simple assembly are welcomed by product designer . Plastic buttons structure includes a gap , cantilever and positioning buttons; so plastic buttons are very important in car audio design .

  9. Plastic bronchitis

    National Research Council Canada - National Science Library

    Singhi, Anil Kumar; Vinoth, Bharathi; Kuruvilla, Sarah; Sivakumar, Kothandam

    2015-01-01

    Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics...

  10. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  11. Plastic Bridge

    Institute of Scientific and Technical Information of China (English)

    履之

    1994-01-01

    Already ubiquitous in homes and cars, plastic is now appearing inbridges. An academic-industrial consortium based at the University ofCalifornia in San Diego is launching a three-year research program aimed atdeveloping the world’s first plastic highway bridge, a 450-foot span madeentirely from glass-,carbon,and polymer-fiber-reinforced composite mate-rials, the stuff of military aircraft. It will cross Interstate 5 to connect thetwo sides of the school’s campus.

  12. Hybrid optical fiber sensor system based on fiber Bragg gratings and plastic optical fibers for health monitoring of engineering structures

    Science.gov (United States)

    Kuang, K. S. C.; Maalej, M.; Quek, S. T.

    2006-03-01

    In this paper, packaged fibre Bragg grating (PFBG) sensors were fabricated by embedding them in 70mm x 10mm x 0.3mm carbon-fibre composites which were then surface-bonded to an aluminium beam and a steel I-beam to investigate their strain monitoring capability. Initially, the response of these packaged sensors under tensile loading was compared to bare FBGs and electrical strain gauges located in the vicinity. The effective calibration constant/ coefficient of the PFBG sensor was also compared with the non-packaged version. These PFBG sensors were then attached to an I-section steel beam to monitor their response under flexural loading conditions. These realistic structures provide a platform to assess the potential and reliability of the PFBG sensors when used in harsh environment. The results obtained in this study gave clear experimental evidence of the difference in performance between the coated and uncoated PFBG fabricated for the study. In another experimental set-up, bare FBG and POF vibration sensors were surface-bonded to the side-surface of a CFRPwrapped reinforced concrete beam which was then subjected to cyclic loading to assess their long-term survivability. Plain plastic optical fibre (POF) sensors were also attached to the side of the 2-meter concrete beam to monitor the progression of cracks developed during the cyclic loading. The results showed excellent long-term survivability by the FBG and POF vibration sensors and provided evidence of the potential of the plain POF sensor to detect and monitor the propagation of the crack developed during the test.

  13. The extrinsic influence of carbon fibre reinforced plastic laminates to strengthen steel structures

    Indian Academy of Sciences (India)

    A K Patnaik; C L Bauer; T S Srivatsan

    2008-06-01

    The intrinsic advantages of strengthening the steel-based structures by the use of fibre reinforced plastic (FRP) material have not yet been fully exploited. In this paper, a succinct overview of recent studies made to enhance the strength of steel beams using FRP laminates is presented. The results presented and discussed in this paper were obtained by closely studying the behaviour of steel beams strengthened with carbon FRP material. An attempt is made to succinctly summarise the findings for two different types of strengthening of the steel beams using carbon FRP laminates. The first type of beams focuses on enhancing the strength of steel in flexure while the second focuses on increasing the shear strength of the beams. Three beams were designed so as to cause them to fail in flexure. Of the beams studied, two were strengthened using carbon FRP strips attached to the tension flange. One of the beams was tested to facilitate comparison of their behaviour to the two beams which are strengthened in flexure. Three other beams were designed such that they failed predominantly in shear. Of these three, two were strengthened with carbon FRP strips attached to the webs while the third beam was used as a control beam for the purpose of drawing comparisons. Preliminary results revealed a noticeable increase in the strength for both the flexure strengthened beams and the beams strengthened in shear. The observed increase in shear strength of the beams was 26% while the increase in strength for the beams tested in flexure was 15%. This study convincingly shows that it is possible to strengthen steel beams using carbon FRP laminates in both flexure and in shear.

  14. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  15. Crystal Structures and Phase Sequences of Metallocenium Salts with Fluorinated Anions: Effects of Molecular Size and Symmetry on Phase Transitions to Ionic Plastic Crystals.

    Science.gov (United States)

    Mochida, Tomoyuki; Funasako, Yusuke; Ishida, Mai; Saruta, Shingo; Kosone, Takashi; Kitazawa, Takafumi

    2016-10-24

    Sandwich compounds often exhibit various phase transitions, including those to plastic phases. To elucidate the general features of the phase transitions in metallocenium salts, the thermal properties and crystal structures of [Fe(C5 Me5 )2 ]X ([1]X), [Co(C5 Me5 )2 ]X ([2]X), and [Fe(C5 Me4 H)2 ]X ([3]X) have been investigated, where the counter anions (X) are Tf2 N (=(CF3 SO2 )2 N(-) ), OTf (=CF3 SO3(-) ), PF6 , and BF4 . The Tf2 N salts commonly undergo phase transitions from an ordered phase at low temperatures to an anion-disordered phase, followed by a plastic phase and finally melt at high temperatures. All these salts exhibit a phase transition to a plastic phase, and the transition temperature generally decreases with decreasing cation size and increasing anion size. The crystal structures of these salts comprise an alternating arrangement of cations and anions. About half of these salts exhibit phase transitions at low temperatures, which are mostly correlated with the order-disorder of the anion.

  16. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  17. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions.

    Science.gov (United States)

    Joseph, Prem Raj B; Mosier, Philip D; Desai, Umesh R; Rajarathnam, Krishna

    2015-11-15

    Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8-GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer-GAG interactions and function.

  18. Plastic Bronchitis.

    Science.gov (United States)

    Rubin, Bruce K

    2016-09-01

    Plastic bronchitis is an uncommon and probably underrecognized disorder, diagnosed by the expectoration or bronchoscopic removal of firm, cohesive, branching casts. It should not be confused with purulent mucous plugging of the airway as seen in patients with cystic fibrosis or bronchiectasis. Few medications have been shown to be effective and some are now recognized as potentially harmful. Current research directions in plastic bronchitis research include understanding the genetics of lymphatic development and maldevelopment, determining how abnormal lymphatic malformations contribute to cast formation, and developing new treatments. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  20. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  1. Plastic zonnecellen

    NARCIS (Netherlands)

    Roggen, Marjolein

    1998-01-01

    De zonnecel van de toekomst is in de maak. Onderzoekers van uiteenlopend pluimage werken eendrachtig aan een plastic zonnecel. De basis is technisch gelegd met een optimale, door invallend licht veroorzaakte, vorming van ladingdragers binnen een composiet van polymeren en buckyballs. Nu is het zaak

  2. 基于Solidworks的塑料盖壳模具结构设计%Design of the Structure of Plastic Shell Mold Based on Solidworks

    Institute of Scientific and Technical Information of China (English)

    王成

    2014-01-01

    本文引用盖壳的塑料模具结构,运用Solidworks软件进行三维实体造型,重点介绍了三维软件Solidworks的功能及用它来建构塑料模具结构的设计建模方法和装配的制作。并且特意制作了该模具的动画仿真来展示例图产品的特性和结构,使读者更加直观的了解本产品的模具结构。%With reference to the plastic mold structure of the cover shell, by using SOLIDWOEKS software to make the three dimensional model, this paper mainly introduces the function of three-dimensional software Solid-works, the design modeling method which can be used to build the plastic mold structure and assembly production. The author specially produced the animated simulation of the model to demonstrate the characters and the structure of products in illustration, so as to make readers more intuitively understand the mold structure of the product.

  3. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells

    OpenAIRE

    Lushnikova, Irina; Skibo, Galina; Muller, Dominique; Nikonenko, Iryna

    2011-01-01

    Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic i...

  4. Plastic Surgery Statistics

    Science.gov (United States)

    ... PSN PSEN GRAFT Contact Us News Plastic Surgery Statistics Plastic surgery procedural statistics from the American Society of Plastic Surgeons. Statistics by Year Print 2016 Plastic Surgery Statistics 2015 ...

  5. Structural damages prevention of the ITER vacuum vessel and ports by elasto-plastic analysis with regards to RCC-MR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jean-Marc, E-mail: jean-marc.martinez@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Jun, Chang Hoon; Portafaix, Christophe; Alekseev, Alexander; Sborchia, Carlo; Choi, Chang-Ho [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Albin, Vincent [SOM Calcul – Groupe ORTEC, 121 ancien Chemin de Cassis – Immeuble Grand Pré, 13009 Marseille (France); Borrelly, Stephane [Sogeti High Tech, RE2, 180 rue René Descartes, Le Millenium – Bat C, 13857 Aix en Provence (France); Cambazar, Magali [Assystem EOS, 117 rue Jacquard, 84120 Pertuis (France); Gaucher, Thomas [SOM Calcul – Groupe ORTEC, 121 ancien Chemin de Cassis – Immeuble Grand Pré, 13009 Marseille (France); Sfarni, Samir; Tailhardat, Olivier [Assystem EOS, 117 rue Jacquard, 84120 Pertuis (France)

    2015-10-15

    Highlights: • ITER vacuum vessel (VV) is a part of the first barrier to confine the plasma. • ITER VV as NPE necessitates a third party organization authorized by the French nuclear regulator to assure design, fabrication, and conformance testing and quality assurance, i.e. ANB. • Several types of damages have to be prevented in order to guarantee the structural integrity with regards to RCC-MR. • It is usual to employ non-linear analysis when the “classical” elastic analysis reaches its limit of linear application. • Several structural analyses were performed with many different global and local models of the whole ITER VV. - Abstract: Several types of damages have to be prevented in order to guarantee the structural integrity of a structure with regards to RCC-MR; the P-type damages which can result from the application to a structure of a steadily and regularly increasing loading or a constant loading and the S-type damages during operational loading conditions which can only result from repeated application of loadings associated to the progressive deformations and fatigue. Following RCC-MR, the S-type damages prevention has to be started only when the structural integrity is guaranteed against P-type damages. The verification of the last one on the ITER vacuum vessel and ports has been performed by limit analysis with elasto-(perfectly)plastic material behavior. It is usual to employ non-linear analysis when the “classical” elastic analysis reaches its limit of linear application. Some elasto-plastic analyses have been performed considering several cyclic loadings to evaluate also more realistic structural margins of the against S-type damages.

  6. Plastic bronchitis

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singhi

    2015-01-01

    Full Text Available Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics. They are ominous with poor prognosis. Sometimes, infection or airway reactivity may provoke cast bronchitis as a two-step insult on a vulnerable vascular bed. In such instances, aggressive management leads to longer survival. This report of cast bronchitis discusses its current understanding.

  7. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Godfrey, Andrew

    2016-01-01

    at a strain of 5.4; the dislocations are stored as threading dislocations, as dislocation tangles and as cell boundaries with low to medium misorientation angles. An analysis of the evolution of microstructure and strength with increasing strain suggests that dislocation-based plasticity is a dominating...... mechanism in the wire and three strengthening mechanisms are applied: boundary strengthening, dislocation strengthening and solid solution hardening with their relative contributions to the total flow stress which change as the strain is increased. Based on linear additivity good correspondence between...

  8. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  9. Características de plasticidade de argilas para uso em cerâmica vermelha ou estrutural Plasticity characteristics of clays for use in structural clay products

    Directory of Open Access Journals (Sweden)

    L. F. A. Campos

    1999-05-01

    Full Text Available Nos estudos de caracterização de argilas plásticas para uso em cerâmica vermelha é usual a determinação das características mineralógicas por ATD e de plasticidade através dos índices de Atterberg. Os métodos convencionais utilizados para determinação do LL, LP e IP merecem muita atenção por apresentarem alguns inconvenientes. No caso específico da tecnologia cerâmica para moldagem de tijolos furados por extrusão poucos dados são encontrados, relativos à faixa de plasticidade adequada. Pretende-se neste trabalho estudar a mineralogia de 15 amostras de argilas plásticas usadas na indústria de cerâmica vermelha do estado da Paraíba, pelo método de ATD, bem como sua faixa de plasticidade por meio dos índices de Atterberg determinados pelo método de Casagrande e cone de penetração. Os resultados obtidos indicam tratarem-se de argilas quaternárias recentes cauliníticas com matéria orgânica e com LP variando de 15,42% a 36,72%, LL variando de 24,70% a 71,00% e IP variando de 6,82% a 34,28% pelo método de Casagrande e LP variando de 6,60% a 47,70%, LL variando de 26,50% a 71,60% e IP variando de 4,00% a 47,70% pelo cone de penetração, que são faixas de plasticidade recomendadas para argilas plásticas para utilização na indústria de cerâmica vermelha.In the studies of plastic clays for use in structural clay products is usual the determination of the mineralogicals characteristcs by DTA and plasticity through the Atterberg limits. The conventional method utilized for determination of the LL, LP and IP requires much attention. In the specific case of the ceramic technology for moulding hole bricks by extrusion, not many data have been reported. The purpose of this work is to study the mineralogy of 15 specimens of plastics clays used in the structural clay products industry in Paraíba State, by DTA method, as well as their plasticity limits using the Atterberg limits by Casagrande method and cone penetration

  10. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain.

    Science.gov (United States)

    Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji

    2016-05-01

    Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it.

  11. Progress in neural plasticity

    Institute of Scientific and Technical Information of China (English)

    POO; Mu-Ming

    2010-01-01

    One of the properties of the nervous system is the use-dependent plasticity of neural circuits.The structure and function of neural circuits are susceptible to changes induced by prior neuronal activity,as reflected by short-and long-term modifications of synaptic efficacy and neuronal excitability.Regarded as the most attractive cellular mechanism underlying higher cognitive functions such as learning and memory,activity-dependent synaptic plasticity has been in the spotlight of modern neuroscience since 1973 when activity-induced long-term potentiation(LTP) of hippocampal synapses was first discovered.Over the last 10 years,Chinese neuroscientists have made notable contributions to the study of the cellular and molecular mechanisms of synaptic plasticity,as well as of the plasticity beyond synapses,including activity-dependent changes in intrinsic neuronal excitability,dendritic integration functions,neuron-glia signaling,and neural network activity.This work highlight some of these significant findings.

  12. An ensemble of B-DNA dinucleotide geometries lead to characteristic nucleosomal DNA structure and provide plasticity required for gene expression

    Directory of Open Access Journals (Sweden)

    Bansal Manju

    2011-01-01

    Full Text Available Abstract Background A nucleosome is the fundamental repeating unit of the eukaryotic chromosome. It has been shown that the positioning of a majority of nucleosomes is primarily controlled by factors other than the intrinsic preference of the DNA sequence. One of the key questions in this context is the role, if any, that can be played by the variability of nucleosomal DNA structure. Results In this study, we have addressed this question by analysing the variability at the dinucleotide and trinucleotide as well as longer length scales in a dataset of nucleosome X-ray crystal structures. We observe that the nucleosome structure displays remarkable local level structural versatility within the B-DNA family. The nucleosomal DNA also incorporates a large number of kinks. Conclusions Based on our results, we propose that the local and global level versatility of B-DNA structure may be a significant factor modulating the formation of nucleosomes in the vicinity of high-plasticity genes, and in varying the probability of binding by regulatory proteins. Hence, these factors should be incorporated in the prediction algorithms and there may not be a unique 'template' for predicting putative nucleosome sequences. In addition, the multimodal distribution of dinucleotide parameters for some steps and the presence of a large number of kinks in the nucleosomal DNA structure indicate that the linear elastic model, used by several algorithms to predict the energetic cost of nucleosome formation, may lead to incorrect results.

  13. Orientation relationship, plasticity, twin relationship, and interfacial structure of the ???' isothermal martensitic transformation in Pu-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moore, K; Krenn, C; Wall, M; Schwartz, A

    2006-01-24

    The orientation relationship, habit plane, parent-product interface at the atomic level, twin relationship, and plastic deformation resulting from the {delta} {yields} {alpha}{prime} isothermal martensitic transformation in Pu-Ga alloys are examined using optical microscopy, transmission electron microscopy, and finite element calculations. The {delta} {yields} {alpha}{prime} transformation exhibits a {approx}20% volume collapse when the face-centered cubic {delta} phase transforms to the monoclinic {alpha}{prime} phase, which results in unique and intriguing crystallography and morphology. Here, we show that the orientation relationship is very close to that previously reported by Zocco et al. (1990), but has small rotational misalignments between the two phases both parallel and perpendicular to the [110]{sub {delta}} {parallel}[100]{sub {alpha}{prime}} direction. The amount of plastic deformation is exceedingly large due to the {approx}20% volume collapse and transmission electron microscopy is used to quantify the difference in dislocation density between untransformed {delta}-matrix and regions of {delta} adjacent to the transformed {alpha}{prime}. The twins contained in {alpha}{prime} plates are shown to have a (205){sub {alpha}} orientation as the lattice invariant deformation and are found to be composed of two alternating variants that share a common <020>{sub {alpha}{prime}} direction, but differ by a 60 degree rotation about <020>{sub {alpha}{prime}}. A combination of electron diffraction and optical microscopy has been employed to examine the macroscopic habit plane and the analysis suggests that a large fraction of the observed habit planes are on or near {l_brace}111{r_brace}{sub {delta}}. Finally, high resolution transmission electron microscopy reveals that the interface is faceted on {l_brace}111{r_brace}{sub {delta}}, exhibiting a series of terrace and ledges.

  14. Biodegradability of degradable plastic waste.

    Science.gov (United States)

    Agamuthu, P; Faizura, Putri Nadzrul

    2005-04-01

    Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.

  15. A Lesson Plan to Develop Structured Discussion of the Benefits and Disadvantages of Selected Plastics Using the Product-Testing Method

    Science.gov (United States)

    Burmeister, Mareike; Eilks, Ingo

    2014-01-01

    People use many different products made from plastics every day. But conventional plastics such as polyvinyl chloride (PVC) do not always have a good reputation in society at large. Bioplastics such as thermoplastic starch (TPS) promise to be better alternatives but are they really better than conventional plastics? This article presents a new…

  16. A Possible Role of Prolonged Whirling Episodes on Structural Plasticity of the Cortical Networks and Altered Vertigo Perception: The Cortex of Sufi Whirling Dervishes

    Science.gov (United States)

    Cakmak, Yusuf O.; Ekinci, Gazanfer; Heinecke, Armin; Çavdar, Safiye

    2017-01-01

    Although minutes of a spinning episode may induce vertigo in the healthy human, as a result of a possible perceptional plasticity, Sufi Whirling Dervishes (SWDs) can spin continuously for an hour without a vertigo perception.This unique long term vestibular system stimulation presents a potential human model to clarify the cortical networks underlying the resistance against vertigo. This study, therefore, aimed to investigate the potential structural cortical plasticity in SWDs. Magnetic resonance imaging (MRI) of 10 SWDs and 10 controls were obtained, using a 3T scanner. Cortical thickness in the whole cortex was calculated. Results demonstrated significantly thinner cortical areas for SWD subjects compared with the control group in the hubs of the default mode network (DMN), as well as in the motion perception and discrimination areas including the right dorsolateral prefrontal cortex (DLPFC), the right lingual gyrus and the left visual area 5 (V5)/middle temporal (MT) and the left fusiform gyrus. In conclusion, this is the first report that warrants the potential relationship of the motion/body perception related cortical networks and the prolonged term of whirling ability without vertigo or dizziness. PMID:28167905

  17. [Modern neuroimaging of brain plasticity].

    Science.gov (United States)

    Kasprian, G; Seidel, S

    2010-02-01

    Modern neuroimaging methods offer new insights into the plasticity of the human brain. As the techniques of functional MRI and diffusion tensor imaging are increasingly being applied in a clinical setting, the examiner is now frequently confronted with the interpretation of imaging findings related to regenerative processes in response to lesions of the central and also of the peripheral nervous system. In this article individual results of modern neuroimaging studies are discussed in the context of structural and functional plasticity of the CNS.

  18. Studies of elastic-plastic instabilities

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1999-01-01

    Analyses of plastic instabilities are reviewed, with focus on results in structural mechanics as well as continuum mechanics. First the basic theories for bifurcation and post-bifurcation behavior are briefly presented. Then, localization of plastic flow is discussed, including shear band formation...... in solids, localized necking in biaxially stretched metal sheets, and the analogous phenomenon of buckling localization in structures. Also some recent results for cavitation instabilities in elastic-plastic solids are reviewed....

  19. Temporal changes of CB1 cannabinoid receptor in the basal ganglia as a possible structure-specific plasticity process in 6-OHDA lesioned rats.

    Directory of Open Access Journals (Sweden)

    Gabriela P Chaves-Kirsten

    Full Text Available The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson's Disease (PD. Some studies show variation of CB1 expression in basal ganglia in different animal models of PD, however the results are quite controversial, due to the differences in the procedures employed to induce the parkinsonism and the periods analyzed after the lesion. The present study evaluated the CB1 expression in four basal ganglia structures, namely striatum, external globus pallidus (EGP, internal globus pallidus (IGP and substantia nigra pars reticulata (SNpr of rats 1, 5, 10, 20, and 60 days after unilateral intrastriatal 6-hydroxydopamine injections, that causes retrograde dopaminergic degeneration. We also investigated tyrosine hydroxylase (TH, parvalbumin, calbindin and glutamic acid decarboxylase (GAD expression to verify the status of dopaminergic and GABAergic systems. We observed a structure-specific modulation of CB1 expression at different periods after lesions. In general, there were no changes in the striatum, decreased CB1 in IGP and SNpr and increased CB1 in EGP, but this increase was not sustained over time. No changes in GAD and parvalbumin expression were observed in basal ganglia, whereas TH levels were decreased and the calbindin increased in striatum in short periods after lesion. We believe that the structure-specific variation of CB1 in basal ganglia in the 6-hydroxydopamine PD model could be related to a compensatory process involving the GABAergic transmission, which is impaired due to the lack of dopamine. Our data, therefore, suggest that the changes of CB1 and calbindin expression may represent a plasticity process in this PD model.

  20. Overcoming maladaptive plasticity through plastic compensation

    Directory of Open Access Journals (Sweden)

    Matthew R.J. MORRIS, Sean M. ROGERS

    2013-08-01

    Full Text Available Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single genotype to produce multiple environmentally-induced phenotypes. Yet, not all plasticity is adaptive. Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution, much less is known about maladaptive plasticity. However, maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments. This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity, two of which involve genetic changes (standing genetic variation, genetic compensation and two of which do not (standing epigenetic variation, plastic compensation. Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity. In particular, plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence. We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change [Current Zoology 59 (4: 526–536, 2013].

  1. Overcoming maladaptive plasticity through plastic compensation

    Institute of Scientific and Technical Information of China (English)

    Matthew R.J.MORRIS; Sean M.ROGERS

    2013-01-01

    Most species evolve within fluctuating environments,and have developed adaptations to meet the challenges posed by environmental heterogeneity.One such adaptation is phenotypic plasticity,or the ability of a single genotype to produce multiple environmentally-induced phenotypes.Yet,not all plasticity is adaptive.Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution,much less is known about maladaptive plasticity.However,maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments.This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity,two of which involve genetic changes (standing genetic variation,genetic compensation) and two of which do not (standing epigenetic variation,plastic compensation).Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity.In particular,plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence.We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change.

  2. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx-Al2O3 thin film structure

    Science.gov (United States)

    Li, H. K.; Chen, T. P.; Liu, P.; Hu, S. G.; Liu, Y.; Zhang, Q.; Lee, P. S.

    2016-06-01

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)-aluminum oxide (Al2O3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al2O3 interface and/or in the Al2O3 layer.

  3. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  4. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Science.gov (United States)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  5. Crystal Structure of the Nephila clavipes Major Ampullate Spidroin 1A N-terminal Domain Reveals Plasticity at the Dimer Interface.

    Science.gov (United States)

    Atkison, James H; Parnham, Stuart; Marcotte, William R; Olsen, Shaun K

    2016-09-02

    Spider dragline silk is a natural polymer harboring unique physical and biochemical properties that make it an ideal biomaterial. Artificial silk production requires an understanding of the in vivo mechanisms spiders use to convert soluble proteins, called spidroins, into insoluble fibers. Controlled dimerization of the spidroin N-terminal domain (NTD) is crucial to this process. Here, we report the crystal structure of the Nephila clavipes major ampullate spidroin NTD dimer. Comparison of our N. clavipes NTD structure with previously determined Euprosthenops australis NTD structures reveals subtle conformational alterations that lead to differences in how the subunits are arranged at the dimer interface. We observe a subset of contacts that are specific to each ortholog, as well as a substantial increase in asymmetry in the interactions observed at the N. clavipes NTD dimer interface. These asymmetric interactions include novel intermolecular salt bridges that provide new insights into the mechanism of NTD dimerization. We also observe a unique intramolecular "handshake" interaction between two conserved acidic residues that our data suggest adds an additional layer of complexity to the pH-sensitive relay mechanism for NTD dimerization. The results of a panel of tryptophan fluorescence dimerization assays probing the importance of these interactions support our structural observations. Based on our findings, we propose that conformational selectivity and plasticity at the NTD dimer interface play a role in the pH-dependent transition of the NTD from monomer to stably associated dimer as the spidroin progresses through the silk extrusion duct.

  6. Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validation

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics......In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material’s mechanical...... a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored...

  7. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  8. Manifestation of the shape-memory effect in polyetherurethane cellular plastics, fabric composites, and sandwich structures under microgravity

    Science.gov (United States)

    Babaevskii, P. G.; Kozlov, N. A.; Agapov, I. G.; Reznichenko, G. M.; Churilo, N. V.; Churilo, I. V.

    2016-09-01

    The results of experiments that were performed to test the feasibility of creating sandwich structures (consisting of thin-layer sheaths of polymer composites and a cellular polymer core) with the shapememory effect as models of the transformable components of space structures have been given. The data obtained indicate that samples of sandwich structures under microgravity conditions on board the International Space Station have recovered their shape to almost the same degree as under terrestrial conditions, which makes it possible to recommend them for creating components of transformable space structures on their basis.

  9. Crystal structure of the Habc domain of neuronal syntaxin from the squid Loligo pealei reveals conformational plasticity at its C-terminus

    Directory of Open Access Journals (Sweden)

    Bracher Andreas

    2004-03-01

    Full Text Available Abstract Background Intracellular membrane fusion processes are mediated by the spatial and temporal control of SNARE complex assembly that results in the formation of a four-helical bundle, composed of one vesicle SNARE and three target membrane SNARE polypeptide chains. Syntaxins are essential t-SNAREs and are characterized by an N-terminal Habc domain, a flexible linker region, a coiled-coil or SNARE motif and a membrane anchor. The N-terminal Habc domain fulfills important regulatory functions while the coiled-coil motif, present in all SNAREs, is sufficient for SNARE complex formation, which is thought to drive membrane fusion. Results Here we report the crystal structure of the Habc domain of neuronal syntaxin from the squid Loligo pealei, s-syntaxin. Squid Habc crystallizes as a dimer and the monomer structure consists of a three-helical bundle. One molecule is strikingly similar to mammalian syntaxin 1A while the second one shows a structural deviation from the common fold in that the C-terminal part of helix C unwinds and adopts an extended conformation. Conclusion Conservation of surface residues indicates that the cytosolic part of s-syntaxin can adopt an auto-inhibitory closed conformation that may bind squid neuronal Sec1, s-Sec1, in the same manner as observed in structure of the rat nSec1/syntaxin 1A complex. Furthermore, despite the overall structural similarity, the observed changes at the C-terminus of one molecule indicate structural plasticity in neuronal syntaxin. Implications of the structural conservation and the changes are discussed with respect to potential Habc domain binding partners such as Munc13, which facilitates the transition from the closed to the open conformation.

  10. Exceptional plasticity of silicon nanobridges

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Tadashi; Sato, Takaaki; Toshiyoshi, Hiroshi; Collard, Dominique; Fujita, Hiroyuki [University of Tokyo, Institute of Industrial Science, 4-6-1 Komaba Meguro, Tokyo 153-8505 (Japan); Cleri, Fabrizio [Institut d' Electronique Microelectronique et Nanotechnologie (CNRS UMR 8520), Universite de Lille I, Avenue Poincare BP60069 59652 Villeneuve d' Ascq (France); Kakushima, Kuniyuki [Tokyo Institute of Technology, 4259, Nagatsuda, Midori, Yokohama, Kanagawa 226-8502 (Japan); Mita, Makoto [Department of Spacecraft Engineering, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Miyata, Masaki; Itamura, Noriaki; Sasaki, Naruo [Department of Materials and Life Sciences, Seikei University, 3-3-1, Kitamachi, Kichijoji, Musashino, Tokyo 180-8633 (Japan); Endo, Junji, E-mail: tadashii@iis.u-tokyo.ac.jp [FK Optical laboratory, 1-13-4 Nakano Niiza Saitama, 352-0005 (Japan)

    2011-09-02

    The plasticity of covalently bonded materials is a subject at the forefront of materials science, bearing on a wide range of technological and fundamental aspects. However, covalent materials fracture in a brittle manner when the deformation exceeds just a few per cent. It is predicted that a macroscopically brittle material like silicon can show nanoscale plasticity. Here we report the exceptional plasticity observed in silicon nanocontacts ('nanobridges') at room temperature using a special experimental setup combining a transmission electron microscope and a microelectromechanical system. When accounting for surface diffusion, we succeeded in elongating the nanocontact into a wire-like structure, with a fivefold increase in volume, up to more than twenty times the original length. Such a large plasticity was caused by the stress-assisted diffusion and the sliding of the intergranular, amorphous-like material among the nanocrystals.

  11. 双向卡扣脱模设计分析和创新%Two-way Undercut Release Structure Innovation Design in Plastic Injection Product

    Institute of Scientific and Technical Information of China (English)

    石海水

    2012-01-01

    本案例针对塑件常见的倒扣型卡扣结构,对其顶出动作进行了深入分析。案例结合塑件本身的结构特点,在设计中巧妙地简化了脱模动作,创新设计出简单易用的弧型扣位的伞开型顶出机构,节约了模具的制造成本,为同类塑件的模具设计制造提供更多的选择,具有代表性和重要的参考价值。%This case introduced the undercut lock structure on application of the plastic product,explained the lifer work theory in plactic mold ejection motion.On the basic of the product feature,designed a various lifter structure to meet the repirement of the part,economized the mold fabrication cost.Provided an option for the similar product structure design,with reference and representive.

  12. Cholinergic Potentiation and Audiovisual Repetition-Imitation Therapy Improve Speech Production and Communication Deficits in a Person with Crossed Aphasia by Inducing Structural Plasticity in White Matter Tracts

    Directory of Open Access Journals (Sweden)

    Marcelo L. Berthier

    2017-06-01

    Full Text Available Donepezil (DP, a cognitive-enhancing drug targeting the cholinergic system, combined with massed sentence repetition training augmented and speeded up recovery of speech production deficits in patients with chronic conduction aphasia and extensive left hemisphere infarctions (Berthier et al., 2014. Nevertheless, a still unsettled question is whether such improvements correlate with restorative structural changes in gray matter and white matter pathways mediating speech production. In the present study, we used pharmacological magnetic resonance imaging to study treatment-induced brain changes in gray matter and white matter tracts in a right-handed male with chronic conduction aphasia and a right subcortical lesion (crossed aphasia. A single-patient, open-label multiple-baseline design incorporating two different treatments and two post-treatment evaluations was used. The patient received an initial dose of DP (5 mg/day which was maintained during 4 weeks and then titrated up to 10 mg/day and administered alone (without aphasia therapy during 8 weeks (Endpoint 1. Thereafter, the drug was combined with an audiovisual repetition-imitation therapy (Look-Listen-Repeat, LLR during 3 months (Endpoint 2. Language evaluations, diffusion weighted imaging (DWI, and voxel-based morphometry (VBM were performed at baseline and at both endpoints in JAM and once in 21 healthy control males. Treatment with DP alone and combined with LLR therapy induced marked improvement in aphasia and communication deficits as well as in selected measures of connected speech production, and phrase repetition. The obtained gains in speech production remained well-above baseline scores even 4 months after ending combined therapy. Longitudinal DWI showed structural plasticity in the right frontal aslant tract and direct segment of the arcuate fasciculus with both interventions. VBM revealed no structural changes in other white matter tracts nor in cortical areas linked by these

  13. Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validation.

    Science.gov (United States)

    Pereira, G F; Mikkelsen, L P; McGugan, M

    2015-01-01

    In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material's mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP), the structural health monitoring technology (fibre Bragg gratings to detect delamination), and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor) was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model.

  14. Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validation.

    Directory of Open Access Journals (Sweden)

    G F Pereira

    Full Text Available In a fibre-reinforced polymer (FRP structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material's mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP, the structural health monitoring technology (fibre Bragg gratings to detect delamination, and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model.

  15. Structural Plasticity Associated with Drugs Addiction%药物成瘾相关的神经结构可塑性改变

    Institute of Scientific and Technical Information of China (English)

    朱杰; 曹国芬; 党永辉; 陈腾

    2011-01-01

    不计后果的药物渴求和滥用是药物成瘾的一个显著特征.药物滥用可以诱导行为学和心理学持续性改变的发生,这些持续性改变由相关神经通路(尤其是奖赏系统)神经结构的可塑性变化所引起.本文综述了安非他明、可卡因、尼古丁和吗啡等药物诱发的相关脑区的神经可塑性改变以及引起这些改变的可能原因.药物成瘾诱发的神经结构可塑性改变反映了相关神经系统突触连接的重塑,这些重塑改变该系统的功能,由此便产生了药物滥用的一系列后遗症状——包括成瘾.%An essential feature of drug addiction is that an individual continues to use drug despite the threat of severely adverse physical or psychosocial consequences. Persistent changes in behavior and psychological function that occur as a function of drugs of abuse are thought to be due to the reorganization of synaptic connections ( structural plasticity) in relevant brain circuits ( especially the brains reward circuits). In this paper we summarized evidence that, indeed, exposure to amphetamine, cocaine, nicotine or morphine produced persistent changes in the structure of dendrites and dendritic spines on cells in relevant brain regions. We also approached the potential molecular mechanisms of these changes. It is suggested that structural plasticity associated with exposure to drugs of abuse reflects a reorganization of patterns of synaptic connectivity in these neural systems, a reorganization that alters their operation, thus contributing to some of the persistent sequela associated with drug use-including addiction.

  16. a Study on the Structural Stress Analysis of Plastic Ankle Foot Orthosis (afo) Under Dorsiflexion and Plantarflextion Conditions

    Science.gov (United States)

    Lee, Young-Shin; Choi, Young-Jin; Kim, Hyun-Soo; Lee, Hyun-Seung; Cho, Kang-Hee

    The ankle foot orthosis (AFO) is used as the gait assistive tool for hemiplegic patients. The structural characteristics of the AFO are applied to the state of the patient. However, the prescription guide for hemiplegic patients is not well established. The purpose of this study is to develop design guide to find out the structural characteristics of polypropylene of AFO used for hemiplegics. In this study, the rigidities of dorsiflexion and plantarflexion of the AFO with varied types of ankle widths are investigated and performed by using FEM code.

  17. A novel structured plastic substrate for light confinement in thin film silicon solar cells by a geometric optical effect

    NARCIS (Netherlands)

    Sonneveld, Piet; Hamers, E.A.G.; Rijn, C.J.M. van; Baggerman, J.; Holterman, H.J.; Swinkels, Gert-Jan; Schropp, R.E.I.; Rath, J.K.; Jong, M.M. de

    2012-01-01

    We present a novel method to achieve light trapping in thin film silicon solar cells. Unlike the commonly used surface textures, such as Asahi U-type TCO, that rely on light scattering phenomena, we employ embossed periodically arranged micro-pyramidal structures with feature sizes much larger than

  18. A novel structured plastic substrate for light confinement in thin film silicon solar cells by a geometric optical effect

    NARCIS (Netherlands)

    de Jong, M.M.; Rath, J.K.; Schropp, R.E.I.; Sonneveld, P.J.; Swinkels, G.L.A.M.; Holterman, H.J.; Baggerman, J.; van Rijn, C.J.M.; Hamers, E.A.G.

    2011-01-01

    We present a novel method to achieve light trapping in thin film silicon solar cells. Unlike the commonly used surface textures, such as Asahi U-type TCO, that rely on light scattering phenomena, we employ embossed periodically arranged micro-pyramidal structures with feature sizes much larger than

  19. Streptozotocin diabetic mice display depressive-like behavior and alterations in the structure, neurotransmission and plasticity of medial prefrontal cortex interneurons.

    Science.gov (United States)

    Castillo-Gómez, Esther; Coviello, Simona; Perez-Rando, Marta; Curto, Yasmina; Carceller, Héctor; Salvador, Alicia; Nacher, Juan

    2015-07-01

    Diabetes mellitus patients are at increased risk of developing depression, although the neurobiological bases of this comorbidity are not yet fully understood. These patients show CNS alterations, similar to those found in major depression, including changes in the structure and neurotransmission of excitatory neurons. However, although depressive patients and animal models also display alterations in inhibitory networks, little is known about the effects of diabetes on interneurons. Our main objective was to study the impact of diabetes on interneurons of the medial prefrontal cortex (mPFC), one of the regions most affected by major depression. For this purpose we have induced diabetes with high-dose streptozotozin in transgenic mice displaying fluorescent interneurons. These animals showed a depressive-like behavior (increased immobility time in tail suspension test) in parallel with reductions in interneuronal dendritic arborization and in the expression of GAD67, the enzyme that synthetizes the inhibitory neurotransmitter GABA. However, the levels of PSA-NCAM, a plasticity-related molecule exclusively expressed by interneurons in the mPFC, were unaltered in the different regions and layers of this cortical area. Interestingly, diabetic mice also showed increased levels of synaptophysin, a synaptic vesicle protein. These results indicate that the structure and neurotransmission of interneurons is altered in the mPFC of diabetic mice and suggest that these changes may play a key role in the depressive symptoms associated to diabetes.

  20. Mechanism of Plasticity Development for Ceramic Dough (3). Investigation of Extruding Characteristics and Particle Packing Structure of the Dough; Seramikku rendo no kasosei hatsugen mekanizumu (3). rendo juten kozo to oshidashi tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Shuji. [Wet Forming of Ceramics Technology Research Association, Aichi (Japan); Ishida, Hideki. [INAX Corp., Aichi (Japan), Space Design Research Center; Shibasaki, Yasuo.; Oda, Kiichi. [National Industrial Research Institute of Nagoya, Aichi (Japan)

    1999-02-01

    The extruding characteristics and the packing structure of clay dough, and alumina dough mixed with water-soluble and water-insoluble plasticizers were investigated. The extrudability of the doughs, which were evaluated by the extruding pressure as a function of the packing ratio, became higher at higher volume of larger-sized pores reaching micrometed size. In the clay dough and the dough mixed with water-soluble plasticizers such as methylcellulose, the aggregates deformed into the larger-sized pores around each aggregate during extruding. In the dough mixed with water-insoluble plasticizers such as curdlan, the largersized pores based on curdlan gel, its deformation provided the fluidity of the particle. It was understood that the dough could be extruded by deformation of the aggregates or the gel acted as a buffer. (author)

  1. Effect of rolling-assisted deformation on the formation of an ultrafine-grained structure in a two-phase titanium alloy subjected to severe plastic deformation

    Science.gov (United States)

    Demakov, S. L.; Elkina, O. A.; Illarionov, A. G.; Karabanalov, M. S.; Popov, A. A.; Semenova, I. P.; Saitova, L. R.; Shchetnikov, N. V.

    2008-06-01

    The effect of rolling in the temperature range 450 650°C on the fragmentation of the primary phase in a hot-rolled VT6 alloy rod preliminarily subjected to severe plastic deformation by equal-channel angular pressing at 700°C (scheme B c, the angle between the channels is 135°, 12 passes) is studied. Rolling at 450°C without preliminary ECAP is shown not to cause α-phase fragmentation and to favor intense cold working of the alloy due to multiple slip. ECAP provides partial fragmentation of the initial structure of the α phase and changes the morphology of the retained β phase: it transforms from a continuous matrix phase into separated precipitates located between α particles. This transformation activates the fragmentation of the α phase during rolling at 550°C owing to the development of twinning and polygonization processes apart from multiple slip. Both a decrease (to 450°C) and an increase (to 625 650°C) in the rolling temperature as compared to 550°C lead to the formation of a less homogeneous and fragmented structure because of weakly developed recovery and intense cold working in the former case and because of the beginning of recrystallization and the suppression of twinning in the latter case. A relation between the structure that forms upon SPD followed by rolling and the set of its properties is found. A general scheme is proposed for the structural transformations that occur during ECAP followed by rolling at various temperatures.

  2. influence of the molecular structures on the high-pressure and low-temperature phase transitions of plastic crystals.

    Science.gov (United States)

    Wunschel, Markus; Dinnebier, Robert E; Carlson, Stefan; Bernatowicz, Piotr; van Smaalen, Sander

    2003-02-01

    The crystal structures of tert-butyl-tris(trimethylsilyl)silane, Si[C(CH(3))(3)](1)[Si(CH(3))(3)](3) (Bu1), and di-tert-butyl-bis(trimethylsilyl)silane, Si[C(CH(3))(3)](2)[Si(CH(3))(3)](2) (Bu2), at room temperature and at 105 K have been determined by X-ray powder diffraction; the high-pressure behavior for pressures between 0 and 5 GPa is reported. The room-temperature structures have cubic Fm3m symmetry (Z = 4) with a = 13.2645 (2) A, V = 2333.87 (4) A(3) for Bu1 and a = 12.9673 (1) A, V = 2180.46 (3) A(3) for Bu2. The molecules are arranged in a cubic close packing (c.c.p.) and exhibit at least 48-fold orientational disorder. Upon cooling both compounds undergo a first-order phase transition at temperatures T(c) = 230 (5) K (Bu1) and T(c) = 250 (5) K (Bu2) into monoclinic structures with space group P2(1)/n. The structures at 105 K have a = 17.317 (1), b = 15.598 (1), c = 16.385 (1) A, gamma = 109.477 (4) degrees, V = 4172.7 (8) A(3) and Z = 8 for Bu1and a = 17.0089 (9), b = 15.3159 (8), c = 15.9325 (8) A, gamma = 110.343 (3) degrees, V = 3891.7 (5) A(3) and Z = 8 for Bu2. The severe disorder of the room-temperature phase is significantly decreased and only a two- or threefold rotational disorder of the molecules remains at 105 K. First-order phase transitions have been observed at pressures of 0.13-0.28 GPa for Bu1 and 0.20-0.24 GPa for Bu2. The high-pressure structures are isostructural to the low-temperature structures. The pressure dependencies of the unit-cell Volumes were fitted with Vinet equations of state and the bulk moduli were obtained. At still higher pressures further anomalies in the pressure dependencies of the lattice parameters were observed. These anomalies are explained as additional disorder-order phase transitions.

  3. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  4. A review of plastic waste biodegradation.

    Science.gov (United States)

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  5. Mechanism for self-formation of periodic structures on a plastic polymer surface using a nanosecond and femtosecond laser pulses

    OpenAIRE

    Mansouri, Behzad; Parvin, P.

    2015-01-01

    The high UV laser dose at 193 nm induces grooves on poly allyl diglycol carbonate PADC (CR39) at normal irradiation. The spatial period exhibits to be nearly invariant for azimuth and polar angles indicating a loose dependence on the incident angles but the LIPSS (Laser-induced periodic surface structures) are always parallel to the P polarization component of the incident beam. The most common approach to explain LIPSS formation is related to the Sipe theory which does not account for all th...

  6. Crystal structure of the predicted phospholipase LYPLAL1 reveals unexpected functional plasticity despite close relationship to acyl protein thioesterases

    OpenAIRE

    2012-01-01

    Sequence homology indicates the existence of three human cytosolic acyl protein thioesterases, including APT1 that is known to depalmitoylate H- and N-Ras. One of them is the lysophospholipase-like 1 (LYPLAL1) protein that on the one hand is predicted to be closely related to APT1 but on the other hand might also function as a potential triacylglycerol lipase involved in obesity. However, its role remained unclear. The 1.7 Å crystal structure of LYPLAL1 reveals a fold very similar to APT1, as...

  7. Tunable plasticity in amorphous silicon carbide films.

    Science.gov (United States)

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold.

  8. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  9. The formation, structure, and properties of the Au-Co alloys produced by severe plastic deformation under pressure

    Science.gov (United States)

    Tolmachev, T. P.; Pilyugin, V. P.; Ancharov, A. I.; Chernyshov, E. G.; Patselov, A. M.

    2016-02-01

    The mechanical alloying of Au-Co mixtures, which are systems with high positive mixing enthalpy, is studied following high-pressure torsion deformation at room and cryogenic temperatures. X-ray diffractometry in synchrotron radiation and scanning microscopy are used to investigate the sequence of structural changes in the course of deforming the mixtures up to the end state of the fcc substitutional solid solution based on gold. The mechanical properties of the alloys are measured both during mixture processing and after mechanical alloying. Microfractographic studies are performed. Factors that facilitate the solubility of Co in Au, namely, increased processing pressure, cobalt concentration in a charge mixture, true strain, and temperature decreased to cryogenic level have been identified.

  10. Identifying Structure-Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach

    Science.gov (United States)

    Diehl, Martin; Groeber, Michael; Haase, Christian; Molodov, Dmitri A.; Roters, Franz; Raabe, Dierk

    2017-03-01

    Predicting, understanding, and controlling the mechanical behavior is the most important task when designing structural materials. Modern alloy systems—in which multiple deformation mechanisms, phases, and defects are introduced to overcome the inverse strength-ductility relationship—give raise to multiple possibilities for modifying the deformation behavior, rendering traditional, exclusively experimentally-based alloy development workflows inappropriate. For fast and efficient alloy design, it is therefore desirable to predict the mechanical performance of candidate alloys by simulation studies to replace time- and resource-consuming mechanical tests. Simulation tools suitable for this task need to correctly predict the mechanical behavior in dependence of alloy composition, microstructure, texture, phase fractions, and processing history. Here, an integrated computational materials engineering approach based on the open source software packages DREAM.3D and DAMASK (Düsseldorf Advanced Materials Simulation Kit) that enables such virtual material development is presented. More specific, our approach consists of the following three steps: (1) acquire statistical quantities that describe a microstructure, (2) build a representative volume element based on these quantities employing DREAM.3D, and (3) evaluate the representative volume using a predictive crystal plasticity material model provided by DAMASK. Exemplarily, these steps are here conducted for a high-manganese steel.

  11. Identifying Structure-Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach

    Science.gov (United States)

    Diehl, Martin; Groeber, Michael; Haase, Christian; Molodov, Dmitri A.; Roters, Franz; Raabe, Dierk

    2017-05-01

    Predicting, understanding, and controlling the mechanical behavior is the most important task when designing structural materials. Modern alloy systems—in which multiple deformation mechanisms, phases, and defects are introduced to overcome the inverse strength-ductility relationship—give raise to multiple possibilities for modifying the deformation behavior, rendering traditional, exclusively experimentally-based alloy development workflows inappropriate. For fast and efficient alloy design, it is therefore desirable to predict the mechanical performance of candidate alloys by simulation studies to replace time- and resource-consuming mechanical tests. Simulation tools suitable for this task need to correctly predict the mechanical behavior in dependence of alloy composition, microstructure, texture, phase fractions, and processing history. Here, an integrated computational materials engineering approach based on the open source software packages DREAM.3D and DAMASK (Düsseldorf Advanced Materials Simulation Kit) that enables such virtual material development is presented. More specific, our approach consists of the following three steps: (1) acquire statistical quantities that describe a microstructure, (2) build a representative volume element based on these quantities employing DREAM.3D, and (3) evaluate the representative volume using a predictive crystal plasticity material model provided by DAMASK. Exemplarily, these steps are here conducted for a high-manganese steel.

  12. Elastic-plastic dynamic time-history analysis of tall frame-corewall structure%某超限高层框筒结构弹塑性动力时程分析

    Institute of Scientific and Technical Information of China (English)

    程柯; 桂国强

    2012-01-01

    Dynamic elastic-plastic analyses are carried out for a tall frame-corewall structure by the commercial FE program MIDAS BUILDING. The structural dynamic response and member plastic developing process are investigated under practical earthquake effects, and seismic perform- ance of structure is meanwhile evaluated. Proposals are also put forward for improvement of engineering design.%应用MIDAS BUILDING结构软件对一个高层框筒结构进行了罕遇地震下的动力弹塑性分析,给出了结构在实际地震作用下的动力响应及各部位、构件的塑性发展情况,对结构的抗震性能做出评价,并对工程设计提出改进建议。

  13. 77 FR 54930 - Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A Subsidiary of Plastics...

    Science.gov (United States)

    2012-09-06

    ... Employment and Training Administration Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A... plastic parts. New information shows that Fortis Plastics is now called Carlyle Plastics and Resins. In... of Carlyle Plastics and Resins, formerly known as Fortis Plastics, a subsidiary of...

  14. 改进凸台结构设计提高塑料制品质量的研究%Study on Quality Improvement of Plastic Products by Improving Boss Structure Design

    Institute of Scientific and Technical Information of China (English)

    肖日增

    2014-01-01

    本文从塑件结构的角度出发,对塑料制品的凸台结构影响表观质量问题进行了分析研究,分析常用凸台结构之不足后,提出了一种通过凸台根部侧凹面减料的新型凸台结构设计方案,采用模具的斜滑块结构成型。实践证明,采用此新型凸台结构设计,塑料制品的表面质量好、凸台结构强度高,有效地解决了塑料制品生产中的常见难题。%From the perspective of the structures of plastic parts, the essay analyzes the influence of plastic products’ boss structure on surface quality.Through the analysis of disavantages of common boss structures,a new design of boss strucutre,that is,reducing the lateral concave side thickness of the boss root and applying the slanting slide structure of the mold to molding,is put forward.Practices prove that, with this model of boss structure design,the surface quality of plastic products is good,and the boss structure is strong and firm,which effectively solves the common problems existing in the production of plastic products.

  15. Phase-specific plasticity of synaptic structures in the somatosensory cortex of living mice during neuropathic pain

    Directory of Open Access Journals (Sweden)

    Kim Sun

    2011-11-01

    Full Text Available Abstract Background Postsynaptic dendritic spines in the cortex are highly dynamic, showing rapid morphological changes including elongation/retraction and formation/elimination in response to altered sensory input or neuronal activity, which achieves experience/activity-dependent cortical circuit rewiring. Our previous long-term in vivo two-photon imaging study revealed that spine turnover in the mouse primary somatosensory (S1 cortex markedly increased in an early development phase of neuropathic pain, but was restored in a late maintenance phase of neuropathic pain. However, it remains unknown how spine morphology is altered preceding turnover change and whether gain and loss of presynaptic boutons are changed during neuropathic pain. Findings Here we used short-term (2-hour and long-term (2-week time-lapse in vivo two-photon imaging of individual spines and boutons in the S1 cortical layer 1 of the transgenic mice expressing GFP in pyramidal neurons following partial sciatic nerve ligation (PSL. We found in the short-term imaging that spine motility (Δ length per 30 min significantly increased in the development phase of neuropathic pain, but returned to the baseline in the maintenance phase. Moreover, the proportion of immature (thin and mature (mushroom spines increased and decreased, respectively, only in the development phase. Long-term imaging data showed that formation and elimination of boutons moderately increased and decreased, respectively, during the first 3 days following PSL and was subsequently restored. Conclusions Our results indicate that the S1 synaptic structures are rapidly destabilized and rearranged following PSL and subsequently stabilized in the maintenance phase of neuropathic pain, suggesting a novel therapeutic target in intractable chronic pain.

  16. Long-term fluoxetine treatment induces input-specific LTP and LTD impairment and structural plasticity in the CA1 hippocampal subfield.

    Directory of Open Access Journals (Sweden)

    Francisco J Rubio

    2013-05-01

    Full Text Available Antidepressant drugs are usually administered for long time for the treatment of major depressive disorder. However, they are also prescribed in several additional psychiatric conditions as well as during long term maintenance treatments. Antidepressants induce adaptive changes in several forebrain structures which include modifications at glutamatergic synapses. We recently found that repetitive administration of the selective serotonin reuptake inhibitor fluoxetine to naϊve adult male rats induced an increase of mature, mushroom-type dendritic spines in several forebrain regions. This was associated with an increase of GluA2-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPA-Rs in telencephalic postsynaptic densities. To unravel the functional significance of such a synaptic re-arrangement, we focused on glutamate neurotransmission in the hippocampus. We evaluated the effect of four weeks of treatment with 0.7 mg/kg of fluoxetine on long-term potentiation (LTP and long-term depression (LTD in the Schaffer collateral-CA1 synapses and the perforant path-CA1 synapses. Recordings in hippocampal slices revealed profound deficits in LTP and LTD at Schaffer collateral-CA1 synapses associated to increased spine density and enhanced presence of mushroom-type spines, as revealed by Golgi staining. However, the same treatment had neither an effect on spine morphology, nor on LTP and LTD at perforant path-CA1 synapses. Cobalt staining experiments revealed decreased AMPA-R Ca2+ permeability in the stratum radiatum together with increased GluA2-containing, Ca2+-impermeable AMPA-Rs. Therefore, 4 weeks of fluoxetine treatment promoted structural and functional adaptations in CA1 neurons in a pathway-specific manner that were selectively associated with impairment of activity-dependent plasticity at Schaffer collateral-CA1 synapses.

  17. Long-term fluoxetine treatment induces input-specific LTP and LTD impairment and structural plasticity in the CA1 hippocampal subfield.

    Science.gov (United States)

    Rubio, Francisco J; Ampuero, Estíbaliz; Sandoval, Rodrigo; Toledo, Jorge; Pancetti, Floria; Wyneken, Ursula

    2013-01-01

    Antidepressant drugs are usually administered for several weeks for the treatment of major depressive disorder. However, they are also prescribed in several additional psychiatric conditions as well as during long-term maintenance treatments. Antidepressants induce adaptive changes in several forebrain structures which include modifications at glutamatergic synapses. We recently found that repetitive administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine to naïve adult male rats induced an increase of mature, mushroom-type dendritic spines in several forebrain regions. This was associated with an increase of GluA2-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPA-Rs) in telencephalic postsynaptic densities. To unravel the functional significance of such a synaptic re-arrangement, we focused on glutamate neurotransmission in the hippocampus. We evaluated the effect of four weeks of 0.7 mg/kg fluoxetine on long-term potentiation (LTP) and long-term depression (LTD) in the CA1 hippocampal subfield. Recordings in hippocampal slices revealed profound deficits in LTP and LTD at Schaffer collateral-CA1 synapses associated to increased spine density and enhanced presence of mushroom-type spines, as revealed by Golgi staining. However, the same treatment had neither an effect on spine morphology, nor on LTP and LTD at perforant path-CA1 synapses. Cobalt staining and immunohistochemical experiments revealed decreased AMPA-R Ca(2+) permeability in the stratum radiatum (s.r.) together with increased GluA2-containing Ca(2+) impermeable AMPA-Rs. Therefore, 4 weeks of fluoxetine treatment promoted structural and functional adaptations in CA1 neurons in a pathway-specific manner that were selectively associated with impairment of activity-dependent plasticity at Schaffer collateral-CA1 synapses.

  18. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  19. Our plastic age

    National Research Council Canada - National Science Library

    Richard C. Thompson; Shanna H. Swan; Charles J. Moore; Frederick S. vom Saal

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production...

  20. Weinig plastic in vissenmaag

    NARCIS (Netherlands)

    Foekema, E.M.

    2012-01-01

    Waar de magen van sommige zeevogels vol plastic zitten, lijken vissen in de Noordzee nauwelijks last te hebben van kunststofafval. Onderzoekers die plastic resten zochten in vissenmagen vonden ze in elk geval nauwelijks.

  1. Ear Plastic Surgery

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ear Plastic Surgery Ear Plastic Surgery Patient Health Information ... they may improve appearance and self-confidence. Can Ear Deformities Be Corrected? Formation of the ear during ...

  2. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness......Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...... of metal components. An optimization of processes and material parameters must be based on a quantification of stress and strain gradients at the surface and in near surface layer where the structural scale can reach few tens of nanometers. For such fine structures it is suggested to quantify structural...

  3. Chemical Recycle of Plastics

    Directory of Open Access Journals (Sweden)

    Sara Fatima

    2014-11-01

    Full Text Available Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  4. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example...

  5. Fundamentals of the theory of plasticity

    CERN Document Server

    Kachanov, L M

    2004-01-01

    Intended for use by advanced engineering students and professionals, this volume focuses on plastic deformation of metals at normal temperatures, as applied to strength of machines and structures. 1971 edition.

  6. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  7. Journal of CHINA PLASTICS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Journal of CHINA PLASTICS was authorized and approved by The State Committee of Science and Technology of China and The Bureau of News Press of China, and published by The China Plastics Processing Industry Association,Beijing Technology and Business University and The Institute of Plastics Processing and Application of Light Industry, distributed worldwide. Since its birth in 1987, CHINA PLASTICS has become a leading magazine in plastics industry in China, a national Chinese core journal and journal of Chinese scientific and technological article statistics. It is covered by CA.

  8. Structural and Functional Plasticity within the Nucleus Accumbens and Prefrontal Cortex Associated with Time-Dependent Increases in Food Cue Seeking Behavior.

    Science.gov (United States)

    Dingess, Paige M; Darling, Rebecca A; Derman, Rifka C; Wulff, Shaun S; Hunter, Melissa L; Ferrario, Carrie R; Brown, Travis E

    2017-03-15

    Urges to consume food can be driven by stimuli in the environment that are associated with previous food experience. Identifying adaptations within brain reward circuits that facilitate cue-induced food seeking is critical for understanding and preventing the overconsumption of food and subsequent weight gain. Utilizing electrophysiological, biochemical, and DiI labeling we examined functional and structural changes in the nucleus accumbens (NAc) and prefrontal cortex (PFC) associated with time-dependent increases in food craving ('incubation of craving'). Rats self-administered 60% high-fat or chow 45 mg pellets and were then tested for incubation of craving either 1 or 30 days after training (1d, 30d). High-fat was chosen for comparison to determine if palatability differentially affected incubation and/or plasticity. Rats showed robust incubation of craving for both food rewards, although responding for cues previously associated with high-fat was greater than chow at both 1d and 30d. In addition, previous experience with high-fat consumption reduced dendritic spine density in the PFC at both time points. In contrast, incubation was associated with an increase in NAc spine density and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated transmission at 30d in both groups. Finally, incubation of craving for chow and high-fat was accompanied by an increase in calcium-permeable and calcium-impermeable AMPARs, respectively. Our results suggest that incubation of food craving alters brain reward circuitry and macronutrient composition specifically induces cortical changes in a way that may facilitate maladaptive food seeking behaviors.Neuropsychopharmacology accepted article preview online, 15 March 2017. doi:10.1038/npp.2017.57.

  9. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  10. Glassy metallic plastics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper reports a class of bulk metallic glass including Ce-, LaCe-, CaLi-, Yb-, and Sr-based metallic glasses, which are regarded as glassy metallic plastics because they combine some unique properties of both plastics and metallic alloys. These glassy metallic plastics have very low glass transition temperature (Tg~25oC to 150oC) and low Young’s modulus (~20 GPa to 35 GPa). Similar to glassy plastics, these metallic plastics show excellent plastic-like deformability on macro-, micro- and even nano-scale in their supercooled liquid range and can be processed, such as elongated, compressed, bent, and imprinted at low temperatures, in hot water for instance. Under ambient conditions, they display such metallic properties as high thermal and electric conductivities and excellent mechanical properties and other unique properties. The metallic plastics have potential applications and are also a model system for studying issues in glass physics.

  11. Astrocyte-Synapse Structural Plasticity

    OpenAIRE

    2014-01-01

    The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmissi...

  12. Interactions between mitochondria and the transcription factor myocyte enhancer factor 2 (MEF2) regulate neuronal structural and functional plasticity and metaplasticity.

    Science.gov (United States)

    Brusco, Janaina; Haas, Kurt

    2015-08-15

    The classical view of mitochondria as housekeeping organelles acting in the background to simply maintain cellular energy demands has been challenged by mounting evidence of their direct and active participation in synaptic plasticity in neurons. Time-lapse imaging has revealed that mitochondria are motile in dendrites, with their localization and fusion and fission events regulated by synaptic activity. The positioning of mitochondria directly influences function of nearby synapses through multiple pathways including control over local concentrations of ATP, Ca(2+) and reactive oxygen species. Recent studies have also shown that mitochondrial protein cascades, classically associated with apoptosis, are involved in neural plasticity in healthy cells. These findings link mitochondria to the plasticity- and metaplasticity-associated activity-dependent transcription factor myocyte enhancer factor 2 (MEF2), further repositioning mitochondria as potential command centres for regulation of synaptic plasticity. Intriguingly, MEF2 and mitochondrial functions appear to be intricately intertwined, as MEF2 is a target of mitochondrial apoptotic caspases and, in turn, MEF2 regulates mitochondrial genome transcription essential for production of superoxidase and hydrogen peroxidase. Here, we review evidence supporting mitochondria as central organelles controlling the spatiotemporal expression of neuronal plasticity, and attempt to disentangle the MEF2-mitochondria relationship mediating these functions. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  13. 大脑皮层内活动依赖的神经环路结构可塑性研究进展%Progress in activity-dependent structural plasticity of neural circuits in cortex

    Institute of Scientific and Technical Information of China (English)

    饶小平; 许智祥; 徐富强

    2012-01-01

    哺乳动物大脑皮层内的神经环路在神经发育、学习记忆、神经和精神疾病过程中表现出令人惊异的结构和功能可塑性.随着新的成像技术及分子生物学方法的应用,在细胞和突触水平上观察活体皮层内神经环路的动态结构变化成为可能,因此近十年来有关活动依赖的神经环路结构可塑性方面的研究进展迅速.该文综述了该方面的部分实验结果,重点阐述个体生长发育、丰富环境、感觉剥夺、病理状态以及学习和记忆等过程和条件下树突的结构可塑性特点,尤其是树突棘的形态和数量变化特征;并简单介绍轴突的结构可塑性,以及结构可塑性相关的分子和细胞机制,最后提出未来该领域内亟待解决的问题.%Neural circuits of mammalian cerebral cortex have exhibited amazing abilities of structural and functional plasticity in development, learning and memory, neurological and psychiatric diseases. With the new imaging techniques and the application of molecular biology methods, observation neural circuits' structural dynamics within the cortex in vivo at the cellular and synaptic level was possible, so there were many great progresses in the field of the activity-dependent structural plasticity over the past decade. This paper reviewed some of the aspects of the experimental results, focused on the characteristics of dendritic structural plasticity in individual growth and development, rich environment, sensory deprivation, and pathological conditions, as well as learning and memory, especially the dynamics of dendritic spines on morphology and quantity; after that, we introduced axonal structural plasticity, the molecular and cellular mechanisms of structural plasticity, and proposed some future problems to be solved at last.

  14. [Survey of plasticizers in polyvinyl chloride toys].

    Science.gov (United States)

    Abe, Yutaka; Yamaguchi, Miku; Mutsuga, Motoh; Hirahara, Yoshichika; Kawamura, Yoko

    2012-01-01

    Plasticizers in 101 samples of polyvinyl chloride (PVC) toys on the Japanese market were surveyed. No phthalates were detected in designated toys, though bis(2-ethylhexyl)phthalate, diisononyl phthalate, diisobutyl phthalate, dibutyl phthalate, diisodecyl phthalate and benzyl butyl phthalate were detected in more than half of other toys. 2,2,4-Tributyl-1,3-pentanediol diisobutylate, o-acetyl tributyl citrate, adipates and diacetyl lauroyl glycerol, which are alternative plasticizers to phthalates, were detected. The results of structural analysis confirmed the presence of di(2-ethylhexyl)terephthalate, tributyl citrate, diisononyl 1,2-cyclohexanedicarboxylate and neopentyl glycol esters; these have not previonsly been reported in Japan. There appears to be a shift in plasticizers used for designated toys from phthalates to new plasticizers, and the number of different plasticizers is increasing.

  15. Plasticity of pressure-sensitive materials

    CERN Document Server

    Ochsner, Andreas

    2014-01-01

    Classical plasticity theory of metals is independent of the hydrostatic pressure. However, if the metal contains voids or pores or if the structure is composed of cells, this classical assumption is no more valid and the influence of the hydrostatic pressure must be incorporated in the constitutive description. Looking at the microlevel, metal plasticity is connected with the uniform planes of atoms organized with long-range order. Planes may slip past each other along their close-packed directions. The result is a permanent change of shape within the crystal and plastic deformation. The presence of dislocations increases the likelihood of planes slipping. Nowadays, the theory of pressure sensitive plasticity is successfully applied to many other important classes of materials (polymers, concrete, bones etc.) even if the phenomena on the micro-level are different to classical plasticity of metals. The theoretical background of this phenomenological approach based on observations on the macro-level is describe...

  16. Plastic Pollution from Ships

    OpenAIRE

    Čulin, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  17. 桩-土-上部结构共同耦合作用下弹塑性地震反应分析%Elasto-Plastic Seismic Response Analysis on Pile-Soil-Structure Interaction

    Institute of Scientific and Technical Information of China (English)

    武黎明; 王子健

    2013-01-01

    The resulting internal forces and displacements are multiplied by reduction factors to obtain the design load.This paper deals with an investigation of the elasto-plastic dynamic characteristics of the superstructure for a frame structure under horizontal seismic excitations where the pile-soil-structure interaction is considered.The results of the investigation indicate that whether or not considering the pile-soil-structure interaction in elasto-plastic seismic response analyses has a great effect on the calculation results.With the consideration of the pile-soil-structure interaction results,the column stresses have amplification on different floors of the building.Therefore,the method using reduction factors to consider the pile-soil-structure interaction is not always safe or reasonable.So the elasto-plastic seismic response should be fully taken into account in design.%针对某框架结构进行了在地震作用下桩-土-上部结构共同耦合作用时的上部结构弹塑性动力特性和规律的研究.结果表明:是否考虑桩-土-上部结构共同耦合作用时的弹塑性地震反应分析对计算结果有较大的影响;考虑桩-土-上部结构共同作用后柱应力在不同的楼层有放大现象,按折减系数方法来考虑相互作用并非总是安全和合理的,设计时应充分考虑弹塑性地震反应的影响.

  18. Brain plasticity and aerobic fitness

    OpenAIRE

    2014-01-01

    Regular aerobic exercise has a wide range of positive effects on health and cognition. Exercise has been demonstrated to provide a particularly powerful and replicable method of triggering a wide range of structural changes within both human and animal brains. However, the details and mechanisms of these changes remain poorly understood. This thesis undertakes a comprehensive examination of the relationship between brain plasticity and aerobic exercise. A large, longitudinal experiment ...

  19. Algorithm for the treatment of the material plastic anisotropy and its introduction into a non-linear structural analysis code (NOSA)

    Energy Technology Data Exchange (ETDEWEB)

    Toselli, G. [ENEA, Centro Ricerche Ezio Clementel, Bologna, (Italy). Dipt. Innovazione; Mirco, A. M. [Bologna Univ., Bologna (Italy). Dipt. di Matematica

    1999-07-01

    In this technical report the thesis of doctor's degree in Mathematics of A.M. Mirco is reported; it has been developed at ENEA research centre 'E. Clementel' in Bologna (Italy) in the frame of a collaboration between the section MACO (Applied Physics Division - Innovation Department) of ENEA at Bologna and the Department of Mathematics of the mathematical, physical and natural sciences faculty of Bologna University. Substantially, studies and research work, developed in these last years at MACO section, are here presented; they have led to the development of a constitutive model, based on Hill potential theory, for the treatment, in plastic field, of metal material anisotropy induced by previous workings and to the construction of the corresponding FEM algorithm for the non-linear structural analysis NOSA, oriented in particular to the numerical simulation of metal forming. Subsequently, an algorithm extension (proper object of the thesis), which has given, beyond a more rigorous formalization, also significant improvements. [Italian] In questo rapporto tecnico viene riportata la tesi di laurea in matematica di A. M. Mirco, tesi svolta presso il centro ricerche E. Clementel dell'ENEA di Bologna nell'ambito di un accordo di collaborazione fra la sezione MACO (Divisione Fisica Applicata - Dipartimento di Innovazione) dell'ENEA di Bologna ed il Dipartimento di matematica della facolta' di scienze matematiche, fisiche e naturali dell'universita' degli studi di Bologna. Sostanzialmente, vengono presentati gli studi ed il lavoro di ricerca, svolti in questi ultimi anni presso la sezione MACO, che hanno portato allo sviluppo di un modello costitutivo, basato sulla teoria del potenziale di Hill, per il trattamento in campo plastico, dell'anisotropia indotta da lavorazioni precedenti per un materiale metallico ed alla costruzione del corrispondente algoritmo basato sul metodo degli elementi finiti per il codice di analisi

  20. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plasti...... as a knowledge handbook for laser welding of plastic components. This document should provide the information for all aspects of plastic laser welding and help the design engineers to take all critical issues into consideration from the very beginning of the design phase....

  1. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  2. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  3. The technology and mechanism of removal of plastic mulch and land preparation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Huiyou; HOU Shulin; NA Mingjun; YANG Xiaoli; BAI Shengnan

    2007-01-01

    In this article ,the characteristic of the field plastic mulch, the craft for mechanization removal and land preparation of plastic mulch and the mechanism frequently used in the removal and land preparation of plastic mulch were introduced, which offered references for the design of removal mechanism and land preparation of plastic mulch and structural optimization combination of working components.

  4. 双色高光成型塑件的结构设计技术%Structure Design Technique of Double-injection High-gloss Surface Plastic Parts

    Institute of Scientific and Technical Information of China (English)

    陈茂顺; 孙玲; 辛勇; 沙华

    2012-01-01

    According to the requirements of double-injection and high gloss plastics injection on structure design, the design methodology of structure with double color and high gloss surface including the main struc ture and join way, shut-off design, bosses, ribs, fillets, hole, etc, were been studied based on conven tional design method. The research lead to the conclusion that three main rules-correspondence of structure, sturdiness of connection and uniformity of wall-thickness, should be followed based on the outstanding charac teristic of double-decker and high-gloss surface of high gloss double-injection plastic part. Finally study used a LCD TV front shell and electrical appliance shell as an example to illustrate structure design of double color high gloss plastic products.%根据双色注塑和高光注塑成型对塑件结构的双重要求,基于和普通塑件结构设计方法的对比,针对双色高光塑件的整体结构、连接方式、防溢设计及凸起、加强筋、圆角、孔等进行研究.结合双色高光塑件的双层结构及表面高光的突出特点,得出其结构设计需遵守结构协调、黏结牢固及壁厚均匀三项原则.并以某液晶电视机前壳和电器外壳结构设计为例,对双色高光塑料制品的结构设计做了具体阐述.

  5. Halos of Plastic

    Institute of Scientific and Technical Information of China (English)

    Maya Reid

    2012-01-01

    The halos that span South Africa's coastline are anything but angelic. Fanning out around four major urban centers-Cape Town, Port Elizabeth, East London and Durban-they are made up of innumerable bits and pieces of plastic. As a form of pollution, their shelflife is unfathomable. Plastic is essentially chemically inactive. It's designed to never break down.

  6. Biodegradation of plastics.

    Science.gov (United States)

    Shimao, M

    2001-06-01

    Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. Recent work has included studies of the distribution of synthetic polymer-degrading microorganisms in the environment, the isolation of new microorganisms for biodegradation, the discovery of new degradation enzymes, and the cloning of genes for synthetic polymer-degrading enzymes.

  7. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups...... answered the first Danish national survey, PD13[1], investigating the importance of industrial designers’ knowledge in plastics and the collaboration between designers and the polymer industry. The plastics industry and the industrial designers collaborate well, but both groups frequently experience...... that the designers’ lack of knowledge concerning polymer materials and manufacturing methods can be problematic or annoying, and design students from most Danish design universities express the need for more contact with the industry and more competencies and tools to handle even simple topics when designing plastic...

  8. Neural plasticity and implications for hand rehabilitation after neurological insult.

    Science.gov (United States)

    Westlake, Kelly P; Byl, Nancy N

    2013-01-01

    Experience dependent plasticity refers to ability of the brain to adapt to new experiences by changing its structure and function. The purpose of this paper is to provide a brief review the neurophysiological and structural correlates of neural plasticity that occur during and following motor learning. We also consider that the extent of plastic reorganization is dependent upon several key principals and that the resulting behavioral consequences can be adaptive or maladaptive. In light of this research, we conclude that an increased understanding of the complexities of brain plasticity will translate into enhanced treatment opportunities for the clinician to optimize hand function.

  9. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of

  10. A Plastic Menagerie

    Science.gov (United States)

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  11. Cortical plasticity and rehabilitation.

    Science.gov (United States)

    Moucha, Raluca; Kilgard, Michael P

    2006-01-01

    The brain is constantly adapting to environmental and endogenous changes (including injury) that occur at every stage of life. The mechanisms that regulate neural plasticity have been refined over millions of years. Motivation and sensory experience directly shape the rewiring that makes learning and neurological recovery possible. Guiding neural reorganization in a manner that facilitates recovery of function is a primary goal of neurological rehabilitation. As the rules that govern neural plasticity become better understood, it will be possible to manipulate the sensory and motor experience of patients to induce specific forms of plasticity. This review summarizes our current knowledge regarding factors that regulate cortical plasticity, illustrates specific forms of reorganization induced by control of each factor, and suggests how to exploit these factors for clinical benefit.

  12. Mechanical plasticity of cells

    Science.gov (United States)

    Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben

    2016-10-01

    Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

  13. Targeting tumour Cell Plasticity

    Institute of Scientific and Technical Information of China (English)

    Elizabeth D. WILLIAMS

    2009-01-01

    @@ Her research is focused on understanding the mechanisms of tumour progression and metastasis, particularly in uro-logical carcinomas (bladder and prostate). Tumour cell plasticity, including epithelial-mesenchymal transition, is a cen-tral theme in Dr Williams' work.

  14. How plastic can phenotypic plasticity be? The branching coral Stylophora pistillata as a model system.

    Directory of Open Access Journals (Sweden)

    Lee Shaish

    Full Text Available Phenotypic plasticity enables multicellular organisms to adjust morphologies and various life history traits to variable environmental challenges. Here, we elucidate fixed and plastic architectural rules for colony astogeny in multiple types of colonial ramets, propagated by cutting from genets of the branching coral Stylophora pistillata from Eilat, the Red Sea. We examined 16 morphometric parameters on 136 one-year old S. pistillata colonies (of seven genotypes, originating from small fragments belonging, each, to one of three single-branch types (single tips, start-up, and advanced bifurcating tips or to structural preparative manipulations (representing a single or two growth axes. Experiments were guided by the rationale that in colonial forms, complexity of evolving phenotypic plasticity can be associated with a degree of structural modularity, where shapes are approached by erecting iterative growth patterns at different levels of coral-colony organization. Analyses revealed plastic morphometric characters at branch level, and predetermined morphometric traits at colony level (only single trait exhibited plasticity under extreme manipulation state. Therefore, under the experimental manipulations of this study, phenotypic plasticity in S. pistillata appears to be related to branch level of organization, whereas colony traits are controlled by predetermined genetic architectural rules. Each level of organization undergoes its own mode of astogeny. However, depending on the original ramet structure, the spherical 3-D colonial architecture in this species is orchestrated and assembled by both developmental trajectories at the branch level, and traits at the colony level of organization. In nature, branching colonial forms are often subjected to harsh environmental conditions that cause fragmentation of colony into ramets of different sizes and structures. Developmental traits that are plastic, responding to fragment structure and are not

  15. Analysisi and Discussion on Structure of Plastic Part for Lithium Battery Pack%浅谈直流工具用锂电池包注塑件结构

    Institute of Scientific and Technical Information of China (English)

    房加强

    2016-01-01

    From the view of the structure of plastic part, this paper analyzes the structural characteristics of the lithium battery pack comprehensively on the market. Based on the application and enclosure type of the built-in lithium battery pack and external lithium battery pack, combined with the problems encountered in the actual production, this paper analyzes the matters what should be pay attention to in the design of the plastic parts of lithium battery pack.%从注塑件结构角度浅述直流工具用锂电池包的结构特点,以内置式锂电池包和外置式锂电池包的分类、应用特点与外壳分型,结合在实际生产中遇到的问题,分析锂电池包各注塑件在设计时应注意的相关事项。

  16. Laser cutting plastic materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  17. Localization of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1976-04-01

    The localization of plastic deformation into a shear band is discussed as an instability of plastic flow and a precursor to rupture. Experimental observations are reviewed, a general theoretical framework is presented, and specific calculations of critical conditions are carried out for a variety of material models. The interplay between features of inelastic constitutive description, especially deviations from normality and vertex-like yielding, and the onset of localization is emphasized.

  18. A development and biological safety evaluation of novel PVC medical devices with surface structures modified by UV irradiation to suppress plasticizer migration.

    Science.gov (United States)

    Haishima, Yuji; Isama, Kazuo; Hasegawa, Chie; Yuba, Toshiyasu; Matsuoka, Atsuko

    2013-09-01

    This study examines the chemical, physicochemical, and biological properties of PVC sheets treated with UV irradiation on their surfaces to suppress the elution of a plasticizer, di-(2-ethylhexyl) phthalate (DEHP), for developing novel polyvinyl chloride (PVC) medical devices. The PVC sheets irradiated under conditions 1 (52.5 μW/cm(2), 136 J/cm(2)) and 2 (0.45 mW/cm(2), 972 J/cm(2)) exhibited considerable toxicity in cytotoxicity tests and chromosome aberration tests due to the generation of DEHP oxidants, but no toxicity was detected in the PVC sheet irradiated under condition 3 (8.3 mW/cm(2), 134 J/cm(2)). The release of DEHP from the surface irradiated under condition 3 was significantly suppressed, and mono-(2-ethylhexyl) phthalate (MEHP) converted from a portion of DEHP could be easily removed from the surface by washing with methanol. The physicochemical properties of the surface regarding the suppression of DEHP elution remained stable through all sterilizations tested, but MEHP elution was partially recrudesced by the sterilizations except for gamma irradiation. These results indicated that UV irradiation using a strong UV-source over a short time (condition 3) followed by methanol washing and gamma sterilization may be useful for preparing novel PVC products that did not elute plasticizers and do not exhibit toxicity originating from UV irradiation.

  19. Development of plastic surgery

    Directory of Open Access Journals (Sweden)

    Pećanac Marija Đ.

    2015-01-01

    Full Text Available Introduction. Plastic surgery is a medical specialty dealing with corrections of defects, improvements in appearance and restoration of lost function. Ancient Times. The first recorded account of reconstructive plastic surgery was found in ancient Indian Sanskrit texts, which described reconstructive surgeries of the nose and ears. In ancient Greece and Rome, many medicine men performed simple plastic cosmetic surgeries to repair damaged parts of the body caused by war mutilation, punishment or humiliation. In the Middle Ages, the development of all medical braches, including plastic surgery was hindered. New age. The interest in surgical reconstruction of mutilated body parts was renewed in the XVIII century by a great number of enthusiastic and charismatic surgeons, who mastered surgical disciplines and became true artists that created new forms. Modern Era. In the XX century, plastic surgery developed as a modern branch in medicine including many types of reconstructive surgery, hand, head and neck surgery, microsurgery and replantation, treatment of burns and their sequelae, and esthetic surgery. Contemporary and future plastic surgery will continue to evolve and improve with regenerative medicine and tissue engineering resulting in a lot of benefits to be gained by patients in reconstruction after body trauma, oncology amputation, and for congenital disfigurement and dysfunction.

  20. Sorting Plastic Waste in Hydrocyclone

    Directory of Open Access Journals (Sweden)

    Ernestas Šutinys

    2011-02-01

    Full Text Available The article presents material about sorting plastic waste in hydrocyclone. The tests on sorting plastic waste were carried out. Also, the findings received from the performed experiment on the technology of sorting plastic waste are interpreted applying an experimental model of the equipment used for sorting plastics of different density.Article in Lithuanian

  1. Influence of plasticizer on the springy structure and property of polyurethane%增塑剂对聚氨酯弹性体结构与性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘旭; 温文宪; 杜春毅; 金美金

    2012-01-01

    实验采用示差扫描量热仪(DSC)、热重分析仪(TGA)、万能材料试验机等手段,研究增塑剂对聚氨酯弹性体结构与性能的影响。研究结果表明,极性增塑剂y-丁内酯(GBL)对微相分离具有较好的促进作用,非极性增塑剂己二酸二辛酯(DOA)对微相分离的促进作用较为微弱;GBL和DOA的加入均能提高聚氨酯材料的耐热性能;GBL和DOA的加入均能降低聚氨酯材料的硬度,其中GBL不降低材料的拉伸强度和撕裂强度,DOA严重损伤材料的拉伸强度和撕裂强度。%Experiments were done with differential scanning calorimeter, thermal gravity analyzer and universal material tester to investi- gate the Influence of plasticizer on the springy structure and property of polyurethane. Results show that polar plasticizer y- butyrolac- tone (GBL) has good promoting function for micro phase separation while non - polar plasticizer di - 1 - octyl adipate (DOA) has weak promoting function for micro phase separation. The addition of GBL and DOA can increase heat resistance of polyurethane and decrease the hardness of polyurethane. GBL does not decrease the tensile strength and tear strength of the material, but DOA seriously damage the tensile strength and tear strength of the material.

  2. Interfacial molecular restructuring of plasticized polymers in water.

    Science.gov (United States)

    Hankett, Jeanne M; Lu, Xiaolin; Liu, Yuwei; Seeley, Emily; Chen, Zhan

    2014-10-07

    Upon water contact, phthalate-plasticized poly(vinyl chloride) (PVC) surfaces are highly unstable because the plasticizer molecules are not covalently bound to the polymer network. As a result, it is difficult to predict how the surface polymer chains and plasticizers may interact with water without directly probing the plastic/water interface in situ. We successfully studied the molecular surface restructuring of 10 wt% and 25 wt% bis 2-ethylhexyl phthalate (DEHP)-plasticized and pure PVC films (deposited on solid substrates) in situ due to water contact using sum frequency generation (SFG) vibrational spectroscopy. SFG spectral signals from both the top and the bottom of the plastic film were obtained simultaneously, so a thin-film model spectral analysis was applied to separately identify the molecular changes of plastics at the surface and the plastic/substrate interface in water. It was found that in water both the structures of the plastic surface and the buried plastic/substrate interface changed. After removing the samples from the water and exposing them to air again, the surface structures did not completely recover. Further SFG experiments confirmed that small amounts of DEHP were transferred into the water. The leached DEHP molecules could reorder and permanently transfer to new surfaces through water contact. Our studies indicate that small amounts of phthalates can transfer from surface to surface through water contact in an overall scope of minutes. This study yields vital new information on the molecular surface structures of DEHP plasticized PVC in water, and the transfer behaviors and environmental fate of plasticizers in polymers.

  3. Plastic collapse load of corroded steel plates

    Indian Academy of Sciences (India)

    Rahbar Ranji Ahmad

    2012-06-01

    Corrosion is one of the detrimental phenomena which reduces strength of structures. It is common practice to assume a uniform thickness reduction for general corrosion. Since the actual corroded plate has rough surfaces, to estimate the remaining strength of corroded structures, typically a much higher level of accuracy is required. The main aim of present work is to study plastic collapse load of corroded steel plates with irregular surfaces under tension. Non-linear finite element method by using computer code ANSYS was employed to determine plastic collapse load. By comparing the results with uniform thickness assumption, a reduction factor was proposed. It is found that by uniform thickness assumption, plastic collapse load of corroded plates are overestimated.

  4. Ventral striatal plasticity and spatial memory.

    Science.gov (United States)

    Ferretti, Valentina; Roullet, Pascal; Sargolini, Francesca; Rinaldi, Arianna; Perri, Valentina; Del Fabbro, Martina; Costantini, Vivian J A; Annese, Valentina; Scesa, Gianluigi; De Stefano, Maria Egle; Oliverio, Alberto; Mele, Andrea

    2010-04-27

    Spatial memory formation is a dynamic process requiring a series of cellular and molecular steps, such as gene expression and protein translation, leading to morphological changes that have been envisaged as the structural bases for the engram. Despite the role suggested for medial temporal lobe plasticity in spatial memory, recent behavioral observations implicate specific components of the striatal complex in spatial information processing. However, the potential occurrence of neural plasticity within this structure after spatial learning has never been investigated. In this study we demonstrate that blockade of cAMP response element binding protein-induced transcription or inhibition of protein synthesis or extracellular proteolytic activity in the ventral striatum impairs long-term spatial memory. These findings demonstrate that, in the ventral striatum, similarly to what happens in the hippocampus, several key molecular events crucial for the expression of neural plasticity are required in the early stages of spatial memory formation.

  5. EXTRUSION DIE CAE OF THE STEEL REINFORCED PLASTIC PIPE

    Institute of Scientific and Technical Information of China (English)

    W.Q. Ma; H.Y. Sun; D.C. Kang; K.D. Zhao

    2004-01-01

    The steel reinforced plastic pipe is a new kind of pressure pipe. It is made up with steel wires and plastic. Because reinforced skeleton of the steel wire increase the complexity of plastic flow during the extrusion phase, the traditional design criteria of extrusion die is not suitable. The study on extrusion die of the kind of pipe is very important step in produce development. Using finite element (FE) method in this paper, the flow rule of molten plastic inside the die has been predicted and a group of optimal structural parameters was obtained. These results are helpful for reducing the design cycle and improve the quality of the final product.

  6. Fire case of brick-wood structural lodging with plastic top and numerical simulation analysis%简易塑料顶棚砖木结构出租房火灾调查

    Institute of Scientific and Technical Information of China (English)

    张小芹; 刘涛

    2011-01-01

    介绍了一起带简易塑料顶棚砖木结构出租房火灾的调查走访和现场勘验过程,总结调查工作的成功经验.利用FDS还原火灾事故的过程.结果显示,塑料顶棚大大加快了室内火灾的发展蔓延,室内人员的有效逃生时间缩短2/3以上,很大程度上增加了室内火灾危险性.%This paper described the on-scene interrogation and fire scene proccssing of a brick-wood structural lodging with plastic top fire cast detailedly, and successful experiences were summairized. Numerical simulation technology was Applied to this fire investigation and reconstructed the process of fire accident. It indicated that plastic top greatly accelerated the development and oversprcad of indoor fire. and shartened two-part of the effectual fleeing time for indoor people, and increased the fire fatalness deeply.

  7. The plastic brain: neoliberalism and the neuronal self.

    Science.gov (United States)

    Pitts-Taylor, Victoria

    2010-11-01

    Neuroscience-based representations and practices of the brain aimed at lay populations present the brain in ways that both affirm biological determinism and also celebrate plasticity, or the brain's ability to change structure and function. Popular uses of neuroscientific theories of brain plasticity are saturated with a neoliberal vision of the subject. Against more optimistic readings of plasticity, I view the popular deployment of plasticity through the framework of governmentality. I describe how popular brain discourse on plasticity opens up the brain to personal techniques of enhancement and risk avoidance, and how it promotes a neuronal self. I situate brain plasticity in a context of biomedical neoliberalism, where the engineering and modification of biological life is positioned as essential to selfhood and citizenship.

  8. Elastic-plastic Time-history Analysis of a Certain Irregular RC Frame Structure%某多层不规则 RC 框架结构的弹塑性时程分析

    Institute of Scientific and Technical Information of China (English)

    张贵文; 张万丽

    2016-01-01

    基于有限元软件 ETABS ,将弹塑性时程分析方法作为主动设计方法,利用其对某地区多层不规则中学建筑进行分析,依据分析结果找到结构薄弱部位,然后采用加大梁柱截面及加支撑两种方式进行结构方案的调整.将调整后的两种结构型式与原纯框架结构进行对比分析,结果表明:层间最大位移较原结构分别减小了57.8%和73.6%;结构周期分别减少了10%和23.5%.弹塑性时程分析方法可以作为一种主动设计手段,指导设计人员有针对性地进行结构方案调整和性能化设计.%Based on the finite element software ETABS,this paper takes elastic-plastic time-history analy-sis as the active design method,using the elastic-plastic time-history analysis to make analysis of a certain multilayer irregular secondary school building.And then it finds the weak structure position according to the analysis results.Then it uses the two methods of the increase of section of beam and column and sup-ports adding to make the adjustment of structural concept.Then,it makes comparative analysis between the two adjusted structure and the original pure framed structure,the maximal displacement between the layers have reduced 57.8% and 73.6% when compared to the original structure,respectively.And the structure pe-riod has reduced 10% and 23.5%,respectively.The results show that:nonlinear time history analysis method can be used as a active design method to guide designers to make structural adjustment and per-formance-based design.

  9. Micromechanical study of plasticity of granular materials

    NARCIS (Netherlands)

    Kruyt, N.P.

    2010-01-01

    Plastic deformation of granular materials is investigated from the micromechanical viewpoint, in which the assembly of particles and interparticle contacts is considered as a mechanical structure. This is done in three ways. Firstly, by investigating the degree of redundancy of the system by compari

  10. Human Maternal Brain Plasticity: Adaptation to Parenting

    Science.gov (United States)

    Kim, Pilyoung

    2016-01-01

    New mothers undergo dynamic neural changes that support positive adaptation to parenting and the development of mother-infant relationships. In this article, I review important psychological adaptations that mothers experience during pregnancy and the early postpartum period. I then review evidence of structural and functional plasticity in human…

  11. Human Maternal Brain Plasticity: Adaptation to Parenting

    Science.gov (United States)

    Kim, Pilyoung

    2016-01-01

    New mothers undergo dynamic neural changes that support positive adaptation to parenting and the development of mother-infant relationships. In this article, I review important psychological adaptations that mothers experience during pregnancy and the early postpartum period. I then review evidence of structural and functional plasticity in human…

  12. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO{sub x}–Al{sub 2}O{sub 3} thin film structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. K.; Chen, T. P., E-mail: echentp@ntu.edu.sg; Liu, P.; Zhang, Q. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, S. G. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Liu, Y. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Lee, P. S. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-06-28

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al{sub 2}O{sub 3}) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al{sub 2}O{sub 3} interface and/or in the Al{sub 2}O{sub 3} layer.

  13. SABIC Innovative Plastics: Be the World Best Plastic Resin Manufacturer

    Institute of Scientific and Technical Information of China (English)

    Jenny Du

    2007-01-01

    @@ "SABIC Innovative Plastics is a global supplier of plastic resins, manufacturing and compounding polycarbonate, ABS, SAN, ASA, PPE, PC/ABS, PBT and PEI resins, as well as the LNP* line of high performance specialty compounds," said Hiroshi Yoshida, the Global Market Director for Electronics of SABIC Innovative Plastics based in Tokyo at the press conference held by SABIC Innovative Plastics, November 8th 2007, Shanghai.

  14. Preserving in Plastic.

    Science.gov (United States)

    Wahla, James

    1985-01-01

    Outlines steps for casting insects in permanent molds prepared from commercially available liquid plastic. Also describes dry mountings in glass, acrylic, and petri dishes. The rationale for specimen use, hints for producing quality results, purchasing information, and safety precautions are considered. (DH)

  15. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of acti

  16. Discrete dislocation plasticity

    NARCIS (Netherlands)

    van der Giessen, E.; Finel, A; Maziere, D; Veron, M

    2003-01-01

    Conventional continuum mechanics models of inelastic deformation processes axe size scale independent. In contrast, there is considerable experimental evidence that plastic flow in crystalline materials is size dependent over length scales of the order of tens of microns and smaller. At present ther

  17. New plastic recycling technology

    Science.gov (United States)

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy de...

  18. Persisting Plastic Addiction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The policy on curbing plastic shopping bag use implemented three years ago has produced mixed results In a bustling farmers’market tucked in a narrow street in Xisanqi residential community in north Beijing,stalls selling vegetables,fruits and other foods line the sidewalk.

  19. Microglia in neuronal plasticity: Influence of stress.

    Science.gov (United States)

    Delpech, Jean-Christophe; Madore, Charlotte; Nadjar, Agnes; Joffre, Corinne; Wohleb, Eric S; Layé, Sophie

    2015-09-01

    The central nervous system (CNS) has previously been regarded as an immune-privileged site with the absence of immune cell responses but this dogma was not entirely true. Microglia are the brain innate immune cells and recent findings indicate that they participate both in CNS disease and infection as well as facilitate normal CNS function. Microglia are highly plastic and play integral roles in sculpting the structure of the CNS, refining neuronal circuitry and connectivity, and contribute actively to neuronal plasticity in the healthy brain. Interestingly, psychological stress can perturb the function of microglia in association with an impaired neuronal plasticity and the development of emotional behavior alterations. As a result it seemed important to describe in this review some findings indicating that the stress-induced microglia dysfunction may underlie neuroplasticity deficits associated to many mood disorders. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.

  20. Plasticity in the Drosophila larval visual System

    Directory of Open Access Journals (Sweden)

    Abud J Farca-Luna

    2013-07-01

    Full Text Available The remarkable ability of the nervous system to modify its structure and function is mostly experience and activity modulated. The molecular basis of neuronal plasticity has been studied in higher behavioral processes, such as learning and memory formation. However, neuronal plasticity is not restricted to higher brain functions, but may provide a basic feature of adaptation of all neural circuits. The fruit fly Drosophila melanogaster provides a powerful genetic model to gain insight into the molecular basis of nervous system development and function. The nervous system of the larvae is again a magnitude simpler than its adult counter part, allowing the genetic assessment of a number of individual genetically identifiable neurons. We review here recent progress on the genetic basis of neuronal plasticity in developing and functioning neural circuits focusing on the simple visual system of the Drosophila larva.

  1. Optical Sensors Based on Plastic Fibers

    Science.gov (United States)

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L.; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented. PMID:23112707

  2. Optical Sensors Based on Plastic Fibers

    Directory of Open Access Journals (Sweden)

    Rogério Nogueira

    2012-09-01

    Full Text Available The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.

  3. Neuronal network plasticity and recovery from depression.

    Science.gov (United States)

    Castrén, Eero

    2013-09-01

    The brain processes sensory information in neuronal networks that are shaped by experience, particularly during early life, to optimally represent the internal and external milieu. Recent surprising findings have revealed that antidepressant drugs reactivate a window of juvenile-like plasticity in the adult cortex. When antidepressant-induced plasticity was combined with appropriate rehabilitation, it brought about a functional recovery of abnormally wired neuronal networks. These observations suggest that antidepressants act permissively to facilitate environmental influence on neuronal network reorganization and so provide a plausible neurobiological explanation for the enhanced effect of combining antidepressant treatment with psychotherapy. The results emphasize that pharmacological and psychological treatments of mood disorders are closely entwined: the effect of antidepressant-induced plasticity is facilitated by rehabilitation, such as psychotherapy, that guides the plastic networks, and psychotherapy benefits from the enhanced plasticity provided by the drug treatment. Optimized combinations of pharmacological and psychological treatments might help make best use of existing antidepressant drugs and reduce the number of treatment-resistant patients. The network hypothesis of antidepressant action presented here proposes that recovery from depression and related mood disorders is a gradual process that develops slowly and is facilitated by structured guidance and rehabilitation.

  4. Investigation of the Structure, Optical and Electrical Properties of Lithium Perchlorate Doped Polyaniline Composite: Aloe Vera Used as a Bio-Plasticizer

    Science.gov (United States)

    Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Sharanappa, Chapi; Raghu, S.; Devendrappa, H.

    2017-08-01

    Bio-plasticizer based polyaniline (PANI)/lithium perchlorate (LiClO4) composites were synthesized by the facile in situ method. The composites were characterized using the Fourier transform infrared spectroscopy (FT-IR) to identify the chemical interactions. A band appeared at 1502 cm-1 due to the presence of the -H2CO- group and CH2 scissor mode vibration for the PAL15% composite. This considerable change in the morphology of LiClO4 homogeneous dispersion in a PANI matrix was investigated by scanning electron microscopy (SEM). The UV-Visible absorption (UV-Vis) showed 300-400 nm attributed to the π-π* transition and exhibited a red shift from 535 nm to 617 nm in the visible region, indicating a decrease in band gap. The variations in dielectric constant with the addition of lithium perchlorate (LiClO4) at different temperatures and in the frequency range of 20 Hz-1 MHz were assessed through impedance analysis. The temperature dependent electrical conductivity increased with increasing temperature as well as dopant concentration. High conductivity of 1.41 × 10-3 S/cm corresponding to activation energy of 0.02 eV and 2.95 eV optical band gap for 15 wt.% of LiClO4 concentration was observed. The cyclic voltammetry measurement revealed a typical rectangular shape of the integral area, suggesting that the composite has strong electrochemical strength and is a possible candidate for electrochemical super capacitor and solar cell applications.

  5. Neuronal plasticity and neurotrophic factors in drug responses.

    Science.gov (United States)

    Castrén, E; Antila, H

    2017-08-01

    Neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF) and other members of the neurotrophin family, are central mediators of the activity-dependent plasticity through which environmental experiences, such as sensory information are translated into the structure and function of neuronal networks. Synthesis, release and action of BDNF is regulated by neuronal activity and BDNF in turn leads to trophic effects such as formation, stabilization and potentiation of synapses through its high-affinity TrkB receptors. Several clinically available drugs activate neurotrophin signaling and neuronal plasticity. In particular, antidepressant drugs rapidly activate TrkB signaling and gradually increase BDNF expression, and the behavioral effects of antidepressants are mediated by and dependent on BDNF signaling through TrkB at least in rodents. These findings indicate that antidepressants, widely used drugs, effectively act as TrkB activators. They further imply that neuronal plasticity is a central mechanism in the action of antidepressant drugs. Indeed, it was recently discovered that antidepressants reactivate a state of plasticity in the adult cerebral cortex that closely resembles the enhanced plasticity normally observed during postnatal critical periods. This state of induced plasticity, known as iPlasticity, allows environmental stimuli to beneficially reorganize networks abnormally wired during early life. iPlasticity has been observed in cortical as well as subcortical networks and is induced by several pharmacological and non-pharmacological treatments. iPlasticity is a new pharmacological principle where drug treatment and rehabilitation cooperate; the drug acts permissively to enhance plasticity and rehabilitation provides activity to guide the appropriate wiring of the plastic network. Optimization of iPlastic drug treatment with novel means of rehabilitation may help improve the efficacy of available drug treatments and expand the use of

  6. 错层板柱与普通板柱结构体系的弹塑性分析%Elastic Plastic Analysis of Staggered Floor Slab Column and Normal Slab Column Structure System

    Institute of Scientific and Technical Information of China (English)

    王杰; 史佳培

    2015-01-01

    错层板柱结构用地率高、层高低、造价节约,在停车库建筑中应用广泛[1]。但错层使楼板错置,削弱了楼板协调结构整体受力的性能。同时形成竖向短构件,受力集中。本文通过时程分析法对对两种结构进行水平地震作用下弹塑性分析,找出错层板柱结构的的抗震薄弱点。%Staggered floor slab column structure has high land use rate, low layer and low cost, so it is widely used in parking building. But the staggered floor will weaken the performance of internal force coordination. At the same time it forms the short component and causes the stress concentration. In this paper, the elastic plastic analysis of two kinds of structure is conducted through the time history analysis under horizontal earthquake action to find out the weak points of the staggered floor slab column structure.

  7. 典型晶格结构FCC/BCC钢的剧烈塑性变形研究现状%Research progress on severe plastic deformation of steels with BCC/FCC crystal structures

    Institute of Scientific and Technical Information of China (English)

    马明; 蔡明晖; 唐正友; 丁桦

    2015-01-01

    晶格结构(体心立方BCC、面心立方FCC及其复合形式)类型对金属材料剧烈塑性变形过程中的晶粒细化机制产生重要影响。本文以不同晶格结构的钢铁材料为对象,重点阐述和总结了不同晶格结构类型及其变形模式差异对剧烈塑性变形过程中晶粒细化理论、组织形貌和力学性能的影响规律,其结果有望为探索剧烈塑性变形工艺过程中的组织细化理论提供一个新途径。%The crystal-structure types of metallic materials such as face-centered cubic ( FCC) and body-centered cubic ( BCC) play a crucial role on ultra-grain refinement during severe plastic deformation ( SPD) . This work will focus on three different types of steels with BCC, FCC, and BCC/FCC crystal structures, and comprehensively discuss and summarize the influence of different crystal - structure types on deformation modes, ultra - grain refinement, microstructure and properties, which will provide a new route to apply and develop this theory to ultra - grain refinement of metallic materials through SPD processing.

  8. Melt rheology and its applications in the plastics industry

    CERN Document Server

    Dealy, John M

    2013-01-01

    This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that wil...

  9. Method of fabricating lightweight honeycomb structures

    Science.gov (United States)

    Goela, Jitendra S. (Inventor); Pickering, Michael (Inventor); Taylor, Raymond L. (Inventor)

    1992-01-01

    A process is disclosed for fabricating lightweight honeycomb type structures out of material such as silicon carbide (SiC) and silicon (S). The lightweight structure consists of a core to define the shape and size of the structure. The core is coated with an appropriate deposit such as SiC or Si to give the lightweight structure strength and stiffness and for bonding the lightweight structure to another surface. The core is fabricated from extremely thin ribs of appropriately stiff and strong material such as graphite. First, a graphite core consisting of an outer hexagonal cell with six inner triangular cells is constructed from the graphite ribs. The graphite core may be placed on the back-up side of a SiC faceplate and then coated with SiC to produce a monolithic structure without the use of any bonding agent. Cores and methods for the fabrication thereof in which the six inner triangular cells are further divided into a plurality of cells are also disclosed.

  10. A two-speed model for finite-strain elasto-plasticity

    OpenAIRE

    Rindler, Filip

    2015-01-01

    This work presents a new modeling approach to macroscopic, polycrystalline elasto-plasticity starting from first principles and a few well-defined structural assumptions, incorporating the mildly rate-dependent (viscous) nature of plastic flow and the microscopic origins of plastic deformations. For the global dynamics, we start from a two-stage time-stepping scheme, expressing the fact that in most real materials plastic flow is much slower than elastic deformations, and then perform a detai...

  11. Sustainable reverse logistics for household plastic waste

    OpenAIRE

    Bing, X

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than that of virgin plastics. Therefore, it is environmentally and economically beneficial to improve the plastic recycling system to ensure more plastic waste from households is properly collected and pr...

  12. Plasticity modeling & computation

    CERN Document Server

    Borja, Ronaldo I

    2013-01-01

    There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.

  13. Low temperature creep plasticity

    Directory of Open Access Journals (Sweden)

    Michael E. Kassner

    2014-07-01

    Full Text Available The creep behavior of crystalline materials at low temperatures (T < 0.3Tm is discussed. In particular, the phenomenological relationships that describe primary creep are reviewed and analyzed. A discussion of the activation energy for creep at T < 0.3Tm is discussed in terms of the context of higher temperature activation energy. The basic mechanism(s of low temperature creep plasticity are discussed, as well.

  14. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Microelectronics plastic molded packaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R. [Ktech Corp., Albuquerque, NM (United States); Palmer, D.W.; Peterson, D.W. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  16. Interfacial interactions between plastic particles in plastics flotation.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation.

  17. Maladaptive synaptic plasticity in L-DOPA-induced dyskinesia

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-12-01

    Full Text Available The emergence of L-DOPA-induced dyskinesia (LID in patients with Parkinson disease (PD could be due to maladaptive plasticity of corticostriatal synapses in response to L-DOPA treatment. A series of recent studies has revealed that LID is associated with marked morphological plasticity of striatal dendritic spines, particularly cell type-specific structural plasticity of medium spiny neurons (MSNs in the striatum. In addition, evidence demonstrating the occurrence of plastic adaptations, including aberrant morphological and functional features, in multiple components of cortico-basal ganglionic circuitry, such as primary motor cortex (M1 and basal ganglia (BG output nuclei. These adaptations have been implicated in the pathophysiology of LID. Here, we briefly review recent studies that have addressed maladaptive plastic changes within the cortico-BG loop in dyskinetic animal models of PD and patients with PD.

  18. Effects of Substrate Temperature on Structural and Optical Properties of Spray-Pyrolyzed Cu(Ga0.3In0.7)Se2 Thin Films on Polyimide Plastic Substrate

    Science.gov (United States)

    Faraj, M. G.; Pakhuruddin, M. Z.; Taboada, P.

    2017-08-01

    Chalcopyrite copper indium gallium diselenide Cu(Ga0.3In0.7)Se2 films have been deposited on polyimide (PI) plastic substrate by chemical spray pyrolysis using different substrate temperatures in the range from 350°C to 395°C. The influence of substrate temperature on the structural and optical properties of the CIGS films was studied. High-resolution x-ray diffraction results revealed that the films exhibited chalcopyrite-type structure. The crystallite size of the films increased with increasing substrate temperature, as did their root-mean-square surface roughness. Optical transmission measurements by ultraviolet-visible (UV-Vis) spectrophotometer showed that the optical bandgap decreased from 1.28 eV to 1.16 eV as the substrate temperature was increased. This variation of the crystallite size and energy bandgap with substrate temperature makes such films a promising candidate for application in optoelectronic devices such as photoconductors and solar cells.

  19. How predictable is plastic damage at the atomic scale?

    Science.gov (United States)

    Li, D.; Bucholz, E. W.; Peterson, G.; Reich, B. J.; Russ, J. C.; Brenner, D. W.

    2017-02-01

    The title of this letter implies two questions: To what degree is plastic damage inherently predictable at the atomic scale, and can this predictability be quantified? We answer these questions by combining image analysis with molecular dynamics (MD) simulation to quantify similarities between atomic structures of plastic damage in a database of strained copper bi-crystals. We show that a manifold of different outcomes can originate ostensibly from the same initial structure, but that with this approach complex plastic damage within this manifold can be statistically connected to the initial structure. Not only does this work introduce a powerful approach for analyzing MD simulations of a complex plastic damage but also provides a much needed and critical framework for analyzing and organizing atomic-scale microstructural databases.

  20. Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation.

    Science.gov (United States)

    Getz, Melissa M; Andrews, Andy J; Fierke, Carol A; Al-Hashimi, Hashim M

    2007-02-01

    The P4 helix is an essential element of ribonuclease P (RNase P) that is believed to bind catalytically important metals. Here, we applied a combination of NMR residual dipolar couplings (RDCs) and a recently introduced domain-elongation strategy for measuring "motionally decoupled" relaxation data to characterize the structural dynamics of the P4 helix from Bacillus subtilis RNase P. In the absence of divalent ions, the two P4 helical domains undergo small amplitude (approximately 13 degrees) collective motions about an average interhelical angle of 10 degrees. The highly conserved U7 bulge and helical residue C8, which are proposed to be important for substrate recognition and metal binding, are locally mobile at pico- to nanosecond timescales and together form the pivot point for the collective domain motions. Chemical shift mapping reveals significant association of Mg2+ ions at the P4 major groove near the flexible pivot point at residues (A5, G22, G23) previously identified to bind catalytically important metals. The Mg2+ ions do not, however, significantly alter the structure or dynamics of P4. Analysis of results in the context of available X-ray structures of the RNA component of RNase P and structural models that include the pre-tRNA substrate suggest that the internal motions observed in P4 likely facilitate adaptive changes in conformation that take place during folding and substrate recognition, possibly aided by interactions with Mg2+ ions. Our results add to a growing view supporting the existence of functionally important internal motions in RNA occurring at nanosecond timescales.

  1. Use of recycled plastics in wood plastic composites - a review.

    Science.gov (United States)

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs.

  2. Nonlinear Progressive Collapse Analysis Including Distributed Plasticity

    Directory of Open Access Journals (Sweden)

    Mohamed Osama Ahmed

    2016-01-01

    Full Text Available This paper demonstrates the effect of incorporating distributed plasticity in nonlinear analytical models used to assess the potential for progressive collapse of steel framed regular building structures. Emphasis on this paper is on the deformation response under the notionally removed column, in a typical Alternate Path (AP method. The AP method employed in this paper is based on the provisions of the Unified Facilities Criteria – Design of Buildings to Resist Progressive Collapse, developed and updated by the U.S. Department of Defense [1]. The AP method is often used for to assess the potential for progressive collapse of building structures that fall under Occupancy Category III or IV. A case study steel building is used to examine the effect of incorporating distributed plasticity, where moment frames were used on perimeter as well as the interior of the three dimensional structural system. It is concluded that the use of moment resisting frames within the structural system will enhance resistance to progressive collapse through ductile deformation response and that it is conserative to ignore the effects of distributed plasticity in determining peak displacement response under the notionally removed column.

  3. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  4. Plastic Surgery and Suicide: A Clinical Guide for Plastic Surgeons.

    Science.gov (United States)

    Reddy, Vikram; Coffey, M Justin

    2016-08-01

    Several studies have identified an increased risk of suicide among patient populations which a plastic surgeon may have a high risk of encountering: women undergoing breast augmentation, cosmetic surgery patients, and breast cancer patients. No formal guidelines exist to assist a plastic surgeon when faced with such a patient, and not every plastic surgery team has mental health clinicians that are readily accessible for consultation or referral. The goal of this clinical guide is to offer plastic surgeons a set of practical approaches to manage potentially suicidal patients. In addition, the authors review a screening tool, which can assist surgeons when encountering high-risk patients.

  5. Tree plastic bark

    OpenAIRE

    Casado Arroyo, Carlos

    2016-01-01

    “Tree plastic bark" consiste en la realización de una intervención artística en un entorno natural concreto, generando de esta manera un Site Specific(1). Como hace alusión Rosalind Krauss en sus reflexiones “La escultura en el campo expandido”(2), comenta que su origen esta claramente ligado con el concepto de monumentalidad. La escultura es un monumento, se crea para conmemorar algún hecho o personaje relevante y está realizada para una ubicación concreta. La investigación parte de la id...

  6. Fabrication of plastic biochips

    Energy Technology Data Exchange (ETDEWEB)

    Saaem, Ishtiaq; Ma, Kuo-Sheng; Alam, S. Munir; Tian Jingdong [Department of Biomedical Engineering and Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708 (United States); Department of Medicine and Human Vaccine Institute, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering and Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708 (United States)

    2010-07-15

    A versatile surface functionalization procedure based on rf magnetron sputtering of silica was performed on poly(methylmethacrylate), polycarbonate, polypropylene, and cyclic olefin copolymers (Topas 6015). The hybrid thermoplastic surfaces were characterized by x-ray photoelectron spectrometer analysis and contact angle measurements. The authors then used these hybrid materials to perform a sandwich assay targeting an HIV-1 antibody using fluorescent detection and biotinylated peptides immobilized using the bioaffinity of biotin-neutravidin. They found a limit of detection similar to arrays on glass surfaces and believed that this plastic biochip platform may be used for the development of disposable immunosensing and diagnostic applications.

  7. 世茂深坑酒店结构弹塑性时程分析%Elastic-plastic time-history analysis on the structure of Shimao Chasm Hotel

    Institute of Scientific and Technical Information of China (English)

    哈敏强; 陆益鸣; 陆道渊; 任涛; 黄良

    2011-01-01

    世茂深坑酒店主体建筑依崖壁建造,为独特的上下两点支承结构体系。与考虑行波效应的多点输入不同,需要考虑幅值差的多点输入地震反应,相应的多点输入采用了位移时程波而不是加速度时程波。结构采用钢管混凝土柱框架-支撑结构体系,钢管混凝土柱的非线性力学性能指标应用了"统一理论"。运用SAP2000和ABAQUS有限元分析软件,重点分析了在罕遇地震作用下结构弹塑性时程响应。%Shimao Chasm Hotel is constructed along the cliff,and both sides of the structure are supported.Unlike the seismic analysis considering traveling effect,the time-history seismic analysis considering the difference of amplitude was carried out.Earthquake time-history of displacement was used,rather than time-history of acceleration.This building adopts the braced steel frame structural system with concrete-filled steel tube(CFST) column.'Unified Theory of CFST' was applied for obtaining the nonlinear composite characteristics indexes.Using the finite element program software SAP2000 and ABAQUS,the elastic-plastic reaction of the structure during severe earthquake was analyzed.

  8. 门式刚架结构整体弹塑性时程分析%Dynamic elas-to-plastic time-history analysis of the portal frame of whole structural

    Institute of Scientific and Technical Information of China (English)

    邵雪超; 李启才; 苏明周

    2012-01-01

    As the portal frame of light steel structure extensive application, the seismic performance pay for attention. However, at present,the research on seismic behavior of portal frame is lack, the relative standards on seismic design are also not well treated, which lead to the application of this structure is limited in high seismic areas. In this paper,dynamic elas-to-plastic time-history analysis of the portal frame of two frames,is simulated by ANSYS program a-large-scale integrated general-purpose finite element analysis software, through with a hinged frame and experimental data contrast,analysing the portal frame structure under earthquake effect reaction. And, it gets some useful conclusions in regard to engineers and technicians. To provide the reference for the following the theoretical analysis and engineering practice.%随着门式刚架轻钢结构的广泛应用,其抗震性能得到关注,但是目前门式刚架结构抗震性能方面的研究还相对较少,相关规范规程对其抗震设计的规定也不够细致,制约着这种结构形式在高烈度抗震设防地区的应用.本文利用ANSYS软件对由两榀刚架组成的整体结构进行弹塑性时程分析,通过与一榀刚架和实验数据的对比,分析门式刚架结构在地震作用下的反应,并得出一些有用的结论,对以后的理论分析和工程实践提供参考.

  9. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  10. The commercialization of plastic surgery.

    Science.gov (United States)

    Swanson, Eric

    2013-09-01

    The last decade has brought a major challenge to the traditional practice of plastic surgery from corporations that treat plastic surgery as a commercial product and market directly to the public. This corporate medicine model may include promotion of a trademarked procedure or device, national advertising that promises stunning results, sales consultants, and claims of innovation, superiority, and improved safety. This article explores the ethics of this business practice and whether corporate medicine is a desirable model for patients and plastic surgeons.

  11. Nonlinear Progressive Collapse Analysis Including Distributed Plasticity

    OpenAIRE

    Mohamed Osama Ahmed; Imam Zubair Syed; Khattab Rania

    2016-01-01

    This paper demonstrates the effect of incorporating distributed plasticity in nonlinear analytical models used to assess the potential for progressive collapse of steel framed regular building structures. Emphasis on this paper is on the deformation response under the notionally removed column, in a typical Alternate Path (AP) method. The AP method employed in this paper is based on the provisions of the Unified Facilities Criteria – Design of Buildings to Resist Progressive Collapse, develop...

  12. A Theory of Rate-Dependent Plasticity

    Science.gov (United States)

    1984-05-01

    impact conditions, where a considerable amount of plastic work is liberated as heat, this athermal assumption becomes increasingly poor for defining...crystal microplasticity use a variety of parameters, such as mobile dislocation density and velocity, all of which are eventually related in some manner... impact problems and are not generally encountered in structural integrity analyses. Some final observations concerning tests of material at constant

  13. Ventral striatal plasticity and spatial memory

    OpenAIRE

    Ferretti, Valentina; Roullet, Pascal; Sargolini, Francesca; Rinaldi, Arianna; Perri, Valentina; Del Fabbro, Martina; Costantini, Vivian J. A.; ANNESE, VALENTINA; Scesa, Gianluigi; De Stefano, Maria Egle; Oliverio, Alberto; Mele, Andrea

    2010-01-01

    Spatial memory formation is a dynamic process requiring a series of cellular and molecular steps, such as gene expression and protein translation, leading to morphological changes that have been envisaged as the structural bases for the engram. Despite the role suggested for medial temporal lobe plasticity in spatial memory, recent behavioral observations implicate specific components of the striatal complex in spatial information processing. However, the potential occurrence of neural plasti...

  14. AUGMENTATION-RELATED BRAIN PLASTICITY

    Directory of Open Access Journals (Sweden)

    Giovanni eDi Pino

    2014-06-01

    Full Text Available Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyzes the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain.Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools.Augmentation modifies function and structure of a number of areas, i.e. primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the

  15. Multiscale modeling and synaptic plasticity.

    Science.gov (United States)

    Bhalla, Upinder S

    2014-01-01

    Synaptic plasticity is a major convergence point for theory and computation, and the process of plasticity engages physiology, cell, and molecular biology. In its many manifestations, plasticity is at the hub of basic neuroscience questions about memory and development, as well as more medically themed questions of neural damage and recovery. As an important cellular locus of memory, synaptic plasticity has received a huge amount of experimental and theoretical attention. If computational models have tended to pick specific aspects of plasticity, such as STDP, and reduce them to an equation, some experimental studies are equally guilty of oversimplification each time they identify a new molecule and declare it to be the last word in plasticity and learning. Multiscale modeling begins with the acknowledgment that synaptic function spans many levels of signaling, and these are so tightly coupled that we risk losing essential features of plasticity if we focus exclusively on any one level. Despite the technical challenges and gaps in data for model specification, an increasing number of multiscale modeling studies have taken on key questions in plasticity. These have provided new insights, but importantly, they have opened new avenues for questioning. This review discusses a wide range of multiscale models in plasticity, including their technical landscape and their implications.

  16. Plastics recycling: challenges and opportunities

    National Research Council Canada - National Science Library

    Jefferson Hopewell; Robert Dvorak; Edward Kosior

    2009-01-01

    .... Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public...

  17. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2010-07-15

    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  18. Raman and AFM study of gamma irradiated plastic bottle sheets

    Science.gov (United States)

    Ali, Yasir; Kumar, Vijay; Sonkawade, R. G.; Dhaliwal, A. S.

    2013-02-01

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV 60Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  19. Plastics in the North Atlantic garbage patch: A boat-microbe for hitchhikers and plastic degraders.

    Science.gov (United States)

    Debroas, Didier; Mone, Anne; Ter Halle, Alexandra

    2017-12-01

    Plastic is a broad name given to different polymers with high molecular weight that impact wildlife. Their fragmentation leads to a continuum of debris sizes (meso to microplastics) entrapped in gyres and colonized by microorganisms. In the present work, the structure of eukaryotes, bacteria and Archaea was studied by a metabarcoding approach, and statistical analysis associated with network building was used to define a core microbiome at the plastic surface. Most of the bacteria significantly associated with the plastic waste originated from non-marine ecosystems, and numerous species can be considered as hitchhikers, whereas others act as keystone species (e.g., Rhodobacterales, Rhizobiales, Streptomycetales and Cyanobacteria) in the biofilm. The chemical analysis provides evidence for a specific colonization of the polymers. Alphaproteobacteria and Gammaproteobacteria significantly dominated mesoplastics consisting of poly(ethylene terephthalate) and polystyrene. Polyethylene was also dominated by these bacterial classes and Actinobacteria. Microplastics were made of polyethylene but differed in their crystallinity, and the majorities were colonized by Betaproteobacteria. Our study indicated that the bacteria inhabiting plastics harboured distinct metabolisms from those present in the surrounding water. For instance, the metabolic pathway involved in xenobiotic degradation was overrepresented on the plastic surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Erythropoietin in plastic surgery].

    Science.gov (United States)

    Günter, C I; Rezaeian, F; Harder, Y; Lohmeyer, J A; Egert, S; Bader, A; Schilling, A F; Machens, H-G

    2013-04-01

    EPO is an autologous hormone, which is known to regulate erythropoiesis. For 30 years it has been used for the therapy of diverse forms of anaemia, such as renal anaemia, tumour-related anaemias, etc. Meanwhile, a multitude of scientific publications were able to demonstrate its pro-regenerative effects after trauma. These include short-term effects such as the inhibition of the "primary injury response" or apoptosis, and mid- and long-term effects for example the stimulation of stem cell recruitment, growth factor production, angiogenesis and re-epithelialisation. Known adverse reactions are increases of thromboembolic events and blood pressure, as well as a higher mortality in patients with tumour anaemias treated with EPO. Scientific investigations of EPO in the field of plastic surgery included: free and local flaps, nerve regeneration, wound healing enhancement after dermal thermal injuries and in chronic wounds.Acute evidence for the clinical use of EPO in the field of plastic surgery is still not satisfactory, due to the insufficient number of Good Clinical Practice (GCP)-conform clinical trials. Thus, the initiation of more scientifically sound trials is indicated.

  1. Optogenetics and synaptic plasticity.

    Science.gov (United States)

    Xie, Yu-feng; Jackson, Michael F; Macdonald, John F

    2013-11-01

    The intricate and complex interaction between different populations of neurons in the brain has imposed limits on our ability to gain detailed understanding of synaptic transmission and its integration when employing classical electrophysiological approaches. Indeed, electrical field stimulation delivered via traditional microelectrodes does not permit the targeted, precise and selective control of neuronal activity amongst a varied population of neurons and their inputs (eg, cholinergic, dopaminergic or glutamatergic neurons). Recently established optogenetic techniques overcome these limitations allowing precise control of the target neuron populations, which is essential for the elucidation of the neural substrates underlying complex animal behaviors. Indeed, by introducing light-activated channels (ie, microbial opsin genes) into specific neuronal populations, optogenetics enables non-invasive optical control of specific neurons with milliseconds precision. These approaches can readily be applied to freely behaving live animals. Recently there is increased interests in utilizing optogenetics tools to understand synaptic plasticity and learning/memory. Here, we summarize recent progress in applying optogenetics in in the study of synaptic plasticity.

  2. Three-Dimensional Structure of CAP-Gly Domain of Mammalian Dynactin Determined by Magic Angle Spinning NMR Spectroscopy: Conformational Plasticity and Interactions with End Binding Protein EB1

    Science.gov (United States)

    Yan, Si; Hou, Guangjin; Schwieters, Charles D.; Ahmed, Shubbir; Williams, John C.; Polenova, Tatyana

    2013-01-01

    Microtubules (MTs) and their associated proteins (MAPs) play important roles in vesicle and organelle transport, cell motility and cell division. Perturbation of these processes by mutation typically gives rise to severe pathological conditions. In our efforts to obtain atomic information on MAP/MT interactions with the goal to understand mechanisms that might potentially assist in the development of treatments for these diseases, we have determined the 3D structure of CAP-Gly domain of mammalian dynactin by MAS NMR spectroscopy. We observe two conformations in the β2 strand encompassing residues T43-V44-A45, residues that are adjacent to the disease associated mutation, G59S. Upon binding of CAP-Gly to microtubule plus-end tracking protein EB1, the CAP-Gly shifts to a single conformer. We find extensive chemical shift perturbations in several stretches of residues of CAP-Gly upon binding to EB1, from which we define accurately the CAP-Gly/EB1 binding interface. We also observe that the loop regions may exhibit unique flexibility, especially in the GKNDG motif, which participates in the microtubule binding. This study in conjunction with our previous reports suggests that conformational plasticity is an intrinsic property of CAP-Gly likely due to its unusually high loop content and may be required for its biological functions. PMID:23648839

  3. 钢框架结构基于能量的塑性设计方法%Study of energy-based plastic design method on steel frame structures

    Institute of Scientific and Technical Information of China (English)

    胡淑军; 王湛

    2016-01-01

    以“强柱弱梁”的屈服机理为前提,结合建筑抗震设计规范和能量平衡原理得到结构的基底剪力和各楼层的剪力,提出钢框架结构基于能量的塑性设计方法。该方法还需预先确定结构在罕遇地震下的目标位移和耗能折减系数η,并通过塑性设计法对各构件进行设计。利用Perform-3D软件对所设计结构进行非线性动力时程分析。研究结果表明:该方法可设计不同抗震设防烈度下的钢框架结构,且无需进行复杂的计算和迭代,就能使结构满足多遇及罕遇地震下的预定功能。%The energy-based plastic design method of steel frame structures was proposed based on the‘strong column weak beam’ energy dissipation and yield mechanism under the inelastic seismic behaviors. The base shear and lateral force distribution were derived from modified energy balance equation and the code for seismic design of buildings. Moreover, the pre-selected target drift and the reduced energy dissipation coefficient η were also important to the proposed method, and all the elements were obtained by plastic design method. Nonlinear dynamic time-history analysis was carried out by Perform-3D. The results show that the frames with different seismic precautionary intensities designed by the proposed method can exhibit expected functions during frequent and rare earthquake without complicated iteration and calculation.

  4. Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: Does host genotype limit phenotypic plasticity?

    Science.gov (United States)

    Barshis, D.J.; Stillman, J.H.; Gates, R.D.; Toonen, R.J.; Smith, L.W.; Birkeland, C.

    2010-01-01

    The degree to which coral reef ecosystems will be impacted by global climate change depends on regional and local differences in corals' susceptibility and resilience to environmental stressors. Here, we present data from a reciprocal transplant experiment using the common reef building coral Porites lobata between a highly fluctuating back reef environment that reaches stressful daily extremes, and a more stable, neighbouring forereef. Protein biomarker analyses assessing physiological contributions to stress resistance showed evidence for both fixed and environmental influence on biomarker response. Fixed influences were strongest for ubiquitin-conjugated proteins with consistently higher levels found in back reef source colonies both pre and post-transplant when compared with their forereef conspecifics. Additionally, genetic comparisons of back reef and forereef populations revealed significant population structure of both the nuclear ribosomal and mitochondrial genomes of the coral host (FST = 0.146 P < 0.0001, FST = 0.335 P < 0.0001 for rDNA and mtDNA, respectively), whereas algal endosymbiont populations were genetically indistinguishable between the two sites. We propose that the genotype of the coral host may drive limitations to the physiological responses of these corals when faced with new environmental conditions. This result is important in understanding genotypic and environmental interactions in the coral algal symbiosis and how corals may respond to future environmental changes. ?? 2010 Blackwell Publishing Ltd.

  5. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than th

  6. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than

  7. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than th

  8. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  9. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  10. Plasmonic metasurfaces for coloration of plastic consumer products.

    Science.gov (United States)

    Clausen, Jeppe S; Højlund-Nielsen, Emil; Christiansen, Alexander B; Yazdi, Sadegh; Grajower, Meir; Taha, Hesham; Levy, Uriel; Kristensen, Anders; Mortensen, N Asger

    2014-08-13

    We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large-area structurally colored plastic surfaces robust to daily life handling. We utilize the hybridization between LSPR modes in aluminum nanodisks and nanoholes to design and fabricate bright angle-insensitive colors that may be tuned across the entire visible spectrum.

  11. Plasmonic Metasurfaces for Coloration of Plastic Consumer Products

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik; Højlund-Nielsen, Emil; Christiansen, Alexander Bruun;

    2014-01-01

    We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large......-area structurally colored plastic surfaces robust to daily life handling. We utilize the hybridization between LSPR modes in aluminum nanodisks and nanoholes to design and fabricate bright angle-insensitive colors that may be tuned across the entire visible spectrum....

  12. Musical Training Induces Functional Plasticity in Human Hippocampus

    OpenAIRE

    2010-01-01

    Training can change the functional and structural organization of the brain, and animal models demonstrate that the hippocampus formation is particularly susceptible to training-related neuroplasticity. In humans, however, direct evidence for functional plasticity of the adult hippocampus induced by training is still missing. Here, we used musicians' brains as a model to test for plastic capabilities of the adult human hippocampus. By using functional magnetic resonance imaging optimized for ...

  13. A unified theory of plastic buckling of columns and plates

    Science.gov (United States)

    Stowell, Elbridge Z

    1948-01-01

    On the basis of modern plasticity considerations, a unified theory of plastic buckling applicable to both columns and plates has been developed. For uniform compression, the theory shows that long columns which bend without appreciable twisting require the tangent modulus and that long flanges which twist without appreciable bending require the secant modulus. Structures that both bend and twist when they buckle require a modulus which is a combination of the secant modulus and the tangent modulus. (author)

  14. Polymeric plasticizer extends the lifetime of PVC-membrane ion-selective electrodes.

    Science.gov (United States)

    Zahran, Elsayed M; New, Andrea; Gavalas, Vasilis; Bachas, Leonidas G

    2014-02-21

    The nature of the plasticizer plays a pivotal role in the analytical performance of polymer membrane ion sensors. Conventional plasticizers suffer leaching or migration from the membrane and exudation, both of which could limit the lifetime of sensors based on plasticized membranes. Herein, we describe the use of polyester sebacate (PES), a model polymeric plasticizer, in the preparation of poly (vinyl chloride) (PVC) membrane ion-selective electrodes (ISEs) using valinomycin as ionophore. PVC membrane electrodes plasticized with polyester sebacate demonstrated potentiometric response characteristics that compared favorably to ones plasticized with the conventional and similarly structured plasticizer bis(2-ethylhexyl) sebacate (DOS). Increasing the content of polyester sebacate in the membrane enhanced the response and improved the selectivity of valinomycin-based ISEs toward potassium over sodium. Various methods, including electrochemical impedance spectroscopy, UV-vis spectroscopy, dark field optical microscopy, and potentiometry were employed to study the effect of plasticizer on the leaching of the membrane components and the lifetime of both DOS- and PES-plasticized membranes. PES-plasticized electrodes maintained Nernstian response and high selectivity for more than four months, an improvement over DOS-plasticized membrane electrodes. This was attributed to enhanced retention of the membrane components because of the high polymeric nature of the polyester sebacate. These characteristics suggest that polyester sebacate is a good candidate to replace the conventional plasticizers in preparing PVC membrane electrodes with longer lifetime.

  15. Dislocation dynamics simulations of plasticity at small scales

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Caizhi [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  16. Plastic in North Sea Fish

    NARCIS (Netherlands)

    Foekema, E.M.; Gruijter, de C.; Mergia, M.T.; Franeker, van J.A.; Murk, A.J.; Koelmans, A.A.

    2013-01-01

    To quantify the occurrence of ingested plastic in fish species caught at different geographical positions in the North Sea, and to test whether the fish condition is affected by ingestion of plastics, 1203 individual fish of seven common North Sea species were investigated: herring, gray gurnard, wh

  17. The scope of plastic surgery

    African Journals Online (AJOL)

    2013-08-03

    Aug 3, 2013 ... areas of surgery (especially general surgery), plastic surgeons are arguably the .... Who do you feel are experts in laparoscopic surgery? e (general surgeons) a. Maxillofacial .... of pressure sore. ORIF = open reduction internal fixation. ... Plastic versus cosmetic surgery: What's the difference? Plast Reconstr.

  18. New Life for Old Plastics

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Recycling joint venture utilizes innovative technology to reuse plastics Recycling,despite its green connotations,can be a messy business.In China,more than 400,000 companies are engaged in plastic recycling,but 70 percent of them are family enterprises,

  19. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...

  20. Architecture of European Plastic Surgery

    NARCIS (Netherlands)

    Nicolai, J. -P. A.; Banic, A.; Molea, G.; Mazzola, R.; Poell, J. G.

    2006-01-01

    The architecture of European Plastic Surgery was published in 1996 [Nicolai JPA, Scuderi N. Plastic surgical Europe in an organogram. Eur J Plast Surg 1996; 19: 253-6.] It is the objective of this paper to update information of that article. Continuing medical education (CME), science, training,

  1. A novel biobased polyester plasticizer prepared from palm oil and its plasticizing effect on poly (vinyl chloride)

    OpenAIRE

    Jia Puyou; Zhang Meng; Hu Lihong; Zhou Yonghong

    2016-01-01

    In this study, palm oil was the first time to convert into a novel polyester plasticizer for polyvinyl chloride (PVC). In the first stage, palm oil was converted into palm oil monoglyceride (POM) by alcoholysis with glycerol. Next, a novel palm oil monoglycerides based polyester plasticizer (POMP) was synthesized from POM and maleic anhydride through esterification and condensation reaction. The structure of POMP was characterized with FTIR, 1H NMR and GPC. Then PVC blends were prepared using...

  2. Synthesis, characterization, thermal and computational studies of novel tetra-azido compounds as energetic plasticizers

    Science.gov (United States)

    Baghersad, Mohammad Hadi; Habibi, Azizollah; Heydari, Akbar

    2017-02-01

    In this paper, four azido compounds have been synthesized and characterized as new energetic plasticizers. Nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, elemental analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and differential thermal analysis (DTA) have been used to identify and determine the properties of the synthesized plasticizers. The plasticization effect of plasticizers on glycidyl azide polymer (GAP) has been investigated by viscosity measurements and thermal analysis of the prepolymer-plasticizer mixtures and plasticized binders. The plasticized mixtures were cured by a diisocyanate curing agent and the glass transition temperature and decomposition temperature of the cured polyurethane binders were measured. Thermal analysis of the prepolymer-plasticizer and cured polymer mixtures showed that the synthesized plasticizers are completely compatible with the GAP binder and have a very good plasticizing effect. Furthermore, equilibrium geometry and heats of formation of each of the plasticizer molecules were obtained using the thermochemical T1 recipe, which is available in wave function Spartan software. Comparing empirical heats of combustion and calculated heats of combustion by using the heats of formation showed that the suggested optimum molecular structure by the T1 recipe has a high similarity to the real molecular structure of these molecules.

  3. Universal features of amorphous plasticity

    Science.gov (United States)

    Budrikis, Zoe; Castellanos, David Fernandez; Sandfeld, Stefan; Zaiser, Michael; Zapperi, Stefano

    2017-07-01

    Plastic yielding of amorphous solids occurs by power-law distributed deformation avalanches whose universality is still debated. Experiments and molecular dynamics simulations are hampered by limited statistical samples, and although existing stochastic models give precise exponents, they require strong assumptions about fixed deformation directions, at odds with the statistical isotropy of amorphous materials. Here, we introduce a fully tensorial, stochastic mesoscale model for amorphous plasticity that links the statistical physics of plastic yielding to engineering mechanics. It captures the complex shear patterning observed for a wide variety of deformation modes, as well as the avalanche dynamics of plastic flow. Avalanches are described by universal size exponents and scaling functions, avalanche shapes, and local stability distributions, independent of system dimensionality, boundary and loading conditions, and stress state. Our predictions consistently differ from those of mean-field depinning models, providing evidence that plastic yielding is a distinct type of critical phenomenon.

  4. Phenotypic Plasticity and Species Coexistence.

    Science.gov (United States)

    Turcotte, Martin M; Levine, Jonathan M

    2016-10-01

    Ecologists are increasingly interested in predicting how intraspecific variation and changing trait values impact species interactions and community composition. For many traits, much of this variation is caused by phenotypic plasticity, and thus the impact of plasticity on species coexistence deserves robust quantification. Partly due to a lack of sound theoretical expectations, empirical studies make contradictory claims regarding plasticity effects on coexistence. Our critical review of this literature, framed in modern coexistence theory, reveals that plasticity affects species interactions in ways that could impact stabilizing niche differences and competitive asymmetries. However, almost no study integrates these measures to quantify the net effect of plasticity on species coexistence. To address this challenge, we outline novel empirical approaches grounded in modern theory.

  5. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  6. Neural plasticity lessons from disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Athena eDemertzi

    2011-02-01

    Full Text Available Communication and intentional behavior are supported by the brain’s integrity at a structural and a functional level. When widespread loss of cerebral connectivity is brought about as a result of a severe brain injury, in many cases patients are not capable of conscious interactive behavior and are said to suffer from disorders of consciousness (e.g., coma, vegetative state /unresponsive wakefulness syndrome, minimally conscious states. This lesion paradigm has offered not only clinical insights, as how to improve diagnosis, prognosis and treatment, but also put forward scientific opportunities to study the brain’s plastic abilities. We here review interventional and observational studies performed in severely brain-injured patients with regards to recovery of consciousness. The study of the recovered conscious brain (spontaneous and/or after surgical or pharmacologic interventions, suggests a link between some specific brain areas and the capacity of the brain to sustain conscious experience, challenging at the same time the notion of fixed temporal boundaries in rehabilitative processes. Altered functional connectivity, cerebral structural reorganization as well as behavioral amelioration after invasive treatments will be discussed as the main indices for plasticity in these challenging patients. The study of patients with chronic disorders of consciousness may, thus, provide further insights not only at a clinical level (i.e., medical management and rehabilitation but also from a scientific-theoretical perspective (i.e., the brain’s plastic abilities and the pursuit of the neural correlate of consciousness.

  7. Neural plasticity lessons from disorders of consciousness.

    Science.gov (United States)

    Demertzi, Athena; Schnakers, Caroline; Soddu, Andrea; Bruno, Marie-Aurélie; Gosseries, Olivia; Vanhaudenhuyse, Audrey; Laureys, Steven

    2010-01-01

    Communication and intentional behavior are supported by the brain's integrity at a structural and a functional level. When widespread loss of cerebral connectivity is brought about as a result of a severe brain injury, in many cases patients are not capable of conscious interactive behavior and are said to suffer from disorders of consciousness (e.g., coma, vegetative state/unresponsive wakefulness syndrome, minimally conscious states). This lesion paradigm has offered not only clinical insights, as how to improve diagnosis, prognosis, and treatment, but also put forward scientific opportunities to study the brain's plastic abilities. We here review interventional and observational studies performed in severely brain-injured patients with regards to recovery of consciousness. The study of the recovered conscious brain (spontaneous and/or after surgical or pharmacologic interventions), suggests a link between some specific brain areas and the capacity of the brain to sustain conscious experience, challenging at the same time the notion of fixed temporal boundaries in rehabilitative processes. Altered functional connectivity, cerebral structural reorganization as well as behavioral amelioration after invasive treatments will be discussed as the main indices for plasticity in these challenging patients. The study of patients with chronic disorders of consciousness may, thus, provide further insights not only at a clinical level (i.e., medical management and rehabilitation) but also from a scientific-theoretical perspective (i.e., the brain's plastic abilities and the pursuit of the neural correlate of consciousness).

  8. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  9. Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics.

    Science.gov (United States)

    Freschauf, Lauren R; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces.

  10. PLASTIC LIMIT LOAD ANALYSIS OF DEFECTIVE PIPELINES

    Institute of Scientific and Technical Information of China (English)

    ChenGang; LiuYinghua; XuBingye

    2003-01-01

    The integrity assessment of defective pipelines represents a practically important task of structural analysis and design in various technological areas, such as oil and gas industry, power plant engineering and chemical factories. An iterative algorithm is presented for the kinematic limit analysis of 3-D rigid-perfectly plastic bodies. A numerical path scheme for radial loading is adopted to deal with complex multi-loading systems. The numerical procedure has been applied to carry out the plastic collapse analysis of pipelines with part-through slot under internal pressure, bending moment and axial force. The effects of various shapes and sizes of part-through slots on the collapse loads of pipelines are systematically investigated and evaluated. Some typical failure modes corresponding to different configurations of slots and loading forms are studied.

  11. Evolution of dislocation cells during plastic deformation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-min; SUN Yan-rui; ZHOU Hai-tao

    2005-01-01

    In recent years,materials with ultrafine grain size(UFG) have attracted much attention.By using severe plastic deformation(SPD) techniques,materials with fine grain size as small as 200-250 nm have been obtained.However,the nature of the grain boundaries has not been theoretically understood.It is still an unsolved question whether or not finer grain sizes down to 100 nm could be reached.A semi-quantitative model for the evolution of dislocation cells in plastic deformation was proposed.The linear stability analysis of this model leads to some interesting results,which facilitate the understanding of the formation of cell structures and of the factors determining the lower limit of the cell size of SPD materials.

  12. Nonlinear plastic modes in disordered solids.

    Science.gov (United States)

    Gartner, Luka; Lerner, Edan

    2016-01-01

    We propose a theoretical framework within which a robust micromechanical definition of precursors to plastic instabilities, often termed soft spots, naturally emerges. They are shown to be collective displacements (modes) z[over ̂] that correspond to local minima of a barrier function b(z[over ̂]), which depends solely on inherent structure information. We demonstrate how some heuristic searches for local minima of b(z[over ̂]) can a priori detect the locus and geometry of imminent plastic instabilities with remarkable accuracy, at strains as large as γ_{c}-γ∼10^{-2} away from the instability strain γ_{c}. Our findings suggest that the a priori detection of the entire field of soft spots can be effectively carried out by a systematic investigation of the landscape of b(z[over ̂]).

  13. [Gingival recessions and periodontal plastic surgery].

    Science.gov (United States)

    de Quincey, G de; Padmos, J A D; Renkema, A M

    2015-11-01

    Periodontal plastic surgery is defined as the set of surgical procedures that are performed to prevent or correct developmental disorders and anatomical, traumatic and pathological abnormalities of the gingiva, alveolar mucosa, and alveolar bone. Root coverage procedures fall under this term and have been applied for more than fifty years with varying degrees of success. There are several indications for the treatment of gingival recessions. When the treatment of choice - a conservative approach - offers no solace (any more), gingival recessions can be treated by applying periodontal plastic surgery. The goal of this surgery is complete recovery of the anatomical structures in the area of the recession. To this end several surgical techniques have been developed during the last decades. The choice of a particular technique depends on various factors, such as the number of defects, their size and the amount of keratinized gingiva around the defect.

  14. Plasticity and beyond microstructures, crystal-plasticity and phase transitions

    CERN Document Server

    Hackl, Klaus

    2014-01-01

    The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

  15. A novel biobased polyester plasticizer prepared from palm oil and its plasticizing effect on poly (vinyl chloride

    Directory of Open Access Journals (Sweden)

    Jia Puyou

    2016-03-01

    Full Text Available In this study, palm oil was the first time to convert into a novel polyester plasticizer for polyvinyl chloride (PVC. In the first stage, palm oil was converted into palm oil monoglyceride (POM by alcoholysis with glycerol. Next, a novel palm oil monoglycerides based polyester plasticizer (POMP was synthesized from POM and maleic anhydride through esterification and condensation reaction. The structure of POMP was characterized with FTIR, 1H NMR and GPC. Then PVC blends were prepared using POMP as a plasticizer, melting behavior, thermal property, compatibility, mechanical properties and mechanism of plasticization of PVC blends were systematically studied. Melting behavior indicated that POMP could decrease the torque and the melt viscosity of PVC blends that was conducive to process. With the content of POMP increasing from 5 g to 15 g in PVC blends, the plasticized PVC blends demonstrated better compatibility, the degradation temperature (Td increased from 252.6°C to 257.0°C, the glass transition temperature (Tg decreased from 55°C to 49.5°C. Plasticization was put into effect by interaction of the electron cloud between the PVC chain and POMP molecule. This study may lead to the development of new type of PVC plasticizer based on vegetable oil.

  16. Aqueous leaching of di-2-ethylhexyl phthalate and "green" plasticizers from poly(vinyl chloride).

    Science.gov (United States)

    Kastner, Joshua; Cooper, David G; Marić, Milan; Dodd, Patrick; Yargeau, Viviane

    2012-08-15

    A method was developed to assess leaching of several poly(vinyl chloride) (PVC) plasticizers in aqueous media using gas chromatography (GC), and compared to a gravimetric standard test method (ASTM Method D1239). The GC method was a more direct measurement of plasticizer concentration in the aqueous phase. The leaching of commercial plasticizers, as well as several series of "green" candidate plasticizers, were assessed as a function of their molecular characteristics and compared to the industry standard PVC plasticizer, di-2-ethylhexyl phthalate (DEHP). It was found that plasticizers containing longer alkyl chains or non-polar branching emanating from polar structural units, increased the hydrophobicity of the molecule and reduced its aqueous leaching rate. Several "green" plasticizer candidates were found to minimize aqueous leaching to rates ten times below that of DEHP; notably dioctyl succinate (DOS), dihexyl maleate (DHM), methyl cyclohexyl diester (MCDE), diethylhexyl succinate (DEHS), hexanediol dibenzoate (C6), and the commercially available Hexamoll® DINCH.

  17. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review.

    Science.gov (United States)

    Xanthos, Dirk; Walker, Tony R

    2017-02-18

    Marine plastic pollution has been a growing concern for decades. Single-use plastics (plastic bags and microbeads) are a significant source of this pollution. Although research outlining environmental, social, and economic impacts of marine plastic pollution is growing, few studies have examined policy and legislative tools to reduce plastic pollution, particularly single-use plastics (plastic bags and microbeads). This paper reviews current international market-based strategies and policies to reduce plastic bags and microbeads. While policies to reduce microbeads began in 2014, interventions for plastic bags began much earlier in 1991. However, few studies have documented or measured the effectiveness of these reduction strategies. Recommendations to further reduce single-use plastic marine pollution include: (i) research to evaluate effectiveness of bans and levies to ensure policies are having positive impacts on marine environments; and (ii) education and outreach to reduce consumption of plastic bags and microbeads at source.

  18. 不同类型运动项目对运动员大脑结构可塑性变化研究%Structural Brain Plasticity Change in Athletes Associated with Different Sports

    Institute of Scientific and Technical Information of China (English)

    吴殷; 张剑; 曾雨雯; 沈城

    2015-01-01

    In this paper ,using functional magnetic resonance imaging and voxel based morphom‐etry ,we compared the brain gray matter structure differences of 13 badminton players ,13 bas‐ketball player and 16 non‐athletes .The results show that the gray matter volume in the pre‐central gyrus ,left inferior parietal lobule ,postcentral gyrus ,left orbitofrontal cortex ,superior temporal gyrus of athletes were significantly higher than that of non‐athletes ,showing that long term training for different sports cause the brain structure of athletes of different sports to produce similar plasticity changes .In addition ,the results showed the gray matter volume in the left inferior frontal gyrus ,left superior parietal lobule and left precuneus of the badminton athletes increased significantly compared to basketball athlete ;and the gray matter volume in the inferior temporal gyrus ,left middle frontal gyrus ,left inferior frontal gyrus ,cingulate gyrus of the insula of basketball player increased significantly compared to badminton players ,show‐ing that the specific sports have impact on structure of the brain of athletes of different sports .%采用功能磁共振成像技术,基于体素形态测量学,比较了13名羽毛球运动员、13名篮球运动员和16名非运动员的大脑灰质结构差异。结果表明,运动员在双侧中央前回、左侧顶下小叶、中央后回、眶额回、颞上回灰质体积显著大于非运动员,显示长期的运动训练会对不同运动项目的运动员大脑产生相似的可塑性变化。羽毛球运动员相比于篮球运动员在左侧额下回、左侧顶上小叶、左侧楔前叶灰质体积有显著增大;篮球运动员相对于羽毛球运动员在颞下回、左侧额中回、左侧额下回、扣带回中部、脑岛灰质体积差异显著,显示不同运动项目运动员大脑结构存在运动项目特异性。

  19. The regulation of myoblast plasticity and its mechanism

    Institute of Scientific and Technical Information of China (English)

    Peng ZHANG; Xiao-ping CHEN

    2012-01-01

    The development of skeletal muscle is a highly regulated,multi-step process in which pluripotent mesodermal cells give rise to myoblasts that subsequently withdraw from the cell cycle and differentiate into myotubes as well as myofibers.The plasticity of myoblasts plays a critical role in maintaining skeletal muscle structure and function by myoblast activation,migration,adhesion,membrane reorganization,nuclear fusion,finally forming myotubes/myofibers.Our studies demonstrate that the local hypoxic microenvironment,a great diversity of regulatory factors such as IL-6 superfamily factors (IL-6,LIF,CNTF) and TGF-β1 could regulate the myoblast plasticity.The aim of this paper is to review the previous studies focused on the regulation of myoblast plasticity and its mechanism in our laboratory.Knowledge about the microenvironment or factors involved in regulating the myoblast plasticity will help develop the prevention and cure measures of skeletal muscle diseases.

  20. Simplified theory of plastic zones based on Zarka's method

    CERN Document Server

    Hübel, Hartwig

    2017-01-01

    The present book provides a new method to estimate elastic-plastic strains via a series of linear elastic analyses. For a life prediction of structures subjected to variable loads, frequently encountered in mechanical and civil engineering, the cyclically accumulated deformation and the elastic plastic strain ranges are required. The Simplified Theory of Plastic Zones (STPZ) is a direct method which provides the estimates of these and all other mechanical quantities in the state of elastic and plastic shakedown. The STPZ is described in detail, with emphasis on the fact that not only scientists but engineers working in applied fields and advanced students are able to get an idea of the possibilities and limitations of the STPZ. Numerous illustrations and examples are provided to support the reader's understanding.

  1. Evaluation of biodegradable plastics for rubber seedling applications

    Science.gov (United States)

    Mansor, Mohd Khairulniza; Dayang Habibah A. I., H.; Kamal, Mazlina Mustafa

    2015-08-01

    The main negative consequence of conventional plastics in agriculture is related to handling the wastes plasticand the associated environmental impact. Hence, a study of different types of potentially biodegradable plastics used for nursery applications have been evaluated on its mechanical,water absorption propertiesand Fourier transform infra-red (FTIR) spectroscopy. Supplied samples from different companies were designated as SF, CF and CO. Most of the polybags exhibited mechanical properties quite similar to the conventional plastics (polybag LDPE). CO polybag which is based on PVA however had extensively higher tensile strength and water absorption properties. FTIR study revealed a characteristics absorbance of conventional plastic, SF, CF and CO biodegradable polybag are associated with polyethylene, poly(butylene adipate-co-terephthalate) (PBAT), polyethylene and polyvinyl alcohol (PVA) structures respectively.

  2. Plastic masters-rigid templates for soft lithography.

    Science.gov (United States)

    Desai, Salil P; Freeman, Dennis M; Voldman, Joel

    2009-06-07

    We demonstrate a simple process for the fabrication of rigid plastic master molds for soft lithography directly from (poly)dimethysiloxane devices. Plastics masters (PMs) provide a cost-effective alternative to silicon-based masters and can be easily replicated without the need for cleanroom facilities. We have successfully demonstrated the use of plastics micromolding to generate both single and dual-layer plastic structures, and have characterized the fidelity of the molding process. Using the PM fabrication technique, world-to-chip connections can be integrated directly into the master enabling devices with robust, well-aligned fluidic ports directly after molding. PMs provide an easy technique for the fabrication of microfluidic devices and a simple route for the scaling-up of fabrication of robust masters for soft lithography.

  3. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  4. Phenotypic plasticity, costs of phenotypes, and costs of plasticity

    DEFF Research Database (Denmark)

    Callahan, Hilary S; Maughan, Heather; Steiner, Uli

    2008-01-01

    Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns...... of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both...... types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic...

  5. Earthquake excited elasto-plastic structures

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Heuer, R.

    1996-01-01

    to the associated linear system, and this work is used as a basis in trying to extend the model to several degrees of freedom. The system is modelled as a modal system with lumped masses and given stiffnesses and modal damping ratios. The system can be describecl as a shear-wall building with elasto...... deformations in terms of density functions. Since these works show promising results it was decided to verify the results through experiments. The test-model is made as a 4-degree-of-freedom shear-wall building. This report describes the experimental setup, determination of system parameters and calculation...

  6. Biodegradable plastics from renewable sources.

    Science.gov (United States)

    Flieger, M; Kantorová, M; Prell, A; Rezanka, T; Votruba, J

    2003-01-01

    Plastic waste disposal is a huge ecotechnological problem and one of the approaches to solving this problem is the development of biodegradable plastics. This review summarizes data on their use, biodegradability, commercial reliability and production from renewable resources. Some commercially successful biodegradable plastics are based on chemical synthesis (i.e. polyglycolic acid, polylactic acid, polycaprolactone, and polyvinyl alcohol). Others are products of microbial fermentations (i.e. polyesters and neutral polysaccharides) or are prepared from chemically modified natural products (e.g., starch, cellulose, chitin or soy protein).

  7. Plastics recycling: challenges and opportunities

    OpenAIRE

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to pro...

  8. Circadian Regulation of Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Marcos G. Frank

    2016-07-01

    Full Text Available Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity.

  9. PLASMA GASIFICATION OF WASTE PLASTICS

    Directory of Open Access Journals (Sweden)

    Tadeusz Mączka

    2013-01-01

    Full Text Available The article presents the process of obtaining liquid fuels and fuel gas in the process of plasma processing of organic materials, including waste plastics. The concept of plasma pyrolysis of plastics was presented and on its basis a prototype installation was developed. The article describes a general rule of operating the installation and its elements in the process and basic operation parameters determined during its start-up. Initial results of processing plastics and the directions further investigations are also discussed. The effect of the research is to be the design of effective technology of obtaining fuels from gasification/pyrolysis of organic waste and biomass.

  10. 芯壳结构竹塑复合材料断口冲击强度的分形表征%Fractal characterization of impact strength fracture of bamboo plastic composites with core-shell structure

    Institute of Scientific and Technical Information of China (English)

    羡瑜; 王翠翠; 王戈; 程海涛

    2015-01-01

    为了定量表征不同壳层材料对芯壳结构竹塑复合材料冲击断口复杂程度的影响,以造纸剩余物竹屑和高密度聚乙烯(high density polyethylene,HDPE)作为芯层材料,以纯HDPE、竹浆纤维/HDPE、纳米碳酸钙/HDPE和白泥/HDPE分别作为壳层材料,采用熔融共挤工艺制备芯壳结构竹塑复合材料。在室温(23℃)环境下,测试了复合材料无缺口冲击强度,采用扫描电镜对4种不同壳层材料断口进行形貌分析,基于分形理论和图像处理技术,运用像素点法计算了复合材料的冲击断口表面分形维数,考察了复合材料断口表面分形维数和冲击强度的关系。结果表明,不同壳层材料的芯壳结构竹塑复合材料冲击断口表面分形维数存在一定差异,壳层为HDPE的复合材料断口表面分形维数最大,为2.2204,壳层为白泥/ HDPE的分形维数最小,为2.2075。不同壳层复合材料冲击断口表面分形维数拟合曲线的决定系数均大于0.98,说明复合材料断口表面分形特征显著。并且,复合材料断口表面分形维数与冲击强度之间拟合曲线的决定系数为0.9857,近似呈指数函数关系。研究结果为进一步深入研究芯壳结构竹塑复合材料的表面微观结构提供参考。%In order to study the rupture mechanism of the bamboo plastic composites (BPCs) with core-shell structure, in this paper bamboo residue fibers and high density polyethylene (HDPE) were used as materials of core layer; HDPE, bamboo pulp fibers/HDPE, nano-CaCO3/HDPE and white mud/HDPE, were respectively used as materials of shell layer to manufacture the BPCs with core-shell structure by coextrusion technology. The ratios of bamboo pulp fibers, nano-CaCO3 and white mud to HDPE in the shell layer structure were to be 10:90 respectively. To present the theoretical relationship between fractal dimensions (D) and the impact strength (δ), and analyze the effects

  11. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  12. Thermoinduced plastic flow and shape memory effects

    Directory of Open Access Journals (Sweden)

    Xiao Heng

    2011-01-01

    Full Text Available We propose an enhanced form of thermocoupled J2-flow models of finite deformation elastoplasticity with temperature-dependent yielding and hardening behaviour. The thermomechanical constitutive structure of these models is rendered free and explicit in the rigorous sense of thermodynamic consistency. Namely, with a free energy function explicitly introduced in terms of almost any given form of the thermomechanical constitutive functions, the requirements from the second law are identically fulfilled with positive internal dissipation. We study the case when a dependence of yielding and hardening on temperature is given and demonstrate that thermosensitive yielding with anisotropic hardening may give rise to appreciable plastic flow either in a process of heating or in a cyclic process of heating/cooling, thus leading to the findings of one- and two-way thermoinduced plastic flow. We then show that such theoretical findings turn out to be the effects found in shape memory materials, such as one- and two-way memory effects. Thus, shape memory effects may be explained to be thermoinduced plastic flow resulting from thermosensitive yielding and hardening behaviour. These and other relevant facts may suggest that, from a phenomenological standpoint, thermocoupled elastoplastic J2-flow models with thermosensitive yielding and hardening may furnish natural, straightforward descriptions of thermomechanical behaviour of shape memory materials.

  13. Effect of different plasticizers on the structure and properties of TPS under the condition of high-speed mixing%高速混合条件下不同增塑剂对热塑性淀粉结构及性能的影响

    Institute of Scientific and Technical Information of China (English)

    孟令; 曹龙奎

    2011-01-01

    目的:研究在一定高速混合温度下增塑剂种类对材料的结构与性能产生的影响,为今后TPS在降解材料领域的应用提供依据.方法:通过高速混合的方法制得三种不同增塑剂(甘油、甲酰胺、尿素)增塑的热塑性淀粉(TPS)样品,对保存在室温及65RH%湿度下的样品的各项性能进行测试.结果:SEM结果说明:增塑剂能在一定程度上破坏和改变淀粉颗粒的形态.XRD测试表明:甲酰胺塑化的TPS(FPTPS)和尿素塑化的TPS(UPTPS)的耐回生性能好于甘油塑化的TPS(GPTPS).TG测试表明:三种塑化剂塑化的热塑性淀粉的热稳定性次序为甘油甲酰胺>甘油.结论:甲酰胺和尿素作为淀粉增塑剂,其塑化的热塑性淀粉的综合性能要优于甘油.%Purpose:The influences of the type of plasticizers on the structure and properties were studied in a certain temperature of high-speed mixing, in order to supply valuable information for the application of TPS as degradable material.Methods: The TPS materials with three different plasticizers ( glycerol, formamide, urea) were produced by high-speed mixing.The samples used in various tests were stored under normal temperature and 65RH% relative humidity.Results:SEM suggested that plasticizers can be damaged and change the form of starch granules to a certain extent.Results of XRD demonstrated that the retrogradation-resistant properties of the FPTPS and the UPTPS was better than the GPTPS.TG showed that the thermal stability of the TPS of three kinds of plasticizer plasticized was glycerol < formamide < urea.FTIR revealed the ability of forming hydrogen bonds between the three plasticizers and starch was: urea > formamide > glycerol.Conclusion: Comprehensive performance of the thermoplastic starch which formamide and urea plasticized was superior to glycerol.

  14. Knowledge representation of rock plastic deformation

    Science.gov (United States)

    Davarpanah, Armita; Babaie, Hassan

    2017-04-01

    The first iteration of the Rock Plastic Deformation (RPD) ontology models the semantics of the dynamic physical and chemical processes and mechanisms that occur during the deformation of the generally inhomogeneous polycrystalline rocks. The ontology represents the knowledge about the production, reconfiguration, displacement, and consumption of the structural components that participate in these processes. It also formalizes the properties that are known by the structural geology and metamorphic petrology communities to hold between the instances of the spatial components and the dynamic processes, the state and system variables, the empirical flow laws that relate the variables, and the laboratory testing conditions and procedures. The modeling of some of the complex physio-chemical, mathematical, and informational concepts and relations of the RPD ontology is based on the class and property structure of some well-established top-level ontologies. The flexible and extensible design of the initial version of the RPD ontology allows it to develop into a model that more fully represents the knowledge of plastic deformation of rocks under different spatial and temporal scales in the laboratory and in solid Earth. The ontology will be used to annotate the datasets related to the microstructures and physical-chemical processes that involve them. This will help the autonomous and globally distributed communities of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and enhanced data integration and software interoperability.

  15. Strength of Plastics,

    Science.gov (United States)

    evaluating the strength of structural elements is examined. The book is intended for design engineers, factory laboratory personnel, scientific research workers, and the design institutes. (Author-PL)

  16. The Research and Application of Plastic Extrusion Die Head Flow Structure CAD System%塑料挤出模头流道结构CAD系统研究与应用

    Institute of Scientific and Technical Information of China (English)

    张良; 刘雪红; 唐红涛; 郭顺生; 罗易彬; 李力

    2015-01-01

    塑料异型材流线型挤出模头形状复杂,模腔表面要求平滑过渡,无滞料,流速要求稳定增加,其结构设计和曲面设计难度大,目前主要依赖于设计者的经验和操作者的熟练程度,设计效率低,无法满足越来越高的整体质量要求。针对以上问题,提出了模具内腔结构曲面的三维建模方法,基于UG和VS平台,应用UG/Open二次开发和MFC技术,实现了多封闭环快速识别,草图曲线一键排序,通过人机交互界面进行曲线匹配和曲面构造,从而搭建了从二维草图到三维建模的CAD集成模块,有效地提高了挤出模流道曲面设计效率和质量,并为后续CAE分析和CAM加工提供有力支撑。%Plastic profile streamlined extrusion die head has a complex shape. For the die cavity surface,smooth transition, no lag material,and stability of the flowing velocity are required. It makes the design of structure and surface is difficult and because of depending on the designer’experience and proficiency of the operator,the design efficiency is low and it can’t meet higher and higher requirement of overall quality. To solve the above problems,the curved die design method of the cavity structure is proposed. Based on the UG and VC platform,UG/Open secondary development and MFC technology were used,fast recognition algorithm of a multi-closed loop and one-click sorting of the sketch curve were realized,and through the human-computer interaction to match curves and construct surface,and CAD integration module from 2 D sketch to 3 D modeling was set up,the efficiency of extrusion die flow surface design is effectively improved,and it provides strong support for CAE analysis and CAM processing.

  17. Plasticity and creep of metals

    CERN Document Server

    Rusinko, Andrew

    2011-01-01

    Here is a systematic presentation of the postulates, theorems and principles of mathematical theories of plasticity and creep in metals, and their applications. Special attention is paid to analysis of the advantages and shortcomings of the classical theories.

  18. American Society of Plastic Surgeons

    Science.gov (United States)

    ... PRS PRS GO PSN PSEN GRAFT Contact Us Cosmetic Surgery New procedures and advanced technologies offer plastic surgery ... David Berman MD 14 Pidgeon Hill Drive Berman Cosmetic Surgery & S... Sterling, VA 20165 Website Franklin Richards MD Suite ...

  19. Plastic deformation of nanocrystalline nickel

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline (NC) Ni subject to cold rolling at liquid nitrogen temperature. The activation of grain-boundary-mediated-plasticity is evidenced in NC-Ni, including twinning and formation of stacking fault via partial dislocation slips from the grain boundary. The formation and storage of 60? full dislocations are observed inside NC-grains. The grain/twin boundaries act as the barriers of dislocation slips, leading to dislocation pile-up, severe lattice distortion, and formation of sub-grain boundary. The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation. The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.

  20. Plastic deformation of nanocrystalline nickel

    Institute of Scientific and Technical Information of China (English)

    WU XiaoLei

    2009-01-01

    A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline(NC)Ni subject to cold rolling at liquid nitrogen temperature.The acti vation of grain-boundary-mediated-plasticity is evidenced in NC-Ni,including twinning and formation of stacking fault via partial dislocation slips from the grain boundary.The formation and storage of 60° full dislocations are observed inside NC-grains.The grain/twin boundaries act as the barriers of dislocation slips,leading to dislocation pile-up,severe lattice distortion,and formation of sub-grain boundary.The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation.The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.

  1. Globally Oriented Chinese Plastics Industry

    Institute of Scientific and Technical Information of China (English)

    Liao Zhengpin

    2004-01-01

    @@ Through continued endeavor and persistent opening to the whole world the Chinese plastics industry has been developed into a comprehensive industrial system that forms the basic material industries side by side with the steel, cement and the timber industry.

  2. The contribution of phenotypic plasticity to complementary light capture in plant mixtures.

    Science.gov (United States)

    Zhu, Junqi; van der Werf, Wopke; Anten, Niels P R; Vos, Jan; Evers, Jochem B

    2015-09-01

    Interspecific differences in functional traits are a key factor for explaining the positive diversity-productivity relationship in plant communities. However, the role of intraspecific variation attributable to phenotypic plasticity in diversity-productivity relationships has largely been overlooked. By taking a wheat (Triticum aestivum)-maize (Zea mays) intercrop as an elementary example of mixed vegetation, we show that plasticity in plant traits is an important factor contributing to complementary light capture in species mixtures. We conceptually separated net biodiversity effect into the effect attributable to interspecific trait differences and species distribution (community structure effect), and the effect attributable to phenotypic plasticity. Using a novel plant architectural modelling approach, whole-vegetation light capture was simulated for scenarios with and without plasticity based on empirical plant trait data. Light capture was 23% higher in the intercrop with plasticity than the expected value from monocultures, of which 36% was attributable to community structure and 64% was attributable to plasticity. For wheat, plasticity in tillering was the main reason for increased light capture, whereas for intercropped maize, plasticity induced a major reduction in light capture. The results illustrate the potential of plasticity for enhancing resource acquisition in mixed stands, and indicate the importance of plasticity in the performance of species-diverse plant communities.

  3. Computational materials science: Nanoscale plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2002-01-01

    How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour.......How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour....

  4. Sorting Techniques for Plastics Recycling

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents the basic principles of three different types of separating methods and a general guideline for choosing the most effective method for sorting plastic mixtures. It also presents the results of the tests carried out for separation of PVC, ABS and PET from different kinds of plastic mixtures in order to improve the grade of the raw input used in mechanical or feedstock recycling.

  5. Plastic bronchitis: a management challenge.

    Science.gov (United States)

    Eberlein, Michael H; Drummond, Michael B; Haponik, Edward F

    2008-02-01

    Plastic bronchitis is an uncommon and underdiagnosed entity, characterized by recurrent expectoration of large, branching bronchial casts. We describe a 39-year-woman with no prior lung disease who had episodic wheezing, severe dyspnea with expectoration of large and thick secretions, branching in appearance, which she described as resembling squid. A comprehensive evaluation revealed no specific cause and a diagnosis of idiopathic plastic bronchitis was made. In plastic bronchitis the bronchial casts may vary in size from small segmental casts of a bronchus to casts filling the airways of an entire lung. Plastic bronchitis can therefore present as an acute life-threatening emergency if mechanical obstruction of major airways occurs. The casts are differentiated into type I, inflammatory casts, or type II, acellular casts. The type I inflammatory casts are often associated with bronchial disease and often have an acute presentation. The acellular type of cast production is often chronic or recurrent. Numerous systemic illnesses are associated with plastic bronchitis, but often, as in our patient, no underlying cause can be identified. The treatment of plastic bronchitis includes acute therapy to aid the removal and expectoration of casts, and specific short- or long-term treatments attempting to address the underlying hypersecretory process. The therapeutic options are supported only by anecdotal evidence based on case reports as the rarity and heterogeneity of plastic bronchitis confounds systematic investigations of its treatment. Improved understanding of the regulation of mucus production may allow for new treatment options in plastic bronchitis and other chronic lung diseases characterized by hypersecretion of mucus.

  6. ARE PLASTIC GROCERY BAGS SACKING THE ENVIRONMENT?

    OpenAIRE

    Mangal Gogte

    2009-01-01

    This paper is oriented on analysis impacts of plastic bags on environment. In this paper is analyzed did plastic bags are so harmful, and what are the main ingredients of it. One part of this paper is oriented on effects of plastic bags and management of their usage. There is also made comparative analysis between impacts of plastic and paper bags on environment.

  7. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Ditlevsen, Ove Dalager

    1996-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  8. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-Thomsen, S.; Ditlevsen, Ove Dalager

    1999-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  9. 49 CFR 192.281 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  10. 49 CFR 192.59 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  11. The Story of the Plastics Industry.

    Science.gov (United States)

    Masson, Don, Ed.

    This is an illustrated informative booklet, designed to serve members of the Society of the Plastics Industry, Inc., and the plastics industry as a whole. It provides basic information about the industry's history and growth, plastics raw materials, typical uses of plastics, properties, and methods of processing and fabricating. (Author/DS)

  12. Deformation mechanisms of plasticized starch materials.

    Science.gov (United States)

    Mikus, P-Y; Alix, S; Soulestin, J; Lacrampe, M F; Krawczak, P; Coqueret, X; Dole, P

    2014-12-19

    The aim of this paper is to understand the influence of plasticizer and plasticizer amount on the mechanical and deformation behaviors of plasticized starch. Glycerol, sorbitol and mannitol have been used as plasticizers. After extrusion of the various samples, dynamic mechanical analyses and video-controlled tensile tests have been performed. It was found that the nature of plasticizer, its amount as well as the aging of the material has an impact on the involved deformation mechanism. The variations of volume deformation could be explained by an antiplasticization effect (low plasticizer amount), a phase-separation phenomenon (excess of plasticizer) and/or by the retrogradation of starch.

  13. Evolution of phenotypic plasticity in colonizing species.

    Science.gov (United States)

    Lande, Russell

    2015-05-01

    I elaborate an hypothesis to explain inconsistent empirical findings comparing phenotypic plasticity in colonizing populations or species with plasticity from their native or ancestral range. Quantitative genetic theory on the evolution of plasticity reveals that colonization of a novel environment can cause a transient increase in plasticity: a rapid initial increase in plasticity accelerates evolution of a new optimal phenotype, followed by slow genetic assimilation of the new phenotype and reduction of plasticity. An association of colonization with increased plasticity depends on the difference in the optimal phenotype between ancestral and colonized environments, the difference in mean, variance and predictability of the environment, the cost of plasticity, and the time elapsed since colonization. The relative importance of these parameters depends on whether a phenotypic character develops by one-shot plasticity to a constant adult phenotype or by labile plasticity involving continuous and reversible development throughout adult life. © 2014 John Wiley & Sons Ltd.

  14. Brain Plasticity and Motor Practice in Cognitive Aging

    Directory of Open Access Journals (Sweden)

    Liuyang eCai

    2014-03-01

    Full Text Available For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population.

  15. Brain plasticity and motor practice in cognitive aging

    Science.gov (United States)

    Cai, Liuyang; Chan, John S. Y.; Yan, Jin H.; Peng, Kaiping

    2014-01-01

    For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population. PMID:24653695

  16. Electromigration-induced plasticity and texture in Cu interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; Tamura, Nobumichi; Budiman, A. S.; Hau-Riege, C.S.; Besser, P. R.; Marathe, A.; Joo, Y.-C.; Tamura, N.; Patel, J. R.; Nix, W. D.

    2007-10-31

    Plastic deformation has been observed in damascene Cu interconnect test structures during an in-situ electromigration experiment and before the onset of visible microstructural damage (ie. voiding) using a synchrotron technique of white beam X-ray microdiffraction. We show here that the extent of this electromigration-induced plasticity is dependent on the texture of the Cu grains in the line. In lines with strong <111> textures, the extent of plastic deformation is found to be relatively large compared to our plasticity results in the previous study [1] using another set of Cu lines with weaker textures. This is consistent with our earlier observation that the occurrence of plastic deformation in a given grain can be strongly correlated with the availability of a <112> direction of the crystal in the proximity of the direction of the electron flow in the line (within an angle of 10{sup o}). In <111> out-of-plane oriented grains in a damascene interconnect scheme, the crystal plane facing the sidewall tends to be a {l_brace}110{r_brace} plane,[2-4] so as to minimize interfacial energy. Therefore, it is deterministic rather than probabilistic that the <111> grains will have a <112> direction nearly parallel to the direction of electron flow. Thus, strong <111> textures lead to more plasticity, as we observe.

  17. Adaptive tuning of elasto-plastic damper

    DEFF Research Database (Denmark)

    Høgsberg, Jan Riess; Krenk, Steen

    2007-01-01

    Hysteretic dampers are frequency independent, and thereby otentially effective for several structural vibration modes, provided that the inherent amplitude dependence can be controlled. An adaptive tuning procedure is proposed, aiming at elimination of the amplitude dependence by adjusting...... the damper parameter(s) with respect to the magnitude of the damper motion. The procedure is demonstrated in terms of the bilinear elasto-plastic damper model, and optimality corresponds to maximum modal damping. A parametric solution for the damping ratio is obtained by a two-component system reduction...... in controlling the amplitude dependence, resulting in equal damping for the first vibration modes....

  18. 薄壁塑料件注塑模具设计%PLASTIC MOULD DESIGN OF THIN-WALL PLASTIC PARTS

    Institute of Scientific and Technical Information of China (English)

    苏瞧忠

    2011-01-01

    The design process of thin-wall plastic was analyzed, gate style and position was choosen according to the mould structure, plastic injection molding process, plastic surface quality etc. Producing reliable and dimensinally stable product was realized by optimizing plastic wall thickness and the mould structure, and the product could meet the quality requirement. These plastic mould design essentials were summarized.%分析薄壁塑料件的设计过程,重点阐述根据模具结构、塑料件成型工艺、塑料件表面质量等来选择进胶方式和位置.通过优化塑料件壁厚和模具结构,实现生产可靠、尺寸稳定,质量满足要求,并总结此类塑料件的模具设计要点.

  19. 基于杆系模型的磁流变阻尼结构弹塑性动力反应分析%Elastic-plastic dynamic response analysis on frame structure incorporated with MR dampers based on the member model of system

    Institute of Scientific and Technical Information of China (English)

    张香成; 徐赵东; 冉成崧; 朱俊涛

    2013-01-01

    磁流变阻尼器(MRD)是一种性能优越的半主动控制装置.首先推导了设置有MRD框架结构中MRD的位置矩阵,然后将框架结构简化为杆系模型,用MATLAB编制了加入MRD的框架结构的弹塑性动力时程分析程序,分别计算并对比了框架结构在未控和有控下各层的位移、加速度响应和各杆端塑性铰分布情况.结果表明,设置MRD的框架结构各层位移和加速度响应显著减小,其中位移的减震效果优于加速度的减震效果,同时杆件屈服数量相应减少.%Magneto-rheological damper (MRD) is an excellent semi-active control device. The location matrix of MRD in the frame structure incorporated with MRD was derived. Then a member model was selected as the mathematical model of the structure. An elastic-plastic dynamic response analysis of the structure incorporated with MRD was programmed by using MATLAB. The displacement and acceleration responses of the structure with and without MRD, as well as the distribution of plastic hinges of the member, were calculated and compared. Comparison results show that the displacement and the acceleration responses of each floor of the structure with MRD were reduced significantly, in which the vibration mitigation effect on displacement is superior to that on acceleration. At the same time, the number of plastic hinges is also reduced.

  20. Computational anatomy for studying use-dependant brain plasticity

    Directory of Open Access Journals (Sweden)

    Bogdan eDraganski

    2014-06-01

    Full Text Available In this article we provide a comprehensive literature review on the in vivo assessment of use-dependant brain structure changes in humans using magnetic resonance imaging and computational anatomy. We highlight the recent findings in this field that allow the uncovering of the basic principles behind brain plasticity in light of the existing theoretical models at various scales of observation. Given the current lack of in-depth understanding of the neurobiological basis of brain structure changes we emphasize the necessity of a paradigm shift in the investigation and interpretation of use-dependent brain plasticity. Novel quantitative MRI acquisition techniques provide access to brain tissue microstructural properties (e.g. myelin, iron and water content in-vivo, thereby allowing unprecedented specific insights into the mechanisms underlying brain plasticity. These quantitative MRI techniques require novel methods for image processing and analysis of longitudinal data allowing for straightforward interpretation and causality inferences.

  1. ERK phosphorylation regulates sleep and plasticity in Drosophila.

    Directory of Open Access Journals (Sweden)

    William M Vanderheyden

    Full Text Available Given the relationship between sleep and plasticity, we examined the role of Extracellular signal-regulated kinase (ERK in regulating baseline sleep, and modulating the response to waking experience. Both sleep deprivation and social enrichment increase ERK phosphorylation in wild-type flies. The effects of both sleep deprivation and social enrichment on structural plasticity in the LNvs can be recapitulated by expressing an active version of ERK (UAS-ERK(SEM pan-neuronally in the adult fly using GeneSwitch (Gsw Gsw-elav-GAL4. Conversely, disrupting ERK reduces sleep and prevents both the behavioral and structural plasticity normally induced by social enrichment. Finally, using transgenic flies carrying a cAMP response Element (CRE-luciferase reporter we show that activating ERK enhances CRE-Luc activity while disrupting ERK reduces it. These data suggest that ERK phosphorylation is an important mediator in transducing waking experience into sleep.

  2. 表面改性塑料填料流体力学及传质性能研究%Hydrodynamic and mass transfer performance of modified plastic structured packing

    Institute of Scientific and Technical Information of China (English)

    刘佳特; 胡剑光; 戴干策

    2014-01-01

    A new method was used to modify the film forming of plastic structure packing and the comprehensive performance with commercial packing was compared in the same conditions .In order to evaluate the hydrodynamics and mass transfer performance of the commercial and modified structured packing with textured surface , the experiment of oxygen desorption from water was carried out in a packed column of φ190 mm under the condition of liquid spray density 10-36 m3/(m2· h) and F factor 0.2-3(m/s)· (kg/m3)0.5.The result shows that with liquid spray density of 10, 24, 36 m3/(m2 · h), the height of liquid transfer unit HoL of surface modified structured packing is decreased by 29.50%,23.00% and 23.95% respectively in comparison with those of a commercial packing, while the pressure drop is lower by 85.37%, 89.71% and 88.35% than commercial packing respectively , which demonstrates a significant improvement in mass transfer performance for the surface modified packing.In addition, the correlations of HoL and pressure drop were obtained , flooding phenomenon was discussed by narrow channel theory and the foundation of industrial design was built .%采用新的塑料波纹填料改性方法,有效改善填料成膜性,与同等条件下商业填料进行对比。采用氧解析实验,在直径190 mm的有机玻璃塔内,液相喷淋密度10—36 m3/(m2· h),F因子0.2—3(m/s)·(kg/m3)0.5的实验条件下测定了改性填料及商用填料的流体力学及传质性能。实验结果表明:当液体喷淋密度为10,24,36 m3/( m2· h)时,在相同的F因子下,改性填料的液相传质单元高度HoL较商用填料分别降低了29.50%,23.00%以及23.95%,同时改性后压降也相应为商用填料的85.37%,89.71%和88.35%。表明该改性方法在低喷淋密度下对塑料填料性能提升显著。此外,对实验填料的HoL、压降进行了关联,采用狭通道液膜波动理论

  3. Automobile materials competition: energy implications of fiber-reinforced plastics

    Energy Technology Data Exchange (ETDEWEB)

    Cummings-Saxton, J.

    1981-10-01

    The embodied energy, structural weight, and transportation energy (fuel requirement) characteristics of steel, fiber-reinforced plastics, and aluminum were assessed to determine the overall energy savings of materials substitution in automobiles. In body panels, a 1.0-lb steel component with an associated 0.5 lb in secondary weight is structurally equivalent to a 0.6-lb fiber-reinforced plastic component with 0.3 lb in associated secondary weight or a 0.5-lb aluminum component with 0.25 lb of secondary weight. (Secondary weight refers to the combined weight of the vehicle's support structure, engine, braking system, and drive train, all of which can be reduced in response to a decrease in total vehicle weight.) The life cycle transportation energy requirements of structurally equivalent body panels (including their associated secondary weights) are 174.4 x 10/sup 3/ Btu for steel, 104.6 x 10/sup 3/ Btu for fiber-reinforced plastics, and 87.2 x 10/sup 3/ Btu for aluminum. The embodied energy requirements are 37.2 x 10/sup 3/ Btu for steel, 22.1 x 10/sup 3/ Btu for fiber-reinforced plastics, and 87.1 x 10/sup 3/ Btu for aluminum. These results can be combined to yield total energy requirements of 211.6 x 10/sup 3/ Btu for steel, 126.7 x 10/sup 3/ Btu for fiber-reinforced plastics, and 174.3 x 10/sup 3/ Btu for aluminum. Fiber-reinforced plastics offer the greatest improvements over steel in both embodied and total energy requirements. Aluminum achieves the greatest savings in transportation energy.

  4. Smartphones and the plastic surgeon.

    Science.gov (United States)

    Al-Hadithy, Nada; Ghosh, Sudip

    2013-06-01

    Surgical trainees are facing limited training opportunities since the introduction of the European Working Time Directive. Smartphone sales are increasing and have usurped computer sales for the first time. In this context, smartphones are an important portable reference and educational tool, already in the possession of the majority of surgeons in training. Technology in the palm of our hands has led to a revolution of accessible information for the plastic surgery trainee and surgeon. This article reviews the uses of smartphones and applications for plastic surgeons in education, telemedicine and global health. A comprehensive guide to existing and upcoming learning materials and clinical tools for the plastic surgeon is included. E-books, podcasts, educational videos, guidelines, work-based assessment tools and online logbooks are presented. In the limited resource setting of modern clinical practice, savvy plastic surgeons can select technological tools to democratise access to education and best clinical care. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Mechanisms of GABAergic Homeostatic Plasticity

    Directory of Open Access Journals (Sweden)

    Peter Wenner

    2011-01-01

    Full Text Available Homeostatic plasticity ensures that appropriate levels of activity are maintained through compensatory adjustments in synaptic strength and cellular excitability. For instance, excitatory glutamatergic synapses are strengthened following activity blockade and weakened following increases in spiking activity. This form of plasticity has been described in a wide array of networks at several different stages of development, but most work and reviews have focussed on the excitatory inputs of excitatory neurons. Here we review homeostatic plasticity of GABAergic neurons and their synaptic connections. We propose a simplistic model for homeostatic plasticity of GABAergic components of the circuitry (GABAergic synapses onto excitatory neurons, excitatory connections onto GABAergic neurons, cellular excitability of GABAergic neurons: following chronic activity blockade there is a weakening of GABAergic inhibition, and following chronic increases in network activity there is a strengthening of GABAergic inhibition. Previous work on GABAergic homeostatic plasticity supports certain aspects of the model, but it is clear that the model cannot fully account for some results which do not appear to fit any simplistic rule. We consider potential reasons for these discrepancies.

  6. Mitochondria, synaptic plasticity, and schizophrenia.

    Science.gov (United States)

    Ben-Shachar, Dorit; Laifenfeld, Daphna

    2004-01-01

    The conceptualization of schizophrenia as a disorder of connectivity, i.e., of neuronal?synaptic plasticity, suggests abnormal synaptic modeling and neuronal signaling, possibly as a consequence of flawed interactions with the environment, as at least a secondary mechanism underlying the pathophysiology of this disorder. Indeed, deficits in episodic memory and malfunction of hippocampal circuitry, as well as anomalies of axonal sprouting and synapse formation, are all suggestive of diminished neuronal plasticity in schizophrenia. Evidence supports a dysfunction of mitochondria in schizophrenia, including mitochondrial hypoplasia, and a dysfunction of the oxidative phosphorylation system, as well as altered mitochondrial-related gene expression. Mitochondrial dysfunction leads to alterations in ATP production and cytoplasmatic calcium concentrations, as well as reactive oxygen species and nitric oxide production. All of the latter processes have been well established as leading to altered synaptic strength or plasticity. Moreover, mitochondria have been shown to play a role in plasticity of neuronal polarity, and studies in the visual cortex show an association between mitochondria and synaptogenesis. Finally, mitochondrial gene upregulation has been observed following synaptic and neuronal activity. This review proposes that mitochondrial dysfunction in schizophrenia could cause, or arise from, anomalies in processes of plasticity in this disorder.

  7. Enhancement of visual cortex plasticity by dark exposure

    Science.gov (United States)

    Erchova, Irina; Vasalauskaite, Asta; Longo, Valentina

    2017-01-01

    Dark rearing is known to delay the time course of the critical period for ocular dominance plasticity in the visual cortex. Recent evidence suggests that a period of dark exposure (DE) may enhance or reinstate plasticity even after closure of the critical period, mediated through modification of the excitatory–inhibitory balance and/or removal of structural brakes on plasticity. Here, we investigated the effects of a week of DE on the recovery from a month of monocular deprivation (MD) in the primary visual cortex (V1) of juvenile mice. Optical imaging of intrinsic signals revealed that ocular dominance in V1 of mice that had received DE recovered slightly more quickly than of mice that had not, but the level of recovery after three weeks was similar in both groups. Two-photon calcium imaging showed no significant difference in the recovery of orientation selectivity of excitatory neurons between the two groups. Parvalbumin-positive (PV+) interneurons exhibited a smaller ocular dominance shift during MD but again no differences in subsequent recovery. The percentage of PV+ cells surrounded by perineuronal nets, a structural brake on plasticity, was lower in mice with than those without DE. Overall, DE causes a modest enhancement of mouse visual cortex plasticity. This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’. PMID:28093553

  8. The politics of plasticity: Sex and gender in the 21st century brain

    NARCIS (Netherlands)

    Kleinherenbrink, A.V.

    2016-01-01

    The Politics of Plasticity examines how sex and gender are imag(in)ed in the 21st century brain. At the beginning of this century, the idea that the brain is plastic (i.e. that its structure and function change throughout life) began to replace the idea that adult brains are fixed. The claim that se

  9. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    changes or to abandon the strong identity thesis altogether. Were one to pursue a theory according to which consciousness is not an epiphenomenon to brain processes, consciousness may in fact affect its own neural basis. The neural correlate of consciousness is often seen as a stable structure, that is...

  10. Closing the gap: long-term presynaptic plasticity in brain function and disease.

    Science.gov (United States)

    Monday, Hannah R; Castillo, Pablo E

    2017-08-01

    Synaptic plasticity is critical for experience-dependent adjustments of brain function. While most research has focused on the mechanisms that underlie postsynaptic forms of plasticity, comparatively little is known about how neurotransmitter release is altered in a long-term manner. Emerging research suggests that many of the features of canonical 'postsynaptic' plasticity, such as associativity, structural changes and bidirectionality, also characterize long-term presynaptic plasticity. Recent studies demonstrate that presynaptic plasticity is a potent regulator of circuit output and function. Moreover, aberrant presynaptic plasticity is a convergent factor of synaptopathies like schizophrenia, addiction, and Autism Spectrum Disorders, and may be a potential target for treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. China Plastics Industry (2011) China Plastics Processing Industry Association

    Institute of Scientific and Technical Information of China (English)

    Li Ying

    2012-01-01

    General situation of China plastics industry in 2011 was reviewed, including the output and export/import of plastics products, synthetic resins,and plastics processing machinery, as well as major economic data, such as the total industrial values, sales and profits of plastics products, etc. Analysis of the market of plastics products in 2011 was made, and the developing trend of China plastics industry in 2012 was proposed.

  12. Studying plastic shear localization in aluminum alloys under dynamic loading

    Science.gov (United States)

    Bilalov, D. A.; Sokovikov, M. A.; Chudinov, V. V.; Oborin, V. A.; Bayandin, Yu. V.; Terekhina, A. I.; Naimark, O. B.

    2016-12-01

    An experimental and theoretical study of plastic shear localization mechanisms observed under dynamic deformation using the shear-compression scheme on a Hopkinson-Kolsky bar has been carried out using specimens of AMg6 alloy. The mechanisms of plastic shear instability are associated with collective effects in the microshear ensemble in spatially localized areas. The lateral surface of the specimens was photographed in the real-time mode using a CEDIP Silver 450M high-speed infrared camera. The temperature distribution obtained at different times allowed us to trace the evolution of the localization of the plastic strain. Based on the equations that describe the effect of nonequilibrium transitions on the mechanisms of structural relaxation and plastic flow, numerical simulation of plastic shear localization has been performed. A numerical experiment relevant to the specimen-loading scheme was carried out using a system of constitutive equations that reflect the part of the structural relaxation mechanisms caused by the collective behavior of microshears with the autowave modes of the evolution of the localized plastic flow. Upon completion of the experiment, the specimens were subjected to microstructure analysis using a New View-5010 optical microscope-interferometer. After the dynamic deformation, the constancy of the Hurst exponent, which reflects the relationship between the behavior of defects and roughness induced by the defects on the surfaces of the specimens is observed in a wider range of spatial scales. These investigations revealed the distinctive features in the localization of the deformation followed by destruction to the script of the adiabatic shear. These features may be caused by the collective multiscale behavior of defects, which leads to a sharp decrease in the stress-relaxation time and, consequently, a localized plastic flow and generation of fracture nuclei in the form of adiabatic shear. Infrared scanning of the localization zone of the

  13. Plasticity in glutamatergic NTS neurotransmission.

    Science.gov (United States)

    Kline, David D

    2008-12-10

    Changes in the physiological state of an animal or human can result in alterations in the cardiovascular and respiratory system in order to maintain homeostasis. Accordingly, the cardiovascular and respiratory systems are not static but readily adapt under a variety of circumstances. The same can be said for the brainstem circuits that control these systems. The nucleus tractus solitarius (NTS) is the central integration site of baroreceptor and chemoreceptor sensory afferent fibers. This central nucleus, and in particular the synapse between the sensory afferent and second-order NTS cell, possesses a remarkable degree of plasticity in response to a variety of stimuli, both acute and chronic. This brief review is intended to describe the plasticity observed in the NTS as well as the locus and mechanisms as they are currently understood. The functional consequence of NTS plasticity is also discussed.

  14. Rock Plasticity from Microtomography and Upscaling

    Institute of Scientific and Technical Information of China (English)

    Jie Liu; Reem Freij-Ayoub; Klaus Regenauer-Lieb

    2015-01-01

    We present a workflow for upscaling of rock properties using microtomography and percolation theory. In this paper we focus on a pilot study for assessing the plastic strength of rocks from a digital rock image. Firstly, we determine the size of mechanical representative volume ele-ment (RVE) by using upper/lower bound dissipation computations in accordance with thermody-namics. Then the mechanical RVE is used to simulate the rock failure at micro-scale using FEM. Two cases of different pressures of linear Drucker-Prager plasticity of rocks are computed to com-pute the macroscopic cohesion and the angle of internal friction of the rock. We also detect the criti-cal exponents of yield stress for scaling laws from a series of derivative models that are created by a shrinking/expanding algorithm. We use microtomographic data sets of two carbonate samples and compare the results with previous results. The results show that natural rock samples with irregular structures may have the critical exponent of yield stress different from random models. This unex-pected result could have significant ramifications for assessing the stability of solid materials with internal structure. Therefore our pilot study needs to be extended to investigate the scaling laws of strength of many more natural rocks with irregular microstructure.

  15. Polishing compound for plastic surfaces

    Science.gov (United States)

    Stowell, Michael S.

    1995-01-01

    A polishing compound for plastic surfaces. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS.TM., LEXAN.TM., LUCITE.TM., polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  16. Polishing compound for plastic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stowell, M.S.

    1993-01-01

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains colloidal silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{sup TM}, LEXAN{sup TM}, LUCITE{sup TM}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  17. Motor Cortex Stimulation Reverses Maladaptive Plasticity Following Spinal Cord Injury

    Science.gov (United States)

    2011-09-01

    etic neuralgia [5], brachial plexus, and phantom limb pain [53]. Stimulation of other brain structures has also been used for the treatment of...Verdie JC, Mascott C, Lazorthes Y. Chronic motor cortex stimulation for phantom limb pain: correlations between pain relief and functional imaging...G, Thompson, SM (2008) Maladaptive homeostatic plasticity in a rodent model of central pain syndrome : thalamic hyperexcitability after

  18. Transformation plasticity in titanium alpha double prime martensite

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Teliovich, R.V. [Institute of Metal Physics, Kiev (Ukraine)

    2001-09-01

    In this paper, explanation of an exceptionally low yield strength and high plasticity of {alpha}{sup ''}-martensite is given using the experimental data on martensite crystal structure of Ti-7%Mo (wt). It is supposed that as-quenched martensite microstructure is a highly nonuniform set of distorted due to compositional modulation microvolumes. Interaction between internal stresses generated in martensite modulated microstructure and external applied stresses modifies crystal lattice in a specific way, leading to a transformation induced plasticity. (orig.)

  19. Crystal plasticity and grain crushing in high-porosity rocks

    Science.gov (United States)

    Rahmani, H.; Tjioe, M.; Borja, R. I.

    2012-12-01

    Previous studies show the significance of considering microstructure of individual crystals in modeling the inelastic behavior of high-porosity rocks. Plastic deformation of high-porosity crystalline rocks, exemplified by limestone, is mainly attributed to crystal plasticity and cataclastic flow. Crystal plasticity is defined as the plastic deformation along potential slip systems within the crystal lattice. In the context of continuum mechanics this micro-mechanism is modeled by a nonlinear relationship between stresses and strains. Two types of nonlinearity characterize the inelastic behavior of the crystal grains: material nonlinearity and geometric nonlinearity. Material nonlinearity defines the changes in stiffness matrix due to plastic slip along slip systems. Geometric nonlinearity contributes to the changes in stiffness matrix due to changes in the geometry of the crystal grains. Geometric nonlinearity is modeled using theory of finite deformation, which assumes the geometry of slip systems to be a function of crystal deformation. This type of nonlinearity is very important in modeling crystal deformation mainly because of plastic spin induced by anisotropy in the crystal structure. However, considering the geometry of slip systems as a function of crystal slip makes the equations highly nonlinear. As a result, many studies either ignore geometric nonlinearity or make other assumptions to simplify the equations. Cataclastic flow, on the other hand, is characterized by pervasive grain crushing in which larger grains are converted into smaller ones. We model cataclastic flow as strong discontinuity in the grain scale via an assumed enhanced strain method formulated within the context of nonlinear finite elements. The method allows the individual finite elements, identified to be in critical condition, to break into two pieces along a plane identified by theory of bifurcation. We show that modeling cataclastic flow combined with finite deformation crystal

  20. Plastic instabilities in statically and dynamically loaded spherical vessels

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, Thomas A [Los Alamos National Laboratory; Rodriguez, Edward A [Los Alamos National Laboratory

    2010-01-01

    Significant changes were made in design limits for pressurized vessels in the 2007 version of the ASME Code (Section VIII, Div. 3) and 2008 and 2009 Addenda. There is now a local damage-mechanics based strain-exhaustion limit as well as the well-known global plastic collapse limit. Moreover, Code Case 2564 (Section VIII, Div. 3) has recently been approved to address impulsively loaded vessels. It is the purpose of this paper to investigate the plastic collapse limit as it applies to dynamically loaded spherical vessels. Plastic instabilities that could potentially develop in spherical shells under symmetric loading conditions are examined for a variety of plastic constitutive relations. First, a literature survey of both static and dynamic instabilities associated with spherical shells is presented. Then, a general plastic instability condition for spherical shells subjected to displacement controlled and impulsive loading is given. This instability condition is evaluated for six plastic and visco-plastic constitutive relations. The role of strain-rate sensitivity on the instability point is investigated. Calculations for statically and dynamically loaded spherical shells are presented, illustrating the formation of instabilities as well as the role of imperfections. Conclusions of this work are that there are two fundamental types of instabilities associated with failure of spherical shells. In the case of impulsively loaded vessels, where the pulse duration is short compared to the fundamental period of the structure, one instability type is found not to occur in the absence of static internal pressure. Moreover, it is found that the specific role of strain-rate sensitivity on the instability strain depends on the form of the constitutive relation assumed.