WorldWideScience

Sample records for plastic gfrp rebars

  1. Non-traditional shape GFRP rebars for concrete reinforcement

    Science.gov (United States)

    Claure, Guillermo G.

    The use of glass-fiber-reinforced-polymer (GFRP) composites as internal reinforcement (rebars) for concrete structures has proven to be an alternative to traditional steel reinforcement due to significant advantages such as magnetic transparency and, most importantly, corrosion resistance equating to durability and structural life extension. In recent years, the number of projects specifying GFRP reinforcement has increased dramatically leading the construction industry towards more sustainable practices. Typically, GFRP rebars are similar to their steel counterparts having external deformations or surface enhancements designed to develop bond to concrete, as well as having solid circular cross-sections; but lately, the worldwide composites industry has taken advantage of the pultrusion process developing GFRP rebars with non-traditional cross-sectional shapes destined to optimize their mechanical, physical, and environmental attributes. Recently, circular GFRP rebars with a hollow-core have also become available. They offer advantages such as a larger surface area for improved bond, and the use of the effective cross-sectional area that is engaged to carry load since fibers at the center of a solid cross-section are generally not fully engaged. For a complete understanding of GFRP rebar physical properties, a study on material characterization regarding a quantitative cross-sectional area analysis of different GFRP rebars was undertaken with a sample population of 190 GFRP specimens with rebar denomination ranging from #2 to #6 and with different cross-sectional shapes and surface deformations manufactured by five pultruders from around the world. The water displacement method was applied as a feasible and reliable way to conduct the investigation. In addition to developing a repeatable protocol for measuring cross-sectional area, the objectives of establishing critical statistical information related to the test methodology and recommending improvements to

  2. Experimental Investigation for Tensile Performance of GFRP-Steel Hybridized Rebar

    Directory of Open Access Journals (Sweden)

    Dong-Woo Seo

    2016-01-01

    Full Text Available Tensile performance of the recently developed “FRP Hybrid Bar” at Korea Institute of Civil Engineering and Building Technology (KICT is experimentally evaluated by the authors. FRP Hybrid Bar is introduced to overcome the low elastic modulus of the existing GFRP bars to be used as a structural member in reinforced concrete structures. The concept of material hybridization is applied to increase elastic modulus of GFRP bars by using steel. This hybridized GFRP bar can be used in concrete structures as a flexural reinforcement with a sufficient level of elastic modulus. In order to verify the effect of material hybridization on tensile properties, tensile tests are conducted. The test results for both FRP Hybrid Bar and the existing GFRP bars are compared. The results indicate that the elastic modulus of FRP Hybrid Bar can be enhanced by up to approximately 250 percent by the material hybridization with a sufficient tensile strength. To ensure the long-term durability of FRP Hybrid Bar to corrosion resistance, the individual and combined effects of environmental conditions on FRP Hybrid Bar itself as well as on the interface between rebar and concrete are currently under investigation.

  3. A Modified Model for Deflection Calculation of Reinforced Concrete Beam with Deformed GFRP Rebar

    Directory of Open Access Journals (Sweden)

    Minkwan Ju

    2016-01-01

    Full Text Available The authors carried out experimental and analytical research to evaluate the flexural capacity and the moment-deflection relationship of concrete beams reinforced with GFRP bars. The proposed model to predict the effective moment of inertia for R/C beam with GFRP bars was developed empirically, based on Branson’s equation to have better accuracy and a familiar approach to a structural engineer. For better prediction of the moment-deflection relationship until the ultimate strength is reached, a nonlinear parameter (k was also considered. This parameter was introduced to reduce the effect of the cracked moment of inertia for the reinforced concrete member, including a lower reinforcement ratio and modulus of elasticity of the GFRP bar. In a comparative study using six equations suggested by others, the proposed model showed better agreement with the experimental test results. It was confirmed that the empirical modification based on Branson’s equation was valid for predicting the effective moment of inertia of R/C beams with GFRP bar in this study. To evaluate the generality of the proposed model, a comparative study using previous test results from the literature and the results from this study was carried out. It was found that the proposed model had better accuracy and was a familiar approach to structural engineers to predict and evaluate the deflection behavior.

  4. Analysis on plastic properties of reactive powder concrete continuous beams reinforced with GFRP bars

    Institute of Scientific and Technical Information of China (English)

    LU Shan-shan; ZHENG Wen-zhong

    2010-01-01

    To study the plastic properties of reactive powder concrete continuous beams reinforced with GFRP bars,the calculation programs for moment redistribution coefficients are prepared by using nonlinear analysis methods such as moment-curvature,conjugate beam method and so on.By comparing the test results of existed FRP bars reinforced concrete continuous beams with simulation results,the accuracy of the calculation program is verified.Then 18 simulated GFRP bars reinforced reactive powder concrete continuous beams are selected whose change parameters are reinforcement ratio of mid-span and middle support.Through the nonlinear analysis of simulated beams,moment redistribution coefficients under mid-span concentrated loads,one-third point loads and uniformly distributed loads are obtained respectively.Thus the formula of moment redistribution coefficients is obtained by fitting moment redistribution coefficients and factors.The results show that the reactive powder concrete continuous beams reinforced with GFRP bars have good plastic properties.

  5. Study of Surface Roughness Characteristics of Drilled Hole in Glass Fiber Reinforced Plastic (GFRP by CNC Milling

    Directory of Open Access Journals (Sweden)

    Shubham.

    2016-02-01

    Full Text Available Now-a-days glass fiber-reinforced plastics (GFRP are always applicable in variety of engineering applications. It is used in aerospace, automotive and aircraft industries due to their well known properties. Milling of GFRP composite materials is very difficult due to its heterogeneity and the number of troubles like as surface delamination during machining affects uniqueness of the material and the machining parameters. Present paper focuses the experimental details to find out delamination factor on GFRP composite laminates by using Taguchi‟s DOE L9 orthogonal array. The main objective of the present work is to optimize the process parameters in the drilling of GFRP composite using Taguchi DOE and to find the significance of each process parameter using ANOVA. As far as the effect of input factors are considered, the factors drilled material and spindle speed both have nearly predominant influence on the delamination factor of drilled holes on GFRP composite by using CNC milling process.

  6. Behavior and Performance of GFRP Reinforced Concrete Columns with Various Types of Stirrups

    OpenAIRE

    Woraphot Prachasaree; Sitthichai Piriyakootorn; Athawit Sangsrijun; Suchart Limkatanyu

    2015-01-01

    Fiber reinforced polymer (FRP) composites are gaining acceptance in concrete structural applications due to their high ratio of strength/stiffness to self-weight and corrosion resistance. This study focused on the structural behavior and the performance of concrete columns internally reinforced with glass fiber reinforced plastic (GFRP) rebars. Twelve series of concrete columns with varied longitudinal reinforcement, cross section, concrete cover, and type of lateral reinforcement were tested...

  7. Evolution of the health of concrete structures by electrically conductive GFRP (glass fiber reinforced plastic) composites

    Science.gov (United States)

    Shin, Soon-Gi

    2002-02-01

    The function and performance of self-diagnostic composites embedded in concrete blocks and piles were investigated by bending tests and electrical resistance measurement. Carbon powder (CP) and carbon fiber (CF) were introduced into glass fiber reinforced plastic (GFRP) composites to provide electrical conductivity. The CPGFRP composite displays generally good performance in various bending tests of concrete block and piles compared to the CFGFRP composite. The electrical resistance of the CPGFRP composite increases remarkably at small strains in response to microcrack formation at about 200 μm strain, and can be used to detect smaller deformations before crack formation. The CPGFRP composite shows continuous change in resistance up to a large strain level just before the final fracture for concrete structures reinforced by steel bars. It is concluded that self-diagnostic composites can be used to predict damage and fracture in concrete blocks and piles.

  8. Strain coordination of quasi-plane-hypothesis for reinforced concrete beam strengthened by epoxy-bonded glass fiber reinforced plastic plate

    Institute of Scientific and Technical Information of China (English)

    ZENG Xian-tao; DING Ya-hong; WANG Xing-guo

    2006-01-01

    The testing of thirteen reinforced concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly well in coordination to each other. But there is relative slipping between RC beam and GFRP plate. And the strain of GFRP and steel rebar of RC beam satisfies the quasi-plane-hypothesis, that is, the strain of longitudinal fiber that parallels to the neutral axis of plated beam within the scope of effective height (h0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of GFRP and steel rebar satisfies the equation: εCFRP = Kεsteel.

  9. Rebar Graphene

    Science.gov (United States)

    2015-01-01

    As the cylindrical sp2-bonded carbon allotrope, carbon nanotubes (CNTs) have been widely used to reinforce bulk materials such as polymers, ceramics, and metals. However, both the concept demonstration and the fundamental understanding on how 1D CNTs reinforce atomically thin 2D layered materials, such as graphene, are still absent. Here, we demonstrate the successful synthesis of CNT-toughened graphene by simply annealing functionalized CNTs on Cu foils without needing to introduce extraneous carbon sources. The CNTs act as reinforcing bar (rebar), toughening the graphene through both π–π stacking domains and covalent bonding where the CNTs partially unzip and form a seamless 2D conjoined hybrid as revealed by aberration-corrected scanning transmission electron microscopy analysis. This is termed rebar graphene. Rebar graphene can be free-standing on water and transferred onto target substrates without needing a polymer-coating due to the rebar effects of the CNTs. The utility of rebar graphene sheets as flexible all-carbon transparent electrodes is demonstrated. The in-plane marriage of 1D nanotubes and 2D layered materials might herald an electrical and mechanical union that extends beyond carbon chemistry. PMID:24694285

  10. Durability of GFRP reinforcing bars and their bond in concrete

    OpenAIRE

    Rolland, Arnaud; Chataigner, Sylvain; Quiertant, Marc; Benzarti, Karim; Argoul, Pierre

    2015-01-01

    The use of composite reinforcing bars (rebars) for the reinforcement of concrete appears as an attractive solution to prevent corrosion, which is the main pathology encountered on concrete structures. Although such rebars are being used for more than ten years, there is a clear lack of knowledge regarding their durability, especially under alkaline environment. This paper aims at investigating the evolutions of tensile properties and bond in concrete of GFRP (Glass Fiber Reinforced Polymer...

  11. Behavior and Performance of GFRP Reinforced Concrete Columns with Various Types of Stirrups

    Directory of Open Access Journals (Sweden)

    Woraphot Prachasaree

    2015-01-01

    Full Text Available Fiber reinforced polymer (FRP composites are gaining acceptance in concrete structural applications due to their high ratio of strength/stiffness to self-weight and corrosion resistance. This study focused on the structural behavior and the performance of concrete columns internally reinforced with glass fiber reinforced plastic (GFRP rebars. Twelve series of concrete columns with varied longitudinal reinforcement, cross section, concrete cover, and type of lateral reinforcement were tested under compression loading. The results show that the amount of GFRP longitudinal and lateral reinforcement slightly affects the column strength. The lateral reinforcement affects the confining pressure and inelastic deformation, and its contribution to the confined compressive strength increases with the GFRP reinforcement ratio. In addition, the confining pressure increases both concrete strength and deformability in the inelastic range. The confinement effectiveness coefficient varied from 3.0 to 7.0 with longitudinal reinforcement. The average deformability factors were 4.2 and 2.8 with spirals and ties, respectively. Lateral reinforcement had a more pronounced effect on deformability than on column strength.

  12. A Numerical Study of the Spring-Back Phenomenon in Bending with a Rebar Bending Machine

    OpenAIRE

    Chang Hwan Choi; Lawrence Kulinsky; Joon Soo Jun; Jin Ho Kim

    2014-01-01

    Recently, the rebar bending methodology started to change from field processing to utilizing rebar bending machines at plant sites prior to transport to the construction locations. Computerized control of rebar plant bending machines provides more accurate and faster bending of rebars than the low quality inefficient field processing alternative. The bending process involves plastic deformation of rebars, where bending stress beyond the yield point of the material is applied. When the bending...

  13. Tensile Strength of GFRP Reinforcing Bars with Hollow Section

    Directory of Open Access Journals (Sweden)

    Young-Jun You

    2015-01-01

    Full Text Available Fiber reinforced polymer (FRP has been proposed to replace steel as a reinforcing bar (rebar due to its high tensile strength and noncorrosive material properties. One obstacle in using FRP rebars is high price. Generally FRP is more expensive than conventional steel rebar. There are mainly two ways to reduce the cost. For example, one is making the price of each composition cost of FRP rebar (e.g., fibers, resin, etc. lower than steel rebar. Another is making an optimized design for cross section and reducing the material cost. The former approach is not easy because the steel price is very low in comparison with component materials of FRP. For the latter approach, the cost could be cut down by reducing the material cost. Therefore, an idea of making hollow section over the cross section of FRP rebar was proposed in this study by optimizing the cross section design with acceptable tensile performance in comparison with steel rebar. In this study, glass reinforced polymer (GFRP rebars with hollow section and 19 mm of outer diameter were manufactured and tested to evaluate the tensile performance in accordance with the hollowness ratio. From the test results, it was observed that the tensile strength decreased almost linearly with increase of hollowness ratio and the elastic modulus decreased nonlinearly.

  14. Development on Anti-ageing of Unsaturated Polyester Glass Fiber Reinforced Plastic (GFRP) Composites%以不饱和聚酯树脂为基的玻璃钢复合材料防老化研究进展

    Institute of Scientific and Technical Information of China (English)

    王玉民; 郭振宇; 宁培森; 丁著明

    2011-01-01

    综述了不饱和聚酯树脂基玻璃钢复合材料(GFRP)防老化方面的最近研究进展,包括GFRP表面新型涂层及树脂的添加剂(紫外线吸收剂、受阻胺光稳定剂和抗氧剂等).结果表明,只使用单一的稳定剂效果不佳,必须将抗氧剂和其他添加剂(例如某些环氧化合物)并用,才能取得较好的效果.%Recent advances in anti-ageing of unsatured polyester glass fiber reinforced plastic (GFRP) were reviewed in this paper, including novel coating of GFRP and adding various stabilizers, such as ultraviolet absorbent,hindered amine light stabilizers(HALS) and antioxidant. The results showed the effect was not good using single stabilizer. The combined use of Main and side antioxidant and other additives (e. g. some epoxy compounds) had the best Effect on maintaining anti-ageing of GFRP

  15. Structural Engineering Properties of Fibre Reinforced Concrete Based On Recycled Glass Fibre Polymer (GFRP)

    OpenAIRE

    Adetiloye A; Ephraim M. E

    2015-01-01

    Glass fibre reinforced plastics (GFRP) based on resin recovered from recycling plastic waste has been shown to possess mechanical properties satisfying normative requirements. This paper investigates the flexural behavior of concrete beams reinforced with GFRP produced from resin recovered from recycled plastic wastes. A total of twelve of beams of sizes 150 ×150 ×900mm and 100 × 100 × 500mm reinforced with GFRP made from recycled glass fibre reinforced polymer was tested. The fle...

  16. Surface topography, hardness, and frictional properties of GFRP for esthetic orthodontic wires.

    Science.gov (United States)

    Inami, Toshihiro; Tanimoto, Yasuhiro; Yamaguchi, Masaru; Shibata, Yo; Nishiyama, Norihiro; Kasai, Kazutaka

    2016-01-01

    In our previous study, glass-fiber-reinforced plastics (GFRPs) made from polycarbonate and glass fiber for esthetic orthodontic wires were prepared by using pultrusion. The purpose of the present study was to investigate the surface topography, hardness, and frictional properties of GFRPs. To investigate how fiber diameter affects surface properties, GFRP round wires with a diameter of 0.45 mm (0.018 in.) were prepared incorporating either 13 μm (GFRP-13) or 7 μm (GFRP-7) glass fibers. As controls, stainless steel (SS), cobalt-chromium-nickel alloy, β-titanium (β-Ti) alloy, and nickel-titanium (Ni-Ti) alloy were also evaluated. Under scanning electron microscopy and scanning probe microscopy, the β-Ti samples exhibited greater surface roughness than the other metallic wires and the GFRP wires. The dynamic hardness and elastic modulus of GFRP wires obtained by the dynamic micro-indentation method were much lower than those of metallic wires (p < 0.05). Frictional forces against the polymeric composite brackets of GFRP-13 and GFRP-7 were 3.45 ± 0.49 and 3.60 ± 0.38 N, respectively; frictional forces against the ceramic brackets of GFRP-13 and GFRP-7 were 3.39 ± 0.58 and 3.87 ± 0.48 N, respectively. For both bracket types, frictional forces of GFRP wires and Ni-Ti wire were nearly half as low as those of SS, Co-Cr, and β-Ti wires. In conclusion, there was no significant difference in surface properties between GFRP-13 and GFRP-7; presumably because both share the same polycarbonate matrix. We expect that GFRP wires will deliver superior sliding mechanics with low frictional resistance between the wire and bracket during orthodontic treatment.

  17. Mechanical interaction of Engineered Cementitious Composite (ECC) reinforced with Fiber Reinforced Polymer (FRP) rebar in tensile loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2010-01-01

    This paper introduces a preliminary study of the composite interaction of Engineered Cementitious Composite (ECC), reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar. The main topic of this paper will focus on the interaction of the two materials (ECC and GFRP) during axial loading......, particularly in post cracking phase of the concrete matrix. The experimental program carried out in this study examined composite behavior under monotonic and cyclic loading of the specimens in the elastic and inelastic deformation phases. The stiffness development of the composite during loading was evaluated...

  18. Study on Mechanical and Physical Behaviour of Hybrid GFRP

    Directory of Open Access Journals (Sweden)

    Nor Bahiyah Baba

    2015-01-01

    Full Text Available The paper discusses the mechanical and physical behaviour of hybrid glass fibre reinforced plastic (GFRP. Hybrid GFRP was fabricated by three different types of glass fibre, namely, 3D, woven, and chopped, which were selected and combined with mixture of polyester resin and hardener. The hybrid GFRP was investigated by varying three parameters which were the composite volume fractions, hybrid GFRP arrangement, and single type fibre. The hybrid GFRP was fabricated by using open mould hand lay-up technique. Mechanical testing was conducted by tensile test for strength and stiffness whereas physical testing was performed using water absorption and hardness. These tests were carried out to determine the effect of mechanical and physical behaviour over the hybrid GFRP. The highest volume fraction of 0.5 gives the highest strength and stiffness of 73 MPa and 821 MPa, respectively. Varying hybrid fibre arrangement which is the arrangement of chopped-woven-3D-woven-chopped showed the best value in strength of 66.2 MPa. The stiffness is best at arrangement of woven-chopped-woven-chopped-woven at 690 MPa. This arrangement also showed the lowest water absorption of 4.5%. Comparing the single fibre type, woven had overtaken the others in terms of both mechanical and physical properties.

  19. Structural Engineering Properties of Fibre Reinforced Concrete Based On Recycled Glass Fibre Polymer (GFRP

    Directory of Open Access Journals (Sweden)

    Adetiloye A

    2015-04-01

    Full Text Available Glass fibre reinforced plastics (GFRP based on resin recovered from recycling plastic waste has been shown to possess mechanical properties satisfying normative requirements. This paper investigates the flexural behavior of concrete beams reinforced with GFRP produced from resin recovered from recycled plastic wastes. A total of twelve of beams of sizes 150 ×150 ×900mm and 100 × 100 × 500mm reinforced with GFRP made from recycled glass fibre reinforced polymer was tested. The flexural test results yielded lower ultimate load, lower stiffness and larger deflections at the same load when compared with the control steel reinforced beam. However, the ultimate flexural strength of beams, reinforced with GFRP from recycled resin was at least four times higher than that of the control unreinforced beam. This is in agreement, quantitatively and qualitatively, with the trend of these parameters in GFRP reinforced concrete based on virgin resins. The results therefore confirm the applicability for structural uses of GFRP reinforcement made from recycled plastic waste, with the accompanying benefits of wealth creation, value addition and environmental sustainability.

  20. A Numerical Study of the Spring-Back Phenomenon in Bending with a Rebar Bending Machine

    Directory of Open Access Journals (Sweden)

    Chang Hwan Choi

    2014-10-01

    Full Text Available Recently, the rebar bending methodology started to change from field processing to utilizing rebar bending machines at plant sites prior to transport to the construction locations. Computerized control of rebar plant bending machines provides more accurate and faster bending of rebars than the low quality inefficient field processing alternative. The bending process involves plastic deformation of rebars, where bending stress beyond the yield point of the material is applied. When the bending stress is removed, spring back is caused by the elastic restoring stress. Therefore, an accurate numerical analysis of the spring-back process is required to reduce the bending process errors. The most sensitive factors affecting the spring-back process are the bending radius, the bending angle, the diameter of the rebar, the friction coefficient, and the yielding strength of material. In this paper, we suggest a numerical modeling method using these factors. The finite element modeling of the dynamic mechanical behavior of the material during bending is performed using a commercial dynamic analysis program “DAFUL.” We use the least squares approach to derive the spring-back deflection as a function of the rebar bending parameters.

  1. Application of martensitic SMA alloys as passive dampers of GFRP laminated composites

    Directory of Open Access Journals (Sweden)

    M. Bocciolone

    2013-01-01

    Full Text Available This paper describes the application of SMA (Shape Memory Alloy materials to enhance the passive damping of GFRP (Glass Fiber Reinforced Plastic laminated composite. The SMA has been embedded as reinforcement in the GFRP laminated composite and a SMA/GFRP hybrid composite has been obtained. Two SMA alloys have been studied as reinforcement and characterized by thermo-mechanical tests. The architecture of the hybrid composite has been numerically optimized in order to enhance the structural damping of the host GFRP laminated, without significant changes of the specific weight and of the flexural stiffness. The design and the resultant high damping material are interesting and will be useful in general for applications related to passive damping. The application to a new designed lateral horn of railway collector of the Italian high speed trains is discussed.

  2. Composite GFRP U-Shaped Footbridge

    Directory of Open Access Journals (Sweden)

    Chróścielewski Jacek

    2017-04-01

    Full Text Available The paper presents proposals for the use of glass fiber reinforced polymer composites for the construction of engineering objects, known and commonly used in the shipbuilding industry. An example of a pedestrian footbridge was used in this case, which, despite the considerable thickness of the structural material, was made using infusion technology in one production cycle. The designed and produced footbridge span is durable, dynamically resistant, incombustible, easy to install and maintain, resistant to weather conditions and also aesthetically interesting. For footbridge production environmentally friendly PET foam core may be used. It may come from recycling of used plastic packages and which is produced with less energy consumption process and much less CO2 emission. The load bearing part of the structure (skin is made of polymer laminate reinforced with glass fabrics (GFRP.

  3. Erosion behaviour of epoxy based unidirectionl (GFRP composite materials

    Directory of Open Access Journals (Sweden)

    Y. Fouad

    2011-03-01

    Full Text Available In the present work, the solid particle erosion behaviour and wear mechanism of commercial epoxy based unidirectional glass fibre reinforced plastics (GFRP composites were investigated. The erosion experiments have been carried out using irregular silica sand (SiC particles (150 ± 15 μm as an erodent. The erosion losses of these composites were evaluated at various impingement angles (30°, 60° and 90° with the change of both of erosion time and pressure. The erosion behaviour of (GFRP has changed from ductile to brittle at 60° impingement angle and the erosion loss was the highest. The morphology of eroded surfaces was observed under scanning electron microscope and damage mechanisms were discussed.

  4. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    Directory of Open Access Journals (Sweden)

    Sang-Young Kim

    2014-09-01

    Full Text Available Glass Fiber Reinforced Plastic (GFRP structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties.

  5. NDE of low-velocity impact damage in GFRP using infrared thermography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ghi Seok [Dept. of Biosystems Engineering, Seoul National University, Seoul (Korea, Republic of); Lee, Kye Sung; Hur, Hwan; Kim, Sun Jin; Kim, Geon Hee [Center for Analytical Instrumentation Development, Korea Basic Science Institute, Daejeon (Korea, Republic of)

    2015-06-15

    In this study, low-velocity impact damage (LVID) in glass fiber reinforced plastic (GFRP) was investigated using pulse thermography (PT) and lock-in thermography (LIT) techniques. The main objective of this study was to evaluate the detection performance of each technique for LVID in GFRP. Unidirectional and cross-ply GFRPs were prepared with four energy levels using a drop weight impact machine and they were inspected from the impact side, which may be common in actual service conditions. When the impacted side was used for both inspection and thermal loading, results showed that the suggested techniques were able to identify the LVID which is barely visible to the naked eye. However, they also include limitations that depend on the GFRP thickness at the location of the delamination produced by the lowest impact energy of five joule.

  6. Monitoring Moisture Damage Propagation in GFRP Composites Using Carbon Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Sabagh

    2017-03-01

    Full Text Available Glass fiber reinforced polymer (GFRP composites are widely used in infrastructure applications including water structures due to their relatively high durability, high strength to weight ratio, and non-corrosiveness. Here we demonstrate the potential use of carbon nanoparticles dispersed during GFRP composite fabrication to reduce water absorption of GFRP and to enable monitoring of moisture damage propagation in GFRP composites. GFRP coupons incorporating 2.0 wt % carbon nanofibers (CNFs and 2.0 wt % multi-wall carbon nanotubes (MWCNTs were fabricated in order to study the effect of moisture damage on mechanical properties of GFRP. Water absorption tests were carried out by immersing the GFRP coupons in a seawater bath at two temperatures for a time period of three months. Effects of water immersion on the mechanical properties and glass transition temperature of GFRP were investigated. Furthermore, moisture damage in GFRP was monitored by measuring the electrical conductivity of the GFRP coupons. It was shown that carbon nanoparticles can provide a means of self-sensing that enables the monitoring of moisture damage in GFRP. Despite the success of the proposed technique, it might not be able to efficiently describe moisture damage propagation in GFRP beyond a specific threshold because of the relatively high electrical conductivity of seawater. Microstructural investigations using Fourier Transform Infrared (FTIR explained the significance of seawater immersion time and temperature on the different levels of moisture damage in GFRP.

  7. Optimizing the Machining Parameters for Minimum Surface Roughness in Turning of GFRP Composites Using Design of Experiments

    Institute of Scientific and Technical Information of China (English)

    K. Palanikumar; L.Karunamoorthy; R.Karthikeyan

    2004-01-01

    In recent years, glass fiber reinforced plastics (GFRP) are being extensively used in variety of engineering applications in many different fields such as aerospace, oil, gas and process industries. However, the users of FRP are facing difficulties to machine it, because of fiber delamination, fiber pull out, short tool life, matrix debonding, burning and formation of powder like chips. The present investigation focuses on the optimization of machining parameters for surface roughness of glass fiber reinforced plastics (GFRP) using design of experiments (DoE). The machining parameters considered were speed, feed, depth of cut and workpiece (fiber orientation). An attempt was made to analyse the influence of factors and their interactions during machining. The results of the present study gives the optimal combination of machining parameters and this will help to improve the machining requirements of GFRP composites.

  8. Improving Fatigue Performance of GFRP Composite Using Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Moneeb Genedy

    2015-01-01

    Full Text Available Glass fiber reinforced polymers (GFRP have become a preferable material for reinforcing or strengthening reinforced concrete structures due to their corrosion resistance, high strength to weight ratio, and relatively low cost compared with carbon fiber reinforced polymers (CFRP. However, the limited fatigue life of GFRP hinders their use in infrastructure applications. For instance, the low fatigue life of GFRP caused design codes to impose stringent stress limits on GFRP that rendered their use non-economic under significant cyclic loads in bridges. In this paper, we demonstrate that the fatigue life of GFRP can be significantly improved by an order of magnitude by incorporating Multi-Wall Carbon Nanotubes (MWCNTs during GFRP fabrication. GFRP coupons were fabricated and tested under static tension and cyclic tension with mean fatigue stress equal to 40% of the GFRP tensile strength. Microstructural investigations using scanning electron microscopy (SEM and Fourier Transform Infrared (FTIR spectroscopy were used for further investigation of the effect of MWCNTs on the GFRP composite. The experimental results show the 0.5 wt% and the 1.0 wt% MWCNTs were able to improve the fatigue life of GFRP by 1143% and 986%, respectively, compared with neat GFRP.

  9. Effect of temperature on the passivation behavior of steel rebar

    Institute of Scientific and Technical Information of China (English)

    Shan-meng Chen; Bei Cao; Yin-shun Wu; Ke Ma

    2014-01-01

    Steel rebar normally forms an oxide or rusty skin before it is embedded into concrete and the passivation properties of this skin will be heavily influenced by temperature. To study the effect of temperature on the passivation properties of steel rebar under different sur-face conditions, we conducted scanning electron microscopy (SEM) observations and electrochemical measurements, such as measurements of the free corrosion potential and polarization curves of HPB235 steel rebar. These measurements identified three kinds of surfaces:polished, oxide skin, and rusty skin. Our results show that the passivation properties of all the surface types decrease with the increase of temperature. Temperature has the greatest effect on the rusty-skin rebar and least effect on the polished steel rebar, because of cracks and crevices on the mill scale on the steel rebar’s surface. The rusty-skin rebar exhibits the highest corrosion rate because crevice corrosion can accelerate the corrosion of the steel rebar, particularly at high temperature. The results also indicate that the threshold temperatures of passivation for the oxide-skin rebar and the rusty-skin rebar are 37°C and 20°C, respectively.

  10. GFRP筋混凝土梁耐火性能的试验研究%Fire Performance of GFRP Reinforced Concrete Beams

    Institute of Scientific and Technical Information of China (English)

    查晓雄; 王晓璐; 谢先义

    2012-01-01

    进行了4根GFRP筋混凝土简支梁在ISO834标准升温曲线下的火灾实验,试件依据ACI440.1R-06进行截面设计,分别考虑了不同荷载比、保护层厚度、端部锚固方式对梁耐火性能的影响.试验结果表明,GFRP筋混凝土梁在火灾中的裂纹开展深度较传统的钢筋混凝土结构明显偏大.由于GFRP筋横向膨胀大更易造成梁底混凝土的开裂与剥落,建议在满足纵筋锚固性能要求的前提下,尽量减少端部J型锚固筋.GFRP筋在高温下的材料性能衰减严重,合理的设计保护层厚度和限制GFRP筋的使用内力,可使GFRP筋混凝土梁的耐火性能满足实际工程的需要.%The fire performances of concrete beams reinforced with GFRP rebar are present in this paper, and four simply supported beams are exposed to fire with ISO 834 standard heating curve. The design of these flexural beams is according to ACI 440. 1R-06. The influences of different loading rates, concrete covers and anchorage modes are taken into account. Fire test results indicate that the crack depth of GFRP reinforced beams is deeper than steel reinforced beams, and more slight cracks even accompanied with concrete splitting appear at the bottom of beam due to GFRP rebar' s larger transverse expansion. It is recommended that the application of J-hooks anchorage in the crowed end should be reduced if there is sufficient bond strength. Although the mechanical behavior of GFRP reinforced concrete beam degradation significant at elevate temperature, proper design of GFRP reinforced concrete members by limiting the minimum concrete cover and service load will meet the practical fire design requirements.

  11. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    Science.gov (United States)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  12. Recycling and Utilization of Waste Glass Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Feng Yan-chao

    2016-01-01

    Full Text Available This paper mainly introduced the recovery method, classification and comprehensive utilization process of waste glass fiber reinforced plastics (GFRP. Among the current methods of utilization, the physical method is most promising. After pre-processing of waste GFRP, the short glass fiber can be used in gypsum block to improve the anti-cracking and operation performance of the material; waste GFRP powder can be used in plastic fiber reinforced manhole covers to increase the mechanical strength, and the products conformed to JC 1009-2006. Based on these studies, we also point out some problems concerning the utilization of waste glass fiber reinforced plastics.

  13. Investigation of surface roughness and MRR for turning of UD-GFRP using PCA and Taguchi method

    OpenAIRE

    2015-01-01

    This paper investigates the machinability of unidirectional glass fiber reinforced plastics (UD-GFRP) composite in turning process. Taguchi L18 orthogonal array is used for experimental design. The six parameters i.e. tool nose radius, tool rake angle, feed rate, cutting speed, cutting environment (dry, wet and cooled) and depth of cut are varied to investigate their effect on output responses. An attempt has been made to model the two response variables i.e. surface roughness and material re...

  14. Thermographic inspection of a wind turbine rotor blade segment utilizing natural conditions as excitation source, Part I: Solar excitation for detecting deep structures in GFRP

    Science.gov (United States)

    Worzewski, Tamara; Krankenhagen, Rainer; Doroshtnasir, Manoucher; Röllig, Mathias; Maierhofer, Christiane; Steinfurth, Henrik

    2016-05-01

    This study evaluates whether subsurface features in rotor blades, mainly made of Glass Fibre Reinforced Plastics (GFRP), can generally be detected with "solar thermography". First, the suitability of the sun is tested for acting as a heat source for applying active thermography on a 30 mm thick GFRP test specimen. Second, a defective rotor blade segment is inspected outdoors under ideal natural conditions using the sun as excitation source. Additionally, numerical FEM-simulations are performed and the comparability between experiment and simulation is evaluated for outdoor measurements.

  15. Tensile Fracture Mechanism of Claviform Hybrid Composite Rebar

    Institute of Scientific and Technical Information of China (English)

    CAI Lurong; ZENG Qingdun; WANG Ronghui

    2012-01-01

    Based on the shear-lag theory,a hexagonal model of fiber bundles was established to study the tensile fracture mechanism of a claviform hybrid composite rebar.Firstly,the stress redistributions are investigated on two conditions:one condition is that interfacial damage is taken into accotmt and the other is not.Then,a micro-statistical analysis of the multiple tensile failures of the rebar was performed by using the random critical-core theory.The results indicate that the predictions of the tensile failure strains of the rebar,in which the interracial damage is taken into account,are in better agreement with the existing experimental results than those when only elastic case is considered.Through the comparison between the theoretical and experimental results,the shear-lag theory and the model are verified feasibly in studying the claviform hybrid composite rebar.

  16. Structural Analysis of Taper-Threaded Rebar Couplers

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Seok Jae [Univ. of Ulsan, Ulsan (Korea, Republic of); Kwon, Hyuk Mo; Seo, Sang Hwan [Sammi Precision Co. Ltd., Ulsan (Korea, Republic of)

    2014-05-15

    A number of rebar couplers were developed by the leading companies. The information about the products is available from the company website. However, the theory on the taper-threaded coupler is not available. In this paper, the mechanics of the taper-thread was developed to understand the effect of the tightening torque. Structural analysis of our own newly developed rebar coupler was done to improve the strength of the coupler. The taper-threaded rebar coupler was analyzed. The tightening of the rebar into the coupler developed a circumferential stress in the coupler. The circumferential stress depends on the coefficient of friction as well as the tightening torque. The circumferential stress is less than the allowable stress 20 kgf/mm{sup 2} of the material for the coefficient of friction greater than 0.1. The tightening of the rebar into the coupler and the subsequent tensioning was simulated using CATIA. Linear elastic analysis considering contact was done. The tightening of the taper-threaded rebar developed a uniform stress distribution in both standard coupler and position coupler. On the other hand, the tightening of the nut in the axial direction developed a non-uniform stress distribution. Similarly the tensioning also developed a non-uniform stress distribution.

  17. Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement

    OpenAIRE

    Heecheul Kim; Min Sook Kim; Myung Joon Ko; Young Hak Lee

    2015-01-01

    This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP) plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spac...

  18. INFLUENCE OF FIBRE VOLUME REINFORCEMENT IN DRILLING GFRP LAMINATES

    Directory of Open Access Journals (Sweden)

    D. ABDUL BUDAN

    2011-12-01

    Full Text Available This paper presents an investigation on the influence of fiber volume reinforcement on various aspects of machining. Drilling experiments were conducted to study the tool wear, surface finish, delamination factor and hole quality on GFRP composites. The work reports the variation of tool wear, surface roughness, hole quality, chip characteristics, delamination factor with the variation of fibre volume reinforcement. Results revealed that the increase in fiber percentage increased the tool wear, delamination factor, surface roughness value and decreased hole quality. Minimum surface roughness, tool wear and better hole quality was obtained for 30% fibre content composites. 70% Fibre content composites produced hazardous surface roughness. Pull out of fibres and fibril formation are significant in decreasing the hole quality and increased surface roughness. Increased tool – fibre interaction and thermal softening of the tool causes increased tool wear. In higher fibre content composites, extensive plasticity was absent consequently brittle ceramic fibres were fractured easily. Hence small segment type chips were obtained. The fibre pull out and fibrils present near the hole exit forms the remainder of the laminate causes increased damage zone near the hole exit. Hence high delamination factor was obtained.

  19. 1年持续载荷下GFRP-混凝土组合梁长期性能试验%Long-term property test of GFRP-concrete composite beam under sustained load for one year

    Institute of Scientific and Technical Information of China (English)

    薛伟辰; 张士前; 梁智殷

    2016-01-01

    玻璃纤维增强树脂(GFRP)-混凝土组合梁由上部混凝土板和下部 GFRP型材以及连接二者的抗剪连接件组成。开展了2根 GFRP-混凝土组合梁(非预应力及施加体外预应力组合梁各1根)在1年持续载荷下行为的试验研究。考虑混凝土收缩徐变及 GFRP型材蠕变耦合的影响,开展了50年的24根 GFRP-混凝土组合梁时随有限元参数分析。结果表明:在1年持续载荷下,非预应力与施加体外预应力组合梁长期挠度分别为其初始挠度的1.42倍及2.91倍;非预应力与预应力组合梁中连接件的长期滑移分别为0.230 mm及0.164 mm,相比初始滑移2种组合梁的最终滑移分别增加了53.3%和58.2%;50年后,非预应力组合梁长期挠度与初始挠度的比值在1.50~1.56之间;而施加体外预应力组合梁长期挠度与初始挠度的比值在3.03~6.08之间。基于以上研究提出了 GFRP-混凝土组合梁长期挠度的计算建议。%The glass fiber reinforced plastic (GFRP)-concrete composite beam consists of a concrete slab on the upper side,a GFRP profile on the lower side and shear connectors to connect these two sides.A test study was con-ducted on the behaviors of two GFRP-concrete composite beams (non-prestressed and external prestressed composite beams each had one)under sustained load for one year.A time-dependent finite element parametric analysis of 24 GFRP-concrete composite beams,taking coupling effect of the shrinkage and creep of concrete and creep of GFRP profile into account,was carried out for 50 years.The results show that long-term deflections of the non-prestressed and external prestressed composite beams are 1.42 and 2.91 times of their respective instantaneous deflections under sustained load for one year.The long-term slips of the non-prestressed and external prestressed composite beams are 0.230 mm and 0.164 mm,respectively.Compared with initial slips,the terminal slips of the two composite beams increase by 53

  20. 模拟混凝土碱性环境下FRP筋的耐久性%Durability of FRP Rebars in Alkaline Environment of Concrete

    Institute of Scientific and Technical Information of China (English)

    李趁趁; 于爱民; 王英来

    2013-01-01

    The durability of glass fiber reinforced polymer ( GFRP) rebar and basalt fiber reinforced polymer ( BFRP) rebar in alkali solution is studied. The test results show that the tensile strength and shear strength of GFRP bars decrease in alkali solution, and the changing degree is related to the treated time. GFRP bars continue to cure when being suffered from alkaline solution. The mechanical performance change of GFRP bars is from the role of alkali solution and the degree of post-curing. Alkali solution reduces the tensile strength, tensile modulus of elasticity and shear strength of BFRP bars, and the changing degree of the tensile strength and elasticity modulus increase with the increase of the treated time. Si-0 bonds in the glass fibers and basalt fibers rupture under the role of water molecules and OH , the hydrolysis of ester bonds in resin matrix in alkaline solution and the performance degradation of the bonding interface between fiber and resin are main reasons for the performance degradation of GFRP bars and BFRP bars. The alkali resistance of GFRP bars is better than that of BFRP bars. The possible mechanisms are revealed and the relevant recommendations to improve the alkali resistance of FRP bars are presented in the paper.%通过碱溶液模拟混凝土内部孔隙水的碱性环境,研究了碱性环境对玻璃纤维增强塑料筋(GFRP筋)和玄武岩纤维增强塑料筋(BFRP筋)的拉伸强度、拉伸弹性模量以及剪切强度、破坏形态等的影响.结果表明:碱溶液作用降低了GFRP筋的拉伸强度和剪切强度,降低程度与时间有关;GFRP筋在碱溶液中发生了后固化反应,GFRP筋的力学性能变化是碱溶液作用和后期固化程度综合影响的结果.碱溶液作用降低了BFRP筋的拉伸强度、拉伸弹性模量和剪切强度,随着碱溶液作用时间的增加,拉伸强度与拉伸弹性模量降低程度有增加的趋势.玻璃纤维和玄武岩纤维中的Si-O键在水分子和

  1. Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement

    Directory of Open Access Journals (Sweden)

    Heecheul Kim

    2015-01-01

    Full Text Available This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spacing ratio increased. Also, we used the experimental results to evaluate whether the shear strength equations of ACI 318-14 and ACI 440.1R can be applied to the design of GFRP shear reinforcement. In the results, the ACI 440 equation underestimated the experimental results more than that of ACI 318.

  2. Strengthening Reinforced Concrete Beams with CFRP and GFRP

    Directory of Open Access Journals (Sweden)

    Mehmet Mustafa Önal

    2014-01-01

    Full Text Available Concrete beams were strengthened by wrapping the shear edges of the beams twice at 45° in opposite directions by either carbon fiber reinforced polymer (CFRP or glass fiber reinforced polymer (GFRP. The study included 3 CFRP wrapped beams, 3 GFRP wrapped beams, and 3 control beams, all of which were 150 × 250 × 2200 mm and manufactured with C20 concrete and S420a structural steel at the Gazi University Technical Education Faculty labs, Turkey. Samples in molds were cured by watering in the open air for 21 days. Four-point bending tests were made on the beam test specimens and the data were collected. Data were evaluated in terms of load displacement, bearing strength, ductility, and energy consumption. In the CFRP and GFRP reinforced beams, compared to controls, 38% and 42%, respectively, strength increase was observed. In all beams, failure-flexural stress occurred in the center as expected. Most cracking was observed in the flexural region 4. A comparison of CFRP and GFRP materials reveals that GFRP enforced parts absorb more energy. Both materials yielded successful results. Thicker epoxy application in both CFRP and GFRP beams was considered to be effective in preventing break-ups.

  3. Influence of specimen type and reinforcement on measured tension-tension fatigue life of unidirectional GFRP laminates

    DEFF Research Database (Denmark)

    Korkiakoski, Samuli; Brøndsted, Povl; Sarlin, Essi

    2016-01-01

    It is well known that standardised tension-tension fatigue test specimens of unidirectional (UD) glass-fibre-reinforced plastics (GFRP) laminates tend to fail at end tabs. The true fatigue life is then underestimated. The first objective of this study was to find for UD GFRP laminates a test...... specimen that fails in the gauge section. The second objective was to compare fatigue performance of two laminates, one having a newly developed UD powder-bound fabric as a reinforcement and the other having a quasi-UD stitched non-crimp fabric as a reinforcement. In the first phase, a rectangular specimen...... a significant effect on the failure mode and measured fatigue life of the laminates. A significantly higher fatigue life was measured for the laminate with the powder-bound fabric reinforcement when compared to the laminate with the stitched reinforcement....

  4. Catenary Action in Rebars Crossing a Casting Joint Loaded in Shear

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes

    2016-01-01

    Reinforcement crossing a casting joint loaded in shear exhibits catenary action as the shear displacement increases. The load carrying capacity of such a joint is in practice often calculated by use of empirical methods to account for shear friction effects or by a first order plastic analysis if...... and theory is found when reasonable material properties are assumed.......Reinforcement crossing a casting joint loaded in shear exhibits catenary action as the shear displacement increases. The load carrying capacity of such a joint is in practice often calculated by use of empirical methods to account for shear friction effects or by a first order plastic analysis...... if dowel action is included. The strength increase/reserve due to catenary action in the rebars is often neglected; however in some cases it may be necessary to utilize the effect in order to ensure overall structural robustness. This paper presents results of a study, where the increased shear capacity...

  5. Research, Development, and Production of V-N Microalloyed High Strength Rebars for Building in China

    Institute of Scientific and Technical Information of China (English)

    YANG Cai-fu; WANG Quan-li

    2008-01-01

    The research, production, and application of V-N microalloyed high strength rebars in China were reviewed. Enhanced nitrogen in vanadium-containing rebars promotes the precipitation of fine V(C, N) particles, and markedly improves the precipitation strengthening effectiveness of vanadium. Therefore, vanadium added to V-N microalloyed rebars can be reduced by 40% compared to the same strength level of vanadium-containing rebars.

  6. Creep investigation of GFRP RC Beams - Part A : Literature review and experimental Study

    Directory of Open Access Journals (Sweden)

    masmoudi abdelmonem

    2014-11-01

    This paper (Part A presents a literature review and the loading history of six experimental beams reinforced with GFRP and steel bars. The results of this study revealed that Beams reinforced with GFRP are less marked with creep phenomenon.  This investigation should guide the civil engineer/designer for a better understanding creep phenomenon in GFRP reinforced concrete members.

  7. Behavior of reinforced concrete beams reinforced with GFRP bars

    Directory of Open Access Journals (Sweden)

    D. H. Tavares

    Full Text Available The use of fiber reinforced polymer (FRP bars is one of the alternatives presented in recent studies to prevent the drawbacks related to the steel reinforcement in specific reinforced concrete members. In this work, six reinforced concrete beams were submitted to four point bending tests. One beam was reinforced with CA-50 steel bars and five with glass fiber reinforced polymer (GFRP bars. The tests were carried out in the Department of Structural Engineering in São Carlos Engineering School, São Paulo University. The objective of the test program was to compare strength, reinforcement deformation, displacement, and some anchorage aspects between the GFRP-reinforced concrete beams and the steel-reinforced concrete beam. The results show that, even though four GFRP-reinforced concrete beams were designed with the same internal tension force as that with steel reinforcement, their capacity was lower than that of the steel-reinforced beam. The results also show that similar flexural capacity can be achieved for the steel- and for the GFRP-reinforced concrete beams by controlling the stiffness (reinforcement modulus of elasticity multiplied by the bar cross-sectional area - EA and the tension force of the GFRP bars.

  8. A comparative study on the use of drilling and milling processes in hole making of GFRP composite

    Indian Academy of Sciences (India)

    Hussein M Ali; Asif Iqbal; Li Liang

    2013-08-01

    Drilling and milling processes are extensively used for producing riveted and bolted joints during the assembly operations of composite laminates with other components. Hole making in glass fibre reinforced plastic (GFRP) composites is the most common mechanical process, which is used to join them to other metallic structures. Bolt joining effectiveness depends, critically, on the quality of the holes. The quality of machined holes in GFRP is strongly dependent on the appropriate choice of the cutting parameters. The main purpose of the present study is to assess the influence of drilling and milling machining parameters on hole making process of woven laminated GFRP material. A statistical approach is used to understand the effects of the control parameters on the response variables. Analysis of variance (ANOVA) was performed to isolate the effects of the parameters affecting the hole making in the two types of cutting processes. The results showed that milling process is more suitable than drilling process at high level of cutting speed and low level of feed rate, when the cutting quality (minimum surface roughness, minimum difference between upper and lower diameter) is of critical importance in the manufacturing industry, especially for precision assembly operation.

  9. Strengthening of RC Slabs with Symmetric Openings Using GFRP Composite Beams

    Directory of Open Access Journals (Sweden)

    Yeol Choi

    2013-12-01

    Full Text Available This paper describes the results of experimental testing of glass fiber reinforced plastic (GFRP composite beam strengthened reinforced concrete (RC slabs with two symmetrical openings. Specimens, one-half scale, have been designed and fabricated to reflect the most common RC bathroom slab used in school buildings. The specimen had dimensions of 2000 mm (width × 150 mm (thickness × 3000 mm (length were used with the two openings of 300 mm × 400 mm. The aim of this study is to investigate the most effective strengthening method using GFRP composite beams in slabs with openings for enhancing the load-carrying capacity and stiffness. Test results showed that the strengthened slabs seems to increase the load-carrying capacity by 29%, 21% and 12% over that of the control specimen for diagonal, parallel and surround strengthening respectively. Furthermore, test results showed that the diagonal-strengthened system is one of the most effective methods for strengthening an RC slab with openings in terms of load-carrying capacity, stiffness and crack patterns.

  10. 大直径内置光纤光栅玻璃纤维增强聚合物锚杆梁杆黏结试验%BOND BEHAVIOR BETWEEN CONCRETE FRAME BEAM AND LARGE-DIAMETER GLASS FIBER REINFORCED POLYMER(GFRP) ANCHOR ROD WITH BUILT-IN FIBER BRAGG GRATING SENSOR

    Institute of Scientific and Technical Information of China (English)

    李国维; 戴剑; 倪春; 殷建华; 余亮

    2013-01-01

      纤维增强聚合物筋是一种新型复合材料,具有优异的力学性能和耐腐蚀性能,用其替代钢筋用于边坡加固是解决锚杆耐久性问题的途径之一。采用内置光纤光栅的 GFRP 筋制作锚杆结构模型,用空心液压千斤顶施加拉拔荷载,用光栅传感技术监测杆体应变,研究大直径喷砂 GFRP 锚杆在框架梁锚固条件下的受力破坏机制。研究表明,本试验大直径25 mm GFRP 锚杆在拉拔力、平均黏结强度方面均达到相同直径螺纹钢筋锚杆的设计指标,最合理的框架梁厚度为30~40 cm;瞬时荷载循环对 GFRP 锚杆界面黏结状态无明显影响;持续荷载作用下杆体界面的黏结状态会发生蜕化,随时间延续蜕化向深部扩展,荷载越大扩展深度越大,蜕化速度越快;光纤光栅监测技术是发现和观察锚杆界面黏结状态蜕化过程的有效手段。%  Fiber reinforced polymer(FRP) is a new composite material with excellent mechanical properties and corrosion resistance. It is a significant way to solve the durability problem of anchor rod by substituting this polymer for steel bars. Using anchor-rod-structure specimen made from glass fiber reinforced polymer(GFRP) bars with fiber grating installed internally,loaded by hollow hydraulic jack,monitored by grating sensing technology,this paper focuses on the failure mechanism of large-diameter sand-coated GFRP rebar in the frame beams under the condition of anchoring. Research shows that in the experiment,in terms of tensile force and average bond strength,this large-diameter(25 mm) GFRP rebar has reached the design strength of ribbed steel with the same diameter. The most reasonable thickness of frame beam varies from 30 to 40 cm. Transient loading cycles have no obvious influence on GFRP rebar interface-bond state;the degradation of rod body interface-bond state will occur under sustained loads,and it continues to develop and expand to

  11. Optical transmission scanning for damage quantification in impacted GFRP composites

    Science.gov (United States)

    Khomenko, Anton; Karpenko, Oleksii; Koricho, Ermias G.; Haq, Mahmoodul; Cloud, Gary L.; Udpa, Lalita

    2016-04-01

    Glass fiber reinforced polymer (GFRP) composites constitute nearly 90% of the global composites market and are extensively used in aerospace, marine, automotive and construction industries. While their advantages of lightweight and superior mechanical properties are well explored, non-destructive evaluation (NDE) techniques that allow for damage/defect detection and assessment of its extent and severity are not fully developed. Some of the conventional NDE techniques for GFRPs include ultrasonics, X-ray, IR thermography, and a variety of optical techniques. Optical methods, specifically measuring the transmission properties (e.g. ballistic optical imaging) of specimens, provide noninvasive, safe, inexpensive, and compact solutions and are commonly used in biomedical applications. In this work, this technique is adapted for rapid NDE of GFRP composites. In its basic form, the system for optical transmission scanning (OTS) consists of a light source (laser diode), a photo detector and a 2D translation stage. The proposed technique provides high-resolution, rapid and non-contact OT (optical transmittance)-scans, and does not require any coupling. The OTS system was used for inspection of pristine and low-velocity impacted (damaged) GFRP samples. The OT-scans were compared with conventional ultrasonic C-scans and showed excellent agreement but with better resolution. Overall, the work presented lays the groundwork for cost-effective, non-contact, and rapid NDE of GFRP composite structures.

  12. The design of an instrumented rebar for assessment of corrosion in cracked reinforced concrete

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Geiker, Mette Rica; Stang, Henrik;

    2011-01-01

    An instrumented rebar is presented which was designed to have a realistic mechanical performance and to provide location dependent measurements to assess the environment with regards to reinforcement corrosion. The instrumented rebar was constructed from a hollowed 10 mm nominal diameter standard...... between the steel and concrete. Cracked beams with cast-in instrumented and standard rebars were ponded with a 10\\% chloride solution and the open circuit corrosion potential (OCP) of the 17 sensors was measured for up to 62 days. Measurements from the individual sensors indicate when and where active...... rebar with 17 electronically isolated corrosion sensors. Instrumented and standard rebars were cast into concrete beams and bending cracks were induced and held open using steel frames. Epoxy impregnation was used to assess and compare cracks in the concrete around the instrumented and standard rebar...

  13. Effects of position, orientation, and metal loss on GPR signals from structural rebar

    Science.gov (United States)

    Eisenmann, David; Margetan, Frank J.; Chiou, C.-P.; Ellis, Shelby; Huang, Tongge; Tan, Jern Yang

    2017-02-01

    Past experimental work on a highway bridge in central Iowa suggested that ground penetrating radar (GPR) signals could possibly be used to differentiate intact rebar from those having substantial metal loss due to corrosion. That study made use of the amplitudes of GPR signals reflected by rebar, as obtained using a commercial instrument operated in pulse/echo mode. Many factors can contribute to the strength of the echo seen from a given rebar, including the rebar's length, its distance from and tilt angle relative to the antenna, and the location and size of the metal-loss region. In this paper we systematically investigate these geometric effects. We begin with measurements of reflected signals where only an air layer separates the antenna from the rebar. There, using standard ½-inch diameter rebar, the GPR signal is systematically studied as a function of the length of the rebar, the stand-off distance from the antenna, the rebar tilt angle, and the size of the metal-loss region. The metal loss region is conveniently simulated by taking two parallel and abutting rebar lengths and pulling them apart to introduce a small gap between them. The "in air" measurements indicate that that GPR signal amplitude is quite sensitive to material loss, but care must be taken to compensate for effects due to rebar depth and orientation. In addition one must avoid working in regimes where wave interference effects can skew the amplitudes of rebar signals. For example introducing a one-inch gap into a long straight rebar can cause the signal reflected from the rebar to either rise or fall depending on the location of the gap relative to the antenna housing. After summarizing the measurements in air, we discuss efforts to extend the study to rebar embedded in concrete. One idea being explored is the use of a powdered "phantom" material (having GPR properties similar to concrete) which can be sandwiched between two concrete blocks. The rebar can then be inserted into the powder

  14. Cyclic Load Responses of GFRP-Strengthened Hollow Rectangular Bridge Piers

    Directory of Open Access Journals (Sweden)

    Junfeng Jia

    2014-01-01

    Full Text Available This study investigated the seismic behavior of glass fiber reinforced polymer (GFRP strengthened hollow rectangular bridge piers. Cyclic testing of reinforced concrete (RC piers retrofitted with GFRP was carried out under constant axial loading and lateral bending. The failure characteristics, flexural ductility, dissipated energy, and hysteretic behaviors, were analyzed based on experimental results. A simplified GFRP-confined concrete model is developed by considering effective strength coefficient and area distribution ratio of GFRP sheets. The results indicate that the failure modes and damage region would be changed and the ductility and dissipated energy of the GFRP-strengthened hollow rectangular bridge piers were improved greatly but not much improvement for the lateral load capacity. The analytical results of the force-displacement hysteretic loops based on the GFRP-confined concrete model developed in this paper agreed well with the experimental data.

  15. Compressive Behavior of Concrete Confined with GFRP Tubes and Steel Spirals

    OpenAIRE

    Liang Huang; Xiaoxun Sun; Libo Yan; Deju Zhu

    2015-01-01

    This paper presents the experimental results and analytical modeling of the axial compressive behavior of concrete cylinders confined by both glass fiber-reinforced polymer (GFRP) tube and inner steel spiral reinforcement (SR). The concrete structure is termed as GFRP–SR confined concrete. The number of GFRP layers (1, 2, and 3 layers) and volumetric ratios of SR (1.5% and 3%) were the experimental variables. Test results indicate that both GFRP tube and SR confinement remarkably increase th...

  16. Shear Strengthening of Reinforced Concrete Beams Using GFRP Wraps

    Directory of Open Access Journals (Sweden)

    M. A. A. Saafan

    2006-01-01

    Full Text Available The objective of the experimental work described in this paper was to investigate the efficiency of GFRP composites in strengthening simply supported reinforced concrete beams designed with insufficient shear capacity. Using the hand lay-up technique, successive layers of a woven fiberglass fabric were bonded along the shear span to increase the shear capacity and to avoid catastrophic premature failure modes. The strengthened beams were fabricated with no web reinforcement to explore the efficiency of the proposed strengthening technique using the results of control beams with closed stirrups as a  web reinforcement. The test results of 18 beams are reported, addressing the influence of different shear strengthening schemes and variable longitudinal reinforcement ratios on the structural behavior. The results indicated that significant increases in the shear strength and improvements in the overall structural behavior of beams with insufficient shear capacity could be achieved by proper application of GFRP wraps.

  17. An Experimental and Numerical Study on Embedded Rebar Diameter in Concrete Using Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Md Istiaque Hasan

    2016-01-01

    Full Text Available High frequency ground penetrating radar (GPR has been widely used to detect and locate rebars in concrete. In this paper, a method of estimating the diameter of steel rebars in concrete with GPR is investigated. The relationship between the maximum normalized positive GPR amplitude from embedded rebars and the rebar diameter was established. Concrete samples with rebars of different diameters were cast and the maximum normalized amplitudes were recorded using a 2.6 GHz GPR antenna. Numerical models using GPRMAX software were developed and verified with the experimental data. The numerical models were then used to investigate the effect of dielectric constant of concrete and concrete cover on the maximum normalized amplitude. The results showed that there is an approximate linear relationship between the rebar diameter and the maximum GPR normalized amplitude. The developed models can be conveniently used to estimate the embedded rebar diameters in existing concrete with GPR scanning; if the concrete is homogeneous, the cover depth is known and the concrete dielectric constant is also known. The models will be highly beneficial in forensic investigations of existing concrete structures with unknown rebar sizes and locations.

  18. Influence of a biopolymer admixture on corrosion behaviour of steel rebars in concrete

    NARCIS (Netherlands)

    Roux, S.; Bur, N.; Ferrari, G.M.; Tribollet, B.; Feugeas, F.

    2010-01-01

    Among the multitude of concrete structure pathologies, corrosion of rebars is one of the most important problems of concrete durability. In the context of sustainable development, it appears of primary importance to develop new means to protect the rebars against corrosion. This study aims to develo

  19. Bond behaviour of GFRP reinforced geopolymer cement concrete

    Directory of Open Access Journals (Sweden)

    Hailu Tekle Biruk

    2017-01-01

    Full Text Available Bond plays a key role in the performance of reinforced concrete structures. Glass fibre reinforced polymer (GFRP reinforcing bar and Geopolymer cement (GPC concrete are promising alternative construction materials for steel bars and Ordinary Portland Cement (OPC concrete respectively. In this study, the bond behaviour between these two materials is investigated by using beam-end specimen tests. The bond behaviour of 15.9 mm diameter sand-coated GFRP bar was investigated. An embedment length of six and nine times the bar diameter were used. The free end and the loaded end bond-slip-relationships, the bond failure mode and the average bond stress were used to analyse each of the specimens. Additionally, the distribution of tensile and bond stress along the embedment length was investigated by installing strain gauges along the embedment length in some of the specimens. Test results indicate that a significant difference exists between the free end and loaded end bond-slip curves, which is due to the lower elastic modulus of the GFRP bars. Furthermore, it was found that the tensile and bond stress distribution along the embedment length is nonlinear and the nonlinearity changes with the load.

  20. Torsional Strengthening of RC Beams Using GFRP Composites

    Science.gov (United States)

    Patel, Paresh V.; Jariwala, Vishnu H.; Purohit, Sharadkumar P.

    2016-09-01

    Fiber reinforced polymer as an external reinforcement is used extensively for axial, flexural and shear strengthening in structural systems. The strengthening of members subjected to torsion is recently being explored. The loading mechanism of beams located at the perimeter of buildings which carry loads from slabs, joists and beams from one side of the member generates torsion that are transferred from the beams to the columns. In this work an experimental investigation on the improvement of the torsional resistance of reinforced concrete beams using Glass Fiber Reinforced Polymer (GFRP) is presented. Total 24 RC beams have been cast in this work. Ten beams of dimension 150 mm × 150 mm × 1300 mm are subjected to pure torsion while fourteen beams of 150 mm × 150 mm × 1700 mm are subjected to combined torsion and bending. Two beams in each category are designated as control specimen and remaining beams are strengthened by GFRP wrapping of different configurations. Pure torsion on specimens is applied using specially fabricated support mechanism and universal testing machine. For applying combined torsion and bending a loading frame and test set up are fabricated. Measurements of angle of twist at regular interval of torque, torsion at first crack, and ultimate torque, are obtained for all specimens. Results of different wrapping configurations are compared for control and strengthened beams to suggest effective GFRP wrapping configuration.

  1. Mechanical behavior of segment rebar of shield tunnel in construction stage

    Institute of Scientific and Technical Information of China (English)

    Jun-sheng CHEN; Hai-hong MO

    2008-01-01

    In this paper, a 3D finite element (FE) program ADINA was applied to analyzing a tunnel with 9 segment rings. The loads acting on these segment rings included the squeezing action of tail brush of shield machine under attitude deflection, the jacking forces, the grouting pressure and the soil pressure. The analyses focused on the rebar stress in two statuses: (1) normal construction status without shield machine squeezing; (2) squeezing action induced by shield machine under attitude deflection.The analyses indicated that the rebar stress was evidently affected by the construction loads. In different construction status, the rebar stress ranges from -80 MPa to 50 MPa, and the rebar is in elastic status. Even some cracks appear on segments, the stress of segment rebar is still at a low level. It is helpful to incorporate a certain quantity of steel fiber to improve the anti-crack and shock resistance performance.

  2. Experimental and numerical thermal analysis of a balcony board with integrated glass fibre reinforced polymer GFRP elements

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi Wakili, K.; Simmler, H.; Frank, T. [Swiss Federal Laboratories for Materials Testing and Research (Empa), Duebendorf (Switzerland)

    2007-07-01

    The thermal behaviour of a balcony board with integrated glass fibre reinforced plastic (GFRP) elements replacing the compression reinforcement rods, is investigated by means of measurement as well as numerical analysis. For this reason a specimen consisting of an externally insulated brick wall and a representative part of a balcony is tested under a steady state temperature gradient of 30 K in a guarded hot box. Additionally to the normative requirements, temperature sensors are placed on critical sites within the construction, prior to the pouring of cement, to help the verification of the numerical analysis carried out simultaneously. Measured and calculated results are compared and some numerical parameter studies are carried out to quantify the advantage of glass fibre reinforced plastic elements over conventional balcony boards from a thermal point of view. (author)

  3. Experimental Study On The Flexural And Shear Analysis Of Concrete Beams Rein Forced With Glass Fiber -Reinforced (Gfrp Bars

    Directory of Open Access Journals (Sweden)

    Edgaras Atutis

    2013-12-01

    Full Text Available The paper analyzes experimental studies examining the flexuraland shear analysis of the beams reinforced with GFRP bars. Atesting program consisted of two beams reinforced with longitudinalprestressed GFRP tendons, two beams reinforced withlongitudinal GFRP bars and two beams reinforced with longitudinalsteel reinforcement and shear reinforcement of GFRP bars.The experimental flexural and shear strength of concrete beamswere compared with theoretical strength calculated according toa number of design recommendations, and the significance ofprestressing for deflection and cracking was analyzed.

  4. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  5. Combined Effects of Curing Temperatures and Alkaline Concrete on Tensile Properties of GFRP Bars

    Directory of Open Access Journals (Sweden)

    Wen-rui Yang

    2017-01-01

    Full Text Available A significant number of studies have been conducted on the tensile properties of GFRP bars embedded in concrete under different environments. However, most of these studies have been experimentally based on the environmental immersion test after standard-curing and the lack of influence on the tensile properties of GFRP bars embedded in concrete during the curing process of concrete. This paper presents the results of the microscopic structures through scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, and tensile properties of GFRP bars, which were employed to investigate the combined effects of curing temperatures and alkaline concrete on tensile properties of GFRP bars. The results showed that the higher curing temperature aggravated the influence of the alkaline concrete environment on GFRP bars but did not change the mechanisms of mechanical degradation of the GFRP bars. The influence of different curing temperatures on the tensile strength of GFRP bars was different between the bare bar and bars in concrete. Finally, the exponential correlation equation of two different test methods was established, and the attenuation ratio of the tensile strength of GFRP bars embedded in concrete under different curing temperatures was predicted by the bare test.

  6. Using "Rebar" to Stabilize Rigid Chest Wall Reconstruction.

    Science.gov (United States)

    Robinson, Lary A; Grubbs, Deanna M

    2016-04-01

    After major chest wall resection, reconstruction of the bony defect with a rigid prosthesis is mandatory to protect the underlying thoracic organs, and to prevent flail chest physiology. Although many methods have been described for chest wall reconstruction, a commonly used technique employs a composite Marlex (polypropylene) mesh with methyl-methacrylate cement sandwiched between two layers of mesh (MMS), which is tailored to the defect size and shape. In building construction, steel "rebar" is used to strengthen and reinforce masonry structures. To avoid the initial residual motion of the rigid prosthesis used to reconstruct very large defects, particularly the sternum, we devised a simple technique of adding one or more Steinmann steel pins as "rebar" to strengthen and immediately stabilize the prosthesis to the surrounding ribs and sternum. For the very large defects, particularly over the heart and great vessels, titanium mesh may also be readily added into the sandwich construction for increased strength and to prevent late prosthetic fractures. Short- and long-term results of this inexpensive modification of the MMS reconstruction technique are excellent. This modified MMS tailor-made prosthesis is only one-third the cost of the recently popular prosthetic titanium systems, takes much less operative time to create and implant, and avoids the well-described complications of late titanium bar fracture and erosion/infection as well as loosening of screws and/or titanium bars.

  7. Effect of inhibitors and coatings on rebar corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Saricimen, H.; Ashiru, O.A.; Jarrah, N.R.; Quddus, A.; Shameem, M. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Research Inst.

    1997-12-01

    Chloride-induced corrosion of reinforcing steel is a major cause of deterioration of concrete structures in the eastern province of Saudi Arabia. Two of the practical ways of preventing or retarding corrosion of reinforcing steel bars in concrete are by using (a) inhibitor in concrete mix, and (b) coating either on the rebars or on external surfaces of concrete structures. The objective of this study has been to evaluate the effect of two inhibitors, three concrete coatings, and two barrier coatings on corrosion of reinforcing steel bars. Reinforced concrete specimens were monitored by AC and DC electrochemical techniques while undergoing free and accelerated corrosion. Accelerated corrosion tests were performed under 4V impressed anodic potential. Corrosion of the steel bars were evaluated by measuring anodic current, time-to-cracking of concrete specimens, and corrosion rates of the steel bars. The results showed that the specimens with the concrete surface coatings did not perform better than the control specimens. Time-to-cracking was shorter and corrosion rate of steel bars was higher in specimens coated with concrete coatings. The inhibitors and rebar surface coatings reduced the corrosion rate of steel bars significantly and improved the time-to-cracking of the specimens in comparison to control specimens.

  8. Cement content influence in rebar corrosion in carbonated mortars

    Directory of Open Access Journals (Sweden)

    Américo, P. O.

    2003-12-01

    Full Text Available The cement hydration products protect the concrete rebars of the reinforced concrete due to the production of Ca(OH2, NaOH, and KOH that, upon dissolving in the concrete s aqueous phase, generate a pH above 12.5. However, reinforced concrete structures are exposed to pollutant gases, such as, CO2 which upon penetrating the concrete, reacts with the alkaline components, consequently reducing the pH of the aqueous phase causing the loss of passivity by the rebar and as a consequence its corrosion when there is the presence of humidity and oxygen. The objective of the current paper is the analysis of the alkaline reserve influence, measured by the cement content, in the corrosion of rebars employing the polarization resistance technique for determining the corrosion intensity. Results for corrosion intensity of rebars embedded in prismatic mortar test specimens are produced with three cement content levels, with equal water/cement ratio. Cylindrical test specimens were also used for verification of the capillary absorption and the porosity by means of mercury porosymetry The results show that the initiation period is shorter and the corrosion intensity of the rebars is higher when the cement content is lower However, there is also an alteration in the microstructure upon altering the cement content, and far this reason one cannot conclude that the alkaline reserve alone is responsible for these results.

    Los productos de hidratación del cemento protegen las armaduras embebidas en el hormigón debido a la gran cantidad de Ca(OH2, NaOH y KOH disueltos en la fase acuosa del hormigón que proporcionan un pH mayor que 12,5. Sin embargo, las estructuras de hormigón armado están expuestas a los gases contaminantes como el CO2, que al penetrar en el hormigón reacciona con los compuestos alcalinos, se reduce el pH de la fase acuosa y provocan la despasivación de la armadura. Posteriormente, si hay

  9. Virtual reality presentation for nondestructive evaluation of rebar corrosion in concrete based on IBEM

    Energy Technology Data Exchange (ETDEWEB)

    Kyung, Je Woon; Leelarkiet, V.; Ohtsu, Masayasu [Kumamoto University, Kumamoto (Japan); Yokata, Masaru [Dept. of Civil Engineering, Shikoku Research Institute, Takamastu (Japan)

    2004-11-15

    In order to evaluate the corrosion of reinforcing steel-bars (rebar) in concrete, a nondestructive evaluation by the half-cell potential method is currently applied. In this study, potentials measured on a concrete surface are compensated into those on the concrete-rebar interface by the inverse boundary element method (IBEM). Because these potentials are obtained three-dimensionally (3-D), 3-D visualization is desirable. To this end, a visualization system has been developed by using VRML (Virtual Reality Modeling Language). As an application, results of a reinforced concrete (RC) slab with corroded rebars are visualized and discussed.

  10. Virtual Reality Presentation for Nondestructive Evaluation of Rebar Corrosion in Concrete based on Inverse BEM

    Energy Technology Data Exchange (ETDEWEB)

    Kyung, Je Woon [EJtech Co., Seongnam (Korea, Republic of); Yokota, Masaru [Shikoku Research Institute Inc., Takamastu (Japan); Leelalerkiet, V.; Ohtsu, Masayasu [Kumamoto University, Kumamoto (Japan)

    2005-06-15

    In order to evaluate the corrosion of reinforcing steel-bars (rebar) in concrete, a nondestructive evaluation by the half-cell potential method is currently applied. In this study, potentials measured on a concrete surface are compensated into those on the concrete-rebar interface by the inverse boundary element method (IBEM). Because these potentials are obtained three-dimensionally (3-D), 3-D visualization is desirable. To this end, a visualization system has been developed by using VRML (Virtual Reality Modeling Language). As an application, results of a reinforced concrete (RC) slab with corroded rebars are visualized and discussed

  11. Dynamic constitutive equation of GFRP obtained by Lagrange experiment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The note presents a method of constructing dynamic constitutive equations of material by means of Lagrange experiment and analysis. Tests were carried out by a light gas gun and the stress history profiles were recorded on multiple Lagrange positions. The dynamic constitutive equations were deduced from the regression of a series of data which was obtained by Lagrange analysis based upon recorded multiple stress histories. Here constitutive equations of glass fibre reinforced phenolic resin composite(GFRP) in uniaxil strain state under dynamic loading are given. The proposed equations of the material agree well with experimental results.

  12. An application of asymmetrical glass fibre-reinforced plastics for the manufacture of curved fibre reinforced concrete

    OpenAIRE

    Funke, Henrik; Gelbrich, Sandra; Ulke-Winter , Lars; Kroll, Lothar; Petzoldt, Carolin

    2015-01-01

    There was developed a novel technological and constructive approach for the low-cost production of curved freeform formworks, which allow the production of single and double-curved fibre reinforced concrete. The scheduled approach was based on a flexible, asymmetrical multi-layered formwork system, which consists of glass-fibre reinforced plastic (GFRP). By using of the unusual anisotropic structural behavior, these GFRP formwork elements permitted a specific adjustment of defined curvature. ...

  13. STUDY ON CORROSION RESISTANCE OF REBAR IN HYBRID GRINDING FLY ASH-LIME SILICATE CONCRETE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The corrosion resistance of rebar in fly ash-lime sili cate concrete as well as its marco properties and pore distribution is investiga ted.The results show that the fly ash is activated, the compressive strength of the silicate concrete is strengthened and its pore structure is modified after f ly ash and lime being hybrid ground.Also the corrosion resistance of rebar in the silicate concrete is improved.

  14. Bonding Behavior of Deformed Steel Rebars in Sustainable Concrete Containing both Fine and Coarse Recycled Aggregates.

    Science.gov (United States)

    Kim, Sun-Woo; Park, Wan-Shin; Jang, Young-Il; Jang, Seok-Joon; Yun, Hyun-Do

    2017-09-14

    In order to assess the bond behavior of deformed steel rebars in recycled-aggregate concrete (RAC) incorporating both fine and coarse recycled aggregate, pull-out tests were carried out in this study on 16-mm diameter deformed steel rebars embedded concentrically in RAC. The concrete was designed using equivalently mixed proportions of both recycled coarse aggregate and recycled fine aggregate. The tests employed five types of recycled aggregate replacement combinations and three types of rebar placement orientation (i.e., vertical bars and two-tiered and three-tiered horizontal bars). Based on the pull-out test results, the maximum bond strength tended to decrease and the slip at the maximum bond strength increased as the average water absorption of the aggregate increased, irrespective of the rebar orientation or placement location within the concrete member. The pull-out test results for the horizontal steel rebars embedded in RAC indicate that the casting position effect could be determined from the mid-depth of the concrete member, irrespective of the member's height. The normalized bond versus slip relationship between the deformed rebar and the RAC could be predicted using an empirical model based on regression analysis of the experimental data.

  15. Durability study of neat/nanophased GFRP composites subjected to different environmental conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Zainuddin, S. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States); Hosur, M.V., E-mail: hosur@tuskegee.edu [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States); Zhou, Y. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States); Kumar, Ashok [Construction Engineering Research Laboratory, U.S. Army Engineer Research and Development Center, Champaign, IL 61821-9005 (United States); Jeelani, S. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States)

    2010-05-25

    Experimental investigations on the durability of E-glass/nanoclay-epoxy composites are reported. SC-15 epoxy system was modified using 1-2 wt.% of nanoclay. Extent of clay platelet exfoliation in epoxy was evaluated using X-ray diffraction (XRD). Glass fiber reinforced plastic (GFRP) composite panels were fabricated using modified epoxy and exposed to four different conditions, i.e. hot (elevated temperature-dry, wet: 60 and 80 deg. C) and cold (subzero-dry, wet) for 15, 45 and 90 days. Weight change due to conditioning, quasi-static flexure and micrographic characterization were studied on the conditioned samples. Room temperature samples were also tested for baseline consideration. XRD results showed exfoliation of clay platelets in nanoclay-epoxy samples with decrease in peak intensity and increase in interplanar spacing. Samples subjected to hot-wet conditions showed higher percentage weight gain with a maximum of 4.25% in neat and 3.1% in 2 wt.% samples. Flexural tests results showed degradation with increasing time. Maximum degradation were observed for hot-wet (80 deg. C) for 90 days neat samples, i.e. 22.6% and 29.8% reduction in flexural strength and stiffness, respectively. However, less degradation was noticed for nanophased composites under similar conditions. Scanning electron microscopy (SEM) results of failed samples showed better interfacial bonding in nanophased composites.

  16. Mechanical properties of sandwich composite made of syntactic foam core and GFRP skins

    Directory of Open Access Journals (Sweden)

    Zulzamri Salleh

    2016-12-01

    Full Text Available Sandwich composites or sandwich panels have been widely used as potential materials or building structures and are regarded as a lightweight material for marine applications. In particular, the mechanical properties, such as the compressive, tensile and flexural behaviour, of sandwich composites formed from glass fibre sheets used as the skin and glass microballoon/vinyl ester as the syntactic foam core were investigated in this report. This syntactic foam core is sandwiched between unidirectional glass fibre reinforced plastic (GFRP using vinyl ester resins to build high performance sandwich panels. The results show that the compressive and tensile strengths decrease when the glass microballoon content is increased in syntactic foam core of sandwich panels. Moreover, compressive modulus is also found to be decreased, and there is no trend for tensile modulus. Meanwhile, the flexural stiffness and effective flexural stiffness for edgewise position have a higher bending as 50% and 60%, respectively. Furthermore, the results indicated that the glass microballoon mixed in a vinyl ester should be controlled to obtain a good combination of the tensile, compressive and flexural strength properties.

  17. Compressive Behavior of Concrete Confined with GFRP Tubes and Steel Spirals

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2015-04-01

    Full Text Available This paper presents the experimental results and analytical modeling of the axial compressive behavior of concrete cylinders confined by both glass fiber-reinforced polymer (GFRP tube and inner steel spiral reinforcement (SR. The concrete structure is termed as GFRP–SR confined concrete. The number of GFRP layers (1, 2, and 3 layers and volumetric ratios of SR (1.5% and 3% were the experimental variables. Test results indicate that both GFRP tube and SR confinement remarkably increase the ultimate compressive strength, energy dissipation capacity, and ductility of concrete. The volumetric ratio of SR has a more pronounced influence on the energy dissipation capacity of confined concrete with more GFRP layers. In addition, a stress–strain model is presented to predict the axial compressive behavior of GFRP–SR confined concrete. Comparisons between the analytical results obtained using the proposed model and experimental results are also presented.

  18. A field study investigating the effects of a rebar-tying machine on trunk flexion, tool usability and productivity.

    Science.gov (United States)

    Vi, Peter

    2006-11-15

    A field study with a before-and-after experimental design was conducted to evaluate the potential reduction in the risk of musculoskeletal injuries to rodworkers when using an automatic rebar-tying machine. Eleven rodworkers participated in this experiment. All dependent variables (trunk posture, rebar-tying time and responses to a usability questionnaire) were first measured before introducing the rebar-tying machine and then after 3 months of usage all dependent variables were measured again. The results of the study indicated that working with a rebar-tying machine significantly reduced the magnitude, frequency and duration of exposure to awkward trunk posture. Tying time was reduced when participants used the machine. The usability questionnaire indicated that most participants preferred to use the rebar-tying machine for ground-level rebar construction. The field study also revealed that the rebar-tying machine is not limited to the reinforcing trade. The machine can be used for other purposes, such as tying electrical conduit and attaching radiant heat tube to steel mesh. Based on trunk posture exposure, rebar-tying time, usability and transferability, it is concluded that the rebar-tying machine can be an effective tool to reduce the frequency and duration of severe trunk flexion, improve usability and increase productivity among concrete reinforcement workers.

  19. Finite Element Simulation of GFRP Reinforced Concrete Beam Externally Strengthened With CFRP Plates

    Directory of Open Access Journals (Sweden)

    Salleh Norhafizah

    2017-01-01

    Full Text Available The construction technology now has become more and more advanced allowing the development of new technologies or material to replace the previous one and also solved some of the troubles confronted by construction experts. The Glass Fibre Reinforced Polymer (GFRP composite is an alternative to replace the current usage of steel as it is rust proof and stronger in terms of stiffness compared to steel. Furthermore, GFRP bars have a high strength-to-weight ratio, making them attractive as reinforcement for concrete structures. However, the tensile behavior of GFRP bars is characterized by a linear elastic stress–strain relationship up to failure and, therefore, concrete elements reinforced with GFRP reinforcement exhibit brittle failure without warning. Design codes encourage over-reinforced GFRP design since it is more progressive and leads to a less catastrophic failure with a higher degree of deformability. Moreover, because of GFRP low modulus of elasticity, GFRP reinforced concrete members exhibit larger deflections and wider cracks width than steel reinforced concrete. This aims of this paper is to developed 2D Finite Element (FE models that can accurately simulate the respond on an improvement in the deflection of GFRP reinforced concrete beam externally strengthened with CFRP plates on the tension part of beam. The prediction of flexural response according to RCCSA software was also discussed. It was observed that the predicted FE results are given similar result with the experimental measured test data. Base on this good agreement, a parametric study was the performed using the validation FE model to investigate the effect of flexural reinforcement ratio and arrangement of the beams strengthened with different regions of CFRP plates.

  20. Preparation and characterization of glass fibers - polymers (epoxy) bars (GFRP) reinforced concrete for structural applications

    Science.gov (United States)

    Alkjk, Saeed; Jabra, Rafee; Alkhater, Salem

    2016-06-01

    The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP) and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm) tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long) reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  1. Long-Term Flexural Behaviors of GFRP Reinforced Concrete Beams Exposed to Accelerated Aging Exposure Conditions

    Directory of Open Access Journals (Sweden)

    Yeonho Park

    2014-06-01

    Full Text Available This study investigates the impact of accelerated aging conditions on the long-term flexural behavior and ductility of reinforced concrete (RC members with glass fiber-reinforced polymer (GFRP bars (RC-GFRP specimen and steel bars (RC-steel specimen. A total of thirty six specimens were designed with different amounts of reinforcement with three types of reinforcing bars (i.e., helically wrapped GFRP, sand-coated surface GFRP and steel. Eighteen specimens were subjected to sustained loads and accelerated aging conditions (i.e., 47 °C and 80% relative humidity in a chamber. The flexural behavior of specimens under 300-day exposure was compared to that of the companion specimens without experiencing accelerated aging conditions. Results indicate that the accelerated aging conditions reduced flexural capacity in not only RC-steel, but also RC-GFRP specimens, with different rates of reduction. Different types of GFRP reinforcement exhibited different rates of degradation of the flexural capacity when embedded in concrete under the same exposure conditions. Several existing models were compared with experimental results for predicting the deflection and deformability index for specimens. Bischoff and Gross’s model exhibited an excellent prediction of the time-dependent deflections. Except for the deformability index proposed by Jaeger, there was no general trend related to the aging duration. This study recommends the need for further investigation on the prediction of the deformability index.

  2. Preparation and characterization of glass fibers – polymers (epoxy bars (GFRP reinforced concrete for structural applications

    Directory of Open Access Journals (Sweden)

    Alkjk Saeed

    2016-06-01

    Full Text Available The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  3. Identification of corrosion in reinforcement rebars by using the GPR

    Directory of Open Access Journals (Sweden)

    Mechbal Z.

    2014-01-01

    Full Text Available Considering the problem of corroded steel reinforcements buried in concrete members, a methodology based on ground penetrating radar was proposed for the identification of the corrosion affected zone. The method uses post-processing of radargram as obtained from a classic B-scan realized by the electromagnetic radar, when working with adequate high frequencies that are usually used for inspection of reinforced concrete structures. The radar displays are in general complex and not easy to interpret. However, significant information can be extracted from the obtained images to make a reliable report after the inspection. In this context, a correlation formula was proposed previously to estimate the perimeter of a reinforcement bar which is embedded in a concrete massif by using the radargram traces. This formula was employed in the present work in order to estimate the corroded zone perimeter. The obtained results have shown that it provides good prediction of the deterioration extent. Clear contrast of traces was noticed also while modifying the depth of the corrosion affected zone. However, to obtain the depth of the corroded segment of the rebar, further developments concerning image processing of a radargram are required.

  4. Particulate Filled Composite Plastic Materials from Recycled Glass Fibre Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Aare ARUNIIT

    2011-09-01

    Full Text Available Glass fibre reinforced plastic (GFRP scrap consisted of acrylic plastic with glass fibre reinforcement in polyester resin matrix was used in our experiments. The multi-functional DS-series disintegrator mills were used for mechanical processing of GFRP scrap. Preceding from the results characterization of the milled powder particles size, shape and other properties the numerical algorithm for modelling of the density of the new filler material was developed. The main goal of the current study is to develop new particulate filled composite plastic material from recycled GFRP scrap. With recovered plastic powder material the higher filler content in polyester resin matrix can be achieved. The new composite is modelled on basis of the properties of new material. Such an approach requires tests of the new material. The considered target characteristics of the new material are the tensile strength, elongation at break and the cost. The multicriteria optimization problem has been formulated and solved by use of physical programming techniques and Pareto optimality concept. The designed new composites were manufactured in different mixing ratios of powder and binder agent. The strength and stiffness properties of new composite material were tested. http://dx.doi.org/10.5755/j01.ms.17.3.593

  5. GFRP门窗的综合应用性及经济性%INTEGRATED UTILIZATION AND ECONOMIC VALUE OF GFRP DOOR AND WINDOW

    Institute of Scientific and Technical Information of China (English)

    王良纯; 黄明哲

    2000-01-01

    门窗用玻璃纤维增强塑料(GFRP)拉挤中空型材的问世,为建筑业提供了一种新型材料。用该型材制作的GFRP门窗,其综合应用性能高于用木、钢、铝和PVC制成的门窗,具有广阔的发展前景。%The coming out of the hollow profile used to make the door and window employing glass fiber reinforced plastics in the pultmsion supplies a new kind of material for building industry. The integrated utilization of the door and window made of such materials is better than the ones made of wood, steel, aluminum as well as PVC plastics, and has a vast developing prospect.

  6. Corrosion behavior of rebar for intermittent cathodic protection of coastal bridges

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, M. | Cramer, S.D. | Covino, B.S., Jr. | Bullard, S.J. | Holcomb, G.R. | Russell, J.H. | Windisch, Jr., C.F. (PNNL)

    2001-02-01

    A number of reinforced concrete bridges on the Oregon coast are protected against chloride-induced corrosion damage by means of impressed current cathodic protection (ICCP). Thermal-sprayed Zn serves as the anode in these systems. Rebar in the concrete can remain passive and protected for some period of time after the CP system is turned off. The active-passive corrosion behavior of rebar in simulated pore solution (SPS) was investigated as a function of pH and Cl- concentration as part of a study of intermittent ICCP operation. Rebar corrosion rates in SPS were determined from polarization curves by fitting the Butler-Volmer equation and the linear polarization equation. Analysis of the passive film in SPS by x-ray diffraction and surface enhanced Raman spectroscopy showed it to be largely Fe3O4. However, the Fe(OH)2 content increased with cathodic polarization time.

  7. Optical-Based Sensors for Monitoring Corrosion of Reinforcement Rebar via an Etched Cladding Bragg Grating

    Directory of Open Access Journals (Sweden)

    Faisal Rafiq Mahamd Adikan

    2012-11-01

    Full Text Available In this paper, we present the development and testing of an optical-based sensor for monitoring the corrosion of reinforcement rebar. The testing was carried out using an 80% etched-cladding Fibre Bragg grating sensor to monitor the production of corrosion waste in a localized region of the rebar. Progression of corrosion can be sensed by observing the reflected wavelength shift of the FBG sensor. With the presence of corrosion, the etched-FBG reflected spectrum was shifted by 1.0 nm. In addition, with an increase in fringe pattern and continuously, step-like drop in power of the Bragg reflected spectrum was also displayed.

  8. Identification of rebars in a reinforced mesh using eddy current method

    Science.gov (United States)

    Frankowski, P. K.; Sikora, R.; Chady, T.

    2016-02-01

    The aim of this paper is to present an expert system for identification of the basic reinforcement concrete structures parameters like: rebars diameter, thickness of a concrete cover and a kind of rebar's alloy (class). The results of measurement carried out by the eddy current transducers were utilized for the designed system. Measured waveforms are represented by two kinds of attributes, the d-factors represent a waveform shape, and a maximal amplitude. In order to extract an association rules between the specific attributes and the structure parameters a rough set theory was used.

  9. Thermal analysis of GFRP-reinforced continuous concrete decks subjected to top fire

    Science.gov (United States)

    Hawileh, Rami A.; Rasheed, Hayder A.

    2017-09-01

    This paper presents a numerical study that investigates the behavior of continuous concrete decks doubly reinforced with top and bottom glass fiber reinforced polymer (GFRP) bars subjected to top surface fire. A finite element (FE) model is developed and a detailed transient thermal analysis is performed on a continuous concrete bridge deck under the effect of various fire curves. A parametric study is performed to examine the top cover thickness and the critical fire exposure curve needed to fully degrade the top GFRP bars while achieving certain fire ratings for the deck considered. Accordingly, design tables are prepared for each fire curve to guide the engineer to properly size the top concrete cover and maintain the temperature in the GFRP bars below critical design values in order to control the full top GFRP degradation. It is notable to indicate that degradation of top GFRP bars do not pose a collapse hazard but rather a serviceability concern since cracks in the negative moment region widen resulting in simply supported spans.

  10. SEM in situ laboratory investigations on damage growth in GFRP composite under three-point bending tests

    DEFF Research Database (Denmark)

    Zhou, Hong Wei; Mishnaevsky, Leon; Brøndsted, Povl

    2010-01-01

    Glass fiber-reinforced polymer (GFRP) composites are widely used in low-weight constructions. SEM (scanning electron microscopy) in situ experiments of damage growth in GFRP composite under three-point bending loads are carried out. By summarizing the experimental results of three groups of samples...

  11. Investigation of Creep Rupture Phenomenon in Glass Fibre Reinforced Polymer (GFRP) Stirrups

    Science.gov (United States)

    Johal, Kanwardeep Singh

    Glass Fibre-Reinforced Polymer (GFRP) bars offer a feasible alternative to typical steel reinforcement in concrete structures where there are concerns of corrosion or magnetic interference. In order to design safe structures for a service life of 50 to 100 years, the long-term material properties of GFRP must be understood. Thirty GFRP stirrups of three types were tested under sustained loading to investigate creep rupture and modulus degradation behaviour. The time to failure under varying sustained loads was used to extrapolate the safe design load for typical service lives. It was found that shear critical beams with shear reinforcement designed in accordance with CSA-S806 and ACI-440 provisions may be at risk of premature failure under sustained design loads. Analysis was based on finite element modelling and previously tested beams. Additionally, no moduli degradation was observed in this study. A cumulative weakening model was developed to potentially take into account fatigue loading.

  12. Creep investigation of GFRP RC Beams - Part B: a theoretical framework

    Directory of Open Access Journals (Sweden)

    masmoudi abdelmonem

    2014-11-01

    Full Text Available This paper presents an analytical study about the viscoelastic time-dependent (creep behavior of pultruded GFRP elements made of polyester and E-glass fibres. Experimental results reported in Part A are firstly used for material characterization by means of empirical and phenomenological formulations.   The superposition principles by adopting the law of creep following the Eurocode 2 recommendations are also investigated. Analytical study was also conducted including creep under constant stress; successions of increasing stress superposition principle equivalent time and the return creep reloading. The results of this study revealed that Beams reinforced with GFRP are less marked with creep phenomenon.  This investigation should guide the civil engineer/designer for a better understanding creep phenomenon in GFRP reinforced concrete members.

  13. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  14. An Experimental Study for Quantitative Estimation of Rebar Corrosion in Concrete Using Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Md Istiaque Hasan

    2016-01-01

    Full Text Available Corrosion of steel rebar in reinforced concrete is one the most important durability issues in the service life of a structure. In this paper, an investigation is conducted to find out the relationship between the amount of reinforced concrete corrosion and GPR maximum positive amplitude. Accelerated corrosion was simulated in the lab by impressing direct current into steel rebar that was submerged in a 5% salt water solution. The amount of corrosion was varied in the rebars with different levels of mass loss ranging from 0% to 45%. The corroded rebars were then placed into three different oil emulsion tanks having different dielectric properties similar to concrete. The maximum amplitudes from the corroded bars were recorded. A linear relationship between the maximum positive amplitudes and the amount of corrosion in terms of percentage loss of area was observed. It was proposed that the relationship between the GPR maximum amplitude and the amount of corrosion can be used as a basis of a NDE technique of quantitative estimation of corrosion.

  15. The Relationship between Rebar-Debonding and Cracking in Reinforced Concrete

    DEFF Research Database (Denmark)

    Thybo, Anna Emilie A.; Stang, Henrik; Olesen, John Forbes

    2012-01-01

    A mechanical model has been used to evaluate the rebar-concrete debonding length and Crack Mouth Opening Displacement (CMOD) in reinforced concrete. The modelling is based on the theory of the fictitious crack. It is shown that there is a non-trival relationship between the debonding length...

  16. Experimental Investigation on Flexural Performance of Masonry Walls Reinforced with GFRP

    Institute of Scientific and Technical Information of China (English)

    LIU Jifu; LIU Ming; SONG Yupu

    2007-01-01

    This paper presents the results of a test program for flexure reinforcing characteristics of gless fiber-rein forced polymer(GFRP) sheets bonded to masonry beams. A total of eight specimens subjected to monotonic four-point bending were tested up to failure. These specimens were constructed with two different bond patterns. Six of these specimens were reinforced by using GFRP sheets prior to testing, and the remaining two were not reinforced. The test results indicate a significant increase in both load-bearing capacity and ductile performance of the reinforced walls over the unreinforced ones.

  17. Bond strength investigations and structural applicability of composite fiber-reinforced polymer (FRP) rebars

    Science.gov (United States)

    Kachlakev, Damian Ivanov

    The composite FRP rebars research at Oregon State University was initiated in 1993 principally to develop a non-metallic hollow reinforcement. It was recognized that the tensile properties of such reinforcement are unquestionably superior to steel, but its performance in concrete could be problematic. The bond between FRP rebars and concrete was identified as a critical area of concern. The purpose of this study is (i) to analyze a variety of FRP and steel reinforcing units; (ii) to advance the knowledge of bond mechanism, failure modes, and parameters influencing the bond strength; (iii) to compare composite rebars to conventional steel and to assess their applicability as reinforcing members. Commercially available FRP rebars were investigated. Particular emphasis was given to a hollow glass FRP rod designed at Oregon State University. Several parameters were investigated, including: failure mode, concrete compressive strength, rebar diameter and circumference/cross section ratio, embedment length, concrete cover, and microstructure of the composite rebars. It was recognized that the ASTM C234-90 pull-out standard is test of concrete strength. Therefore, a modified pull-out test was developed for evaluating the bond strength behavior. A newly developed European bond test procedure was compared with locally modified version of the pull-out method. The new procedure was used for the first time in the United States. The study demonstrated a phenomenon, not reported in the published research at this time, defined as a size effect. The size effects result in lower bond strength with increasing area of the interface between FRP bars and concrete. The next phase of the research was dedicated to the hollow glass FRP rebar. The goal was to compare its bond properties to conventional steel and solid FRP bars. The study led to two new phenomena not described in the literature previously. Results showed that the concrete compressive strength does not significantly affect the

  18. Investigation on the Strengthening and Toughening Mechanism of 500 MPa V-Nb Microalloyed Anti-Seismic Rebars

    Directory of Open Access Journals (Sweden)

    Wei CHEN

    2015-11-01

    Full Text Available Two types of 500 MPa anti-seismic rebars were produced by V-Nb microalloyed combined with controlled rolling and cooling technology, the strengthening and toughening mechanism of which were investigated. The complex phase microstructures of specimens consist of ferrite, pearlite and bainite (6 – 10 %. Furthermore, a large number of V(C,N and Nb(C,N precipitates with size of 5 – 30 nm formed in the ferrite matrix, grain boundaries and on dislocation lines, promoting the precipitation strengthening and inhibiting grain coarsening to controlled cooling microstructure. The mechanical performance of the steels was improved by solution and grain refinement strengthening, precipitation and microstructure strengthening. And the best strengthening effect was obtained by grain refinement, which increased the yield strength more than 35 % strength increment contribution ratio to yield strength. Moreover, about 16.5 % microstructure strengthening increment was obtained due to bainite formation. The plasticity and low-temperature toughness enhancement were mainly attributed to ferrite grain refinement improvement.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9710

  19. Tests on GFRP Pultruded Profiles with Channel Section Subjected to Web Crippling

    Science.gov (United States)

    Zhang, Wenxue; Chen, Yu

    2016-11-01

    This paper presents an experimental investigation on the web-crippling behavior in glass fibre reinforced polymer (GFRP) pultruded profiles with channel section. A main bending main crack on the web is the main failure mode in the test. The effects of the loading positions, the supporting conditions and bearing lengths on the web crippling behavior of GFRP pultruded profiles with channel section are discussed. Specimens with interior bearing load have higher ultimate strength and all the specimens with loading conditions IG reached the highest ultimate strength but all ruptured. Ultimate strengths of GFRP pultruded profiles with channel section can not be enhanced by increasing the length of the bearing plate. Finite element models were developed to numerically simulate the test results in the terms of ultimate loads, failure modes and load-displacement curves. Based on the results of the parametric study, a number of design formulas are proposed in this paper to accurately predict web crippling ultimate capacity of pultruded GFRP channel sections under four loading and boundary conditions.

  20. Compressive damage mechanism of GFRP composites under off-axis loading: Experimental and numerical investigations

    DEFF Research Database (Denmark)

    Zhou, H.W.; Li, H.Y.; Gui, L.L.;

    2013-01-01

    Experimental and computational studies of the microscale mechanisms of damage formation and evolution in unidirectional glass fiber reinforced polymer composites (GFRP) under axial and off-axis compressive loading are carried out. A series of compressive testing of the composites with different a...

  1. Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts

    Energy Technology Data Exchange (ETDEWEB)

    C. P. Pantelides; T. T. Garfield; W. D. Richins; T. K. Larson; J. E. Blakeley

    2012-03-01

    The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.

  2. Tests on GFRP Pultruded Profiles with Channel Section Subjected to Web Crippling

    Science.gov (United States)

    Zhang, Wenxue; Chen, Yu

    2017-08-01

    This paper presents an experimental investigation on the web-crippling behavior in glass fibre reinforced polymer (GFRP) pultruded profiles with channel section. A main bending main crack on the web is the main failure mode in the test. The effects of the loading positions, the supporting conditions and bearing lengths on the web crippling behavior of GFRP pultruded profiles with channel section are discussed. Specimens with interior bearing load have higher ultimate strength and all the specimens with loading conditions IG reached the highest ultimate strength but all ruptured. Ultimate strengths of GFRP pultruded profiles with channel section can not be enhanced by increasing the length of the bearing plate. Finite element models were developed to numerically simulate the test results in the terms of ultimate loads, failure modes and load-displacement curves. Based on the results of the parametric study, a number of design formulas are proposed in this paper to accurately predict web crippling ultimate capacity of pultruded GFRP channel sections under four loading and boundary conditions.

  3. Influence of SMA reinforcement on the impact resistance of GFRP composite laminates under different temperatures

    Indian Academy of Sciences (India)

    K PAZHANIVEL; G B BHASKAR; A ELAYAPERUMAL; P ANANDAN; S ARUNACHALAM

    2016-06-01

    Plain glass fibre-reinforced polymeric (GFRP) laminates and GFRP reinforced with randomly oriented short strips of shape memory alloy (SMA) were prepared by hand lay-up method. The SMA strip reinforcement was placed at 0.75 $\\times$ thickness of the laminate with weight fractions of 2, 4 and 6%. The specimens were exposed to drop weight impact test and the experiments were conducted at a constant impact velocity of 2.80 m s$^{−1}$ with different test temperatures such as 303, 333 and 363 K. The impact damage area was evaluated using lighting technique and fracture response was analysed using scanning electron microscopic (SEM) images. Absorption of impact energyand damage area due to low velocity impact were calculated. It was observed that with the higher temperature, the SMA/GFRP laminates exhibit marginally-enhanced damage resistance compared to the plain GFRP laminates. Also, addition of SMA reinforcement was not contributing much to the impact resistance at higher temperature.

  4. A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints

    Directory of Open Access Journals (Sweden)

    Evangelos I. Avgoulas

    2016-07-01

    Full Text Available There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.

  5. Potentialities of infrared thermography to assess damage in bonding between concrete and GFRP

    Directory of Open Access Journals (Sweden)

    M. M. CALDEIRA

    Full Text Available This paper demonstrates the application of the active infrared thermography to detect damage in bonding between concrete and glass fiber reinforced polymer (GFRP. Specimens of concrete and mortar with GFRP externally bonded were prepared and at their interfaces were inserted polystyrene discs to simulate damages. The samples were divided into two groups. In group 1, one sample was correctly bonded by a GFRP plate to the concrete, but in the other three were inserted polystyrene discs which had different diameters to simulate damages in bonding. In group 2, all of the samples contained identical polystyrene discs at their interfaces, but the total thickness of each specimen was different, because the objective was to evaluate the ability of the camera to capture the simulated damage in depth. The experimental procedure was divided into two stages. In the first stage, four types of heating were used to heat samples of group 1: incandescent lamp, kiln, blended lamp and fan heater. Thus, it was possible to detect the damage and to observe its format and length. It was noticed that the infrared images are different depending on the heat source incident on the specimen. Therefore, group 2 was tested only for the more efficient heating (incandescent lamp. In the second stage, the infrared equipment was tested. Some of the parameters that must be inserted in the camera were varied in order to understand their influence on image formation. The results show the effectiveness of infrared thermography to assess adherence in GFRP/concrete interface. In the present work, the best results were obtained when the image is captured towards GFRP/concrete and using incandescent lamp. It was observed that the image and measured temperature suffer significant distortion when a false value was inserted for the parameter emissivity.

  6. Compton back scatter imaging for mild steel rebar detection and depth characterization embedded in concrete

    Science.gov (United States)

    Margret, M.; Menaka, M.; Venkatraman, B.; Chandrasekaran, S.

    2015-01-01

    A novel non-destructive Compton scattering technique is described to ensure the feasibility, reliability and applicability of detecting the reinforcing steel bar in concrete. The indigenously developed prototype system presented in this paper is capable of detecting the reinforcement of varied diameters embedded in the concrete and as well as up to 60 mm depth, with the aid of Caesium-137(137Cs) radioactive source and a high resolution HPGe detector. The technique could also detect the inhomogeneities present in the test specimen by interpreting the material density variation caused due to the count rate. The experimental results are correlated using established techniques such as radiography and rebar locators. The results obtained from its application to locate the rebars are quite promising and also been successfully used for reinforcement mapping. This method can be applied, especially when the intrusion is located underneath the cover of the concrete or considerably at larger depths and where two sided access is restricted.

  7. Laser based metal and plastics joining for lightweight design

    Science.gov (United States)

    Kahmann, Max; Quentin, Ulf; Kirchhoff, Marc; Brockmann, Rüdiger; Löffler, Klaus

    2015-03-01

    One of the most important issues in automotive industry is lightweight design, especially since the CO2 emission of new cars has to be reduced by 2020. Plastic and fiber reinforced plastics (e.g. CFRP and GFRP) receive besides new manufacturing methods and the employment of high-strength steels or non-ferrous metals increasing interest. Especially the combination of different materials such as metals and plastics to single components exhausts the entire potential on weight reduction. This article presents an approach based on short laser pulses to join such dissimilar materials in industrial applications.

  8. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    National Research Council Canada - National Science Library

    Kim Sang-Young; Shim Chun Sik; Sturtevant Caleb; Kim Dave (Dae-Wook); Song Ha Cheol

    2014-01-01

    .... This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed...

  9. The Effects of Buildability Factors on Rebar Fixing Labour Productivity of Beamless Slabs

    OpenAIRE

    Jarkas, Abdulaziz M

    2010-01-01

     Buildability is an important factor affecting labour productivity. Nevertheless, a thorough search of the literature revealed a dearth of research into its effects on in situ reinforced concrete construction, especially at the activity levels. Since rebar fixing is an integral trade of this type of construction material, and beamless slabs are amongst the major encountered activities on construction sites, the objective of this research is to explore the buildability factors affecting i...

  10. The Effects of Buildability Factors on Rebar Fixing Labour Productivity of Beamless Slabs

    Directory of Open Access Journals (Sweden)

    Abdulaziz M Jarkas

    2010-06-01

    Full Text Available  Buildability is an important factor affecting labour productivity. Nevertheless, a thorough search of the literature revealed a dearth of research into its effects on in situ reinforced concrete construction, especially at the activity levels. Since rebar fixing is an integral trade of this type of construction material, and beamless slabs are amongst the major encountered activities on construction sites, the objective of this research is to explore the buildability factors affecting its rebar fixing efficiency. To achieve this objective, a large volume of fixing productivity data was collected and analysed using the categorical interaction - regression method. As a result, the main and interaction effects of rebar diameter; reinforcement quantity; slab geometry; and reinforcement layer location are determined. The findings show a significant influence of these factors on the fixing operation, which can be used to provide designers and construction managers with feedback on how well the design of this activity considers the requirements of buildability, and the tangible consequences of designers‟ decisions on labour productivity

  11. The Effects of Buildability Factors on Rebar Fixing Labour Productivity of Beamless Slabs

    Directory of Open Access Journals (Sweden)

    Abdulaziz M Jarkas

    2010-06-01

    Full Text Available Buildability is an important factor affecting labour productivity. Nevertheless, a thorough search of the literature revealed a dearth of research into its effects on in situ reinforced concrete construction, especially at the activity levels. Since rebar fixing is an integral trade of this type of construction material, and beamless slabs are amongst the major encountered activities on construction sites, the objective of this research is to explore the buildability factors affecting its rebar fixing efficiency. To achieve this objective, a large volume of fixing productivity data was collected and analysed using the categorical interaction - regression method. As a result, the main and interaction effects of rebar diameter; reinforcement quantity; slab geometry; and reinforcement layer location are determined. The findings show a significant influence of these factors on the fixing operation, which can be used to provide designers and construction managers with feedback on how well the design of this activity considers the requirements of buildability, and the tangible consequences of designers‟ decisions on labour productivity

  12. The Effects of Buildability Factors on Rebar Fixing Labour Productivity of Beamless Slabs

    Directory of Open Access Journals (Sweden)

    Abdulaziz M Jarkas

    2010-07-01

    Full Text Available  Buildability is an important factor affecting labour productivity. Nevertheless, a thorough search of the literature revealed a dearth of research into its effects on in situ reinforced concrete construction, especially at the activity levels. Since rebar fixing is an integral trade of this type of construction material, and beamless slabs are amongst the major encountered activities on construction sites, the objective of this research is to explore the buildability factors affecting its rebar fixing efficiency. To achieve this objective, a large volume of fixing productivity data was collected and analysed using the categorical interaction - regression method. As a result, the main and interaction effects of rebar diameter; reinforcement quantity; slab geometry; and reinforcement layer location are determined. The findings show a significant influence of these factors on the fixing operation, which can be used to provide designers and construction managers with feedback on how well the design of this activity considers the requirements of buildability, and the tangible consequences of designers‟ decisions on labour productivity

  13. Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing

    Science.gov (United States)

    Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.

  14. Reliability model for ductile hybrid FRP rebar using randomly dispersed chopped fibers

    Science.gov (United States)

    Behnam, Bashar Ramzi

    Fiber reinforced polymer composites or simply FRP composites have become more attractive to civil engineers in the last two decades due to their unique mechanical properties. However, there are many obstacles such as low elasticity modulus, non-ductile behavior, high cost of the fibers, high manufacturing costs, and absence of rigorous characterization of the uncertainties of the mechanical properties that restrict the use of these composites. However, when FRP composites are used to develop reinforcing rebars in concrete structural members to replace the conventional steel, a huge benefit can be achieved since FRP materials don't corrode. Two FRP rebar models are proposed that make use of multiple types of fibers to achieve ductility, and chopped fibers are used to reduce the manufacturing costs. In order to reach the most optimum fractional volume of each type of fiber, to minimize the cost of the proposed rebars, and to achieve a safe design by considering uncertainties in the materials and geometry of sections, appropriate material resistance factors have been developed, and a Reliability Based Design Optimization (RBDO), has been conducted for the proposed schemes.

  15. Application of a Lamb waves based technique for structural health monitoring of GFRP undercyclic loading

    Science.gov (United States)

    Eremin, A.; Byakov, A.; Panin, S.; Burkov, M.; Lyubutin, P.; Sunder, R.

    2016-04-01

    A Lamb wave based ultrasonic technique as well as optical image characterization was utilized to estimate a current mechanical state of glass fiber reinforced polymers (GFRP) under cyclic tension. The ultrasonic acoustic method was applied in a 'pitch-catch' mode using piezoelectric transducers adhesively bonded onto a specimen surface. Numerical evaluation of acoustic data was performed by calculating two informative parameters: maximum of amplitude of the received signal and variance of signal envelopes. Optical images were registered and then analysed by calculating Shannon entropy that makes it possible to characterize changing of GFRP specimen translucency. The obtained results were treated in order to find out the relation between the current mechanical state of a specimen and informative parameter values being computed from the acoustic and optical signals.

  16. Analysis of machining characteristics in drilling of GFRP composite with application of fuzzy logic approach

    Directory of Open Access Journals (Sweden)

    B.C. Routar

    2013-10-01

    Full Text Available This paper discusses the application of the Taguchi method to optimize the machining parameters for machining of GFRP composite in drilling for individual responses such as thrust force and delamination factor. Moreover, a multi-response performance characteristic is used for optimization of process parameters with application of grey relational analysis. An orthogonal array (L9, grey relational generation, grey relational coefficient and grey – fuzzy grade obtained from the grey relational analysis applied as performance index to solve the optimization problem of drilling parameters for GFRP composite. Taguchi orthogonal array, the signal-to-noise ratio, and the analysis of variance are used to investigate the optimal levels of cutting parameters. The confirmation tests are conducted to verify the results and it is observed that grey-fuzzy approach is efficient in determining the optimal cutting parameters.

  17. Modal parameter identification of all-GFRP composite cable-stayed footbridge in Denmark

    Directory of Open Access Journals (Sweden)

    Górski Piotr

    2017-01-01

    Full Text Available The aim of this paper is to investigate of dynamic characteristics of cable-stayed Fiberline Bridge in Kolding, Denmark, made entirely of Glass Fiber Reinforced Polymer (GFRP composite. During examination based on in situ free-decay measurements and using accelerometers under human jumping the primary five natural frequencies, corresponding mode shapes and damping ratios of the footbridge were identified. The Peak Picking (PP and Frequency Domain Decomposition (FDD approaches were applied to identify the natural frequencies and mode shapes. The corresponding damping ratios were extracted by a linear regression on the extremes of modal decays. The estimated damping ratios were compared with published data for selected footbridges made of various conventional materials. The obtained experimental results provide a relevant data regarding the dynamic response prediction or structural health monitoring of all-GFRP composite footbridges.

  18. Application of a Lamb waves based technique for structural health monitoring of GFRP undercyclic loading

    OpenAIRE

    Eremin, Alexandr Vyacheslavovich; Byakov, Anton Viktorovich; Panin, Sergey Viktorovich; Burkov, Mikhail Vladimirovich; Lyubutin, Pavel Stepanovich; Sunder, R.

    2016-01-01

    A Lamb wave based ultrasonic technique as well as optical image characterization was utilized to estimate a current mechanical state of glass fiber reinforced polymers (GFRP) under cyclic tension. The ultrasonic acoustic method was applied in a 'pitch-catch' mode using piezoelectric transducers adhesively bonded onto a specimen surface. Numerical evaluation of acoustic data was performed by calculating two informative parameters: maximum of amplitude of the received signal and variance of sig...

  19. Structural behavior of hybrid GFRP and steel reinforced FRC prestressed beams

    OpenAIRE

    Mazaheripour, Hadi

    2016-01-01

    The present thesis intended to contribute for the development of a new generation of high durable and sustainable reinforced concrete (RC) beam structures submitted to flexural loading, by combining the benefits that Glass Fiber Reinforced Polymers (GFRP) and steel bars can provide: the former due to their corrosion immunity, and the latter derived from their high ductility. Furthermore, High Performance Fiber Reinforced Concrete (HPFRC) was developed to improve the ductility o...

  20. Seismic retrofitting of reinforced concrete frame structures using GFRP-tube-confined-concrete composite braces

    Science.gov (United States)

    Moghaddasi B., Nasim S.; Zhang, Yunfeng; Hu, Xiaobin

    2012-03-01

    This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program — OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.

  1. Experimental and Numerical Analysis of Damage in Woven GFRP Composites Under Large-deflection Bending

    Science.gov (United States)

    Ullah, Himayat; Harland, Andy R.; Silberschmidt, Vadim V.

    2012-10-01

    Textile-reinforced composites such as glass fibre-reinforced polymer (GFRP) used in sports products can be exposed to different in-service conditions such as large bending deformation and multiple impacts. Such loading conditions cause high local stresses and strains, which result in multiple modes of damage and fracture in composite laminates due to their inherent heterogeneity and non-trivial microstructure. In this paper, various damage modes in GFRP laminates are studied using experimental material characterisation, non-destructive micro-structural damage evaluation and numerical simulations. Experimental tests are carried out to characterise the behaviour of these materials under large-deflection bending. To obtain in-plane shear properties of laminates, tensile tests are performed using a full-field strain-measurement digital image correlation technique. X-ray micro computed tomography (Micro CT) is used to investigate internal material damage modes - delamination and cracking. Two-dimensional finite element (FE) models are implemented in the commercial code Abaqus to study the deformation behaviour and damage in GFRP. In these models, multiple layers of bilinear cohesive-zone elements are employed to study the onset and progression of inter-ply delamination and intra-ply fabric fracture of composite laminate, based on the X-ray Micro CT study. The developed numerical models are capable to simulate these features with their mechanisms as well as subsequent mode coupling observed in tests and Micro CT scanning. The obtained results of simulations are in agreement with experimental data.

  2. Pengaruh Rendaman Air Laut terhadap Kapasitas Rekatan GFRP-Sheet pada Balok Beton Bertulang

    Directory of Open Access Journals (Sweden)

    Mufti Amir Sultan

    2017-04-01

    Full Text Available Construction of concrete structures that located in extreme environments are such as coastal areas will result in decreased strength or even the damage of the structures. As well know, chloride contained in sea water is responsible for strength reduction or structure failed were hence maintenance and repairs on concrete structure urgently needed. One popular method of structural improvements which under investigation is to use the material Glass Fiber Reinforced Polymer which has one of the advantages such as corrosion resistance. This research will be conducted experimental studies to investigate the flexural behavior of reinforced concrete beams with reinforcement GFRP-Sheet immersed in sea water using immersion time of 1, 3, 6 and 12 months. Test specimen consists of 11 pieces of reinforced beams with dimensions (15x20x330 cm that had been reinforced with GFRPSheet in the area of bending. The test specimen tested by providing a static load until it reaches the power limit, to record data during the test strain gauge mounted on the surface of the specimen and the GFRP-Sheet to collect the strain value. The result of analysis indicates the bonding capacity of GFRP Sheet decreases about 11.04% after immersed for 12 months in sea water.

  3. Effect of Natural Fillers on Mechanical Properties of GFRP Composites

    Directory of Open Access Journals (Sweden)

    Vikas Dhawan

    2013-01-01

    Full Text Available Fiber reinforced plastics (FRPs have replaced conventional engineering materials in many areas, especially in the field of automobiles and household applications. With the increasing demand, various modifications are being incorporated in the conventional FRPs for specific applications in order to reduce costs and achieve the quality standards. The present research endeavor is an attempt to study the effect of natural fillers on the mechanical characteristics of FRPs. Rice husk, wheat husk, and coconut coir have been used as natural fillers in glass fiber reinforced plastics (GFRPs. In order to study the effect of matrix on the properties of GFRPs, polyester and epoxy resins have been used. It has been found that natural fillers provide better results in polyester-based composites. Amongst the natural fillers, in general, the composites with coconut coir have better mechanical properties as compared to the other fillers in glass/epoxy composites.

  4. Effect of Nitrogen Content and Cooling Rate on Transformation Characteristics and Mechanical Properties for 600 MPa High Strength Rebar

    Science.gov (United States)

    Zhang, Jing; Wang, Fu-ming; Li, Chang-rong; Yang, Zhan-bing

    2016-10-01

    To obtain appropriate chemical composition and thermo-mechanical schedules for processing the V-N microalloyed 600 MPa grade high strength rebar, the microstructure analysis during dynamic continuous cooling and tensile tests of three experimental steels with different nitrogen contents were conducted. The results show that increasing nitrogen content promotes ferrite transformation and broadens the bainite transformation interval, when the nitrogen content is in the range of 0.019-0.034 mass%. Meanwhile, the martensite start temperatures decrease and the minimal cooling rate to form martensite increases. To achieve a good combination of strength and ductility, the cooling rates should be controlled in the range of 0.5-3°C/s, leading to the microstructure of ferrite, pearlite and less than 10% bainite (volume fraction). Furthermore, all the experimental steels satisfy the performance requirement of 600 MPa grade rebar and the rebar with nitrogen content of 0.034 mass% shows the highest strength through systematically comparative investigation.

  5. Numerical assessment of non-uniform corrosion scenarios of rebar in concrete exposed to natural chloride environment

    Indian Academy of Sciences (India)

    S Muthulingam; B N Rao

    2015-06-01

    Corrosion of embedded rebars is a classical deterioration mechanism that remains as one of the most significant problems limiting the service life of concrete structures exposed to chloride-laden environments. The primary objective of this study is to propose and verify a numerical framework that can efficiently quantify non-uniform corrosion penetration depth along the perimeter of the rebar in concrete exposed to chloride environment. This framework investigates the corrosion process during both the corrosion initiation and propagation phases by exploring the effects of not only the rebar existence but also its sizes and locations. The corrosion initiation phase is examined through a comprehensive chloride ingress model that identifies the most important parameters that influence the intrusion of chlorides into RC. The corrosion propagation phase is studied based on a decisive parameter, namely, the corrosion rate. In addition, the framework evaluates the non-uniform corrosion states that correspond to two scenarios of corrosion penetration depth: corrosion of segment of the rebar and uneven corrosion along the rebar perimeter. Numerical solution shows that, in general, chloride build-up along the perimeter of the corner bar is not only faster but also higher than that of the middle bar. Moreover, for the given values of cover thickness and water-to-binder ratio, time-to-corrosion initiation for the corner bar is faster than that for the middle bar. Furthermore, the larger the rebar, in general, the bigger the obstruction, and therefore, the higher the chloride build-up. Qualitative comparisons of the evaluated non-uniform corrosion scenarios with the variety of available laboratory and field data show good agreement.

  6. Approach to the effect of concrete resistivity in the corrosion of rebars in concrete

    Directory of Open Access Journals (Sweden)

    Andrade, C.

    1987-09-01

    Full Text Available The concrete resistivity has been considered as a factor which affects the corrosion rate of the rebars. Untill now the only relation found has been stablished between potentials and resistivity for steel embedded in Chloride contaminated concrete. In this paper a comparison between corrosion rate of rebars, determined from Polarization Resistance method, and Electrical Resistance data measured through the electronic compensation of the ohmic drop are given. The results of icorr and Rohm has been measured for rebars embedded in mortar made with three different types of cement. The specimens were submited to an accelerated carbonation. The relation between icorr and Rohm is quite similar in all the cases and suggests that the concrete electrical resistivity may be a controling factor of the corrosion rate of the rebars.

    La resistividad del hormigón se ha venido considerando como uno de los factores que afectan a la velocidad de corrosión de las armaduras, aunque, hasta ahora, la única relación encontrada ha sido la establecida entre los potenciales y la resistividad para acero embebido en hormigón contaminado por cloruros. En este trabajo se establecen comparaciones entre velocidad de corrosión de las armaduras, medida a través del método de determinación de la Resistencia de Polarización, y los datos de resistencia eléctrica medidos a través de la compensación de caída óhmica. Los resultados de icorr y Rohm se han medido en armaduras embebidas en mortero fabricado con tres tipos de cemento a los que se ha sometido a un proceso de carbonatación acelerada. La relación entre icorr y Rohm es muy similar en todos los casos y sugiere que la resistencia del hormigón puede actuar como un factor controlante de la velocidad de corrosión de las armaduras.

  7. Comparative Behaviour of Nitrite and Nitrate for the Protection of Rebar Corrosion

    Science.gov (United States)

    Ahmad, Altaf; Kumar, Anil

    2016-10-01

    Corrosion of rebar steel due to environmental causes has been studied through various approaches, and among the protection techniques use of inhibitors has gained encouragement. Nitrites and nitrates of sodium have gained sufficient scientific coverage. Recently, nitrites and nitrates of calcium have been verified in some studies, which, however, needs further experimentation through different angles. Simple polarization technique has been utilized in the present study to compare inhibitive efficiency of these salts of sodium and calcium, which indicate that calcium salts are more efficient.

  8. Breakdown tests of glass fibre reinforced polymers (GFRP) as part of improved lightning protection of wind turbine blades

    DEFF Research Database (Denmark)

    Madsen, Søren Find; Holbøll, Joachim; Henriksen, Mogens;

    2004-01-01

    This paper addresses a need for analysing the interaction between electrical discharges and GFRP. A test method for evaluating the breakdown and withstand voltages for materials used in wind turbine blades has been developed. The method is based on IEC 243-3, methods of test for electrical strength...... of solid insulating materials, and simulates the situation in a wind turbine blade, where a lightning discharge penetrates an insulating layer towards an inner earth conductor. Different GFRP materials supplied by Danish wind turbine blade manufacturers have been tested. In the subsequent experiments, both...

  9. Cutting forces in orthogonal cutting of unidirectional GFRP composites

    Energy Technology Data Exchange (ETDEWEB)

    Caprino, G.; Nele, L. [Univ. of Naples Federico II (Italy). Dept. of Materials and Production Engineering

    1996-07-01

    The results of orthogonal cutting tests carried out on unidirectional glass fiber reinforced plastic composites, using HSS tools, are presented and discussed. During the tests, performed on a milling machine at very low cutting speed to avoid thermal effects, the cutting speed was held constant and parallel to the fiber direction. Three parameters, namely the tool rake angle {alpha}, the tool relief angle {gamma}, and the depth of cut t, were varied. According to the experimental results, the horizontal force per unit width, F{sub hu}, undergoes a dramatic decrease, never verified for metals, with increasing {alpha}. Besides, F{sub hu} is only negligibly affected by the relief angle, and linearly increases with t. Similarly to metals, an effect of the depth of cut on the specific energy (size effect) is found also for composites. However, the presented results indicate that the size effect can be analytically modeled in a simple way in the case of composites. The vertical force per unit width, F{sub vu}, exhibits a marked reduction when the relief angle is increased. F{sub vu} is also very sensitive to the rake angle: the lower {alpha}, the higher is F{sub vu}. It is shown that this behavior probably reflects a strong influence of the rake angle on the forces developing at the flank. A linear dependence of the vertical force on the depth of cut is also demonstrated. Finally, the experimental data are utilized to obtain empirical formulae, allowing an approximate evaluation of cutting forces.

  10. Method and device for detecting impact events on a security barrier which includes a hollow rebar allowing insertion and removal of an optical fiber

    Science.gov (United States)

    Pies, Ross E.

    2016-03-29

    A method and device for the detection of impact events on a security barrier. A hollow rebar is farmed within a security barrier, whereby the hollow rebar is completely surrounded by the security barrier. An optical fiber passes through the interior of the hollow rebar. An optical transmitter and an optical receiver are both optically connected to the optical fiber and connected to optical electronics. The optical electronics are configured to provide notification upon the detection of an impact event at the security barrier based on the detection of disturbances within the optical fiber.

  11. Impact properties of aluminium - glass fiber reinforced plastics sandwich panels

    Directory of Open Access Journals (Sweden)

    Mathivanan Periasamy

    2012-06-01

    Full Text Available Aluminium - glass fiber reinforced plastics (GFRP sandwich panels are hybrid laminates consisting of GFRP bonded with thin aluminum sheets on either side. Such sandwich materials are increasingly used in airplane and automobile structures. Laminates with varying aluminium thickness fractions, fiber volume fractions and orientation in the layers of GFRP were fabricated by hand lay up method and evaluated for their impact performance by conducting drop weight tests under low velocity impacts. The impact energy required for initiating a crack in the outer aluminium layer as well as the energy required for perforation was recorded. The impact load-time history was also recorded to understand the failure behavior. The damage depth and the damage area were measured to evaluate the impact resistance. Optical photography and scanning electron micrographs were taken to visualize the crack and the damage zone. The bidirectional cross-ply hybrid laminate (CPHL has been found to exhibit better impact performance and damage resistance than the unidirectional hybrid laminate (UDHL. Increase in aluminium thickness fraction (Al tf and fiber volume fraction (Vf resulted in an increase in the impact energy required for cracking and perforation. On an overall basis, the sandwich panels exhibited better impact performance than the monolithic aluminium.

  12. Experimental and Theoretical Study of Sandwich Panels with Steel Facesheets and GFRP Core

    Directory of Open Access Journals (Sweden)

    Hai Fang

    2016-01-01

    Full Text Available This study presented a new form of composite sandwich panels, with steel plates as facesheets and bonded glass fiber-reinforced polymer (GFRP pultruded hollow square tubes as core. In this novel panel, GFRP and steel were optimally combined to obtain high bending stiffness, strength, and good ductility. Four-point bending test was implemented to analyze the distribution of the stress, strain, mid-span deflection, and the ultimate failure mode. A section transformation method was used to evaluate the stress and the mid-span deflection of the sandwich panels. The theoretical values, experimental results, and FEM simulation values are compared and appeared to be in good agreement. The influence of thickness of steel facesheet on mid-span deflection and stress was simulated. The results showed that the mid-span deflection and stress decreased and the decent speed was getting smaller as the thickness of steel facesheet increases. A most effective thickness of steel facesheet was advised.

  13. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  14. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    Directory of Open Access Journals (Sweden)

    Florica Simescu and Hassane Idrissi

    2008-01-01

    Full Text Available We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO46(OH2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  15. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete.

    Science.gov (United States)

    Simescu, Florica; Idrissi, Hassane

    2008-12-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  16. Long-term corrosion of rebars embedded in aerial and hydraulic binders - Parametric study and first step of modelling

    Energy Technology Data Exchange (ETDEWEB)

    Chitty, Walter-John [CEA, DSM, IRAMIS, Laboratoire Pierre Suee, F-91191 Gif-sur-Yvette cedex (France); Dillmann, Philippe [CEA, DSM, IRAMIS, Laboratoire Pierre Suee, F-91191 Gif-sur-Yvette cedex (France); Institut de Recherches sur les Archeomateriaux, LMC UMR5060 CNRS (France)], E-mail: philippe.dillmann@cea.fr; L' Hostis, Valerie [CEA, DEN, DPC, SCCME, Laboratoire d' Etude du Comportement des Betons et des Argiles, F-91191 Gif-sur-Yvette (France); Millard, Alain [CEA, DEN, DM2S, SEMT, Laboratoire de Modelisation, Systemes et Simulation, F-91191 Gif-sur-Yvette (France)

    2008-11-15

    The prediction of long-term behaviour of reinforced concrete structures involved in the nuclear industry requires a phenomenological modelling of the rebars corrosion processes. Previous analytical characterisation of archaeological artefacts allowed to identify a typical layout constituted of four layers (the metal, the dense product layer, the transformed medium and the binder). Additional experiments leaded to identify the long-term corrosion mechanisms. Following these results, this paper proposes an analytical model of long-term corrosion of rebars embedded in concrete. This modelling is considering the kinetic of oxygen diffusion through the system and its consumption at the metal/dense product layer interface as a function of concrete water saturation degree. Corrosion products thicknesses estimated with the model are then compared to corrosion product thicknesses measured on archaeological artefacts. A parametric study is performed and demonstrates that the oxygen diffusivity and the kinetic constant of the cathodic reaction affect in a wide range the model results.

  17. Confining concrete with sisal and jute FRP as alternatives for CFRP and GFRP

    Directory of Open Access Journals (Sweden)

    Tara Sen

    2015-12-01

    Full Text Available This research paper presents an experimental investigation on the confinement strength and confinement modulus of concrete cylinders confined using different types of natural fibre composites and a comparative performance analysis with different artificial fibre based composite materials. The paper also highlights the need to switch over from the utilization of artificial fibres, which are non-renewable and fossil fuel products, to environmental beneficial materials like green fibres. The utilization of plant products like sisal and jute fibres and their composites in various structural engineering applications addresses the issues of sustainability and renewability with constructional materials. The paper describes a suitable mechanical treatment method like high temperature conditioning, which aids us in further improving the properties of these woven natural materials like sisal and jute for composite fabrication and utilization. Heat treated natural fibres of woven sisal and jute were utilized for confining concrete cylinders similar to CFRP and GFRP confinement and their confinement characteristics were obtained and compared. All the cylinders were subjected to monotonic axial compressive loads, so as to evaluate the effect of confinement on the axial load carrying capacity and all their failure modes were discussed thoroughly. The results indicated superior performance by sisal FRP as well as jute FRP confined cylinders as compared to controlled or unconfined cylinders, also sisal FRP wrapped cylinders displayed ultimate axial load of comparable magnitude to CFRP confinement. Natural FRP confinement displayed superior confinement modulus and confinement strength, also the ultimate axial load of concrete cylinders confined with natural FRPs underwent 66% enhancement by sisal FRP and 48% enhancement by jute FRP, in comparison with controlled or unconfined cylinders. Enhancement in axial load carrying capacity was 83% with CFRP confinement

  18. GFRP 平衡管树脂基体配方的研究%Study on the Resin Matrix of GFRP Equilibrium Tube

    Institute of Scientific and Technical Information of China (English)

    胡亚丽; 张续柱

    2001-01-01

    目的研究TDE-85/DDS体系,确定其固化工艺以及混合方法.方法测定体系粘度、凝胶时间以及做DTA(差热分析)曲线,并测定其玻纤复合材料的各项性能.结果确定了TDE-85/DDS体系的固化工艺,熔融过冷物法是其最佳混合方法.结论 TDE-85/DDS体系完全符合VARTM工艺要求,其玻纤增强制品性能良好,马丁耐热为220℃,体积电阻率为2.4×108MΩm,表面电阻率为1.9×107MΩ.%Aim To research TDE-85/DDS system, find the curing method andmixing method. Methods The viscosity, gel time and DT A curves of the system and the properties of E-GF reinforced composite material with it are measured by experiments. Results The curing condition is 100 ℃/2 h+130 ℃/3 h+170 ℃/3 h+220 ℃/3 h and the melting-overco oling method is proved to be the best mixed method. Conclusion TDE-85/DDS system is the suitable matrix for vapor as sisted resin transfer molding and the properties of GFRP equilibrium tube have e xceeded the technical-demands.

  19. Effect of Organic Inhibitors on Chloride Corrosion of Steel Rebars in Alkaline Pore Solution

    Directory of Open Access Journals (Sweden)

    Marina Cabrini

    2015-01-01

    Full Text Available The inhibition properties of aspartic and lactic acid salts are compared with nitrite ions with regard to their effect on critical chloride concentration. The tests were carried out on carbon steel specimens in simulated pore solutions with initial pH in the range of 12.6 to 13.8. The critical chloride concentrations were estimated through multiple specimen potentiostatic tests at potentials in the usual range for passive rebar in noncarbonated concrete structures. During tests, chloride ions were progressively added until all specimens showed localized attack, obtaining cumulative distribution curves reporting the fraction of corroded specimens as a function of chloride concentration. The presence of the organic inhibitors on the passivity film was detected by IR spectra. The results confirm that 0.1 M aspartate exhibits an inhibiting effect comparable with nitrite ions of the same concentration. Calcium lactate does not increase critical chloride concentration; however it appears to promote the formation of a massive scale, reducing the corrosion propagation.

  20. Fatigue Performance of Microalloyed High-strength Rebar and Analysis of Fracture Mechanism

    Institute of Scientific and Technical Information of China (English)

    Peng-yan LU; Yu LIU; Hua-jie WU; Gang LIU; Xiang MENG; Yang XU

    2015-01-01

    Fatigue performance of hot-rolled ribbed-steel bar with the yield strength of 500 MPa (HRB500)was stud-ied with bend-rotating fatigue test at a stress ratio of R=-1 .It is determined by staircase method that its fatigue strength for 107 cycles is 451 MPa,which is higher than that of common carbon structural steel.This should be at-tributed to the fine-grain strengthening resulting from the high content of alloy element V and Thermo-Mechanical Control Process (TMCP).The S-N curve function is also obtained by nonlinear regression with three parameters power function.The fatigue fractures of the specimen were further analyzed with Scanning Electron Microscopy (SEM)and Energy Disperse Spectroscopy (EDS)to study the fracture mechanism.Taking into account microstruc-ture,hardness and cleanliness of the material,it implies that the fatigue fractures of HRB500 rebar all arise from surface substrates in which many brittle inclusions are contained,and that the fatigue crack propagation is principally based on the mechanism of quasi-cleavage fracture,because of the intracrystalline hard spots leading to stress con-centration and thus to the cracks.Moreover,the transient breaking area exhibits microvoid coalescence of ductile fracture due to the existing abundant inclusions.

  1. Instrument Design for Rebar Deformation Measurement%钢筋形变测量仪设计

    Institute of Scientific and Technical Information of China (English)

    李伟; 朴顺善

    2012-01-01

    电阻式引伸计在微小形变下,电桥的输出电压变化量是毫伏级,为了保证形变测量精度在1μm以内,采用双ADC通道的AD7705来完成形变量的测量和数据转换,同时提出了分段线性化的形变标定方法,试验表明:该方法可以有效控制其测量误差,满足JB/T 6146-2007标准要求.%In small deformation of resistive extensometer.the output voltage of electric bridge stays at a millivolt level. In order to keep the measuring precision within lμm,the AD7705 converter with dual ADC channel was used to measure rebar deformation and to convert the data, and meanwhile, the piecewise linear deformation calibration approach was proposed. Experimental results show that this method can control measurement error as the JB/T 6146-2007 standards required.

  2. Experimental Study on Rebar Corrosion Using the Galvanic Sensor Combined with the Electronic Resistance Technique

    Science.gov (United States)

    Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi

    2016-01-01

    In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)2 solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete. PMID:27618054

  3. A Study on Load Carrying Capacity of Fly Ash Based Polymer Concrete Columns Strengthened Using Double Layer GFRP Wrapping

    Directory of Open Access Journals (Sweden)

    S. Nagan

    2014-01-01

    Full Text Available This paper investigates the suitability of glass fiber reinforced polymer (GFRP sheets in strengthening of fly ash based polymer members under compression. Experimental results revealed that load carrying capacity of the confined columns increases with GFRP sheets wrapping. Altogether 18 specimens of M30 and G30 grade short columns were fabricated. The G30 specimens were prepared separately in 8 molarity and 12 molarity of sodium hydroxide concentration. Twelve specimens for low calcium fly ash based reinforced polymer concrete and six specimens of ordinary Portland cement reinforced concrete were cast. Three specimens from each molarity fly ash based reinforced polymer concrete and ordinary Portland cement reinforced concrete were wrapped with double layer of GFRP sheets. The load carrying capacity of fly ash based polymer concrete was tested and compared with control specimens. The results show increase in load carrying capacity and ductility index for all strengthened elements. The maximum increase in load carrying capacity was 68.53% and is observed in strengthened G30 specimens.

  4. Experimental Assessment on the Flexural Bonding Performance of Concrete Beam with GFRP Reinforcing Bar under Repeated Loading

    Directory of Open Access Journals (Sweden)

    Minkwan Ju

    2015-01-01

    Full Text Available This study intends to investigate the flexural bond performance of glass fiber-reinforced polymer (GFRP reinforcing bar under repeated loading. The flexural bond tests reinforced with GFRP reinforcing bars were carried out according to the BS EN 12269-1 (2000 specification. The bond test consisted of three loading schemes: static, monotonic, and variable-amplitude loading to simulate ambient loading conditions. The empirical bond length based on the static test was 225 mm, whereas it was 317 mm according to ACI 440 1R-03. Each bond stress on the rib is released and bonding force is enhanced as the bond length is increased. Appropriate level of bond length may be recommended with this energy-based analysis. For the monotonic loading test, the bond strengths at pullout failure after 2,000,000 cycles were 10.4 MPa and 6.5 MPa, respectively: 63–70% of the values from the static loading test. The variable loading test indicated that the linear cumulative damage theory on GFRP bonding may not be appropriate for estimating the fatigue limit when subjected to variable-amplitude loading.

  5. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types

    Directory of Open Access Journals (Sweden)

    JunHee Kim

    2015-03-01

    Full Text Available A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs reinforced with grid-type glass-fiber-reinforced polymer (GFRP shear connectors. Two kinds of insulation-expanded polystyrene (EPS and extruded polystyrene (XPS with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  6. Plastic Surgery

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A A ... forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word "plastic" ...

  7. Microstructural characteristics of steel rebar submitted to the process of self - tempering; Caracterizacao microestrutural de superficies e interfaces de vergalhoes de aco auto-revenidos utilizando Microscopia Eletronica de Varredura (MEV) e analise quimica

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, M.F.O., E-mail: matheusfob@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), MG (Brazil)

    2014-07-01

    Every day the construction industry seeks new alternatives to maximize use of the materials provided new tools for structural design of the new techniques in welding rods. In this sense, this work proposes to study the mechanical properties of steel rebar self-tempering for civil construction, choosing the bars from 6.3 to 25.4 mm in diameter for the study. The cooling process of rebar, after rolling, known as self-tempering produces a rebar with excellent mechanical properties and low cost to the plant, they put the rebar shall be composed of concentric layers with different mechanical properties among themselves. To study the influence of these layers on the mechanical behavior of rebar microstructural characterization was made by means of electron microscopy analysis of transmitted light and scanning of all samples. From the results it was found that only the bars 20 and 25mm diameter had a heat treatment for self-tempering relevant. (author)

  8. 风化岩地基全螺纹玻璃纤维增强聚合物抗浮锚杆承载特征现场试验%Field test on load-bearing characteristics of full-thread GFRP anti-floating anchor in weathered rock site

    Institute of Scientific and Technical Information of China (English)

    白晓宇; 张明义; 刘鹤; 寇海磊

    2014-01-01

    玻璃纤维增强聚合物(GFRP)抗浮锚杆是一种由树脂和玻璃纤维复合而成的新型材料,与传统的钢筋锚杆相比,它具有比强度高、耐腐蚀性强和抗电磁干扰能力强的优点。基于6根GFRP抗浮锚杆和4根钢筋抗浮锚杆现场足尺拉拔破坏性试验,研究了中风化花岗岩中GFRP抗浮锚杆的承载特征和界面黏结特性。试验结果表明,抗浮锚杆的破坏形式有2种:锚杆和砂浆界面剪切破坏,砂浆和围岩界面剪切破坏。直径为28 mm 的GFRP抗浮锚杆和钢筋抗浮锚杆的极限抗拔承载力均为225 kN,直径为32 mm GFRP抗浮锚杆极限抗拔承载力为250 kN,能够满足工程实际需要;GFRP抗浮锚杆与砂浆(第一界面)的平均黏结强度为1.50~1.54 MPa;GFRP抗浮锚杆砂浆与围岩(第二界面)的平均黏结强度为0.32~0.37 MPa,略低于钢筋抗浮锚杆第二界面的平均黏结强度;直径为32 mm的GFRP抗浮锚杆第二界面平均黏结强度高于直径为28 mm的GFRP抗浮锚杆。在此基础上,进一步分析论证了GFRP抗浮锚杆的破坏机制,为GFRP抗浮锚杆的工程应用提供了理论依据。%The glass fiber reinforced plastics(GFRP) anti-floating anchor is one kind of new materials which bonds by the resin and the glass fiber. Compared with the steel bar anchor rod, it has the high specific strength, nonelectric conductivity, nonmagnetic nature and corrosion resistance. Based on the full-scale drawing destructive field tests of six GFRP anti-floating anchor and four steel bolts, the load-bearing characteristics and interface bond properties of GFRP anti-floating anchor in moderately weathered granite are studied. By the test results, several conclusions are drawn:(1) There are two failure modes of anti-floating anchor as follows:shear failure between the anchorage rod and grout;and shear failure between the grout and surrounding rock mass. (2) Under the condition of M32.5 grout

  9. Seismic Performance of Precast Reinforced Concrete Core Wall with Horizontal Tied Rebars at Mid Height Level of First Story

    OpenAIRE

    Nakachi, Tadaharu

    2013-01-01

    Precast core walls are considered effective for construction because they can be built more quickly than cast-in-place core walls. Previously, we conducted a lateral loading test on a full precast wall column simulating the area near the corner of an L-shaped core wall in order to examine the seismic performance. The wall column was divided into precast columns, and horizontal tied rebars were concentrated at the second and third floor levels to connect the precast columns. In this study, a l...

  10. Glass fiber reinforced plastics within the fringe and flexure tracker of LINC-NIRVANA

    Science.gov (United States)

    Smajic, Semir; Eckart, A.; Horrobin, M.; Lindhorst, B.; Pott, J.-U.; Rauch, C.; Rost, S.; Straubmeier, C.; Tremou, E.; Wank, I.; Zuther, J.

    2012-07-01

    The Fringe and Flexure Tracking System (FFTS) is meant to monitor and correct atmospheric piston varia­ tion and instrumental vibrations and flexure during near-infrared interferometric image acquisition of LING­ NIRVANA. In close work with the adaptive optics system the FFTS enables homothetic imaging for the Large Binocular Telescope. One of the main problems we had to face is the connection between the cryogenic upper part of the instrument, e.g. detector head, and the lower ambient temperature part. In this ambient temperature part the moving stages are situated that move the detector head in the given field of view (FOV). We show how we solved this problem using the versatile material glass fiber reinforced plastics (GFRP's) and report in what way this material can be worked. We discuss in detail the exquisite characteristics of this material which we use to combine the cryogenic and ambient environments to a fully working system. The main characteristics that we focus on are the low temperature conduction and the tensile strength of the GFRP's. The low temperature conduction is needed to allow for a low heat-exchange between the cryogenic and ambient part whereas the tensile strength is needed to support heavy structures like the baffle motor and to allow for a minimum of flexure for the detector head. Additionally, we discuss the way we attached the GFRP to the remaining parts of the FFTS using a two component encapsulant.

  11. Optimization of process parameters in drilling of GFRP composite using Taguchi method

    Directory of Open Access Journals (Sweden)

    Vinod Kumar Vankanti

    2014-01-01

    Full Text Available The objective of the present work is to optimize process parameters namely, cutting speed, feed, point angle and chisel edge width in drilling of glass fiber reinforced polymer (GFRP composites. In this work, experiments were carried out as per the Taguchi experimental design and an L9 orthogonal array was used to study the influence of various combinations of process parameters on hole quality. Analysis of variance (ANOVA test was conducted to determine the significance of each process parameter on drilling. The results indicate that feed rate is the most significant factor influencing the thrust force followed by speed, chisel edge width and point angle; cutting speed is the most significant factor affecting the torque, speed and the circularity of the hole followed by feed, chisel edge width and point angle. This work is useful in selecting optimum values of various process parameters that would not only minimize the thrust force and torque but also reduce the delimitation and improve the quality of the drilled hole.

  12. Strengthening of 230KV wood transmission structures with glass fibre reinforced polymer (GFRP) wraps

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, A.; West, J.S.; Pandey, M.D. [Waterloo Univ., ON (Canada). Dept. of Civil Engineering

    2007-07-01

    In northern Canada, an unexpected structural failure resulting from wood deterioration has been determined to pose a risk to the safety of the 230 kV wood transmission lines. Because of the remote location of the transmission structures and the need to keep the transmission lines in continuous service, replacement of deteriorated elements can be very expensive. One potential alternative is to install a lightweight strengthening system while the old structure is being serviced. One of the most common structural repair systems are fibre reinforced polymer (FRP) materials. Limited research has explored the feasibility of this strengthening system on wood beams. This paper presented a pilot experimental research program to study the feasibility of using Glass Fibre Reinforced Polymer (GFRP) fabrics as a lightweight, reliable, and effective strengthening system for deteriorated circular cross-arms of the Gulfport transmission structures. The paper discussed previous research on FRP materials, the research strategy of this study, the experimental program, and experimental results and analysis. This included measured moisture content, failure mode, relationship between stiffness and failure load, effect of wrapping on strength, and the effect of wrapping on stiffness. The results of the experimental program suggested a strong correlation between the failure load and the stiffness of the specimens and that the proposed strengthening system could result in more consistent strengths. 9 refs., 2 tabs., 8 figs.

  13. Proyecto de una torre de perforación con perfiles pultrusionados de GFRP

    Directory of Open Access Journals (Sweden)

    Recuero Fornies, Alfonso

    2001-02-01

    Full Text Available The goal of this project was to design a removable and reusable structure (derrick built with pultrusion profiles of GFRP (Glass Fiber Reinforced Polymers. These profiles have better physical and mechanical properties than those commonly used for these structures, such as steel or concrete profiles. A methodology for drilling an oil field is described in this document. The structure has been worked out by computer program. An economical study with a comparison between the structure designed with common materials and with composites is included. An application to different situations where steel design could not be possible is also shown.El proyecto presenta el diseño de una estructura desmontable y reutilizable para la realización de sondeos de petróleo .La estructura ha sido proyectada con perfiles pultrusionados de material compuesto avanzado ya que presentan unas cualidades, tanto físicas como mecánicas, superiores a la de los materiales convencionales. El empleo de estos materiales ha sido justificado desde el punto de vista técnico y económico. A lo largo del artículo se describen las operaciones requeridas en la explotación por sondeos, así como el planteamiento seguido en el cálculo estructural mediante un programa que tiene por objeto el análisis matricial de estructuras de barras. Al final del mismo se hacen una serie de reflexiones sobre las tendencias futuras de estos materiales.

  14. Testing and modeling dowel and catenary action in rebars crossing shear joints in RC

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes

    2017-01-01

    presents a simple, second order plasticity model to describe the non-linear regime of the load-displacement relationship. In the model, kinematic relations and the normality condition of plastic theory are utilized to establish a unique link between the imposed shear displacement and combinations of moment...

  15. Inhibitive Effect of Molybdate Ions on the Electrochemical Behavior of Steel Rebar in Simulated Concrete Pore Solution

    Science.gov (United States)

    Bensabra, Hakim; Franczak, Agnieszka; Aaboubi, Omar; Azzouz, Noureddine; Chopart, Jean-Paul

    2017-01-01

    Several compounds tested as corrosion inhibitors have proven to possess good effectiveness in protection of steel rebar in concrete. However, most of them are considered as pollutant compounds, which limits their use. The aim of this work is to investigate the inhibitive effect of sodium molybdate, which is considered as a nonpollutant compound, against pitting corrosion of steel rebar in simulated concrete pore solution. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results indicate that the addition of sodium molybdate to the chlorinated solution decreases significantly the corrosion rate of steel. Due to its passivating character, the sodium molybdate inhibitor promotes the formation of a stable passive layer on the surface of steel, acting as a physical barrier against chloride ions, on one hand, and consolidating the passivation mechanism of steel, on the other. The optimal inhibition rate is given by the concentration of molybdate ions, corresponding to a [MoO4 2-]/[Cl-] that is equal to 0.5.

  16. Inhibitive Effect of Molybdate Ions on the Electrochemical Behavior of Steel Rebar in Simulated Concrete Pore Solution

    Science.gov (United States)

    Bensabra, Hakim; Franczak, Agnieszka; Aaboubi, Omar; Azzouz, Noureddine; Chopart, Jean-Paul

    2016-10-01

    Several compounds tested as corrosion inhibitors have proven to possess good effectiveness in protection of steel rebar in concrete. However, most of them are considered as pollutant compounds, which limits their use. The aim of this work is to investigate the inhibitive effect of sodium molybdate, which is considered as a nonpollutant compound, against pitting corrosion of steel rebar in simulated concrete pore solution. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results indicate that the addition of sodium molybdate to the chlorinated solution decreases significantly the corrosion rate of steel. Due to its passivating character, the sodium molybdate inhibitor promotes the formation of a stable passive layer on the surface of steel, acting as a physical barrier against chloride ions, on one hand, and consolidating the passivation mechanism of steel, on the other. The optimal inhibition rate is given by the concentration of molybdate ions, corresponding to a [MoO4 2-]/[Cl-] that is equal to 0.5.

  17. Finite Element Modeling of GFRP-Reinforced Concrete Interior Slab-Column Connections Subjected to Moment Transfer

    OpenAIRE

    Ahmed Gouda; Ehab El-Salakawy

    2015-01-01

    A finite element model (FEM) was constructed using specialized three-dimensional (3D) software to investigate the punching shear behavior of interior slab-column connections subjected to a moment-to-shear ratio of 0.15 m. The FEM was then verified against the experimental results of full-scale interior slab-column connections reinforced with glass fiber reinforcement polymer (GFRP) bars previously tested by the authors. The FEM results showed that the constructed model was able to predict t...

  18. Determination of mechanical properties of some glass fiber reinforced plastics suitable to Wind Turbine Blade construction

    Science.gov (United States)

    Steigmann, R.; Savin, A.; Goanta, V.; Barsanescu, P. D.; Leitoiu, B.; Iftimie, N.; Stanciu, M. D.; Curtu, I.

    2016-08-01

    The control of wind turbine's components is very rigorous, while the tower and gearbox have more possibility for revision and repairing, the rotor blades, once they are deteriorated, the defects can rapidly propagate, producing failure, and the damages can affect large regions around the wind turbine. This paper presents the test results, performed on glass fiber reinforced plastics (GFRP) suitable to construction of wind turbine blades (WTB). The Young modulus, shear modulus, Poisson's ratio, ultimate stress have been determined using tensile and shear tests. Using Dynamical Mechanical Analysis (DMA), the activation energy for transitions that appear in polyester matrix as well as the complex elastic modulus can be determined, function of temperature.

  19. PERFORMANCE OF RC AND FRC WALL PANELS REINFORCED WITH MILD STEEL AND GFRP COMPOSITES IN BLAST EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Garfield; William D. Richins; Thomas K. Larson; Chris P. Pantelides; James E. Blakeley

    2011-06-01

    The structural integrity of reinforced concrete structures in blast events is important for critical facilities. This paper presents experimental data generated for calibrating detailed finite element models that predict the performance of reinforced concrete wall panels with a wide range of construction details under blast loading. The test specimens were 1.2 m square wall panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consists of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bar reinforcement (Type A); FRC panels without additional reinforcement (Type B); FRC panels with steel bar reinforcement (Type C); NWC panels with glass fiber reinforced polymer (GFRP) bar reinforcement (Type D); and NWC panels reinforced with steel bar reinforcement and external bidirectional GFRP overlays on both faces (Type E). An additional three Type C panels were used as control specimens (CON). Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. The panels were instrumented with strain gauges, and accelerometers; in addition, pressure sensors and high speed videos were employed during the blast events. Panel types C and E had the best performance, whereas panel type B did not perform well. Preliminary dynamic simulations show crack patterns similar to the experimental results.

  20. Wireless Measurement of Elastic and Plastic Deformation by a Metamaterial-Based Sensor

    Science.gov (United States)

    Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B.; Altintas, Ayhan

    2014-01-01

    We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment. PMID:25333292

  1. Wireless Measurement of Elastic and Plastic Deformation by a Metamaterial-Based Sensor

    Directory of Open Access Journals (Sweden)

    Burak Ozbey

    2014-10-01

    Full Text Available We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar, and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.

  2. Detecting Safety Zone Drill Process Parameters for Uncoated HSS Twist Drill in Machining GFRP Composites by Integrating Wear Rate and Wear Transition Mapping

    Directory of Open Access Journals (Sweden)

    Sathish Rao Udupi

    2016-01-01

    Full Text Available The previous research investigations informed that the tool wear of any machining operation could be minimized by controlling the machining factors such as speed, feed, geometry, and type of cutting tool. Hence the present research paper aims at controlling the process parameters to minimize the drill tool wear, during the machining of Glass Fiber Reinforced Polymer (GFRP composites. Experiments were carried out to find the tool wear rate and a wear mechanism map of uncoated High Speed Steel (HSS drill of 10 mm diameter was developed for the drilling of GFRP composite laminates. The surface micrograph images on the drill land surface displayed dominant wear mechanisms induced on HSS drill during machining of GFRP and they were found to be adhesive wear, adhesive and abrasive wear, abrasive wear, and diffusion and fatigue wear. A “safety wear zone” was identified on the wear mechanism map, where the minimum tool wear of the HSS drill occurs. From the safety zone boundaries, it was inferred that the drill spindle speed should be set between 1200 and 1590 rpm and feed rate must be set within a range of 0.10–0.16 mm/rev for GFRP work and HSS tool combination to enhance the service life of 10 mm HSS drills and to minimize the tool wear.

  3. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  4. Plastic Jellyfish.

    Science.gov (United States)

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  5. Evaluate of the Effects of Drilling with Varying Spindle Speed Using Different Thickness of GFRP on the Damage Factor

    Directory of Open Access Journals (Sweden)

    Keong Woo Tze

    2014-07-01

    Full Text Available Composite have been widely used in industries which such as aircraft structural components, electric and electronics components, aerospace, and oil and gas fields due to their superior mechanical properties. Among machining process, drilling can be considered as one of the most important process in final machining of composite. In this research, vacuum assisted resin infusion method is use in fabricating the glass fiber reinforcement polymer samples, where different thickness of GFRP were used in the drilling process with different spindle speed. The results show that the temperature influences the damage factor of the drilling. Higher spindle speed will generate higher temperature that softens the matrix thus generating lower damage factor. The suitable drill bit temperature is between 150-200°C

  6. Probability density fittings of corrosion test-data: Implications on C6H15NO3 effectiveness on concrete steel-rebar corrosion

    Indian Academy of Sciences (India)

    Joshua Olusegun Okeniyi; Idemudia Joshua Ambrose; Stanley Okechukwu Okpala; Oluwafemi Michael Omoniyi; Isaac Oluwaseun Oladele; Cleophas Akintoye Loto; Patricia Abimbola Idowu Popoola

    2014-06-01

    In this study, corrosion test-data of steel-rebar in concrete were subjected to the fittings of the Normal, Gumbel and the Weibull probability distribution functions. This was done to investigate the suitability of the results of the fitted test-data, by these distributions, for modelling the effectiveness of C6H15NO3, triethanolamine (TEA), admixtures on the corrosion of steel-rebar in concrete in NaCl and in H2SO4 test-media. For this, six different concentrations of TEA were admixed in replicates of steel-reinforced concrete samples which were immersed in the saline/marine and the microbial/industrial simulating test-environments for seventy-five days. From these, distribution fittings of the non-destructive electrochemical measurements were subjected to the Kolmogorov–Smirnov goodness-of-fit statistics and to the analyses of variance modelling for studying test-data compatibility to the fittings and testing significance. Although all fittings of test-data followed similar trends of significant testing, the fittings of the corrosion rate test data followed the Weibull more than the Normal and the Gumbel distribution fittings, thus supporting use of the Weibull fittings for modelling effectiveness. The effectiveness models on rebar corrosion, based on these, identified 0.083% TEA with optimal inhibition efficiency, $\\eta =$ 72.17 ± 10.68%, in NaCl medium while 0.667% TEA was the only admixture with positive effectiveness, $\\eta =$ 56.45±15.85%, in H2SO4 medium. These results bear implications on the concentrations of TEA for effective corrosion protection of concrete steel-rebar in saline/marine and in industrial/microbial environments.

  7. Anti-corrosion Performance of a New Corrosion Inhibitor for Rebar%一种新型钢筋阻锈剂的阻锈性能

    Institute of Scientific and Technical Information of China (English)

    阚欣荣; 封孝信; 王晓燕

    2011-01-01

    The anti-corrosion performance of a new rebar inhibitor containing amino group and carboxylic group was evaluated by means of hardened mortar test and half cell potential method. The adsorption of corrosion inhibitor on rebar in concrete was analyzed. The results show that the corrosion inhibitor could delay the corrosion and reduce the corrosion rate of the rebar.%采用硬化砂浆和半电池电位法评价了一种自制的含有氨基和羧基的新型钢筋阻锈剂IH2的阻锈性能,并采用标准工作曲线法分析了混凝土中钢筋对阻锈剂的吸附性能。结果表明,IH2钢筋阻锈剂可以延长钢筋发生锈蚀的时间,降低钢筋的腐蚀速率,具有良好的阻锈性能。

  8. Kinetics and formation mechanisms of intragranular ferrite in VN microalloyed 600 MPa high strength rebar steel

    Institute of Scientific and Technical Information of China (English)

    Jing Zhang; Fu-ming Wang; Chang-rong Li

    2016-01-01

    To systematically investigate the kinetics and formation mechanisms of intragranular ferrite (IGF), isothermal heat treatment in the temperature range of 450°C to 600°C with holding for 30 s to 300 s, analysis of the corresponding microstructures, and observation of the precipitated particles were conducted in V-N microalloyed 600 MPa high strength rebar steel. The potency of V(C,N) for IGF nucleation was also analyzed statistically. The results show that the dominant microstructure transforms from bainite (B) and acicular ferrite (AF) to grain boundary ferrite (GBF), intragranular polygonal ferrite (IPF), and pearlite (P) as the isothermal temperature increases from 450°C to 600°C. When the holding time at 600°C is extended from 30 s to 60 s, 120 s, and 300 s, the GBF content ranges from 6.0vol%to 6.5vol%and the IPF content increases from 0.5vol%to 2.8vol%, 13.1vol%, and 13.5vol%, respectively, because the ferrite transformation preferen-tially occurs at the grain boundaries and then occurs at the austenite grains. Notably, V(C,N) particles are the most effective nucleation site for the formation of IPF, accounting for 51%of the said formation.

  9. Effect of Cr on the passive film formation mechanism of steel rebar in saturated calcium hydroxide solution

    Science.gov (United States)

    Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Pan, Yue; Li, Jun

    2016-12-01

    Passive films grow on the surface of Cr-modified steels subjected to saturated Ca(OH)2 solution. Electrochemical techniques, such as measurement of open circuit potentials, polarization curves, and electrochemical impedance spectroscopy combined with X-ray photoelectron spectrometer and auger electron spectroscopy, were applied to study the influence of low Cr content on the passive film formation mechanism of steel rebar in saturated Ca(OH)2 solution. Results show that Cr inhibits the formation of passive film at the beginning of its formation. Corrosion current density decreases and polarization resistance increases with the extension of the immersion time. A stable passive film takes at least three days to form. The passive film resistance of HRB400 carbon steel is higher than that of Cr-modified steels in the early stage of immersion (72 h), and Cr promotes the formation of a denser and more compact passive film. The stable passive film is primarily made up of iron oxides with a thickness of 5-6 nm. Cr are involved in the formation of passive films, thereby resulting in a film that consists of an inner layer that contains Cr-Fe oxides and an outer layer that contains Fe oxides, whose thickness presents a slight increase as the content of Cr increases.

  10. Long Term Corrosion Experiment of Steel Rebar in Fly Ash-Based Geopolymer Concrete in NaCl Solution

    Directory of Open Access Journals (Sweden)

    Y. P. Asmara

    2016-01-01

    Full Text Available This research focuses on an experimental investigation to identify the effects of fly ash on the electrochemical process of concrete during the curing time. A rebar was analysed using potentiostat to measure the rest potential, polarization diagram, and corrosion rate. Water-to-cement ratio and amount of fly ash were varied. After being cured for 24 hours at a temperature of 65°C, the samples were immersed in 3.5% of NaCl solution for 365 days for electrochemical measurement. Measurements of the half-cell potential and corrosion current density indicated that the fly ash has significant effects on corrosion behaviour of concrete. Although fly ash tends to create passivity on anodic current, it increases corrosion rate. The corrosion potential of this concrete mixture decreases compared to concrete without fly ash. From the result, it can be summarized that concrete mixture with 70% of OPC (Ordinary Portland Cement and 30% fly ash has shown the best corrosion resistance.

  11. Quasi-plane-hypothesis of strain coordination for RC beams seismically strengthened with externally-bonded or near-surface mounted fiber reinforced plastic

    Science.gov (United States)

    Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun

    2013-03-01

    The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.

  12. Plastics Technology.

    Science.gov (United States)

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  13. 对法国钢筋机械连接技术标准的应用研究%The Application of Parallel Thread Rebar Splice Technology According to French Code in Algeria NationalStadium

    Institute of Scientific and Technical Information of China (English)

    李智斌; 许慧; 吴广彬; 赵杰; 邵康节; 罗强

    2012-01-01

    The French code for rebar mechanical splice and the application of parallel thread rebar splice in Algeria national stadium are introduced in this article. It provides references for the application of Chinese rebar mechanical splice technology and products in other countries or areas.%对法国钢筋机械连接规范和镦粗直螺纹Fe500高强钢筋连接在阿尔及利亚国家体育场的实施应用进行了介绍,可为我国钢筋机械连接技术与产品在其他国家和地区的推广应用提供参考和借鉴.

  14. Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Overgaard, Lars C. T.; Thomsen, Ole Thybo

    2012-01-01

    Wrinkle defects can be formed during the production of wind turbine blades consisting of composite monolithic and sandwich laminates. Earlier studies have shown that the in-plane compressive strength of a sandwich panel with wrinkle defects may decrease dramatically. This study focuses on the fai......Wrinkle defects can be formed during the production of wind turbine blades consisting of composite monolithic and sandwich laminates. Earlier studies have shown that the in-plane compressive strength of a sandwich panel with wrinkle defects may decrease dramatically. This study focuses...... on the failure modes of sandwich specimens consisting of thick GFRP face sheets with a wrinkle defect and a balsa wood core subjected to in-plane compression loading. Three distinct modes of failure were found, and the strain distributions leading up to these failures were established by use of digital image...... correlation (DIC). Finite element analyses were subsequently conducted to model the response of the test specimens prior to failure, and generally a very good agreement was found with the DIC measurements, although slight differences between the predicted and measured strain fields were observed in the local...

  15. Multi response Characteristics of Process Parameters during End Milling of GFRP using Grey-Based Taguchi Method

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2014-05-01

    Full Text Available This paper deals with optimization of surface roughness and delamination damage on GFRP  material during end milling using grey - based taguchi method. Three parameters namely spindle speed, feed rate and depth of cut were identified and ranges of the parameters for the present investigation were determined from preliminary experiments. Taguchi method based on L9 orthogonal array was selected and experiments were conducted as per experimental layout plan. The experiments were carried out on a CNC vertical machining center to perform 10mm slots on GFRP work piece of 300mmX50mmX25mm size by K10 carbide, four flute end milling cutter. Surface roughness and delamination damage were measured on each slot with the aid of form Talysurf 50 and tool maker’s micro scope. An optimal combination of process parameters were obtained via grey based taguchi method. From the results of ANOVA, it is concluded that cutting speed and depth of cut are the most significant factors affecting the surface roughness and delamination damage factor and their contribution in an order of 26.84% and 40.44% respectively. A confirmatory experiment shows that 5.052µm for surface roughness and 1.682 delamination damage factor to validate the used approach after conducting with optimal setting of process parameters.

  16. Dynamic behavior monitoring and damage evaluation for arch bridge suspender using GFRP optical fiber Bragg grating sensors

    Science.gov (United States)

    Li, Dongsheng; Zhou, Zhi; Ou, Jinping

    2012-06-01

    Suspenders, as the main bearing components in an arch bridge, can only manage to serve for about tens of years, or even a few years due to the influences of corrosion and fatigue load. This paper proposes a method of testing the suspender dynamic behavior with optical fiber Bragg grating sensors embedded in the glass fiber reinforced polymer (GFRP-OFBGS). Firstly, layout method of FRP-OFBGS among the suspender and protection technology are studied, and the self-monitoring smart suspender is developed. Secondly, stretching experiments were carried out on the smart suspender. The test experimental results demonstrated that the whole procedure of the stretching test can be perfectly monitored. Finally, the self-monitoring smart suspender successfully was applied in Ebian Bridge to monitor the strain history of suspenders under traffic load, and traffic effect to suspenders with various lengths and to different steel strands of a single suspender. Based on the monitoring data, the arch bridge suspenders fatigue damage dynamic evaluation methods and calculation results were given. The field monitoring results demonstrated that, the self-monitoring smart suspender mentioned in this paper is capable of monitoring suspender dynamic response and possible fatigue damages.

  17. Finite Element Modeling of GFRP-Reinforced Concrete Interior Slab-Column Connections Subjected to Moment Transfer

    Directory of Open Access Journals (Sweden)

    Ahmed Gouda

    2015-10-01

    Full Text Available A finite element model (FEM was constructed using specialized three-dimensional (3D software to investigate the punching shear behavior of interior slab-column connections subjected to a moment-to-shear ratio of 0.15 m. The FEM was then verified against the experimental results of full-scale interior slab-column connections reinforced with glass fiber reinforcement polymer (GFRP bars previously tested by the authors. The FEM results showed that the constructed model was able to predict the behavior of the slabs with reasonable accuracy. Afterward, the verified model was used to conduct a parametric study to investigate the effects of reinforcement ratio, perimeter-to-depth ratio, and column aspect ratio on the punching shear behavior of such connections. The test results showed that increasing the tested parameters enhanced the overall behavior of the connections in terms of decreasing deflections and reinforcement strain and increasing the ultimate capacity. In addition, the obtained punching shear stresses of the connections were compared to the predictions of the Canadian standard and the American guideline for FRP-reinforced concrete structures.

  18. Plastic bronchitis

    National Research Council Canada - National Science Library

    Singhi, Anil Kumar; Vinoth, Bharathi; Kuruvilla, Sarah; Sivakumar, Kothandam

    2015-01-01

    Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics...

  19. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  20. Plastic Bridge

    Institute of Scientific and Technical Information of China (English)

    履之

    1994-01-01

    Already ubiquitous in homes and cars, plastic is now appearing inbridges. An academic-industrial consortium based at the University ofCalifornia in San Diego is launching a three-year research program aimed atdeveloping the world’s first plastic highway bridge, a 450-foot span madeentirely from glass-,carbon,and polymer-fiber-reinforced composite mate-rials, the stuff of military aircraft. It will cross Interstate 5 to connect thetwo sides of the school’s campus.

  1. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  2. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  3. Effect of embedded printed circuit board (PCB) sensors on the mechanical behavior of glass fiber-reinforced polymer (GFRP) structures

    Science.gov (United States)

    Javdanitehran, M.; Hoffmann, R.; Groh, J.; Vossiek, M.; Ziegmann, G.

    2016-06-01

    The embedding of dielectric chipless sensors for cure monitoring into fiber-reinforced thermosets allows for monitoring and controlling the curing process and consequently higher quality in production. The embedded sensors remain after the processing in the structure. This affects the integrity of the composite structure locally. In order to investigate these effects on the mechanical behavior of the glass fiber-reinforced polymer (GFRP), sensors made on special low loss substrates are integrated into laminates with different lay-ups and thicknesses using vacuum assisted resin transfer molding (VARTM) method. In a parametric study the size of the sensor is varied to observe its influence on the strength and the stiffness of the laminates according to its lay-up and thickness. The size and orientation of the resin rich areas near sensors as well as the distortion in load bearing area as the consequences of the introduction of the sensors are investigated in conjunction with the strength of the structure. An empirical model is proposed by the authors which involves the previously mentioned factors and is used as a rapid tool for the prediction of the changes in bending and tensile strength of simple structures with embedded sensors. The methodology for model’s calibration as well as the validation of the model against the experimental data of different laminates with distinct lay-ups and thicknesses are presented in this work. Mechanical tests under tensile and bending loading indicate that the reduction of the structure’s strength due to sensor integration can be attributed to the size and the orientation of rich resin zones and depends over and above on the size of distorted load bearing area. Depending on the sensor’s elastic modulus the stiffness of the structure may vary through the introduction of a sensor.

  4. Plastic Bronchitis.

    Science.gov (United States)

    Rubin, Bruce K

    2016-09-01

    Plastic bronchitis is an uncommon and probably underrecognized disorder, diagnosed by the expectoration or bronchoscopic removal of firm, cohesive, branching casts. It should not be confused with purulent mucous plugging of the airway as seen in patients with cystic fibrosis or bronchiectasis. Few medications have been shown to be effective and some are now recognized as potentially harmful. Current research directions in plastic bronchitis research include understanding the genetics of lymphatic development and maldevelopment, determining how abnormal lymphatic malformations contribute to cast formation, and developing new treatments. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. EXPERIMENTAL STUDY ON REBAR CORROSION EMBEDDED IN CONCRETE AFFECTED BY MINERAL ADMIXTURE%矿物对混凝土中钢筋锈蚀的试验研究

    Institute of Scientific and Technical Information of China (English)

    夏天; 金南国; 王狄龙; 徐雅娟

    2011-01-01

    By inspecting the changes of rebar potential and corrosion current density, the corrosion rate of rebar embedded in concrete affected by slag and fly ash was studied. The experiment result showed that the rebar corrosion could be retarded by the separate addition of slag and fly ash which improved the resistance of concrete to chloride ion penetration. The change of steel potential coincided with the change of corrosion current density, so they could be used as the criterion for the state of rebar corrosion.%通过检测钢筋电位以及腐蚀电流密度的变化,比较了矿粉、粉煤灰对混凝土中钢筋锈蚀速率的影响.试验结果表明:由于矿粉、粉煤灰能改善混凝土抵抗氯离子渗透的能力,因而能延缓混凝土中钢筋的锈蚀.钢筋电位与腐蚀电流密度的变化情况基本一致,可以作为混凝土中钢筋锈蚀情况的判断依据.

  6. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  7. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  8. Plastic zonnecellen

    NARCIS (Netherlands)

    Roggen, Marjolein

    1998-01-01

    De zonnecel van de toekomst is in de maak. Onderzoekers van uiteenlopend pluimage werken eendrachtig aan een plastic zonnecel. De basis is technisch gelegd met een optimale, door invallend licht veroorzaakte, vorming van ladingdragers binnen een composiet van polymeren en buckyballs. Nu is het zaak

  9. Experimental Study on Sandwich Bridge Decks with GFRP Face Sheets and a Foam-Web Core Loaded under Two-Way Bending

    Directory of Open Access Journals (Sweden)

    Ruili Huo

    2015-01-01

    Full Text Available In recent years, the sandwich bridge decks with GFRP face sheets and light weight material core have been widely used in the world due to their advantages of low cost, high strength to weight ratios, and corrosion resisting. However, as the bridge decks, most of them are used in foot bridges rather than highway bridges because the ultimate bending strength and initial bending stiffness are relatively low. To address this issue and expand the scope of use, a simple and innovative sandwich bridge deck with GFRP face sheets and a foam-web core, manufactured by vacuum assisted resin infusion process, is developed. An experimental study was carried out to validate the effectiveness of this panel for increasing the ultimate bending strength and initial bending stiffness under two-way bending. The effects of face sheet thickness, foam density, web thickness, and web spacing on displacement ductility and energy dissipation were also investigated. Test results showed that, compared to the normal foam-core sandwich decks, an average approximately 657.1% increase in the ultimate bending strength can be achieved. Furthermore, the bending stiffness, displacement ductility, and energy dissipation can be enhanced by increasing web thickness, web height, and face sheet thickness or decreasing web spacing.

  10. Plastic Surgery Statistics

    Science.gov (United States)

    ... PSN PSEN GRAFT Contact Us News Plastic Surgery Statistics Plastic surgery procedural statistics from the American Society of Plastic Surgeons. Statistics by Year Print 2016 Plastic Surgery Statistics 2015 ...

  11. Plastic bronchitis

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singhi

    2015-01-01

    Full Text Available Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics. They are ominous with poor prognosis. Sometimes, infection or airway reactivity may provoke cast bronchitis as a two-step insult on a vulnerable vascular bed. In such instances, aggressive management leads to longer survival. This report of cast bronchitis discusses its current understanding.

  12. Corrosion behaviour of steel rebars embedded in a concrete designed for the construction of an intermediate-level radioactive waste disposal facility

    Science.gov (United States)

    Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.

    2013-07-01

    The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.

  13. Corrosion behaviour of steel rebars embedded in a concrete designed for the construction of an intermediate-level radioactive waste disposal facility

    Directory of Open Access Journals (Sweden)

    Schulz F.M.

    2013-07-01

    Full Text Available The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.

  14. Study of variation of thermal diffusivity of advanced composite materials of E-glass fibre reinforced plastic (GFRP) in temperature range 5–300 K

    Indian Academy of Sciences (India)

    Kalobaran Das; S M Kamaruzzaman; Tapas Ranjan Middya; Siddhartha Datta

    2009-02-01

    Modified Angstrom method is applied to study the variation of thermal diffusivity of plain woven fabric composite in closed cycle cryo-refrigerator (CCR) based set up in the temperature range 5–300 K. The set up used is plug in type and its small size offers portability. The set up works without use of any liquid cryogen. The temperature versus thermal diffusivity curve shows three distinct regions viz. 5–30 K, 30–120 K and 120–300 K. In the first region thermal diffusivity varies exponentially and rapidly. In the second region thermal diffusivity changes exponentially but relatively slowly than that in the first region. In the last region the change in thermal diffusivity with temperature is exponential in nature but very slow.

  15. Analysis on the internal cracking of concrete cover due to rebar uniform corrosion%混凝土保护层均匀锈胀内裂分析

    Institute of Scientific and Technical Information of China (English)

    姜慧; 喻孟雄; 刘荣桂

    2014-01-01

    钢筋锈蚀是影响钢筋混凝土结构使用寿命的重要因素,混凝土保护层锈胀内裂加速整个混凝土保护层的开裂。假定混凝土满足最大伸长线应变破坏准则,利用圆孔扩张理论对铁锈自由膨胀充满混凝土与钢筋交界面空隙后混凝土保护层内裂进行分析,建立了锈胀内裂时刻的钢筋锈蚀深度计算式。针对计算式主要影响参数的分析表明:钢筋锈蚀深度与水泥石中毛细孔体积、钢筋直径、混凝土极限拉应变成正相关,与铁锈体积膨胀率成负相关。%Rebar corrosion is an important factor affecting the service life of reinforced concrete structures.Concrete cover internal cracking induced by reinforcement corrosion accelerates cracking of all cover.Based on the assumption of concrete meet the maximum ten-sional strain failure criterion,one equation for predicting the reinforcement corrosion depth from corrosion initiation to cover internal cracking was established according to the cylindrical cavity expansion theory.By analyzing main parameters of the equation ,the results showed that the reinforcement corrosion depth was positive correlation with cement stone pore volume,diameter of rebar,concrete ulti-mate tensile strain,and negative correlation with rust rate of volume expansion.

  16. 再生混凝土与钢筋粘结性能的试验研究%Experimental Study on Bonding Properties between Recycled Concrete and Rebars

    Institute of Scientific and Technical Information of China (English)

    徐一凡; 孙伟民; 郭樟根

    2012-01-01

    参照《混凝土结构试验方法标准》(GB50152-92),通过拔出试验,研究了再生混凝土与钢筋之间的粘结~滑移性能,分析了在钢筋屈服之前的荷载~钢筋滑移曲线变化趋势,考察了不同再生骨料取代率对再生混凝土与钢筋粘结性能的影响.试验结果表明:再生混凝土与钢筋的粘结性能和普通混凝土相似,再生骨料取代率对再生混凝土与钢筋的粘结性能影响不大.通过对试验数据的回归分析,对钢筋在再生混凝土中的锚固长度取值进行了初步探讨.%According to (Standard Methods for Testing of Concrete Structures), a pull-out test was performed to study the bond-slip performans betweem recycled concrete and rebars. The load-slip curve before the steel yields-reinforced was analyzed. The effect of different recycled coarse aggregate replacement on bonding behavior of recycled concrete and reinforcement was studied. The test results show that the bonding properties between recycled concrete and reinforcement were similar to ordinary concrete, there was little effect of recycled coarse aggregate replacement on the bonding behavior between recycled concrete and reinforcement. Based on the regression analysis of test data, the anchorage length of rebars in recycled concrete was preliminarily suggested.

  17. Experimental study on bond and anchorage behavior of glued-in rebar in glulam%胶合木植筋黏结锚固性能试验研究

    Institute of Scientific and Technical Information of China (English)

    凌志彬; 杨会峰; 刘伟庆; 陆伟东

    2013-01-01

    This paper describes an experimental program of 25 glulam specimens with glued-in rebar which aim to investigate the influence of slenderness ratio (λ =la/d) of rebar and glue-line thickness on the pull out load,and bond behavior of glued-in rebar axially loaded parallel to the grain.The failure modes and mechanics of specimens were analyzed.Moreover,in order to obtain the bond stress distribution along the anchorage length of rebar,specimens with strain gauges attached to steel rebar internally were designed.The experimental results show that failure occurs mainly due to pull-out of rebar,shear failure of timber around the glue-line,splitting of timber and yielding of rebar.The pull out load of glued-in rebar increases with the increasing of both the anchorage length and glue-line thickness.The ductile failure of yielding rebar occurs with the slenderness ratio of rebar up to 12.5.Anchorage length and glueline thickness have obvious influence on the bond behavior of glued-in rebar.The distribution of bond stress at rebar/adhesive interface is not uniform,but rather accentuated near both the loading end and the anchorage end,which confirms the theory of Volkersen (1938).The variation of bond stress at rebar/adhesive interface is different from adhesive/timber interface with the increasing of glue-line thickness.With glue-line thickness increased from 2 mm to 6 mm,bond stress at rebar/adhesive interface increases,while decreases at adhesive/timber interface.Appropriate increasing of glue-line thickness is beneficial to the decreasing of peak value of bond stress.%对25个胶合木植筋(带肋钢筋)试件进行对拉试验,研究植筋长细比(λ=la/d)及胶层厚度对胶合木植筋的连接承载力及界面黏结性能的影响,并对试件的破坏形态和破坏机理进行分析.为获得胶层界面黏结应力的分布,设计钢筋内贴片试件进行试验.结果表明,试件的破坏形态主要有钢筋拔出、木材环向剪切、木材劈裂、

  18. 采用GFRP配筋解决混凝土碳化对桥梁面板的负面影响%THE SOLUTION FOR ADVERSE IMPACT OF CARBONATION ON CONCRETE BRIDGE DECK SLABS BT USING GFRP REINFORCEMENT

    Institute of Scientific and Technical Information of China (English)

    郑愚; 秦怀泉; 李春红

    2009-01-01

    As crucial structural components in bridge structures, bridge deck slabs played an important role in integral structural behaviours and transportation. However, with the increasing of ages in services, the durability of reinforced concrete bridge deck slabs was influenced significantly by carbonation. Recently, because of high strength, light weight and strong corrosion-resistance, glass fiber polymer reinforcement bars (GFRP bars) were accepted by civil engineers. Due to the existence of compressive membrane action, it was shown that the structural behaviours of GFRP reinforced concrete bridge deck slabs with same reinforcement percentage were similar as those of steel reinforced concrete bridge deck slabs in nonlinear finite element analysis. Based on numerical analysis results, GFRP is available to be used as replacement of steel reinforcement. According the analysis of mechanism of concrete carbonation and material properties of GFRP, it was found that the durability of GFRP reinforced concrete bridge deck slabs was enhanced after the occurrence of carbonation in concrete structures, because carbonation reduced the permeability and porosity of concrete.%桥梁面板是桥梁结构的主要构件,对结构的整体性能和交通运输起着至关重要的作用.然而随着使用年限的增加,混凝土碳化将对钢筋混凝土桥梁面板的耐久性能产生较大的影响.近年来,玻璃纤维增强复合筋材(GFRP Bars)因具有高强、轻质、耐腐蚀等性能而逐渐被工程界认可.非线性有限元分析结果表明,由于压缩薄膜效应的存在使得同样配筋率的GFRP筋混凝土桥梁面板与钢筋混凝土桥梁面板的工作性能相似,证实了GFRP筋代替钢筋的可行性.在分析混凝土的碳化机理和GFRP的材料属性后发现,由于碳化使混凝土的渗透性和孔隙率降低,在碳化发生以后GFRP筋混凝土桥梁面的耐久性能不仅没有下降反而有所提高.

  19. 采用GFRP配筋解决混凝土碳化对桥梁面板的负面影响%THE SOLUTION FOR ADVERSE IMPACT OF CARBONATION ON CONCRETE BRIDGE DECK SLABS BY USING GFRP REINFORCEMENT

    Institute of Scientific and Technical Information of China (English)

    郑愚; 秦怀泉; 李春红

    2011-01-01

    As crucial structural components in bridge structures, bridge deck slabs played an important role in integral structural behaviours and transportation. However, with the increasing of ages in services, the durability of reinforced concrete bridge deck slabs was influenced significantly by carbonation. Recently, because of high strength, light weight and strong corrosion-resistance, glass fiber polymer reinforcement bars ( GFRP bars) were accepted by civil engineers. Due to the existence of compressive membrane action, it was shown that the structural be haviours of GFRP reinforced concrete bridge deck slabs with same reinforcement percentage were similar as those of steel reinforced concrete bridge deck slabs in nonlinear finite element analysis. Based on numerical analysis results, GFRP is available to be used as replacement of steel reinforcement. According the analysis of mechanism of concrete carbonation and material properties of GFRP, it was found that the durability of GFRP reinforced concrete bridge deck slabs was enhanced after the occurrence of carbonation in concrete structures, because carbonation reduced the permeability and porosity of concrete.%桥梁面板是桥梁结构的主要构件,对结构的整体性能和交通运输起着至关重要的作用.然而随着使用年限的增加,混凝土碳化将对钢筋混凝土桥梁面板的耐久性能产生较大的影响.近年来,玻璃纤维增强复合筋材( GFRP Bars)因具有高强、轻质、耐腐蚀等性能而逐渐被工程界认可.非线性有限元分析的结果表明,由于压缩薄膜效应的存在使得同样配筋率的GFRP筋混凝土桥梁面板与钢筋混凝土桥梁面板的工作性能相似,证实了GFRP筋代替钢筋的可行性.在分析混凝土的碳化机理和GFRP的材料属性后发现,由于碳化使混凝土的渗透性和孔隙率降低,在碳化发生以后GFRP筋混凝土桥梁面的耐久性能不仅没有下降反而有所提高.

  20. Overcoming maladaptive plasticity through plastic compensation

    Directory of Open Access Journals (Sweden)

    Matthew R.J. MORRIS, Sean M. ROGERS

    2013-08-01

    Full Text Available Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single genotype to produce multiple environmentally-induced phenotypes. Yet, not all plasticity is adaptive. Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution, much less is known about maladaptive plasticity. However, maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments. This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity, two of which involve genetic changes (standing genetic variation, genetic compensation and two of which do not (standing epigenetic variation, plastic compensation. Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity. In particular, plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence. We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change [Current Zoology 59 (4: 526–536, 2013].

  1. Overcoming maladaptive plasticity through plastic compensation

    Institute of Scientific and Technical Information of China (English)

    Matthew R.J.MORRIS; Sean M.ROGERS

    2013-01-01

    Most species evolve within fluctuating environments,and have developed adaptations to meet the challenges posed by environmental heterogeneity.One such adaptation is phenotypic plasticity,or the ability of a single genotype to produce multiple environmentally-induced phenotypes.Yet,not all plasticity is adaptive.Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution,much less is known about maladaptive plasticity.However,maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments.This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity,two of which involve genetic changes (standing genetic variation,genetic compensation) and two of which do not (standing epigenetic variation,plastic compensation).Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity.In particular,plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence.We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change.

  2. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  3. 超高韧性水泥基复合材料与锈蚀钢筋粘结性能试验研究%CORRODED REBAR AND ULTRA HIGH TOUGHNESS CEMENTITIOUS COMPOSITES (UHTCC)

    Institute of Scientific and Technical Information of China (English)

    蔡新华; 徐世娘; 尹世平; 何真

    2012-01-01

    Ultra high toughness cementitious composites (UHTCC), featured with its strain hardening char- acteristic and outstanding crack controlling under tensile conditions, could greatly enhance the durability of reinforced concrete structures and prolong the service life of infrastructures. By means of accelerated corro- sion test and direct pulling test, bond properties between corroded rebar with different corrosion ratio(0, 1%, 2%, 3% and 5%) and UHTCC were investigated, did the same for corroded rebar and ordinary concrete while other things being equal. The relationships between average bond stress and end slip with different corrosion ratio were presented. A constitutive model for bond slip relation between rebar and UHTCC was applied for simulating the test results, and fit well. The relationship between maximum average bond stress and corrosion ratio indicated that UHTCC could restrict the corrosion expansion. The maximum average bond stress of rebar and UHTCC increased linearly before corrosion ratio up to 3%, then remained constant till to 5%, while the maximum average bond stress between rebar and concrete decreased rapidly when the corrosion ratio exceeded 2%.%通过电化学加速锈蚀、钢筋和UHTCC直接拉拔试验对不同锈蚀率(0,1%,2%,3%和5%)下钢筋与UHTCC的粘结性能进行了研究,并与同条件下的混凝土试件进行对比。通过直接拉拔实验得到不同锈蚀率时平均粘结应力与滑移量的关系,采用粘结滑移的连续模型进行拟合,模型值与实验值吻合较好。与混凝土试件锈蚀率超过2%后最大平均粘结应力迅速下降现象不同,UHTCC能充分发挥其对钢筋的约束作用,在锈蚀率小于3%范围内,最大平均粘结应力随锈蚀率增大线性增加,锈蚀率超过3%直到5%基本维持不变,保持较好的粘结性能。

  4. Technology for Manufacturing and Hoisting of Rebar Cages for Extremely-deep Diaphragm Walls%超深地下连续墙钢筋笼制作与吊装技术

    Institute of Scientific and Technical Information of China (English)

    李少利

    2011-01-01

    为解决超深地下连续墙钢筋笼几何尺寸大、整体刚度小、吊装重量大、定量控制钢筋笼的几何误差困难的问题,确定吊装机械、吊具验算、高空接长方案将是施工的关键。根据技术规范和工程经验,设定了天津文化中心交通枢纽地铁工程超深地下连续墙钢筋笼的制作标准;通过计算分析,掌握了超长钢筋笼吊装过程中需要注意的技术环节。得出以下结论:1)制作允许偏差的严格执行有利于超长钢筋笼顺利进入槽孔;2)采用400 t和150 t履带吊双机吊装可满足起重量的要求;3)吊具安全验算应包括钢丝绳强度验算,主、副吊扁担验算和卸扣验算;4)超长钢筋笼必须采用分段制作、分段吊装、高空接长的方案,焊接与接驳器连接相比,质量和可操作性更高。%The rebar cages of extremely-deep diaphragm walls always have large geometric dimensions,small integral rigidness,large hoisting weight and great difficulty in quantitative control of errors.The selection of the hoisting machines,the checking of the hoisting tools and the connection of the rebar cages at high position in the air are the key points in the construction of diaphragm walls.The manufacturing standard for the rebar cages of the extremely-deep diaphragm walls of Tianjin Cultural Center Metro works is established on basis of technical specifications and engineering practice.The key points of the hoisting of the extra-long rebar cages are obtained by means of calculation and analysis.Conclusions drawn are as follows: 1) The strict control of the errors in the manufacturing of the rebar cages is the key to guarantee the successful inserting of the rebar cages into the diaphragm wall trenches.2) The combination of a 400t caterpillar crane and a 150t caterpillar crane can meet the hoisting requirements.3) The safety checking of the hoisting tools includes the steel cable strength checking,the pole checking of the

  5. Damage evaluation of fiber reinforced plastic-confined circular concrete-filled steel tubular columns under cyclic loading using the acoustic emission technique

    Science.gov (United States)

    Li, Dongsheng; Du, Fangzhu; Ou, Jinping

    2017-03-01

    Glass-fiber reinforced plastic (GFRP)-confined circular concrete-filled steel tubular (CCFT) columns comprise of concrete, steel, and GFRP and show complex failure mechanics under cyclic loading. This paper investigated the failure mechanism and damage evolution of GFRP–CCFT columns by performing uniaxial cyclic loading tests that were monitored using the acoustic emission (AE) technique. Characteristic AE parameters were obtained during the damage evolution of GFRP–CCFT columns. Based on the relationship between the loading curve and these parameters, the damage evolution of GFRP–CCFT columns was classified into three stages that represented different damage degrees. Damage evolution and failure mode were investigated by analyzing the b-value and the ratio of rise time to waveform amplitude and average frequency. The damage severity of GFRP–CCFT columns were quantitatively estimated according to the modified index of damage and NDIS-2421 damage assessment criteria corresponding to each loading step. The proposed method can explain the damage evolution and failure mechanism for GFRP–CCFT columns and provide critical warning information for composite structures.

  6. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  7. Electrochemical Impedance Spectroscopy Characteristics of Corrosion Behavior of Rebar in Concrete%混凝土中钢筋锈蚀的电化学阻抗谱特征研究

    Institute of Scientific and Technical Information of China (English)

    许晨; 李志远; 金伟良

    2011-01-01

    关于混凝土钢筋锈蚀等效电路模型中各元件的物理意义理解不尽相同.为了对模型元件的物理意义给出合理解释,设计了由氯盐侵蚀和混凝土碳化导致钢筋锈蚀的两种加速试验.通过对钢筋锈蚀试块阻抗谱特征的分析研究,对模型元件的物理意义给出了合理解释.研究发现,氯盐锈蚀试块具有三段容抗弧,即三个时间常数;而碳化锈蚀试块阻抗谱与钝化钢筋试块阻抗谱都只有两个容抗弧,即两个时间常数,可以使用相同的等效电路模型来表示.随着锈蚀的逐渐开展,低频段的容抗弧逐渐收缩.当环境湿度升高时,阻抗谱中高频段与低频段容抗弧均发生收缩,所表现的物理意义为混凝土电阻率的降低和钢筋极化电阻的降低.最后,本文提出了等效电路的简化模型,并通过试验验证了简化模型的合理性.%Understandings of the physical significance of elements in equivalent circuit model of rebar corrosion in concrete are not quite similar.In order to give a reasonable explanation, experiments of rebar corrosion in concrete induced by chloride penetration and carbonation were designed,and then the characteristics of electrochemical impedance spectroscopy(EIS) of test specimens were carefully examined.It was found from the test results that,for the rebar corrosion induced by chloride attack,three capacitance arcs were observed in impedance spectroscopy.However, for the rebar corrosion induced by carbonation,there exsited only two capacitance arcs in impedance spectroscopy,which corresponded with characteristics of rebar in passivation state. Low frequency capacitance arc shrank gradually with corrosion going on.As relative humidity increasing, high frequency and low frequency capacitance arcs both shrank,which meant decreasing of concrete resistivity and polarization resistance of rebar.Finally,a simplified equivalent circuit model was proposed and verified by experiment.

  8. 77 FR 54930 - Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A Subsidiary of Plastics...

    Science.gov (United States)

    2012-09-06

    ... Employment and Training Administration Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A... plastic parts. New information shows that Fortis Plastics is now called Carlyle Plastics and Resins. In... of Carlyle Plastics and Resins, formerly known as Fortis Plastics, a subsidiary of...

  9. RESEARCH ON PASSIVATION BEHAVIOR OF REBAR WITH MILL SCALE AND STAINS IN STRONG ALKALI%强碱溶液中带热轧皮钢筋的钝化行为研究

    Institute of Scientific and Technical Information of China (English)

    路新瀛; 林玮; 李源晋

    2015-01-01

    对有无氯离子时混凝土孔溶液中带热轧皮未锈和生锈钢筋的电化学极化行为进行模拟研究。结果表明:在强碱无氯溶液中,带热轧皮未锈和生锈钢筋均具有可钝化性,不过,后者的维钝电流密度通常高于前者。当pH值为10~12.5时,致密的热轧皮对钢筋基底有一定保护作用,当pH值不小于13.5时,热轧皮的化学稳定性下降,保护性能降低。在强碱含氯溶液中,带致密热轧皮的未锈钢筋仍显示出可钝化性,而带热轧皮生锈钢筋则一直处于活化腐蚀状态。%The polarization behavior of rebar with mill scale and stains was investigated in simulated solutions with and without chlorions.The results showed that the hot-rolled rebar without and with stains could be passivated in strong alkali solutions without chloride, but the latter usually needs higher passive current density.Dense mill scale had some protective function when pH=10~12.5, but became unstable when pH≥13.5.The rebar with dense mill scale and without stains also could be passivated in strong alkali solutions with some chlorides, but the rusted one kept being in active corrosion state.

  10. Percutaneous Augmented Peripheral Osteoplasty in Long Bones of Oncologic Patients for Pain Reduction and Prevention of Impeding Pathologic Fracture: The Rebar Concept

    Energy Technology Data Exchange (ETDEWEB)

    Kelekis, A., E-mail: akelekis@med.uoa.gr; Filippiadis, D., E-mail: dfilippiadis@yahoo.gr [University General Hospital “ATTIKON”, 2nd Radiology Department (Greece); Anselmetti, G., E-mail: gc.anselmetti@fastwebnet.it [GVM Care and Research Maria Pia Hospital (Italy); Brountzos, E., E-mail: ebrountz@med.uoa.gr [University General Hospital “ATTIKON”, 2nd Radiology Department (Greece); Mavrogenis, A., E-mail: afm@otenet.gr; Papagelopoulos, P., E-mail: pjp@hol.gr [University General Hospital “ATTIKON”, A Orthopedic Clinic (Greece); Kelekis, N., E-mail: kelnik@med.uoa.gr [University General Hospital “ATTIKON”, 2nd Radiology Department (Greece); Martin, J.-B., E-mail: jbmartin@cird.ch [Centre Imaginerie Rive Droite & Gauche (Switzerland)

    2016-01-15

    PurposeTo evaluate clinical efficacy/safety of augmented peripheral osteoplasty in oncologic patients with long-term follow-up.Materials and MethodsPercutaneous augmented peripheral osteoplasty was performed in 12 patients suffering from symptomatic lesions of long bones. Under extensive local sterility measures, anesthesiology care, and fluoroscopic guidance, direct access to lesion was obtained and coaxially a metallic mesh consisting of 25–50 medical grade stainless steel micro-needles (22 G, 2–6 cm length) was inserted. PMMA for vertebroplasty was finally injected under fluoroscopic control. CT assessed implant position 24-h post-treatment.ResultsClinical evaluation included immediate and delayed follow-up studies of patient’s general condition, NVS pain score, and neurological status. Imaging assessed implant’s long-term stability. Mean follow-up was 16.17 ± 10.93 months (range 2–36 months). Comparing patients’ scores prior (8.33 ± 1.67 NVS units) and post (1.42 ± 1.62 NVS units) augmented peripheral osteoplasty, there was a mean decrease of 6.92 ± 1.51 NVS units. Overall mobility improved in 12/12 patients. No complication was observed.ConclusionPercutaneous augmented peripheral osteoplasty (rebar concept) for symptomatic malignant lesions in long bones seems to be a possible new technique for bone stabilization. This combination seems to provide necessary stability against shearing forces applied in long bones during weight bearing.

  11. Our plastic age

    National Research Council Canada - National Science Library

    Richard C. Thompson; Shanna H. Swan; Charles J. Moore; Frederick S. vom Saal

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production...

  12. Weinig plastic in vissenmaag

    NARCIS (Netherlands)

    Foekema, E.M.

    2012-01-01

    Waar de magen van sommige zeevogels vol plastic zitten, lijken vissen in de Noordzee nauwelijks last te hebben van kunststofafval. Onderzoekers die plastic resten zochten in vissenmagen vonden ze in elk geval nauwelijks.

  13. Ear Plastic Surgery

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ear Plastic Surgery Ear Plastic Surgery Patient Health Information ... they may improve appearance and self-confidence. Can Ear Deformities Be Corrected? Formation of the ear during ...

  14. Biodegradability of Plastics

    OpenAIRE

    Yutaka Tokiwa; Calabia, Buenaventurada P.; Charles U. Ugwu; Seiichi Aiba

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical ...

  15. Chemical Recycle of Plastics

    Directory of Open Access Journals (Sweden)

    Sara Fatima

    2014-11-01

    Full Text Available Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  16. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example...

  17. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  18. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  19. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  20. Journal of CHINA PLASTICS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Journal of CHINA PLASTICS was authorized and approved by The State Committee of Science and Technology of China and The Bureau of News Press of China, and published by The China Plastics Processing Industry Association,Beijing Technology and Business University and The Institute of Plastics Processing and Application of Light Industry, distributed worldwide. Since its birth in 1987, CHINA PLASTICS has become a leading magazine in plastics industry in China, a national Chinese core journal and journal of Chinese scientific and technological article statistics. It is covered by CA.

  1. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  2. Glassy metallic plastics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper reports a class of bulk metallic glass including Ce-, LaCe-, CaLi-, Yb-, and Sr-based metallic glasses, which are regarded as glassy metallic plastics because they combine some unique properties of both plastics and metallic alloys. These glassy metallic plastics have very low glass transition temperature (Tg~25oC to 150oC) and low Young’s modulus (~20 GPa to 35 GPa). Similar to glassy plastics, these metallic plastics show excellent plastic-like deformability on macro-, micro- and even nano-scale in their supercooled liquid range and can be processed, such as elongated, compressed, bent, and imprinted at low temperatures, in hot water for instance. Under ambient conditions, they display such metallic properties as high thermal and electric conductivities and excellent mechanical properties and other unique properties. The metallic plastics have potential applications and are also a model system for studying issues in glass physics.

  3. Study on the law of rebar corrosion under environmental and loading effect%基于荷载与环境共同作用的钢筋锈蚀规律研究

    Institute of Scientific and Technical Information of China (English)

    徐亦斌; 付传清; 董江云; 金南国

    2016-01-01

    Sustained load was applied on reinforced concrete beams with screws by the way of back-to-back loading. Then the alternated test with chloride ingress and carbonation process was conducted. The rebar corrosion law in reinforced concrete,under the combined effect of carbonation,chloride and loading,was studied by half-cell potential method and linear polarization method. The test results indi-cate that drying-wetting cycle′s effect increase the rebar corrosion rate. The carbonation factor is dominant in rebar corrosion process with low load level. However,both carbonation and load should be taken into account if the load level is high. Rebar corrosion rate with double-mixture concrete is higher than ordinary concrete. There are some limitations using half-cell potential method when corrosion po-tential is between -200 mV to -350 mV,which corresponds to 0.1μA/cm2 to 1μA/cm2 corrosion current density,thus linear polariza-tion method can be used to quantitative analyze the rebar corrosion condition.%采用背对背加载方式,利用螺杆对钢筋混凝土受弯构件施加持续荷载,进行氯盐溶液侵蚀与加速碳化交替作用试验,基于半电池电位法和线性极化法研究了混凝土在碳化、氯盐侵蚀与荷载三者共同作用下的钢筋锈蚀规律。试验结果表明,干湿循环导致钢筋锈蚀速率增长;荷载水平较低时,碳化对钢筋锈蚀的影响占主导作用;荷载水平较高时,需综合考虑碳化与荷载作用的影响。双掺矿粉和粉煤灰的混凝土钢筋锈蚀速率较普通混凝土快。腐蚀电流密度在0.1~1μA/cm2之间时,对应腐蚀电位在-200~-350 mV之间,基于半电池电位法判断钢筋的锈蚀状态具有一定的局限性,辅以线性极化法可以对钢筋锈蚀状态进行定量分析。

  4. Plastic Pollution from Ships

    OpenAIRE

    Čulin, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  5. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plasti...... as a knowledge handbook for laser welding of plastic components. This document should provide the information for all aspects of plastic laser welding and help the design engineers to take all critical issues into consideration from the very beginning of the design phase....

  6. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  7. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  8. 新FRP技术加固钢筋混凝土矩形柱改善延性的试验研究%Experimental study on ductility improvement of reinforced concrete rectangular columns retrofitted with a new fiber reinforced plastics method

    Institute of Scientific and Technical Information of China (English)

    刘涛; 冯伟; 张智梅; 欧阳煜

    2008-01-01

    Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessaryductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a newretrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, wasdeveloped aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. CarbonFRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examinethe function of this new method for improving the ductility of columns. Responses of columns were examined before andafter being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismicbehavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column.

  9. THE RESEARCH ON DIAGONAL CRACKING OF REINFORCED CONCRETE BEAMS WITH HIGH STRENGTH REBARS BASED ON MODEL TEST%基于模型试验的高强度钢筋混凝土梁斜向开裂研究

    Institute of Scientific and Technical Information of China (English)

    李朋; 郑鸿飞; 张宪堂; 张伟; 王命平

    2015-01-01

    通过对配置高强度钢筋的混凝土梁在集中荷载作用下的受剪试验,从构件挠度、斜裂缝宽度及箍筋应变的角度分析其斜向开裂特征规律,研究混凝土强度、剪跨比、配箍率、截面尺寸及截面形状对构件斜向开裂荷载的影响规律,并对斜向开裂荷载的理论计算方法进行探讨。研究结果表明:混凝土强度、剪跨比、截面尺寸是配置高强钢筋混凝土梁斜向开裂荷载的主要影响因素,并由此提出斜向开裂荷载的建议计算公式,为工程应用中斜向开裂荷载计算以及高强钢筋的快速推广使用提供参考依据。%An experiment on shear of reinforced concrete beams with high strength rebars was carried out .According to observing the deflection , diagonal crack width and strain of stirrups , the diagonal cracking rules were analyzed . The effects of concrete strength , shear span ratio , ratio of stirrup , section size and section shape on diagonal cracking loads were studied and the calculation method of the diagonal cracking loads was discussed .The results showed that concrete strength , shear span ratio and section size were the major factors for the diagonal cracking loads of reinforced concrete beams with high strength rebars .Meanwhile , the calculation formula of the diagonal cracking loads was suggested , which provided a basis for calculation of the diagonal cracking loads and promoting the use of HRBF 500 high strength rebars in practical engineering .

  10. EXPERIMENTAL RESEARCH ON STEEL-REINFORCED CONCRETE FILLED GFRP TUBE COLUMNS SUBJECTED TO AXIAL LOADING%玻璃纤维增强材料管劲性钢筋混凝土组合柱轴心受压试验研究

    Institute of Scientific and Technical Information of China (English)

    陈百玲; 王连广; 秦国鹏

    2011-01-01

    According to the experimental research on 8 composite columns,the axial compression property of GFRP tube filled with steel reinforced concrete was studied. The test results show that GFRP tube, concrete and section steel carry loads alone at the beginning of loading. Then the fiber surface of GFRP tube grows stretch marks when the loads reach 60% ultimate loads and GFRP tube has an obvious hooped effect on concrete when the loads reach 70% ultimate loads. While the loads reach 80% ultimate loads, GFRP tube can generate frequent noise. The damage of test specimen begins with the fracture of GFRP tube, the yield of steel and the crushing of concrete. The nonlinear analysis program of composite columns was developed, and the calculated results agree well with the experimented resuhs. According to the computing and analyses, the bearing capacity of composite columns is enhanced with the increase of GFRP tube wall thickness, concrete strength grade and steel ratio.%对8根组合柱进行试验,研究玻璃纤维增强材料(GFRP)管劲性钢筋混凝土组合柱的轴心受压性能。研究结果表明:荷载作用初期,GFRP管、混凝土及型钢单独受力,当荷载达到极限荷载60%左右时,GFRP管的纤维表面出现白纹,当荷载达到极限荷载的70%左右时,GFRP管对混凝土的套箍作用明显增加,当荷载达到极限荷载80%左右时,GFRP管出现频繁的响声,试件的破坏开始于GFRP管破裂、钢材屈服、混凝土压碎。编制组合柱的非线性分析程序,模拟计算结果与试验结果吻合良好。组合柱的承载力随着GFRP管壁厚度的增加、混凝土强度等级的提高及含钢率的增加而提高。

  11. Halos of Plastic

    Institute of Scientific and Technical Information of China (English)

    Maya Reid

    2012-01-01

    The halos that span South Africa's coastline are anything but angelic. Fanning out around four major urban centers-Cape Town, Port Elizabeth, East London and Durban-they are made up of innumerable bits and pieces of plastic. As a form of pollution, their shelflife is unfathomable. Plastic is essentially chemically inactive. It's designed to never break down.

  12. Biodegradation of plastics.

    Science.gov (United States)

    Shimao, M

    2001-06-01

    Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. Recent work has included studies of the distribution of synthetic polymer-degrading microorganisms in the environment, the isolation of new microorganisms for biodegradation, the discovery of new degradation enzymes, and the cloning of genes for synthetic polymer-degrading enzymes.

  13. The Application of Plastics Stabilizaters in Unsatured Polyster Glass Fiber Reinforced Plastic (GFRP) Composites%塑料稳定剂在玻璃纤维增强不饱和聚酯树脂中的应用

    Institute of Scientific and Technical Information of China (English)

    王玉民; 宁培森; 丁著明

    2011-01-01

    Recent advances in the application of plastics stabilizaters including ultraviolet absorbent, hindered amine light stabilizers (HALS) and antioxidant in unsatured polyster glass fiber reinforced plastic (GFRP) composites were reviewed. The results of some research papers showed the effect is not good when using single stabilizer,the combined use of main and auxilary antioxidant has the better effect on anti-ageing of GFRP.%综述了塑料稳定剂(包括紫外线吸收剂、受阻胺光稳定剂和抗氧剂等)在不饱和聚酯玻璃纤维增强塑料(GFRP)上的应用研究情况。一些研究结果表明:只使用单一的稳定剂效果不佳,必须配合使用稳定剂,才能取得较好的防老化效果。

  14. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups...... answered the first Danish national survey, PD13[1], investigating the importance of industrial designers’ knowledge in plastics and the collaboration between designers and the polymer industry. The plastics industry and the industrial designers collaborate well, but both groups frequently experience...... that the designers’ lack of knowledge concerning polymer materials and manufacturing methods can be problematic or annoying, and design students from most Danish design universities express the need for more contact with the industry and more competencies and tools to handle even simple topics when designing plastic...

  15. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...... the relation between consciousness and brain functions. If consciousness is connected to specific brain structures (as a function or in identity) what happens to consciousness when those specific underlying structures change? It is therefore possible that the understanding and theories of neural plasticity can...

  16. 玻璃纤维布加固的钢筋混凝土梁试验研究与抗弯承载力计算%Experimental study and calculation of flexural capacity of RC beams strengthened with GFRP sheets

    Institute of Scientific and Technical Information of China (English)

    王文炜; 李果

    2004-01-01

    对9根玻璃纤维布加固的钢筋混凝土梁和3根对比梁进行了抗弯性能试验研究. 试验中考虑了配筋率、加固量、剪跨比与混凝土强度等级4个参数. 试验结果表明, 经玻璃纤维布加固的钢筋混凝土梁抗弯承载力有显著提高; 混凝土强度、配筋率、加固量对极限荷载有显著影响; 剪跨比对加固梁的破坏形态有影响. 根据不同的破坏模式, 提出了抗弯承载力计算方法.%Nine reinforced concrete (RC) beams strengthened with glass fiber reinforced polymer (GFRP) sheets and three control beams were tested. Four parameters considered in this experimental program included the concrete strength, the reinforcement ratio, the number of GFRP sheets, and the shear span ratio. It is shown that the application of GFRP sheets can increase the ultimate flexural capacity. The effect of the concrete strength, the reinforcement ratio and the number of GFRP sheets on load capacity is obvious. The shear span ratio can affect the failure mode of RC beams strengthened with GFRP sheets. A theoretical model for flexural behavior of the strengthened RC beam is also developed.

  17. Rebar modularization design and fabrication technique research for large diameter long drilling pile%大直径超长钻孔灌注桩桩笼的钢筋模块化设计及加工工艺

    Institute of Scientific and Technical Information of China (English)

    陈国平

    2013-01-01

    “钢筋模块化”理念在大直径超长钻孔灌注桩的施工过程中得到了成功的运用,本文通过钢筋模块化设计和施工工艺的描述,由实践证明了钢筋笼采用模块化制作不仅质量高,生产速度快,集中的工厂化生产更能有效地降低施工成本。%Briefing:"Rebar modularization”concept are sucessfully used for large diameter long drilling pile construction.The article prove the high quality and fast production speed with the description of the modularization design and fabrication.The industrialization method can bring down the cost of the construction.

  18. Improving the Wear Resistance of Moulds for the Injection of Glass Fibre–Reinforced Plastics Using PVD Coatings: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Francisco Silva

    2017-02-01

    Full Text Available It is well known that injection of glass fibre–reinforced plastics (GFRP causes abrasive wear in moulds’ cavities and runners. Physical vapour deposition (PVD coatings are intensively used to improve the wear resistance of different tools, also being one of the most promising ways to increase the moulds’ lifespan, mainly when used with plastics strongly reinforced with glass fibres. This work compares four different thin, hard coatings obtained using the PVD magnetron sputtering process: TiAlN, TiAlSiN, CrN/TiAlCrSiN and CrN/CrCN/DLC. The first two are monolayer coatings while the last ones are nanostructured and consist of multilayer systems. In order to carry out the corresponding tribological characterization, two different approaches were selected: A laboratorial method, using micro-abrasion wear tests based on a ball-cratering configuration, and an industrial mode, analysing the wear resistance of the coated samples when inserted in a plastic injection mould. As expected, the wear phenomena are not equivalent and the results between micro-abrasion and industrial tests are not similar due to the different means used to promote the abrasion. The best wear resistance performance in the laboratorial wear tests was attained by the TiAlN monolayer coating while the best performance in the industrial wear tests was obtained by the CrN/TiAlCrSiN nanostructured multilayer coating.

  19. 铁路混凝土工程钢筋机械连接螺纹接触应力分析%Analysis of Thread Contact Stress in Rebar Mechanical Connection in Railway Concrete Engineering

    Institute of Scientific and Technical Information of China (English)

    陈强; 谷牧; 钟志强; 徐先俊

    2016-01-01

    T he contact FEM analysis was carried out with three types of rebar diameter ( 16,25,32) and three types of thread pitch for each rebar diameter,and deformation,stress of screw tooth cusp and contact stress distribution were researched in detail. Results show that with designed mechanical connection length and different thread pitch,static performance of all the rebar mechanical connection assembles meets the deformation and strength requirements of code. T he proposed thread pitches of rebar with diameters of 16,25 and 32 are 2. 0,2. 5,3. 0 mm based on comprehensive consideration of stress uniformity,geometry dimension of rebar,process difficulty and feasibility. W ith the stretching load,contact pairs are closed at one side and separated at other side. T he maximum amount of separation existed at the first thread and last thread. Stresses of middle threads decreased rapidly and tend to uniformity except larger stresses of the first and last thread sharp angle. U niformity of thread load transference become better with more threads ( smaller thread pitch) ,but process becomes more difficult. Stress level of thread sharp angle is related to rebar diameter and thread pitch. T he maximum contact stress is located at thread sharp angle,decreases rapidly to the direction of thread mean diameter and tend to uniformity,it means that the load transferring part of thread is mainly mean diameter range.%选取3种典型直径(16,25,32)的钢筋,每种钢筋选取3种螺距,开展了钢筋直螺纹连接组件接触有限元分析,系统地研究了直螺纹连接接头组件的变形、螺牙尖角应力及接触应力分布特征。结果表明:在设计连接接头长度下,采用不同的螺距时,连接接头组件的静力受力性能均满足钢筋连接的强度及变形要求,但考虑到受力的均匀性、钢筋几何尺寸特点、加工难易程度及可行性,建议16,25,32钢筋机械连

  20. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of

  1. A Plastic Menagerie

    Science.gov (United States)

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  2. Cortical plasticity and rehabilitation.

    Science.gov (United States)

    Moucha, Raluca; Kilgard, Michael P

    2006-01-01

    The brain is constantly adapting to environmental and endogenous changes (including injury) that occur at every stage of life. The mechanisms that regulate neural plasticity have been refined over millions of years. Motivation and sensory experience directly shape the rewiring that makes learning and neurological recovery possible. Guiding neural reorganization in a manner that facilitates recovery of function is a primary goal of neurological rehabilitation. As the rules that govern neural plasticity become better understood, it will be possible to manipulate the sensory and motor experience of patients to induce specific forms of plasticity. This review summarizes our current knowledge regarding factors that regulate cortical plasticity, illustrates specific forms of reorganization induced by control of each factor, and suggests how to exploit these factors for clinical benefit.

  3. Mechanical plasticity of cells

    Science.gov (United States)

    Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben

    2016-10-01

    Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

  4. Targeting tumour Cell Plasticity

    Institute of Scientific and Technical Information of China (English)

    Elizabeth D. WILLIAMS

    2009-01-01

    @@ Her research is focused on understanding the mechanisms of tumour progression and metastasis, particularly in uro-logical carcinomas (bladder and prostate). Tumour cell plasticity, including epithelial-mesenchymal transition, is a cen-tral theme in Dr Williams' work.

  5. Laser cutting plastic materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  6. Localization of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1976-04-01

    The localization of plastic deformation into a shear band is discussed as an instability of plastic flow and a precursor to rupture. Experimental observations are reviewed, a general theoretical framework is presented, and specific calculations of critical conditions are carried out for a variety of material models. The interplay between features of inelastic constitutive description, especially deviations from normality and vertex-like yielding, and the onset of localization is emphasized.

  7. Development of plastic surgery

    Directory of Open Access Journals (Sweden)

    Pećanac Marija Đ.

    2015-01-01

    Full Text Available Introduction. Plastic surgery is a medical specialty dealing with corrections of defects, improvements in appearance and restoration of lost function. Ancient Times. The first recorded account of reconstructive plastic surgery was found in ancient Indian Sanskrit texts, which described reconstructive surgeries of the nose and ears. In ancient Greece and Rome, many medicine men performed simple plastic cosmetic surgeries to repair damaged parts of the body caused by war mutilation, punishment or humiliation. In the Middle Ages, the development of all medical braches, including plastic surgery was hindered. New age. The interest in surgical reconstruction of mutilated body parts was renewed in the XVIII century by a great number of enthusiastic and charismatic surgeons, who mastered surgical disciplines and became true artists that created new forms. Modern Era. In the XX century, plastic surgery developed as a modern branch in medicine including many types of reconstructive surgery, hand, head and neck surgery, microsurgery and replantation, treatment of burns and their sequelae, and esthetic surgery. Contemporary and future plastic surgery will continue to evolve and improve with regenerative medicine and tissue engineering resulting in a lot of benefits to be gained by patients in reconstruction after body trauma, oncology amputation, and for congenital disfigurement and dysfunction.

  8. Sorting Plastic Waste in Hydrocyclone

    Directory of Open Access Journals (Sweden)

    Ernestas Šutinys

    2011-02-01

    Full Text Available The article presents material about sorting plastic waste in hydrocyclone. The tests on sorting plastic waste were carried out. Also, the findings received from the performed experiment on the technology of sorting plastic waste are interpreted applying an experimental model of the equipment used for sorting plastics of different density.Article in Lithuanian

  9. EFFECT OF LOADING RATE ON TENSILE PROPERTIES OF FULL-SCALE SPECIMEN OF LARGE-DIAMETER GLASS FIBER REINFORCED POLYMER(GFRP) BAR%加载速率对大直径GFRP筋足尺试件抗拉性能的影响

    Institute of Scientific and Technical Information of China (English)

    李国维; 葛万明; 倪春; 戴剑; 牟春林

    2012-01-01

    The glass fiber reinforced polymer(GFRP) bar is a new reinforcement material composed of glass fiber and resin, and has good application prospects. The GFRP bar has the properties of anisotropy. Its horizontal compressive strength far less than axial tensile strength; and it has remarkable size effect. Therefore, the strength index testing of GFRP is more complex than that of steel. The end anchorage problem of large-diameter full-scale GFRP test specimen is solved by laboratory test. Through the tensile test of full-scale specimen of large-diameter GFRP in the tensile testing machine, the variation laws of the basic mechanical properties of large-diameter glass fiber bar, such as tensile strength, tensile elastic modulus and elongation ratio, are studied under different loading rates. In addition, the failure mechanisms between the GFRP bar and steel bar are compared. The experimental results demonstrate that, with increase of loading rate, the tensile strength and elongation ratio of GFRP bar increase significantly, while the elastic modulus remains roughly constant; the mechanical characteristics and failure modes are determined by the materials' composition and structure.%玻璃纤维增强聚合物(GFRP)筋是一种由玻璃纤维与树脂复合而成的新型加固材料,具有良好的应用前景.GFRP筋为非均质各向异性材料,横向抗压强度远小于轴向抗拉强度,具有显著的尺寸效应,因此,GFRP筋强度指标的测试比钢筋材料更复杂.本文试验解决大直径GFRP筋足尺试件的端部锚固问题.通过在拉力试验机上进行大直径GFRP筋足尺试件的抗拉破坏性试验,研究不同加载速率下大直径GFRP筋的抗拉强度、拉伸弹性模量、延伸率等基本力学指标的变化规律,并对比分析GFRP筋与钢筋的受力破坏机制.试验结果表明,随着加载速率的增大,大直径GFRP筋的抗拉强度、延伸率明显增大,拉伸模量的变化幅度较小,基本保持恒定;并分

  10. Monotonic and Cyclic Bond Behavior of Deformed CFRP Bars in High Strength Concrete

    OpenAIRE

    2016-01-01

    Composite reinforcing bars (rebars) that are used in concrete members with high performance (strength and durability) properties could have beneficial effects on the behavior of these members. This is especially vital when a building is constructed in an aggressive environment, for instance a corrosive environment. Although tension capacity/weight (or volume) ratios in composite rebars (carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP), etc.) are very high when com...

  11. SABIC Innovative Plastics: Be the World Best Plastic Resin Manufacturer

    Institute of Scientific and Technical Information of China (English)

    Jenny Du

    2007-01-01

    @@ "SABIC Innovative Plastics is a global supplier of plastic resins, manufacturing and compounding polycarbonate, ABS, SAN, ASA, PPE, PC/ABS, PBT and PEI resins, as well as the LNP* line of high performance specialty compounds," said Hiroshi Yoshida, the Global Market Director for Electronics of SABIC Innovative Plastics based in Tokyo at the press conference held by SABIC Innovative Plastics, November 8th 2007, Shanghai.

  12. 洞内始发盾构区间工程玻璃纤维筋施工技术%Origin of Shield Interval Engineering Construction Technology of Glass Fiber Rebar in Tunnel

    Institute of Scientific and Technical Information of China (English)

    刘小东

    2015-01-01

    Departure and reception of shield is a key link in the construction process of shield tunnel.Dangers such as the formation of soil landslide,surface subsidence,are prone to appear during the departure and reception of shield.With high tensile strength and elastic modulus of concrete,corrosion resistant,easy to cutting and other characteristics,glass fiber re-bar is used to replace the reinforcing bar of initial supporting structure,the tunnel initial supporting structure can be directly cut during the departure and reception of shield,it can not only reduce the shield tunnel accidents,but also can improve the construction efficiency and save the project cost.Based on the interval project of South Ring Road to central business district of Changchun Subway Line 1,the material properties and construction application of glass fiber rebar are intro-duced,which can provide a basis for similar engineering.%盾构进出洞为盾构隧道施工过程中的关键环节。盾构进出洞时易出现地层土体塌方、地表下沉等险情。玻璃纤维筋具有抗拉强度高、与混凝土弹模接近、耐腐蚀、易于切割等特点,用它替代初支结构中的钢筋,盾构机进出洞时可直接切割隧道初支结构,既能减少盾构进出洞事故,同时还能提高施工效率,节省工程造价。文章以长春地铁1号线南环路站~中央商务区站区间工程为依托,介绍玻璃纤维筋的材料特性及施工应用,为类似工程提供依据。

  13. 沙特波斯湾沿海混凝土结构阴极保护电流密度研究%Study on Cathodic Protection Current Density on Rebar in Onshore Concrete Structure of Persian Gulf Saudi Arabia

    Institute of Scientific and Technical Information of China (English)

    方达经; 黄俊; 王亚平; 杨淼

    2012-01-01

    钢筋的腐蚀对钢筋混凝土结构的使用寿命影响极大,外加电流阴极保护系统能较好地控制钢筋锈蚀,尤其适用于沿海地区受氯盐侵蚀所引起的钢筋腐蚀,本工作重点介绍了在沙特波斯湾沿海一座混凝土结构中所采用的外加电流阴极保护情况,以位于取水口和排水口的阴极保护分区为研究对象,在工场现场对保护电流进行了研究,并对相关的技术参数进行了分析。结果显示,在中东严酷海洋腐蚀环境中的钢筋?昆凝土结构,外加电流阴极保护系统给混凝土结构提供相对于钢筋表面电流密度大小为5mA/m2的保护最为合适。%Corrosion of rebar in concrete structure affect its service life greatly, by the impressed current cathodic protection (ICCP) system can solve this problem, especially for the reinforced concrete corrosion caused by chloride ion in coastal areas. The 1CCP system which installed in a concrete structure of the coast of Persian Gulf Saudi Arabia was introduced, and the protection current density was studied. The results showed that in the severe corrosive environment such as the coast areas of Middle East, a current density of 5 mA/m2 was suggested to provide protection for the rebar in concrete structures by the ICCP system

  14. Preserving in Plastic.

    Science.gov (United States)

    Wahla, James

    1985-01-01

    Outlines steps for casting insects in permanent molds prepared from commercially available liquid plastic. Also describes dry mountings in glass, acrylic, and petri dishes. The rationale for specimen use, hints for producing quality results, purchasing information, and safety precautions are considered. (DH)

  15. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of acti

  16. Discrete dislocation plasticity

    NARCIS (Netherlands)

    van der Giessen, E.; Finel, A; Maziere, D; Veron, M

    2003-01-01

    Conventional continuum mechanics models of inelastic deformation processes axe size scale independent. In contrast, there is considerable experimental evidence that plastic flow in crystalline materials is size dependent over length scales of the order of tens of microns and smaller. At present ther

  17. Progress in neural plasticity

    Institute of Scientific and Technical Information of China (English)

    POO; Mu-Ming

    2010-01-01

    One of the properties of the nervous system is the use-dependent plasticity of neural circuits.The structure and function of neural circuits are susceptible to changes induced by prior neuronal activity,as reflected by short-and long-term modifications of synaptic efficacy and neuronal excitability.Regarded as the most attractive cellular mechanism underlying higher cognitive functions such as learning and memory,activity-dependent synaptic plasticity has been in the spotlight of modern neuroscience since 1973 when activity-induced long-term potentiation(LTP) of hippocampal synapses was first discovered.Over the last 10 years,Chinese neuroscientists have made notable contributions to the study of the cellular and molecular mechanisms of synaptic plasticity,as well as of the plasticity beyond synapses,including activity-dependent changes in intrinsic neuronal excitability,dendritic integration functions,neuron-glia signaling,and neural network activity.This work highlight some of these significant findings.

  18. New plastic recycling technology

    Science.gov (United States)

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy de...

  19. Persisting Plastic Addiction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The policy on curbing plastic shopping bag use implemented three years ago has produced mixed results In a bustling farmers’market tucked in a narrow street in Xisanqi residential community in north Beijing,stalls selling vegetables,fruits and other foods line the sidewalk.

  20. Energy-related application of composite material. Carbon fiber reinforced plastics (CFRP); Enerugi kanren yoto to CFRP

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, T. [Toray Industries, Tokyo (Japan)

    2000-01-15

    Carbon fiber reinforced plastics (CFRP) with advantages such as high strength, high relative elastic modulus, high chemical stability, and excellent thermal/electric properties, is widely used in aviation/space, sports, and industries. This paper takes up CNG tank, flywheel, and windmill blade, as examples of energy-related application development. For the purpose of weight reduction of CNG car, big three car manufacturers of the U.S. and Honda adopted CNG tank. Flywheel with CFRP rotor can store 3.8 times energy compared with that of steel. Windmill blade used in windmill power generation is mostly made of 3 blades and presently GFRP is used, but CFRP will become a main stream when the windmill is scaled up. In the future, it is necessary to reduce the cost of carbon fiber and its treatment process, as well as to solve the targets such as standardization of design, recognition by users, and verification in environmental use, and to develop further applications. (NEDO)

  1. A QSPR for the plasticization efficiency of polyvinylchloride plasticizers.

    Science.gov (United States)

    Chandola, Mridula; Marathe, Sujata

    2008-01-01

    A simple quantitative structure property relationship (QSPR) for correlating the plasticization efficiency of 25 polyvinylchloride (PVC) plasticizers was obtained using molecular modeling. The plasticizers studied were-aromatic esters (phthalate, terephthalate, benzoate, trimellitate), aliphatic esters (adipate, sebacate, azelate), citrates and a phosphate. The low temperature flex point, Tf, of plasticized polyvinylchloride resins was considered as an indicator of plasticization efficiency. Initially, we attempted to predict plasticization efficiency of PVC plasticizers from physical and structural descriptors derived from the plasticizer molecule alone. However, the correlation of these descriptors with Tf was not very good with R=0.78 and r2=0.613. This implied that the selected descriptors were unable to predict all the interactions between PVC and plasticizer. Hence, to account for these interactions, a model containing two polyvinylchloride (PVC) chain segments along with a plasticizer molecule in a simulation box was constructed, using molecular mechanics. A good QSPR equation correlating physical and structural descriptors derived from the model to Tf of the plasticized resins was obtained with R=0.954 and r2=0.909.

  2. Sustainable reverse logistics for household plastic waste

    OpenAIRE

    Bing, X

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than that of virgin plastics. Therefore, it is environmentally and economically beneficial to improve the plastic recycling system to ensure more plastic waste from households is properly collected and pr...

  3. Plasticity modeling & computation

    CERN Document Server

    Borja, Ronaldo I

    2013-01-01

    There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.

  4. Low temperature creep plasticity

    Directory of Open Access Journals (Sweden)

    Michael E. Kassner

    2014-07-01

    Full Text Available The creep behavior of crystalline materials at low temperatures (T < 0.3Tm is discussed. In particular, the phenomenological relationships that describe primary creep are reviewed and analyzed. A discussion of the activation energy for creep at T < 0.3Tm is discussed in terms of the context of higher temperature activation energy. The basic mechanism(s of low temperature creep plasticity are discussed, as well.

  5. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Microelectronics plastic molded packaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R. [Ktech Corp., Albuquerque, NM (United States); Palmer, D.W.; Peterson, D.W. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  7. Interfacial interactions between plastic particles in plastics flotation.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation.

  8. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints

    Directory of Open Access Journals (Sweden)

    Natascha Z. Borba

    2017-02-01

    Full Text Available In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet and glass-fiber-reinforced polyester (GF-P friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s. A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α′ martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined.

  9. Use of recycled plastics in wood plastic composites - a review.

    Science.gov (United States)

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs.

  10. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  11. Plastic Surgery and Suicide: A Clinical Guide for Plastic Surgeons.

    Science.gov (United States)

    Reddy, Vikram; Coffey, M Justin

    2016-08-01

    Several studies have identified an increased risk of suicide among patient populations which a plastic surgeon may have a high risk of encountering: women undergoing breast augmentation, cosmetic surgery patients, and breast cancer patients. No formal guidelines exist to assist a plastic surgeon when faced with such a patient, and not every plastic surgery team has mental health clinicians that are readily accessible for consultation or referral. The goal of this clinical guide is to offer plastic surgeons a set of practical approaches to manage potentially suicidal patients. In addition, the authors review a screening tool, which can assist surgeons when encountering high-risk patients.

  12. Tree plastic bark

    OpenAIRE

    Casado Arroyo, Carlos

    2016-01-01

    “Tree plastic bark" consiste en la realización de una intervención artística en un entorno natural concreto, generando de esta manera un Site Specific(1). Como hace alusión Rosalind Krauss en sus reflexiones “La escultura en el campo expandido”(2), comenta que su origen esta claramente ligado con el concepto de monumentalidad. La escultura es un monumento, se crea para conmemorar algún hecho o personaje relevante y está realizada para una ubicación concreta. La investigación parte de la id...

  13. Fabrication of plastic biochips

    Energy Technology Data Exchange (ETDEWEB)

    Saaem, Ishtiaq; Ma, Kuo-Sheng; Alam, S. Munir; Tian Jingdong [Department of Biomedical Engineering and Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708 (United States); Department of Medicine and Human Vaccine Institute, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering and Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708 (United States)

    2010-07-15

    A versatile surface functionalization procedure based on rf magnetron sputtering of silica was performed on poly(methylmethacrylate), polycarbonate, polypropylene, and cyclic olefin copolymers (Topas 6015). The hybrid thermoplastic surfaces were characterized by x-ray photoelectron spectrometer analysis and contact angle measurements. The authors then used these hybrid materials to perform a sandwich assay targeting an HIV-1 antibody using fluorescent detection and biotinylated peptides immobilized using the bioaffinity of biotin-neutravidin. They found a limit of detection similar to arrays on glass surfaces and believed that this plastic biochip platform may be used for the development of disposable immunosensing and diagnostic applications.

  14. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  15. The commercialization of plastic surgery.

    Science.gov (United States)

    Swanson, Eric

    2013-09-01

    The last decade has brought a major challenge to the traditional practice of plastic surgery from corporations that treat plastic surgery as a commercial product and market directly to the public. This corporate medicine model may include promotion of a trademarked procedure or device, national advertising that promises stunning results, sales consultants, and claims of innovation, superiority, and improved safety. This article explores the ethics of this business practice and whether corporate medicine is a desirable model for patients and plastic surgeons.

  16. Multiscale modeling and synaptic plasticity.

    Science.gov (United States)

    Bhalla, Upinder S

    2014-01-01

    Synaptic plasticity is a major convergence point for theory and computation, and the process of plasticity engages physiology, cell, and molecular biology. In its many manifestations, plasticity is at the hub of basic neuroscience questions about memory and development, as well as more medically themed questions of neural damage and recovery. As an important cellular locus of memory, synaptic plasticity has received a huge amount of experimental and theoretical attention. If computational models have tended to pick specific aspects of plasticity, such as STDP, and reduce them to an equation, some experimental studies are equally guilty of oversimplification each time they identify a new molecule and declare it to be the last word in plasticity and learning. Multiscale modeling begins with the acknowledgment that synaptic function spans many levels of signaling, and these are so tightly coupled that we risk losing essential features of plasticity if we focus exclusively on any one level. Despite the technical challenges and gaps in data for model specification, an increasing number of multiscale modeling studies have taken on key questions in plasticity. These have provided new insights, but importantly, they have opened new avenues for questioning. This review discusses a wide range of multiscale models in plasticity, including their technical landscape and their implications.

  17. Plastics recycling: challenges and opportunities

    National Research Council Canada - National Science Library

    Jefferson Hopewell; Robert Dvorak; Edward Kosior

    2009-01-01

    .... Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public...

  18. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2010-07-15

    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  19. [Erythropoietin in plastic surgery].

    Science.gov (United States)

    Günter, C I; Rezaeian, F; Harder, Y; Lohmeyer, J A; Egert, S; Bader, A; Schilling, A F; Machens, H-G

    2013-04-01

    EPO is an autologous hormone, which is known to regulate erythropoiesis. For 30 years it has been used for the therapy of diverse forms of anaemia, such as renal anaemia, tumour-related anaemias, etc. Meanwhile, a multitude of scientific publications were able to demonstrate its pro-regenerative effects after trauma. These include short-term effects such as the inhibition of the "primary injury response" or apoptosis, and mid- and long-term effects for example the stimulation of stem cell recruitment, growth factor production, angiogenesis and re-epithelialisation. Known adverse reactions are increases of thromboembolic events and blood pressure, as well as a higher mortality in patients with tumour anaemias treated with EPO. Scientific investigations of EPO in the field of plastic surgery included: free and local flaps, nerve regeneration, wound healing enhancement after dermal thermal injuries and in chronic wounds.Acute evidence for the clinical use of EPO in the field of plastic surgery is still not satisfactory, due to the insufficient number of Good Clinical Practice (GCP)-conform clinical trials. Thus, the initiation of more scientifically sound trials is indicated.

  20. Optogenetics and synaptic plasticity.

    Science.gov (United States)

    Xie, Yu-feng; Jackson, Michael F; Macdonald, John F

    2013-11-01

    The intricate and complex interaction between different populations of neurons in the brain has imposed limits on our ability to gain detailed understanding of synaptic transmission and its integration when employing classical electrophysiological approaches. Indeed, electrical field stimulation delivered via traditional microelectrodes does not permit the targeted, precise and selective control of neuronal activity amongst a varied population of neurons and their inputs (eg, cholinergic, dopaminergic or glutamatergic neurons). Recently established optogenetic techniques overcome these limitations allowing precise control of the target neuron populations, which is essential for the elucidation of the neural substrates underlying complex animal behaviors. Indeed, by introducing light-activated channels (ie, microbial opsin genes) into specific neuronal populations, optogenetics enables non-invasive optical control of specific neurons with milliseconds precision. These approaches can readily be applied to freely behaving live animals. Recently there is increased interests in utilizing optogenetics tools to understand synaptic plasticity and learning/memory. Here, we summarize recent progress in applying optogenetics in in the study of synaptic plasticity.

  1. Production Practice of 400 MPa Grade Hot Rolled Carbon Constructional Steel Rebar Coil%400 MPa级热轧碳素结构钢筋盘条的生产实践

    Institute of Scientific and Technical Information of China (English)

    孙万信; 左茂方; 任丽; 于荣; 何路

    2012-01-01

      张钢采用控轧控冷技术生产400 MPa级热轧碳素结构钢筋盘条,控制轧制采用二阶段变形制度;轧制中间阶段的控制冷却采用设定精轧入口温度和减定径入口温度,轧后一次控制冷却采用设定吐丝温度,二次控制冷却采用开启前6台风机,开口度为85%,三次冷却采用空冷.产品组织为铁素体+珠光体,晶粒细小均匀,屈服强度448.6 MPa,抗拉强度650.8 MPa,伸长率29.5%,完全满足标准要求.%  400 MPa grade hot rolled carbon constructional steel rebar coil is produced by controlled rolling and controlled cooling technology in Zhangdian Steel and the controlled rolling is adopted two-stage deformation system. The controlled cooling in the intermediate stage of rolling makes use of setting finishing rolling entrance temperature and the reducing sizing entrance temperature, the first controlled cooling after rolling makes use of setting spiting wire temperature, second controlled cooling makes use of 6 first blast engines with 85% opening degree, third controlled cooling makes use of air. The microstructure of product is ferrite and pearlite with tiny and even crystal grain. The yield strength is 448.6 MPa, the tensile strength is 650.8 MPa and the elongation is 29.5%, fully satisfying the requirement of the national standard.

  2. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than th

  3. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than

  4. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than th

  5. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  6. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  7. Plastic in North Sea Fish

    NARCIS (Netherlands)

    Foekema, E.M.; Gruijter, de C.; Mergia, M.T.; Franeker, van J.A.; Murk, A.J.; Koelmans, A.A.

    2013-01-01

    To quantify the occurrence of ingested plastic in fish species caught at different geographical positions in the North Sea, and to test whether the fish condition is affected by ingestion of plastics, 1203 individual fish of seven common North Sea species were investigated: herring, gray gurnard, wh

  8. The scope of plastic surgery

    African Journals Online (AJOL)

    2013-08-03

    Aug 3, 2013 ... areas of surgery (especially general surgery), plastic surgeons are arguably the .... Who do you feel are experts in laparoscopic surgery? e (general surgeons) a. Maxillofacial .... of pressure sore. ORIF = open reduction internal fixation. ... Plastic versus cosmetic surgery: What's the difference? Plast Reconstr.

  9. New Life for Old Plastics

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Recycling joint venture utilizes innovative technology to reuse plastics Recycling,despite its green connotations,can be a messy business.In China,more than 400,000 companies are engaged in plastic recycling,but 70 percent of them are family enterprises,

  10. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...

  11. Architecture of European Plastic Surgery

    NARCIS (Netherlands)

    Nicolai, J. -P. A.; Banic, A.; Molea, G.; Mazzola, R.; Poell, J. G.

    2006-01-01

    The architecture of European Plastic Surgery was published in 1996 [Nicolai JPA, Scuderi N. Plastic surgical Europe in an organogram. Eur J Plast Surg 1996; 19: 253-6.] It is the objective of this paper to update information of that article. Continuing medical education (CME), science, training,

  12. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  13. Universal features of amorphous plasticity

    Science.gov (United States)

    Budrikis, Zoe; Castellanos, David Fernandez; Sandfeld, Stefan; Zaiser, Michael; Zapperi, Stefano

    2017-07-01

    Plastic yielding of amorphous solids occurs by power-law distributed deformation avalanches whose universality is still debated. Experiments and molecular dynamics simulations are hampered by limited statistical samples, and although existing stochastic models give precise exponents, they require strong assumptions about fixed deformation directions, at odds with the statistical isotropy of amorphous materials. Here, we introduce a fully tensorial, stochastic mesoscale model for amorphous plasticity that links the statistical physics of plastic yielding to engineering mechanics. It captures the complex shear patterning observed for a wide variety of deformation modes, as well as the avalanche dynamics of plastic flow. Avalanches are described by universal size exponents and scaling functions, avalanche shapes, and local stability distributions, independent of system dimensionality, boundary and loading conditions, and stress state. Our predictions consistently differ from those of mean-field depinning models, providing evidence that plastic yielding is a distinct type of critical phenomenon.

  14. Phenotypic Plasticity and Species Coexistence.

    Science.gov (United States)

    Turcotte, Martin M; Levine, Jonathan M

    2016-10-01

    Ecologists are increasingly interested in predicting how intraspecific variation and changing trait values impact species interactions and community composition. For many traits, much of this variation is caused by phenotypic plasticity, and thus the impact of plasticity on species coexistence deserves robust quantification. Partly due to a lack of sound theoretical expectations, empirical studies make contradictory claims regarding plasticity effects on coexistence. Our critical review of this literature, framed in modern coexistence theory, reveals that plasticity affects species interactions in ways that could impact stabilizing niche differences and competitive asymmetries. However, almost no study integrates these measures to quantify the net effect of plasticity on species coexistence. To address this challenge, we outline novel empirical approaches grounded in modern theory.

  15. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  16. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  17. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  18. Biodegradability of degradable plastic waste.

    Science.gov (United States)

    Agamuthu, P; Faizura, Putri Nadzrul

    2005-04-01

    Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.

  19. Plasticity and beyond microstructures, crystal-plasticity and phase transitions

    CERN Document Server

    Hackl, Klaus

    2014-01-01

    The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

  20. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review.

    Science.gov (United States)

    Xanthos, Dirk; Walker, Tony R

    2017-02-18

    Marine plastic pollution has been a growing concern for decades. Single-use plastics (plastic bags and microbeads) are a significant source of this pollution. Although research outlining environmental, social, and economic impacts of marine plastic pollution is growing, few studies have examined policy and legislative tools to reduce plastic pollution, particularly single-use plastics (plastic bags and microbeads). This paper reviews current international market-based strategies and policies to reduce plastic bags and microbeads. While policies to reduce microbeads began in 2014, interventions for plastic bags began much earlier in 1991. However, few studies have documented or measured the effectiveness of these reduction strategies. Recommendations to further reduce single-use plastic marine pollution include: (i) research to evaluate effectiveness of bans and levies to ensure policies are having positive impacts on marine environments; and (ii) education and outreach to reduce consumption of plastic bags and microbeads at source.

  1. Phenotypic plasticity, costs of phenotypes, and costs of plasticity

    DEFF Research Database (Denmark)

    Callahan, Hilary S; Maughan, Heather; Steiner, Uli

    2008-01-01

    Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns...... of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both...... types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic...

  2. Biodegradable plastics from renewable sources.

    Science.gov (United States)

    Flieger, M; Kantorová, M; Prell, A; Rezanka, T; Votruba, J

    2003-01-01

    Plastic waste disposal is a huge ecotechnological problem and one of the approaches to solving this problem is the development of biodegradable plastics. This review summarizes data on their use, biodegradability, commercial reliability and production from renewable resources. Some commercially successful biodegradable plastics are based on chemical synthesis (i.e. polyglycolic acid, polylactic acid, polycaprolactone, and polyvinyl alcohol). Others are products of microbial fermentations (i.e. polyesters and neutral polysaccharides) or are prepared from chemically modified natural products (e.g., starch, cellulose, chitin or soy protein).

  3. Plastics recycling: challenges and opportunities

    OpenAIRE

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to pro...

  4. Circadian Regulation of Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Marcos G. Frank

    2016-07-01

    Full Text Available Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity.

  5. PLASMA GASIFICATION OF WASTE PLASTICS

    Directory of Open Access Journals (Sweden)

    Tadeusz Mączka

    2013-01-01

    Full Text Available The article presents the process of obtaining liquid fuels and fuel gas in the process of plasma processing of organic materials, including waste plastics. The concept of plasma pyrolysis of plastics was presented and on its basis a prototype installation was developed. The article describes a general rule of operating the installation and its elements in the process and basic operation parameters determined during its start-up. Initial results of processing plastics and the directions further investigations are also discussed. The effect of the research is to be the design of effective technology of obtaining fuels from gasification/pyrolysis of organic waste and biomass.

  6. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY ON TEMPERATURE FIELD DURING CHEMICAL REAGENT COOLING PROCESS OF HOT ROLLED REBAR%热轧螺纹钢化学剂冷却过程温度场的值模拟及实验研究

    Institute of Scientific and Technical Information of China (English)

    魏洁; 董俊华; 柯伟

    2012-01-01

    本文对化学剂冷却热轧螺纹钢在两段式冷却(前段化学剂FM冷却+后段水冷)过程中的温度场进行了有限元模拟,并在实验室对前段化学剂FM冷却生成的氧化皮的耐蚀性能进行了评价.采用工业现场一段式水冷的工艺参数,模拟了一段式水冷的温度场.对比一段式水冷的温度场,分析了两段式冷却的工艺参数对冷却过程温度场的影响.结果表明,在前段化学剂FM冷却时,采用较小的对流换热系数,有利于提高前段化学剂冷却时的氧化温度,从而改善氧化皮的质量;在后段水冷时,在保持原一段水冷的对流换热系数的情况下,两段式冷却水冷段的冷却曲线与一段式水冷非常接近,能够满足Ⅲ级热轧螺纹钢的力学性能的要求.采用有限元模拟优化的工艺参数,在实验室模拟了前段化学剂FM冷却过程,获得了致密的氧化皮,其耐蚀性能显著优于水冷钢筋,说明采用前段化学剂冷却来改善水冷钢筋的耐蚀性能是可行的.%The corrosion resistance of water cooled rebar is improved by applying a chemical reagent cooling process on the basis of maintaining the high mechanical property. To provide the reference basis for the on-site application of chemical reagent cooling process, the temperature field of the two-stage cooling process (first stage of chemical reagent of FM cooling and second stage of water cooling) of rebar produced by chemical cooling is simulated using the finite element method. Furthermore, the corrosion resistance of scale formed during the first stage of chemical reagent cooling was evaluated in laboratory. Applying the processing parameters of water cooling in steel mill, the temperature field of one-stage cooling was simulated. Compared with the temperature field of the one-stage cooling, the influence of processing parameters on the temperature field during two-stage cooling is analyzed. The results showed that the smaller heat transfer

  7. Plasticity and creep of metals

    CERN Document Server

    Rusinko, Andrew

    2011-01-01

    Here is a systematic presentation of the postulates, theorems and principles of mathematical theories of plasticity and creep in metals, and their applications. Special attention is paid to analysis of the advantages and shortcomings of the classical theories.

  8. American Society of Plastic Surgeons

    Science.gov (United States)

    ... PRS PRS GO PSN PSEN GRAFT Contact Us Cosmetic Surgery New procedures and advanced technologies offer plastic surgery ... David Berman MD 14 Pidgeon Hill Drive Berman Cosmetic Surgery & S... Sterling, VA 20165 Website Franklin Richards MD Suite ...

  9. Plastic deformation of nanocrystalline nickel

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline (NC) Ni subject to cold rolling at liquid nitrogen temperature. The activation of grain-boundary-mediated-plasticity is evidenced in NC-Ni, including twinning and formation of stacking fault via partial dislocation slips from the grain boundary. The formation and storage of 60? full dislocations are observed inside NC-grains. The grain/twin boundaries act as the barriers of dislocation slips, leading to dislocation pile-up, severe lattice distortion, and formation of sub-grain boundary. The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation. The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.

  10. Plastic deformation of nanocrystalline nickel

    Institute of Scientific and Technical Information of China (English)

    WU XiaoLei

    2009-01-01

    A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline(NC)Ni subject to cold rolling at liquid nitrogen temperature.The acti vation of grain-boundary-mediated-plasticity is evidenced in NC-Ni,including twinning and formation of stacking fault via partial dislocation slips from the grain boundary.The formation and storage of 60° full dislocations are observed inside NC-grains.The grain/twin boundaries act as the barriers of dislocation slips,leading to dislocation pile-up,severe lattice distortion,and formation of sub-grain boundary.The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation.The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.

  11. Exceptional plasticity of silicon nanobridges

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Tadashi; Sato, Takaaki; Toshiyoshi, Hiroshi; Collard, Dominique; Fujita, Hiroyuki [University of Tokyo, Institute of Industrial Science, 4-6-1 Komaba Meguro, Tokyo 153-8505 (Japan); Cleri, Fabrizio [Institut d' Electronique Microelectronique et Nanotechnologie (CNRS UMR 8520), Universite de Lille I, Avenue Poincare BP60069 59652 Villeneuve d' Ascq (France); Kakushima, Kuniyuki [Tokyo Institute of Technology, 4259, Nagatsuda, Midori, Yokohama, Kanagawa 226-8502 (Japan); Mita, Makoto [Department of Spacecraft Engineering, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Miyata, Masaki; Itamura, Noriaki; Sasaki, Naruo [Department of Materials and Life Sciences, Seikei University, 3-3-1, Kitamachi, Kichijoji, Musashino, Tokyo 180-8633 (Japan); Endo, Junji, E-mail: tadashii@iis.u-tokyo.ac.jp [FK Optical laboratory, 1-13-4 Nakano Niiza Saitama, 352-0005 (Japan)

    2011-09-02

    The plasticity of covalently bonded materials is a subject at the forefront of materials science, bearing on a wide range of technological and fundamental aspects. However, covalent materials fracture in a brittle manner when the deformation exceeds just a few per cent. It is predicted that a macroscopically brittle material like silicon can show nanoscale plasticity. Here we report the exceptional plasticity observed in silicon nanocontacts ('nanobridges') at room temperature using a special experimental setup combining a transmission electron microscope and a microelectromechanical system. When accounting for surface diffusion, we succeeded in elongating the nanocontact into a wire-like structure, with a fivefold increase in volume, up to more than twenty times the original length. Such a large plasticity was caused by the stress-assisted diffusion and the sliding of the intergranular, amorphous-like material among the nanocrystals.

  12. Globally Oriented Chinese Plastics Industry

    Institute of Scientific and Technical Information of China (English)

    Liao Zhengpin

    2004-01-01

    @@ Through continued endeavor and persistent opening to the whole world the Chinese plastics industry has been developed into a comprehensive industrial system that forms the basic material industries side by side with the steel, cement and the timber industry.

  13. Computational materials science: Nanoscale plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2002-01-01

    How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour.......How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour....

  14. Sorting Techniques for Plastics Recycling

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents the basic principles of three different types of separating methods and a general guideline for choosing the most effective method for sorting plastic mixtures. It also presents the results of the tests carried out for separation of PVC, ABS and PET from different kinds of plastic mixtures in order to improve the grade of the raw input used in mechanical or feedstock recycling.

  15. [Modern neuroimaging of brain plasticity].

    Science.gov (United States)

    Kasprian, G; Seidel, S

    2010-02-01

    Modern neuroimaging methods offer new insights into the plasticity of the human brain. As the techniques of functional MRI and diffusion tensor imaging are increasingly being applied in a clinical setting, the examiner is now frequently confronted with the interpretation of imaging findings related to regenerative processes in response to lesions of the central and also of the peripheral nervous system. In this article individual results of modern neuroimaging studies are discussed in the context of structural and functional plasticity of the CNS.

  16. Plastic bronchitis: a management challenge.

    Science.gov (United States)

    Eberlein, Michael H; Drummond, Michael B; Haponik, Edward F

    2008-02-01

    Plastic bronchitis is an uncommon and underdiagnosed entity, characterized by recurrent expectoration of large, branching bronchial casts. We describe a 39-year-woman with no prior lung disease who had episodic wheezing, severe dyspnea with expectoration of large and thick secretions, branching in appearance, which she described as resembling squid. A comprehensive evaluation revealed no specific cause and a diagnosis of idiopathic plastic bronchitis was made. In plastic bronchitis the bronchial casts may vary in size from small segmental casts of a bronchus to casts filling the airways of an entire lung. Plastic bronchitis can therefore present as an acute life-threatening emergency if mechanical obstruction of major airways occurs. The casts are differentiated into type I, inflammatory casts, or type II, acellular casts. The type I inflammatory casts are often associated with bronchial disease and often have an acute presentation. The acellular type of cast production is often chronic or recurrent. Numerous systemic illnesses are associated with plastic bronchitis, but often, as in our patient, no underlying cause can be identified. The treatment of plastic bronchitis includes acute therapy to aid the removal and expectoration of casts, and specific short- or long-term treatments attempting to address the underlying hypersecretory process. The therapeutic options are supported only by anecdotal evidence based on case reports as the rarity and heterogeneity of plastic bronchitis confounds systematic investigations of its treatment. Improved understanding of the regulation of mucus production may allow for new treatment options in plastic bronchitis and other chronic lung diseases characterized by hypersecretion of mucus.

  17. ARE PLASTIC GROCERY BAGS SACKING THE ENVIRONMENT?

    OpenAIRE

    Mangal Gogte

    2009-01-01

    This paper is oriented on analysis impacts of plastic bags on environment. In this paper is analyzed did plastic bags are so harmful, and what are the main ingredients of it. One part of this paper is oriented on effects of plastic bags and management of their usage. There is also made comparative analysis between impacts of plastic and paper bags on environment.

  18. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Ditlevsen, Ove Dalager

    1996-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  19. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-Thomsen, S.; Ditlevsen, Ove Dalager

    1999-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  20. 49 CFR 192.281 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  1. 49 CFR 192.59 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  2. The Story of the Plastics Industry.

    Science.gov (United States)

    Masson, Don, Ed.

    This is an illustrated informative booklet, designed to serve members of the Society of the Plastics Industry, Inc., and the plastics industry as a whole. It provides basic information about the industry's history and growth, plastics raw materials, typical uses of plastics, properties, and methods of processing and fabricating. (Author/DS)

  3. Deformation mechanisms of plasticized starch materials.

    Science.gov (United States)

    Mikus, P-Y; Alix, S; Soulestin, J; Lacrampe, M F; Krawczak, P; Coqueret, X; Dole, P

    2014-12-19

    The aim of this paper is to understand the influence of plasticizer and plasticizer amount on the mechanical and deformation behaviors of plasticized starch. Glycerol, sorbitol and mannitol have been used as plasticizers. After extrusion of the various samples, dynamic mechanical analyses and video-controlled tensile tests have been performed. It was found that the nature of plasticizer, its amount as well as the aging of the material has an impact on the involved deformation mechanism. The variations of volume deformation could be explained by an antiplasticization effect (low plasticizer amount), a phase-separation phenomenon (excess of plasticizer) and/or by the retrogradation of starch.

  4. Evolution of phenotypic plasticity in colonizing species.

    Science.gov (United States)

    Lande, Russell

    2015-05-01

    I elaborate an hypothesis to explain inconsistent empirical findings comparing phenotypic plasticity in colonizing populations or species with plasticity from their native or ancestral range. Quantitative genetic theory on the evolution of plasticity reveals that colonization of a novel environment can cause a transient increase in plasticity: a rapid initial increase in plasticity accelerates evolution of a new optimal phenotype, followed by slow genetic assimilation of the new phenotype and reduction of plasticity. An association of colonization with increased plasticity depends on the difference in the optimal phenotype between ancestral and colonized environments, the difference in mean, variance and predictability of the environment, the cost of plasticity, and the time elapsed since colonization. The relative importance of these parameters depends on whether a phenotypic character develops by one-shot plasticity to a constant adult phenotype or by labile plasticity involving continuous and reversible development throughout adult life. © 2014 John Wiley & Sons Ltd.

  5. Smartphones and the plastic surgeon.

    Science.gov (United States)

    Al-Hadithy, Nada; Ghosh, Sudip

    2013-06-01

    Surgical trainees are facing limited training opportunities since the introduction of the European Working Time Directive. Smartphone sales are increasing and have usurped computer sales for the first time. In this context, smartphones are an important portable reference and educational tool, already in the possession of the majority of surgeons in training. Technology in the palm of our hands has led to a revolution of accessible information for the plastic surgery trainee and surgeon. This article reviews the uses of smartphones and applications for plastic surgeons in education, telemedicine and global health. A comprehensive guide to existing and upcoming learning materials and clinical tools for the plastic surgeon is included. E-books, podcasts, educational videos, guidelines, work-based assessment tools and online logbooks are presented. In the limited resource setting of modern clinical practice, savvy plastic surgeons can select technological tools to democratise access to education and best clinical care. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Mechanisms of GABAergic Homeostatic Plasticity

    Directory of Open Access Journals (Sweden)

    Peter Wenner

    2011-01-01

    Full Text Available Homeostatic plasticity ensures that appropriate levels of activity are maintained through compensatory adjustments in synaptic strength and cellular excitability. For instance, excitatory glutamatergic synapses are strengthened following activity blockade and weakened following increases in spiking activity. This form of plasticity has been described in a wide array of networks at several different stages of development, but most work and reviews have focussed on the excitatory inputs of excitatory neurons. Here we review homeostatic plasticity of GABAergic neurons and their synaptic connections. We propose a simplistic model for homeostatic plasticity of GABAergic components of the circuitry (GABAergic synapses onto excitatory neurons, excitatory connections onto GABAergic neurons, cellular excitability of GABAergic neurons: following chronic activity blockade there is a weakening of GABAergic inhibition, and following chronic increases in network activity there is a strengthening of GABAergic inhibition. Previous work on GABAergic homeostatic plasticity supports certain aspects of the model, but it is clear that the model cannot fully account for some results which do not appear to fit any simplistic rule. We consider potential reasons for these discrepancies.

  7. Mitochondria, synaptic plasticity, and schizophrenia.

    Science.gov (United States)

    Ben-Shachar, Dorit; Laifenfeld, Daphna

    2004-01-01

    The conceptualization of schizophrenia as a disorder of connectivity, i.e., of neuronal?synaptic plasticity, suggests abnormal synaptic modeling and neuronal signaling, possibly as a consequence of flawed interactions with the environment, as at least a secondary mechanism underlying the pathophysiology of this disorder. Indeed, deficits in episodic memory and malfunction of hippocampal circuitry, as well as anomalies of axonal sprouting and synapse formation, are all suggestive of diminished neuronal plasticity in schizophrenia. Evidence supports a dysfunction of mitochondria in schizophrenia, including mitochondrial hypoplasia, and a dysfunction of the oxidative phosphorylation system, as well as altered mitochondrial-related gene expression. Mitochondrial dysfunction leads to alterations in ATP production and cytoplasmatic calcium concentrations, as well as reactive oxygen species and nitric oxide production. All of the latter processes have been well established as leading to altered synaptic strength or plasticity. Moreover, mitochondria have been shown to play a role in plasticity of neuronal polarity, and studies in the visual cortex show an association between mitochondria and synaptogenesis. Finally, mitochondrial gene upregulation has been observed following synaptic and neuronal activity. This review proposes that mitochondrial dysfunction in schizophrenia could cause, or arise from, anomalies in processes of plasticity in this disorder.

  8. China Plastics Industry (2011) China Plastics Processing Industry Association

    Institute of Scientific and Technical Information of China (English)

    Li Ying

    2012-01-01

    General situation of China plastics industry in 2011 was reviewed, including the output and export/import of plastics products, synthetic resins,and plastics processing machinery, as well as major economic data, such as the total industrial values, sales and profits of plastics products, etc. Analysis of the market of plastics products in 2011 was made, and the developing trend of China plastics industry in 2012 was proposed.

  9. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  10. Plasticity in glutamatergic NTS neurotransmission.

    Science.gov (United States)

    Kline, David D

    2008-12-10

    Changes in the physiological state of an animal or human can result in alterations in the cardiovascular and respiratory system in order to maintain homeostasis. Accordingly, the cardiovascular and respiratory systems are not static but readily adapt under a variety of circumstances. The same can be said for the brainstem circuits that control these systems. The nucleus tractus solitarius (NTS) is the central integration site of baroreceptor and chemoreceptor sensory afferent fibers. This central nucleus, and in particular the synapse between the sensory afferent and second-order NTS cell, possesses a remarkable degree of plasticity in response to a variety of stimuli, both acute and chronic. This brief review is intended to describe the plasticity observed in the NTS as well as the locus and mechanisms as they are currently understood. The functional consequence of NTS plasticity is also discussed.

  11. Polishing compound for plastic surfaces

    Science.gov (United States)

    Stowell, Michael S.

    1995-01-01

    A polishing compound for plastic surfaces. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS.TM., LEXAN.TM., LUCITE.TM., polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  12. Polishing compound for plastic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stowell, M.S.

    1993-01-01

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains colloidal silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{sup TM}, LEXAN{sup TM}, LUCITE{sup TM}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  13. Ways of Viewing Pictorial Plasticity

    Directory of Open Access Journals (Sweden)

    Maarten W. A. Wijntjes

    2017-03-01

    Full Text Available The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter. By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.

  14. Vascular plasticity in cerebrovascular disorders

    DEFF Research Database (Denmark)

    Edvinsson, Lars I H; Povlsen, Gro Klitgaard

    2011-01-01

    Cerebral ischemia remains a major cause of morbidity and mortality with little advancement in subacute treatment options. This review aims to cover and discuss novel insight obtained during the last decade into plastic changes in the vasoconstrictor receptor profiles of cerebral arteries and micr...

  15. American Society of Plastic Surgeons

    Science.gov (United States)

    ... know the risks and trust a board-certified plastic surgeon to perform your cosmetic or reconstructive surgery. ASPS member surgeons have the training and experience that ... 1300 Chain Bridge Road McLean, VA 22101 (703) 790-5454 Timothy Germain ...

  16. Biobased plastics in a bioeconomy.

    Science.gov (United States)

    Philp, J C; Ritchie, R J; Guy, K

    2013-02-01

    Bioeconomy plans include a biobased industries sector in which some oil-derived plastics and chemicals are replaced by new or equivalent products derived, at least partially, from biomass. Some of these biobased products are here today, but to fulfil their societal potential, greater attention is required to promote awareness, and to improve their market share while making valuable contributions to climate change mitigation.

  17. Field based plastic contamination sensing

    Science.gov (United States)

    The United States has a long-held reputation of being a dependable source of high quality, contaminant-free cotton. Recently, increased incidence of plastic contamination from sources such as shopping bags, vegetable mulch, surface irrigation tubing, and module covers has threatened the reputation o...

  18. Plasticity Theory of Fillet Welds

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    This paper deals with simple methods for calculation of fillet welds based on the theory of plasticity. In developing the solutions the lower-bound theorem is used. The welding material and parts of the base material are subdivided into triangular regions with homogeneous stress fields; thereby...

  19. For the Classroom: "Plastic" Jellyfish.

    Science.gov (United States)

    Current: The Journal of Marine Education, 1989

    1989-01-01

    Describes an activity in which students monitor the plastic waste production in their households, research its effects on freshwater and marine life, and propose ways to lessen the problem. Provides objectives, background information, materials, procedures, extension activities, and an evaluation for students. (Author/RT)

  20. Oxytocin and Maternal Brain Plasticity

    Science.gov (United States)

    Kim, Sohye; Strathearn, Lane

    2016-01-01

    Although dramatic postnatal changes in maternal behavior have long been noted, we are only now beginning to understand the neurobiological mechanisms that support this transition. The present paper synthesizes growing insights from both animal and human research to provide an overview of the plasticity of the mother's brain, with a particular…

  1. Making sense of plastics recycling

    NARCIS (Netherlands)

    Van Bruggen, E.; Koster, R.P.; Rageart, K.; Cardon, L.; Moerman, M.; Blessing, E.

    2012-01-01

    Major benefits of plastics recycling are reduced depletion of non-renewable resources and reduction of world-wide waste. Traditional thermo-mechanical recycling causes reduction of mechanical properties for most thermoplastics. Down-cycled materials may nevertheless be suited for certain useful appl

  2. Plastic Surgeons Often Miss Patients' Mental Disorders

    Science.gov (United States)

    ... More Health News on: Mental Disorders Plastic and Cosmetic Surgery Recent Health News Related MedlinePlus Health Topics Mental Disorders Plastic and Cosmetic Surgery About MedlinePlus Site Map FAQs Customer Support Get ...

  3. Lecture notes on Elasto-plastic materials

    DEFF Research Database (Denmark)

    Hededal, Ole

    2007-01-01

    Brief introduction to material modelling within the framework of rate independent elasto-plastic constitutive modelling......Brief introduction to material modelling within the framework of rate independent elasto-plastic constitutive modelling...

  4. Phenotypic plasticity with instantaneous but delayed switches

    NARCIS (Netherlands)

    Utz, Margarete; Jeschke, Jonathan M.; Loeschcke, Volker; Gabriel, Wilfried

    2014-01-01

    Phenotypic plasticity is a widespread phenomenon, allowing organisms to better adapt to changing environments. Most empirical and theoretical studies are restricted to irreversible plasticity where the expression of a specific phenotype is mostly determined during development. However, reversible pl

  5. Interpretation on Recycling Plastics from Shredder Residue

    Science.gov (United States)

    EPA is considering an interpretation of its regulations that would generally allow for recycling of plastic separated from shredder residue under the conditions described in the Voluntary Procedures for Recycling Plastics from Shredder Residue.

  6. Developmental plasticity and evolution--quo vadis?

    National Research Council Canada - National Science Library

    Moczek, A P

    2015-01-01

    The role of developmental (phenotypic) plasticity in ecology and evolution is receiving a growing appreciation among the biologists, and many plasticity-specific concepts have become well established as part of the mainstream evolutionary...

  7. Gas Experiments with Plastic Soda Bottles.

    Science.gov (United States)

    Kavanah, Patrick; Zipp, Arden P.

    1998-01-01

    Describes the use of an inexpensive device consisting of a plastic soda bottle and a modified plastic cap in a range of demonstrations and experimental activities having to do with the behavior of gases. (Author/WRM)

  8. [The history of plastic surgery in Israel].

    Science.gov (United States)

    Wiser, Itay; Scheflan, Michael; Heller, Lior

    2014-09-01

    The medical institutions in the country have advanced together with the development of the state of Israel. Plastic surgery, which has progressed significantly during the 20th century, has also grown rapidly in the new state. The arrival of Jewish plastic surgeons from all over the world with the knowledge and experience gained in their countries of origin, as well as the need for reconstructive surgical treatment for many combat injured soldiers, also contributed to the development of plastic surgery. This review tells the story of plastic surgery in Israel, since its foundation until nowadays. This article reviews the work of the founders of plastic surgery in Israel, indicating significant milestones in its development, and clinical and scientific contribution to the international plastic surgery profession. Moreover, the article describes the current condition of the field of plastic surgery in Israel and presents the trends and the future challenges facing the next generation of plastic surgery in Israel.

  9. Innovation Promotes Development of Plastic Assistant

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Driven by the rapid growth of China's plastic product sector, the development of the plastic sector has been accelerated and assistant products are now becoming more multi-function, high performance, high in molecular weight and environmentfriendly.

  10. ARE PLASTIC GROCERY BAGS SACKING THE ENVIRONMENT?

    Directory of Open Access Journals (Sweden)

    Mangal Gogte

    2009-12-01

    Full Text Available This paper is oriented on analysis impacts of plastic bags on environment. In this paper is analyzed did plastic bags are so harmful, and what are the main ingredients of it. One part of this paper is oriented on effects of plastic bags and management of their usage. There is also made comparative analysis between impacts of plastic and paper bags on environment.

  11. Economical and Ecological Fesasibility of Plastic Recycling

    OpenAIRE

    Hirschpold, Andrew; Juctye, Kristina; Renzhong, Jiang; Debin, LIU; Varona, Hector P.; Kevelaitis, Karolis

    2005-01-01

    #Group 3 International Nat Bas Economical and Ecological Feasibility of Plastic Recycling Abstract This project is carried out as the final project for the first semester of Bachelor of Science studies. Our project will aim on plastic recycling. Plastic is a manmade material which covers a range of synthetic or semi-synthetic products made thru polymerization. The development of plastic products has accompanied the development of human’s history since it was invented while they ...

  12. WE(EE) Demand - Recycled Plastic

    OpenAIRE

    Førby, Marie; Pedersen, Jakob; Borgen, Nanna; Hansen, Rasmus Nør

    2015-01-01

    Plastic management – from production to waste – has massive negative effects on the environment of which one of the main problems are the CO2 released from the fossil fuels. The focus of this paper lies on the possibilities of increasing demand for recycled plastics from electric and electronic equipment (WEEE-plastic) through modifications in the Danish waste systems. Due to the chemical build of plastic, it is not possible to reprocess it with mechanical recycle technologies while keeping t...

  13. Think small: nanotechnology for plastic surgeons.

    Science.gov (United States)

    Nasir, Amir R; Brenner, Sara A

    2012-11-01

    The purpose of this article is to introduce the topic of nanotechnology to plastic surgeons and to discuss its relevance to medicine in general and plastic surgery in particular. Nanotechnology will be defined, and some important historical milestones discussed. Common applications of nanotechnology in various medical and surgical subspecialties will be reviewed. Future applications of nanotechnology to plastic surgery will be examined. Finally, the critical field of nanotoxicology and the safe use of nanotechnology in medicine and plastic surgery will be addressed.

  14. The advent of the restorative plastic surgeon.

    Science.gov (United States)

    Carty, Matthew J; Pribaz, Julian J; Talbot, Simon G; Caterson, Edward J; Pomahac, Bohdan

    2014-01-01

    Plastic surgery is presently typified by the existence of discrete clinical identities, namely that of the cosmetic plastic surgeon and the reconstructive plastic surgeon. The emergence of vascularized composite allotransplantation has been accompanied by the development of a third distinct clinical identity, that of the restorative plastic surgeon. The authors describe the core competencies that characterize this new identity, and discuss the implications of the advent of this new professional paradigm.

  15. Economical and Ecological Fesasibility of Plastic Recycling

    OpenAIRE

    Hirschpold, Andrew; Juctye, Kristina; Renzhong, Jiang; Debin, Liu; Varona, Hector P.; Kevelaitis, Karolis

    2005-01-01

    #Group 3 International Nat Bas Economical and Ecological Feasibility of Plastic Recycling Abstract This project is carried out as the final project for the first semester of Bachelor of Science studies. Our project will aim on plastic recycling. Plastic is a manmade material which covers a range of synthetic or semi-synthetic products made thru polymerization. The development of plastic products has accompanied the development of human’s history since it was invented while they ...

  16. Will Banning Free Plastic Bags Reduce Pollution?

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    No more free plastic bags from June 1,2008.That’s the message to Chinese shoppers after a government ban on all production,sales or use of plastic bags less than 0.025 mm thick comes into force from this date.Nowadays,supermarkets give out 1 billion plastic bags every day while other shops collectively use double that amount. Consumers will have to pay for plastic bags exceeding this thickness,if they want this option.

  17. Plastics. A Handbook for Workplace Educators.

    Science.gov (United States)

    Curry, Donna; Smith, Mikki

    This handbook was designed to help adult literacy education teachers to understand the plastics industry, develop a curriculum, and teach basic skills classes in a plastics company. The book contains four main sections. The first section, on the basics of plastics, contains a brief history of the industry, an elementary description of the…

  18. 7 CFR 58.326 - Plastic cream.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Plastic cream. 58.326 Section 58.326 Agriculture... Material § 58.326 Plastic cream. To produce plastic cream eligible for official certification, the quality of the cream used shall meet the requirements of cream acceptable for the manufacture of U.S....

  19. Adult myelination:wrapping up neuronal plasticity

    Institute of Scientific and Technical Information of China (English)

    Megan ORourke; Robert Gasperini; Kaylene M.Young

    2014-01-01

    In this review, we outline the major neural plasticity mechanisms that have been identiifed in the adult central nervous system (CNS), and offer a perspective on how they regulate CNS function. In particular we examine how myelin plasticity can operate alongside neurogenesis and synaptic plasticity to inlfuence information processing and transfer in the mature CNS.

  20. The evolution of age-dependent plasticity

    NARCIS (Netherlands)

    Fischer, Barbara; van Doorn, G. Sander; Dieckmann, Ulf; Taborsky, Barbara

    2014-01-01

    When organisms encounter environments that are heterogeneous in time, phenotypic plasticity is often favored by selection. The degree of such plasticity can vary during an organism''s lifetime, but the factors promoting differential plastic responses at different ages or life stages remain poorly un

  1. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Science.gov (United States)

    2010-06-16

    ... Employment and Training Administration Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium... Assistance on March 18, 2010, applicable to workers of Plastic Omnium Automotive Exteriors, LLC, Anderson... have occurred involving workers in support of the Anderson, South Carolina location of Plastic...

  2. Plastic deformation and contact area of an elastic-plastic contact of ellipsoid bodies after unloading

    NARCIS (Netherlands)

    Jamari, Jamari; Schipper, Dirk J.

    2007-01-01

    This paper presents theoretical and experimental results of the residual or plastic deformation and the plastic contact area of an elastic–plastic contact of ellipsoid bodies after unloading. There are three regime responses of the deformation and contact area: elastic, elastic–plastic and fully

  3. Strain rate dependence in plasticized and un-plasticized PVC

    Directory of Open Access Journals (Sweden)

    Siviour C.R.

    2012-08-01

    Full Text Available An experimental and analytical investigation has been made into the mechanical behaviour of two poly (vinyl chloride (PVC polymers – an un-plasticized PVC and a diisononyl phthalate (DINP-plasticized PVC. Measurements of the compressive stress-strain behaviour of the PVCs at strain rates ranging from 10−3 to 103s−1 and temperatures from − 60 to 100∘C are presented. Dynamic Mechanical Analysis was also performed in order to understand the material transitions observed in compression testing as the strain rate is increased. This investigation develops a better understanding of the interplay between the temperature dependence and rate dependence of polymers, with a focus on locating the temperature and rate-dependent material transitions that occur during high rate testing.

  4. Strain rate dependence in plasticized and un-plasticized PVC

    Science.gov (United States)

    Kendall, M. J.; Siviour, C. R.

    2012-08-01

    An experimental and analytical investigation has been made into the mechanical behaviour of two poly (vinyl chloride) (PVC) polymers - an un-plasticized PVC and a diisononyl phthalate (DINP)-plasticized PVC. Measurements of the compressive stress-strain behaviour of the PVCs at strain rates ranging from 10-3 to 103s-1 and temperatures from - 60 to 100∘C are presented. Dynamic Mechanical Analysis was also performed in order to understand the material transitions observed in compression testing as the strain rate is increased. This investigation develops a better understanding of the interplay between the temperature dependence and rate dependence of polymers, with a focus on locating the temperature and rate-dependent material transitions that occur during high rate testing.

  5. American Academy of Facial Plastic and Reconstructive Surgery

    Science.gov (United States)

    ... is the world's largest specialty association for facial plastic surgery. It represents more than 2,700 facial plastic ... the American Board of Otolaryngology , which includes facial plastic surgery. Others are certified in plastic surgery, ophthalmology, and ...

  6. Thermoplastic Starch Prepared with Different Plasticizers:Relation between Degree of Plasticization and Properties

    Institute of Scientific and Technical Information of China (English)

    ZUO Yingfeng; GU Jiyou; TAN Haiyan; ZHANG Yanhua

    2015-01-01

    Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch (TPS) from corn starch. The properties of TPS were tested by analysis method. The results showed that TPSs were more highly plasticized with amines than alcohols. For the same type of plasticizer, the degree of plasticization decreased as the molecular weight of plasticizer increased. The relationship between plasticization degree and TPS properties was characterized and described by mechanical properties and water absorption. The experimental results showed that when the degree of plasticization increased, the tensile strength decreased and the elongation at breakage and water absorption increased.

  7. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large...... recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...... product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications...

  8. Plastic waste as a resource. Strategies for reduction and utilization of plastic waste

    OpenAIRE

    Pasqual i Camprubí, Gemma

    2010-01-01

    Plastic materials have experienced a spectacular rate of growth in recent decades, consequently, production of plastics, and likewise their consumption, has increased markedly since 1950. Moreover, they are lightweight and durable, as well as can be moulded into a variety of products that can be manufactured in many different types of plastic and in a wide range of applications. Inevitably, continually increasing amounts of used plastic are originating daily, resulting in a plastic waste prob...

  9. Public health impact of plastics: An overview

    Directory of Open Access Journals (Sweden)

    Neeti Rustagi

    2011-01-01

    Full Text Available Plastic, one of the most preferred materials in today′s industrial world is posing serious threat to environment and consumer′s health in many direct and indirect ways. Exposure to harmful chemicals during manufacturing, leaching in the stored food items while using plastic packages or chewing of plastic teethers and toys by children are linked with severe adverse health outcomes such as cancers, birth defects, impaired immunity, endocrine disruption, developmental and reproductive effects etc. Promotion of plastics substitutes and safe disposal of plastic waste requires urgent and definitive action to take care of this potential health hazard in future.

  10. Public health impact of plastics: An overview

    Science.gov (United States)

    Rustagi, Neeti; Pradhan, S. K.; Singh, Ritesh

    2011-01-01

    Plastic, one of the most preferred materials in today's industrial world is posing serious threat to environment and consumer's health in many direct and indirect ways. Exposure to harmful chemicals during manufacturing, leaching in the stored food items while using plastic packages or chewing of plastic teethers and toys by children are linked with severe adverse health outcomes such as cancers, birth defects, impaired immunity, endocrine disruption, developmental and reproductive effects etc. Promotion of plastics substitutes and safe disposal of plastic waste requires urgent and definitive action to take care of this potential health hazard in future. PMID:22412286

  11. Process for remediation of plastic waste

    Science.gov (United States)

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  12. New Class of Plastic Bulk Metallic Glass

    Science.gov (United States)

    Chen, L. Y.; Fu, Z. D.; Zhang, G. Q.; Hao, X. P.; Jiang, Q. K.; Wang, X. D.; Cao, Q. P.; Franz, H.; Liu, Y. G.; Xie, H. S.; Zhang, S. L.; Wang, B. Y.; Zeng, Y. W.; Jiang, J. Z.

    2008-02-01

    An intrinsic plastic Cu45Zr46Al7Ti2 bulk metallic glass (BMG) with high strength and superior compressive plastic strain of up to 32.5% was successfully fabricated by copper mold casting. The superior compressive plastic strain was attributed to a large amount of randomly distributed free volume induced by Ti minor alloying, which results in extensive shear band formation, branching, interaction and self-healing of minor cracks. The mechanism of plasticity presented here suggests that the creation of a large amount of free volume in BMGs by minor alloying or other methods might be a promising new way to enhance the plasticity of BMGs.

  13. Public health impact of plastics: An overview.

    Science.gov (United States)

    Rustagi, Neeti; Pradhan, S K; Singh, Ritesh

    2011-09-01

    Plastic, one of the most preferred materials in today's industrial world is posing serious threat to environment and consumer's health in many direct and indirect ways. Exposure to harmful chemicals during manufacturing, leaching in the stored food items while using plastic packages or chewing of plastic teethers and toys by children are linked with severe adverse health outcomes such as cancers, birth defects, impaired immunity, endocrine disruption, developmental and reproductive effects etc. Promotion of plastics substitutes and safe disposal of plastic waste requires urgent and definitive action to take care of this potential health hazard in future.

  14. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness......Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...... of metal components. An optimization of processes and material parameters must be based on a quantification of stress and strain gradients at the surface and in near surface layer where the structural scale can reach few tens of nanometers. For such fine structures it is suggested to quantify structural...

  15. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....

  16. Vascular plasticity in cerebrovascular disorders

    DEFF Research Database (Denmark)

    Edvinsson, Lars I H; Povlsen, Gro Klitgaard

    2011-01-01

    Cerebral ischemia remains a major cause of morbidity and mortality with little advancement in subacute treatment options. This review aims to cover and discuss novel insight obtained during the last decade into plastic changes in the vasoconstrictor receptor profiles of cerebral arteries and micr......Cerebral ischemia remains a major cause of morbidity and mortality with little advancement in subacute treatment options. This review aims to cover and discuss novel insight obtained during the last decade into plastic changes in the vasoconstrictor receptor profiles of cerebral arteries...... therapeutic target for prevention of vasoconstrictor receptor upregulation after stroke. Together, those findings provide new perspectives on the pathophysiology of ischemic stroke and point toward a novel way of reducing vasoconstriction, neuronal cell death, and thus neurologic deficits after stroke....

  17. Polishing compound for plastic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stowell, M.S.

    1991-01-01

    This invention is comprised of a polishing compound for plastic materials. The compound includes approximately by approximately by weight 25 to 80 parts at least one petroleum distillate lubricant, 1 to 12 parts mineral spirits, 50 to 155 parts abrasive paste, and 15 to 60 parts water. Preferably, the compound includes approximately 37 to 42 parts at least one petroleum distillate lubricant, up to 8 parts mineral spirits, 95 to 110 parts abrasive paste, and 50 to 55 parts water. The proportions of the ingredients are varied in accordance with the particular application. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC), and similar plastic materials whenever a smooth, clear polished surface is desired.

  18. Exercise and plasticize the brain

    DEFF Research Database (Denmark)

    Mala, Hana; Wilms, Inge

    Neuroscientific studies continue to shed light on brain’s plasticity and its innate mechanisms to recover. The recovery process includes re-wiring of the existing circuitry, establishment of new connections, and recruitment of peri-lesional and homologous areas in the opposite hemisphere. The pla......Neuroscientific studies continue to shed light on brain’s plasticity and its innate mechanisms to recover. The recovery process includes re-wiring of the existing circuitry, establishment of new connections, and recruitment of peri-lesional and homologous areas in the opposite hemisphere...... potential through available training methods. Furthermore, research into neurorehabilitation is dependent on input from a number of fields (such as neuropsychology, neurology, physiotherapy, speech and language therapy, special education, and social work) and requires a close collaboration between...

  19. Brain plasticity and aerobic fitness

    OpenAIRE

    2014-01-01

    Regular aerobic exercise has a wide range of positive effects on health and cognition. Exercise has been demonstrated to provide a particularly powerful and replicable method of triggering a wide range of structural changes within both human and animal brains. However, the details and mechanisms of these changes remain poorly understood. This thesis undertakes a comprehensive examination of the relationship between brain plasticity and aerobic exercise. A large, longitudinal experiment ...

  20. The rise of plastic bioelectronics

    Science.gov (United States)

    Someya, Takao; Bao, Zhenan; Malliaras, George G.

    2016-12-01

    Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics. The resulting electronic materials and devices are soft, stretchable and mechanically conformable, which are important qualities for interacting with biological systems in both wearable and implantable devices. Work is currently aimed at improving these devices with a view to making the electronic-biological interface as seamless as possible.

  1. The Future of Plastic Surgery: Surgeon's Perspective.

    Science.gov (United States)

    Ozturk, Sinan; Karagoz, Huseyin; Zor, Fatih

    2015-11-01

    Since the days of Sushruta, innovation has shaped the history of plastic surgery. Plastic surgeons have always been known as innovators or close followers of innovations. With this descriptive international survey study, the authors aimed to evaluate the future of plastic surgeons by analyzing how plastic surgery and plastic surgeons will be affected by new trends in medicine. Aesthetic surgery is the main subclass of plastic surgery thought to be the one that will change the most in the future. Stem cell therapy is considered by plastic surgeons to be the most likely "game changer." Along with changes in surgery, plastic surgeons also expect changes in plastic surgery education. The most approved assumption for the future of plastic surgery is, "The number of cosmetic nonsurgical procedures will increase in the future." If surgeons want to have better outcomes in their practice, they must at least be open minded for innovations if they do not become innovators themselves. Besides the individual effort of each surgeon, international and local plastic surgery associations should develop new strategies to adopt these innovations in surgical practice and education.

  2. Learning Through Experience: Group Design Projects on the Masters Course in Aircraft Engineering

    Science.gov (United States)

    2000-06-01

    date these differences will be GFRP Glass Fibre Reinforced Plastic explained. However, there are some aspects which remain the LSWT Low Speed Wind...produced within BAe. various roles. The type of structure chosen uses substantially monolithic 7.1 Specification Glass Fibre Reinforced Plastic (GFRP

  3. Applications and societal benefits of plastics.

    Science.gov (United States)

    Andrady, Anthony L; Neal, Mike A

    2009-07-27

    This article explains the history, from 1600 BC to 2008, of materials that are today termed 'plastics'. It includes production volumes and current consumption patterns of five main commodity plastics: polypropylene, polyethylene, polyvinyl chloride, polystyrene and polyethylene terephthalate. The use of additives to modify the properties of these plastics and any associated safety, in use, issues for the resulting polymeric materials are described. A comparison is made with the thermal and barrier properties of other materials to demonstrate the versatility of plastics. Societal benefits for health, safety, energy saving and material conservation are described, and the particular advantages of plastics in society are outlined. Concerns relating to littering and trends in recycling of plastics are also described. Finally, we give predictions for some of the potential applications of plastic over the next 20 years.

  4. Regulatory mechanisms link phenotypic plasticity to evolvability.

    Science.gov (United States)

    van Gestel, Jordi; Weissing, Franz J

    2016-04-18

    Organisms have a remarkable capacity to respond to environmental change. They can either respond directly, by means of phenotypic plasticity, or they can slowly adapt through evolution. Yet, how phenotypic plasticity links to evolutionary adaptability is largely unknown. Current studies of plasticity tend to adopt a phenomenological reaction norm (RN) approach, which neglects the mechanisms underlying plasticity. Focusing on a concrete question - the optimal timing of bacterial sporulation - we here also consider a mechanistic approach, the evolution of a gene regulatory network (GRN) underlying plasticity. Using individual-based simulations, we compare the RN and GRN approach and find a number of striking differences. Most importantly, the GRN model results in a much higher diversity of responsive strategies than the RN model. We show that each of the evolved strategies is pre-adapted to a unique set of unseen environmental conditions. The regulatory mechanisms that control plasticity therefore critically link phenotypic plasticity to the adaptive potential of biological populations.

  5. Anaesthetic complications in plastic surgery.

    Science.gov (United States)

    Nath, Soumya Sankar; Roy, Debashis; Ansari, Farrukh; Pawar, Sundeep T

    2013-05-01

    Anaesthesia related complications in plastic surgeries are fortunately rare, but potentially catastrophic. Maintaining patient safety in the operating room is a major concern of anaesthesiologists, surgeons, hospitals and surgical facilities. Circumventing preventable complications is essential and pressure to avoid these complications in cosmetic surgery is increasing. Key aspects of patient safety in the operating room are outlined, including patient positioning, airway management and issues related to some specific conditions, essential for minimizing post-operative morbidity. Risks associated with extremes of age in the plastic surgery population, may be minimised by a better understanding of the physiologic changes as well as the pre-operative and post-operative considerations in caring for this special group of patients. An understanding of the anaesthesiologist's concerns during paediatric plastic surgical procedures can facilitate the coordination of efforts between the multiple services involved in the care of these children. Finally, the reader will have a better understanding of the perioperative care of unique populations including the morbidly obese and the elderly. Attention to detail in these aspects of patient safety can help avoid unnecessary complication and significantly improve the patients' experience and surgical outcome.

  6. Anaesthetic complications in plastic surgery

    Directory of Open Access Journals (Sweden)

    Soumya Sankar Nath

    2013-01-01

    Full Text Available Anaesthesia related complications in plastic surgeries are fortunately rare, but potentially catastrophic. Maintaining patient safety in the operating room is a major concern of anaesthesiologists, surgeons, hospitals and surgical facilities. Circumventing preventable complications is essential and pressure to avoid these complications in cosmetic surgery is increasing. Key aspects of patient safety in the operating room are outlined, including patient positioning, airway management and issues related to some specific conditions, essential for minimizing post-operative morbidity. Risks associated with extremes of age in the plastic surgery population, may be minimised by a better understanding of the physiologic changes as well as the pre-operative and post-operative considerations in caring for this special group of patients. An understanding of the anaesthesiologist′s concerns during paediatric plastic surgical procedures can facilitate the coordination of efforts between the multiple services involved in the care of these children. Finally, the reader will have a better understanding of the perioperative care of unique populations including the morbidly obese and the elderly. Attention to detail in these aspects of patient safety can help avoid unnecessary complication and significantly improve the patients′ experience and surgical outcome.

  7. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in no...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing.......The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...

  8. A survey of GFRP composite leaf spring

    OpenAIRE

    Rajesh, S.; S. Nakkeran; GB. Bhaskar

    2014-01-01

    Although leaf springs are one of the oldest suspension components, they are still frequently used in the automobile vehicles. Weight reduction is the main focus in the automobile industries. Weight reduction can be achieved primarily by the introduction of better materials, design optimization, and better manufacturing processes. The achievement of weight reduction with adequate improvement of mechanical properties has made composite a very good replacement material for conventional steel. Se...

  9. Recycling of plastic waste: Presence of phthalates in plastics from households and industry.

    Science.gov (United States)

    Pivnenko, K; Eriksen, M K; Martín-Fernández, J A; Eriksson, E; Astrup, T F

    2016-08-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large volumes and are commonly used as plasticisers in plastics manufacturing. Potential impacts on human health require restricted use in selected applications and a need for the closer monitoring of potential sources of human exposure. Although the presence of phthalates in a variety of plastics has been recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP had the highest frequency of detection in the samples analysed, with 360μg/g, 460μg/g and 2700μg/g as the maximum measured concentrations, respectively. Among other, statistical analysis of the analytical results suggested that phthalates were potentially added in the later stages of plastic product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications is recommended if recycled plastics are to be used as raw material in production.

  10. A review of plastic waste biodegradation.

    Science.gov (United States)

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  11. Characterization of plastic blends made from mixed plastics waste of different sources.

    Science.gov (United States)

    Turku, Irina; Kärki, Timo; Rinne, Kimmo; Puurtinen, Ari

    2017-02-01

    This paper studies the recyclability of construction and household plastic waste collected from local landfills. Samples were processed from mixed plastic waste by injection moulding. In addition, blends of pure plastics, polypropylene and polyethylene were processed as a reference set. Reference samples with known plastic ratio were used as the calibration set for quantitative analysis of plastic fractions in recycled blends. The samples were tested for the tensile properties; scanning electron microscope-energy-dispersive X-ray spectroscopy was used for elemental analysis of the blend surfaces and Fourier transform infrared (FTIR) analysis was used for the quantification of plastics contents.

  12. "Oriental anthropometry" in plastic surgery

    Directory of Open Access Journals (Sweden)

    Senna-Fernandes Vasco

    2008-01-01

    Full Text Available Background : According to Chinese medicine, the acupuncture-points′ (acupoints locations are proportionally and symmetrically distributed in well-defined compartment zones on the human body surface Oriental Anthropometry" (OA. Acupoints, if considered as aesthetic-loci, might be useful as reference guides in plastic surgery (PS. Aim: This study aimed to use aesthetic-loci as anatomical reference in surgical marking of Aesthetic Plastic Surgery. Method: This was an observational study based on aesthetic surgeries performed in private clinic. This study was based on 106 cases, comprising of 102 women and 4 men, with ages varying from 07 to 73 years, and with heights of between 1.34 m and 1.80 m. Patients were submitted to aesthetic surgical planning by relating aesthetic-loci to conventional surgical marking, including breast surgeries, abdominoplasty, rhytidoplasty, blepharoplasty, and hair implant. The aesthetic-surgical-outcome (ASO of the patients was assessed by a team of plastic surgeons (who were not involved in the surgical procedures over a follow-up period of one year by using a numeric-rating-scale in percentage (% terms. A four-point-verbal-rating-scale was used to record the patients′ opinion of therapeutic-satisfaction (TS. Results: ASO was 75.3 ± 9.4% and TS indicated that most patients (58.5% obtained "good" results. Of the remainder, 38.7% found the results "excellent", and 2.8% found them "fair". Discussion and Conclusion : The data suggested that the use of aesthetic-loci may be a useful tool for PS as an anatomical reference for surgical marking. However, further investigation is required to assess the efficacy of the OA by providing the patients more reliable balance and harmony in facial and body contours surgeries.

  13. Glassy features of crystal plasticity

    Science.gov (United States)

    Lehtinen, Arttu; Costantini, Giulio; Alava, Mikko J.; Zapperi, Stefano; Laurson, Lasse

    2016-08-01

    Crystal plasticity occurs by deformation bursts due to the avalanchelike motion of dislocations. Here we perform extensive numerical simulations of a three-dimensional dislocation dynamics model under quasistatic stress-controlled loading. Our results show that avalanches are power-law distributed and display peculiar stress and sample size dependence: The average avalanche size grows exponentially with the applied stress, and the amount of slip increases with the system size. These results suggest that intermittent deformation processes in crystalline materials exhibit an extended critical-like phase in analogy to glassy systems instead of originating from a nonequilibrium phase transition critical point.

  14. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity.

    Science.gov (United States)

    Murren, C J; Auld, J R; Callahan, H; Ghalambor, C K; Handelsman, C A; Heskel, M A; Kingsolver, J G; Maclean, H J; Masel, J; Maughan, H; Pfennig, D W; Relyea, R A; Seiter, S; Snell-Rood, E; Steiner, U K; Schlichting, C D

    2015-10-01

    Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits.

  15. Evolution of environmental cues for phenotypic plasticity.

    Science.gov (United States)

    Chevin, Luis-Miguel; Lande, Russell

    2015-10-01

    Phenotypically plastic characters may respond to multiple variables in their environment, but the evolutionary consequences of this phenomenon have rarely been addressed theoretically. We model the evolution of linear reaction norms in response to several correlated environmental variables, in a population undergoing stationary environmental fluctuations. At evolutionary equilibrium, the linear combination of environmental variables that acts as a developmental cue for the plastic trait is the multivariate best linear predictor of changes in the optimum. However, the reaction norm with respect to any single environmental variable may exhibit nonintuitive patterns. Apparently maladaptive, or hyperadaptive plasticity can evolve with respect to single environmental variables, and costs of plasticity may increase, rather than reduce, plasticity in response to some variables. We also find conditions for the evolution of an indirect environmental indicator that affects expression of a plastic phenotype, despite not influencing natural selection on it.

  16. River plastic emissions to the world's oceans

    Science.gov (United States)

    Lebreton, Laurent C. M.; van der Zwet, Joost; Damsteeg, Jan-Willem; Slat, Boyan; Andrady, Anthony; Reisser, Julia

    2017-06-01

    Plastics in the marine environment have become a major concern because of their persistence at sea, and adverse consequences to marine life and potentially human health. Implementing mitigation strategies requires an understanding and quantification of marine plastic sources, taking spatial and temporal variability into account. Here we present a global model of plastic inputs from rivers into oceans based on waste management, population density and hydrological information. Our model is calibrated against measurements available in the literature. We estimate that between 1.15 and 2.41 million tonnes of plastic waste currently enters the ocean every year from rivers, with over 74% of emissions occurring between May and October. The top 20 polluting rivers, mostly located in Asia, account for 67% of the global total. The findings of this study provide baseline data for ocean plastic mass balance exercises, and assist in prioritizing future plastic debris monitoring and mitigation strategies.

  17. Tunable plasticity in amorphous silicon carbide films.

    Science.gov (United States)

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold.

  18. Environmental evaluation of plastic waste management scenarios

    DEFF Research Database (Denmark)

    Rigamonti, L.; Grosso, M.; Møller, Jacob

    2014-01-01

    The management of the plastic fraction is one of the most debated issues in the discussion on integrated municipal solid waste systems. Both material and energy recovery can be performed on such a waste stream, and different separate collection schemes can be implemented. The aim of the paper...... is to contribute to the debate, based on the analysis of different plastic waste recovery routes. Five scenarios were defined and modelled with a life cycle assessment approach using the EASEWASTE model. In the baseline scenario (P0) the plastic is treated as residual waste and routed partly to incineration...... with energy recovery and partly to mechanical biological treatment. A range of potential improvements in plastic management is introduced in the other four scenarios (P1–P4). P1 includes a source separation of clean plastic fractions for material recycling, whereas P2 a source separation of mixed plastic...

  19. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus

    OpenAIRE

    José Maria Rodrigues da Luz; Sirlaine Albino Paes; Mateus Dias Nunes; Marliane de Cássia Soares da Silva; Maria Catarina Megumi Kasuya

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ul...

  20. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus

    OpenAIRE

    José Maria Rodrigues da Luz; Sirlaine Albino Paes; Mateus Dias Nunes; Marliane de Cássia Soares da Silva; Maria Catarina Megumi Kasuya

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ul...

  1. Phenotypic plasticity and diversity in insects

    OpenAIRE

    Moczek, Armin P.

    2010-01-01

    Phenotypic plasticity in general and polyphenic development in particular are thought to play important roles in organismal diversification and evolutionary innovation. Focusing on the evolutionary developmental biology of insects, and specifically that of horned beetles, I explore the avenues by which phenotypic plasticity and polyphenic development have mediated the origins of novelty and diversity. Specifically, I argue that phenotypic plasticity generates novel targets for evolutionary pr...

  2. Plastic Recycling Experiments in Materials Education

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  3. Studies of elastic-plastic instabilities

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1999-01-01

    Analyses of plastic instabilities are reviewed, with focus on results in structural mechanics as well as continuum mechanics. First the basic theories for bifurcation and post-bifurcation behavior are briefly presented. Then, localization of plastic flow is discussed, including shear band formation...... in solids, localized necking in biaxially stretched metal sheets, and the analogous phenomenon of buckling localization in structures. Also some recent results for cavitation instabilities in elastic-plastic solids are reviewed....

  4. Biobased additive plasticizing Polylactic acid (PLA

    Directory of Open Access Journals (Sweden)

    Mounira Maiza

    2015-12-01

    Full Text Available Polylactic acid (PLA is an attractive candidate for replacing petrochemical polymers because it is from renewable resources. In this study, a specific PLA 2002D was melt-mixed with two plasticizers: triethyl citrate (TEC and acetyl tributyl citrate (ATBC. The plasticized PLA with various concentrations were analyzed by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, melt flow index (MFI, thermogravimetric analysis (TGA, X-ray diffraction (XRD, UV-Visible spectroscopy and plasticizer migration test. Differential scanning calorimetry demonstrated that the addition of TEC and ATBC resulted in a decrease in glass transition temperature (Tg, and the reduction was the largest with the plasticizer having the lowest molecular weight (TEC. Plasticizing effect was also shown by decrease in the dynamic storage modulus and viscosity of plasticized mixtures compared to the treated PLA. The TGA results indicated that ATBC and TEC promoted a decrease in thermal stability of the PLA. The X-ray diffraction showed that the PLA have not polymorphic crystalline transition. Analysis by UV-Visible spectroscopy showed that the two plasticizers: ATBC and TEC have no effect on the color change of the films. The weight loss plasticizer with heating time and at 100°C is lesser than at 135 °C. Migration of TEC and ATBC results in cracks and changed color of material. We have concluded that the higher molecular weight of citrate in the studied exhibited a greater plasticizing effect to the PLA.

  5. Neuronal plasticity: beyond the critical period.

    Science.gov (United States)

    Hübener, Mark; Bonhoeffer, Tobias

    2014-11-06

    Neuronal plasticity in the brain is greatly enhanced during critical periods early in life and was long thought to be rather limited thereafter. Studies in primary sensory areas of the neocortex have revealed a substantial degree of plasticity in the mature brain, too. Often, plasticity in the adult neocortex lies dormant but can be reactivated by modifications of sensory input or sensory-motor interactions, which alter the level and pattern of activity in cortical circuits. Such interventions, potentially in combination with drugs targeting molecular brakes on plasticity present in the adult brain, might help recovery of function in the injured or diseased brain.

  6. Neuronal cytoskeleton in synaptic plasticity and regeneration.

    Science.gov (United States)

    Gordon-Weeks, Phillip R; Fournier, Alyson E

    2014-04-01

    During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system. © 2013 International Society for Neurochemistry.

  7. Biodegradable and compostable alternatives to conventional plastics

    National Research Council Canada - National Science Library

    J. H. Song; R. J. Murphy; R. Narayan; G. B. H. Davies

    2009-01-01

    .... Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality...

  8. Extruded plastic scintillator for MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Pla-Dalmau, Anna; Bross, Alan D.; /Fermilab; Rykalin, Victor V.; Wood, Brian M.; /NICADD, DeKalb

    2005-11-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here.

  9. Phenotypic plasticity: molecular mechanisms and adaptive significance.

    Science.gov (United States)

    Kelly, Scott A; Panhuis, Tami M; Stoehr, Andrew M

    2012-04-01

    Phenotypic plasticity can be broadly defined as the ability of one genotype to produce more than one phenotype when exposed to different environments, as the modification of developmental events by the environment, or as the ability of an individual organism to alter its phenotype in response to changes in environmental conditions. Not surprisingly, the study of phenotypic plasticity is innately interdisciplinary and encompasses aspects of behavior, development, ecology, evolution, genetics, genomics, and multiple physiological systems at various levels of biological organization. From an ecological and evolutionary perspective, phenotypic plasticity may be a powerful means of adaptation and dramatic examples of phenotypic plasticity include predator avoidance, insect wing polymorphisms, the timing of metamorphosis in amphibians, osmoregulation in fishes, and alternative reproductive tactics in male vertebrates. From a human health perspective, documented examples of plasticity most commonly include the results of exercise, training, and/or dieting on human morphology and physiology. Regardless of the discipline, phenotypic plasticity has increasingly become the target of a plethora of investigations with the methodological approaches utilized ranging from the molecular to whole organsimal. In this article, we provide a brief historical outlook on phenotypic plasticity; examine its potential adaptive significance; emphasize recent molecular approaches that provide novel insight into underlying mechanisms, and highlight examples in fishes and insects. Finally, we highlight examples of phenotypic plasticity from a human health perspective and underscore the use of mouse models as a powerful tool in understanding the genetic architecture of phenotypic plasticity.

  10. Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect

    Science.gov (United States)

    Haryono, Agus; Triwulandari, Evi; Jiang, Pingping

    2017-01-01

    Plasticizer molecules are low molecular weight compounds that are widely used in polymer industries especially in polyvinyl chloride (PVC) resin. As an additive in PVC resin, the important role of plasticizer molecules is to improve the flexibility and processability of PVC by lowering the glass transition temperature (Tg). However, the commercial plasticizer like di(2-ethylhexyl)phthalate (DEHP) is known to cause liver cancer, at least in laboratory rats. DEHP can leach out from PVC into blood, certain drug solutions and fatty foods, which has been detected in the bloodstream of patients undergoing transfusion. Vegetable oil based plasticizers have some attractive properties such as non-toxic, bio-degradable, good heat and light stability, renewable resources, and environmentally friendly. Here we discussed the main results and development of vegetable oil based plasticizer, and especially palm oil based plasticizer. The interaction between plasticizer and polymer was discussed from the properties of the plasticized polymeric material.

  11. The plasticity of social emotions.

    Science.gov (United States)

    Klimecki, Olga M

    2015-01-01

    Social emotions such as empathy or compassion greatly facilitate our interactions with others. Despite the importance of social emotions, scientific studies have only recently revealed functional neural plasticity associated with the training of such emotions. Using the framework of two antagonistic neural systems, the threat and social disconnection system on the one hand, and the reward and social connection system on the other, this article describes how training compassion and empathy can change the functioning of these systems in a targeted manner. Whereas excessive empathic sharing of suffering can increase negative feelings and activations in the insula and anterior cingulate cortex (corresponding to the threat and social disconnection system), compassion training can strengthen positive affect and neural activations in the medial orbitofrontal cortex and striatum (corresponding to the reward and social connection system). These neuroimaging findings are complemented by results from behavioral studies showing that compassion is linked to helping and forgiveness behavior, whereas empathic distress not only decreases helping behavior, but is even associated with increased aggressive behavior. Taken together, these data provide encouraging evidence for the plasticity of adaptive social emotions with wide-ranging implications for basic science and applied settings.

  12. Astrocyte-Synapse Structural Plasticity

    Directory of Open Access Journals (Sweden)

    Yann Bernardinelli

    2014-01-01

    Full Text Available The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmission. Astrocytic structures are frequently observed in close association with glutamatergic synapses, providing a morphological entity for bidirectional interactions with synapses. Experimental evidence indicates that astrocytes sense neuronal activity by elevating their intracellular calcium in response to neurotransmitters and may communicate with neurons. The precise role of astrocytes in regulating synaptic properties, function, and plasticity remains however a subject of intense debate and many aspects of their interactions with neurons remain to be investigated. A particularly intriguing aspect is their ability to rapidly restructure their processes and modify their coverage of the synaptic elements. The present review summarizes some of these findings with a particular focus on the mechanisms driving this form of structural plasticity and its possible impact on synaptic structure and function.

  13. Phenotypic plasticity in bacterial plasmids.

    Science.gov (United States)

    Turner, Paul E

    2004-01-01

    Plasmid pB15 was previously shown to evolve increased horizontal (infectious) transfer at the expense of reduced vertical (intergenerational) transfer and vice versa, a key trade-off assumed in theories of parasite virulence. Whereas the models predict that susceptible host abundance should determine which mode of transfer is selectively favored, host density failed to mediate the trade-off in pB15. One possibility is that the plasmid's transfer deviates from the assumption that horizontal spread (conjugation) occurs in direct proportion to cell density. I tested this hypothesis using Escherichia coli/pB15 associations in laboratory serial culture. Contrary to most models of plasmid transfer kinetics, my data show that pB15 invades static (nonshaking) bacterial cultures only at intermediate densities. The results can be explained by phenotypic plasticity in traits governing plasmid transfer. As cells become more numerous, the plasmid's conjugative transfer unexpectedly declines, while the trade-off between transmission routes causes vertical transfer to increase. Thus, at intermediate densities the plasmid's horizontal transfer can offset selection against plasmid-bearing cells, but at high densities pB15 conjugates so poorly that it cannot invade. I discuss adaptive vs. nonadaptive causes for the phenotypic plasticity, as well as potential mechanisms that may lead to complex transfer dynamics of plasmids in liquid environments. PMID:15166133

  14. PLASTIC SCINTILLATOR FOR RADIATION DOSIMETRY.

    Science.gov (United States)

    Kim, Yewon; Yoo, Hyunjun; Kim, Chankyu; Lim, Kyung Taek; Moon, Myungkook; Kim, Jongyul; Cho, Gyuseong

    2016-09-01

    Inorganic scintillators, composed of high-atomic-number materials such as the CsI(Tl) scintillator, are commonly used in commercially available a silicon diode and a scintillator embedded indirect-type electronic personal dosimeters because the light yield of the inorganic scintillator is higher than that of an organic scintillator. However, when it comes to tissue-equivalent dose measurements, a plastic scintillator such as polyvinyl toluene (PVT) is a more appropriate material than an inorganic scintillator because of the mass energy absorption coefficient. To verify the difference in the absorbed doses for each scintillator, absorbed doses from the energy spectrum and the calculated absorbed dose were compared. From the results, the absorbed dose of the plastic scintillator was almost the same as that of the tissue for the overall photon energy. However, in the case of CsI, it was similar to that of the tissue only for a photon energy from 500 to 4000 keV. Thus, the values and tendency of the mass energy absorption coefficient of the PVT are much more similar to those of human tissue than those of the CsI. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Network-timing-dependent plasticity

    Directory of Open Access Journals (Sweden)

    Vincent eDelattre

    2015-06-01

    Full Text Available Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP. In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD, with STDP-induced long-term potentiation and depression (LTP and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding.

  16. Network-timing-dependent plasticity.

    Science.gov (United States)

    Delattre, Vincent; Keller, Daniel; Perich, Matthew; Markram, Henry; Muller, Eilif B

    2015-01-01

    Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD), with STDP-induced long-term potentiation (LTP) and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding.

  17. [Galactorrhea after mammary plastic surgery].

    Science.gov (United States)

    Inguenault, C; Capon-Degardin, N; Martinot-Duquennoy, V; Pellerin, P

    2005-04-01

    Galactorrhoea is a complication rarely observed after mammary plastic surgery. Our experience in the domain extends to three clinical cases - two after prosthetic insertion and one after breast reduction - wich will be presented here. The origin of this complication is uncertain. Nevertheless, it is likely to be multifocal, as surgery alone is not the only cause. Postsurgical galactorrhoea often follows a benign course culminating in spontaneous resolution. However, it may reveal the presence of o prolactin secreting adenoma, as was the case with one of our patients. A detailed history, exploring antecedent factors, is an essential step in guiding subsequent management. When faced with postsurgical galactorrhoea, serum prolactin levels should be measured. If serum prolactin levels exceed 150 ng/ml further investigation by way of an MRI of the sella turcica is advisable to rule out pituitary adenoma. Depending on symptom severity, treatment may be medical with the prescription of dopaminergic agonists, and/or surgical with drainage or removal of prostheses. Increased awareness of galactorrhea as a possible complication of plastic surgery to the breast will improve management.

  18. Analysis of Flexural Behavior and Bearing Capacity of Steel Rebar-Reinforced Steel Fiber-Reinforced Self-Compacting Concrete Beams%钢筋-纤维自密实混凝土梁受弯性能与承载力分析

    Institute of Scientific and Technical Information of China (English)

    宁喜亮; 丁一宁

    2015-01-01

    Bending tests under four point loading were conducted on steel rebar-reinforced steel fiber-reinforced self-compacting concrete ( SFRSCC ) beams , and the corresponding loading-mid-span deflection curve , longitudinal reinforcement strain-longitudinal reinforcement strain curve and failure mode were obtained .The flexural bearing capacity of the beams and the hybrid effect of steel rebar and macro steel fibers were also examined .It is found that the addition of steel fibers can improve the flexural bearing capacity by 10%~42%.Moreover, by taking into ac-count the steel fiber distribution and its force transfer mechanism crossing the crack , a calculation formula is pro-posed to predict the flexural bearing capacity of the beams , and it is compared with the formulas of ACI 544 and CECS 38:2004.Calculation results show that the proposed formula has a better fit with the test results .Thus, it is suitable for the flexural analysis and design of SFRSCC beams .%通过四点弯曲试验得到钢筋-纤维自密实混凝土梁式构件的荷载-跨中挠度曲线、荷载-纵筋应变曲线和破坏形态,对梁式构件的受弯承载力及纤维与钢筋的混杂效应进行了分析。结果表明:钢纤维的加入使钢筋-纤维自密实混凝土梁式构件的抗弯承载力提高了10%~42%。考虑钢纤维跨越裂缝的传力机理及分布情况提出了钢筋-纤维混凝土梁式构件受弯承载力计算公式,并与ACI 544和CECS 38:2004的公式进行了对比,计算结果表明:文中建议公式计算的受弯承载力与试验结果最为接近,可用于钢筋-纤维自密实混凝土梁式构件的受弯分析与设计。

  19. The Experimental Study of Concrete Beams Reinforced with Different Types of Bars Carrying Capacity

    OpenAIRE

    Benin Andrey; Semenov Sergey; Ekaterina Bogdanova

    2016-01-01

    The results of experimental study on concrete beams reinforced with glass fiber reinforced plastic (GFRP) bars are presented and compared with steel reinforced concrete beams and beams reinforced with steel and GFRP bars together. Three series of reinforced beams were tested in the flexure. The experimental data are showed that possible area in which GFRP bar possesses potential to employ is secondary reinforcement in concrete structures.

  20. The Experimental Study of Concrete Beams Reinforced with Different Types of Bars Carrying Capacity

    Directory of Open Access Journals (Sweden)

    Benin Andrey

    2016-01-01

    Full Text Available The results of experimental study on concrete beams reinforced with glass fiber reinforced plastic (GFRP bars are presented and compared with steel reinforced concrete beams and beams reinforced with steel and GFRP bars together. Three series of reinforced beams were tested in the flexure. The experimental data are showed that possible area in which GFRP bar possesses potential to employ is secondary reinforcement in concrete structures.

  1. Melting the Plastic Ceiling: Overcoming Obstacles to Foster Leadership in Women Plastic Surgeons.

    Science.gov (United States)

    Silva, Amanda K; Preminger, Aviva; Slezak, Sheri; Phillips, Linda G; Johnson, Debra J

    2016-09-01

    The underrepresentation of women leaders in plastic surgery echoes a phenomenon throughout society. The importance of female leadership is presented, and barriers to gender equality in plastic surgery, both intrinsic and extrinsic, are discussed. Strategies for fostering women in leadership on an individual level and for the specialty of plastic surgery are presented.

  2. Motor cortical plasticity in Parkinson's disease.

    Science.gov (United States)

    Udupa, Kaviraja; Chen, Robert

    2013-09-04

    In Parkinson's disease (PD), there are alterations of the basal ganglia (BG) thalamocortical networks, primarily due to degeneration of nigrostriatal dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1), which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS) have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of l-DOPA-induced dyskinesias (LID), the plasticity protocol used, medication, and stimulation status in patients treated with deep brain stimulation (DBS). The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g., brain derived neurotropic factor and other neurotransmitters or receptors polymorphism), emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic, and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  3. Plastic Accumulation in the Mediterranean Sea

    Science.gov (United States)

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J. Ignacio; Ubeda, Bárbara; Gálvez, José Á.; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region. PMID:25831129

  4. Cyclic Plastic Deformation and Welding Simulation

    NARCIS (Netherlands)

    Ten Horn, C.H.L.J.

    2003-01-01

    One of the concerns of a fitness for purpose analysis is the quantification of the relevant material properties. It is known from experiments that the mechanical properties of a material can change due to a monotonic plastic deformation or a cyclic plastic deformation. For a fitness for purpose anal

  5. Nano-plastics in the aquatic environment.

    Science.gov (United States)

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  6. Reliability of Elasto-Plastic Structural Systems

    DEFF Research Database (Denmark)

    Delmar, M. V.; Sørensen, John Dalsgaard

    1990-01-01

    This paper proposes a method for generating safety margins and failure mode equations for elasto-plastic structures where interaction of load effects is taken into account. Structural failure is defined by large nodal displacements or plastic collapse. A branch-and-bound technique is used...

  7. Marine Debris and Plastic Source Reduction Toolkit

    Science.gov (United States)

    Many plastic food service ware items originate on college and university campuses—in cafeterias, snack rooms, cafés, and eateries with take-out dining options. This Campus Toolkit is a detailed “how to” guide for reducing plastic waste on college campuses.

  8. Demonstrating Fluorescence with Neon Paper and Plastic

    Science.gov (United States)

    Birriel, Jennifer J.; Roe, Clarissa

    2015-01-01

    Several papers in this journal have dealt with the fluorescence in orange neon plastic, olive oil, and soda. In each case, the fluorescent emission was excited by either green or violet-blue laser light. In this paper, we examine the fluorescent emission spectra of so-called neon colored papers and plastic clipboards available in department and…

  9. Developments in Plasticity Approach to Shear

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1999-01-01

    The paper deals with plastic methods applied to shear design of reinforced concrete beams. Emphasis is put on the recently developed crack sliding model applicable to non-shear reinforced and lightly shear reinforced beams and slabs. The model, which is an upper bound plasticity approach, takes...

  10. Plasticity under rough surface contact and friction

    NARCIS (Netherlands)

    Sun, F.

    2016-01-01

    The ultimate objective of this work is to gain a better understanding of the plastic behavior of rough metal surfaces under contact loading. Attention in this thesis focuses on the study of single and multiple asperities with micrometer scale dimensions, a scale at which plasticity is known to be si

  11. Biological degradation of plastics: a comprehensive review.

    Science.gov (United States)

    Shah, Aamer Ali; Hasan, Fariha; Hameed, Abdul; Ahmed, Safia

    2008-01-01

    Lack of degradability and the closing of landfill sites as well as growing water and land pollution problems have led to concern about plastics. With the excessive use of plastics and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Awareness of the waste problem and its impact on the environment has awakened new interest in the area of degradable polymers. The interest in environmental issues is growing and there are increasing demands to develop material which do not burden the environment significantly. Biodegradation is necessary for water-soluble or water-immiscible polymers because they eventually enter streams which can neither be recycled nor incinerated. It is important to consider the microbial degradation of natural and synthetic polymers in order to understand what is necessary for biodegradation and the mechanisms involved. This requires understanding of the interactions between materials and microorganisms and the biochemical changes involved. Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. This paper reviews the current research on the biodegradation of biodegradable and also the conventional synthetic plastics and also use of various techniques for the analysis of degradation in vitro.

  12. Plastic accumulation in the Mediterranean sea.

    Directory of Open Access Journals (Sweden)

    Andrés Cózar

    Full Text Available Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2, as well as its frequency of occurrence (100% of the sites sampled, are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  13. Plastic accumulation in the Mediterranean sea.

    Science.gov (United States)

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J Ignacio; Ubeda, Bárbara; Gálvez, José Á; Irigoien, Xabier; Duarte, Carlos M

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  14. Constraints on the evolution of phenotypic plasticity

    DEFF Research Database (Denmark)

    Murren, Courtney J; Auld, Josh R.; Callahan, Hilary S

    2015-01-01

    Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an opti...

  15. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    Science.gov (United States)

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...

  16. Plastic zonder olie : lesmodule voor nieuwe scheikunde

    NARCIS (Netherlands)

    Langejan, B.; Klein Douwel, C.; Horst, ter J.J.; Tijdink, K.; Marle, van N.; Klaasen, P.; Coolen, R.; Assenbergh, van P.; Sijbers, J.P.J.; Mast, A.

    2013-01-01

    Lesmodule voor nieuwe scheikunde voor leerlingen uit 5 en 6 vwo. Bioplastics worden gemaakt uit natuurlijke grondstoffen. Als ze de synthetische plastics vervangen kan de voorraad aardolie ontzien worden. Omdat veel bioplastics afbreekbaar zijn, kan ook de berg plastic afval krimpen. Maar zijn biopl

  17. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.

    2007-01-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic inst

  18. Integrating Hebbian and homeostatic plasticity: introduction.

    Science.gov (United States)

    Fox, Kevin; Stryker, Michael

    2017-03-05

    Hebbian plasticity is widely considered to be the mechanism by which information can be coded and retained in neurons in the brain. Homeostatic plasticity moves the neuron back towards its original state following a perturbation, including perturbations produced by Hebbian plasticity. How then does homeostatic plasticity avoid erasing the Hebbian coded information? To understand how plasticity works in the brain, and therefore to understand learning, memory, sensory adaptation, development and recovery from injury, requires development of a theory of plasticity that integrates both forms of plasticity into a whole. In April 2016, a group of computational and experimental neuroscientists met in London at a discussion meeting hosted by the Royal Society to identify the critical questions in the field and to frame the research agenda for the next steps. Here, we provide a brief introduction to the papers arising from the meeting and highlight some of the themes to have emerged from the discussions.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'. © 2017 The Author(s).

  19. 7 CFR 58.348 - Plastic cream.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Plastic cream. 58.348 Section 58.348 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Products Bearing Usda Official Identification § 58.348 Plastic cream. The flavor shall be sweet,...

  20. Medical leech therapy in plastic reconstructive surgery.

    Science.gov (United States)

    Houschyar, Khosrow S; Momeni, Arash; Maan, Zeshaan N; Pyles, Malcolm N; Jew, Olivia S; Strathe, Marion; Michalsen, Andreas

    2015-10-01

    The use of Hirudo medicinalis in clinical practice has increased in recent years. The primary indication in plastic surgery has traditionally been venous congestion. However, other reported clinical applications were in varicose veins, thrombophlebitis, and osteoarthritis. In this review, we summarize recent data elucidating the role that medicinal leeches play in the field of plastic surgery.

  1. Plastic Accumulation in the Mediterranean Sea

    KAUST Repository

    Cózar, Andrés

    2015-04-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  2. Gas Property Demonstrations Using Plastic Water Bottles

    Science.gov (United States)

    Campbell, Dean J.; Bannon, Stephen J.; Gunter, Molly M.

    2011-01-01

    Plastic water bottles are convenient containers for demonstrations of gas properties illustrating Boyle's law, Charles's law, and Avogadro's law. The contents of iron-based disposable hand warmer packets can be used to remove oxygen gas from the air within an unfilled plastic water bottle.

  3. Plastic soep komt op ons bord

    NARCIS (Netherlands)

    Franeker, van J.A.

    2011-01-01

    De wereldwijd verspreide 'soep' van kleine plastic deeltjes in zeeën en oceanen vormt een omvangrijk mondiaal milieuprobleem. Niet alleen leidt het plastic tot verstrikking en verstopping bij vogels en vissen, ook brengt de giftigheid van de materie de voedselketen in gevaar. Om te voorkomen dat die

  4. Candidate genes in ocular dominance plasticity

    NARCIS (Netherlands)

    M.L. Rietman; J.-P. Sommeijer; C.N. Levelt; J.A. Heimel; A.B. Brussaard; J.G.G. Borst; Y. Elgersma; N. Galjart; G.T. van der Horst; C.M. Pennartz; A.B. Smit; B.M. Spruijt; M. Verhage; C.I. de Zeeuw

    2012-01-01

    Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated

  5. The Genetics of Phenotypic Plasticity. XIV. Coevolution.

    Science.gov (United States)

    Scheiner, Samuel M; Gomulkiewicz, Richard; Holt, Robert D

    2015-05-01

    Plastic changes in organisms' phenotypes can result from either abiotic or biotic effectors. Biotic effectors create the potential for a coevolutionary dynamic. Through the use of individual-based simulations, we examined the coevolutionary dynamic of two species that are phenotypically plastic. We explored two modes of biotic and abiotic interactions: ecological interactions that determine the form of natural selection and developmental interactions that determine phenotypes. Overall, coevolution had a larger effect on the evolution of phenotypic plasticity than plasticity had on the outcome of coevolution. Effects on the evolution of plasticity were greater when the fitness-maximizing coevolutionary outcomes were antagonistic between the species pair (predator-prey interactions) than when those outcomes were augmenting (competitive or mutualistic). Overall, evolution in the context of biotic interactions reduced selection for plasticity even when trait development was responding to just the abiotic environment. Thus, the evolution of phenotypic plasticity must always be interpreted in the full context of a species' ecology. Our results show how the merging of two theory domains--coevolution and phenotypic plasticity--can deepen our understanding of both and point to new empirical research.

  6. Regulatory mechanisms link phenotypic plasticity to evolvability

    NARCIS (Netherlands)

    van Gestel, Jordi; Weissing, Franz J

    2016-01-01

    Organisms have a remarkable capacity to respond to environmental change. They can either respond directly, by means of phenotypic plasticity, or they can slowly adapt through evolution. Yet, how phenotypic plasticity links to evolutionary adaptability is largely unknown. Current studies of plasticit

  7. Plastic soep komt op ons bord

    NARCIS (Netherlands)

    Franeker, van J.A.

    2011-01-01

    De wereldwijd verspreide 'soep' van kleine plastic deeltjes in zeeën en oceanen vormt een omvangrijk mondiaal milieuprobleem. Niet alleen leidt het plastic tot verstrikking en verstopping bij vogels en vissen, ook brengt de giftigheid van de materie de voedselketen in gevaar. Om te voorkomen dat die

  8. Demonstrating Fluorescence with Neon Paper and Plastic

    Science.gov (United States)

    Birriel, Jennifer J.; Roe, Clarissa

    2015-01-01

    Several papers in this journal have dealt with the fluorescence in orange neon plastic, olive oil, and soda. In each case, the fluorescent emission was excited by either green or violet-blue laser light. In this paper, we examine the fluorescent emission spectra of so-called neon colored papers and plastic clipboards available in department and…

  9. Bibliometric trend analyses of plastic surgery research

    NARCIS (Netherlands)

    Loonen, M.P.J.

    2007-01-01

    The present thesis was designed to evaluate the qualitative and quantitative aspects of plastic surgery research by means of a bibliometric citation analysis of plastic surgical presentations and publications. Citations to such published work provides an indication of the impact and the relevance of

  10. Bibliometric trend analyses of plastic surgery research

    NARCIS (Netherlands)

    Loonen, M.P.J.

    2007-01-01

    The present thesis was designed to evaluate the qualitative and quantitative aspects of plastic surgery research by means of a bibliometric citation analysis of plastic surgical presentations and publications. Citations to such published work provides an indication of the impact and the relevance of

  11. LPG based all plastic pressure sensor

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Lwin, R.; Leon-Saval, S.

    2015-01-01

    A prototype all-plastic pressure sensor is presented and characterized for potential use as an endoscope. The sensor is based on Long Period Gratings (LPG) inscribed with a CO2 laser in 6-ring microstructured PMMA fiber. Through a latex coated, plastic 3D-printed transducer pod, external pressure...

  12. Circuit design on plastic foils

    CERN Document Server

    Raiteri, Daniele; Roermund, Arthur H M

    2015-01-01

    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  13. The Plastic Tension Field Method

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    . The emphasis is attached to the presentation of a design method based on the diagonal tension field theory. Also, how to determine the load-carrying capacity of a given steel plate girder with transverse web stiffeners, is briefly presented. The load-carrying capacity may be predicted by applying both...... method. The method is based on the theory of plasticity and is analogous to the so-called diagonal compression field method developed for reinforced concrete beams with transverse stirrups, which is adopted in the common European concrete code (Eurocode 2). Many other theories have been developed......, but the method presented differs from these theories by incorporating the strength of the transverse stiffeners and by the assumption that the tensile bands may pass the transverse stiffeners, which often is observed in tests. Other methods have only dealt with a single web field between two stiffeners...

  14. [Cortical plasticity in blind individual].

    Science.gov (United States)

    Wang, Shu-zhen; Zhu, Si-quan

    2008-10-01

    The cognitive mechanisms and functional brain imaging research on blind individuals provide special information for exploring the plasticity of the developing human brain. This paper focuses on five aspects of recent progress in this field: (1) the behavior compensation of the blind; (2) the influence of early visual deprivation and later visual deprivation on cross-modal reorganization; (3) the relationship between the complexity of task requirement and cross-modal reorganization; (4) the relationship between the sensitive periods of the visual system and the time course of cross-modal reorganization; (5) the neural mechanisms of cross-modal reorganization. These findings contribute greatly to the theoretical basis of the rehabilitation of individuals with perceptual deficits.

  15. Time between plastic displacements of elasto-plastic oscillators subject to Gaussian white noise

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Ditlevsen, Ove Dalager

    2001-01-01

    A one degree of freedom elasto-plastic oscillator subject to stationary Gaussian white noise has a plastic displacement response process of intermittent character. During shorter or longer time intervals the oscillator vibrates within the elastic domain without undergoing any plastic displacements....... These pieces of elastic response cannot be distinguished from conditional Gaussian response samples given that they are within the elasticity limits. Therefore, suitable Gaussian process theory can be applied to these pieces. Typically the plastic displacements occur in clumps of random plastic displacements...

  16. Evolutionary plasticity of insect immunity.

    Science.gov (United States)

    Vilcinskas, Andreas

    2013-02-01

    Many insect genomes have been sequenced and the innate immune responses of several species have been studied by transcriptomics, inviting the comparative analysis of immunity-related genes. Such studies have demonstrated significant evolutionary plasticity, with the emergence of novel proteins and protein domains correlated with insects adapting to both abiotic and biotic environmental stresses. This review article focuses on effector molecules such as antimicrobial peptides (AMPs) and proteinase inhibitors, which display greater evolutionary dynamism than conserved components such as immunity-related signaling molecules. There is increasing evidence to support an extended role for insect AMPs beyond defense against pathogens, including the management of beneficial endosymbionts. The total number of AMPs varies among insects with completed genome sequences, providing intriguing examples of immunity gene expansion and loss. This plasticity is discussed in the context of recent developments in evolutionary ecology suggesting that the maintenance and deployment of immune responses reallocates resources from other fitness-related traits thus requiring fitness trade-offs. Based on our recent studies using both model and non-model insects, I propose that insect immunity genes can be lost when alternative defense strategies with a lower fitness penalty have evolved, such as the so-called social immunity in bees, the chemical sanitation of the microenvironment by some beetles, and the release of antimicrobial secondary metabolites in the hemolymph. Conversely, recent studies provide evidence for the expansion and functional diversification of insect AMPs and proteinase inhibitors to reflect coevolution with a changing pathosphere and/or adaptations to habitats or food associated with microbial contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. AUGMENTATION-RELATED BRAIN PLASTICITY

    Directory of Open Access Journals (Sweden)

    Giovanni eDi Pino

    2014-06-01

    Full Text Available Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyzes the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain.Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools.Augmentation modifies function and structure of a number of areas, i.e. primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the

  18. [Survey of plasticizers in polyvinyl chloride toys].

    Science.gov (United States)

    Abe, Yutaka; Yamaguchi, Miku; Mutsuga, Motoh; Hirahara, Yoshichika; Kawamura, Yoko

    2012-01-01

    Plasticizers in 101 samples of polyvinyl chloride (PVC) toys on the Japanese market were surveyed. No phthalates were detected in designated toys, though bis(2-ethylhexyl)phthalate, diisononyl phthalate, diisobutyl phthalate, dibutyl phthalate, diisodecyl phthalate and benzyl butyl phthalate were detected in more than half of other toys. 2,2,4-Tributyl-1,3-pentanediol diisobutylate, o-acetyl tributyl citrate, adipates and diacetyl lauroyl glycerol, which are alternative plasticizers to phthalates, were detected. The results of structural analysis confirmed the presence of di(2-ethylhexyl)terephthalate, tributyl citrate, diisononyl 1,2-cyclohexanedicarboxylate and neopentyl glycol esters; these have not previonsly been reported in Japan. There appears to be a shift in plasticizers used for designated toys from phthalates to new plasticizers, and the number of different plasticizers is increasing.

  19. Phyllosphere yeasts rapidly break down biodegradable plastics.

    Science.gov (United States)

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-11-29

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.

  20. Nanoparticles from Degradation of Biodegradable Plastic Mulch

    Science.gov (United States)

    Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean

    2017-04-01

    Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.

  1. Plasticity of pressure-sensitive materials

    CERN Document Server

    Ochsner, Andreas

    2014-01-01

    Classical plasticity theory of metals is independent of the hydrostatic pressure. However, if the metal contains voids or pores or if the structure is composed of cells, this classical assumption is no more valid and the influence of the hydrostatic pressure must be incorporated in the constitutive description. Looking at the microlevel, metal plasticity is connected with the uniform planes of atoms organized with long-range order. Planes may slip past each other along their close-packed directions. The result is a permanent change of shape within the crystal and plastic deformation. The presence of dislocations increases the likelihood of planes slipping. Nowadays, the theory of pressure sensitive plasticity is successfully applied to many other important classes of materials (polymers, concrete, bones etc.) even if the phenomena on the micro-level are different to classical plasticity of metals. The theoretical background of this phenomenological approach based on observations on the macro-level is describe...

  2. Migration of plasticizer between bonded propellant interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, Levi; Bar, Sigalit [RAFAEL, Department M1, POB 2250, Haifa 31021 (Israel)

    2003-02-01

    Plasticizer migration across bonded propellant interfaces during cure has been shown to have a measurable effect on propellant properties compared to each propellant by itself. This shows that the curing period is significant to the migration phenomenon. The plasticizer migration has been shown to have a direct influence on tensile strength for short aging periods up to the point the plasticizer reaches equilibrium. The tensile data for short aging periods have been shown to follow an empirical equation connecting the physical characteristics of plasticizer migration with increasing propellant tensile strength. The diffusion coefficient has been evaluated on the basis of this relation from a plot of {sigma}{sup m}{sub t} versus t{sup 1/2} and was in good agreement with the diffusion coefficient from the plasticizer content data. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  3. Plastics and environmental health: the road ahead.

    Science.gov (United States)

    North, Emily J; Halden, Rolf U

    2013-01-01

    Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.

  4. Plastics and Environmental Health: The Road Ahead

    Science.gov (United States)

    North, Emily J.; Halden, Rolf U.

    2013-01-01

    Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including endocrine-disrupting properties and long-term pollution. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials – such as metal or glass – and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications, such as disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by widespread, unwanted human exposure to endocrine-disrupting bisphenol-A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of ever increasing mass-production of plastic consumer articles. By example of the healthcare sector, this review concentrates on benefits and downsides of plastics and identities opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the healthcare and food industry, and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process. PMID:23337043

  5. Knowledge and perception of plastic surgery among tertiary ...

    African Journals Online (AJOL)

    2015-10-16

    Oct 16, 2015 ... in that facility. The most common ... surgeons and known facilities for facial plastic surgery. Even though ... Location of plastic surgery services. Knowledge of ... decisions, actions, and acceptance of the entity. Plastic surgery ...

  6. Prevalence and characteristics of plastic ingested by Hawaiian seabirds

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Production of plastic products and dumping of plastic garbage in the ocean have increased dramatically in the past 25 years. Plastic ingestion has not been reported...

  7. The genetics of phenotypic plasticity. XI. Joint evolution of plasticity and dispersal rate.

    Science.gov (United States)

    Scheiner, Samuel M; Barfield, Michael; Holt, Robert D

    2012-08-01

    In a spatially heterogeneous environment, the rate at which individuals move among habitats affects whether selection favors phenotypic plasticity or genetic differentiation, with high dispersal rates favoring trait plasticity. Until now, in theoretical explorations of plasticity evolution, dispersal rate has been treated as a fixed, albeit probabilistic, characteristic of a population, raising the question of what happens when the propensity to disperse and trait plasticity are allowed to evolve jointly. We examined the effects of their joint evolution on selection for plasticity using an individual-based computer simulation model. In the model, the environment consisted of a linear gradient of 50 demes with dispersal occurring either before or after selection. Individuals consisted of loci whose phenotypic expression either are affected by the environment (plastic) or are not affected (nonplastic), plus a locus determining the propensity to disperse. When dispersal rate and trait plasticity evolve jointly, the system tends to dichotomous outcomes of either high trait plasticity and high dispersal, or low trait plasticity and low dispersal. The outcome strongly depended on starting conditions, with high trait plasticity and dispersal favored when the system started at high values for either trait plasticity or dispersal rate (or both). Adding a cost of plasticity tended to drive the system to genetic differentiation, although this effect also depended on initial conditions. Genetic linkage between trait plasticity loci and dispersal loci further enhanced this strong dichotomy in evolutionary outcomes. All of these effects depended on organismal life history pattern, and in particular whether selection occurred before or after dispersal. These results can explain why adaptive trait plasticity is less common than might be expected.

  8. Caracterização de tubo e adesivo utilizados em tubulações de plástico reforçado com fibras de vidro aplicados em plataformas marítimas Characterization of pipes and adhesives of glassfiber reinforced plastics used in offshore platforms

    Directory of Open Access Journals (Sweden)

    Maikon C. R. Pessanha

    2008-03-01

    Full Text Available Na indústria de exploração e produção de petróleo, principalmente no setor offshore, os plásticos reforçados por fibras de vidro (PRFV têm apresentado grande destaque. Isso se deve à intrínseca capacidade destes de resistir à corrosão em ambientes salinos, bem como serem materiais que apresentam elevada resistência mecânica específica. O presente trabalho buscou caracterizar tubo e adesivo utilizados em plataformas marítimas. Para tanto, as técnicas utilizadas foram: espectroscopia na região do infravermelho com transformada de Fourier (FTIR, análise termogravimétrica (TGA, análise termodinâmico-mecânica (DMTA e temperatura de amolecimento de Vicat. Amostras do tubo de PRFV e dos componentes do adesivo (denominados de A e B foram estudadas individualmente. Além disso, foram confeccionadas misturas, em massa, nas seguintes proporções: 40%A-60%B, 50%A-50%B e 60%A-40%B. Foi possível determinar a composição e a estrutura química dos materiais, além do comportamento mecânico à degradação térmica. Foi verificado que adesivo e tubo apresentaram desempenho satisfatório à temperatura ambiente quanto à degradação e à rigidez. Por outro lado, quando submetido ao calor, principalmente os adesivos, apresentaram queda brusca de desempenho.Glassfiber reinforced plastics (GFRP have been applied in the offshore industry owing to their high resistance to corrosion and high specific mechanical strength. The present work aimed at characterizing pipes and adhesives used in offshore platforms in order to evaluate the thermo-mechanical performance of these materials. The techniques used were: Fourier transform infrared spectroscopy (FTIR, thermogravimetry analysis (TGA, dynamic mechanical thermal analysis (DMTA and Vicat softening temperature. Specimens of GFRP pipe and adhesive components (referred to as A and B were evaluated individually. The adhesive samples were made in the following ratios (% weight: 40%A-60%B, 50%A-50

  9. Aktau Plastics Plant Explosives Material Report

    Energy Technology Data Exchange (ETDEWEB)

    CASE JR.,ROGER S.

    1999-12-01

    The U.S. Department of Energy (DOE) has been cooperating with the Republic of Kazakhstanin Combined Threat Reduction (CTR) activities at the BN350 reactor located at the Mangyshlak Atomic Energy Complex (MAEC) in the city of Aktau, Kazakhstan since 1994. DOE contract personnel have been stationed at this facility for the last two years and DOE representatives regularly visit this location to oversee the continuing cooperative activities. Continued future cooperation is planned. A Russian news report in September 1999 indicated that 75 metric tons of organic peroxides stored at the Plastics Plant near Aktau were in danger of exploding and killing or injuring nearby residents. To ensure the health and safety of the personnel at the BN350 site, the DOE conducted a study to investigate the potential danger to the BN350 site posed by these materials at the Plastics Plant. The study conclusion was that while the organic peroxides do have hazards associated with them, the BN350 site is a safe distance from the Plastics Plant. Further, because the Plastics Plant and MAEC have cooperative fire-fighting agreements,and the Plastics Plant had exhausted its reserve of fire-fighting foam, there was the possibility of the Plastics Plant depleting the store of fire-fighting foam at the BN350 site. Subsequently, the DOE decided to purchase fire-fighting foam for the Plastics Plant to ensure the availability of free-fighting foam at the BN350 site.

  10. Generalized Plastic Mechanics and Its Application

    Institute of Scientific and Technical Information of China (English)

    Zheng Yingren; Kong Liang

    2006-01-01

    The development of geotechnical plasticity is reviewed and some problems of applying the classical plastic mechanics (CPM) to geomaterials are analyzed, and then CPM's three hypotheses not fitted the deformation mechanism of geomaterials are pointed out. By giving up the three hypotheses, a generalized plastic potential theory can be obtained from solid mechanics directly, and then the traditional plastic mechanics can be changed to a more generalized plastic mechanics, namely generalized plastic mechanics (GPM). The GPM adopts the component theory as theoretical base, so it can reflect the influence of transition of stress path. The unreasonable phenomena such as excessive dilatancy caused by adopting the normality-flow law can be avoided, and the error caused by the arbitrary assumption of plastic potential surfaces cannot be produced. The yield surface theory, hardening laws and stress-strain relations of GPM are given, and a GPM including the rotation of principal stress axes is also established. It is pointed out that the yield condition is a state parameter as well as a test parameter, and it can only be given by test. After the practical application, it is shown that the GPM cannot only be applied to the modeling theory of geomaterials but also to other fields of geomechanics such as limit analysis.

  11. Ion radiation damage in plastic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M

    2006-07-01

    Plastic detectors are widely used for particle identification, micro pore and nano pore technology, neutron, gamma, radon and electron dosimeters. For some applications, plastic detectors have unique advantages among electronic detectors as 4 solid angles for ion identification in nuclear and cosmic ray physics; low-cost for massive use in indoors radon and neutron dosimeters; wide dose-range response for gamma and electron dosimetry; easy to use detectors in active geological faults in prospecting geothermal energy etc. There is a grate diversity of plastic detectors, which further improves their use in a particular application. However, the comparison test between different kinds of plastics can be time consuming, being therefore necessary to have methods for rapidly assessing plastic detectors properties. This invited talk deals in the first part with overview applications in Mexico of plastic detectors mentioned in the first paragraph. In the second part presents a general experimental relationship between the diameter-grow of positive ions tracks in several plastics for light ions, that allow to compare their energy resolution and to predict the track diameter of isotopes beams, as well as to predict the uniformity of micro pores. The formation of Nano pores produced by {sup 238} U ions is also discussed. (Author)

  12. Plastic debris in the open ocean

    Science.gov (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  13. Phenotypic plasticity and diversity in insects.

    Science.gov (United States)

    Moczek, Armin P

    2010-02-27

    Phenotypic plasticity in general and polyphenic development in particular are thought to play important roles in organismal diversification and evolutionary innovation. Focusing on the evolutionary developmental biology of insects, and specifically that of horned beetles, I explore the avenues by which phenotypic plasticity and polyphenic development have mediated the origins of novelty and diversity. Specifically, I argue that phenotypic plasticity generates novel targets for evolutionary processes to act on, as well as brings about trade-offs during development and evolution, thereby diversifying evolutionary trajectories available to natural populations. Lastly, I examine the notion that in those cases in which phenotypic plasticity is underlain by modularity in gene expression, it results in a fundamental trade-off between degree of plasticity and mutation accumulation. On one hand, this trade-off limits the extent of plasticity that can be accommodated by modularity of gene expression. On the other hand, it causes genes whose expression is specific to rare environments to accumulate greater variation within species, providing the opportunity for faster divergence and diversification between species, compared with genes expressed across environments. Phenotypic plasticity therefore contributes to organismal diversification on a variety of levels of biological organization, thereby facilitating the evolution of novel traits, new species and complex life cycles.

  14. MODULATING EXCITATION THROUGH PLASTICITY AT INHIBITORY SYNAPSES

    Directory of Open Access Journals (Sweden)

    Vivien eChevaleyre

    2014-03-01

    Full Text Available Learning is believed to depend on lasting changes in synaptic efficacy such as long-term potentiation and long-term depression. As a result, a profusion of studies has tried to elucidate the mechanisms underlying these forms of plasticity. Traditionally, experience-dependent changes at excitatory synapses were assumed to underlie learning and memory formation. However, with the relatively more recent investigation of inhibitory transmission, it had become evident that inhibitory synapses are not only plastic, but also provide an additional way to modulate excitatory transmission and the induction of plasticity at excitatory synapses.Thanks to recent technological advances, progress has been made in understanding synaptic transmission and plasticity from particular interneuron subtypes. In this review article, we will describe various forms of synaptic plasticity that have been ascribed to two fairly well characterized populations of interneurons in the hippocampus, those expressing cholecystokinin (CCK and parvalbumin (PV. We will discuss the resulting changes in the strength and plasticity of excitatory transmission that occur in the local circuit as a result of the modulation of inhibitory transmission. We will focus on the hippocampus because this region has a relatively well-understood circuitry, numerous forms of activity-dependent plasticity and a multitude of identified interneuron subclasses.

  15. Plastic debris in the open ocean.

    Science.gov (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M

    2014-07-15

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  16. Surface properties of beached plastic pellets.

    Science.gov (United States)

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2012-10-01

    The presence of pollutants on plastic debris is an emerging environmental hot topic. Understanding the surface alteration of plastics while in the marine environment increases our understanding of the pollutant-plastic debris interaction. Plastic pellets are widely distributed throughout the world oceans. Eroded and virgin polyethylene (PE) and polypropylene (PP) pellets were studied for their surface properties to better understand the interaction between plastic and compounds in marine environment. Surface properties such as point of zero charge, surface area and pore volume, surface topography, functional groups and acid-base behavior are important factors which affect sorption. Virgin plastic pellets had homogeneous smooth surfaces that do not have any acid-base behavior. Eroded PE demonstrates an altered surface that at seawater pH acquires a negative charge due to ketone groups. The uneven surface and possible functional groups could have been formed from the erosion processes while floating at the sea surface and might explain the interaction of eroded plastics with microbes and metals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Plastic debris in the open ocean

    KAUST Repository

    Cozar, Andres

    2014-06-30

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  19. Plasticity predicts evolution in a marine alga.

    Science.gov (United States)

    Schaum, C Elisa; Collins, Sinéad

    2014-10-22

    Under global change, populations have four possible responses: 'migrate, acclimate, adapt or die' (Gienapp et al. 2008 Climate change and evolution: disentangling environmental and genetic response. Mol. Ecol. 17, 167-178. (doi:10.1111/j.1365-294X.2007.03413.x)). The challenge is to predict how much migration, acclimatization or adaptation populations are capable of. We have previously shown that populations from more variable environments are more plastic (Schaum et al. 2013 Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature 3, 298-230. (doi:10.1038/nclimate1774)), and here we use experimental evolution with a marine microbe to learn that plastic responses predict the extent of adaptation in the face of elevated partial pressure of CO2 (pCO2). Specifically, plastic populations evolve more, and plastic responses in traits other than growth can predict changes in growth in a marine microbe. The relationship between plasticity and evolution is strongest when populations evolve in fluctuating environments, which favour the evolution and maintenance of plasticity. Strikingly, plasticity predicts the extent, but not direction of phenotypic evolution. The plastic response to elevated pCO2 in green algae is to increase cell division rates, but the evolutionary response here is to decrease cell division rates over 400 generations until cells are dividing at the same rate their ancestors did in ambient CO2. Slow-growing cells have higher mitochondrial potential and withstand further environmental change better than faster growing cells. Based on this, we hypothesize that slow growth is adaptive under CO2 enrichment when associated with the production of higher quality daughter cells.

  20. What are the limits to cell plasticity?

    Institute of Scientific and Technical Information of China (English)

    Jane Taylor; Ian Wilmut; Gareth Sullivan

    2010-01-01

    @@ It is now well established that the fate of a somatic cell is not fixed rigidly and that there is a significant degree of cell plasticity. The term plasticity refers to the opportunity to change differentiated cells from one cell type to another. Over the past 25 years a series of papers have each demonstrated that plasticity is wider than had previously been under-stood [1-4]. An exciting recent article by Thomas Vierbuchen and colleagues at Stanford University extended that series by describing a method for directly re-programming mouse fibroblast cells into neurons without the need to generate a stem cell intermediary.

  1. Functional nanostructures on injection molded plastic

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Søgaard, Emil; Andersen, Nis Korsgaard

    Nanotechnology can be used to make inexpensive plastic parts with functional surfaces. The plastic parts can be molded using a standard injection molding process. The nanostructures are directly transferred from the surface of the molding tool to the surface of the molded plastic part during...... the molding process. The main advantage with this method is that surface treatments and chemical additives are avoided, which minimizes health risks and simplifies recycling. Another advantage is that the unique technology enables nanostructuring of free form molded parts. The functional surfaces can have...

  2. Making environmental sensors on plastic foil

    Directory of Open Access Journals (Sweden)

    Danick Briand

    2011-09-01

    Full Text Available With the emergence of the printed electronics industry, the development of sensing technologies on non conventional substrates such as plastic foils is on-going. In this article, we review the work performed and the trends in the development of environmental sensors on plastic and flexible foils. Our main focus is on the integration of temperature, humidity, and gas sensors on plastic substrates targeting low-power operation for wireless applications. Some perspectives in this dynamic field are also provided showing the potential for the realization of several types of transducers on substrates of different natures and their combination with other components to realize smart systems.

  3. Cooling simulation of plastic injection molding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Analyses the cooling of mold and plastic part during injectionmolding and the continued cooling of plastic part after being ejected from mold using the heat transfer theory and Boundary Element Method (BEM) to predict the temperature distribution in both mold and plastic part,and presents the experiments carried out with plates of ABS (Acrylonitrile-Butadiene-Styrene) to verify the validity of the cooling analysis software used to simulate the temperature distribution in ABS plate parts, and concludes that the analysis software agree qualitatively well with actual experimental findings.

  4. Phenotypic plasticity's impacts on diversification and speciation.

    Science.gov (United States)

    Pfennig, David W; Wund, Matthew A; Snell-Rood, Emilie C; Cruickshank, Tami; Schlichting, Carl D; Moczek, Armin P

    2010-08-01

    Phenotypic plasticity (the ability of a single genotype to produce multiple phenotypes in response to variation in the environment) is commonplace. Yet its evolutionary significance remains controversial, especially in regard to whether and how it impacts diversification and speciation. Here, we review recent theory on how plasticity promotes: (i) the origin of novel phenotypes, (ii) divergence among populations and species, (iii) the formation of new species and (iv) adaptive radiation. We also discuss the latest empirical support for each of these evolutionary pathways to diversification and identify potentially profitable areas for future research. Generally, phenotypic plasticity can play a largely underappreciated role in driving diversification and speciation.

  5. Plasticity in Ultra Fine Grained Materials

    Energy Technology Data Exchange (ETDEWEB)

    Koslowski, Marisol [Purdue Univ., West Lafayette, IN (United States)

    2015-04-15

    Understanding the mechanisms of deformation of nanocrystalline (nc) materials is critical to the design of micro and nano devices and to develop materials with superior fracture strength and wear resistance for applications in new energy technologies. In this project we focused on understanding the following plastic deformation processes described in detail in the following sections: 1. Plastic strain recovery (Section 1). 2. Effect of microstructural variability on the yield stress of nc metals (Section 2). 3. The role of partial and extended full dislocations in plastic deformation of nc metals (Section 3).

  6. PLASTICITY IN THE ADULT CENTRAL AUDITORY SYSTEM.

    Science.gov (United States)

    Irvine, Dexter R F; Fallon, James B; Kamke, Marc R

    2006-04-01

    The central auditory system retains into adulthood a remarkable capacity for plastic changes in the response characteristics of single neurons and the functional organization of groups of neurons. The most dramatic examples of this plasticity are provided by changes in frequency selectivity and organization as a consequence of either partial hearing loss or procedures that alter the significance of particular frequencies for the organism. Changes in temporal resolution are also seen as a consequence of altered experience. These forms of plasticity are likely to contribute to the improvements exhibited by cochlear implant users in the post-implantation period.

  7. PLASTICITY IN THE ADULT CENTRAL AUDITORY SYSTEM

    Science.gov (United States)

    Irvine, Dexter R. F.; Fallon, James B.; Kamke, Marc R.

    2007-01-01

    The central auditory system retains into adulthood a remarkable capacity for plastic changes in the response characteristics of single neurons and the functional organization of groups of neurons. The most dramatic examples of this plasticity are provided by changes in frequency selectivity and organization as a consequence of either partial hearing loss or procedures that alter the significance of particular frequencies for the organism. Changes in temporal resolution are also seen as a consequence of altered experience. These forms of plasticity are likely to contribute to the improvements exhibited by cochlear implant users in the post-implantation period. PMID:17572797

  8. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof;

    The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation the dislocations are all of edge character and are modelled as line...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  9. A Plastic Bottle in Rectosigmoid

    Directory of Open Access Journals (Sweden)

    A. Derakhshanfar

    2007-07-01

    Full Text Available Introduction: Evaluation and treatment of foreign bodies in rectum involves careful history and physical examination. The cases of forced introduction of the objects most commonly are , sexual assault , self – introduced for anal eroticism and accidental insertion.Case Report: We describe a case of a patient with rectal impaction following self administration of a plastic bottle for anal sexual gratification. A 49 years old man was admitted in the emergency department with the history of self introduced a bottle into his rectum physical examination and abdominal X-Ray diagnosed the case as impacted foreign body in rectosigmoid. An attempt was made to deliver the bottle through the rectum but because of high lying big bottle in the sigmoid laporotomy was performed and the bottle was removed though a longitudinal incision on sigmoid colon.Conclusion: Retained rectosigmoid foreign bodies have been encountered more frequently and present a dilemma for management and rarely laporotomy for extraction of foreign bodies was performed.

  10. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  11. On innovations in plastic surgery.

    Science.gov (United States)

    Mehta, Hemant

    2009-04-01

    The progress of surgery has been utterly dependent on continuing innovations by surgeon innovators, largely because surgeons work in an environment that is very conducive to innovating. Of all clinicians surgeons excel at improvisations and innovations. The aim of this review is to outline some of my innovations, the circumstances leading to their origin, and to explain some of the fundamental concepts behind those innovations, with a view to inviting and encouraging younger surgeons to consider breaking away - sensibly - from convention at times, and embark on a journey towards innovation. The context and the qualities required of a would-be innovator are explained and the process of innovation itself is analysed. Rigid adherence to prevailing assumptions and practices stifles originality, while adopting a questioning attitude with a smidgen of irreverence facilitates innovation. That an innovation has resulted purely by a chance observation or occurrence - serendipity - may render it less glamorous but never less useful. Innovations in surgical techniques necessitate adoption of a novel pragmatic surgical philosophy. Confined as they are to Oculoplasty, the concepts of innovations cited and illustrated in this review, are equally valid for Plastic surgery and indeed for Surgery in general. Working in a small hospital or an isolated Institution need not be a hindrance to a would-be innovator.

  12. Plastic, Fantastic? What We Make. Science and Technology Education in Philippine Society.

    Science.gov (United States)

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    This module provides information about plastics, focusing on the uses of plastic bags in particular. Topic areas considered include: (1) making plastic bags; (2) transparency of plastic bags; (3) plastic bags and food odors; (4) food containers (before and since plastics); and (5) disposing of plastic bags and other plastic products. The text is…

  13. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  14. Pathological Plasticity in Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Brandon S. Martin

    2012-01-01

    Full Text Available Deficits in neuronal plasticity are common hallmarks of many neurodevelopmental disorders. In the case of fragile-X syndrome (FXS, disruption in the function of a single gene, FMR1, results in a variety of neurological consequences directly related to problems with the development, maintenance, and capacity of plastic neuronal networks. In this paper, we discuss current research illustrating the mechanisms underlying plasticity deficits in FXS. These processes include synaptic, cell intrinsic, and homeostatic mechanisms both dependent on and independent of abnormal metabotropic glutamate receptor transmission. We place particular emphasis on how identified deficits may play a role in developmental critical periods to produce neuronal networks with permanently decreased capacity to dynamically respond to changes in activity central to learning, memory, and cognition in patients with FXS. Characterizing early developmental deficits in plasticity is fundamental to develop therapies that not only treat symptoms but also minimize the developmental pathology of the disease.

  15. Sol-gel antireflective coating on plastics

    Science.gov (United States)

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  16. Kainate receptors: multiple roles in neuronal plasticity.

    Science.gov (United States)

    Sihra, Talvinder S; Flores, Gonzalo; Rodríguez-Moreno, Antonio

    2014-02-01

    Ionotropic glutamate receptors of the N-methyl-d-aspartate (NMDA)- and AMPA-type, as well as metabotropic glutamate receptors have been extensively invoked in plasticity. Until relatively recently, however, kainate-type receptors (KARs) had been the most elusive to study because of the lack of appropriate pharmacological tools to specifically address their roles. With the development of selective glutamate receptor antagonists, and knockout mice with specific KAR subunits deleted, the functions of KARs in neuromodulation and synaptic transmission, together with their involvement in some types of plasticity, have been extensively probed in the central nervous system. In this review, we summarize the findings related to the roles of KARs in short- and long-term forms of plasticity, primarily in the hippocampus, where KAR function and synaptic plasticity have received avid attention.

  17. Ethics and the facial plastic surgeon.

    Science.gov (United States)

    Sethi, Neeraj

    2016-09-01

    The facial plastic surgeon potentially has a conflict of interest when confronted with the patients requesting surgery, due to the personal gain attainable by agreeing to perform surgery. The aim of this review is to discuss the potential harm the surgeon can inflict by carrying out facial plastic surgery, beyond the standard surgical complications of infection or bleeding. It will discuss the desire for self-improvement and perfection and increase in the prevalence facial plastic surgery. We address the principles of informed consent, beneficence and non-maleficence, as well as justice and equality and how the clinician who undertakes facial plastic surgery is at risk of breaching these principles without due care and diligence.

  18. Clear plastic cups: a childhood choking hazard.

    Science.gov (United States)

    Weiss, R L; Goldstein, M N; Dharia, A; Zahtz, G; Abramson, A L; Patel, M

    1996-11-01

    The disposable plastic beverage cup is not usually regarded as hazardous to young children. Certain varieties of these products however, are manufactured from a brittle, clear plastic that easily cracks and fragments. While most conscientious parents keep their children safe from peanuts, balloons, and other known choking hazards, a child can surreptitiously bite a cup edge and aspirate the fragment. We report two cases of foreign body aspiration involving clear plastic cups that went undetected one of which remained 21 months following a negative rigid bronchoscopy. Diagnostic difficulties are related to the transparency and radiolucency of these objects. When suspicious of foreign body aspiration in children, otolaryngologists should inquire about the availability of clear plastic cups in the household and be mindful of the diagnostic pitfalls. Further investigations including CT scanning and repeat bronchoscopy may be helpful in cases of suspected missed foreign bodies. An educational campaign aimed at prevention and placement of product package warning labels should be established.

  19. PLASTICITY AND NON-LINEAR ELASTIC STRAINS

    Science.gov (United States)

    conditions existing in plane waves in an extended medium to give the time rate of change of stress as a function of the time rate of change of strain, the stress invariants, the total strain and the plastic strain. (Author)

  20. Programming perpetual T helper cell plasticity.

    Science.gov (United States)

    Rowell, Emily; Wilson, Christopher B

    2009-01-16

    In this issue of Immunity,Lee et al. (2009) and Wei et al. (2009) each investigate the stability of T helper cell lineages and find that commitment to these fates is more plastic than previously appreciated.