WorldWideScience

Sample records for plastic gfrp laminates

  1. Application of martensitic SMA alloys as passive dampers of GFRP laminated composites

    Directory of Open Access Journals (Sweden)

    M. Bocciolone

    2013-01-01

    Full Text Available This paper describes the application of SMA (Shape Memory Alloy materials to enhance the passive damping of GFRP (Glass Fiber Reinforced Plastic laminated composite. The SMA has been embedded as reinforcement in the GFRP laminated composite and a SMA/GFRP hybrid composite has been obtained. Two SMA alloys have been studied as reinforcement and characterized by thermo-mechanical tests. The architecture of the hybrid composite has been numerically optimized in order to enhance the structural damping of the host GFRP laminated, without significant changes of the specific weight and of the flexural stiffness. The design and the resultant high damping material are interesting and will be useful in general for applications related to passive damping. The application to a new designed lateral horn of railway collector of the Italian high speed trains is discussed.

  2. INFLUENCE OF FIBRE VOLUME REINFORCEMENT IN DRILLING GFRP LAMINATES

    Directory of Open Access Journals (Sweden)

    D. ABDUL BUDAN

    2011-12-01

    Full Text Available This paper presents an investigation on the influence of fiber volume reinforcement on various aspects of machining. Drilling experiments were conducted to study the tool wear, surface finish, delamination factor and hole quality on GFRP composites. The work reports the variation of tool wear, surface roughness, hole quality, chip characteristics, delamination factor with the variation of fibre volume reinforcement. Results revealed that the increase in fiber percentage increased the tool wear, delamination factor, surface roughness value and decreased hole quality. Minimum surface roughness, tool wear and better hole quality was obtained for 30% fibre content composites. 70% Fibre content composites produced hazardous surface roughness. Pull out of fibres and fibril formation are significant in decreasing the hole quality and increased surface roughness. Increased tool – fibre interaction and thermal softening of the tool causes increased tool wear. In higher fibre content composites, extensive plasticity was absent consequently brittle ceramic fibres were fractured easily. Hence small segment type chips were obtained. The fibre pull out and fibrils present near the hole exit forms the remainder of the laminate causes increased damage zone near the hole exit. Hence high delamination factor was obtained.

  3. Influence of specimen type and reinforcement on measured tension-tension fatigue life of unidirectional GFRP laminates

    DEFF Research Database (Denmark)

    Korkiakoski, Samuli; Brøndsted, Povl; Sarlin, Essi

    2016-01-01

    It is well known that standardised tension-tension fatigue test specimens of unidirectional (UD) glass-fibre-reinforced plastics (GFRP) laminates tend to fail at end tabs. The true fatigue life is then underestimated. The first objective of this study was to find for UD GFRP laminates a test...... specimen that fails in the gauge section. The second objective was to compare fatigue performance of two laminates, one having a newly developed UD powder-bound fabric as a reinforcement and the other having a quasi-UD stitched non-crimp fabric as a reinforcement. In the first phase, a rectangular specimen...... a significant effect on the failure mode and measured fatigue life of the laminates. A significantly higher fatigue life was measured for the laminate with the powder-bound fabric reinforcement when compared to the laminate with the stitched reinforcement....

  4. Study of Surface Roughness Characteristics of Drilled Hole in Glass Fiber Reinforced Plastic (GFRP by CNC Milling

    Directory of Open Access Journals (Sweden)

    Shubham.

    2016-02-01

    Full Text Available Now-a-days glass fiber-reinforced plastics (GFRP are always applicable in variety of engineering applications. It is used in aerospace, automotive and aircraft industries due to their well known properties. Milling of GFRP composite materials is very difficult due to its heterogeneity and the number of troubles like as surface delamination during machining affects uniqueness of the material and the machining parameters. Present paper focuses the experimental details to find out delamination factor on GFRP composite laminates by using Taguchi‟s DOE L9 orthogonal array. The main objective of the present work is to optimize the process parameters in the drilling of GFRP composite using Taguchi DOE and to find the significance of each process parameter using ANOVA. As far as the effect of input factors are considered, the factors drilled material and spindle speed both have nearly predominant influence on the delamination factor of drilled holes on GFRP composite by using CNC milling process.

  5. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  6. Influence of SMA reinforcement on the impact resistance of GFRP composite laminates under different temperatures

    Indian Academy of Sciences (India)

    K PAZHANIVEL; G B BHASKAR; A ELAYAPERUMAL; P ANANDAN; S ARUNACHALAM

    2016-06-01

    Plain glass fibre-reinforced polymeric (GFRP) laminates and GFRP reinforced with randomly oriented short strips of shape memory alloy (SMA) were prepared by hand lay-up method. The SMA strip reinforcement was placed at 0.75 $\\times$ thickness of the laminate with weight fractions of 2, 4 and 6%. The specimens were exposed to drop weight impact test and the experiments were conducted at a constant impact velocity of 2.80 m s$^{−1}$ with different test temperatures such as 303, 333 and 363 K. The impact damage area was evaluated using lighting technique and fracture response was analysed using scanning electron microscopic (SEM) images. Absorption of impact energyand damage area due to low velocity impact were calculated. It was observed that with the higher temperature, the SMA/GFRP laminates exhibit marginally-enhanced damage resistance compared to the plain GFRP laminates. Also, addition of SMA reinforcement was not contributing much to the impact resistance at higher temperature.

  7. Analysis on plastic properties of reactive powder concrete continuous beams reinforced with GFRP bars

    Institute of Scientific and Technical Information of China (English)

    LU Shan-shan; ZHENG Wen-zhong

    2010-01-01

    To study the plastic properties of reactive powder concrete continuous beams reinforced with GFRP bars,the calculation programs for moment redistribution coefficients are prepared by using nonlinear analysis methods such as moment-curvature,conjugate beam method and so on.By comparing the test results of existed FRP bars reinforced concrete continuous beams with simulation results,the accuracy of the calculation program is verified.Then 18 simulated GFRP bars reinforced reactive powder concrete continuous beams are selected whose change parameters are reinforcement ratio of mid-span and middle support.Through the nonlinear analysis of simulated beams,moment redistribution coefficients under mid-span concentrated loads,one-third point loads and uniformly distributed loads are obtained respectively.Thus the formula of moment redistribution coefficients is obtained by fitting moment redistribution coefficients and factors.The results show that the reactive powder concrete continuous beams reinforced with GFRP bars have good plastic properties.

  8. Evolution of the health of concrete structures by electrically conductive GFRP (glass fiber reinforced plastic) composites

    Science.gov (United States)

    Shin, Soon-Gi

    2002-02-01

    The function and performance of self-diagnostic composites embedded in concrete blocks and piles were investigated by bending tests and electrical resistance measurement. Carbon powder (CP) and carbon fiber (CF) were introduced into glass fiber reinforced plastic (GFRP) composites to provide electrical conductivity. The CPGFRP composite displays generally good performance in various bending tests of concrete block and piles compared to the CFGFRP composite. The electrical resistance of the CPGFRP composite increases remarkably at small strains in response to microcrack formation at about 200 μm strain, and can be used to detect smaller deformations before crack formation. The CPGFRP composite shows continuous change in resistance up to a large strain level just before the final fracture for concrete structures reinforced by steel bars. It is concluded that self-diagnostic composites can be used to predict damage and fracture in concrete blocks and piles.

  9. Delamination on GFRP laminates impacted at room and lower temperatures: Comparison between epoxy and vinylester resins

    Science.gov (United States)

    Lopresto, Valentina; Langella, Antonio; Papa, Ilaria

    2016-10-01

    Low velocity impact tests at three different impact energy values and three different temperatures, were performed on glass fibre composite laminates made by infusion technology. Two different resins, epoxy and vinylester, were considered to impregnate the fibres: the first is mainly of aeronautical interest whereas the second one is mainly applied in Naval field. The specimens were first completely destroyed to obtain the complete load-displacement curve. The latter allowed the evaluation of the increasing impact energies, 5, 10 and 20J, used to investigate about the start and propagation of the damage inside the laminates. The delamination was investigated by the very commonly used Ultra Sound technique and the results obtained on the different materials at different temperatures were compared. A general better behaviour of vinylester resin was noted.

  10. The Creep of Laminated Synthetic Resin Plastics

    Science.gov (United States)

    Perkuhn, H

    1941-01-01

    The long-time loading strength of a number of laminated synthetic resin plastics was ascertained and the effect of molding pressure and resin content determined. The best value was observed with a 30 to 40 percent resin content. The long-time loading strength also increases with increasing molding pressure up to 250 kg/cm(exp 2); a further rise in pressure affords no further substantial improvement. The creep strength is defined as the load which in the hundredth hour of loading produces a rate of elongation of 5 X 10(exp -4) percent per hour. The creep strength values of different materials were determined and tabulated. The effect of humidity during long-term tests is pointed out.

  11. Polarized light reveals stress in machined laminated plastics

    Science.gov (United States)

    Frankowski, J.

    1967-01-01

    Polarized light applied to drilled laminated plastic components exposes to the human eye the locked-in stresses that will result in fractures and delaminations when the soldering procedure takes place. This technique detects stresses early in the production cycle before appreciable man-hours are invested in an item destined for rejection.

  12. Composite GFRP U-Shaped Footbridge

    Directory of Open Access Journals (Sweden)

    Chróścielewski Jacek

    2017-04-01

    Full Text Available The paper presents proposals for the use of glass fiber reinforced polymer composites for the construction of engineering objects, known and commonly used in the shipbuilding industry. An example of a pedestrian footbridge was used in this case, which, despite the considerable thickness of the structural material, was made using infusion technology in one production cycle. The designed and produced footbridge span is durable, dynamically resistant, incombustible, easy to install and maintain, resistant to weather conditions and also aesthetically interesting. For footbridge production environmentally friendly PET foam core may be used. It may come from recycling of used plastic packages and which is produced with less energy consumption process and much less CO2 emission. The load bearing part of the structure (skin is made of polymer laminate reinforced with glass fabrics (GFRP.

  13. Development on Anti-ageing of Unsaturated Polyester Glass Fiber Reinforced Plastic (GFRP) Composites%以不饱和聚酯树脂为基的玻璃钢复合材料防老化研究进展

    Institute of Scientific and Technical Information of China (English)

    王玉民; 郭振宇; 宁培森; 丁著明

    2011-01-01

    综述了不饱和聚酯树脂基玻璃钢复合材料(GFRP)防老化方面的最近研究进展,包括GFRP表面新型涂层及树脂的添加剂(紫外线吸收剂、受阻胺光稳定剂和抗氧剂等).结果表明,只使用单一的稳定剂效果不佳,必须将抗氧剂和其他添加剂(例如某些环氧化合物)并用,才能取得较好的效果.%Recent advances in anti-ageing of unsatured polyester glass fiber reinforced plastic (GFRP) were reviewed in this paper, including novel coating of GFRP and adding various stabilizers, such as ultraviolet absorbent,hindered amine light stabilizers(HALS) and antioxidant. The results showed the effect was not good using single stabilizer. The combined use of Main and side antioxidant and other additives (e. g. some epoxy compounds) had the best Effect on maintaining anti-ageing of GFRP

  14. Strength of anisotropic wood and synthetic materials. [plywood, laminated wood plastics, glass fiber reinforced plastics, polymeric film, and natural wood

    Science.gov (United States)

    Ashkenazi, Y. K.

    1981-01-01

    The possibility of using general formulas for determining the strength of different anisotropic materials is considered, and theoretical formulas are applied and confirmed by results of tests on various nonmetallic materials. Data are cited on the strength of wood, plywood, laminated wood plastics, fiber glass-reinforced plastics and directed polymer films.

  15. Structural Engineering Properties of Fibre Reinforced Concrete Based On Recycled Glass Fibre Polymer (GFRP)

    OpenAIRE

    Adetiloye A; Ephraim M. E

    2015-01-01

    Glass fibre reinforced plastics (GFRP) based on resin recovered from recycling plastic waste has been shown to possess mechanical properties satisfying normative requirements. This paper investigates the flexural behavior of concrete beams reinforced with GFRP produced from resin recovered from recycled plastic wastes. A total of twelve of beams of sizes 150 ×150 ×900mm and 100 × 100 × 500mm reinforced with GFRP made from recycled glass fibre reinforced polymer was tested. The fle...

  16. A comparative study on the use of drilling and milling processes in hole making of GFRP composite

    Indian Academy of Sciences (India)

    Hussein M Ali; Asif Iqbal; Li Liang

    2013-08-01

    Drilling and milling processes are extensively used for producing riveted and bolted joints during the assembly operations of composite laminates with other components. Hole making in glass fibre reinforced plastic (GFRP) composites is the most common mechanical process, which is used to join them to other metallic structures. Bolt joining effectiveness depends, critically, on the quality of the holes. The quality of machined holes in GFRP is strongly dependent on the appropriate choice of the cutting parameters. The main purpose of the present study is to assess the influence of drilling and milling machining parameters on hole making process of woven laminated GFRP material. A statistical approach is used to understand the effects of the control parameters on the response variables. Analysis of variance (ANOVA) was performed to isolate the effects of the parameters affecting the hole making in the two types of cutting processes. The results showed that milling process is more suitable than drilling process at high level of cutting speed and low level of feed rate, when the cutting quality (minimum surface roughness, minimum difference between upper and lower diameter) is of critical importance in the manufacturing industry, especially for precision assembly operation.

  17. Study on Characteristics of Paper Laminated with Biodegradable Plastics, 1.Burial Test in Soil 

    OpenAIRE

    Kanie, Osamu; Ishikawa, Hitoshi; Ohta, Sou; Kitaoka, Takuya; Tanaka, Hiroo

    2002-01-01

    Paperboards laminated with biodegradable, plastics were buried in soil for six months to evaluate the biodegradability. The degradation rate of biodegradable plastics was slower than that of our expectations. These results are partly similar to those previously obtained. It is considered that a longer period than one year is required for the observation of significant change such as a disappearance of materials when a temperature and humidity are not controlled. The concerted effect of compos...

  18. Elasto-plastic buckling analysis of laminated plates including interfacial damage

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yanping; Fu, Yiming [Hunan University, State Key Laboratory of Advanced Technology of Design and Manufacturing for Vehicle Body, College of Mechanics and Aerospace, Changsha (China)

    2010-06-15

    Elasto-plastic buckling of orthotropic laminated plates, which include interfacial damage, is analyzed in detail. Firstly, a novel mixed hardening yield criterion, as an improvement of Hill's counterpart, is proposed for the orthotropic materials on the basis of the plastic theory. And differing from Hill's theory, the present yield criterion is related to the spherical tensor of stress. Then, the incremental elasto-plastic constitutive relations of the mixed hardening orthotropic materials are presented. Secondly, the incremental static equilibrium equations for laminated plates including interfacial damage are established based on Von-Karman type theory and the principle of minimum potential energy. Finally, the elasto-plastic buckling of laminated plates are solved by adopting the Galerkin method and iteration scheme. The numerical results show that buckling of the plate occurs easier due to the existence of interfacial damage, and the critical load trends to constant when the interfacial damage approaches a certain degree. Also, the effect of anisotropy on buckling is obvious and the analysis of elasto-plastic buckling is necessary. (orig.)

  19. Plasticity Tool for Predicting Shear Nonlinearity of Unidirectional Laminates Under Multiaxial Loading

    Science.gov (United States)

    Wang, John T.; Bomarito, Geoffrey F.

    2016-01-01

    This study implements a plasticity tool to predict the nonlinear shear behavior of unidirectional composite laminates under multiaxial loadings, with an intent to further develop the tool for use in composite progressive damage analysis. The steps for developing the plasticity tool include establishing a general quadratic yield function, deriving the incremental elasto-plastic stress-strain relations using the yield function with associated flow rule, and integrating the elasto-plastic stress-strain relations with a modified Euler method and a substepping scheme. Micromechanics analyses are performed to obtain normal and shear stress-strain curves that are used in determining the plasticity parameters of the yield function. By analyzing a micromechanics model, a virtual testing approach is used to replace costly experimental tests for obtaining stress-strain responses of composites under various loadings. The predicted elastic moduli and Poisson's ratios are in good agreement with experimental data. The substepping scheme for integrating the elasto-plastic stress-strain relations is suitable for working with displacement-based finite element codes. An illustration problem is solved to show that the plasticity tool can predict the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial loadings.

  20. Fracture morphology of carbon fiber reinforced plastic composite laminates

    OpenAIRE

    Vinod Srinivasa; Vinay Shivakumar; Vinay Nayaka; Sunil Jagadeeshaiaih; Murali Seethram; Raghavendra Shenoy; Abdelhakim Nafidi

    2010-01-01

    Carbon fiber reinforced plastic (CFRP) composites have been extensively used in fabrication of primary structures for aerospace, automobile and other engineering applications. With continuous and widespread use of these composites in several advanced technology, the frequency of failures is likely to increase. Therefore, to establish the reasons for failures, the fracture modes should be understood thoroughly and unambiguously. In this paper, CFRP composite have been tested in tension, compre...

  1. Design and development of a laminated glass-plastic Fresnel lens for point focus photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Matalon, L. A.

    1982-08-01

    The design and development of a laminated glass-plastic Fresnel lens for point focus photovoltaic systems use is described. The objective of this development was to examine the feasibility of producing lenses with a cost effectiveness superior to that of lenses made by casting of acrylic. The procedure used in executing this development, the method used in cost effectiveness evaluation, results obtained and recommendations for further work are presented.

  2. Surface topography, hardness, and frictional properties of GFRP for esthetic orthodontic wires.

    Science.gov (United States)

    Inami, Toshihiro; Tanimoto, Yasuhiro; Yamaguchi, Masaru; Shibata, Yo; Nishiyama, Norihiro; Kasai, Kazutaka

    2016-01-01

    In our previous study, glass-fiber-reinforced plastics (GFRPs) made from polycarbonate and glass fiber for esthetic orthodontic wires were prepared by using pultrusion. The purpose of the present study was to investigate the surface topography, hardness, and frictional properties of GFRPs. To investigate how fiber diameter affects surface properties, GFRP round wires with a diameter of 0.45 mm (0.018 in.) were prepared incorporating either 13 μm (GFRP-13) or 7 μm (GFRP-7) glass fibers. As controls, stainless steel (SS), cobalt-chromium-nickel alloy, β-titanium (β-Ti) alloy, and nickel-titanium (Ni-Ti) alloy were also evaluated. Under scanning electron microscopy and scanning probe microscopy, the β-Ti samples exhibited greater surface roughness than the other metallic wires and the GFRP wires. The dynamic hardness and elastic modulus of GFRP wires obtained by the dynamic micro-indentation method were much lower than those of metallic wires (p < 0.05). Frictional forces against the polymeric composite brackets of GFRP-13 and GFRP-7 were 3.45 ± 0.49 and 3.60 ± 0.38 N, respectively; frictional forces against the ceramic brackets of GFRP-13 and GFRP-7 were 3.39 ± 0.58 and 3.87 ± 0.48 N, respectively. For both bracket types, frictional forces of GFRP wires and Ni-Ti wire were nearly half as low as those of SS, Co-Cr, and β-Ti wires. In conclusion, there was no significant difference in surface properties between GFRP-13 and GFRP-7; presumably because both share the same polycarbonate matrix. We expect that GFRP wires will deliver superior sliding mechanics with low frictional resistance between the wire and bracket during orthodontic treatment.

  3. Development of flexible plasmonic plastic sensor using nanograting textured laminating film

    Science.gov (United States)

    Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

    2017-02-01

    The work presented in this paper describes the development of a cost-effective, flexible plasmonic plastic sensor using gold-coated nanograting nanoimprinted on a laminating plastic. The fabrication of plasmonic plastic sensor involved the transfer of nanograting pattern from polydimethylsiloxane (PDMS) polymer stamp to laminating plastic via thermal nanoimprint lithography, and subsequent gold film deposition. Gold-coated nanograting sample acted as a plasmonic chip, which exhibited surface plasmon resonance (SPR) mode in reflectance spectra under the white light illumination. The theoretical calculation was performed to study and analyze the excited SPR mode on the plasmonic chip. Further, the bulk refractive index sensitivity was demonstrated with respect to changing surrounding dielectric medium giving a value about 800  ±  27 nm/RIU (refractive index unit). In addition, the surface binding sensitivity upon adsorption of bovine serum albumin protein on the sensor surface was approximately 4.605 nm/(ng/mm2).We believe that our proposed low-cost plastic based plasmonic sensing device could be a potential candidate for the label-free and high-throughput screening of biological molecules.

  4. Fracture morphology of carbon fiber reinforced plastic composite laminates

    Directory of Open Access Journals (Sweden)

    Vinod Srinivasa

    2010-09-01

    Full Text Available Carbon fiber reinforced plastic (CFRP composites have been extensively used in fabrication of primary structures for aerospace, automobile and other engineering applications. With continuous and widespread use of these composites in several advanced technology, the frequency of failures is likely to increase. Therefore, to establish the reasons for failures, the fracture modes should be understood thoroughly and unambiguously. In this paper, CFRP composite have been tested in tension, compression and flexural loadings; and microscopic study with the aid of Scanning Electron Microscope (SEM has been performed on failed (fractured composite surfaces to identify the principle features of failure. Efforts have been made in correlating the fracture surface characteristics to the failure mode. The micro-mechanics analysis of failure serves as a useful guide in selecting constituent materials and designing composites from the failure behavior point of view. Also, the local failure initiation results obtained here has been reliably extended to global failure prediction.

  5. Study on Mechanical and Physical Behaviour of Hybrid GFRP

    Directory of Open Access Journals (Sweden)

    Nor Bahiyah Baba

    2015-01-01

    Full Text Available The paper discusses the mechanical and physical behaviour of hybrid glass fibre reinforced plastic (GFRP. Hybrid GFRP was fabricated by three different types of glass fibre, namely, 3D, woven, and chopped, which were selected and combined with mixture of polyester resin and hardener. The hybrid GFRP was investigated by varying three parameters which were the composite volume fractions, hybrid GFRP arrangement, and single type fibre. The hybrid GFRP was fabricated by using open mould hand lay-up technique. Mechanical testing was conducted by tensile test for strength and stiffness whereas physical testing was performed using water absorption and hardness. These tests were carried out to determine the effect of mechanical and physical behaviour over the hybrid GFRP. The highest volume fraction of 0.5 gives the highest strength and stiffness of 73 MPa and 821 MPa, respectively. Varying hybrid fibre arrangement which is the arrangement of chopped-woven-3D-woven-chopped showed the best value in strength of 66.2 MPa. The stiffness is best at arrangement of woven-chopped-woven-chopped-woven at 690 MPa. This arrangement also showed the lowest water absorption of 4.5%. Comparing the single fibre type, woven had overtaken the others in terms of both mechanical and physical properties.

  6. Draft EEC method for the determination of the global migration of plastics constituents into fatty-food simulants: Applicability to lacquers, plastics and laminates

    NARCIS (Netherlands)

    Battum, D. van; Rijk, M.A.H.; Verspoor, R.; Rossi, L.

    1982-01-01

    An experimental study was carried out to establish whether the draft EEC method for the determination of the global migration of constituents from plastics packaging materials into fatty food stimulants could be applied to all plastics, including lacquers and laminates. Some difficulties were

  7. Impact properties of aluminium - glass fiber reinforced plastics sandwich panels

    Directory of Open Access Journals (Sweden)

    Mathivanan Periasamy

    2012-06-01

    Full Text Available Aluminium - glass fiber reinforced plastics (GFRP sandwich panels are hybrid laminates consisting of GFRP bonded with thin aluminum sheets on either side. Such sandwich materials are increasingly used in airplane and automobile structures. Laminates with varying aluminium thickness fractions, fiber volume fractions and orientation in the layers of GFRP were fabricated by hand lay up method and evaluated for their impact performance by conducting drop weight tests under low velocity impacts. The impact energy required for initiating a crack in the outer aluminium layer as well as the energy required for perforation was recorded. The impact load-time history was also recorded to understand the failure behavior. The damage depth and the damage area were measured to evaluate the impact resistance. Optical photography and scanning electron micrographs were taken to visualize the crack and the damage zone. The bidirectional cross-ply hybrid laminate (CPHL has been found to exhibit better impact performance and damage resistance than the unidirectional hybrid laminate (UDHL. Increase in aluminium thickness fraction (Al tf and fiber volume fraction (Vf resulted in an increase in the impact energy required for cracking and perforation. On an overall basis, the sandwich panels exhibited better impact performance than the monolithic aluminium.

  8. DUCTILITY BEHAVIOR FIBER REINFORCED CONCRETE BEAMS STRENGTHENED WITH EXTERNALLY BONDED GLASS FIBER REINFORCED POLYMER LAMINATES

    Directory of Open Access Journals (Sweden)

    Mariappan Mahalingam

    2013-01-01

    Full Text Available The study presents the results of an experimental investigation conducted on Steel Fiber Reinforced Concrete (SFRC beams with externally bonded Glass Fiber Reinforced Polymer (GFRP laminates with a view to study their strength and ductility. A total of ten beams, 150×250 mm in cross-section were tested in the laboratory over an effective span of 2800 mm. Three fiber reinforced concrete beams were used as reference beams. Six fiber reinforced concrete beams were provided with externally bonded GFRP laminates. One concrete beam was left virgin without any fiber reinforcement and external GFRP laminates. All the beams were tested until failure. The variables considered included volume fraction of fiber reinforcement and stiffness of GFRP laminates. The static responses of all the beams were evaluated in terms of strength, stiffness and ductility. The test results show that the beams provided with externally bonded GFRP laminates exhibit improved performance over the beams with internal fiber reinforcement.

  9. Altering strength and plastic deformation behavior via alloying and laminated structure in nanocrystalline metals

    Energy Technology Data Exchange (ETDEWEB)

    Gu, C. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, F., E-mail: wangfei@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, P., E-mail: huangping@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Lu, T.J. [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China); MOE Key Laboratory for Multifunctional Materials and Structures, Xi' an Jiaotong University, Xi' an 710049 (China); Xu, K.W. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-07-29

    Nanoindentation and electron microscope techniques have been performed on sputtering deposited monolayered nanocrystalline CuNb and multilayered CuNb/Cu thin films. Microstructural features, hardness and surface morphologies of residual indentation have been evaluated to identify the effects of alloying and laminated structure on strength and plastic deformation behavior of nanocrystalline metals. By altering the content of Nb in CuNb alloy and adding crystalline Cu layers into CuNb alloy, the volume fraction of amorphous phase in CuNb alloy and interface structures changed dramatically, resulting in various trends that are related to hardness, indentation induced pileup and shear banding deformation. Based on the experimental results, the dominant deformation mechanisms of the CuNb and CuNb/Cu thin films with various Nb contents were proposed and extended to be discussed.

  10. Structural Engineering Properties of Fibre Reinforced Concrete Based On Recycled Glass Fibre Polymer (GFRP

    Directory of Open Access Journals (Sweden)

    Adetiloye A

    2015-04-01

    Full Text Available Glass fibre reinforced plastics (GFRP based on resin recovered from recycling plastic waste has been shown to possess mechanical properties satisfying normative requirements. This paper investigates the flexural behavior of concrete beams reinforced with GFRP produced from resin recovered from recycled plastic wastes. A total of twelve of beams of sizes 150 ×150 ×900mm and 100 × 100 × 500mm reinforced with GFRP made from recycled glass fibre reinforced polymer was tested. The flexural test results yielded lower ultimate load, lower stiffness and larger deflections at the same load when compared with the control steel reinforced beam. However, the ultimate flexural strength of beams, reinforced with GFRP from recycled resin was at least four times higher than that of the control unreinforced beam. This is in agreement, quantitatively and qualitatively, with the trend of these parameters in GFRP reinforced concrete based on virgin resins. The results therefore confirm the applicability for structural uses of GFRP reinforcement made from recycled plastic waste, with the accompanying benefits of wealth creation, value addition and environmental sustainability.

  11. Identification of Damage Types in Carbon Fiber Reinforced Plastic Laminates by a Novel Optical Fiber Acoustic Emission Sensor

    OpenAIRE

    Yu, Fengming; Wu, Qi; Okabe, Yoji; Kobayashi, Satoshi; Saito, Kazuya

    2014-01-01

    International audience; In this research, phase-shifted FBG (PS-FBG) sensor was employed to practical AE detection for carbon fiber reinforced plastic (CFRP) composite laminate. Firstly, we evaluated the characteristics of AE signals detected by this kind of sensor. Secondly, through the experiment and simulation concerning AE source orientation, quantitative information about the standard for discriminating the AE signals due to transverse cracks and delaminations was obtained. Finally, acco...

  12. Parameters That Effect the Interfacial Stresses in Fibre Reinforced Plastic Laminates Strengthened Rc Beams

    Directory of Open Access Journals (Sweden)

    Barış Sayın

    2010-01-01

    Full Text Available The use of externally bonded fiber-reinforced plastic (FRP laminates for strengthening of reinforced concrete beams has become an effective method. This method has been used because of the advantages of FRP materials such as their high strength-to-weight ratio, good corrosion resistance, and versatility in coping with different sectional shapes and corners. Many studies on this theme have been carried out since the early 1900s. In this study, interfacial stresses of reinforced concrete beams strengthened with FRP effect the parameters will be studied as experimental and numerical. Adhesives used in the beams applied to FRP's thickness, adhesive type and the state of the concrete surface, produced experimental samples are exposed to the bending effect will be studied as a comparative. Afterwards, by using the ANSYS® WB finite element program to model and analyze RC beams by externally bonding FRP will be carried out. Adhesive thickness, adhesive type, the concrete surface will be performed by entering the parameters for analysis of stress can be obtained as a result. Thus, the analytical expressions of stress and normal stress equations will establish should be modified. Finite element analysis and experimental results will be compared, compatibility investigated, the results and recommendations presented by the study be completed.

  13. On the plastic behaviour of multi directional epoxy-bolted CFRP laminates

    DEFF Research Database (Denmark)

    Jensen, Aage; Poulsen, Ervin

    2004-01-01

    The second generation of CFRP laminate has recently been developed. It is a multi directional CFRP laminate, i.e. a laminate with carbon fibres having several directions other than the first generation. The paper describes the laboratory tests carried out in order to develop anchorage devices for...... for such multi directional CFRP laminates which are epoxy-bonded and bolted or nailed to the concrete substrate for the purpose of strengthening against failure caused by bending. The tests were carried out at the Technical University of Denmark, IABM and Byg-DTU...

  14. The effect of bulk-resin CNT-enrichment on damage and plasticity in shear-loaded laminated composites

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-07-01

    One way to improve multi functionality of epoxy-based laminated composites is to dope the resin with carbon nanotubes. Many investigators have focused on the elastic and fracture behavior of such nano-modified polymers under tensile loading. Yet, in real structural applications, laminated composites can exhibit plasticity and progressive damage initiated mainly by shear loading. We investigated the damage and plasticity induced by the addition of carbon nanotubes to the matrix of a glass fiber/epoxy composite system. We characterized both the modified epoxy resin and the associated modified laminates using classical mesoscale analysis. We used dynamic mechanical analysis, scanning electron microscopy, atomic force microscopy and classical mechanical testing to characterize samples with different concentrations of nanofillers. Since the samples were prepared using the solvent evaporation technique, we also studied the influence of this process. We found that in addition to the global increase in elastic regime properties, the addition of carbon nanotubes also accelerates the damage process in both the bulk resin and its associated glass-fiber composite. © 2013 Elsevier Ltd.

  15. Erosion behaviour of epoxy based unidirectionl (GFRP composite materials

    Directory of Open Access Journals (Sweden)

    Y. Fouad

    2011-03-01

    Full Text Available In the present work, the solid particle erosion behaviour and wear mechanism of commercial epoxy based unidirectional glass fibre reinforced plastics (GFRP composites were investigated. The erosion experiments have been carried out using irregular silica sand (SiC particles (150 ± 15 μm as an erodent. The erosion losses of these composites were evaluated at various impingement angles (30°, 60° and 90° with the change of both of erosion time and pressure. The erosion behaviour of (GFRP has changed from ductile to brittle at 60° impingement angle and the erosion loss was the highest. The morphology of eroded surfaces was observed under scanning electron microscope and damage mechanisms were discussed.

  16. Experimental and Numerical Analysis of Damage in Woven GFRP Composites Under Large-deflection Bending

    Science.gov (United States)

    Ullah, Himayat; Harland, Andy R.; Silberschmidt, Vadim V.

    2012-10-01

    Textile-reinforced composites such as glass fibre-reinforced polymer (GFRP) used in sports products can be exposed to different in-service conditions such as large bending deformation and multiple impacts. Such loading conditions cause high local stresses and strains, which result in multiple modes of damage and fracture in composite laminates due to their inherent heterogeneity and non-trivial microstructure. In this paper, various damage modes in GFRP laminates are studied using experimental material characterisation, non-destructive micro-structural damage evaluation and numerical simulations. Experimental tests are carried out to characterise the behaviour of these materials under large-deflection bending. To obtain in-plane shear properties of laminates, tensile tests are performed using a full-field strain-measurement digital image correlation technique. X-ray micro computed tomography (Micro CT) is used to investigate internal material damage modes - delamination and cracking. Two-dimensional finite element (FE) models are implemented in the commercial code Abaqus to study the deformation behaviour and damage in GFRP. In these models, multiple layers of bilinear cohesive-zone elements are employed to study the onset and progression of inter-ply delamination and intra-ply fabric fracture of composite laminate, based on the X-ray Micro CT study. The developed numerical models are capable to simulate these features with their mechanisms as well as subsequent mode coupling observed in tests and Micro CT scanning. The obtained results of simulations are in agreement with experimental data.

  17. Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts

    Energy Technology Data Exchange (ETDEWEB)

    C. P. Pantelides; T. T. Garfield; W. D. Richins; T. K. Larson; J. E. Blakeley

    2012-03-01

    The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.

  18. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    Directory of Open Access Journals (Sweden)

    Sang-Young Kim

    2014-09-01

    Full Text Available Glass Fiber Reinforced Plastic (GFRP structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties.

  19. NDE of low-velocity impact damage in GFRP using infrared thermography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ghi Seok [Dept. of Biosystems Engineering, Seoul National University, Seoul (Korea, Republic of); Lee, Kye Sung; Hur, Hwan; Kim, Sun Jin; Kim, Geon Hee [Center for Analytical Instrumentation Development, Korea Basic Science Institute, Daejeon (Korea, Republic of)

    2015-06-15

    In this study, low-velocity impact damage (LVID) in glass fiber reinforced plastic (GFRP) was investigated using pulse thermography (PT) and lock-in thermography (LIT) techniques. The main objective of this study was to evaluate the detection performance of each technique for LVID in GFRP. Unidirectional and cross-ply GFRPs were prepared with four energy levels using a drop weight impact machine and they were inspected from the impact side, which may be common in actual service conditions. When the impacted side was used for both inspection and thermal loading, results showed that the suggested techniques were able to identify the LVID which is barely visible to the naked eye. However, they also include limitations that depend on the GFRP thickness at the location of the delamination produced by the lowest impact energy of five joule.

  20. The extrinsic influence of carbon fibre reinforced plastic laminates to strengthen steel structures

    Indian Academy of Sciences (India)

    A K Patnaik; C L Bauer; T S Srivatsan

    2008-06-01

    The intrinsic advantages of strengthening the steel-based structures by the use of fibre reinforced plastic (FRP) material have not yet been fully exploited. In this paper, a succinct overview of recent studies made to enhance the strength of steel beams using FRP laminates is presented. The results presented and discussed in this paper were obtained by closely studying the behaviour of steel beams strengthened with carbon FRP material. An attempt is made to succinctly summarise the findings for two different types of strengthening of the steel beams using carbon FRP laminates. The first type of beams focuses on enhancing the strength of steel in flexure while the second focuses on increasing the shear strength of the beams. Three beams were designed so as to cause them to fail in flexure. Of the beams studied, two were strengthened using carbon FRP strips attached to the tension flange. One of the beams was tested to facilitate comparison of their behaviour to the two beams which are strengthened in flexure. Three other beams were designed such that they failed predominantly in shear. Of these three, two were strengthened with carbon FRP strips attached to the webs while the third beam was used as a control beam for the purpose of drawing comparisons. Preliminary results revealed a noticeable increase in the strength for both the flexure strengthened beams and the beams strengthened in shear. The observed increase in shear strength of the beams was 26% while the increase in strength for the beams tested in flexure was 15%. This study convincingly shows that it is possible to strengthen steel beams using carbon FRP laminates in both flexure and in shear.

  1. Effect of oil lamination between plasticized starch layers on film properties.

    Science.gov (United States)

    Basiak, Ewelina; Debeaufort, Frédéric; Lenart, Andrzej

    2016-03-15

    To reduce the hygroscopic character of biodegradable starch-based films, rapeseed oil was incorporated by lamination (starch-oil-starch 3-layers technique). The lipid lamination followed by starch solution casting step induced an emulsion type structure of dried films. Composite films are more opalescent and glossier than fatty free starch films. For all the films, structure is heterogeneous in the cross-section only. Adding fat induced a twice decrease of the tensile strength. Thermal gravimetry analysis did not show differences between films with and without oil. Lipid reduced the moisture absorption particularly at higher RH as well as the surface swelling index, when water droplet contact occurred. Addition of lipids always decreases the contact angle for all liquid tested, except for water. Surface affinity of films for liquids less polar that water increased with rapeseed oil addition. The addition of rapeseed oil significantly reduces water vapour and oxygen permeability.

  2. Thermo-mechanical response of rigid plastic laminates for greenhouse covering

    Directory of Open Access Journals (Sweden)

    Silvana Fuina

    2016-09-01

    Full Text Available Innovation in the field of protected crops represents an argument of great applied and theoretical research attention due to constantly evolving technologies and automation for higher quality flower and vegetable production and to the corresponding environmental and economic impact. The aim of this paper is to provide an analysis of some thermomechanical properties of rigid polymeric laminates for greenhouses claddings, including innovative tests such as the thermographic ones. Four types of laminates have been analysed: two polycarbonates, a polymethylmethacrylate and a polyethylene terephthalate (PET. The tests gave interesting results on different important properties, such as radiometric properties, limit stresses, strains and ductility. Moreover, a direct comparison of infrared images and force elongation curves gave important information on the relation of the (localised or homogeneous damage evolution, with both an applicative and theoretical implication. Finally, even if to the authors knowledge at present there are no examples of using PET for covering greenhouses, the results of this paper indicates the thermomechanical and radiometric characteristics of this material make it interesting for agricultural applications.

  3. Monitoring Moisture Damage Propagation in GFRP Composites Using Carbon Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Sabagh

    2017-03-01

    Full Text Available Glass fiber reinforced polymer (GFRP composites are widely used in infrastructure applications including water structures due to their relatively high durability, high strength to weight ratio, and non-corrosiveness. Here we demonstrate the potential use of carbon nanoparticles dispersed during GFRP composite fabrication to reduce water absorption of GFRP and to enable monitoring of moisture damage propagation in GFRP composites. GFRP coupons incorporating 2.0 wt % carbon nanofibers (CNFs and 2.0 wt % multi-wall carbon nanotubes (MWCNTs were fabricated in order to study the effect of moisture damage on mechanical properties of GFRP. Water absorption tests were carried out by immersing the GFRP coupons in a seawater bath at two temperatures for a time period of three months. Effects of water immersion on the mechanical properties and glass transition temperature of GFRP were investigated. Furthermore, moisture damage in GFRP was monitored by measuring the electrical conductivity of the GFRP coupons. It was shown that carbon nanoparticles can provide a means of self-sensing that enables the monitoring of moisture damage in GFRP. Despite the success of the proposed technique, it might not be able to efficiently describe moisture damage propagation in GFRP beyond a specific threshold because of the relatively high electrical conductivity of seawater. Microstructural investigations using Fourier Transform Infrared (FTIR explained the significance of seawater immersion time and temperature on the different levels of moisture damage in GFRP.

  4. Optimizing the Machining Parameters for Minimum Surface Roughness in Turning of GFRP Composites Using Design of Experiments

    Institute of Scientific and Technical Information of China (English)

    K. Palanikumar; L.Karunamoorthy; R.Karthikeyan

    2004-01-01

    In recent years, glass fiber reinforced plastics (GFRP) are being extensively used in variety of engineering applications in many different fields such as aerospace, oil, gas and process industries. However, the users of FRP are facing difficulties to machine it, because of fiber delamination, fiber pull out, short tool life, matrix debonding, burning and formation of powder like chips. The present investigation focuses on the optimization of machining parameters for surface roughness of glass fiber reinforced plastics (GFRP) using design of experiments (DoE). The machining parameters considered were speed, feed, depth of cut and workpiece (fiber orientation). An attempt was made to analyse the influence of factors and their interactions during machining. The results of the present study gives the optimal combination of machining parameters and this will help to improve the machining requirements of GFRP composites.

  5. Improving Fatigue Performance of GFRP Composite Using Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Moneeb Genedy

    2015-01-01

    Full Text Available Glass fiber reinforced polymers (GFRP have become a preferable material for reinforcing or strengthening reinforced concrete structures due to their corrosion resistance, high strength to weight ratio, and relatively low cost compared with carbon fiber reinforced polymers (CFRP. However, the limited fatigue life of GFRP hinders their use in infrastructure applications. For instance, the low fatigue life of GFRP caused design codes to impose stringent stress limits on GFRP that rendered their use non-economic under significant cyclic loads in bridges. In this paper, we demonstrate that the fatigue life of GFRP can be significantly improved by an order of magnitude by incorporating Multi-Wall Carbon Nanotubes (MWCNTs during GFRP fabrication. GFRP coupons were fabricated and tested under static tension and cyclic tension with mean fatigue stress equal to 40% of the GFRP tensile strength. Microstructural investigations using scanning electron microscopy (SEM and Fourier Transform Infrared (FTIR spectroscopy were used for further investigation of the effect of MWCNTs on the GFRP composite. The experimental results show the 0.5 wt% and the 1.0 wt% MWCNTs were able to improve the fatigue life of GFRP by 1143% and 986%, respectively, compared with neat GFRP.

  6. Behavior and Performance of GFRP Reinforced Concrete Columns with Various Types of Stirrups

    OpenAIRE

    Woraphot Prachasaree; Sitthichai Piriyakootorn; Athawit Sangsrijun; Suchart Limkatanyu

    2015-01-01

    Fiber reinforced polymer (FRP) composites are gaining acceptance in concrete structural applications due to their high ratio of strength/stiffness to self-weight and corrosion resistance. This study focused on the structural behavior and the performance of concrete columns internally reinforced with glass fiber reinforced plastic (GFRP) rebars. Twelve series of concrete columns with varied longitudinal reinforcement, cross section, concrete cover, and type of lateral reinforcement were tested...

  7. Increased plasticity of the nuclear envelope and hypermobility of telomeres due to the loss of A-type lamins.

    NARCIS (Netherlands)

    Vos, W.H. De; Houben, F.; Hoebe, R.A.; Hennekam, R.; Engelen, B.G.M. van; Manders, E.M.; Ramaekers, F.C.S.; Broers, J.L.; Oostveldt, P. Van

    2010-01-01

    BACKGROUND: The nuclear lamina provides structural support to the nucleus and has a central role in defining nuclear organization. Defects in its filamentous constituents, the lamins, lead to a class of diseases collectively referred to as laminopathies. On the cellular level, lamin mutations affect

  8. Increased plasticity of the nuclear envelope and hypermobility of telomeres due to the loss of A-type lamins.

    NARCIS (Netherlands)

    Vos, W.H. De; Houben, F.; Hoebe, R.A.; Hennekam, R.; Engelen, B.G.M. van; Manders, E.M.; Ramaekers, F.C.S.; Broers, J.L.; Oostveldt, P. Van

    2010-01-01

    BACKGROUND: The nuclear lamina provides structural support to the nucleus and has a central role in defining nuclear organization. Defects in its filamentous constituents, the lamins, lead to a class of diseases collectively referred to as laminopathies. On the cellular level, lamin mutations affect

  9. Machinability of drilling T700/LT-03A carbon fiber reinforced plastic (CFRP) composite laminates using candle stick drill and multi-facet drill

    Science.gov (United States)

    Wang, Cheng-Dong; Qiu, Kun-Xian; Chen, Ming; Cai, Xiao-Jiang

    2015-03-01

    Carbon Fiber Reinforced Plastic (CFRP) composite laminates are widely used in aerospace and aircraft structural components due to their superior properties. However, they are regarded as difficult-to-cut materials because of bad surface quality and low productivity. Drilling is the most common hole making process for CFRP composite laminates and drilling induced delamination damage usually occurs severely at the exit side of drilling holes, which strongly deteriorate holes quality. In this work, the candle stick drill and multi-facet drill are employed to evaluate the machinability of drilling T700/LT-03A CFRP composite laminates in terms of thrust force, delamination, holes diameter and holes surface roughness. S/N ratio is used to characterize the thrust force while an ellipse-shaped delamination model is established to quantitatively analyze the delamination. The best combination of drilling parameters are determined by full consideration of S/N ratios of thrust force and the delamination. The results indicate that candle stick drill will induce the unexpected ellipse-shaped delamination even at its best drilling parameters of spindle speed of 10,000 rpm and feed rate of 0.004 mm/tooth. However, the multi-facet drill cutting at the relative lower feed rate of 0.004 mm/tooth and lower spindle speed of 6000 rpm can effectively prevent the delamination. Comprehensively, holes quality obtained by multi-facet drill is much more superior to those obtained by candle stick drill.

  10. Recycling and Utilization of Waste Glass Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Feng Yan-chao

    2016-01-01

    Full Text Available This paper mainly introduced the recovery method, classification and comprehensive utilization process of waste glass fiber reinforced plastics (GFRP. Among the current methods of utilization, the physical method is most promising. After pre-processing of waste GFRP, the short glass fiber can be used in gypsum block to improve the anti-cracking and operation performance of the material; waste GFRP powder can be used in plastic fiber reinforced manhole covers to increase the mechanical strength, and the products conformed to JC 1009-2006. Based on these studies, we also point out some problems concerning the utilization of waste glass fiber reinforced plastics.

  11. Wheat Gluten-Laminated Paperboard with Improved Moisture Barrier Properties: A New Concept Using a Plasticizer (Glycerol Containing a Hydrophobic Component (Oleic Acid

    Directory of Open Access Journals (Sweden)

    Sung-Woo Cho

    2012-01-01

    Full Text Available This paper presents a novel approach to reduce the water vapor transmission rate (WVTR and water absorbance of wheat gluten/paperboard laminates by introducing a hydrophobic component (oleic acid (OA into the hydrophilic plasticizer (glycerol. Whereas the paperboard showed immeasurably high WVTR, the laminate with gluten/glycerol yielded finite values. More importantly, by incorporating 75 wt.% OA into the plasticizer, the WVTR and water absorbance were reduced by, respectively, a factor of three and 1.5–2. Of particular interest was that the mechanical properties were not changing dramatically between 0 and 50 wt.% OA. The results showed clear benefits of combining a gluten film with paperboard. Whereas the paperboard provided toughness, the WG layer contributed with improved moisture barrier properties. In addition, WVTR indicated that the paperboard reduced the swelling of the outer gluten/glycerol layer in moist conditions; a free standing gluten/glycerol film would yield infinite, rather than finite, WVTR values.

  12. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  13. Behavior and Performance of GFRP Reinforced Concrete Columns with Various Types of Stirrups

    Directory of Open Access Journals (Sweden)

    Woraphot Prachasaree

    2015-01-01

    Full Text Available Fiber reinforced polymer (FRP composites are gaining acceptance in concrete structural applications due to their high ratio of strength/stiffness to self-weight and corrosion resistance. This study focused on the structural behavior and the performance of concrete columns internally reinforced with glass fiber reinforced plastic (GFRP rebars. Twelve series of concrete columns with varied longitudinal reinforcement, cross section, concrete cover, and type of lateral reinforcement were tested under compression loading. The results show that the amount of GFRP longitudinal and lateral reinforcement slightly affects the column strength. The lateral reinforcement affects the confining pressure and inelastic deformation, and its contribution to the confined compressive strength increases with the GFRP reinforcement ratio. In addition, the confining pressure increases both concrete strength and deformability in the inelastic range. The confinement effectiveness coefficient varied from 3.0 to 7.0 with longitudinal reinforcement. The average deformability factors were 4.2 and 2.8 with spirals and ties, respectively. Lateral reinforcement had a more pronounced effect on deformability than on column strength.

  14. Investigation of surface roughness and MRR for turning of UD-GFRP using PCA and Taguchi method

    OpenAIRE

    2015-01-01

    This paper investigates the machinability of unidirectional glass fiber reinforced plastics (UD-GFRP) composite in turning process. Taguchi L18 orthogonal array is used for experimental design. The six parameters i.e. tool nose radius, tool rake angle, feed rate, cutting speed, cutting environment (dry, wet and cooled) and depth of cut are varied to investigate their effect on output responses. An attempt has been made to model the two response variables i.e. surface roughness and material re...

  15. Thermographic inspection of a wind turbine rotor blade segment utilizing natural conditions as excitation source, Part I: Solar excitation for detecting deep structures in GFRP

    Science.gov (United States)

    Worzewski, Tamara; Krankenhagen, Rainer; Doroshtnasir, Manoucher; Röllig, Mathias; Maierhofer, Christiane; Steinfurth, Henrik

    2016-05-01

    This study evaluates whether subsurface features in rotor blades, mainly made of Glass Fibre Reinforced Plastics (GFRP), can generally be detected with "solar thermography". First, the suitability of the sun is tested for acting as a heat source for applying active thermography on a 30 mm thick GFRP test specimen. Second, a defective rotor blade segment is inspected outdoors under ideal natural conditions using the sun as excitation source. Additionally, numerical FEM-simulations are performed and the comparability between experiment and simulation is evaluated for outdoor measurements.

  16. Moisture Absorption/Desorption Effects on Flexural Property of Glass-Fiber-Reinforced Polyester Laminates: Three-Point Bending Test and Coupled Hygro-Mechanical Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-08-01

    Full Text Available Influence of moisture absorption/desorption on the flexural properties of Glass-fibre-reinforced polymer (GFRP laminates was experimentally investigated under hot/wet aging environments. To characterize mechanical degradation, three-point bending tests were performed following the ASTM test standard (ASTM D790-10A. The flexural properties of dry (0% Mt/M∞, moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞ and moisture saturated (100% Mt/M∞ specimens at both 20 and 40 °C test temperatures were compared. One cycle of moisture absorption-desorption process was considered in this study to investigate the mechanical degradation scale and the permanent damage of GFRP laminates induced by moisture diffusion. Experimental results confirm that the combination of moisture and temperature effects sincerely deteriorates the flexural properties of GFRP laminates, on both strength and stiffness. Furthermore, the reducing percentage of flexural strength is found much larger than that of E-modulus. Unrecoverable losses of E-modulus (15.0% and flexural strength (16.4% for the GFRP laminates experiencing one cycle of moisture absorption/desorption process are evident at the test temperature of 40 °C, but not for the case of 20 °C test temperature. Moreover, a coupled hygro-mechanical Finite Element (FE model was developed to characterize the mechanical behaviors of GFRP laminates at different moisture absorption/desorption stages, and the modeling method was subsequently validated with flexural test results.

  17. Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement

    OpenAIRE

    Heecheul Kim; Min Sook Kim; Myung Joon Ko; Young Hak Lee

    2015-01-01

    This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP) plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spac...

  18. Detecting Safety Zone Drill Process Parameters for Uncoated HSS Twist Drill in Machining GFRP Composites by Integrating Wear Rate and Wear Transition Mapping

    Directory of Open Access Journals (Sweden)

    Sathish Rao Udupi

    2016-01-01

    Full Text Available The previous research investigations informed that the tool wear of any machining operation could be minimized by controlling the machining factors such as speed, feed, geometry, and type of cutting tool. Hence the present research paper aims at controlling the process parameters to minimize the drill tool wear, during the machining of Glass Fiber Reinforced Polymer (GFRP composites. Experiments were carried out to find the tool wear rate and a wear mechanism map of uncoated High Speed Steel (HSS drill of 10 mm diameter was developed for the drilling of GFRP composite laminates. The surface micrograph images on the drill land surface displayed dominant wear mechanisms induced on HSS drill during machining of GFRP and they were found to be adhesive wear, adhesive and abrasive wear, abrasive wear, and diffusion and fatigue wear. A “safety wear zone” was identified on the wear mechanism map, where the minimum tool wear of the HSS drill occurs. From the safety zone boundaries, it was inferred that the drill spindle speed should be set between 1200 and 1590 rpm and feed rate must be set within a range of 0.10–0.16 mm/rev for GFRP work and HSS tool combination to enhance the service life of 10 mm HSS drills and to minimize the tool wear.

  19. 1年持续载荷下GFRP-混凝土组合梁长期性能试验%Long-term property test of GFRP-concrete composite beam under sustained load for one year

    Institute of Scientific and Technical Information of China (English)

    薛伟辰; 张士前; 梁智殷

    2016-01-01

    玻璃纤维增强树脂(GFRP)-混凝土组合梁由上部混凝土板和下部 GFRP型材以及连接二者的抗剪连接件组成。开展了2根 GFRP-混凝土组合梁(非预应力及施加体外预应力组合梁各1根)在1年持续载荷下行为的试验研究。考虑混凝土收缩徐变及 GFRP型材蠕变耦合的影响,开展了50年的24根 GFRP-混凝土组合梁时随有限元参数分析。结果表明:在1年持续载荷下,非预应力与施加体外预应力组合梁长期挠度分别为其初始挠度的1.42倍及2.91倍;非预应力与预应力组合梁中连接件的长期滑移分别为0.230 mm及0.164 mm,相比初始滑移2种组合梁的最终滑移分别增加了53.3%和58.2%;50年后,非预应力组合梁长期挠度与初始挠度的比值在1.50~1.56之间;而施加体外预应力组合梁长期挠度与初始挠度的比值在3.03~6.08之间。基于以上研究提出了 GFRP-混凝土组合梁长期挠度的计算建议。%The glass fiber reinforced plastic (GFRP)-concrete composite beam consists of a concrete slab on the upper side,a GFRP profile on the lower side and shear connectors to connect these two sides.A test study was con-ducted on the behaviors of two GFRP-concrete composite beams (non-prestressed and external prestressed composite beams each had one)under sustained load for one year.A time-dependent finite element parametric analysis of 24 GFRP-concrete composite beams,taking coupling effect of the shrinkage and creep of concrete and creep of GFRP profile into account,was carried out for 50 years.The results show that long-term deflections of the non-prestressed and external prestressed composite beams are 1.42 and 2.91 times of their respective instantaneous deflections under sustained load for one year.The long-term slips of the non-prestressed and external prestressed composite beams are 0.230 mm and 0.164 mm,respectively.Compared with initial slips,the terminal slips of the two composite beams increase by 53

  20. Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement

    Directory of Open Access Journals (Sweden)

    Heecheul Kim

    2015-01-01

    Full Text Available This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spacing ratio increased. Also, we used the experimental results to evaluate whether the shear strength equations of ACI 318-14 and ACI 440.1R can be applied to the design of GFRP shear reinforcement. In the results, the ACI 440 equation underestimated the experimental results more than that of ACI 318.

  1. Reliable liquid chromatography-mass spectrometry method for investigation of primary aromatic amines migration from food packaging and during industrial curing of multilayer plastic laminates.

    Science.gov (United States)

    Lambertini, Francesca; Di Lallo, Valentina; Catellani, Dante; Mattarozzi, Monica; Careri, Maria; Suman, Michele

    2014-09-01

    Primary aromatic amines (PAAs) can migrate from packaging into food from different sources such as polyurethanic adhesives used for the manufacture of multilayer films, which may contain residual aromatic isocyanates, or recycled paperboard, because of the presence of azo dyes in the printed paper massively used in the recycling process. In the present work, a reliable analytical method, exploiting a conventional high-performance liquid chromatography-(selected ion monitoring)-mass spectrometry system, for PAAs compliance assessment in food contact materials was developed as an effective alternative to the current standard spectrophotometric one, moving in this way from the screening to the accurate and selective quantitation perspective for the analysis of PAAs both in aqueous and acidic food simulants. The main validation parameters were verified achieving very satisfactory results in terms of linearity range, limit of detection (ranging from 0.1 to 1.0 µg kg(-1)) and quantitation (ranging from 0.1 to 3.6 µg kg(-1)), repeatability and accuracy. Suitability of the method was demonstrated for a wide range of commercial samples, chosen among different producers of the most common used food packaging plastic and paperboard categories and then analyzed to assess the risk related to PAAs migration. Finally, the method was also successfully exploited to monitor the evolution of potential PAAs migration during the industrial curing process of multilayer plastic laminates, prior to their release for delivery to the food industry end user.

  2. Strengthening Reinforced Concrete Beams with CFRP and GFRP

    Directory of Open Access Journals (Sweden)

    Mehmet Mustafa Önal

    2014-01-01

    Full Text Available Concrete beams were strengthened by wrapping the shear edges of the beams twice at 45° in opposite directions by either carbon fiber reinforced polymer (CFRP or glass fiber reinforced polymer (GFRP. The study included 3 CFRP wrapped beams, 3 GFRP wrapped beams, and 3 control beams, all of which were 150 × 250 × 2200 mm and manufactured with C20 concrete and S420a structural steel at the Gazi University Technical Education Faculty labs, Turkey. Samples in molds were cured by watering in the open air for 21 days. Four-point bending tests were made on the beam test specimens and the data were collected. Data were evaluated in terms of load displacement, bearing strength, ductility, and energy consumption. In the CFRP and GFRP reinforced beams, compared to controls, 38% and 42%, respectively, strength increase was observed. In all beams, failure-flexural stress occurred in the center as expected. Most cracking was observed in the flexural region 4. A comparison of CFRP and GFRP materials reveals that GFRP enforced parts absorb more energy. Both materials yielded successful results. Thicker epoxy application in both CFRP and GFRP beams was considered to be effective in preventing break-ups.

  3. Non-traditional shape GFRP rebars for concrete reinforcement

    Science.gov (United States)

    Claure, Guillermo G.

    The use of glass-fiber-reinforced-polymer (GFRP) composites as internal reinforcement (rebars) for concrete structures has proven to be an alternative to traditional steel reinforcement due to significant advantages such as magnetic transparency and, most importantly, corrosion resistance equating to durability and structural life extension. In recent years, the number of projects specifying GFRP reinforcement has increased dramatically leading the construction industry towards more sustainable practices. Typically, GFRP rebars are similar to their steel counterparts having external deformations or surface enhancements designed to develop bond to concrete, as well as having solid circular cross-sections; but lately, the worldwide composites industry has taken advantage of the pultrusion process developing GFRP rebars with non-traditional cross-sectional shapes destined to optimize their mechanical, physical, and environmental attributes. Recently, circular GFRP rebars with a hollow-core have also become available. They offer advantages such as a larger surface area for improved bond, and the use of the effective cross-sectional area that is engaged to carry load since fibers at the center of a solid cross-section are generally not fully engaged. For a complete understanding of GFRP rebar physical properties, a study on material characterization regarding a quantitative cross-sectional area analysis of different GFRP rebars was undertaken with a sample population of 190 GFRP specimens with rebar denomination ranging from #2 to #6 and with different cross-sectional shapes and surface deformations manufactured by five pultruders from around the world. The water displacement method was applied as a feasible and reliable way to conduct the investigation. In addition to developing a repeatable protocol for measuring cross-sectional area, the objectives of establishing critical statistical information related to the test methodology and recommending improvements to

  4. Thermal conductivity of graphene laminate.

    Science.gov (United States)

    Malekpour, H; Chang, K-H; Chen, J-C; Lu, C-Y; Nika, D L; Novoselov, K S; Balandin, A A

    2014-09-10

    We have investigated thermal conductivity of graphene laminate films deposited on polyethylene terephthalate substrates. Two types of graphene laminate were studied, as deposited and compressed, in order to determine the physical parameters affecting the heat conduction the most. The measurements were performed using the optothermal Raman technique and a set of suspended samples with the graphene laminate thickness from 9 to 44 μm. The thermal conductivity of graphene laminate was found to be in the range from 40 to 90 W/mK at room temperature. It was found unexpectedly that the average size and the alignment of graphene flakes are more important parameters defining the heat conduction than the mass density of the graphene laminate. The thermal conductivity scales up linearly with the average graphene flake size in both uncompressed and compressed laminates. The compressed laminates have higher thermal conductivity for the same average flake size owing to better flake alignment. Coating plastic materials with thin graphene laminate films that have up to 600× higher thermal conductivity than plastics may have important practical implications.

  5. Creep investigation of GFRP RC Beams - Part A : Literature review and experimental Study

    Directory of Open Access Journals (Sweden)

    masmoudi abdelmonem

    2014-11-01

    This paper (Part A presents a literature review and the loading history of six experimental beams reinforced with GFRP and steel bars. The results of this study revealed that Beams reinforced with GFRP are less marked with creep phenomenon.  This investigation should guide the civil engineer/designer for a better understanding creep phenomenon in GFRP reinforced concrete members.

  6. Behavior of reinforced concrete beams reinforced with GFRP bars

    Directory of Open Access Journals (Sweden)

    D. H. Tavares

    Full Text Available The use of fiber reinforced polymer (FRP bars is one of the alternatives presented in recent studies to prevent the drawbacks related to the steel reinforcement in specific reinforced concrete members. In this work, six reinforced concrete beams were submitted to four point bending tests. One beam was reinforced with CA-50 steel bars and five with glass fiber reinforced polymer (GFRP bars. The tests were carried out in the Department of Structural Engineering in São Carlos Engineering School, São Paulo University. The objective of the test program was to compare strength, reinforcement deformation, displacement, and some anchorage aspects between the GFRP-reinforced concrete beams and the steel-reinforced concrete beam. The results show that, even though four GFRP-reinforced concrete beams were designed with the same internal tension force as that with steel reinforcement, their capacity was lower than that of the steel-reinforced beam. The results also show that similar flexural capacity can be achieved for the steel- and for the GFRP-reinforced concrete beams by controlling the stiffness (reinforcement modulus of elasticity multiplied by the bar cross-sectional area - EA and the tension force of the GFRP bars.

  7. Continuous jute fibre reinforced laminated paper composite and reinforcement-fibre free paper laminate

    Indian Academy of Sciences (India)

    B B Verma

    2009-12-01

    Plastic bags create a serious environmental problem. The proposed jute fibre reinforced laminated paper composite and reinforcement-fibre free paper laminate may help to combat the war against this pollutant to certain extent. The paper laminate, without reinforcement fibre, exhibited a few fold superiority in tensile properties than single paper strip. The studies further show that an appreciable improvement in tensile properties can be achieved by introducing continuous jute fibre in paper laminates.

  8. Strengthening of RC Slabs with Symmetric Openings Using GFRP Composite Beams

    Directory of Open Access Journals (Sweden)

    Yeol Choi

    2013-12-01

    Full Text Available This paper describes the results of experimental testing of glass fiber reinforced plastic (GFRP composite beam strengthened reinforced concrete (RC slabs with two symmetrical openings. Specimens, one-half scale, have been designed and fabricated to reflect the most common RC bathroom slab used in school buildings. The specimen had dimensions of 2000 mm (width × 150 mm (thickness × 3000 mm (length were used with the two openings of 300 mm × 400 mm. The aim of this study is to investigate the most effective strengthening method using GFRP composite beams in slabs with openings for enhancing the load-carrying capacity and stiffness. Test results showed that the strengthened slabs seems to increase the load-carrying capacity by 29%, 21% and 12% over that of the control specimen for diagonal, parallel and surround strengthening respectively. Furthermore, test results showed that the diagonal-strengthened system is one of the most effective methods for strengthening an RC slab with openings in terms of load-carrying capacity, stiffness and crack patterns.

  9. Optical transmission scanning for damage quantification in impacted GFRP composites

    Science.gov (United States)

    Khomenko, Anton; Karpenko, Oleksii; Koricho, Ermias G.; Haq, Mahmoodul; Cloud, Gary L.; Udpa, Lalita

    2016-04-01

    Glass fiber reinforced polymer (GFRP) composites constitute nearly 90% of the global composites market and are extensively used in aerospace, marine, automotive and construction industries. While their advantages of lightweight and superior mechanical properties are well explored, non-destructive evaluation (NDE) techniques that allow for damage/defect detection and assessment of its extent and severity are not fully developed. Some of the conventional NDE techniques for GFRPs include ultrasonics, X-ray, IR thermography, and a variety of optical techniques. Optical methods, specifically measuring the transmission properties (e.g. ballistic optical imaging) of specimens, provide noninvasive, safe, inexpensive, and compact solutions and are commonly used in biomedical applications. In this work, this technique is adapted for rapid NDE of GFRP composites. In its basic form, the system for optical transmission scanning (OTS) consists of a light source (laser diode), a photo detector and a 2D translation stage. The proposed technique provides high-resolution, rapid and non-contact OT (optical transmittance)-scans, and does not require any coupling. The OTS system was used for inspection of pristine and low-velocity impacted (damaged) GFRP samples. The OT-scans were compared with conventional ultrasonic C-scans and showed excellent agreement but with better resolution. Overall, the work presented lays the groundwork for cost-effective, non-contact, and rapid NDE of GFRP composite structures.

  10. Wood or Laminate?—Psychological Research of Customer Expectations

    National Research Council Canada - National Science Library

    Jiménez, Paul; Dunkl, Anita; Eibel, Kerstin; Denk, Elisabeth; Grote, Vincent; Kelz, Christina; Moser, Maximilian

    2016-01-01

    .... However, when investigating psychological differences, wood is usually compared to carpets, glass, leather, stone, or plastic but is not compared to a visually similar material such as laminate...

  11. Cyclic Load Responses of GFRP-Strengthened Hollow Rectangular Bridge Piers

    Directory of Open Access Journals (Sweden)

    Junfeng Jia

    2014-01-01

    Full Text Available This study investigated the seismic behavior of glass fiber reinforced polymer (GFRP strengthened hollow rectangular bridge piers. Cyclic testing of reinforced concrete (RC piers retrofitted with GFRP was carried out under constant axial loading and lateral bending. The failure characteristics, flexural ductility, dissipated energy, and hysteretic behaviors, were analyzed based on experimental results. A simplified GFRP-confined concrete model is developed by considering effective strength coefficient and area distribution ratio of GFRP sheets. The results indicate that the failure modes and damage region would be changed and the ductility and dissipated energy of the GFRP-strengthened hollow rectangular bridge piers were improved greatly but not much improvement for the lateral load capacity. The analytical results of the force-displacement hysteretic loops based on the GFRP-confined concrete model developed in this paper agreed well with the experimental data.

  12. Compressive Behavior of Concrete Confined with GFRP Tubes and Steel Spirals

    OpenAIRE

    Liang Huang; Xiaoxun Sun; Libo Yan; Deju Zhu

    2015-01-01

    This paper presents the experimental results and analytical modeling of the axial compressive behavior of concrete cylinders confined by both glass fiber-reinforced polymer (GFRP) tube and inner steel spiral reinforcement (SR). The concrete structure is termed as GFRP–SR confined concrete. The number of GFRP layers (1, 2, and 3 layers) and volumetric ratios of SR (1.5% and 3%) were the experimental variables. Test results indicate that both GFRP tube and SR confinement remarkably increase th...

  13. Shear Strengthening of Reinforced Concrete Beams Using GFRP Wraps

    Directory of Open Access Journals (Sweden)

    M. A. A. Saafan

    2006-01-01

    Full Text Available The objective of the experimental work described in this paper was to investigate the efficiency of GFRP composites in strengthening simply supported reinforced concrete beams designed with insufficient shear capacity. Using the hand lay-up technique, successive layers of a woven fiberglass fabric were bonded along the shear span to increase the shear capacity and to avoid catastrophic premature failure modes. The strengthened beams were fabricated with no web reinforcement to explore the efficiency of the proposed strengthening technique using the results of control beams with closed stirrups as a  web reinforcement. The test results of 18 beams are reported, addressing the influence of different shear strengthening schemes and variable longitudinal reinforcement ratios on the structural behavior. The results indicated that significant increases in the shear strength and improvements in the overall structural behavior of beams with insufficient shear capacity could be achieved by proper application of GFRP wraps.

  14. Durability of GFRP reinforcing bars and their bond in concrete

    OpenAIRE

    Rolland, Arnaud; Chataigner, Sylvain; Quiertant, Marc; Benzarti, Karim; Argoul, Pierre

    2015-01-01

    The use of composite reinforcing bars (rebars) for the reinforcement of concrete appears as an attractive solution to prevent corrosion, which is the main pathology encountered on concrete structures. Although such rebars are being used for more than ten years, there is a clear lack of knowledge regarding their durability, especially under alkaline environment. This paper aims at investigating the evolutions of tensile properties and bond in concrete of GFRP (Glass Fiber Reinforced Polymer...

  15. Bond behaviour of GFRP reinforced geopolymer cement concrete

    Directory of Open Access Journals (Sweden)

    Hailu Tekle Biruk

    2017-01-01

    Full Text Available Bond plays a key role in the performance of reinforced concrete structures. Glass fibre reinforced polymer (GFRP reinforcing bar and Geopolymer cement (GPC concrete are promising alternative construction materials for steel bars and Ordinary Portland Cement (OPC concrete respectively. In this study, the bond behaviour between these two materials is investigated by using beam-end specimen tests. The bond behaviour of 15.9 mm diameter sand-coated GFRP bar was investigated. An embedment length of six and nine times the bar diameter were used. The free end and the loaded end bond-slip-relationships, the bond failure mode and the average bond stress were used to analyse each of the specimens. Additionally, the distribution of tensile and bond stress along the embedment length was investigated by installing strain gauges along the embedment length in some of the specimens. Test results indicate that a significant difference exists between the free end and loaded end bond-slip curves, which is due to the lower elastic modulus of the GFRP bars. Furthermore, it was found that the tensile and bond stress distribution along the embedment length is nonlinear and the nonlinearity changes with the load.

  16. Torsional Strengthening of RC Beams Using GFRP Composites

    Science.gov (United States)

    Patel, Paresh V.; Jariwala, Vishnu H.; Purohit, Sharadkumar P.

    2016-09-01

    Fiber reinforced polymer as an external reinforcement is used extensively for axial, flexural and shear strengthening in structural systems. The strengthening of members subjected to torsion is recently being explored. The loading mechanism of beams located at the perimeter of buildings which carry loads from slabs, joists and beams from one side of the member generates torsion that are transferred from the beams to the columns. In this work an experimental investigation on the improvement of the torsional resistance of reinforced concrete beams using Glass Fiber Reinforced Polymer (GFRP) is presented. Total 24 RC beams have been cast in this work. Ten beams of dimension 150 mm × 150 mm × 1300 mm are subjected to pure torsion while fourteen beams of 150 mm × 150 mm × 1700 mm are subjected to combined torsion and bending. Two beams in each category are designated as control specimen and remaining beams are strengthened by GFRP wrapping of different configurations. Pure torsion on specimens is applied using specially fabricated support mechanism and universal testing machine. For applying combined torsion and bending a loading frame and test set up are fabricated. Measurements of angle of twist at regular interval of torque, torsion at first crack, and ultimate torque, are obtained for all specimens. Results of different wrapping configurations are compared for control and strengthened beams to suggest effective GFRP wrapping configuration.

  17. Experimental and numerical thermal analysis of a balcony board with integrated glass fibre reinforced polymer GFRP elements

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi Wakili, K.; Simmler, H.; Frank, T. [Swiss Federal Laboratories for Materials Testing and Research (Empa), Duebendorf (Switzerland)

    2007-07-01

    The thermal behaviour of a balcony board with integrated glass fibre reinforced plastic (GFRP) elements replacing the compression reinforcement rods, is investigated by means of measurement as well as numerical analysis. For this reason a specimen consisting of an externally insulated brick wall and a representative part of a balcony is tested under a steady state temperature gradient of 30 K in a guarded hot box. Additionally to the normative requirements, temperature sensors are placed on critical sites within the construction, prior to the pouring of cement, to help the verification of the numerical analysis carried out simultaneously. Measured and calculated results are compared and some numerical parameter studies are carried out to quantify the advantage of glass fibre reinforced plastic elements over conventional balcony boards from a thermal point of view. (author)

  18. Experimental Study On The Flexural And Shear Analysis Of Concrete Beams Rein Forced With Glass Fiber -Reinforced (Gfrp Bars

    Directory of Open Access Journals (Sweden)

    Edgaras Atutis

    2013-12-01

    Full Text Available The paper analyzes experimental studies examining the flexuraland shear analysis of the beams reinforced with GFRP bars. Atesting program consisted of two beams reinforced with longitudinalprestressed GFRP tendons, two beams reinforced withlongitudinal GFRP bars and two beams reinforced with longitudinalsteel reinforcement and shear reinforcement of GFRP bars.The experimental flexural and shear strength of concrete beamswere compared with theoretical strength calculated according toa number of design recommendations, and the significance ofprestressing for deflection and cracking was analyzed.

  19. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  20. Combined Effects of Curing Temperatures and Alkaline Concrete on Tensile Properties of GFRP Bars

    Directory of Open Access Journals (Sweden)

    Wen-rui Yang

    2017-01-01

    Full Text Available A significant number of studies have been conducted on the tensile properties of GFRP bars embedded in concrete under different environments. However, most of these studies have been experimentally based on the environmental immersion test after standard-curing and the lack of influence on the tensile properties of GFRP bars embedded in concrete during the curing process of concrete. This paper presents the results of the microscopic structures through scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, and tensile properties of GFRP bars, which were employed to investigate the combined effects of curing temperatures and alkaline concrete on tensile properties of GFRP bars. The results showed that the higher curing temperature aggravated the influence of the alkaline concrete environment on GFRP bars but did not change the mechanisms of mechanical degradation of the GFRP bars. The influence of different curing temperatures on the tensile strength of GFRP bars was different between the bare bar and bars in concrete. Finally, the exponential correlation equation of two different test methods was established, and the attenuation ratio of the tensile strength of GFRP bars embedded in concrete under different curing temperatures was predicted by the bare test.

  1. Strain coordination of quasi-plane-hypothesis for reinforced concrete beam strengthened by epoxy-bonded glass fiber reinforced plastic plate

    Institute of Scientific and Technical Information of China (English)

    ZENG Xian-tao; DING Ya-hong; WANG Xing-guo

    2006-01-01

    The testing of thirteen reinforced concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly well in coordination to each other. But there is relative slipping between RC beam and GFRP plate. And the strain of GFRP and steel rebar of RC beam satisfies the quasi-plane-hypothesis, that is, the strain of longitudinal fiber that parallels to the neutral axis of plated beam within the scope of effective height (h0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of GFRP and steel rebar satisfies the equation: εCFRP = Kεsteel.

  2. Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Overgaard, Lars C. T.; Thomsen, Ole Thybo

    2012-01-01

    Wrinkle defects can be formed during the production of wind turbine blades consisting of composite monolithic and sandwich laminates. Earlier studies have shown that the in-plane compressive strength of a sandwich panel with wrinkle defects may decrease dramatically. This study focuses on the fai......Wrinkle defects can be formed during the production of wind turbine blades consisting of composite monolithic and sandwich laminates. Earlier studies have shown that the in-plane compressive strength of a sandwich panel with wrinkle defects may decrease dramatically. This study focuses...... on the failure modes of sandwich specimens consisting of thick GFRP face sheets with a wrinkle defect and a balsa wood core subjected to in-plane compression loading. Three distinct modes of failure were found, and the strain distributions leading up to these failures were established by use of digital image...... correlation (DIC). Finite element analyses were subsequently conducted to model the response of the test specimens prior to failure, and generally a very good agreement was found with the DIC measurements, although slight differences between the predicted and measured strain fields were observed in the local...

  3. Laminate article

    Science.gov (United States)

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2002-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  4. Dynamic constitutive equation of GFRP obtained by Lagrange experiment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The note presents a method of constructing dynamic constitutive equations of material by means of Lagrange experiment and analysis. Tests were carried out by a light gas gun and the stress history profiles were recorded on multiple Lagrange positions. The dynamic constitutive equations were deduced from the regression of a series of data which was obtained by Lagrange analysis based upon recorded multiple stress histories. Here constitutive equations of glass fibre reinforced phenolic resin composite(GFRP) in uniaxil strain state under dynamic loading are given. The proposed equations of the material agree well with experimental results.

  5. An application of asymmetrical glass fibre-reinforced plastics for the manufacture of curved fibre reinforced concrete

    OpenAIRE

    Funke, Henrik; Gelbrich, Sandra; Ulke-Winter , Lars; Kroll, Lothar; Petzoldt, Carolin

    2015-01-01

    There was developed a novel technological and constructive approach for the low-cost production of curved freeform formworks, which allow the production of single and double-curved fibre reinforced concrete. The scheduled approach was based on a flexible, asymmetrical multi-layered formwork system, which consists of glass-fibre reinforced plastic (GFRP). By using of the unusual anisotropic structural behavior, these GFRP formwork elements permitted a specific adjustment of defined curvature. ...

  6. Optimal design of damping layers in SMA/GFRP laminated hybrid composites

    Science.gov (United States)

    Haghdoust, P.; Cinquemani, S.; Lo Conte, A.; Lecis, N.

    2017-10-01

    This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.

  7. Effect of embedded printed circuit board (PCB) sensors on the mechanical behavior of glass fiber-reinforced polymer (GFRP) structures

    Science.gov (United States)

    Javdanitehran, M.; Hoffmann, R.; Groh, J.; Vossiek, M.; Ziegmann, G.

    2016-06-01

    The embedding of dielectric chipless sensors for cure monitoring into fiber-reinforced thermosets allows for monitoring and controlling the curing process and consequently higher quality in production. The embedded sensors remain after the processing in the structure. This affects the integrity of the composite structure locally. In order to investigate these effects on the mechanical behavior of the glass fiber-reinforced polymer (GFRP), sensors made on special low loss substrates are integrated into laminates with different lay-ups and thicknesses using vacuum assisted resin transfer molding (VARTM) method. In a parametric study the size of the sensor is varied to observe its influence on the strength and the stiffness of the laminates according to its lay-up and thickness. The size and orientation of the resin rich areas near sensors as well as the distortion in load bearing area as the consequences of the introduction of the sensors are investigated in conjunction with the strength of the structure. An empirical model is proposed by the authors which involves the previously mentioned factors and is used as a rapid tool for the prediction of the changes in bending and tensile strength of simple structures with embedded sensors. The methodology for model’s calibration as well as the validation of the model against the experimental data of different laminates with distinct lay-ups and thicknesses are presented in this work. Mechanical tests under tensile and bending loading indicate that the reduction of the structure’s strength due to sensor integration can be attributed to the size and the orientation of rich resin zones and depends over and above on the size of distorted load bearing area. Depending on the sensor’s elastic modulus the stiffness of the structure may vary through the introduction of a sensor.

  8. Laser cutting plastic materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  9. Durability study of neat/nanophased GFRP composites subjected to different environmental conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Zainuddin, S. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States); Hosur, M.V., E-mail: hosur@tuskegee.edu [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States); Zhou, Y. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States); Kumar, Ashok [Construction Engineering Research Laboratory, U.S. Army Engineer Research and Development Center, Champaign, IL 61821-9005 (United States); Jeelani, S. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States)

    2010-05-25

    Experimental investigations on the durability of E-glass/nanoclay-epoxy composites are reported. SC-15 epoxy system was modified using 1-2 wt.% of nanoclay. Extent of clay platelet exfoliation in epoxy was evaluated using X-ray diffraction (XRD). Glass fiber reinforced plastic (GFRP) composite panels were fabricated using modified epoxy and exposed to four different conditions, i.e. hot (elevated temperature-dry, wet: 60 and 80 deg. C) and cold (subzero-dry, wet) for 15, 45 and 90 days. Weight change due to conditioning, quasi-static flexure and micrographic characterization were studied on the conditioned samples. Room temperature samples were also tested for baseline consideration. XRD results showed exfoliation of clay platelets in nanoclay-epoxy samples with decrease in peak intensity and increase in interplanar spacing. Samples subjected to hot-wet conditions showed higher percentage weight gain with a maximum of 4.25% in neat and 3.1% in 2 wt.% samples. Flexural tests results showed degradation with increasing time. Maximum degradation were observed for hot-wet (80 deg. C) for 90 days neat samples, i.e. 22.6% and 29.8% reduction in flexural strength and stiffness, respectively. However, less degradation was noticed for nanophased composites under similar conditions. Scanning electron microscopy (SEM) results of failed samples showed better interfacial bonding in nanophased composites.

  10. Mechanical properties of sandwich composite made of syntactic foam core and GFRP skins

    Directory of Open Access Journals (Sweden)

    Zulzamri Salleh

    2016-12-01

    Full Text Available Sandwich composites or sandwich panels have been widely used as potential materials or building structures and are regarded as a lightweight material for marine applications. In particular, the mechanical properties, such as the compressive, tensile and flexural behaviour, of sandwich composites formed from glass fibre sheets used as the skin and glass microballoon/vinyl ester as the syntactic foam core were investigated in this report. This syntactic foam core is sandwiched between unidirectional glass fibre reinforced plastic (GFRP using vinyl ester resins to build high performance sandwich panels. The results show that the compressive and tensile strengths decrease when the glass microballoon content is increased in syntactic foam core of sandwich panels. Moreover, compressive modulus is also found to be decreased, and there is no trend for tensile modulus. Meanwhile, the flexural stiffness and effective flexural stiffness for edgewise position have a higher bending as 50% and 60%, respectively. Furthermore, the results indicated that the glass microballoon mixed in a vinyl ester should be controlled to obtain a good combination of the tensile, compressive and flexural strength properties.

  11. Hybrid composite laminate structures

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F. (Inventor)

    1977-01-01

    An invention which relates to laminate structures and specifically to essentially anisotropic fiber composite laminates is described. Metal foils are selectively disposed within the laminate to produce increased resistance to high velocity impact, fracture, surface erosion, and other stresses within the laminate.

  12. Compressive Behavior of Concrete Confined with GFRP Tubes and Steel Spirals

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2015-04-01

    Full Text Available This paper presents the experimental results and analytical modeling of the axial compressive behavior of concrete cylinders confined by both glass fiber-reinforced polymer (GFRP tube and inner steel spiral reinforcement (SR. The concrete structure is termed as GFRP–SR confined concrete. The number of GFRP layers (1, 2, and 3 layers and volumetric ratios of SR (1.5% and 3% were the experimental variables. Test results indicate that both GFRP tube and SR confinement remarkably increase the ultimate compressive strength, energy dissipation capacity, and ductility of concrete. The volumetric ratio of SR has a more pronounced influence on the energy dissipation capacity of confined concrete with more GFRP layers. In addition, a stress–strain model is presented to predict the axial compressive behavior of GFRP–SR confined concrete. Comparisons between the analytical results obtained using the proposed model and experimental results are also presented.

  13. Finite Element Simulation of GFRP Reinforced Concrete Beam Externally Strengthened With CFRP Plates

    Directory of Open Access Journals (Sweden)

    Salleh Norhafizah

    2017-01-01

    Full Text Available The construction technology now has become more and more advanced allowing the development of new technologies or material to replace the previous one and also solved some of the troubles confronted by construction experts. The Glass Fibre Reinforced Polymer (GFRP composite is an alternative to replace the current usage of steel as it is rust proof and stronger in terms of stiffness compared to steel. Furthermore, GFRP bars have a high strength-to-weight ratio, making them attractive as reinforcement for concrete structures. However, the tensile behavior of GFRP bars is characterized by a linear elastic stress–strain relationship up to failure and, therefore, concrete elements reinforced with GFRP reinforcement exhibit brittle failure without warning. Design codes encourage over-reinforced GFRP design since it is more progressive and leads to a less catastrophic failure with a higher degree of deformability. Moreover, because of GFRP low modulus of elasticity, GFRP reinforced concrete members exhibit larger deflections and wider cracks width than steel reinforced concrete. This aims of this paper is to developed 2D Finite Element (FE models that can accurately simulate the respond on an improvement in the deflection of GFRP reinforced concrete beam externally strengthened with CFRP plates on the tension part of beam. The prediction of flexural response according to RCCSA software was also discussed. It was observed that the predicted FE results are given similar result with the experimental measured test data. Base on this good agreement, a parametric study was the performed using the validation FE model to investigate the effect of flexural reinforcement ratio and arrangement of the beams strengthened with different regions of CFRP plates.

  14. Preparation and characterization of glass fibers - polymers (epoxy) bars (GFRP) reinforced concrete for structural applications

    Science.gov (United States)

    Alkjk, Saeed; Jabra, Rafee; Alkhater, Salem

    2016-06-01

    The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP) and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm) tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long) reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  15. Long-Term Flexural Behaviors of GFRP Reinforced Concrete Beams Exposed to Accelerated Aging Exposure Conditions

    Directory of Open Access Journals (Sweden)

    Yeonho Park

    2014-06-01

    Full Text Available This study investigates the impact of accelerated aging conditions on the long-term flexural behavior and ductility of reinforced concrete (RC members with glass fiber-reinforced polymer (GFRP bars (RC-GFRP specimen and steel bars (RC-steel specimen. A total of thirty six specimens were designed with different amounts of reinforcement with three types of reinforcing bars (i.e., helically wrapped GFRP, sand-coated surface GFRP and steel. Eighteen specimens were subjected to sustained loads and accelerated aging conditions (i.e., 47 °C and 80% relative humidity in a chamber. The flexural behavior of specimens under 300-day exposure was compared to that of the companion specimens without experiencing accelerated aging conditions. Results indicate that the accelerated aging conditions reduced flexural capacity in not only RC-steel, but also RC-GFRP specimens, with different rates of reduction. Different types of GFRP reinforcement exhibited different rates of degradation of the flexural capacity when embedded in concrete under the same exposure conditions. Several existing models were compared with experimental results for predicting the deflection and deformability index for specimens. Bischoff and Gross’s model exhibited an excellent prediction of the time-dependent deflections. Except for the deformability index proposed by Jaeger, there was no general trend related to the aging duration. This study recommends the need for further investigation on the prediction of the deformability index.

  16. Preparation and characterization of glass fibers – polymers (epoxy bars (GFRP reinforced concrete for structural applications

    Directory of Open Access Journals (Sweden)

    Alkjk Saeed

    2016-06-01

    Full Text Available The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  17. Strengthening of Corrosion-Damaged Reinforced Concrete Beams with Glass Fiber Reinforced Polymer Laminates

    Directory of Open Access Journals (Sweden)

    A. L. Rose

    2009-01-01

    Full Text Available Problem statement: This study showed the results of an experimental investigation on the strengthening of corrosion damaged reinforced concrete beams with unidirectional cloth glass fiber reinforced polymer (UDCGFRP laminates. Approach: All the beam specimens 150×250×3000 mm were cast and tested for the present investigation. One beam specimen was neither corroded nor strengthened to serve as a reference. Two beams were corroded to serve as a corroded control. A reinforcement mass loss of approximately 10 and 25% were used to define medium and severe degrees of corrosion. The remaining two beams corroded and strengthened with GFRP. Results: The test parameters included first crack load, first crack deflection, yield load, yield deflection, service load, service deflection, ultimate load and ultimate deflection. Based on the results it was found that GFRP Laminates had beneficial effects even at the corrosion-damaged stage. Conclusion/Recommendations: The UDCGFRP laminated beams showed distinct enhancement in ultimate strength and ductility by 72.37 and 49.49% respectively.

  18. Response of composite laminates on impact of high velocity projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Siva Kumar, K.; Balakrishna Bhat, T. [Defence Metallurgical Research Lab., Hyderabad (India)

    1998-05-01

    Past work on damage of composites subjected to low velocity and hypervelocity impact has been briefly reviewed and some new results on the glass fibre reinforced plastic composite laminates impacted with high velocity projectiles are presented. The effect of thickness of the laminates and the angle of attack on the energy absorption by the composite laminates and the area of damage caused by impact are described. A correlation is made between the energy absorption and the area of damage. Also described is a new method called infiltration radiography useful for assessing the damage in laminated composites upon ballistic impact. (orig.) 28 refs.

  19. Particulate Filled Composite Plastic Materials from Recycled Glass Fibre Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Aare ARUNIIT

    2011-09-01

    Full Text Available Glass fibre reinforced plastic (GFRP scrap consisted of acrylic plastic with glass fibre reinforcement in polyester resin matrix was used in our experiments. The multi-functional DS-series disintegrator mills were used for mechanical processing of GFRP scrap. Preceding from the results characterization of the milled powder particles size, shape and other properties the numerical algorithm for modelling of the density of the new filler material was developed. The main goal of the current study is to develop new particulate filled composite plastic material from recycled GFRP scrap. With recovered plastic powder material the higher filler content in polyester resin matrix can be achieved. The new composite is modelled on basis of the properties of new material. Such an approach requires tests of the new material. The considered target characteristics of the new material are the tensile strength, elongation at break and the cost. The multicriteria optimization problem has been formulated and solved by use of physical programming techniques and Pareto optimality concept. The designed new composites were manufactured in different mixing ratios of powder and binder agent. The strength and stiffness properties of new composite material were tested. http://dx.doi.org/10.5755/j01.ms.17.3.593

  20. GFRP门窗的综合应用性及经济性%INTEGRATED UTILIZATION AND ECONOMIC VALUE OF GFRP DOOR AND WINDOW

    Institute of Scientific and Technical Information of China (English)

    王良纯; 黄明哲

    2000-01-01

    门窗用玻璃纤维增强塑料(GFRP)拉挤中空型材的问世,为建筑业提供了一种新型材料。用该型材制作的GFRP门窗,其综合应用性能高于用木、钢、铝和PVC制成的门窗,具有广阔的发展前景。%The coming out of the hollow profile used to make the door and window employing glass fiber reinforced plastics in the pultmsion supplies a new kind of material for building industry. The integrated utilization of the door and window made of such materials is better than the ones made of wood, steel, aluminum as well as PVC plastics, and has a vast developing prospect.

  1. Durability of concrete structures strengthened with FRP laminates

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the fast freeze-thaw cycling test, the alkaline immersion test, the water immersion test and the wet-thermal exposure test, the influence of aggressive environments on mechanical behavior of FRP was studied. CFRP specimens subjected to aggressive environments showed good durability with no significant degradation in tensile strength and modulus; however, GFRP specimens exhibited a little decrease in mechanical property after aggressive environments exposure. Based on the fast freeze-thaw cycling test and the wet-thermal exposure test, the influence of aggressive environments on the bond behavior between FRP and concrete, mechanical behavior of concrete beams and columns strengthened with FRP laminates was studied. The results showed that the bond strength had a significant decrease compared with those specimens kept at room temperature, and the specimens strengthened with FRP exhibited good durability.

  2. Thermal analysis of GFRP-reinforced continuous concrete decks subjected to top fire

    Science.gov (United States)

    Hawileh, Rami A.; Rasheed, Hayder A.

    2017-09-01

    This paper presents a numerical study that investigates the behavior of continuous concrete decks doubly reinforced with top and bottom glass fiber reinforced polymer (GFRP) bars subjected to top surface fire. A finite element (FE) model is developed and a detailed transient thermal analysis is performed on a continuous concrete bridge deck under the effect of various fire curves. A parametric study is performed to examine the top cover thickness and the critical fire exposure curve needed to fully degrade the top GFRP bars while achieving certain fire ratings for the deck considered. Accordingly, design tables are prepared for each fire curve to guide the engineer to properly size the top concrete cover and maintain the temperature in the GFRP bars below critical design values in order to control the full top GFRP degradation. It is notable to indicate that degradation of top GFRP bars do not pose a collapse hazard but rather a serviceability concern since cracks in the negative moment region widen resulting in simply supported spans.

  3. SEM in situ laboratory investigations on damage growth in GFRP composite under three-point bending tests

    DEFF Research Database (Denmark)

    Zhou, Hong Wei; Mishnaevsky, Leon; Brøndsted, Povl

    2010-01-01

    Glass fiber-reinforced polymer (GFRP) composites are widely used in low-weight constructions. SEM (scanning electron microscopy) in situ experiments of damage growth in GFRP composite under three-point bending loads are carried out. By summarizing the experimental results of three groups of samples...

  4. Energy Saving Glass Lamination via Selective Radio-Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly S.; Allan, Shawn M.

    2009-11-11

    This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for

  5. Tensile Strength of GFRP Reinforcing Bars with Hollow Section

    Directory of Open Access Journals (Sweden)

    Young-Jun You

    2015-01-01

    Full Text Available Fiber reinforced polymer (FRP has been proposed to replace steel as a reinforcing bar (rebar due to its high tensile strength and noncorrosive material properties. One obstacle in using FRP rebars is high price. Generally FRP is more expensive than conventional steel rebar. There are mainly two ways to reduce the cost. For example, one is making the price of each composition cost of FRP rebar (e.g., fibers, resin, etc. lower than steel rebar. Another is making an optimized design for cross section and reducing the material cost. The former approach is not easy because the steel price is very low in comparison with component materials of FRP. For the latter approach, the cost could be cut down by reducing the material cost. Therefore, an idea of making hollow section over the cross section of FRP rebar was proposed in this study by optimizing the cross section design with acceptable tensile performance in comparison with steel rebar. In this study, glass reinforced polymer (GFRP rebars with hollow section and 19 mm of outer diameter were manufactured and tested to evaluate the tensile performance in accordance with the hollowness ratio. From the test results, it was observed that the tensile strength decreased almost linearly with increase of hollowness ratio and the elastic modulus decreased nonlinearly.

  6. Investigation of Creep Rupture Phenomenon in Glass Fibre Reinforced Polymer (GFRP) Stirrups

    Science.gov (United States)

    Johal, Kanwardeep Singh

    Glass Fibre-Reinforced Polymer (GFRP) bars offer a feasible alternative to typical steel reinforcement in concrete structures where there are concerns of corrosion or magnetic interference. In order to design safe structures for a service life of 50 to 100 years, the long-term material properties of GFRP must be understood. Thirty GFRP stirrups of three types were tested under sustained loading to investigate creep rupture and modulus degradation behaviour. The time to failure under varying sustained loads was used to extrapolate the safe design load for typical service lives. It was found that shear critical beams with shear reinforcement designed in accordance with CSA-S806 and ACI-440 provisions may be at risk of premature failure under sustained design loads. Analysis was based on finite element modelling and previously tested beams. Additionally, no moduli degradation was observed in this study. A cumulative weakening model was developed to potentially take into account fatigue loading.

  7. Creep investigation of GFRP RC Beams - Part B: a theoretical framework

    Directory of Open Access Journals (Sweden)

    masmoudi abdelmonem

    2014-11-01

    Full Text Available This paper presents an analytical study about the viscoelastic time-dependent (creep behavior of pultruded GFRP elements made of polyester and E-glass fibres. Experimental results reported in Part A are firstly used for material characterization by means of empirical and phenomenological formulations.   The superposition principles by adopting the law of creep following the Eurocode 2 recommendations are also investigated. Analytical study was also conducted including creep under constant stress; successions of increasing stress superposition principle equivalent time and the return creep reloading. The results of this study revealed that Beams reinforced with GFRP are less marked with creep phenomenon.  This investigation should guide the civil engineer/designer for a better understanding creep phenomenon in GFRP reinforced concrete members.

  8. The research of emulsion-type acrylic copolymerization adhesive of paper-plastic lamination%乳液型丙烯酸酯纸塑复膜胶的研制

    Institute of Scientific and Technical Information of China (English)

    刘炳增; 陶莉俊; 马建学

    2012-01-01

    本实验采用种子乳液半连续预乳化工艺合成复膜胶乳液。主要研究了阴、非离子乳化剂复配比例及用量、单体种类、聚合物玻璃化温度、交联剂等对乳液复膜胶性能的影响。该复膜胶乳液具有制备工艺简单,合成过程稳定,不污染环境等优点。主要应用于聚丙烯(PP)或聚对苯二甲酸乙二醇酯(PET)薄膜与纸张的复合,粘接强度高,满足了油墨与纸张分离的效果,印刷无气泡、变色等现象发生。%in this paper ,the paper-plastic lamination emulsion adhesive was prepared by seeding pre-emulsion polymeriza- tion. The effects of anionic and nonionic emulsifier matching, monomer types, polymer glass transition temperature, crosslinking agent on adhesive peel strength was investigated. The adhesive emulsion has a simple preparation and the synthesis process is sta- ble, not pollute the environment, mainly used in polypropylene (PP) or polyethylene terephthalate (PET) film and paper lamina- tion. High peel strength,meeting the effects of the separation of ink and paper. No bubbles, discoloration, and other phenomenon.

  9. Experimental Investigation on Flexural Performance of Masonry Walls Reinforced with GFRP

    Institute of Scientific and Technical Information of China (English)

    LIU Jifu; LIU Ming; SONG Yupu

    2007-01-01

    This paper presents the results of a test program for flexure reinforcing characteristics of gless fiber-rein forced polymer(GFRP) sheets bonded to masonry beams. A total of eight specimens subjected to monotonic four-point bending were tested up to failure. These specimens were constructed with two different bond patterns. Six of these specimens were reinforced by using GFRP sheets prior to testing, and the remaining two were not reinforced. The test results indicate a significant increase in both load-bearing capacity and ductile performance of the reinforced walls over the unreinforced ones.

  10. Nuclear lamins and neurobiology.

    Science.gov (United States)

    Young, Stephen G; Jung, Hea-Jin; Lee, John M; Fong, Loren G

    2014-08-01

    Much of the work on nuclear lamins during the past 15 years has focused on mutations in LMNA (the gene for prelamin A and lamin C) that cause particular muscular dystrophy, cardiomyopathy, partial lipodystrophy, and progeroid syndromes. These disorders, often called "laminopathies," mainly affect mesenchymal tissues (e.g., striated muscle, bone, and fibrous tissue). Recently, however, a series of papers have identified important roles for nuclear lamins in the central nervous system. Studies of knockout mice uncovered a key role for B-type lamins (lamins B1 and B2) in neuronal migration in the developing brain. Also, duplications of LMNB1 (the gene for lamin B1) have been shown to cause autosome-dominant leukodystrophy. Finally, recent studies have uncovered a peculiar pattern of nuclear lamin expression in the brain. Lamin C transcripts are present at high levels in the brain, but prelamin A expression levels are very low-due to regulation of prelamin A transcripts by microRNA 9. This form of prelamin A regulation likely explains why "prelamin A diseases" such as Hutchinson-Gilford progeria syndrome spare the central nervous system. In this review, we summarize recent progress in elucidating links between nuclear lamins and neurobiology.

  11. A Modified Model for Deflection Calculation of Reinforced Concrete Beam with Deformed GFRP Rebar

    Directory of Open Access Journals (Sweden)

    Minkwan Ju

    2016-01-01

    Full Text Available The authors carried out experimental and analytical research to evaluate the flexural capacity and the moment-deflection relationship of concrete beams reinforced with GFRP bars. The proposed model to predict the effective moment of inertia for R/C beam with GFRP bars was developed empirically, based on Branson’s equation to have better accuracy and a familiar approach to a structural engineer. For better prediction of the moment-deflection relationship until the ultimate strength is reached, a nonlinear parameter (k was also considered. This parameter was introduced to reduce the effect of the cracked moment of inertia for the reinforced concrete member, including a lower reinforcement ratio and modulus of elasticity of the GFRP bar. In a comparative study using six equations suggested by others, the proposed model showed better agreement with the experimental test results. It was confirmed that the empirical modification based on Branson’s equation was valid for predicting the effective moment of inertia of R/C beams with GFRP bar in this study. To evaluate the generality of the proposed model, a comparative study using previous test results from the literature and the results from this study was carried out. It was found that the proposed model had better accuracy and was a familiar approach to structural engineers to predict and evaluate the deflection behavior.

  12. Tests on GFRP Pultruded Profiles with Channel Section Subjected to Web Crippling

    Science.gov (United States)

    Zhang, Wenxue; Chen, Yu

    2016-11-01

    This paper presents an experimental investigation on the web-crippling behavior in glass fibre reinforced polymer (GFRP) pultruded profiles with channel section. A main bending main crack on the web is the main failure mode in the test. The effects of the loading positions, the supporting conditions and bearing lengths on the web crippling behavior of GFRP pultruded profiles with channel section are discussed. Specimens with interior bearing load have higher ultimate strength and all the specimens with loading conditions IG reached the highest ultimate strength but all ruptured. Ultimate strengths of GFRP pultruded profiles with channel section can not be enhanced by increasing the length of the bearing plate. Finite element models were developed to numerically simulate the test results in the terms of ultimate loads, failure modes and load-displacement curves. Based on the results of the parametric study, a number of design formulas are proposed in this paper to accurately predict web crippling ultimate capacity of pultruded GFRP channel sections under four loading and boundary conditions.

  13. Compressive damage mechanism of GFRP composites under off-axis loading: Experimental and numerical investigations

    DEFF Research Database (Denmark)

    Zhou, H.W.; Li, H.Y.; Gui, L.L.;

    2013-01-01

    Experimental and computational studies of the microscale mechanisms of damage formation and evolution in unidirectional glass fiber reinforced polymer composites (GFRP) under axial and off-axis compressive loading are carried out. A series of compressive testing of the composites with different a...

  14. Experimental Investigation for Tensile Performance of GFRP-Steel Hybridized Rebar

    Directory of Open Access Journals (Sweden)

    Dong-Woo Seo

    2016-01-01

    Full Text Available Tensile performance of the recently developed “FRP Hybrid Bar” at Korea Institute of Civil Engineering and Building Technology (KICT is experimentally evaluated by the authors. FRP Hybrid Bar is introduced to overcome the low elastic modulus of the existing GFRP bars to be used as a structural member in reinforced concrete structures. The concept of material hybridization is applied to increase elastic modulus of GFRP bars by using steel. This hybridized GFRP bar can be used in concrete structures as a flexural reinforcement with a sufficient level of elastic modulus. In order to verify the effect of material hybridization on tensile properties, tensile tests are conducted. The test results for both FRP Hybrid Bar and the existing GFRP bars are compared. The results indicate that the elastic modulus of FRP Hybrid Bar can be enhanced by up to approximately 250 percent by the material hybridization with a sufficient tensile strength. To ensure the long-term durability of FRP Hybrid Bar to corrosion resistance, the individual and combined effects of environmental conditions on FRP Hybrid Bar itself as well as on the interface between rebar and concrete are currently under investigation.

  15. Tests on GFRP Pultruded Profiles with Channel Section Subjected to Web Crippling

    Science.gov (United States)

    Zhang, Wenxue; Chen, Yu

    2017-08-01

    This paper presents an experimental investigation on the web-crippling behavior in glass fibre reinforced polymer (GFRP) pultruded profiles with channel section. A main bending main crack on the web is the main failure mode in the test. The effects of the loading positions, the supporting conditions and bearing lengths on the web crippling behavior of GFRP pultruded profiles with channel section are discussed. Specimens with interior bearing load have higher ultimate strength and all the specimens with loading conditions IG reached the highest ultimate strength but all ruptured. Ultimate strengths of GFRP pultruded profiles with channel section can not be enhanced by increasing the length of the bearing plate. Finite element models were developed to numerically simulate the test results in the terms of ultimate loads, failure modes and load-displacement curves. Based on the results of the parametric study, a number of design formulas are proposed in this paper to accurately predict web crippling ultimate capacity of pultruded GFRP channel sections under four loading and boundary conditions.

  16. A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints

    Directory of Open Access Journals (Sweden)

    Evangelos I. Avgoulas

    2016-07-01

    Full Text Available There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.

  17. Potentialities of infrared thermography to assess damage in bonding between concrete and GFRP

    Directory of Open Access Journals (Sweden)

    M. M. CALDEIRA

    Full Text Available This paper demonstrates the application of the active infrared thermography to detect damage in bonding between concrete and glass fiber reinforced polymer (GFRP. Specimens of concrete and mortar with GFRP externally bonded were prepared and at their interfaces were inserted polystyrene discs to simulate damages. The samples were divided into two groups. In group 1, one sample was correctly bonded by a GFRP plate to the concrete, but in the other three were inserted polystyrene discs which had different diameters to simulate damages in bonding. In group 2, all of the samples contained identical polystyrene discs at their interfaces, but the total thickness of each specimen was different, because the objective was to evaluate the ability of the camera to capture the simulated damage in depth. The experimental procedure was divided into two stages. In the first stage, four types of heating were used to heat samples of group 1: incandescent lamp, kiln, blended lamp and fan heater. Thus, it was possible to detect the damage and to observe its format and length. It was noticed that the infrared images are different depending on the heat source incident on the specimen. Therefore, group 2 was tested only for the more efficient heating (incandescent lamp. In the second stage, the infrared equipment was tested. Some of the parameters that must be inserted in the camera were varied in order to understand their influence on image formation. The results show the effectiveness of infrared thermography to assess adherence in GFRP/concrete interface. In the present work, the best results were obtained when the image is captured towards GFRP/concrete and using incandescent lamp. It was observed that the image and measured temperature suffer significant distortion when a false value was inserted for the parameter emissivity.

  18. Photovoltaic-Panel Laminator

    Science.gov (United States)

    Keenan, R.

    1985-01-01

    Two-piece unit heats and presses protective layers to form laminate. Rubber diaphragm between upper and lower vacuum chambers alternates between neutral position and one that presses against solar-cell array, supplying distributed force necessary to press layers of laminate together. Encapsulation helps to protect cells from environment and to ensure long panel life while allowing efficient generation of electricity from Sunlight.

  19. Properties of wheat gluten/poly(lactic acid) laminates.

    Science.gov (United States)

    Cho, Sung-Woo; Gällstedt, Mikael; Hedenqvist, Mikael S

    2010-06-23

    Laminates of compression-molded glycerol-plasticized wheat gluten (WG) films surrounded and supported by poly(lactic acid) (PLA) films have been produced and characterized. The objective was to obtain a fully renewable high gas barrier film with sufficient mechanical integrity to function in, for example, extrusion-coating paper/board applications. It was shown that the lamination made it possible to make films with a broad range of glycerol contents (0-30 wt %) with greater strength than single unsupported WG films. The low plasticizer contents yielded laminates with very good oxygen barrier properties. In addition, whereas the unsupported WG films had an immeasurably high water vapor transmission rate (WVTR), the laminate showed values that were finite and surprisingly, in several cases, also lower than that of PLA. Besides being a mechanical support (as evidenced by bending and tensile data) and a shield between the WG and surrounding moisture, the PLA layer also prevented the loss of the glycerol plasticizer from the WG layer. This was observed after the laminate had been aged on an "absorbing" blotting paper for up to 17 weeks. The interlayer adhesion (peel strength) decreased with decreasing glycerol content and increasing WG film molding temperature (130 degrees C instead of 110 degrees C). The latter effect was probably due to a higher protein aggregation, as revealed by infrared spectroscopy. The lamination temperature (110-140 degrees C) did not, however, have a major effect on the final peel strength.

  20. Laser based metal and plastics joining for lightweight design

    Science.gov (United States)

    Kahmann, Max; Quentin, Ulf; Kirchhoff, Marc; Brockmann, Rüdiger; Löffler, Klaus

    2015-03-01

    One of the most important issues in automotive industry is lightweight design, especially since the CO2 emission of new cars has to be reduced by 2020. Plastic and fiber reinforced plastics (e.g. CFRP and GFRP) receive besides new manufacturing methods and the employment of high-strength steels or non-ferrous metals increasing interest. Especially the combination of different materials such as metals and plastics to single components exhausts the entire potential on weight reduction. This article presents an approach based on short laser pulses to join such dissimilar materials in industrial applications.

  1. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    National Research Council Canada - National Science Library

    Kim Sang-Young; Shim Chun Sik; Sturtevant Caleb; Kim Dave (Dae-Wook); Song Ha Cheol

    2014-01-01

    .... This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed...

  2. Experimental Investigation on Laminated Composite Leaf springs Subjected to Cyclic Loading

    Directory of Open Access Journals (Sweden)

    S.Rajesh

    2014-03-01

    Full Text Available An automobile industry have an interest in replacement of conventional leaf spring with composite leaf spring to get better performance with less weight. This paper deals with by replacing the conventional leaf spring with composite leaf spring. The dimensions of an existing conventional steel leaf spring of a light commercial vehicle were taken to fabricate the special die which is further used to manufacture the composite leaf spring. A single leaf with constant cross sectional area similar to that of conventional leaf spring(CLS in each case such as bidirectional glass fiber reinforced plastic (GFRP, bidirectional carbon fiber reinforced plastic (CFRP, bidirectional carbon-glass reinforced plastic (C-GFRP and bidirectional glass-carbon reinforced plastic (G-CFRP were fabricated by hand layup technique and tested by universal testing machine. By using universal testing machine, load per deflection and maximum load that a leaf spring can withstand were measured. The cyclic loading with specific duration was given to the above mentioned composite leaf springs by using a laboratory designed loading set up through milling machine. From the experimented results it was observed that if conventional leaf springs are replaced by composite leaf springs an appropriate amount of weight reduction and there by improved vehicle performance could be achieved.

  3. 78 FR 12716 - Laminated Woven Sacks From the People's Republic of China: Negative Final Determination of...

    Science.gov (United States)

    2013-02-25

    ... method either to an exterior ply of plastic film such as biaxially-oriented polypropylene (``BOPP'') or...: Laminated Woven Sacks From the People's Republic of China, 73 FR 45941 (August 7, 2008); see also Laminated Woven Sacks From the People's Republic of China: Countervailing Duty Order, 73 FR 45955 (August 7,...

  4. Application of a Lamb waves based technique for structural health monitoring of GFRP undercyclic loading

    Science.gov (United States)

    Eremin, A.; Byakov, A.; Panin, S.; Burkov, M.; Lyubutin, P.; Sunder, R.

    2016-04-01

    A Lamb wave based ultrasonic technique as well as optical image characterization was utilized to estimate a current mechanical state of glass fiber reinforced polymers (GFRP) under cyclic tension. The ultrasonic acoustic method was applied in a 'pitch-catch' mode using piezoelectric transducers adhesively bonded onto a specimen surface. Numerical evaluation of acoustic data was performed by calculating two informative parameters: maximum of amplitude of the received signal and variance of signal envelopes. Optical images were registered and then analysed by calculating Shannon entropy that makes it possible to characterize changing of GFRP specimen translucency. The obtained results were treated in order to find out the relation between the current mechanical state of a specimen and informative parameter values being computed from the acoustic and optical signals.

  5. Analysis of machining characteristics in drilling of GFRP composite with application of fuzzy logic approach

    Directory of Open Access Journals (Sweden)

    B.C. Routar

    2013-10-01

    Full Text Available This paper discusses the application of the Taguchi method to optimize the machining parameters for machining of GFRP composite in drilling for individual responses such as thrust force and delamination factor. Moreover, a multi-response performance characteristic is used for optimization of process parameters with application of grey relational analysis. An orthogonal array (L9, grey relational generation, grey relational coefficient and grey – fuzzy grade obtained from the grey relational analysis applied as performance index to solve the optimization problem of drilling parameters for GFRP composite. Taguchi orthogonal array, the signal-to-noise ratio, and the analysis of variance are used to investigate the optimal levels of cutting parameters. The confirmation tests are conducted to verify the results and it is observed that grey-fuzzy approach is efficient in determining the optimal cutting parameters.

  6. Modal parameter identification of all-GFRP composite cable-stayed footbridge in Denmark

    Directory of Open Access Journals (Sweden)

    Górski Piotr

    2017-01-01

    Full Text Available The aim of this paper is to investigate of dynamic characteristics of cable-stayed Fiberline Bridge in Kolding, Denmark, made entirely of Glass Fiber Reinforced Polymer (GFRP composite. During examination based on in situ free-decay measurements and using accelerometers under human jumping the primary five natural frequencies, corresponding mode shapes and damping ratios of the footbridge were identified. The Peak Picking (PP and Frequency Domain Decomposition (FDD approaches were applied to identify the natural frequencies and mode shapes. The corresponding damping ratios were extracted by a linear regression on the extremes of modal decays. The estimated damping ratios were compared with published data for selected footbridges made of various conventional materials. The obtained experimental results provide a relevant data regarding the dynamic response prediction or structural health monitoring of all-GFRP composite footbridges.

  7. Application of a Lamb waves based technique for structural health monitoring of GFRP undercyclic loading

    OpenAIRE

    Eremin, Alexandr Vyacheslavovich; Byakov, Anton Viktorovich; Panin, Sergey Viktorovich; Burkov, Mikhail Vladimirovich; Lyubutin, Pavel Stepanovich; Sunder, R.

    2016-01-01

    A Lamb wave based ultrasonic technique as well as optical image characterization was utilized to estimate a current mechanical state of glass fiber reinforced polymers (GFRP) under cyclic tension. The ultrasonic acoustic method was applied in a 'pitch-catch' mode using piezoelectric transducers adhesively bonded onto a specimen surface. Numerical evaluation of acoustic data was performed by calculating two informative parameters: maximum of amplitude of the received signal and variance of sig...

  8. Structural behavior of hybrid GFRP and steel reinforced FRC prestressed beams

    OpenAIRE

    Mazaheripour, Hadi

    2016-01-01

    The present thesis intended to contribute for the development of a new generation of high durable and sustainable reinforced concrete (RC) beam structures submitted to flexural loading, by combining the benefits that Glass Fiber Reinforced Polymers (GFRP) and steel bars can provide: the former due to their corrosion immunity, and the latter derived from their high ductility. Furthermore, High Performance Fiber Reinforced Concrete (HPFRC) was developed to improve the ductility o...

  9. Seismic retrofitting of reinforced concrete frame structures using GFRP-tube-confined-concrete composite braces

    Science.gov (United States)

    Moghaddasi B., Nasim S.; Zhang, Yunfeng; Hu, Xiaobin

    2012-03-01

    This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program — OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.

  10. Pengaruh Rendaman Air Laut terhadap Kapasitas Rekatan GFRP-Sheet pada Balok Beton Bertulang

    Directory of Open Access Journals (Sweden)

    Mufti Amir Sultan

    2017-04-01

    Full Text Available Construction of concrete structures that located in extreme environments are such as coastal areas will result in decreased strength or even the damage of the structures. As well know, chloride contained in sea water is responsible for strength reduction or structure failed were hence maintenance and repairs on concrete structure urgently needed. One popular method of structural improvements which under investigation is to use the material Glass Fiber Reinforced Polymer which has one of the advantages such as corrosion resistance. This research will be conducted experimental studies to investigate the flexural behavior of reinforced concrete beams with reinforcement GFRP-Sheet immersed in sea water using immersion time of 1, 3, 6 and 12 months. Test specimen consists of 11 pieces of reinforced beams with dimensions (15x20x330 cm that had been reinforced with GFRPSheet in the area of bending. The test specimen tested by providing a static load until it reaches the power limit, to record data during the test strain gauge mounted on the surface of the specimen and the GFRP-Sheet to collect the strain value. The result of analysis indicates the bonding capacity of GFRP Sheet decreases about 11.04% after immersed for 12 months in sea water.

  11. Effect of Natural Fillers on Mechanical Properties of GFRP Composites

    Directory of Open Access Journals (Sweden)

    Vikas Dhawan

    2013-01-01

    Full Text Available Fiber reinforced plastics (FRPs have replaced conventional engineering materials in many areas, especially in the field of automobiles and household applications. With the increasing demand, various modifications are being incorporated in the conventional FRPs for specific applications in order to reduce costs and achieve the quality standards. The present research endeavor is an attempt to study the effect of natural fillers on the mechanical characteristics of FRPs. Rice husk, wheat husk, and coconut coir have been used as natural fillers in glass fiber reinforced plastics (GFRPs. In order to study the effect of matrix on the properties of GFRPs, polyester and epoxy resins have been used. It has been found that natural fillers provide better results in polyester-based composites. Amongst the natural fillers, in general, the composites with coconut coir have better mechanical properties as compared to the other fillers in glass/epoxy composites.

  12. Stability of laminated composites

    Energy Technology Data Exchange (ETDEWEB)

    Guz`, A.N.; Chekhov, V.N. [Inst. of Mechanics of the Academy of Sciences of the Ukrainian, Kiev (Ukraine)

    1992-02-01

    The characteristic special feature of deformation behavior of modern laminated composite materials and structural elements fabricated from these materials, at current levels of loading and operating conditions is the occurrence of the purely three-dimensional stress-deformed state. In this process some specific mechanical phenomena and effects may occur, which is impossible to describe within the framework of applied or approximate approaches existing currently in deformable solid body mechanics. The structure of massive laminated materials may be included in this class of phenomena when the critical parameters of the problem depend only on the ratio between mechanical and geometrical characteristics of single layers and are independent of the dimensions and the form of the total laminated body as a whole. Since this phenomenon may be the beginning of the process of fracture of these materials, and the loss of the load-carrying capacity of structure elements fabricated from them, we consider below, in three-dimensional formulation, the problem of the surface and internal instability in laminated composite materials under compressive surface loads. The classification of the existing types of stability problems is presented for laminated materials and approaches for their solution presented in the literature. On the basis of three-dimensional linearized stability theory, within the framework of the piecewise-homogeneous media model, the general formulation of the most characteristic classes of stability problems of laminated materials is given in Langrangian coordinates at small and finite, homogeneous and inhomogeneous precritical deformation. Analytic and variational methods of investigation of formulated problems are given with application to various models of laminated bodies models, in accordance with accepted stability criteria. The accuracy of these models is evaluated, based on th example of the solution of certain model problems.

  13. Evaluation of progressive damage of nano-modified composite laminates under repeated impacts

    Science.gov (United States)

    Koricho, Ermias G.; Karpenko, Oleksii; Khomenko, Anton; Haq, Mahmoodul; Cloud, Gary L.; Udpa, Lalita

    2016-04-01

    However, studies on the effect of nano-reinforcements in repeated impact scenarios are relatively limited. This work investigates the effect of resin nanoclay modification on the impact resistance of glass-fiber reinforced polymer (GFRP) composites subjected to repeated impacts. Three impact energy levels were used in experiments with a minimum of four specimens per case for statistical significance. Each sample was subjected to 40 repeated impacts or was tested up to perforation, whichever happened first. The impact response was evaluated in terms of evolution of the peak force, bending stiffness, visual damage inspection and optical transmission scanning (OTS) at critical stages as a function of number of impacts. Also, the damage degree (DD) was calculated to monitor the evolution of damage in the laminates. As expected, the impact response of the GFRP composites varied based on the presence of nano-clay and the applied impact energy. The modification of the resin with nano-clay introduced novel phenomena that changed the damage progression mechanism under repetitive impacts, which was verified by visual observation and optical transmission scanning. A better understanding of these phenomena (e.g. crack-bridging, tortuosity) and their contributions to enhancements in the impact behavior and modifications of the types of damage propagation can lead to better design of novel structural composites.

  14. Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates

    Science.gov (United States)

    Hiel, Clement; Brinson, H. F.

    1993-01-01

    Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.

  15. Non-destructive evaluation of laminated composite plates using dielectrometry sensors

    Science.gov (United States)

    Nassr, Amr A.; El-Dakhakhni, Wael W.

    2009-05-01

    The use of composite materials in marine, aerospace and automotive applications is increasing; however, several kinds of damages of composite materials may influence its durability and future applications. In this paper, a methodology was presented for damage detection of laminated composite plates using dielectrometry sensors. The presence of damage in the laminated composite plate leads to changes in its dielectric characteristics, causing variation in the measured capacitance by the sensors. An analytical model was used to analyse the influence of different sensor parameters on the output signals and to optimize sensor design. Two-dimensional finite element (FE) simulations were performed to assess the validity of the analytical results and to evaluate other sensor design-related parameters. To experimentally verify the model, the dielectric permittivity of the composite plate was measured. In addition, a glass fibre reinforced polymer (GFRP) laminated plate containing pre-fabricated slots through its thickness to simulate delamination and water intrusion defects was inspected in a laboratory setting. Excellent agreements were found between the experimental capacitance response signals and those predicated from the FE simulations. This cost-effective technique can be used for rapid damage screening, regular scheduled inspection, or as a permanent sensor network within the composite system.

  16. Effect of fiber orientation in uni-directional glass epoxy laminate using acoustic emission monitoring

    Institute of Scientific and Technical Information of China (English)

    V. Arumugam; S. Barath Kumar; C. Santulli; A. Joseph Stanley

    2011-01-01

    Acoustic emission (AE) can be used for in situ structural health monitoring of the composite laminates.One of the main issues of AE is to characterize different damage mechanisms from the detected AE signals.In the present work,pure resin and GFRP composites laminates with different stacking sequences such as 0°,90°,angle ply[±45°],cross-ply [0°/90°] are used to trigger different failure mechanisms when subjected to tensile test with AE monitoring.The study of failure mechanisms is facilitated by the choice of different oriented specimens in which one or two such mechanisms predominate.Range of peak frequencies in each orientation is investigated using FFT analysis.Fast Fourier Transform (FFT) enabled calculating the frequency content of each damage mechanism.Randomly selected hits from each range of peak frequencies for the specimens with different orientations subjected to tensile test with AE monitoring are analyzed using short time FFT (STFFT) analysis.STFFT analysis is used to highlight the possible failure mechanism associated with each signal.The predominance of failure modes in each orientation is useful in the study of discrimination of failure modes in composite laminates from AE data.

  17. Nonlinear sequential laminates reproducing hollow sphere assemblages

    Science.gov (United States)

    Idiart, Martín I.

    2007-07-01

    A special class of nonlinear porous materials with isotropic 'sequentially laminated' microstructures is found to reproduce exactly the hydrostatic behavior of 'hollow sphere assemblages'. It is then argued that this result supports the conjecture that Gurson's approximate criterion for plastic porous materials, and its viscoplastic extension of Leblond et al. (1994), may actually yield rigorous upper bounds for the hydrostatic flow stress of porous materials containing an isotropic, but otherwise arbitrary, distribution of porosity. To cite this article: M.I. Idiart, C. R. Mecanique 335 (2007).

  18. Breakdown tests of glass fibre reinforced polymers (GFRP) as part of improved lightning protection of wind turbine blades

    DEFF Research Database (Denmark)

    Madsen, Søren Find; Holbøll, Joachim; Henriksen, Mogens;

    2004-01-01

    This paper addresses a need for analysing the interaction between electrical discharges and GFRP. A test method for evaluating the breakdown and withstand voltages for materials used in wind turbine blades has been developed. The method is based on IEC 243-3, methods of test for electrical strength...... of solid insulating materials, and simulates the situation in a wind turbine blade, where a lightning discharge penetrates an insulating layer towards an inner earth conductor. Different GFRP materials supplied by Danish wind turbine blade manufacturers have been tested. In the subsequent experiments, both...

  19. Cutting forces in orthogonal cutting of unidirectional GFRP composites

    Energy Technology Data Exchange (ETDEWEB)

    Caprino, G.; Nele, L. [Univ. of Naples Federico II (Italy). Dept. of Materials and Production Engineering

    1996-07-01

    The results of orthogonal cutting tests carried out on unidirectional glass fiber reinforced plastic composites, using HSS tools, are presented and discussed. During the tests, performed on a milling machine at very low cutting speed to avoid thermal effects, the cutting speed was held constant and parallel to the fiber direction. Three parameters, namely the tool rake angle {alpha}, the tool relief angle {gamma}, and the depth of cut t, were varied. According to the experimental results, the horizontal force per unit width, F{sub hu}, undergoes a dramatic decrease, never verified for metals, with increasing {alpha}. Besides, F{sub hu} is only negligibly affected by the relief angle, and linearly increases with t. Similarly to metals, an effect of the depth of cut on the specific energy (size effect) is found also for composites. However, the presented results indicate that the size effect can be analytically modeled in a simple way in the case of composites. The vertical force per unit width, F{sub vu}, exhibits a marked reduction when the relief angle is increased. F{sub vu} is also very sensitive to the rake angle: the lower {alpha}, the higher is F{sub vu}. It is shown that this behavior probably reflects a strong influence of the rake angle on the forces developing at the flank. A linear dependence of the vertical force on the depth of cut is also demonstrated. Finally, the experimental data are utilized to obtain empirical formulae, allowing an approximate evaluation of cutting forces.

  20. CRAG (Composite Research Advisory Group) Test Methods for the Measurement of the Engineering Properties of Fibre Reinforced Plastics

    Science.gov (United States)

    1988-02-01

    coefficients in fibre reinforced plastic laminates. RAE Technical Report 81105, August 1981. UNLIMITED fig 900.1 00 Z a r40 N 6)l I...through- thickness moisture distribution and diffusion coefficients in fibre reinforced plastic laminates. RAE Technical Report 81105, August 1981. 4 C...procedures to be used to determine the fibre volume fraction (Vf) and the resin volume fraction (Vr) of cured fibre reinforced plastic laminates. It is not

  1. 78 FR 13083 - Products Having Laminated Packaging, Laminated Packaging, and Components Thereof; Notice of...

    Science.gov (United States)

    2013-02-26

    ... COMMISSION Products Having Laminated Packaging, Laminated Packaging, and Components Thereof; Notice of... Commission has received a complaint entitled Products Having Laminated ] Packaging, Laminated Packaging, and Components Thereof, DN 2940; the Commission is soliciting comments on any public interest issues raised...

  2. 78 FR 19007 - Certain Products Having Laminated Packaging, Laminated Packaging, and Components Thereof...

    Science.gov (United States)

    2013-03-28

    ... COMMISSION Certain Products Having Laminated Packaging, Laminated Packaging, and Components Thereof... importation of certain products having laminated packaging, laminated packaging, and components thereof by... Investigation: Having considered the complaint, the U.S. International Trade Commission, on March 22,...

  3. Scarf Repair of Composite Laminates

    Directory of Open Access Journals (Sweden)

    Xie Zonghong

    2016-01-01

    Full Text Available The use of composite materials, such as carbon-fiber reinforced plastic (CFRP composites, aero-structures has led to an increased need of advanced assembly joining and repair technologies. Adhesive bonded repairs as an alternative to recover full or part of initial strength were investigated. Tests were conducted with the objective of evaluating the effectiveness of techniques used for repairing damage fiber reinforced laminated composites. Failure loads and failure modes were generated and compared with the following parameters: scarf angles, roughness of grind tool and number of external plies. Results showed that scarf angle was the critical parameter and the largest tensile strength was observed with the smallest scarf angle. Besides, the use of external plies at the outer surface could not increase the repairs efficiency for large scarf angle. Preparing the repair surfaces by sanding them with a sander ranging from 60 to 100 grit number had significant effect on the failure load. These results allowed the proposal of design principles for repairing CFRP structures.

  4. Experimental and Theoretical Study of Sandwich Panels with Steel Facesheets and GFRP Core

    Directory of Open Access Journals (Sweden)

    Hai Fang

    2016-01-01

    Full Text Available This study presented a new form of composite sandwich panels, with steel plates as facesheets and bonded glass fiber-reinforced polymer (GFRP pultruded hollow square tubes as core. In this novel panel, GFRP and steel were optimally combined to obtain high bending stiffness, strength, and good ductility. Four-point bending test was implemented to analyze the distribution of the stress, strain, mid-span deflection, and the ultimate failure mode. A section transformation method was used to evaluate the stress and the mid-span deflection of the sandwich panels. The theoretical values, experimental results, and FEM simulation values are compared and appeared to be in good agreement. The influence of thickness of steel facesheet on mid-span deflection and stress was simulated. The results showed that the mid-span deflection and stress decreased and the decent speed was getting smaller as the thickness of steel facesheet increases. A most effective thickness of steel facesheet was advised.

  5. An Adaptive Neuro-Fuzzy Inference System Based Modeling for Corrosion-Damaged Reinforced HSC Beams Strengthened with External Glass Fibre Reinforced Polymer Laminates

    Directory of Open Access Journals (Sweden)

    P. N. Raghunath

    2012-01-01

    Full Text Available Problem statement: This study presents the results of ANFIS based model proposed for predicting the performance characteristics of reinforced HSC beams subjected to different levels of corrosion damage and strengthened with externally bonded glass fibre reinforced polymer laminates. Approach: A total of 21 beams specimens of size 150, 250×3000 mm were cast and tested. Results: Out of the 21 specimens, 7 specimens were tested without any corrosion damage (R-Series, 7 after inducing 10% corrosion damage (ASeries and another 7 after inducing 25% corrosion damage (B-Series. Out of the seven specimens in each series, one was tested without any laminate, three specimens were tested after applying 3 mm thick CSM, UDC and WR laminates and another three specimens after applying 5mm thick CSM, UDC and WR laminates. Conclusion/Recommendations: The test results show that the beams strengthened with externally bonded GFRP laminates exhibit increased strength, stiffness, ductility and composite action until failure. An Adaptive Neuro-Fuzzy Inference System (ANFIS model is developed for predicting the study parameters for input values lying within the range of this experimental study.

  6. Controlling Laminate Plate Elastic Behavior

    OpenAIRE

    Mareš, T.

    2004-01-01

    This paper aims to express the relation of a measure of laminate plate stiffness with respect to the fiber orientation of its plies. The inverse of the scalar product of the lateral displacement of the central plane and lateral loading of the plate is the measure of laminate plate stiffness. In the case of a simply supported rectangular laminate plate this measure of stiffness is maximized, and the optimum orientation of its plies is searched.

  7. Wave transparent performance of UHMWPE laminates%UHMWPE层合板透波性能研究

    Institute of Scientific and Technical Information of China (English)

    陈昕; 朱锡; 张立军

    2011-01-01

    The dielectric parameters of ultra-high molecular weight polyethylene(UHMWPE) composites and GFRP fabricated by different technics were tested. The results show that UHMWPE molded laminates have very low dielectric constant and loss tangent. Wave transparent performance of UHMWPE laminate was computed and analyzed based on dielectric parameter tests,and transmissivity of a laminate sample with thickness of 33 mm was tested. Results show that UHMWPE laminates have high wave transparent performance. Considering high ballistic resistance and wave transparency of UHMWPE composites, the article discusses their application in ballistic resistant radomes.%对采用不同工艺制作的超高分子量聚乙烯(UHMWPE)复合材料以及玻璃钢复合材料的介电参数进行测试.结果显示,UHMWPE模压层合板具有很低的介电常数和损耗角正切.利用介电参数测试得到的数据对UHMWPE层合板透波性能进行计算和分析,并制作一块33 mm厚的层合板试样进行透波性测试.结果表明,UHMWPE层合板具有优异的透波性能.鉴于UHMWPE复合材料在防弹和透波方面所具有的优异性能,对其在防弹天线罩上的应用进行探讨.

  8. A transparent, solvent-free laminated top electrode for perovskite solar cells.

    Science.gov (United States)

    Makha, Mohammed; Fernandes, Silvia Letícia; Jenatsch, Sandra; Offermans, Ton; Schleuniger, Jürg; Tisserant, Jean-Nicolas; Véron, Anna C; Hany, Roland

    2016-01-01

    A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of ~30 wt% per milliliter PEDOT:PSS dispersion, and using a pre-annealing temperature of 120°C for 10 min before lamination. Thereby, perovskite solar cells with stabilized power conversion efficiencies of (7.6 ± 1.0)% were obtained which corresponds to 80% of the reference devices with reflective opaque gold electrodes.

  9. Optimization of composite laminates

    Science.gov (United States)

    Gurdal, Zafer; Haftka, Raphael T.

    Design of composite structures can be viewed as a multi-faceted task, one which requires integration of issues related to composite mechanics, structural analysis, optimization, and manufacturing. The major coverage of the paper is on the issue of optimization, with special emphasis on the use of optimization for designing with discrete and integer valued variables required for the stacking-sequence optimization. Different techniques that can be used for stacking sequence optimization are introduced, and different aspects of their application are demonstrated for laminate buckling optimization.

  10. Laser-micromachined and laminated microfluidic components for miniaturized thermal, chemical, and biological systems

    Science.gov (United States)

    Martin, Peter M.; Matson, Dean W.; Bennett, Wendy D.; Stewart, Donald C.; Lin, Yuehe

    1999-03-01

    Microchannel microfluidic components are being developed for heat transfer, chemical reactor, chemical analysis, and biological analytical applications. Specific applications include chemical sensing, DNA replication, blood analysis, capillary electrophoresis, fuel cell reactors, high temperature chemical reactors, heat pumps, combustors, and fuel processors. Two general types of component architectures have been developed and the fabrication processes defined. All involve a lamination scheme using plastic, ceramic, or metal laminates, as opposed to planar components. The first type is a stacked architecture that utilizes functionality built in each layer, with fluid flow interconnects between layers. Each layer of the laminate has specific microchannel geometry, and performs a specific function. Polymeric materials are used primarily. Fabrication processes used are laser micromachining, wet and dry etching, and coating deposition. the laminates can also be micromolded plastics. The second architecture employs laminates to form internal microchannels and interconnects. Materials include ceramic tapes and high temperature metals. Catalysts can be placed in the microchannels. Fabrication processes used are diffusion bonding, ceramic bonding and firing, photochemical etching, and electrochemical micromachining. Bonding, thus sealing, the laminates is an important issue. Process conditions have been develop to reduce distortion of the laminates and to hermetically seal the components.

  11. The Development of Laminated Armor

    Science.gov (United States)

    1948-09-27

    band saw, By using a piece of soft wood under the laminate while it was being cut, fraying of the edge was reduced to a minimum, especially in paneJs of...c. ’ LEGEND L LUMITE (SARAN) * ALL LAMINATE Rf RAYON (FQRTISAN) 20-30 OZ/FT 0-- Rc RAYON (CELANESE) ... 20-30...... X× GwLOss GLASS FLOSS Ir

  12. Self-Healing Laminate System

    Science.gov (United States)

    Beiermann, Brett A. (Inventor); Keller, Michael W. (Inventor); White, Scott R. (Inventor); Sottos, Nancy R. (Inventor)

    2016-01-01

    A laminate material may include a first flexible layer, and a self-healing composite layer in contact with the first flexible layer. The composite layer includes an elastomer matrix, a plurality of first capsules including a polymerizer, and a corresponding activator for the polymerizer. The laminate material may self-heal when subjected to a puncture or a tear.

  13. Confining concrete with sisal and jute FRP as alternatives for CFRP and GFRP

    Directory of Open Access Journals (Sweden)

    Tara Sen

    2015-12-01

    Full Text Available This research paper presents an experimental investigation on the confinement strength and confinement modulus of concrete cylinders confined using different types of natural fibre composites and a comparative performance analysis with different artificial fibre based composite materials. The paper also highlights the need to switch over from the utilization of artificial fibres, which are non-renewable and fossil fuel products, to environmental beneficial materials like green fibres. The utilization of plant products like sisal and jute fibres and their composites in various structural engineering applications addresses the issues of sustainability and renewability with constructional materials. The paper describes a suitable mechanical treatment method like high temperature conditioning, which aids us in further improving the properties of these woven natural materials like sisal and jute for composite fabrication and utilization. Heat treated natural fibres of woven sisal and jute were utilized for confining concrete cylinders similar to CFRP and GFRP confinement and their confinement characteristics were obtained and compared. All the cylinders were subjected to monotonic axial compressive loads, so as to evaluate the effect of confinement on the axial load carrying capacity and all their failure modes were discussed thoroughly. The results indicated superior performance by sisal FRP as well as jute FRP confined cylinders as compared to controlled or unconfined cylinders, also sisal FRP wrapped cylinders displayed ultimate axial load of comparable magnitude to CFRP confinement. Natural FRP confinement displayed superior confinement modulus and confinement strength, also the ultimate axial load of concrete cylinders confined with natural FRPs underwent 66% enhancement by sisal FRP and 48% enhancement by jute FRP, in comparison with controlled or unconfined cylinders. Enhancement in axial load carrying capacity was 83% with CFRP confinement

  14. Assembly of lamins in vitro

    Institute of Scientific and Technical Information of China (English)

    MINGUNGWEI; XIANGJUNTONG; 等

    1996-01-01

    After lamins A,B and C were isolated and purified from rat liver,their assembly properties were examined by electron microscopy and scanning tunneling microscopy by electron microscopy and scanning tunneling microscopy using negative staining and the glycerol coating method,respectively.By varying the assembly time or the ionic conditions under which polymerization takes place,we have observed different stages of lamin assembly,which may provide clues on the structure of the 10 nm lamin filaments.At the first level of structural organization,two lamin polypeptides associate laterally into dimers with the two domains being parallel and in register.At the second level of structural organization,two dimers associate in a half-staggered and antiparallel fashion to form a tetramer 75 nm in length.At the third level of structural organization,4-10 lamin tetramers associate laterally in register to form 75 nm long 10nm filaments,which in turn combine head to head into long,fully assembled lamin filaments.The assembled lamin filaments are nonpolar.

  15. GFRP 平衡管树脂基体配方的研究%Study on the Resin Matrix of GFRP Equilibrium Tube

    Institute of Scientific and Technical Information of China (English)

    胡亚丽; 张续柱

    2001-01-01

    目的研究TDE-85/DDS体系,确定其固化工艺以及混合方法.方法测定体系粘度、凝胶时间以及做DTA(差热分析)曲线,并测定其玻纤复合材料的各项性能.结果确定了TDE-85/DDS体系的固化工艺,熔融过冷物法是其最佳混合方法.结论 TDE-85/DDS体系完全符合VARTM工艺要求,其玻纤增强制品性能良好,马丁耐热为220℃,体积电阻率为2.4×108MΩm,表面电阻率为1.9×107MΩ.%Aim To research TDE-85/DDS system, find the curing method andmixing method. Methods The viscosity, gel time and DT A curves of the system and the properties of E-GF reinforced composite material with it are measured by experiments. Results The curing condition is 100 ℃/2 h+130 ℃/3 h+170 ℃/3 h+220 ℃/3 h and the melting-overco oling method is proved to be the best mixed method. Conclusion TDE-85/DDS system is the suitable matrix for vapor as sisted resin transfer molding and the properties of GFRP equilibrium tube have e xceeded the technical-demands.

  16. Fatigue behaviour of carbon fibre reinforced plastic under spectrum loading

    Energy Technology Data Exchange (ETDEWEB)

    Sudha, J. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)], E-mail: sudhaj@platinum.materials.iisc.ernet.in; Kumar, Subodh [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Srinivasan, Prabha; Vijayaraju, K. [Aeronautical Development Agency, Bangalore (India)

    2009-02-15

    In the present investigation the fatigue behaviour of carbon fibre reinforced plastic laminates under realistic service loading conditions has been examined. Laminates with different lay-up sequences have been tested for fatigue under spectrum loading with three different peak load levels. The damage in the laminates was characterized by using ultrasonic C-Scan as well as dynamic mechanical analysis and the damage mechanism was analyzed using scanning electron microscope. A similar investigation was also conducted on laminates with a hole. The results indicate that the spectrum loading did affect the modulus and fibre/matrix interfacial properties of all type of laminates investigated and also caused delamination in the laminate with a hole due to stress concentration around the hole.

  17. A Study on Load Carrying Capacity of Fly Ash Based Polymer Concrete Columns Strengthened Using Double Layer GFRP Wrapping

    Directory of Open Access Journals (Sweden)

    S. Nagan

    2014-01-01

    Full Text Available This paper investigates the suitability of glass fiber reinforced polymer (GFRP sheets in strengthening of fly ash based polymer members under compression. Experimental results revealed that load carrying capacity of the confined columns increases with GFRP sheets wrapping. Altogether 18 specimens of M30 and G30 grade short columns were fabricated. The G30 specimens were prepared separately in 8 molarity and 12 molarity of sodium hydroxide concentration. Twelve specimens for low calcium fly ash based reinforced polymer concrete and six specimens of ordinary Portland cement reinforced concrete were cast. Three specimens from each molarity fly ash based reinforced polymer concrete and ordinary Portland cement reinforced concrete were wrapped with double layer of GFRP sheets. The load carrying capacity of fly ash based polymer concrete was tested and compared with control specimens. The results show increase in load carrying capacity and ductility index for all strengthened elements. The maximum increase in load carrying capacity was 68.53% and is observed in strengthened G30 specimens.

  18. Experimental Assessment on the Flexural Bonding Performance of Concrete Beam with GFRP Reinforcing Bar under Repeated Loading

    Directory of Open Access Journals (Sweden)

    Minkwan Ju

    2015-01-01

    Full Text Available This study intends to investigate the flexural bond performance of glass fiber-reinforced polymer (GFRP reinforcing bar under repeated loading. The flexural bond tests reinforced with GFRP reinforcing bars were carried out according to the BS EN 12269-1 (2000 specification. The bond test consisted of three loading schemes: static, monotonic, and variable-amplitude loading to simulate ambient loading conditions. The empirical bond length based on the static test was 225 mm, whereas it was 317 mm according to ACI 440 1R-03. Each bond stress on the rib is released and bonding force is enhanced as the bond length is increased. Appropriate level of bond length may be recommended with this energy-based analysis. For the monotonic loading test, the bond strengths at pullout failure after 2,000,000 cycles were 10.4 MPa and 6.5 MPa, respectively: 63–70% of the values from the static loading test. The variable loading test indicated that the linear cumulative damage theory on GFRP bonding may not be appropriate for estimating the fatigue limit when subjected to variable-amplitude loading.

  19. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types

    Directory of Open Access Journals (Sweden)

    JunHee Kim

    2015-03-01

    Full Text Available A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs reinforced with grid-type glass-fiber-reinforced polymer (GFRP shear connectors. Two kinds of insulation-expanded polystyrene (EPS and extruded polystyrene (XPS with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  20. Plastic Surgery

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A A ... forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word "plastic" ...

  1. A Study of Failure Strength for Fiber-Reinforced Composite Laminates with Consideration of Interface

    Directory of Open Access Journals (Sweden)

    Junjie Ye

    2015-01-01

    Full Text Available Composite laminates can exhibit the nonlinear properties due to the fiber/matrix interface debonding and matrix plastic deformation. In this paper, by incorporating the interface stress-displacement relations between fibers and matrix, as well as the viscoplastic constitutive model for describing plastic behaviors of matrix materials, a micromechanical model is used to investigate the failure strength of the composites with imperfect interface bonding. Meanwhile, the classic laminate theory, which provides the relation between micro- and macroscale responses for composite laminates, is employed. Theory results show good consistency with the experimental data under unidirectional tensile conditions at both 23°C and 650°C. On this basis, the interface debonding influences on the failure strength of the [0/90]s and [0/±45/90]s composite laminates are studied. The numerical results show that all of the unidirectional (UD laminates with imperfect interface bonding provide a sharp decrease in failure strength in the σxx-σyy plane at 23°C. However, the decreasing is restricted in some specific region. In addition, for [0/90]s and [0/±45/90]s composite laminates, the debonding interface influences on the failure envelope can be ignored when the working temperature is increased to 650°C.

  2. Wood or Laminate?—Psychological Research of Customer Expectations

    Directory of Open Access Journals (Sweden)

    Paul Jiménez

    2016-11-01

    Full Text Available Wood is generally associated with being practical, aesthetic and economy-friendly. Using wood in interior settings also can be based on psychological expectations and assumptions, as wood is attributed as warmer, more homely, more relaxing and more inviting. However, when investigating psychological differences, wood is usually compared to carpets, glass, leather, stone, or plastic but is not compared to a visually similar material such as laminate. The aim of this study is to analyze and compare the various psychological characteristics related to wooden and laminate materials in interior settings. The experimental design was a 2 × 2 design (material, sequence with repeated measures for material. Forty participants were asked to evaluate a framed piece of wood floor and a framed piece of laminate floor regarding technical, practical, and psychological aspects. Further, three questions about one’s purchase decision were asked. The results show that the wooden floor was evaluated significantly better than the laminate floor regarding “materials and processing”, “atmosphere”, and “values and symbolic functions”. For the criterion “health”, a tendency in favor of wood could be found. In addition, the participants would more likely recommend and purchase wooden products and also accept more deficiencies in wooden products.

  3. Experimental investigation on impact performances of GLARE laminates

    Directory of Open Access Journals (Sweden)

    Chen Qi

    2015-12-01

    Full Text Available An experimental investigation was carried out on the damage resistance to a concentrated quasi-static indentation force and low-velocity impact of four kinds of glass-reinforced aluminum laminates (GLARE for short. Compared with the experimental results of the CFRP (Carbon Fiber Reinforced Plastics laminates, the performance of GLARE was determined. By means of concentrated quasi-static indentation force test, typical force–displacement response, the maximum contact force and dent depth were received. Through drop-weight low-velocity impact tests, impact force histories, indentation depths (through a new method and dissipated energy were obtained. The test results show that the force–displacement response of GLARE 4 laminates under the concentrated quasi-static indentation force has an obvious flat roof and the failure is instantaneous, which are different from CFRP laminates. The indention will be visible once the impact happens. C-scan results find that there is no delamination besides the impact area after both the concentrated quasi-static indentation and low-velocity impact. The dissipated energy approximately equals the impact energy.

  4. Experimental investigation on impact performances of GLARE laminates

    Institute of Scientific and Technical Information of China (English)

    Chen Qi; Guan Zhidong; Li Zengshan; Ji Zhaojie; Zhuo Yue

    2015-01-01

    An experimental investigation was carried out on the damage resistance to a concen-trated quasi-static indentation force and low-velocity impact of four kinds of glass-reinforced aluminum laminates (GLARE for short). Compared with the experimental results of the CFRP (Carbon Fiber Reinforced Plastics) laminates, the performance of GLARE was determined. By means of concentrated quasi-static indentation force test, typical force–displacement response, the maximum contact force and dent depth were received. Through drop-weight low-velocity impact tests, impact force histories, indentation depths (through a new method) and dissipated energy were obtained. The test results show that the force–displacement response of GLARE 4 laminates under the concentrated quasi-static indentation force has an obvious flat roof and the failure is instantaneous, which are different from CFRP laminates. The indention will be visible once the impact happens. C-scan results find that there is no delamination besides the impact area after both the concentrated quasi-static indentation and low-velocity impact. The dissipated energy approximately equals the impact energy.

  5. Stress Waves in Composite Laminates Excited by Transverse Plane Shock Waves

    Directory of Open Access Journals (Sweden)

    G.R. Liu

    1996-01-01

    Full Text Available A simple 1-dimensional model is presented to investigate elastic stress waves in composite laminates excited by underwater explosion shocks. The focus is on the elastic dynamic stress fields in the composite laminate immediately after the action of the shock wave. In this model, the interaction between the laminate and the water is taken into account, and the effects of the laminate-water interaction on the stress wave fields in the laminate are investigated. In the formulation of the model, wave fields in the laminate and the water are the first obtained in the frequency domain and then transferred into the time domain using the Fourier transform techniques. A quadrature technique is used to deal with the Fourier transform integrals in which the integrands have very sharp peaks on the integral axis. Numerical examples for stress waves in a steel plate and a glass reinforced plastic sandwich laminate are presented. The technique and the results presented in this article may be used in the design of ship hull structures subjected to underwater explosions.

  6. 风化岩地基全螺纹玻璃纤维增强聚合物抗浮锚杆承载特征现场试验%Field test on load-bearing characteristics of full-thread GFRP anti-floating anchor in weathered rock site

    Institute of Scientific and Technical Information of China (English)

    白晓宇; 张明义; 刘鹤; 寇海磊

    2014-01-01

    玻璃纤维增强聚合物(GFRP)抗浮锚杆是一种由树脂和玻璃纤维复合而成的新型材料,与传统的钢筋锚杆相比,它具有比强度高、耐腐蚀性强和抗电磁干扰能力强的优点。基于6根GFRP抗浮锚杆和4根钢筋抗浮锚杆现场足尺拉拔破坏性试验,研究了中风化花岗岩中GFRP抗浮锚杆的承载特征和界面黏结特性。试验结果表明,抗浮锚杆的破坏形式有2种:锚杆和砂浆界面剪切破坏,砂浆和围岩界面剪切破坏。直径为28 mm 的GFRP抗浮锚杆和钢筋抗浮锚杆的极限抗拔承载力均为225 kN,直径为32 mm GFRP抗浮锚杆极限抗拔承载力为250 kN,能够满足工程实际需要;GFRP抗浮锚杆与砂浆(第一界面)的平均黏结强度为1.50~1.54 MPa;GFRP抗浮锚杆砂浆与围岩(第二界面)的平均黏结强度为0.32~0.37 MPa,略低于钢筋抗浮锚杆第二界面的平均黏结强度;直径为32 mm的GFRP抗浮锚杆第二界面平均黏结强度高于直径为28 mm的GFRP抗浮锚杆。在此基础上,进一步分析论证了GFRP抗浮锚杆的破坏机制,为GFRP抗浮锚杆的工程应用提供了理论依据。%The glass fiber reinforced plastics(GFRP) anti-floating anchor is one kind of new materials which bonds by the resin and the glass fiber. Compared with the steel bar anchor rod, it has the high specific strength, nonelectric conductivity, nonmagnetic nature and corrosion resistance. Based on the full-scale drawing destructive field tests of six GFRP anti-floating anchor and four steel bolts, the load-bearing characteristics and interface bond properties of GFRP anti-floating anchor in moderately weathered granite are studied. By the test results, several conclusions are drawn:(1) There are two failure modes of anti-floating anchor as follows:shear failure between the anchorage rod and grout;and shear failure between the grout and surrounding rock mass. (2) Under the condition of M32.5 grout

  7. Glass fiber reinforced plastics within the fringe and flexure tracker of LINC-NIRVANA

    Science.gov (United States)

    Smajic, Semir; Eckart, A.; Horrobin, M.; Lindhorst, B.; Pott, J.-U.; Rauch, C.; Rost, S.; Straubmeier, C.; Tremou, E.; Wank, I.; Zuther, J.

    2012-07-01

    The Fringe and Flexure Tracking System (FFTS) is meant to monitor and correct atmospheric piston varia­ tion and instrumental vibrations and flexure during near-infrared interferometric image acquisition of LING­ NIRVANA. In close work with the adaptive optics system the FFTS enables homothetic imaging for the Large Binocular Telescope. One of the main problems we had to face is the connection between the cryogenic upper part of the instrument, e.g. detector head, and the lower ambient temperature part. In this ambient temperature part the moving stages are situated that move the detector head in the given field of view (FOV). We show how we solved this problem using the versatile material glass fiber reinforced plastics (GFRP's) and report in what way this material can be worked. We discuss in detail the exquisite characteristics of this material which we use to combine the cryogenic and ambient environments to a fully working system. The main characteristics that we focus on are the low temperature conduction and the tensile strength of the GFRP's. The low temperature conduction is needed to allow for a low heat-exchange between the cryogenic and ambient part whereas the tensile strength is needed to support heavy structures like the baffle motor and to allow for a minimum of flexure for the detector head. Additionally, we discuss the way we attached the GFRP to the remaining parts of the FFTS using a two component encapsulant.

  8. Optimization of process parameters in drilling of GFRP composite using Taguchi method

    Directory of Open Access Journals (Sweden)

    Vinod Kumar Vankanti

    2014-01-01

    Full Text Available The objective of the present work is to optimize process parameters namely, cutting speed, feed, point angle and chisel edge width in drilling of glass fiber reinforced polymer (GFRP composites. In this work, experiments were carried out as per the Taguchi experimental design and an L9 orthogonal array was used to study the influence of various combinations of process parameters on hole quality. Analysis of variance (ANOVA test was conducted to determine the significance of each process parameter on drilling. The results indicate that feed rate is the most significant factor influencing the thrust force followed by speed, chisel edge width and point angle; cutting speed is the most significant factor affecting the torque, speed and the circularity of the hole followed by feed, chisel edge width and point angle. This work is useful in selecting optimum values of various process parameters that would not only minimize the thrust force and torque but also reduce the delimitation and improve the quality of the drilled hole.

  9. Strengthening of 230KV wood transmission structures with glass fibre reinforced polymer (GFRP) wraps

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, A.; West, J.S.; Pandey, M.D. [Waterloo Univ., ON (Canada). Dept. of Civil Engineering

    2007-07-01

    In northern Canada, an unexpected structural failure resulting from wood deterioration has been determined to pose a risk to the safety of the 230 kV wood transmission lines. Because of the remote location of the transmission structures and the need to keep the transmission lines in continuous service, replacement of deteriorated elements can be very expensive. One potential alternative is to install a lightweight strengthening system while the old structure is being serviced. One of the most common structural repair systems are fibre reinforced polymer (FRP) materials. Limited research has explored the feasibility of this strengthening system on wood beams. This paper presented a pilot experimental research program to study the feasibility of using Glass Fibre Reinforced Polymer (GFRP) fabrics as a lightweight, reliable, and effective strengthening system for deteriorated circular cross-arms of the Gulfport transmission structures. The paper discussed previous research on FRP materials, the research strategy of this study, the experimental program, and experimental results and analysis. This included measured moisture content, failure mode, relationship between stiffness and failure load, effect of wrapping on strength, and the effect of wrapping on stiffness. The results of the experimental program suggested a strong correlation between the failure load and the stiffness of the specimens and that the proposed strengthening system could result in more consistent strengths. 9 refs., 2 tabs., 8 figs.

  10. Proyecto de una torre de perforación con perfiles pultrusionados de GFRP

    Directory of Open Access Journals (Sweden)

    Recuero Fornies, Alfonso

    2001-02-01

    Full Text Available The goal of this project was to design a removable and reusable structure (derrick built with pultrusion profiles of GFRP (Glass Fiber Reinforced Polymers. These profiles have better physical and mechanical properties than those commonly used for these structures, such as steel or concrete profiles. A methodology for drilling an oil field is described in this document. The structure has been worked out by computer program. An economical study with a comparison between the structure designed with common materials and with composites is included. An application to different situations where steel design could not be possible is also shown.El proyecto presenta el diseño de una estructura desmontable y reutilizable para la realización de sondeos de petróleo .La estructura ha sido proyectada con perfiles pultrusionados de material compuesto avanzado ya que presentan unas cualidades, tanto físicas como mecánicas, superiores a la de los materiales convencionales. El empleo de estos materiales ha sido justificado desde el punto de vista técnico y económico. A lo largo del artículo se describen las operaciones requeridas en la explotación por sondeos, así como el planteamiento seguido en el cálculo estructural mediante un programa que tiene por objeto el análisis matricial de estructuras de barras. Al final del mismo se hacen una serie de reflexiones sobre las tendencias futuras de estos materiales.

  11. Lamin A, farnesylation and aging

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Sita [Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States); Comai, Lucio, E-mail: comai@usc.edu [Department of Molecular Microbiology and Immunology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States)

    2012-01-01

    Lamin A is a component of the nuclear envelope that is synthesized as a precursor prelamin A molecule and then processed into mature lamin A through sequential steps of posttranslational modifications and proteolytic cleavages. Remarkably, over 400 distinct point mutations have been so far identified throughout the LMNA gene, which result in the development of at least ten distinct human disorders, collectively known as laminopathies, among which is the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). The majority of HGPS cases are associated with a single point mutation in the LMNA gene that causes the production of a permanently farnesylated mutant lamin A protein termed progerin. The mechanism by which progerin leads to premature aging and the classical HGPS disease phenotype as well as the relationship between this disorder and the onset of analogous symptoms during the lifespan of a normal individual are not well understood. Yet, recent studies have provided critical insights on the cellular processes that are affected by accumulation of progerin and have suggested that cellular alterations in the lamin A processing pathway leading to the accumulation of farnesylated prelamin A intermediates may play a role in the aging process in the general population. In this review we provide a short background on lamin A and its maturation pathway and discuss the current knowledge of how progerin or alterations in the prelamin A processing pathway are thought to influence cell function and contribute to human aging.

  12. Optimization of Laminated Composite Structures

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup

    Laminated composite materials are widely used in the design of light weight high performance structures like wind turbine blades and aeroplanes due to their superior stiffness and strength-to-weight-ratios compared to their metal counter parts. Furthermore, the use of laminated composite materials...... allows for a higher degree of tailoring of the resulting material. To enable better utilization of the composite materials, optimum design procedures can be used to assist the engineer. This PhD thesis is focused on developing numerical methods for optimization of laminated composite structures....... The first part of the thesis is intended as an aid to read the included papers. Initially the field of research is introduced and the performed research is motivated. Secondly, the state-of-the-art is reviewed. The review includes parameterizations of the constitutive properties, linear and geometrically...

  13. Impedances of Laminated Vacuum Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  14. A Comparison of Laser Shearography and C-Scan for Assessing a Glass/Epoxy Laminate Impact Damage

    Science.gov (United States)

    Kadlec, Martin; Růžek, Roman

    2012-06-01

    Impact damage is a serious damage mechanism in composite materials, which limits their performance and reliability. Impact damage can occur during in-service applications or as a result of handling during manufacturing. Methods used currently for damage detection are based on different principles, and for that reason, they give a range of results no matter what the real damage is. Therefore, a comparison of the internal real damage with the flaw indications of a glass fibre-reinforced polymer (GFRP) laminate made with two non-destructive technique (NDT) methods has been investigated. Laser shearography measurements and C-scan ultrasonic detection were compared. Metallographic examination and surface indentation measurements provided information about the character of the real damage. Such a comparison has not yet been published because laser shearography is considered a qualitative technique. Each NDT method was able to visualise a different type of damage. The knowledge of the applicability of these methods is the key to taking advantage of both methods by combining their respective strengths. In terms of the reliability, simplicity and rapidity of all of the mentioned techniques, laser shearography turned out to be the most suitable method for the detection of barely visible flaws. The C-scan was more appropriate for precisely defining the inner damage. The tested material was a laminate typically used for ultralight aircraft. Information about the extent of damage is very important for airplane certification and maintenance.

  15. Damage resistance of dispersed-ply laminates

    NARCIS (Netherlands)

    Sardar Abadi, P.M.; Jeliazkov, M.; Sebaey, T.A.; Lopes, C.S.; Abdalla, M.M.; Peeters, D.M.J.

    2015-01-01

    This paper presents the design procedure of a quasi-isotropic (QI) laminate employing dispersion of ply orientations. The goal is to improve damage resistance of a laminate under low velocity impact (LVI). The LVI is treated as a quasi-static loading and instead of a plate a laminated beam is

  16. Finite Element Modeling of GFRP-Reinforced Concrete Interior Slab-Column Connections Subjected to Moment Transfer

    OpenAIRE

    Ahmed Gouda; Ehab El-Salakawy

    2015-01-01

    A finite element model (FEM) was constructed using specialized three-dimensional (3D) software to investigate the punching shear behavior of interior slab-column connections subjected to a moment-to-shear ratio of 0.15 m. The FEM was then verified against the experimental results of full-scale interior slab-column connections reinforced with glass fiber reinforcement polymer (GFRP) bars previously tested by the authors. The FEM results showed that the constructed model was able to predict t...

  17. Laminated Ti-Al composites: Processing, structure and strength

    DEFF Research Database (Denmark)

    Du, Yan; Fan, Guohua; Yu, Tianbo

    2016-01-01

    . The mechanical properties of the composites with different volume fractions of Al from 10% to 67% show a good combination of strength and ductility. A constraint strain in the hot-rolled laminated structure between the hard and soft phases introduces an elastic-plastic deformation stage, which becomes more...... pronounced as the volume fraction of Al decreases. Moreover, the thin intermetallic interface layer may also contribute to the strength of the composites, and this effect increases with increasing volume fraction of the interface layer....

  18. Determination of mechanical properties of some glass fiber reinforced plastics suitable to Wind Turbine Blade construction

    Science.gov (United States)

    Steigmann, R.; Savin, A.; Goanta, V.; Barsanescu, P. D.; Leitoiu, B.; Iftimie, N.; Stanciu, M. D.; Curtu, I.

    2016-08-01

    The control of wind turbine's components is very rigorous, while the tower and gearbox have more possibility for revision and repairing, the rotor blades, once they are deteriorated, the defects can rapidly propagate, producing failure, and the damages can affect large regions around the wind turbine. This paper presents the test results, performed on glass fiber reinforced plastics (GFRP) suitable to construction of wind turbine blades (WTB). The Young modulus, shear modulus, Poisson's ratio, ultimate stress have been determined using tensile and shear tests. Using Dynamical Mechanical Analysis (DMA), the activation energy for transitions that appear in polyester matrix as well as the complex elastic modulus can be determined, function of temperature.

  19. Coupling of plasticity and damage in glass fibre reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Osnes H.

    2012-08-01

    Full Text Available This study addresses the nonlinear stress-strain response in glass fibre reinforced polymer composite laminates. Loading and unloading of these laminates indicate that the nonlinear response is caused by both damage and plasticity. A user defined material model is implemented in the finite element code LS-DYNA. The damage evolution is based on the Puck failure criterion [1], and the plastic behaviour is based on the quadratic Hill yield criterion for anisotropic materials [2].

  20. PERFORMANCE OF RC AND FRC WALL PANELS REINFORCED WITH MILD STEEL AND GFRP COMPOSITES IN BLAST EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Garfield; William D. Richins; Thomas K. Larson; Chris P. Pantelides; James E. Blakeley

    2011-06-01

    The structural integrity of reinforced concrete structures in blast events is important for critical facilities. This paper presents experimental data generated for calibrating detailed finite element models that predict the performance of reinforced concrete wall panels with a wide range of construction details under blast loading. The test specimens were 1.2 m square wall panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consists of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bar reinforcement (Type A); FRC panels without additional reinforcement (Type B); FRC panels with steel bar reinforcement (Type C); NWC panels with glass fiber reinforced polymer (GFRP) bar reinforcement (Type D); and NWC panels reinforced with steel bar reinforcement and external bidirectional GFRP overlays on both faces (Type E). An additional three Type C panels were used as control specimens (CON). Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. The panels were instrumented with strain gauges, and accelerometers; in addition, pressure sensors and high speed videos were employed during the blast events. Panel types C and E had the best performance, whereas panel type B did not perform well. Preliminary dynamic simulations show crack patterns similar to the experimental results.

  1. Parametric study on patch repaired CFRP laminates using FEA

    Energy Technology Data Exchange (ETDEWEB)

    Kashfuddoja, M.; Ramji, M. [Indian Institute of Technology. Engineering Optics Lab. Dept. of Mechanical Engineering, Hyderabad (India)

    2012-07-01

    Carbon fibre reinforced plastic (CFRP) composite laminates have become popular for structural applications as they are lighter, stronger and tougher. Composite structures are also susceptible to damage while in service. For improved service life, the damage needs to be repaired so that repair structure integrity is enhanced. Various parameters like patch size and shape, it's layup sequence and adhesive thickness would influence the performance of the repaired structure. In present work, a parametric study is carried out using finite element analysis (FEA) to investigate the influence of various parameters involved in composite repair. The panel is made of carbon / epoxy composite laminate with stacking sequence of (0/{+-}45/900)s and is subjected to tensile load. Damaged CFRP laminates is repaired by symmetrical patch adhesively bonded over the damaged area. Circular patch of different stacking sequence and size is considered. Influence of adhesive material and it's thickness on repair efficiency is also investigated. The influence of various repair parameters on peel stress is also analysed. (Author)

  2. Finite element simulation of stretch forming of aluminium-polymer laminate foils used for pharmaceutical packaging

    Directory of Open Access Journals (Sweden)

    Müller Simon

    2016-01-01

    Full Text Available Pharmaceutical high barrier blister packages are manufactured from aluminium-polymer laminate foils (e.g. consisting of PA-Al-PVC layers. By a cold stretch forming process cavities are formed. The aim of this work is to determine a homogenized elastic-plastic description of the laminate by micromechanics. Therefore, a microstructural model is developed where the layers are mapped in a representative volume element. The obtained homogenized material model is applied to simulate the stretch forming to gain more insight into the forming process.

  3. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  4. Residual stresses in angleplied laminates and their effects on laminate behavior

    Science.gov (United States)

    Chamis, C. C.

    1978-01-01

    NASA Lewis Research Center research in the field of composite laminate residual stresses is reviewed and summarized. The origin of lamination residual stresses, evidence of their presence, experimental methods for measuring them, and theoretical methods for predicting them are described. Typical results are presented which show the magnitudes of residual stresses in various laminates including hybrids and superhybrids, and in other complex composite components. Results are also presented which show the effects of lamination residual stresses on laminate warpage and on laminate mechanical properties including fracture stresses. Finally, the major findings and conclusions derived therefrom are summarized.

  5. Fatigue damage mechanisms in boron-aluminium composite laminates

    Science.gov (United States)

    Dvorak, G. J.; Johnson, W. S.

    1980-01-01

    The relationship between fatigue and shakedown in metal matrix composites is investigated theoretically and experimentally for unidirectional and laminated 6061 Al-B materials. It is shown that no fatigue damage takes place if the applied stress range is such that the material remains elastic, or shakes down, i.e., resumes elastic cyclic straining after a small number of plastic strain cycles. Fatigue damage occurs only in specimens subjected to stress ranges which cause sustained cyclic plastic straining in the aluminum matrix. If the applied stress range is smaller than that required for fatigue failure, after about 10 to the 6th cycles a saturation damage state is reached which remains essentially unchanged with increasing number of cycles.

  6. Vibration damping characteristics of laminated steel sheet

    Science.gov (United States)

    Chen, Y. S.; Hsu, T. J.; Chen, S. I.

    1991-03-01

    The use of laminated steel sheets as vibration damping materials was studied. The laminate consisted of a viscoelastic layer which was sandwiched between two steel sheets. The study sought to identify parameters affecting the damping efficiency of the laminate. Two viscoelastic materials, a copolymer based on ethylene and acrylic acid (PEAA) and polyvinyl butyral (PVB), were used. A frequency analyzer was used to measure the loss factor of the laminates. A theoretical analysis of damping efficiency based on a model described by Ungar[2] was also carried out. The results showed that the loss factor of the PEAA-based laminates increased monotonically with increasing thickness of the viscoelastic layer and leveled off at 25.9 pct of total thickness. Ungar’s theory predicted a higher loss factor than the experimental data. This might have resulted from interfacial adhesive bonding, a nonuniform viscoelastic layer thickness, and the extrapolation of the rheological data from low to high frequencies. The loss factor of the laminate increased with increasing temperature, reached a maximum value, and then decreased. An optimum temperature for maximum damping was found for each laminate configuration. The PEAA-based laminates possessed higher damping efficiency than the PVB-based laminates at room temperature. The symmetric laminate (with the same steel sheet thickness) possessed a better damping efficiency than asymmetric laminates. The maximum damping peak of the laminates using a polymer blend, when compared to the laminates using unblended resin, exhibited a lower loss factor value, became broader, and occurred at a temperature between the T g’s of the individual components of the polymer blend.

  7. A stable numerical solution method in-plane loading of nonlinear viscoelastic laminated orthotropic materials

    Science.gov (United States)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1989-01-01

    In response to the tremendous growth in the development of advanced materials, such as fiber-reinforced plastic (FRP) composite materials, a new numerical method is developed to analyze and predict the time-dependent properties of these materials. Basic concepts in viscoelasticity, laminated composites, and previous viscoelastic numerical methods are presented. A stable numerical method, called the nonlinear differential equation method (NDEM), is developed to calculate the in-plane stresses and strains over any time period for a general laminate constructed from nonlinear viscoelastic orthotropic plies. The method is implemented in an in-plane stress analysis computer program, called VCAP, to demonstrate its usefulness and to verify its accuracy. A number of actual experimental test results performed on Kevlar/epoxy composite laminates are compared to predictions calculated from the numerical method.

  8. The effect of resin on the impact damage tolerance of graphite-epoxy laminates

    Science.gov (United States)

    Williams, J. G.; Rhodes, M. D.

    1981-01-01

    The effect of the matrix resin on the impact damage tolerance of graphite-epoxy composite laminates was investigated. The materials were evaluated on the basis of the damage incurred due to local impact and on their ability to retain compression strength in the presence of impact damage. Twenty-four different resin systems were evaluated. Five of the systems demonstrated substantial improvements compared to the baseline system including retention of compression strength in the presence of impact damage. Examination of the neat resin mechanical properties indicates the resin tensile properties influence significantly the laminate damage tolerance and that improvements in laminate damage tolerance are not necessarily made at the expense of room temperature mechanical properties. Preliminary results indicate a resin volume fraction on the order of 40 percent or greater may be required to permit the plastic flow between fibers necessary for improved damage tolerance.

  9. Operational Modal Analysis on laminated glass beams

    OpenAIRE

    López Aenlle, Manuel; Fernández, Pelayo; Villa García, Luis Manuel; Barredo Egusquiza, Josu; Hermanns, Lutz Karl Heinz; Fraile de Lerma, Alberto

    2011-01-01

    Laminated glass is a sandwich element consisting of two or more glass sheets, with one or more interlayers of polyvinyl butyral (PVB). The dynamic response of laminated glass beams and plates can be predicted using analytical or numerical models in which the glass and the PVB are usually modelled as linear-elastic and linear viscoelastic materials, respectively. In this work the dynamic behavior of laminated glass beams are predicted using a finite element model and the analytical model ...

  10. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....

  11. Buckling analysis of a laminate plate

    Directory of Open Access Journals (Sweden)

    Mamuzić, I.

    2008-04-01

    Full Text Available The paper deals with a modeling of laminate plates and with their buckling analysis. To predict the inception of buckling for plates in plane resultant forces must be included. The buckling analysis is made by the help of finite element method in program COSMOS/M. For rectangular laminate plate consisting of 4 layers with symmetric and antisymmetric stacking sequence a buckling analysis is carried out. In the illustrative example there are depicted buckling modes for symmetric laminates [30/-30]s, [45/-45]s, [60/-60]s, [90/-90]s and results of the buckling analysis for the symmetric and antisymmetric laminates.

  12. The management of equine acute laminitis

    Directory of Open Access Journals (Sweden)

    Mitchell CF

    2014-12-01

    Full Text Available Colin F Mitchell, Lee Ann Fugler, Susan C Eades Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA Abstract: Laminitis is an extremely painful condition resulting in damage to the soft tissues anchoring the third phalanx to the hoof, which can result in life-threatening debilitation. Specific therapy is not available. The most important principles of therapy include aggressive nutritional and medical management of primary disease processes, cryotherapy, anti-inflammatory therapy, pain management, and biomechanical support. This review focuses on the principles of evidenced-based therapies. Keywords: laminitis treatment, laminitis biomechanics, laminitis pain

  13. 78 FR 48903 - Certain Products Having Laminated Packaging, Laminated Packaging, and Components Thereof...

    Science.gov (United States)

    2013-08-12

    ... infringement of certain claims of nine patents. 78 FR 19,007. The subject products are certain laminated... industry requirement.'' 78 FR 19,008. The ALJ conducted a hearing on the domestic-industry issue on May 16... COMMISSION Certain Products Having Laminated Packaging, Laminated Packaging, and Components...

  14. Plastic Jellyfish.

    Science.gov (United States)

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  15. Evaluate of the Effects of Drilling with Varying Spindle Speed Using Different Thickness of GFRP on the Damage Factor

    Directory of Open Access Journals (Sweden)

    Keong Woo Tze

    2014-07-01

    Full Text Available Composite have been widely used in industries which such as aircraft structural components, electric and electronics components, aerospace, and oil and gas fields due to their superior mechanical properties. Among machining process, drilling can be considered as one of the most important process in final machining of composite. In this research, vacuum assisted resin infusion method is use in fabricating the glass fiber reinforcement polymer samples, where different thickness of GFRP were used in the drilling process with different spindle speed. The results show that the temperature influences the damage factor of the drilling. Higher spindle speed will generate higher temperature that softens the matrix thus generating lower damage factor. The suitable drill bit temperature is between 150-200°C

  16. Lamb wave sensing using fiber Bragg grating sensors for delamination detection in composite laminates

    Science.gov (United States)

    Takeda, N.; Okabe, Y.; Kuwahara, J.; Kojima, S.

    2005-05-01

    The authors are constructing a damage detection system using ultrasonic waves. In this system, a piezo-ceramic actuator generates Lamb waves in a CFRP laminate. After the waves propagate in the laminate, transmitted waves are received by a fiber Bragg grating (FBG) sensor attached on the laminate using a newly developed high-speed optical wavelength interrogation system. At first, the optimal gauge length of the FBG to detect ultrasonic waves was investigated through theoretical simulations and experiments. Then, the directional sensitivity of the FBG to ultrasonic waves was evaluated experimentally. On the basis of the above results, the 1mm FBG sensors were applied to the detection of Lamb waves propagated in carbon fiber reinforced plastic (CFRP) cross-ply laminates. The piezo-actuator was put on the laminate about 50mm away from the FBG sensor glued on the laminate, and three-cycle sine waves of 300kHz were excited repeatedly. The waveforms obtained by the FBG showed that S0 and A0 modes could be detected appropriately. Then, artificial delamination was made in the laminate by removing of a Teflon sheet embedded in the 0/90 interface after the manufacturing. When the Lamb waves passed through the delamination, the amplitude decreased and a new wave mode appeared. These phenomena could be well simulated using a finite element method. Furthermore, since the amplitude and the velocity of the new mode increased with an increase in the delamination length, this system has a potential to evaluate the interlaminar delamination length quantitatively.

  17. Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves

    Science.gov (United States)

    Okabe, Yoji; Fujibayashi, Keiji; Shimazaki, Mamoru; Soejima, Hideki; Ogisu, Toshimichi

    2010-11-01

    A new ultrasonic propagation system has been constructed using macrofiber composite (MFC) actuators and fiber Bragg grating (FBG) sensors. The MFCs and FBGs can be integrated into composite laminates because of their small size and high fracture strain. The developed system can send and receive broadband Lamb waves. In this research, this system was used to detect delamination damage in composite laminates. First, the multiple modes of Lamb waves in a carbon-fiber-reinforced plastic (CFRP) quasi-isotropic laminate were identified by transmitting and receiving the symmetric and antisymmetric modes separately. Then, the mode conversions at both tips of a delamination were investigated through an experiment and a two-dimensional finite element analysis (FEA). A new delamination detection method was proposed on the basis of the mode conversions, and experiments were carried out on laminates with an artificial delamination. When antisymmetric modes were excited, the frequency dispersion of the received A1 mode changed, depending on the delamination length owing to the mode conversion between the A1 mode and the S0 mode. This phenomenon was confirmed through the FEA and these results prove that this new method is effective in detecting a delamination in CFRP laminates.

  18. Composite Laminate With Coefficient of Thermal Expansion Matching D263 Glass

    Science.gov (United States)

    Robinson, David; Rodini, Benjamin

    2012-01-01

    The International X-ray Observatory project seeks to make an X-ray telescope assembly with 14,000 flexible glass segments. The glass used is commercially available SCHOTT D263 glass. Thermal expansion causes the mirror to distort out of alignment. A housing material is needed that has a matching coefficient of thermal expansion (CTE) so that when temperatures change in the X-ray mirror assembly, the glass and housing pieces expand equally, thus reducing or eliminating distortion. Desirable characteristics of this material include a high stiffness/weight ratio, and low density. Some metal alloys show promise in matching the CTE of D263 glass, but their density is high compared to aluminum, and their stiffness/weight ratio is not favorable. A laminate made from carbon fiber reinforced plastic (CFRP) should provide more favorable characteristics, but there has not been any made with the CTE matching D263 Glass. It is common to create CFRP laminates of various CTEs by stacking layers of prepreg material at various angles. However, the CTE of D263 glass is 6.3 ppm/ C at 20 C, which is quite high, and actually unachievable solely with carbon fiber and resin. A composite laminate has been developed that has a coefficient of thermal expansion identical to that of SCHOTT D263 glass. The laminate is made of a combination of T300 carbon fiber, Eglass, and RS3C resin. The laminate has 50% uni-T300 plies and 50% uni-E-glass plies, with each fiber-layer type laid up in a quasi-isotropic laminate for a total of 16 plies. The fiber volume (percent of fiber compared to the resin) controls the CTE to a great extent. Tests have confirmed that a fiber volume around 48% gives a CTE of 6.3 ppm/ C. This is a fairly simple composite laminate, following well established industry procedures. The unique feature of this laminate is a somewhat unusual combination of carbon fiber with E-glass (fiberglass). The advantage is that the resulting CTE comes out to 6.3 ppm/ C at 20 C, which matches D

  19. Negative refraction in a laminate

    Science.gov (United States)

    Willis, J. R.

    2016-12-01

    This work is concerned with the reflection and transmission of waves at a plane interface between a homogeneous elastic half-space and a half-space of elastic material that is periodically laminated. The lamination is always in the direction of the x1-coordinate axis and the displacement is always longitudinal shear, so that the only non-zero displacement component is u3(x1 ,x2 , t). After an initial discussion of Floquet-Bloch waves in the laminated material, brief consideration is given to the reflection-transmission problem, when the interface between the two media is the plane x1 = 0. Nothing unusual emerges: there are just a single reflected wave and a single transmitted wave, undergoing positive group-velocity refraction. Then, the problem is considered when the interface between the two media is the plane x2 = 0. The periodic structure of the interface induces an infinite set of reflected waves and an infinite set of transmitted waves. All need to be taken into account, but most decay exponentially away from the interface. It had previously been recognized that, if the incident wave had appropriate frequency and angle of incidence, a propagating transmitted wave would be generated that would undergo negative group-velocity refraction - behaviour usually associated with a metamaterial. It is established by an example in this work that there is, in addition, a propagating transmitted wave with smaller wavelength but larger group velocity that undergoes positive group-velocity refraction. The work concludes with a brief discussion of this finding, including its implications for the utility (or not) of "effective medium" theory.

  20. Forming predictions of UD reinforced thermoplastic laminates

    NARCIS (Netherlands)

    Haanappel, S.P.; Thije, ten R.; Akkerman, R.

    2010-01-01

    A preliminary study was made of the thermoforming process of UD fibre reinforced thermoplastic laminates. Deformation mechanisms of the ply and the laminate were identified. Forming experiments were performed with a single dome to support this study. The experiments were also used to validate the fo

  1. Lamins of the sea lamprey (Petromyzon marinus) and the evolution of the vertebrate lamin protein family.

    Science.gov (United States)

    Schilf, Paul; Peter, Annette; Hurek, Thomas; Stick, Reimer

    2014-07-01

    Lamin proteins are found in all metazoans. Most non-vertebrate genomes including those of the closest relatives of vertebrates, the cephalochordates and tunicates, encode only a single lamin. In teleosts and tetrapods the number of lamin genes has quadrupled. They can be divided into four sub-types, lmnb1, lmnb2, LIII, and lmna, each characterized by particular features and functional differentiations. Little is known when during vertebrate evolution these features have emerged. Lampreys belong to the Agnatha, the sister group of the Gnathostomata. They split off first within the vertebrate lineage. Analysis of the sea lamprey (Petromyzon marinus) lamin complement presented here, identified three functional lamin genes, one encoding a lamin LIII, indicating that the characteristic gene structure of this subtype had been established prior to the agnathan/gnathostome split. Two other genes encode lamins for which orthology to gnathostome lamins cannot be designated. Search for lamin gene sequences in all vertebrate taxa for which sufficient sequence data are available reveals the evolutionary time frame in which specific features of the vertebrate lamins were established. Structural features characteristic for A-type lamins are not found in the lamprey genome. In contrast, lmna genes are present in all gnathostome lineages suggesting that this gene evolved with the emergence of the gnathostomes. The analysis of lamin gene neighborhoods reveals noticeable similarities between the different vertebrate lamin genes supporting the hypothesis that they emerged due to two rounds of whole genome duplication and makes clear that an orthologous relationship between a particular vertebrate paralog and lamins outside the vertebrate lineage cannot be established. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Steady compression characteristics of laminated MRE isolator

    Science.gov (United States)

    Wahab, N. A. A.; Mazlan, S. A.; Ubaidillah; Sharif, A. H. R.; Kamaruddin, S.

    2016-11-01

    This paper focused on an experimental setup on laminated magnetorheological elastomer (MRE) isolator under steady state compression test. An isotropic type natural rubber (NR) based MRE were fabricated and layered with a steel plate to form a multilayer sandwich structure adopted from the conventional laminated rubber bearing design. A set of static compression test was conducted to explore the potential of semi-active laminated MRE isolator in field-dependent stiffness properties. Stress versus strain relationship was assessed under different magnetic fields application. Based on the examination, the stress altered as the application of magnetic fields. Consequently, the effective stiffness of isolator also influenced by the magnetic fields induction. The experimental results show that the proposed laminated MRE isolator can effectively alter the compression stiffness up to the 14.56%. The preliminary results have confirmed the tunability of the semi-active laminated MRE isolator in which it would be beneficial for improving building isolator in general.

  3. Wettability of graphene-laminated micropillar structures

    Science.gov (United States)

    Bong, Jihye; Seo, Keumyoung; Park, Ji-Hoon; Ahn, Joung Real; Ju, Sanghyun

    2014-12-01

    The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues.

  4. Wettability of graphene-laminated micropillar structures

    Energy Technology Data Exchange (ETDEWEB)

    Bong, Jihye; Seo, Keumyoung; Ju, Sanghyun, E-mail: jrahn@skku.edu, E-mail: shju@kgu.ac.kr [Department of Physics, Kyonggi University, Suwon, Gyeonggi-Do 443-760 (Korea, Republic of); Park, Ji-Hoon; Ahn, Joung Real, E-mail: jrahn@skku.edu, E-mail: shju@kgu.ac.kr [Department of Physics, Sungkyunkwan University, Suwon, Gyeonggi-Do 440-746 (Korea, Republic of)

    2014-12-21

    The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues.

  5. Optimization of Multilayer Laminated Film and Absorbent of Vacuum Insulation Panel for Use at High Temperature

    Science.gov (United States)

    Araki, Kuninari; Echigoya, Wataru; Tsuruga, Toshimitsu; Kamoto, Daigorou; Matsuoka, Shin-Ichi

    For the energy saving regulation and larger capacity, Vacuum Insulation Panel (VIP) has been used in refrigerators with urethane foam in recent years. VIP for low temperature is constructed by laminated plastic film, using heat welding of each neighboring part for keeping vacuum, so that the performance decrement is very large under high temperature. But recently high efficiency insulation material is desired for high temperature water holding devices (automatic vending machine, heat pump water heater, electric hot-water pot water, etc.), and we especially focused on cost and ability of the laminated plastic film and absorbent for high temperature VIP. We measured the heatproof temperature of plastic films and checked the amount of water vapor and out coming gas on temperature-programmed adsorption in absorbent. These results suggest the suitable laminated film and absorbent system for VIP use at high temperature, and the long-term reliability was evaluated by measuring thermal conductivity of high temperature. As a result it was found that high-retort pouch of CPP (cast polypropylene film) and adding of aluminum coating are the most suitable materials for use in the welded layers of high-temperature VIPs (105°C).

  6. A 2D analytical multiple slip model for continuum texture development and plastic spin

    NARCIS (Netherlands)

    Giessen, E. van der; Houtte, P. van

    1992-01-01

    A two-dimensional continuum slip model is presented which accounts in an approximate way for texture development in polycrystalline metals during large strain plastic deformations. The basic kinematic model is that of a rigid-plastic laminated material deforming predominantly by slip along its conta

  7. Direct Composite Laminate Veneers: Three Case Reports

    Directory of Open Access Journals (Sweden)

    Bora Korkut

    2013-05-01

    Full Text Available Re-establishing a patient’s lost dental esthetic appearance is one of the most important topics for contemporary dentistry. New treatment materials and methods have been coming on the scene, day by day, in order to achieve such an aim. Most dentists prefer more conservative and aesthetic approaches, such as direct and indirect laminate veneer restorations, instead of full-ceramic crowns for anteriors where aesthetics is really important. Laminate veneers are restorations which are envisioned to correct existing abnormalities, esthetic deficiencies and discolorations. Laminate veneer restorations may be processed in two different ways: direct or indirect. Direct laminate veneers have no need to be prepared in the laboratory and are based on the principle of application of a composite material directly to the prepared tooth surface in the dental clinic. Indirect laminate veneers may be produced from composite materials or ceramics, which are cemented to the tooth with an adhesive resin. In this case report, direct composite laminate veneer technique used for three patients with esthetic problems related to fractures, discolorations and an old prolapsed restoration, is described and six-month follow-ups are discussed. As a conclusion, direct laminate veneer restorations may be a treatment option for patients with the esthetic problems of anterior teeth in cases similar to those reported here.

  8. Direct composite laminate veneers: three case reports.

    Science.gov (United States)

    Korkut, Bora; Yanıkoğlu, Funda; Günday, Mahir

    2013-01-01

    Re-establishing a patient's lost dental esthetic appearance is one of the most important topics for contemporary dentistry. New treatment materials and methods have been coming on the scene, day by day, in order to achieve such an aim. Most dentists prefer more conservative and aesthetic approaches, such as direct and indirect laminate veneer restorations, instead of full-ceramic crowns for anteriors where aesthetics is really important. Laminate veneers are restorations which are envisioned to correct existing abnormalities, esthetic deficiencies and discolo-rations. Laminate veneer restorations may be processed in two different ways: direct or indirect. Direct laminate veneers have no need to be prepared in the laboratory and are based on the principle of application of a composite material directly to the prepared tooth surface in the dental clinic. Indirect laminate veneers may be produced from composite materials or ceramics, which are cemented to the tooth with an adhesive resin. In this case report, direct composite laminate veneer technique used for three patients with esthetic problems related to fractures, discolorations and an old prolapsed restoration, is described and six-month follow-ups are discussed. As a conclusion, direct laminate veneer restorations may be a treatment option for patients with the esthetic problems of anterior teeth in cases similar to those reported here.

  9. Strain rate effects on GRP, KRP and CFRP composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hassani, S.T.S.; Kaddour, A.S. [University of Manchester Inst. of Science and Technology (UMIST) (United Kingdom). Dept. of Mechanical Engineering

    1998-05-01

    This paper first reviews published research work on the effect of strain-rate on the in-plane mechanical properties of continuous Kevlar (KRP), glass (GRP) and carbon (CFRP) fibre reinforced plastic materials. A detailed description of techniques employed for testing composite materials at a wide range of strain rates is given. Recent relevant test results are presented showing the variation of mechanical properties with strain rates for unidirectional and multidirectional laminates under in-plane loading. The paper then concentrates on current activities on indirect determination of unidirectional dynamic properties from the behaviour of angle ply laminates by means of an extraction process. Theoretical procedures for extracting the longitudinal, transverse and in-plane shear properties are outlined. An extension to those procedures allowing simultaneous determination of transverse and in-plane shear moduli of a ply is introduced and results using this method are presented for KRP and CFRP under combined strain rate and temperature. Existing theories and mechanisms describing the combined effects of the temperature and the strain-rate on the mechanical response of composite materials are outlined. (orig.) 98 refs.

  10. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Shawn M. Allan; Patricia M. Strickland; Holly S. Shulman

    2009-11-11

    Ceralink Inc. developed FastFuse™, a rapid, new, energy saving process for lamination of glass and composites using radio frequency (RF) heating technology. The Inventions and Innovations program supported the technical and commercial research and development needed to elevate the innovation from bench scale to a self-supporting technology with significant potential for growth. The attached report provides an overview of the technical and commerical progress achieved for FastFuse™ during the course of the project. FastFuse™ has the potential to revolutionize the laminate manufacturing industries by replacing energy intensive, multi-step processes with an energy efficient, single-step process that allows higher throughput. FastFuse™ transmits RF energy directly into the interlayer to generate heat, eliminating the need to directly heat glass layers and the surrounding enclosures, such as autoclaves or vacuum systems. FastFuse™ offers lower start-up and energy costs (up to 90% or more reduction in energy costs), and faster cycles times (less than 5 minutes). FastFuse™ is compatible with EVA, TPU, and PVB interlayers, and has been demonstrated for glass, plastics, and multi-material structures such as photovoltaics and transparent armor.

  11. Meshfree modeling in laminated composites

    KAUST Repository

    Simkins, Daniel Craig

    2012-09-27

    A problem of increasing importance in the aerospace industry is in detailed modeling of explicit fracture in laminated composite materials. For design applications, the simulation must be capable of initiation and propagation of changes in the problem domain. Further, these changes must be able to be incorporated within a design-scale simulation. The use of a visibility condition, coupled with the local and dynamic nature of meshfree shape function construction allows one to initiate and explicitly open and propagate holes inside a previously continuous problem domain. The method to be presented naturally couples to a hierarchical multi-scale material model incorporating external knowldege bases to achieve the goal of a practical explicit fracture modeling capability for full-scale problems. © 2013 Springer-Verlag.

  12. Shielding Effectiveness of Laminated Shields

    Directory of Open Access Journals (Sweden)

    B. P. Rao

    2008-12-01

    Full Text Available Shielding prevents coupling of undesired radiated electromagnetic energy into equipment otherwise susceptible to it. In view of this, some studies on shielding effectiveness of laminated shields with conductors and conductive polymers using plane-wave theory are carried out in this paper. The plane wave shielding effectiveness of new combination of these materials is evaluated as a function of frequency and thickness of material. Conductivity of the polymers, measured in previous investigations by the cavity perturbation technique, is used to compute the overall reflection and transmission coefficients of single and multiple layers of the polymers. With recent advances in synthesizing stable highly conductive polymers these lightweight mechanically strong materials appear to be viable alternatives to metals for EM1 shielding.

  13. Flat laminated microbial mat communities

    Science.gov (United States)

    Franks, Jonathan; Stolz, John F.

    2009-10-01

    Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.

  14. Supersonic Flutter of Laminated Curved Panels

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    1995-04-01

    Full Text Available Supersonic flutter analysis of laminated composite curved panels is investigated using doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The formulation includes transverse shear deformation, in-plane and rotary inertias. The aerodynamic force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow. Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results are presented for isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric study is carried out to observe the effects of aspect and thickness ratios, number of layers, lamination scheme, and boundary conditions on flutter boundary.

  15. GFRP筋混凝土梁耐火性能的试验研究%Fire Performance of GFRP Reinforced Concrete Beams

    Institute of Scientific and Technical Information of China (English)

    查晓雄; 王晓璐; 谢先义

    2012-01-01

    进行了4根GFRP筋混凝土简支梁在ISO834标准升温曲线下的火灾实验,试件依据ACI440.1R-06进行截面设计,分别考虑了不同荷载比、保护层厚度、端部锚固方式对梁耐火性能的影响.试验结果表明,GFRP筋混凝土梁在火灾中的裂纹开展深度较传统的钢筋混凝土结构明显偏大.由于GFRP筋横向膨胀大更易造成梁底混凝土的开裂与剥落,建议在满足纵筋锚固性能要求的前提下,尽量减少端部J型锚固筋.GFRP筋在高温下的材料性能衰减严重,合理的设计保护层厚度和限制GFRP筋的使用内力,可使GFRP筋混凝土梁的耐火性能满足实际工程的需要.%The fire performances of concrete beams reinforced with GFRP rebar are present in this paper, and four simply supported beams are exposed to fire with ISO 834 standard heating curve. The design of these flexural beams is according to ACI 440. 1R-06. The influences of different loading rates, concrete covers and anchorage modes are taken into account. Fire test results indicate that the crack depth of GFRP reinforced beams is deeper than steel reinforced beams, and more slight cracks even accompanied with concrete splitting appear at the bottom of beam due to GFRP rebar' s larger transverse expansion. It is recommended that the application of J-hooks anchorage in the crowed end should be reduced if there is sufficient bond strength. Although the mechanical behavior of GFRP reinforced concrete beam degradation significant at elevate temperature, proper design of GFRP reinforced concrete members by limiting the minimum concrete cover and service load will meet the practical fire design requirements.

  16. Plastics Technology.

    Science.gov (United States)

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  17. Influence of bress laminate volume fraction on electromechanical properties of externally laminated coated conductor tapes

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Zhierwinjay M.; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Lee, Jae Hun; Lee, Hun Ju; Moon, Seung Hyun [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2016-09-15

    The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their Ic behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of Ic in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.

  18. Free edge effects in laminated composites

    Science.gov (United States)

    Herakovich, C. T.

    1989-01-01

    The fundamental mechanics of free-edge effects in laminated fiber-reinforced composites is examined, reviewing the results of recent experimental and analytical investigations. The derivation of the governing equations for the basic problem is outlined, including the equilibrium and mismatch conditions and the elasticity formulation, and experimental data on axial displacement and shear strain in angle-ply laminates are summarized. Numerical predictions of free-edge deformation and interlaminar and through-thickness stress distributions are presented for cross-ply, angle-ply, and quasi-isotropic laminates, and the mechanisms of edge damage and failure in angle-ply laminates are briefly characterized. Extensive diagrams, drawings, graphs, and photographs are provided.

  19. Pattern recognition of laminated sediments methodology

    Science.gov (United States)

    Barba-Rojo, Perla Karina; Solorza-Calderón, Selene; González-Fernández, Antonio

    2016-12-01

    This work presents a different aproach for laminae counting and thickness measurements on laminated sediment images. This is done by the use of morphological operations and minimum variance quantization.

  20. Oseledec multiplicative ergodic theorem for laminations

    CERN Document Server

    Nguyên, Viêt-Anh

    2017-01-01

    Given a n-dimensional lamination endowed with a Riemannian metric, the author introduces the notion of a multiplicative cocycle of rank d, where n and d are arbitrary positive integers. The holonomy cocycle of a foliation and its exterior powers as well as its tensor powers provide examples of multiplicative cocycles. Next, the author defines the Lyapunov exponents of such a cocycle with respect to a harmonic probability measure directed by the lamination. He also proves an Oseledec multiplicative ergodic theorem in this context. This theorem implies the existence of an Oseledec decomposition almost everywhere which is holonomy invariant. Moreover, in the case of differentiable cocycles the author establishes effective integral estimates for the Lyapunov exponents. These results find applications in the geometric and dynamical theory of laminations. They are also applicable to (not necessarily closed) laminations with singularities. Interesting holonomy properties of a generic leaf of a foliation are obtained...

  1. Laminate mechanics for balanced woven fabrics

    NARCIS (Netherlands)

    Akkerman, Remko

    2006-01-01

    Laminate mechanics equations are presented for composites with balanced woven fabric reinforcements. It is shown that mimicking these textile composites with equivalent transversely isotropic (‘unidirectional’) layers requires disputable manipulations. Various micromechanics predictions of textile

  2. Optimization of laminates subjected to failure criterion

    Directory of Open Access Journals (Sweden)

    E. Kormaníková

    2011-01-01

    Full Text Available The paper is aimed on laminate optimization subjected to maximum strain criterion. The optimization problem is based on the use of continuous design variables. The thicknesses of layers with the known orientation are used as design variables. The optimization problem with strain constraints are formulated to minimize the laminate weight. The design of the final thickness is rounded off to integer multiples of the commercially available layer thickness.

  3. Direct Composite Laminate Veneers: Three Case Reports

    OpenAIRE

    Korkut, Bora; Yanıkoğlu, Funda; GÜNDAY, Mahir

    2013-01-01

    Re-establishing a patient’s lost dental esthetic appearance is one of the most important topics for contemporary dentistry. New treatment materials and methods have been coming on the scene, day by day, in order to achieve such an aim. Most dentists prefer more conservative and aesthetic approaches, such as direct and indirect laminate veneer restorations, instead of full-ceramic crowns for anteriors where aesthetics is really important. Laminate veneers are restorations which are envisioned ...

  4. Laminopathy-inducing lamin A mutants can induce redistribution of lamin binding proteins into nuclear aggregates.

    Science.gov (United States)

    Hübner, S; Eam, J E; Hübner, A; Jans, D A

    2006-01-15

    Lamins, members of the family of intermediate filaments, form a supportive nucleoskeletal structure underlying the nuclear envelope and can also form intranuclear structures. Mutations within the A-type lamin gene cause a variety of degenerative diseases which are collectively referred to as laminopathies. At the molecular level, laminopathies have been shown to be linked to a discontinuous localization pattern of A-type lamins, with some laminopathies containing nuclear lamin A aggregates. Since nuclear aggregate formation could lead to the mislocalization of proteins interacting with A-type lamins, we set out to examine the effects of FLAG-lamin A N195K and R386K protein aggregate formation on the subnuclear distribution of the retinoblastoma protein (pRb) and the sterol responsive element binding protein 1a (SREBP1a) after coexpression as GFP-fusion proteins in HeLa cells. We observed strong recruitment of both proteins into nuclear aggregates. Nuclear aggregate recruitment of the NPC component nucleoporin NUP153 was also observed and found to be dependent on the N-terminus. That these effects were specific was implied by the fact that a number of other coexpressed karyophilic GFP-fusion proteins, such as the nucleoporin NUP98 and kanadaptin, did not coaggregate with FLAG-lamin A N195K or R386K. Immunofluorescence analysis further indicated that the precursor form of lamin A, pre-lamin A, could be found in intranuclear aggregates. Our results imply that redistribution into lamin A-/pre-lamin A-containing aggregates of proteins such as pRb and SREBP1a could represent a key aspect underlying the molecular pathogenesis of certain laminopathies.

  5. Effects of lamination and coating with drying oils on tensile and barrier properties of zein films.

    Science.gov (United States)

    Rakotonirainy, A M; Padua, G W

    2001-06-01

    Zein films plasticized with oleic acid have been considered potentially useful for biodegradable packaging applications. However, moisture was found to affect their tensile and gas barrier properties. We investigated the effects of two converting processes, fusion lamination and coating with drying oils, on tensile properties and gas permeability of zein films. Zein films were laminated to 4-ply sheets in a Carver press and coated with tung oil, linseed oil, or a mixture of tung and soybean oils. Tensile properties and permeability to water vapor, oxygen, and carbon dioxide were measured according to ASTM methods. Laminated films were clearer, tougher, and more flexible, and had a smoother finish than nontreated sheets. Lamination decreased O(2) and CO(2) permeability by filling in voids and pinholes in the film structure. Coating increased tensile strength and elongation and decreased water vapor permeability. Coatings acted as a composite layer preventing crack propagation and increasing film strength. They also formed a highly hydrophobic surface that prevented film wetting.

  6. Laminated Windshield Breakage Modelling in the Context of Headform Impact Homologation Tests

    Science.gov (United States)

    Kosiński, P.; Osiński, J.

    2015-02-01

    The purpose of modelling a laminated windshield using the FEM is to provide a critical look on the way the adult headform impact tests are conducted in the process of motor vehicle certification. The main aim of the study is to modify the design of a laminated windshield in the context of a vehicle collision with vulnerable road users. The initial phase of the work was to develop a model of the adult headform impactor. The validation consisted in conducting a series of FEM analyses of the impactor certification testing according to the Regulation (EC) 631/2009. Next, the impact of the headform model on a windshield was analysed. The FEM model of laminated glass is composed of two outer layers of glass and an inner layer of polyvinyl butyral. FEM analyses of the impaction were performed at five points of the windshield characterised by various dynamic responses of the impactor and various patterns of glass cracking. In modelling the layers of glass, the Abaqus environment "brittle cracking" model was used. The following material models of PVB resin were considered: elastic, elastic-plastic, hyperelastic, and low-density foam. Furthermore, the influence of the mesh type on the process of glass cracking in a laminated windshield was analysed.

  7. Laminated Windshield Breakage Modelling in the Context of Headform Impact Homologation Tests

    Directory of Open Access Journals (Sweden)

    Kosiński P.

    2015-02-01

    Full Text Available The purpose of modelling a laminated windshield using the FEM is to provide a critical look on the way the adult headform impact tests are conducted in the process of motor vehicle certification. The main aim of the study is to modify the design of a laminated windshield in the context of a vehicle collision with vulnerable road users. The initial phase of the work was to develop a model of the adult headform impactor. The validation consisted in conducting a series of FEM analyses of the impactor certification testing according to the Regulation (EC 631/2009. Next, the impact of the headform model on a windshield was analysed. The FEM model of laminated glass is composed of two outer layers of glass and an inner layer of polyvinyl butyral. FEM analyses of the impaction were performed at five points of the windshield characterised by various dynamic responses of the impactor and various patterns of glass cracking. In modelling the layers of glass, the Abaqus environment “brittle cracking” model was used. The following material models of PVB resin were considered: elastic, elastic-plastic, hyperelastic, and low-density foam. Furthermore, the influence of the mesh type on the process of glass cracking in a laminated windshield was analysed.

  8. A numerical model on PVB laminated windshield subjected to headform low-speed impact

    Science.gov (United States)

    Xu, X. Q.; Liu, B. H.; Wang, Y.; Li, Y. B.; Xu, J.

    2013-07-01

    Polyvinyl butyral (PVB) laminated windshield is one of the most important components in automotive to protect vulnerable road users. First, a windshield finite element (FE) model is set up using a piece of interlayer (PVB) sandwiched by two glass layers. Four parameters which have an critical impact on the simulation results, i.e. glass Young's modulus, glass plastic failure strain, PVB stress-strain curve and boundary condition, are suggested to measure the influence on the windshield model. Each windshield model is impacted by a standard headform impactor at the speed of 8m/s based on the LS-DYNA platform and the results are compared with the dynamic experiments of PVB laminated windshield under headform impact to find the most accurate FE model. Furthermore, the most accurate FE windshield model is compacted by the standard headform impactor on various impact velocities (6.6m/s-11.2m/s), angles (60°-90°) compared with the parametric dynamic experiments of PVB laminated windshield to verify the windshield finite element model. This paper provides a useful finite element model of windshield for further systematically numerical studies based on the finite element method to explore the ability of the energy absorption and safety design of PVB laminated windshield.

  9. Manufacture of Flax Reinforced PP Laminates and Research on the Tensile Properties

    Institute of Scientific and Technical Information of China (English)

    LIU Li-yan; HUANG Gu; WANG Rui

    2007-01-01

    Flax fiber was used to reinforce Polypropylene (PP) owing to its lower impact on environment and suitable mechanical behaviors. To overcome the difficulty of penetrating fibers due to the high viscosity of thermo-plastic resin, PP filaments wrapping around the linen yam produced commingled yams, which were woven into fabrics as preforms to make laminates by optimum hot-pressing technology. The effects of fiber volume fraction, fabric density and structure on tensile properties of composites were researched through analyzing the tensile test results and the scanning electronic microscope (SEM) micrographs of fracture surface. Concinsious are drawn that the properties of laminates with fiber volume fraction of 0.50 are better than those with the other two fractions. For plain structure, the tensile properties in warp direction decrease according to the increase of weft density while in weft direction increase. For different fabric structures, properties of laminates with structures of plain 3, twill 2/2 and twill 3/1 increase gradually. And properties in weft direction are prior to those in warp direction for each laminate.

  10. Multi response Characteristics of Process Parameters during End Milling of GFRP using Grey-Based Taguchi Method

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2014-05-01

    Full Text Available This paper deals with optimization of surface roughness and delamination damage on GFRP  material during end milling using grey - based taguchi method. Three parameters namely spindle speed, feed rate and depth of cut were identified and ranges of the parameters for the present investigation were determined from preliminary experiments. Taguchi method based on L9 orthogonal array was selected and experiments were conducted as per experimental layout plan. The experiments were carried out on a CNC vertical machining center to perform 10mm slots on GFRP work piece of 300mmX50mmX25mm size by K10 carbide, four flute end milling cutter. Surface roughness and delamination damage were measured on each slot with the aid of form Talysurf 50 and tool maker’s micro scope. An optimal combination of process parameters were obtained via grey based taguchi method. From the results of ANOVA, it is concluded that cutting speed and depth of cut are the most significant factors affecting the surface roughness and delamination damage factor and their contribution in an order of 26.84% and 40.44% respectively. A confirmatory experiment shows that 5.052µm for surface roughness and 1.682 delamination damage factor to validate the used approach after conducting with optimal setting of process parameters.

  11. Dynamic behavior monitoring and damage evaluation for arch bridge suspender using GFRP optical fiber Bragg grating sensors

    Science.gov (United States)

    Li, Dongsheng; Zhou, Zhi; Ou, Jinping

    2012-06-01

    Suspenders, as the main bearing components in an arch bridge, can only manage to serve for about tens of years, or even a few years due to the influences of corrosion and fatigue load. This paper proposes a method of testing the suspender dynamic behavior with optical fiber Bragg grating sensors embedded in the glass fiber reinforced polymer (GFRP-OFBGS). Firstly, layout method of FRP-OFBGS among the suspender and protection technology are studied, and the self-monitoring smart suspender is developed. Secondly, stretching experiments were carried out on the smart suspender. The test experimental results demonstrated that the whole procedure of the stretching test can be perfectly monitored. Finally, the self-monitoring smart suspender successfully was applied in Ebian Bridge to monitor the strain history of suspenders under traffic load, and traffic effect to suspenders with various lengths and to different steel strands of a single suspender. Based on the monitoring data, the arch bridge suspenders fatigue damage dynamic evaluation methods and calculation results were given. The field monitoring results demonstrated that, the self-monitoring smart suspender mentioned in this paper is capable of monitoring suspender dynamic response and possible fatigue damages.

  12. Finite Element Modeling of GFRP-Reinforced Concrete Interior Slab-Column Connections Subjected to Moment Transfer

    Directory of Open Access Journals (Sweden)

    Ahmed Gouda

    2015-10-01

    Full Text Available A finite element model (FEM was constructed using specialized three-dimensional (3D software to investigate the punching shear behavior of interior slab-column connections subjected to a moment-to-shear ratio of 0.15 m. The FEM was then verified against the experimental results of full-scale interior slab-column connections reinforced with glass fiber reinforcement polymer (GFRP bars previously tested by the authors. The FEM results showed that the constructed model was able to predict the behavior of the slabs with reasonable accuracy. Afterward, the verified model was used to conduct a parametric study to investigate the effects of reinforcement ratio, perimeter-to-depth ratio, and column aspect ratio on the punching shear behavior of such connections. The test results showed that increasing the tested parameters enhanced the overall behavior of the connections in terms of decreasing deflections and reinforcement strain and increasing the ultimate capacity. In addition, the obtained punching shear stresses of the connections were compared to the predictions of the Canadian standard and the American guideline for FRP-reinforced concrete structures.

  13. Plastic bronchitis

    National Research Council Canada - National Science Library

    Singhi, Anil Kumar; Vinoth, Bharathi; Kuruvilla, Sarah; Sivakumar, Kothandam

    2015-01-01

    Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics...

  14. Effect of laminate edge conditions on the formation of microvoids in composite laminates

    Science.gov (United States)

    Anderson, J. P.; Altan, M. C.

    2015-05-01

    Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.

  15. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  16. Plastic Bridge

    Institute of Scientific and Technical Information of China (English)

    履之

    1994-01-01

    Already ubiquitous in homes and cars, plastic is now appearing inbridges. An academic-industrial consortium based at the University ofCalifornia in San Diego is launching a three-year research program aimed atdeveloping the world’s first plastic highway bridge, a 450-foot span madeentirely from glass-,carbon,and polymer-fiber-reinforced composite mate-rials, the stuff of military aircraft. It will cross Interstate 5 to connect thetwo sides of the school’s campus.

  17. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  18. Fully Solution-Processed Inverted Polymer Solar Cells with Laminated Nanowire Electrodes

    KAUST Repository

    Gaynor, Whitney

    2010-01-26

    We demonstrate organic photovoltaic cells in which every layer is deposited by solution processing on opaque metal substrates, with efficiencies similar to those obtained in conventional device structures on transparent substrates. The device architecture is enabled by solution-processed, laminated silver nanowire films serving as the top transparent anode. The cells are based on the regioregular poly(3- hexylthiophene) and C 61 butyric acid methyl ester bulk heterojunction and reach an efficiency of 2.5% under 100 mW/cm 2 of AM 1.5G illumination. The metal substrates are adequate barriers to moisture and oxygen, in contrast to transparent plastics that have previously been used, giving rise to the possibility of roll-to-roll solutionprocessed solar cells that are packaged by lamination to glass substrates, combining the cost advantage of roll-toroll processing with the barrier properties of glass and metal foil. © 2010 American Chemical Society.

  19. Fracture behavior of hybrid composite laminates

    Science.gov (United States)

    Kennedy, J. M.

    1983-01-01

    The tensile fracture behavior of 15 center-notched hybrid laminates was studied. Three basic laminate groups were tested: (1) a baseline group with graphite/epoxy plies, (2) a group with the same stacking sequence but where the zero-deg plies were one or two plies of S-glass or Kevlar, and (3) a group with graphite plies but where the zero-deg plies were sandwiched between layers of perforated Mylar. Specimens were loaded linearly with time; load, far field strain, and crack opening displacement (COD) were monitored. The loading was stopped periodically and the notched region was radiographed to reveal the extent and type of damage (failure progression). Results of the tests showed that the hybrid laminates had higher fracture toughnesses than comparable all-graphite laminates. The higher fracture toughness was due primarily to the larger damage region at the ends of the slit; delamination and splitting lowered the stress concentration in the primary load-carrying plies. A linear elastic fracture analysis, which ignored delamination and splitting, underestimated the fracture toughness. For almost all of the laminates, the tests showed that the fracture toughness increased with crack length. The size of the damage region at the ends of the slit and COD measurements also increased with crack length.

  20. Lamin C and chromatin organization in Drosophila

    Indian Academy of Sciences (India)

    B. V. Gurudatta; L. S. Shashidhara; Veena K. Parnaik

    2010-04-01

    Drosophila lamin C (LamC) is a developmentally regulated component of the nuclear lamina. The lamC gene is situated in the fifth intron of the essential gene tout velu (ttv). We carried out genetic analysis of lamC during development. Phenotypic analyses of RNAi-mediated downregulation of lamC expression as well as targeted misexpression of lamin C suggest a role for lamC in cell survival. Of particular interest in the context of laminopathies is the caspase-dependent apoptosis induced by the overexpression of lamin C. Interestingly, misexpression of lamin C in the central nervous system, where it is not normally expressed, did not affect organization of the nuclear lamina. lamC mutant alleles suppressed position effect variegation normally displayed at near-centromeric and telomeric regions. Further, both downregulation and misexpression of lamin C affected the distribution of heterochromatin protein 1. Our results suggest that Drosophila lamC has a tissue-specific role during development and is required for chromatin organization.

  1. Ballistic Impact Response of Ceramic-Faced Aramid Laminated Composites Against 7.62 mm Armour Piercing Projectiles

    Directory of Open Access Journals (Sweden)

    Nityananda Nayak

    2013-07-01

    Full Text Available Ballistic impact response of ceramic- composite armor, consisting of zirconia toughened alumina (ZTA ceramic front and aramid laminated composite as backing, against 7.62 mm armor piercing (AP projectiles has been studied. Two types of backing composite laminates i.e. Twaron-epoxy and Twaron-polypropylene (PP of 10 mm and 15 mm thickness were used with a ceramic face of 4mm thick ZTA. The ceramic- faced and the stand alone composite laminates were subjected to ballistic impact of steel core 7.62 mm AP projectiles with varying impact velocities and their V50 ballistic limit (BL was determined. A sharp rise in BL was observed due to addition of ceramic front layer as compared to stand alone ones. The impact energy was absorbed during penetration primarily by fracture of ceramic, deformation and fracture of projectile and elastic-plastic deformation of flexible backing composite layer. The breaking of ceramic tiles were only limited to impact area and did not spread to whole surface and projectile shattering above BL and blunting on impact below BL was observed. The ceramic- faced composites showed higher BL with Twaron-PP as backing than Twaron-epoxy laminate of same thickness. This combination of ceramic-composite laminates exhibited better multi-hit resistance capability; ideal for light weight armor.Defence Science Journal, 2013, 63(4, pp.369-375, DOI:http://dx.doi.org/10.14429/dsj.63.2616

  2. Multiscale Static Analysis of Notched and Unnotched Laminates Using the Generalized Method of Cells

    Science.gov (United States)

    Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.; Stier, Bertram; Hansen, Lucas; Bednarcyk, Brett A.; Waas, Anthony M.

    2016-01-01

    The generalized method of cells (GMC) is demonstrated to be a viable micromechanics tool for predicting the deformation and failure response of laminated composites, with and without notches, subjected to tensile and compressive static loading. Given the axial [0], transverse [90], and shear [+45/-45] response of a carbon/epoxy (IM7/977-3) system, the unnotched and notched behavior of three multidirectional layups (Layup 1: [0,45,90,-45](sub 2S), Layup 2: [0,60,0](sub 3S), and Layup 3: [30,60,90,-30, -60](sub 2S)) are predicted under both tensile and compressive static loading. Matrix nonlinearity is modeled in two ways. The first assumes all nonlinearity is due to anisotropic progressive damage of the matrix only, which is modeled, using the multiaxial mixed-mode continuum damage model (MMCDM) within GMC. The second utilizes matrix plasticity coupled with brittle final failure based on the maximum principle strain criteria to account for matrix nonlinearity and failure within the Finite Element Analysis--Micromechanics Analysis Code (FEAMAC) software multiscale framework. Both MMCDM and plasticity models incorporate brittle strain- and stress-based failure criteria for the fiber. Upon satisfaction of these criteria, the fiber properties are immediately reduced to a nominal value. The constitutive response for each constituent (fiber and matrix) is characterized using a combination of vendor data and the axial, transverse, and shear responses of unnotched laminates. Then, the capability of the multiscale methodology is assessed by performing blind predictions of the mentioned notched and unnotched composite laminates response under tensile and compressive loading. Tabulated data along with the detailed results (i.e., stress-strain curves as well as damage evolution states at various ratios of strain to failure) for all laminates are presented.

  3. The ultimate state of polymeric materials and laminated and fibrous composites under asymmetric high-cycle loading

    Science.gov (United States)

    Golub, V. P.; Pogrebniak, A. D.; Kochetkova, E. S.

    2008-01-01

    The prediction of the high-cycle fatigue strength of polymeric and composite materials in asymmetric loading is considered. The problem is solved on the basis of a nonlinear model of ultimate state allowing us to describe all typical forms of the diagrams of ultimate stresses. The material constants of the model are determined from the results of fatigue tests in symmetric reversed cycling, in a single fatigue test with the minimum stress equal to zero, and in a short-term strength test. The fatigue strength characteristics of some polymers, glass-fiber laminates, glass-fiber-reinforced plastics, organic-fiber-reinforced plastics, and wood laminates in asymmetric tension-compression, bending, and torsion have been calculated and approved experimentally.

  4. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  5. ROBUST OPTIMUM DESIGN OF LAMINATED COMPOSITE PLATES

    Institute of Scientific and Technical Information of China (English)

    WangXiangyang; ChenJianqiao

    2004-01-01

    A last-ply failure (LPF) analysis method for laminated composite plates is incorporated into the finite element code-ANSYS, and a robust optimum design method is presented. The composite structure is analyzed by considering both in-plane and out-of-plane loads. For a lamina,two major failure modes are considered: matrix failure and fiber breakage that axe characterized by the proper strength criteria in the literature. When a lamina has failed, the laminate stiffness is modified to reflect the damage, and stresses in the structure are re-analyzed. This procedure is repeatedly performed until the whole structure fails and thus the ultimate strength is determined.A structural optimization problem is solved with the fiber orientation and the lamina thickness as the design variables and the LPF load as the objective. Finally, the robust optimum design method for laminates is presented and discussed.

  6. Mechanical behaviors of notched composite laminates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the study on the mechanical behaviors of composite laminates with both static and fatigue tests per formed with different notched specimens and concludes with experimental results that ultimate strength and initial stiff ness of various notched composite laminates is almost as same as un-notched ones but the fatigue life of notched speci mens is much higher than un-notched ones. Compared with metals, composite materials are notch insensitive. The properties measured by using bar type specimens can not represent the real properties of composite laminates. Notches on the free edge may be helpful to the structure. The fatigue life can be predicted through theoretical models estab lished using the residual stiffness model.

  7. Stochastic damage evolution in textile laminates

    Science.gov (United States)

    Dzenis, Yuris A.; Bogdanovich, Alexander E.; Pastore, Christopher M.

    1993-01-01

    A probabilistic model utilizing random material characteristics to predict damage evolution in textile laminates is presented. Model is based on a division of each ply into two sublaminas consisting of cells. The probability of cell failure is calculated using stochastic function theory and maximal strain failure criterion. Three modes of failure, i.e. fiber breakage, matrix failure in transverse direction, as well as matrix or interface shear cracking, are taken into account. Computed failure probabilities are utilized in reducing cell stiffness based on the mesovolume concept. A numerical algorithm is developed predicting the damage evolution and deformation history of textile laminates. Effect of scatter of fiber orientation on cell properties is discussed. Weave influence on damage accumulation is illustrated with the help of an example of a Kevlar/epoxy laminate.

  8. Coupled quasi-homogeneous orthotropic laminates

    Science.gov (United States)

    York, C. B.

    2011-09-01

    Laminate stacking sequence configurations with quasi-homogeneous properties are derived, whereby the inplane and out-of-plane stiffness properties are concomitant. The stacking sequence configurations contain equal-thickness layers and identical orthotropic properties, differing only by their orientations, which are represented by standard angle- and cross-ply combinations. These simplifying assumptions are in fact representative of the common design practice, but help one to identify and isolate a range of highly complex physical coupling responses, which continue to be referred to collectively in the literature as bending-extension coupling. Dimensionless parameters are developed from which the elements of the extensional, coupling, and bending stiffness matrices are readily calculated for any fibre/resin properties. Feasible domains of lamination parameters are also illustrated for each coupling response to complement abridged listings of stacking sequences. Finally, hygrothermally curvature-stable configurations with quasi-homogeneous properties are identified, thus simplifying the manufacture of laminate configurations possessing tailored mechanical coupling responses.

  9. Multifunctional Laminated Composite Materials for Protective Clothing

    Directory of Open Access Journals (Sweden)

    Nermin M. Aly

    2014-10-01

    Full Text Available Protective clothing performs a vital role in maintaining the safety of human in workplace. The developments in this field are proceeding to fulfill the needs with multifunctional materials at competitive costs. Recently, the protective clothing field introduces the usage of composite materials taking advantage of their outstanding properties. In this paper, the multifunctional performance of hybrid laminated composites (HLC was investigated aiming to be utilized in protective clothing. The influences of reinforcement and resin properties on the physical properties of the laminated composites and their resistance to puncture load and UV transmittance were studied. ANOVA test was used for the statistical analysis of the results. The results showed that, the reinforcement material and structure and the fiber/matrix interface have major influences on the laminated composites performance. It was revealed that, the HLC fabricated from (polyester/glass fabric with satin 4 structure and nonwoven glass fiber mat exhibited the best functional performance.

  10. Hybrid Laminates for Application in North Conditions

    Science.gov (United States)

    Antipov, V. V.; Oreshko, E. I.; Erasov, V. S.; Serebrennikova, N. Yu.

    2016-11-01

    A hybrid aluminum-lithium alloy/SIAL laminate as a possible material for application in structures operated in North conditions is considered. The finite-element method is used for a buckling stability analysis of hybrid panels, bars, and plates. A technique allowing one to compare the buckling stability of multilayered hybrid plates is offered. Compression tests were run on a hybrid laminate wing panel as a prototype of the top panel of TU-204SM airplane made from a high-strength B95T2 aluminum alloy. It turned out that the lighter composite panel had a higher load-carrying capacity than the aluminum one. Results of investigation into the properties the hybrid aluminum-lithium alloy/SIAL laminate and an analysis of scientific-technical data on this subject showed that this composite material could be used in the elements of airframes, including those operated in north conditions.

  11. Plastic Bronchitis.

    Science.gov (United States)

    Rubin, Bruce K

    2016-09-01

    Plastic bronchitis is an uncommon and probably underrecognized disorder, diagnosed by the expectoration or bronchoscopic removal of firm, cohesive, branching casts. It should not be confused with purulent mucous plugging of the airway as seen in patients with cystic fibrosis or bronchiectasis. Few medications have been shown to be effective and some are now recognized as potentially harmful. Current research directions in plastic bronchitis research include understanding the genetics of lymphatic development and maldevelopment, determining how abnormal lymphatic malformations contribute to cast formation, and developing new treatments. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Topology optimization of laminated plates with prestress

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2002-01-01

    Laminated plates with different prestress in the layers are topology optimized. The objectives are to minimize the deflection due to the prestress or to minimize ordinary compliance. The prestress is accounted for by including the force equivalent to the prestressing and adding the initial stress...... stiffness matrix to the structural stiffness. The calculations of sensitivities are complicated not only by the prestress but also because we are dealing with laminates. The topology optimization problem is solved using a new penalization scheme as an alternative to the SIMP (power law) approach...

  13. Properties of Chitosan-Laminated Collagen Film

    Directory of Open Access Journals (Sweden)

    Vera Lazić

    2012-01-01

    Full Text Available The objective of this study is to determine physical, mechanical and barrier properties of chitosan-laminated collagen film. Commercial collagen film, which is used for making collagen casings for dry fermented sausage production, was laminated with chitosan film layer in order to improve the collagen film barrier properties. Different volumes of oregano essential oil per 100 mL of filmogenic solution were added to chitosan film layer: 0, 0.2, 0.4, 0.6 and 0.8 mL to optimize water vapour barrier properties. Chitosan layer with 0.6 or 0.8 % of oregano essential oil lowered the water vapour transmission rate to (1.85±0.10·10–6 and (1.78±0.03·10–6 g/(m2·s·Pa respectively, compared to collagen film ((2.51±0.05·10–6 g/(m2·s·Pa. However, chitosan-laminated collagen film did not show improved mechanical properties compared to the collagen one. Tensile strength decreased from (54.0±3.8 MPa of the uncoated collagen film to (36.3±4.0 MPa when the film was laminated with 0.8 % oregano essential oil chitosan layer. Elongation at break values of laminated films did not differ from those of collagen film ((18.4±2.7 %. Oxygen barrier properties were considerably improved by lamination. Oxygen permeability of collagen film was (1806.8±628.0·10–14 cm3/(m·s·Pa and values of laminated films were below 35·10–14 cm3/(m·s·Pa. Regarding film appearance and colour, lamination with chitosan reduced lightness (L and yellowness (+b of collagen film, while film redness (+a increased. These changes were not visible to the naked eye.

  14. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  15. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  16. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  17. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  18. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  19. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  20. Plastic zonnecellen

    NARCIS (Netherlands)

    Roggen, Marjolein

    1998-01-01

    De zonnecel van de toekomst is in de maak. Onderzoekers van uiteenlopend pluimage werken eendrachtig aan een plastic zonnecel. De basis is technisch gelegd met een optimale, door invallend licht veroorzaakte, vorming van ladingdragers binnen een composiet van polymeren en buckyballs. Nu is het zaak

  1. Fabrication and Characterization of Graded Anodes for Anode-Supported Solid Oxide Fuel Cells by Tape Casting and Lamination

    DEFF Research Database (Denmark)

    Beltran-Lopez, J.F.; Laguna-Bercero, M.A.; Gurauskis, Jonas

    2014-01-01

    of tapes at room temperature without using plasticizers. This is made by the combination of two different binders with varying Tg (glass transition temperature) which resulted in plastic deformation at room temperature. Those results indicate that the proposed process is a cost-effective method......Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting...

  2. Experimental Study on Sandwich Bridge Decks with GFRP Face Sheets and a Foam-Web Core Loaded under Two-Way Bending

    Directory of Open Access Journals (Sweden)

    Ruili Huo

    2015-01-01

    Full Text Available In recent years, the sandwich bridge decks with GFRP face sheets and light weight material core have been widely used in the world due to their advantages of low cost, high strength to weight ratios, and corrosion resisting. However, as the bridge decks, most of them are used in foot bridges rather than highway bridges because the ultimate bending strength and initial bending stiffness are relatively low. To address this issue and expand the scope of use, a simple and innovative sandwich bridge deck with GFRP face sheets and a foam-web core, manufactured by vacuum assisted resin infusion process, is developed. An experimental study was carried out to validate the effectiveness of this panel for increasing the ultimate bending strength and initial bending stiffness under two-way bending. The effects of face sheet thickness, foam density, web thickness, and web spacing on displacement ductility and energy dissipation were also investigated. Test results showed that, compared to the normal foam-core sandwich decks, an average approximately 657.1% increase in the ultimate bending strength can be achieved. Furthermore, the bending stiffness, displacement ductility, and energy dissipation can be enhanced by increasing web thickness, web height, and face sheet thickness or decreasing web spacing.

  3. Thermomechanics of calendering, indenting and laminating porous webs: Computer-aided theory and experiments

    Science.gov (United States)

    Aggelidis, Costas Nickolaos

    2007-12-01

    Calendering is the name of a forming process in the polymer industry, of a finishing operation in papermaking, and of a post-coating smoothing step. Common to all three is flow of a solid-like material between two counter-rotating rolls. Experiments of paper calendering reveal the effects of nip loading and roll surface temperature on the surface roughness, gloss, and elastic properties of paper, as well as on the porosity reduction of the surface layers of paper handsheets from images of a two-photon confocal microscope. Lamination refers to pressing together two substrates with adhesive between. It also is commonly done between two counter-rotating rolls. A simple theoretical model and experiments of lamination of three-layer composites show the effects of web tensions, nip loading and roll speed on the curl and hang of the laminate, air entrapment and delamination. The deformation in calendering commonly spans viscous, elastic, plastic, and various combinations of these. A constitutive theory of poro-elasto-viscoplastic materials for finite deformations is developed based on thermodynamics of internal variables and the principle of maximum dissipation. Internal variables represent changes of deviatoric and total elastic stress-free states, i.e. deviatoric and isotropic yielding. Two scalar potentials, the free energy and the yield or dissipation function, describe the evolution of the elastic stress-free states. Indentation is commonly used to estimate material properties, like modulus and hardness, and visualize the deformation of the surface zones. A spherical cavity model for finite elasto-poro-plastic materials predicts the effect of isotropic yielding or change of total elastic stress-free state on indentation load and the size of plastic region. A calendering model of slab analysis for plastic and poro-plastic materials reveals the effects of the friction coefficient and of isotropic yielding on the stress distribution and densification in the calendering

  4. Tropicalized Lambda Lengths, Measured Laminations and Convexity

    DEFF Research Database (Denmark)

    C. Penner, R.

    cell decomposition of a surface is discovered in the limit. Finally, the tropical analogue of the convex hull construction in Minkowski space is formulated as an explicit algorithm that serially simplifies a triangulation with respect to a fixed lamination and has its own independent applications....

  5. Computational modeling of failure in composite laminates

    NARCIS (Netherlands)

    Van der Meer, F.P.

    2010-01-01

    There is no state of the art computational model that is good enough for predictive simulation of the complete failure process in laminates. Already on the single ply level controversy exists. Much work has been done in recent years in the development of continuum models, but these fail to predict t

  6. Geometric approach to Ending Lamination Conjecture

    OpenAIRE

    Soma, Teruhiko

    2008-01-01

    We present a new proof of the bi-Lipschitz model theorem, which occupies the main part of the Ending Lamination Conjecture proved by Minsky and Brock-Canary-Minsky. Our proof is done by using techniques of standard hyperbolic geometry as much as possible.

  7. Tropicalized Lambda Lengths, Measured Laminations and Convexity

    DEFF Research Database (Denmark)

    C. Penner, R.

    This work uncovers the tropical analogue for measured laminations of the convex hull construction of decorated Teichmueller theory, namely, it is a study in coordinates of geometric degeneration to a point of Thurston's boundary for Teichmueller space. This may offer a paradigm for the extension...

  8. Lamb Wave Propagation in Laminated Composite Structures

    OpenAIRE

    Gopalakrishnan, S.

    2013-01-01

    Damage detection using guided Lamb waves is an important tool in Structural health Monitoring. In this paper, we outline a method of obtaining Lamb wave modes in composite structures using two dimensional Spectral Finite Elements. Using this approach, Lamb wave dispersion curves are obtained for laminated composite structures with different fibre orientation. These propagating Lamb wave modes are pictorially captured using tone burst signal.

  9. Constitutive modelling of UD reinforced thermoplastic laminates

    NARCIS (Netherlands)

    Haanappel, S.P.; Thije, ten R.; Akkerman, R.

    2010-01-01

    Intra-ply shear is an important mechanism in thermoforming processes of UD fibre reinforced thermoplastic laminates. Various methods have been developed to characterise this shear mechanism, but measured properties differ for several orders of magnitude. The potential of another technique is shown i

  10. Impermeable Robust Hydrogels via Hybrid Lamination.

    Science.gov (United States)

    Parada, German A; Yuk, Hyunwoo; Liu, Xinyue; Hsieh, Alex J; Zhao, Xuanhe

    2017-07-17

    Hydrogels have been proposed for sensing, drug delivery, and soft robotics applications, yet most of these materials suffer from low mechanical robustness and high permeability to small molecules, limiting their widespread use. This study reports a general strategy and versatile method to fabricate robust, highly stretchable, and impermeable hydrogel laminates via hybrid lamination of an elastomer layer bonded between hydrogel layers. By controlling the layers' composition and thickness, it is possible to tune the stiffness of the impermeable hydrogels without sacrificing the stretchability. These hydrogel laminates exhibit ultralow surface coefficients of friction and, unlike common single-material hydrogels, do not allow diffusion of various molecules across the structure due to the presence of the elastomer layer. This feature is then used to release different model drugs and, in a subsequent experiment, to sense different pH conditions on the two sides of the hydrogel laminate. A potential healthcare application is shown using the presented method to coat medical devices (catheter, tubing, and condom) with hydrogel, to allow for drug release and sensing of environmental conditions for gastrointestinal or urinary tract. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optimal Design of Laminated Composite Beams

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral

    . Furthermore, the devised beam model is able account for the different levels of anisotropic elastic couplings which depend on the laminate lay-up. An optimization model based on multi-material topology optimization techniques is described. The design variables represent the volume fractions of the different...

  12. Doped LZO buffer layers for laminated conductors

    Science.gov (United States)

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  13. Plastic Surgery Statistics

    Science.gov (United States)

    ... PSN PSEN GRAFT Contact Us News Plastic Surgery Statistics Plastic surgery procedural statistics from the American Society of Plastic Surgeons. Statistics by Year Print 2016 Plastic Surgery Statistics 2015 ...

  14. Progressive delamination in polymer matrix composite laminates: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.

  15. Low toxicity binder systems for tape cast Ce0.9Gd0.1O1.95 laminates

    DEFF Research Database (Denmark)

    Klemensø, Trine; Menon, Mohan; Ramousse, Severine

    2010-01-01

    Conventional binder systems for tape casting contain toxic phthalate plasticizers and butanone (MEK) as part of the solvent. The effects of exchanging the phthalate with a non-toxic alternative, and butanone with ethanol, were studied on laminates of high-green density CGO (Ce0.9Gd0.1O1.95) tapes....... Samples were prepared with a binder system containing DBP (dibutyl phthalate) plasticizer and MEK solvent, and with a binder system based on a non-toxic non-phthalate plasticizer and ethanol. In both systems, the weight ratio of plasticizer to the PVB (polyvinyl butyral) binder was varied between 0.......4 and 0.7. Substitution to the less toxic binder system had no adverse impacts on the microstructure. In fact, denser packing and improved homogeneity were observed with the non-phthalate-based system at ratio 0.5 indicating improved dispersion in this system. The denser packing also coincided...

  16. Novel Remanufacturing Process of Recycled Polytetrafluoroethylene(PTFE)/GF Laminate

    Science.gov (United States)

    Xi, Z.; Ghita, O. R.; Johnston, P.; Evans, K. E.

    2011-01-01

    Currently, the PTFE/GF laminate and PTFE PCB manufacturers are under considerable pressure to address the recycling issues due to Waste Electrical and Electronic Equipment (WEEE) Directive, shortage of landfill capacity and cost of disposal. This study is proposing a novel manufacture method for reuse of the mechanical ground PTFE/Glass fibre (GF) laminate and production of the first reconstitute PTFE/GF laminate. The reconstitute PTFE/GF laminate proposed here consists of a layer of recycled sub-sheet, additional layers of PTFE and PTFE coated glass cloth, also covered by copper foils. The reconstitute PTFE/GF laminate showed good dielectric properties. Therefore, there is potential to use the mechanical ground PTFE/GF laminate powder to produce reconstitute PTFE/GF laminate, for use in high frequencies PCB applications.

  17. Plastic bronchitis

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singhi

    2015-01-01

    Full Text Available Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics. They are ominous with poor prognosis. Sometimes, infection or airway reactivity may provoke cast bronchitis as a two-step insult on a vulnerable vascular bed. In such instances, aggressive management leads to longer survival. This report of cast bronchitis discusses its current understanding.

  18. Study of variation of thermal diffusivity of advanced composite materials of E-glass fibre reinforced plastic (GFRP) in temperature range 5–300 K

    Indian Academy of Sciences (India)

    Kalobaran Das; S M Kamaruzzaman; Tapas Ranjan Middya; Siddhartha Datta

    2009-02-01

    Modified Angstrom method is applied to study the variation of thermal diffusivity of plain woven fabric composite in closed cycle cryo-refrigerator (CCR) based set up in the temperature range 5–300 K. The set up used is plug in type and its small size offers portability. The set up works without use of any liquid cryogen. The temperature versus thermal diffusivity curve shows three distinct regions viz. 5–30 K, 30–120 K and 120–300 K. In the first region thermal diffusivity varies exponentially and rapidly. In the second region thermal diffusivity changes exponentially but relatively slowly than that in the first region. In the last region the change in thermal diffusivity with temperature is exponential in nature but very slow.

  19. Identification of impact force acting on composite laminated plates using the radiated sound measured with microphones

    Science.gov (United States)

    Atobe, Satoshi; Nonami, Shunsuke; Hu, Ning; Fukunaga, Hisao

    2017-09-01

    Foreign object impact events are serious threats to composite laminates because impact damage leads to significant degradation of the mechanical properties of the structure. Identification of the location and force history of the impact that was applied to the structure can provide useful information for assessing the structural integrity. This study proposes a method for identifying impact forces acting on CFRP (carbon fiber reinforced plastic) laminated plates on the basis of the sound radiated from the impacted structure. Identification of the impact location and force history is performed using the sound pressure measured with microphones. To devise a method for identifying the impact location from the difference in the arrival times of the sound wave detected with the microphones, the propagation path of the sound wave from the impacted point to the sensor is examined. For the identification of the force history, an experimentally constructed transfer matrix is employed to relate the force history to the corresponding sound pressure. To verify the validity of the proposed method, impact tests are conducted by using a CFRP cross-ply laminate as the specimen, and an impulse hammer as the impactor. The experimental results confirm the validity of the present method for identifying the impact location from the arrival time of the sound wave detected with the microphones. Moreover, the results of force history identification show the feasibility of identifying the force history accurately from the measured sound pressure using the experimental transfer matrix.

  20. Laser bendability of SUS430/C11000/SUS430 laminated composite and its constituent layers

    Science.gov (United States)

    Hossein Seyedkashi, S. M.; Gollo, Mohammad Hoseinpour; Biao, Jin; Moon, Young Hoon

    2016-05-01

    Laminated composites are of great interest in different industries while having the advantages of all base metals. In this research, the laser bending of a three-layered SUS430/C11000/SUS430 laminated composite is characterized both experimentally and numerically. This composite can be used in the microelectronics industry since it has the anti-corrosion and strength capability of stainless steel, and the electrical superiority of copper. The specimens are bent using a Ytterbium fiber laser irradiated on a straight path along the sheet width. The effects of bending parameters including the number of passes, scanning velocity, beam diameter, laser power and delay time between passes are examined for a three-layered laminated sheet, and compared with its constituent steel and copper layers. It is found that the thin copper mid-layer strongly affects the rate of bending per pass. Heat distribution and plastic strain along the thickness during the process are characterized by using the finite element method. The Cu mid-layer decreases the bending angle, but also postpones the onset of melting, and thus can be compensated by the application of higher laser powers. It is shown that the bending angle increases with an increase in laser power and delay time, and a decrease in laser velocity and beam diameter.

  1. Effect of resin on impact damage tolerance of graphite/epoxy laminates

    Science.gov (United States)

    Williams, J. G.; Rhodes, M. D.

    1982-01-01

    Twenty-four different epoxy resin systems were evaluated by a variety of test techniques to identify materials that exhibited improved impact damage tolerance in graphite/epoxy composite laminates. Forty-eight-ply composite panels of five of the material systems were able to sustain 100 m/s impact by a 1.27-cm-diameter aluminum projectile while statically loaded to strains of 0.005. Of the five materials with the highest tolerance to impact, two had elastomeric additives, two had thermoplastic additives, and one had a vinyl modifier; all the five systems used bisphenol A as the base resin. An evaluation of test results shows that the laminate damage tolerance is largely determined by the resin tensile properties, and that improvements in laminate damage tolerance are not necessarily made at the expense of room-temperature mechanical properties. The results also suggest that a resin volume fraction of 40 percent or greater may be required to permit the plastic flow between fibers necessary for improved damage tolerance.

  2. Guided wave and damage detection in composite laminates using different fiber optic sensors.

    Science.gov (United States)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-01-01

    Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.

  3. Guided Wave and Damage Detection in Composite Laminates Using Different Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Fucai Li

    2009-05-01

    Full Text Available Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG and Doppler effect-based fiber optic (FOD sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH0 guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.

  4. Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics.

    Science.gov (United States)

    Lee, Daewon; Lim, Young-Woo; Im, Hyeon-Gyun; Jeong, Seonju; Ji, Sangyoon; Kim, Yong Ho; Choi, Gwang-Mun; Park, Jang-Ung; Lee, Jung-Yong; Jin, Jungho; Bae, Byeong-Soo

    2017-07-19

    Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.

  5. Fabrication and characterization of laminated Ti-(TiB+La2O3/Ti composite

    Directory of Open Access Journals (Sweden)

    Yuanfei Han

    2015-10-01

    Full Text Available The incorporation of ceramic particulate reinforcements into titanium alloys can improve the specific strength and specific stiffness, while inevitably reduce the plasticity and ductility. In this study, in situ synthesized multilayer Ti-(TiB+La2O3/Ti composite was designed by learning from the microstructure of nature biological materials with excellent mechanical properties. The Ti-(TiB+La2O3/Ti composite with unique characteristic of laminated structure was prepared by combined powder metallurgy and hot rolling. The method has the synthesize advantages with in-situ reaction of Ti and LaB6 at high temperature and controllability of reinforcements size and constituent phases in composites. The result shows that the pores in the as sintered laminated structure composite completely disappeared after hot rolling at 1050 °C. The agglomerated reinforcement particles were well dispersed and distributed uniformly along the rolling direction. The thickness of pure Ti layer and (TiB+La2O3/Ti composite layer decreased from 1 mm to about 200 μm. Meanwhile, the grains size was refined obviously after rolling deformation. The room temperature tensile test indicates that the elongation of the laminated Ti-(TiB+La2O3/Ti composite improved from 13% to 17% in comparison with the uniform (TiB+La2O3/Ti composite, while the tensile strength had little change. It provides theoretical and experimental basis for fabricating the novel high performance laminated Ti-(TiB+La2O3/Ti composites.

  6. Fatigue and fracture of fibre metal laminates

    CERN Document Server

    Alderliesten, René

    2017-01-01

    This book contributes to the field of hybrid technology, describing the current state of knowledge concerning the hybrid material concept of laminated metallic and composite sheets for primary aeronautical structural applications. It is the only book to date on fatigue and fracture of fibre metal laminates (FMLs). The first section of the book provides a general background of the FML technology, highlighting the major FML types developed and studied over the past decades in conjunction with an overview of industrial developments based on filed patents. In turn, the second section discusses the mechanical response to quasi-static loading, together with the fracture phenomena during quasi-static and cyclic loading. To consider the durability aspects related to strength justification and certification of primary aircraft structures, the third section discusses thermal aspects related to FMLs and their mechanical response to various environmental and acoustic conditions.

  7. Investigating Delamination Migration in Composite Tape Laminates

    Science.gov (United States)

    Ratcliffe, James G.; DeCarvalho, Nelson V.

    2014-01-01

    A modification to a recently developed test specimen designed to investigate migration of a delamination between neighboring ply interfaces in tape laminates is presented. The specimen is a cross-ply laminated beam consisting of 40 plies with a polytetrafluoroethylene insert spanning part way along its length. The insert is located between a lower 0-degree ply (specimen length direction) and a stack of four 90-degree plies (specimen width direction). The modification involved a stacking sequence that promotes stable delamination growth prior to migration, and included a relocation of the insert from the specimen midplane to the interface between plies 14 and 15. Specimens were clamped at both ends onto a rigid baseplate and loaded on their upper surface via a piano hinge assembly, resulting in a predominantly flexural loading condition. Tests were conducted with the load-application point positioned at various locations along a specimen's span. This position affected the sequence of damage events during a test.

  8. Macro fluid analysis of laminated fabric permeability

    Directory of Open Access Journals (Sweden)

    Qiu Li

    2016-01-01

    Full Text Available A porous jump model is put forward to predict the breathability of laminated fabrics by utilizing fluent software. To simplify the parameter setting process, the methods of determining the parameters of jump porous model by means of fabric layers are studied. Also, effects of single/multi-layer fabrics and thickness on breathability are analyzed, indicating that fabric breathability reduces with the increase of layers. Multi-layer fabric is simplified into a single layer, and the fabric permeability is calculated by proportion. Moreover, the change curve of fabric layer and face permeability, as well as the equation between the fabric layer and the face permeability are obtained. Then, face permeability and pressure-jump coefficient parameters setting of porous jump model could be integrated into single parameter (i. e. fabric layers, which simplifies the fluent operation process and realizes the prediction of laminated fabric permeability.

  9. Deformation behavior of an electrodeposited nano-Ni/amorphous Fe78Si9B13 laminated composite sheet

    Directory of Open Access Journals (Sweden)

    Zhang Kaifeng

    2015-01-01

    Full Text Available A nano-Ni/amorphous Fe78Si9B13 composite sheet was prepared in the form of three-ply (Ni-Fe78Si9B13-Ni laminated structure by an electrodeposition method. The average grain size of Ni layers is about 50 nm. The interface of laminated composite was investigated with SEM equipped with energy dispersive scanning (EDS and line analysis technique. The laminated composite has a good interfacial bonding between amorphous layer and nano-Ni layers due to the mutual diffusion of atoms in Fe78Si9B13 and Ni layers during the process of electrodeposition. A maximum elongation of 115.5% was obtained when the volume fraction of nano-Ni layers (VNi was 0.77, which is greatly higher than that of monolithic amorphous Fe78Si9B13 ribbon (36.3% tested under the same conditions. Bulging tests were carried out to evaluate plastic forming properties of the Fe78Si9B13/Ni laminated composite. Under the condition of 450 °C, 4.0 MPa and 30 min, a good bulging part with the relative bulging height (RBH of 0.4 was obtained.

  10. Vibration analysis of bimodulus laminated cylindrical panels

    Science.gov (United States)

    Khan, K.; Patel, B. P.; Nath, Y.

    2009-03-01

    This paper deals with the flexural vibration behavior of bimodular laminated composite cylindrical panels with various boundary conditions. The formulation is based on first order shear deformation theory and Bert's constitutive model. The governing equations are derived using finite element method and Lagrange's equation of motion. An iterative eigenvalue approach is employed to obtain the positive and negative half cycle free vibration frequencies and corresponding mode shapes. A detailed parametric study is carried out to study the influences of thickness ratio, aspect ratio, lamination scheme, edge conditions and bimodularity ratio on the free vibration characteristics of bimodulus angle- and cross-ply composite laminated cylindrical panels. It is interesting to observe that there is a significant difference between the frequencies of positive and negative half cycles depending on the panel parameters. Through the thickness distribution of modal stresses for positive half cycle is significantly different from that for negative half cycle unlike unimodular case wherein the stresses at a particular location in negative half cycle would be of same magnitude but of opposite sign of those corresponding to positive half cycle. Finally, the effect of bimodularity on the steady state response versus forcing frequency relation is studied for a typical case.

  11. Superconductivity in Ca-doped graphene laminates

    Science.gov (United States)

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-01-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp. PMID:26979564

  12. Superconductivity in Ca-doped graphene laminates

    Science.gov (United States)

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-03-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  13. Superconductivity in Ca-doped graphene laminates.

    Science.gov (United States)

    Chapman, J; Su, Y; Howard, C A; Kundys, D; Grigorenko, A N; Guinea, F; Geim, A K; Grigorieva, I V; Nair, R R

    2016-03-16

    Despite graphene's long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc's strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  14. The molecular architecture of lamins in somatic cells.

    Science.gov (United States)

    Turgay, Yagmur; Eibauer, Matthias; Goldman, Anne E; Shimi, Takeshi; Khayat, Maayan; Ben-Harush, Kfir; Dubrovsky-Gaupp, Anna; Sapra, K Tanuj; Goldman, Robert D; Medalia, Ohad

    2017-03-09

    The nuclear lamina is a fundamental constituent of metazoan nuclei. It is composed mainly of lamins, which are intermediate filament proteins that assemble into a filamentous meshwork, bridging the nuclear envelope and chromatin. Besides providing structural stability to the nucleus, the lamina is involved in many nuclear activities, including chromatin organization, transcription and replication. However, the structural organization of the nuclear lamina is poorly understood. Here we use cryo-electron tomography to obtain a detailed view of the organization of the lamin meshwork within the lamina. Data analysis of individual lamin filaments resolves a globular-decorated fibre appearance and shows that A- and B-type lamins assemble into tetrameric filaments of 3.5 nm thickness. Thus, lamins exhibit a structure that is remarkably different from the other canonical cytoskeletal elements. Our findings define the architecture of the nuclear lamin meshworks at molecular resolution, providing insights into their role in scaffolding the nuclear lamina.

  15. Homogenized Creep Behavior of CFRP Laminates at High Temperature

    Science.gov (United States)

    Fukuta, Y.; Matsuda, T.; Kawai, M.

    In this study, creep behavior of a CFRP laminate subjected to a constant stress is analyzed based on the time-dependent homogenization theory developed by the present authors. The laminate is a unidirectional carbon fiber/epoxy laminate T800H/#3631 manufactured by Toray Industries, Inc. Two kinds of creep analyses are performed. First, 45° off-axis creep deformation of the laminate at high temperature (100°C) is analyzed with three kinds of creep stress levels, respectively. It is shown that the present theory accurately predicts macroscopic creep behavior of the unidirectional CFRP laminate observed in experiments. Then, high temperature creep deformations at a constant creep stress are simulated with seven kinds of off-axis angles, i.e., θ = 0°, 10°, 30°, 45°, 60°, 75°, 90°. It is shown that the laminate has marked in-plane anisotropy with respect to the creep behavior.

  16. Structural Intensity Characterization of Composite Laminates Subjected to Impact Load

    Institute of Scientific and Technical Information of China (English)

    WANG Dong-fang; HE Peng-fei; LIU Zi-shun

    2008-01-01

    Structural intensity (SI) characterization of composite laminates subjected to impact load was dis-cussed. The SI pattern of the laminates which have different fiber orientations and boundary conditions wasanalyzed. The resultant forces and velocities of the laminates were calculated, and the structural intensity wasevaluated. The SI streamlines of carbon fiber reinforced epoxy composite laminates and the steel plates werediscussed. The results show that the SI streamlines of the graphite/epoxy laminates are different from that ofthe steel plates, and the SI streamlines are influenced by the boundaries, the stacking sequence of the compositelaminates. The change of the historical central displacement of the graphite/epoxy laminates is fasten thanthat of the steel plates.

  17. LAMINATION METHOD OF FLOOD WADIS AND PROJECTION OF THE LAMINATED FLOOD HYDROGRAPH

    Directory of Open Access Journals (Sweden)

    M. Ladjel

    2016-01-01

    Full Text Available The catastrophic floods in semi-arid areas are often caused by floods storm that occur at any time during the year, including the hot season. The prevention of these floods could be done by the construction of small dam hills. This requires the control of theoretical concepts hydrological sizing, especially the hydrological structure to evacuate floods. We suggest a method to calculate the optimal regulation flow of the flood and also the development of a direct calculation formula of a laminated maximum flow. The analysis of the hydro graph’s analogy at the input and the output of the dam, allow searching the dependencies between their characteristics. knowing the characteristics of the hydrograph flood of the project and the reserved capacity for the amortization of the flood, we can directly determine the laminated maximum flow and project the hydrograph of the laminated flood.

  18. 采用GFRP配筋解决混凝土碳化对桥梁面板的负面影响%THE SOLUTION FOR ADVERSE IMPACT OF CARBONATION ON CONCRETE BRIDGE DECK SLABS BT USING GFRP REINFORCEMENT

    Institute of Scientific and Technical Information of China (English)

    郑愚; 秦怀泉; 李春红

    2009-01-01

    As crucial structural components in bridge structures, bridge deck slabs played an important role in integral structural behaviours and transportation. However, with the increasing of ages in services, the durability of reinforced concrete bridge deck slabs was influenced significantly by carbonation. Recently, because of high strength, light weight and strong corrosion-resistance, glass fiber polymer reinforcement bars (GFRP bars) were accepted by civil engineers. Due to the existence of compressive membrane action, it was shown that the structural behaviours of GFRP reinforced concrete bridge deck slabs with same reinforcement percentage were similar as those of steel reinforced concrete bridge deck slabs in nonlinear finite element analysis. Based on numerical analysis results, GFRP is available to be used as replacement of steel reinforcement. According the analysis of mechanism of concrete carbonation and material properties of GFRP, it was found that the durability of GFRP reinforced concrete bridge deck slabs was enhanced after the occurrence of carbonation in concrete structures, because carbonation reduced the permeability and porosity of concrete.%桥梁面板是桥梁结构的主要构件,对结构的整体性能和交通运输起着至关重要的作用.然而随着使用年限的增加,混凝土碳化将对钢筋混凝土桥梁面板的耐久性能产生较大的影响.近年来,玻璃纤维增强复合筋材(GFRP Bars)因具有高强、轻质、耐腐蚀等性能而逐渐被工程界认可.非线性有限元分析结果表明,由于压缩薄膜效应的存在使得同样配筋率的GFRP筋混凝土桥梁面板与钢筋混凝土桥梁面板的工作性能相似,证实了GFRP筋代替钢筋的可行性.在分析混凝土的碳化机理和GFRP的材料属性后发现,由于碳化使混凝土的渗透性和孔隙率降低,在碳化发生以后GFRP筋混凝土桥梁面的耐久性能不仅没有下降反而有所提高.

  19. 采用GFRP配筋解决混凝土碳化对桥梁面板的负面影响%THE SOLUTION FOR ADVERSE IMPACT OF CARBONATION ON CONCRETE BRIDGE DECK SLABS BY USING GFRP REINFORCEMENT

    Institute of Scientific and Technical Information of China (English)

    郑愚; 秦怀泉; 李春红

    2011-01-01

    As crucial structural components in bridge structures, bridge deck slabs played an important role in integral structural behaviours and transportation. However, with the increasing of ages in services, the durability of reinforced concrete bridge deck slabs was influenced significantly by carbonation. Recently, because of high strength, light weight and strong corrosion-resistance, glass fiber polymer reinforcement bars ( GFRP bars) were accepted by civil engineers. Due to the existence of compressive membrane action, it was shown that the structural be haviours of GFRP reinforced concrete bridge deck slabs with same reinforcement percentage were similar as those of steel reinforced concrete bridge deck slabs in nonlinear finite element analysis. Based on numerical analysis results, GFRP is available to be used as replacement of steel reinforcement. According the analysis of mechanism of concrete carbonation and material properties of GFRP, it was found that the durability of GFRP reinforced concrete bridge deck slabs was enhanced after the occurrence of carbonation in concrete structures, because carbonation reduced the permeability and porosity of concrete.%桥梁面板是桥梁结构的主要构件,对结构的整体性能和交通运输起着至关重要的作用.然而随着使用年限的增加,混凝土碳化将对钢筋混凝土桥梁面板的耐久性能产生较大的影响.近年来,玻璃纤维增强复合筋材( GFRP Bars)因具有高强、轻质、耐腐蚀等性能而逐渐被工程界认可.非线性有限元分析的结果表明,由于压缩薄膜效应的存在使得同样配筋率的GFRP筋混凝土桥梁面板与钢筋混凝土桥梁面板的工作性能相似,证实了GFRP筋代替钢筋的可行性.在分析混凝土的碳化机理和GFRP的材料属性后发现,由于碳化使混凝土的渗透性和孔隙率降低,在碳化发生以后GFRP筋混凝土桥梁面的耐久性能不仅没有下降反而有所提高.

  20. Optimum Design of Laminates with Aooroximate Fully Isotrooic Behaviors

    Institute of Scientific and Technical Information of China (English)

    潘星辰

    2001-01-01

    The paper presents an efficient stiffness optimization approach to fully isotropic laminates with approximate isotropic behaviors respect toboth extensional and bending stiffnesses. Based on the Integral global minimization method, the layer orientation angles andthe layer thickness ratios are chosen as design variablesand the lamination parameters are minimized to get theopthnal designs. Example of laminate with approximatefully isotropic behaviors is presented, which has lessthan one-third the number of plies of a fully isotropiclaminate.

  1. Methods for Preparing Nanoparticle-Containing Thermoplastic Composite Laminates

    Science.gov (United States)

    Gruber, Mark B. (Inventor); Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor)

    2016-01-01

    High quality thermoplastic composites and composite laminates containing nanoparticles and/or nanofibers, and methods of producing such composites and laminates are disclosed. The composites comprise a thermoplastic polymer and a plurality of nanoparticles, and may include a fibrous structural reinforcement. The composite laminates are formed from a plurality of nanoparticle-containing composite layers and may be fused to one another via an automated process.

  2. Strength of Bolted Joints in Laminated Composites

    Science.gov (United States)

    1984-03-01

    Analysis of Single and Two-Hole Bolted Joints in Fibre Reinforced Plastic ," J. of Composite Materials, Vol. 16, 1982, pp.481-491. 11. N,J. Pagano, R.B...Effect of Stacking Sequence on the Pin-Bearing Strength in Glass Fibre Reinforced Plastic ,’ J. of Composite Materials, Vol. 11, 1977, pp. 139-145. 13., J.M

  3. An Elastic Model of Blebbing in Nuclear Lamin Meshworks

    Science.gov (United States)

    Funkhouser, Chloe; Sknepnek, Rastko; Shimi, Takeshi; Goldman, Anne; Goldman, Robert; Olvera de La Cruz, Monica

    2013-03-01

    A two-component continuum elastic model is introduced to analyze a nuclear lamin meshwork, a structural element of the lamina of the nuclear envelope. The main component of the lamina is a meshwork of lamin protein filaments providing mechanical support to the nucleus and also playing a role in gene expression. Abnormalities in nuclear shape are associated with a variety of pathologies, including some forms of cancer and Hutchinson-Gilford progeria syndrome, and are often characterized by protruding structures termed nuclear blebs. Nuclear blebs are rich in A-type lamins and may be related to pathological gene expression. We apply the two-dimensional elastic shell model to determine which characteristics of the meshwork could be responsible for blebbing, including heterogeneities in the meshwork thickness and mesh size. We find that if one component of the lamin meshwork, rich in A-type lamins, has a tendency to form a larger mesh size than that rich in B-type lamins, this is sufficient to cause segregation of the lamin components and also to form blebs rich in A-type lamins. The model produces structures with comparable morphologies and mesh size distributions as the lamin meshworks of real, pathological nuclei. Funded by US DoE Award DEFG02-08ER46539 and by the DDR&E and AFOSR under Award FA9550-10-1-0167; simulations performed on NU Quest cluster

  4. NMCP/LINC proteins: putative lamin analogs in plants?

    Science.gov (United States)

    Ciska, Malgorzata; Moreno Diaz de la Espina, Susana

    2013-01-01

    Lamins are the main components of the metazoan lamina, and while the organization of the nuclear lamina of metazoans and plants is similar, there are apparently no genes encoding lamins or most lamin-binding proteins in plants. Thus, the plant lamina is not lamin-based and the proteins that form this structure are still to be characterized. Members of the plant NMCP/LINC/CRWN protein family share the typical tripartite structure of lamins, although the 2 exhibit no sequence similarity. However, given the many similarities between NMCP/LINC/CRWN proteins and lamins (structural organization, position of conserved regions, sub-nuclear distribution, solubility, and pattern of expression), these proteins are good candidates to carry out the functions of lamins in plants. Moreover, functional analysis of NMCP/LINC mutants has revealed their involvement in maintaining nuclear size and shape, another activity fulfilled by lamins. This review summarizes the current understanding of NMCP/LINC proteins and discusses future studies that will be required to demonstrate definitively that these proteins are plant analogs of lamins.

  5. Impact damage resistance of thin stitched carbon/epoxy laminates

    Science.gov (United States)

    Francesconi, L.; Aymerich, F.

    2015-07-01

    The study examines the influence of through-thickness stitching on the damage response of thin cross-ply carbon/epoxy laminates subjected to low-velocity impacts. Instrumented impact tests were carried out on unstitched and polyethylene stitched laminates and the resulting damage was assessed in detail by X-radiography analyses. The results of the observations carried out during the experimental analyses are illustrated and discussed to identify the mechanical role played by through-thickness reinforcement and to highlight the influence of the laminate layup on the impact resistance of stitched laminates.

  6. Stochastic analysis of laminated composite plate considering stochastic homogenization problem

    Institute of Scientific and Technical Information of China (English)

    S. SAKATA; K. OKUDA; K. IKEDA

    2015-01-01

    This paper discusses a multiscale stochastic analysis of a laminated composite plate consisting of unidirectional fiber reinforced composite laminae. In particular, influence of a microscopic random variation of the elastic properties of component materials on mechanical properties of the laminated plate is investigated. Laminated composites are widely used in civil engineering, and therefore multiscale stochastic analysis of laminated composites should be performed for reliability evaluation of a composite civil structure. This study deals with the stochastic response of a laminated composite plate against the microscopic random variation in addition to a random variation of fiber orientation in each lamina, and stochastic properties of the mechanical responses of the laminated plate is investigated. Halpin-Tsai formula and the homogenization theory-based finite element analysis are employed for estimation of effective elastic properties of lamina, and the classical laminate theory is employed for analysis of a laminated plate. The Monte-Carlo simulation and the first-order second moment method with sensitivity analysis are employed for the stochastic analysis. From the numerical results, importance of the multiscale stochastic analysis for reliability evaluation of a laminated composite structure and applicability of the sensitivity-based approach are discussed.

  7. Overcoming maladaptive plasticity through plastic compensation

    Directory of Open Access Journals (Sweden)

    Matthew R.J. MORRIS, Sean M. ROGERS

    2013-08-01

    Full Text Available Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single genotype to produce multiple environmentally-induced phenotypes. Yet, not all plasticity is adaptive. Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution, much less is known about maladaptive plasticity. However, maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments. This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity, two of which involve genetic changes (standing genetic variation, genetic compensation and two of which do not (standing epigenetic variation, plastic compensation. Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity. In particular, plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence. We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change [Current Zoology 59 (4: 526–536, 2013].

  8. Overcoming maladaptive plasticity through plastic compensation

    Institute of Scientific and Technical Information of China (English)

    Matthew R.J.MORRIS; Sean M.ROGERS

    2013-01-01

    Most species evolve within fluctuating environments,and have developed adaptations to meet the challenges posed by environmental heterogeneity.One such adaptation is phenotypic plasticity,or the ability of a single genotype to produce multiple environmentally-induced phenotypes.Yet,not all plasticity is adaptive.Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution,much less is known about maladaptive plasticity.However,maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments.This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity,two of which involve genetic changes (standing genetic variation,genetic compensation) and two of which do not (standing epigenetic variation,plastic compensation).Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity.In particular,plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence.We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change.

  9. Cloning and Characterization of Sf9 Cell Lamin and the Lamin Conformational Changes during Autographa californica multiple nucleopolyhedrovirus Infection

    OpenAIRE

    Wenqiang Wei; Hongju Wang; Xiaoya Li; Na Fang; Shili Yang; Hongyan Liu; Xiaonan Kang; Xiulian Sun; Shaoping Ji

    2016-01-01

    At present, the details of lamina alterations after baculovirus infection remain elusive. In this study, a lamin gene in the Sf9 cell line of Spodoptera frugiperda was cloned. The open reading frame (orf) of the Sf9 lamin was 1860 bp and encoded a protein with a molecular weight of 70 kDa. A transfection assay with a red fluorescence protein (rfp)-lamin fusion protein indicated that Sf9 lamin was localized in the nuclear rim. Transmission electron microscopy observations indicated that Autogr...

  10. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  11. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    DEFF Research Database (Denmark)

    Al-Saaidi, Rasha; Rasmussen, Torsten Bloch; Palmfeldt, Johan

    2013-01-01

    degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography....... The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms....../mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type...

  12. Strength and Stiffness of Small Glued-Laminated Beams with Different Qualities of Tension Laminations.

    Science.gov (United States)

    1981-05-01

    difference two of the Li DF-L tension lamina- other test material in this study and between the average of the unad - tions were chosen for that reason...MOE data, adjusted to a 12 per- of tension lamination had a signifi- should be combined to determine the cent moisture content, and the unad - cant

  13. Effect of phase asynchronism on the fatigue resistance of laminated fiber composites in a plane stress state

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Ya.A.; Limonov, V.A.; Tamuzh, V.P.

    1992-03-01

    The introduction of composite materials in different regions of technology to create load-bearing structural elements working under fatigue loads is making it necessary to study the effect of different structural, service, and other factors on the fatigue resistance of these materials. For example, other authors experimentally studied structural features of laminated composites. Specifically, they studied the way in which fatigue resistance is affected by the angles of orientation and sequence of the layers of a unidirectional organic-fiber-reinforced plastic through the thickness of the laminated packet. Elsewhere, an experimental study was made of unidirectional and laminated composites to determine the effect on fatigue resistance of such service factors as combined simple cyclic loading, loading frequency, ambient temperature, humidity, and asymmetry of the loading cycle. Considering the variety of laminated fiber composites being developed in addition to those that already exist and taking into account the wide range of corresponding service characteristics, it become clear that the fatigue resistance of these materials cannot be evaluated by experimental methods alone. Even for one specific composite, such empirical evaluation requires significant amounts of time. Previous authors proposed and thoroughly tested a theoretical model of the endurance of composite laminates. This method can be used in conjunction with available test results to develop a reliable empirical-theoretical method of calculating the fatigue resistance of composites that will account for the main structural and service characteristics of the material. However, their results are for simple loading, while under actual conditions, with a multiaxial stress state, loading is nonproportional, i.e. it occurs over a complex path. The simplest of nonproportional loading is encountered with asynchronous load application.

  14. Thermoelastic wave propagation in laminated composites plates

    Directory of Open Access Journals (Sweden)

    Verma K. L.

    2012-12-01

    Full Text Available The dispersion of thermoelastic waves propagation in an arbitrary direction in laminated composites plates is studied in the framework of generalized thermoelasticity in this article. Three dimensional field equations of thermoelasticity with relaxation times are considered. Characteristic equation is obtained on employing the continuity of displacements, temperature, stresses and thermal gradient at the layers’ interfaces. Some important particular cases such as of free waves on reducing plates to single layer and the surface waves when thickness tends to infinity are also discussed. Uncoupled and coupled thermoelasticity are the particular cases of the obtained results. Numerical results are also obtained and represented graphically.

  15. COST REDUCTION STUDIES OF DECORATIVE LAMINATES

    OpenAIRE

    Dharm Dutt; Jain, R.K.; Anuj Maheshwari; Harjeet Kaur

    2011-01-01

    Barrier paper, which is made of bleached absorbent kraft pulp, is a significant layer of decorative laminates, since it controls the see-through of brown color of saturating kraft paper and its opacifying effect usually is achieved by a heavy loading of TiO2. The TiO2, due to its very small particle size, passes between the cellulosic fibers and drains into the white water. To overcome this problem, papermakers try to use various retention aids for improving overall retention of TiO2, but agg...

  16. Laminated composites modeling in ADAGIO/PRESTO.

    Energy Technology Data Exchange (ETDEWEB)

    Hammerand, Daniel Carl

    2004-05-01

    A linear elastic constitutive equation for modeling fiber-reinforced laminated composites via shell elements is specified. The effects of transverse shear are included using first-order shear deformation theory. The proposed model is written in a rate form for numerical evaluation in the Sandia quasi-statics code ADAGIO and explicit dynamics code PRESTO. The equation for the critical time step needed for explicit dynamics is listed assuming that a flat bilinear Mindlin shell element is used in the finite element representation. Details of the finite element implementation and usage are given. Finally, some of the verification examples that have been included in the ADAGIO regression test suite are presented.

  17. Effects of differently hardened brass foil laminate on the electromechanical property of externally laminated CC tapes

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Zhierwinjay; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Mean, Byoung Jean; Lee, Jae Hun [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2016-12-15

    The mechanical properties of REBCO coated conductor (CC) wires under uniaxial tension are largely determined by the thick component layers in the architecture, namely, the substrate and the stabilizer or even the reinforcement layer. Depending on device applications of the CC tapes, it is necessary to reinforce thin metallic foils externally to one-side or both sides of the CC tapes. Due to the external reinforcement of brass foils, it was found that this could increase the reversible strain limit from the Cu-stabilized CC tapes. In this study, the effects of differently hardened brass foil laminate on the electromechanical property of CC tapes were investigated under uniaxial tension loading. The tensile strain dependence of the critical current (I{sub c}) was measured at 77 K and self-field. Depending on whether the I{sub c} of CC tapes were measured during loading or after unloading, a reversible strain (or stress) limit could be determined, respectively. The both-sides of the Cu-stabilized CC tapes were laminated with brass foils with different hardness, namely 1/4H, 1H and EH. From the obtained results, it showed that the yield strength of the brass laminated CC tapes with EH brass foil laminate was comparable to the one of the Cu-stabilized CC tape due to its large yield strength even though its large volume fraction. It was found that the brass foil with different hardness was mainly sensitive on the stress dependence of I{sub c}, but not on the strain sensitivity due to the residual strain induced in the laminated CC tapes during unloading.

  18. Modification of polyester resins during molding of glass-fiber-reinforced plastics

    Science.gov (United States)

    Yakushin, V.; Jansons, J.; Bulmanis, V.; Cabulis, U.; Bulmanis, A.

    2013-11-01

    The effect of addition of two new urethane prepolymers on the mechanical properties of unsaturated polyester resins and glass-fiber-reinforced plastics based on them is investigated. The effect of concentration of these additives on the elastic modulus, elongation at break, and flexural strength of hardened orthophthalic resins is evaluated. A significant increase in the strength of the binders and glass-fiber-reinforced plastics (GFRPs) based on them is observed upon adding urethane prepolymers to the resins. The properties of laminated and randomly reinforced glass-fiber plastics with the modified orthophthalic resins are compared with those of similar GFRPs based on popular brands of industrial resins.

  19. Static and dynamic through thickness lamina properties of thick laminates

    NARCIS (Netherlands)

    Lahuerta, F.; Nijssen, R.P.L.; Van der Meer, F.P.; Sluys, L.J.

    2015-01-01

    Thick laminates are increasingly present in large composites structures such as wind turbine blades. Different factors are suspected to be involved in the decreased static and dynamic performance of thick laminates. These include the effect of self-heating, the scaling effect, and the manufacturing

  20. Numerical assessment of failure mechanisms in fibre metal laminates

    NARCIS (Netherlands)

    Hashagen, F.; De Borst, R.

    1998-01-01

    In this contribution numerical models are discussed for describing failure mechanisms in fibre metal laminates. Fibre metal laminates form a new class of materials which are considered for a possible application to the fuselage of future aircraft generations. The intensive experimental analyses of t

  1. Experimental Study on Penetration and Perforation of Laminated Kevlar

    Institute of Scientific and Technical Information of China (English)

    王元博; 王肖钧; 胡秀章; 孙宇新

    2004-01-01

    The penetration behavior and perforation characteristics of Kevlar/Epoxy laminates with various thickness in quasi-static and ballistic perforation penetrated by steel projectiles with different noses are investigated. Quasi-static tests are conducted on MTS810 testing system. The results indicate that global deformation is the major mechanism of energy absorption and woven laminates exhibit larger energy dissipation than that of angle-plied laminates. Therefore, the woven laminates have better quasi-static penetration resistance. Ballistic tests with velocity of 200-700 m/s are executed by using a powder gun with 7.62 mm barrel. Comparing ballistic experimental results with those under quasi-static condition, both the perforation performance and the failure modes are related closely to the speed of penetrator. Quite different from quasi-static tests, ballistic tests indicate that thick angle-plied laminate targets are even better than woven laminates in resisting ballistic impact. It is observed that the damage zone of the laminate is localized highly with the increasing of the impact velocity and correspondingly, the failure modes are more manifold. The shape of projectile noses affects the impact resistance of laminated Kevlar significantly in the range of velocity around the ballistic limit.

  2. Bayesian inference model for fatigue life of laminated composites

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der; Berggreen, Christian

    2016-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations. Model parameters are estimated by Bayesian inference...

  3. Morphing of Bistable Composite Laminates Using Distributed Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Marie-Laure Dano

    2012-01-01

    Full Text Available The use of bistable unsymmetric cross-ply laminates for morphing application has received growing attention in the last few years. So far, most studies use large rectangular piezoelectric Macro Fiber Composite (MFC patches bonded at the center of the laminate to induce snap-through. However, the use of large rectangular MFC patches bonded in the center of the laminates significantly influences the shape of the laminate by greatly reducing the curvature at the midsection of the laminate where the MFC patches are bonded. This paper presents a study where narrow cocured MFC strips distributed over the entire surface are used to induce snap-through of unsymmetric cross-ply laminates. This MFC configuration allows having a more uniform curvature in the laminate. Since the strips are bonded on both sides, reverse snap-through should be obtained. The study was both theoretical and experimental. A finite element nonlinear analysis was used to predict the two stable cylindrical configurations and the snap-through induced by MFC actuation. For the experimental study, a laminate-MFC structure was manufactured and tested. The shapes were measured using a 3D image correlation system as a function of applied voltage. Good correlations for the cylindrical shape and displacement field were observed.

  4. Laminated lumber may be more profitable than sawn lumber

    Science.gov (United States)

    P. Koch

    1976-01-01

    By laminating 1/4-in. rotary-cut veneer into structural lumber, manufacturers can expand lumber output by at least 30% without increasing volume logged. The idea merits intensive study. Manufacturing plus raw material costs should total about $142/Mbf; sales price for desirable widths and lengths of the strong laminated product should approach or exceed $200/Mbf.

  5. The supramolecular organization of the C. elegans nuclear lamin filament.

    Science.gov (United States)

    Ben-Harush, Kfir; Wiesel, Naama; Frenkiel-Krispin, Daphna; Moeller, Dorothee; Soreq, Eyal; Aebi, Ueli; Herrmann, Harald; Gruenbaum, Yosef; Medalia, Ohad

    2009-03-13

    Nuclear lamins are involved in most nuclear activities and are essential for retaining the mechano-elastic properties of the nucleus. They are nuclear intermediate filament (IF) proteins forming a distinct meshwork-like layer adhering to the inner nuclear membrane, called the nuclear lamina. Here, we present for the first time, the three-dimensional supramolecular organization of lamin 10 nm filaments and paracrystalline fibres. We show that Caenorhabditis elegans nuclear lamin forms 10 nm IF-like filaments, which are distinct from their cytoplasmic counterparts. The IF-like lamin filaments are composed of three and four tetrameric protofilaments, each of which contains two partially staggered anti-parallel head-to-tail polymers. The beaded appearance of the lamin filaments stems from paired globular tail domains, which are spaced regularly, alternating between 21 nm and 27 nm. A mutation in an evolutionarily conserved residue that causes Hutchison-Gilford progeria syndrome in humans alters the supramolecular structure of the lamin filaments. On the basis of our structural analysis, we propose an assembly pathway that yields the observed 10 nm IF-like lamin filaments and paracrystalline fibres. These results serve also as a platform for understanding the effect of laminopathic mutations on lamin supramolecular organization.

  6. Chapter 2: Manufacturing Cross-laminated timber manufacturing

    Science.gov (United States)

    Borjen Yeh; Dave Kretschmann; Brad (Jianhe) Wang

    2013-01-01

    Cross-laminated timber ( CLT) is defined as a prefabricated solid engineered wood product made of at least three orthogonally bonded layers of solid-sawn lumber or structural composite lumber (SCL) that are laminated by gluing oflongitudinal and transverse layers with structural adhesives to form a solid rectangular-shaped, straight, and plane timber intended for roof...

  7. Exact and Finite-Element Analysis of Laminated Shells.

    Science.gov (United States)

    1983-11-01

    developed by Stavsky [ 91 for laminated anisotropic plates to Donnell’s shallow shell theory (see Donnell C10]). Cheng and Ho [8] presented an analysis of...the shell reference surface. Dong, Pister, and Taylor [10] presented an extension of Donnell’s shallow shell theory [11] to thin laminated shells

  8. The strength of composite repair patches - A laminate analysis approach

    Science.gov (United States)

    Robson, J. E.; Matthews, F. L.; Kinloch, A. J.

    1992-07-01

    Some guidelines for the selection of extra plies for vacuum-pressure-cured composite repair patches are deduced by comparing the strength and stiffness of vacuum-cured materials with their autoclaved counterparts, using classical laminate analysis. The guidelines are based on the minimum number of extra plies needed to equal or exceed the stiffness or strength of an autoclave-cured laminate, when using vacuum curing methods. Strength and stiffness data are presented in tabular form for quasi-isotropic laminates, cross-ply laminates, and angle-ply laminates. The analysis does not take into account repair geometry, and is concerned with intrinsic laminate properties. It is found that adding extra plies to a laminate will never be detrimental to its strength and stiffness, but in order to be beneficial, the extra plies need to be aligned with a load direction. If a laminate is likely to be under a combination of loads it is important for a balance of strengths to be maintained.

  9. Damage evaluation of fiber reinforced plastic-confined circular concrete-filled steel tubular columns under cyclic loading using the acoustic emission technique

    Science.gov (United States)

    Li, Dongsheng; Du, Fangzhu; Ou, Jinping

    2017-03-01

    Glass-fiber reinforced plastic (GFRP)-confined circular concrete-filled steel tubular (CCFT) columns comprise of concrete, steel, and GFRP and show complex failure mechanics under cyclic loading. This paper investigated the failure mechanism and damage evolution of GFRP–CCFT columns by performing uniaxial cyclic loading tests that were monitored using the acoustic emission (AE) technique. Characteristic AE parameters were obtained during the damage evolution of GFRP–CCFT columns. Based on the relationship between the loading curve and these parameters, the damage evolution of GFRP–CCFT columns was classified into three stages that represented different damage degrees. Damage evolution and failure mode were investigated by analyzing the b-value and the ratio of rise time to waveform amplitude and average frequency. The damage severity of GFRP–CCFT columns were quantitatively estimated according to the modified index of damage and NDIS-2421 damage assessment criteria corresponding to each loading step. The proposed method can explain the damage evolution and failure mechanism for GFRP–CCFT columns and provide critical warning information for composite structures.

  10. The combined effects of extrusion, thermoforming and welding on the physical properties of plastics

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, G. [Fisher Co. and Moore, North Salt Lake, UT (United States)

    1996-11-01

    The application of plastic linings to steel structures and the fabrication of dual laminate vessels involves a number of steps. These may include heating, stretching, adhering, welding, and testing. The combination of these steps together with stresses associated with the liner extrusion process may be cumulative even multiplicative to the overall stress of the liner affecting its integrity and performance in a lined steel or dual laminate vessel. This paper will review the methods of testing and evaluation adopted by the authors` company to insure the maximum performance of vessel lining materials.

  11. NONLINEAR THEORY OF DYNAMIC STABILITY FOR LAMINATED COMPOSITE CYLINDRICAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    周承倜; 王列东

    2001-01-01

    Hamilton Principle was uaed to derive the general governing equations of nonlinear dynamic stability for laminated cylindrical shells in which, factors of nonlinear large deflection, transverse shear and longitudinal inertia force were concluded. Equations were solved by variational method. Analysis reveals that under the action of dynamic load,laminated cylindrical shells will fall into a state of parametric resonance and enter into the dynamic unstable region that causes dynamic instability of shells. Laminated shells of three typical composites were computed: i.e. T300/5 208 graphite epoxy E-glass epoxy, and ARALL shells. Results show that all factors will induce important influence for dynamic stability of laminated shells. So, in research of dynamic stability for laminated shells, to consider these factors is important.

  12. Measurable versions of the LS category on laminations

    CERN Document Server

    Meniño, Carlos

    2011-01-01

    We give two new versions of the LS category for the set-up of measurable laminations defined by Berm\\'udez. Both of these versions must be considered as "tangential categories". The first one, simply called (LS) category, is the direct analogue for measurable laminations of the tangential category of (topological) laminations introduced by Colman Vale and Mac\\'ias Virg\\'os. For the measurable lamination that underlies any lamination, our measurable tangential category is a lower bound of the tangential category. The second version, called the measured category, depends on the choice of a transverse invariant measure. We show that both of these "tangential categories" satisfy appropriate versions of some well known properties of the classical category: the homotopy invariance, a dimensional upper bound, a cohomological lower bound (cup length), and an upper bound given by the critical points of a smooth function.

  13. Residual stresses and their effects in composite laminates

    Science.gov (United States)

    Hahn, H. T.; Hwang, D. G.

    1983-01-01

    Residual stresses in composite laminates are caused by the anisotropy in expansional properties of constituent unidirectional plies. The effect of these residual stresses on dimensional stability is studied through the warping of unsymmetric (0 sub 4/90 sub 4)sub T graphite/epoxy laminates while their effect on ply failure is analyzed for (0/90)sub 2s Kevlar 49/epoxy laminate. The classical laminated plate theory is used to predict the warping of small and large panels. The change of warping does not indicate a noticeable stress relaxation at 75 C while it is very sensitive to moisture content and hence to environment. A prolonged gellation at the initial cure temperature reduces residual stresses while postcure does not. The matrix/interface cracking in dry (0/90)sub 2s Kevlar 49/epoxy laminate is shown to be the result of the residual stress exceeding the transverse strength.

  14. Fatigue Performance of Composite Laminates After Low-velocity Impact

    Directory of Open Access Journals (Sweden)

    LIANG Xiao-lin

    2016-12-01

    Full Text Available Compression-compression fatigue tests were carried out on T300/5405 composite laminates after low-velocity impact, compression performance of the laminates with different impact damages was studied together with its fatigue life and damage propagation under different stress levels, then the effects of impact energy, stress level and damage propagation on fatigue life of laminates were discussed. The results indicate that impact damage can greatly reduce the residual strength of laminates; under low fatigue load levels, the higher impact energy is, the shorter the fatigue life of laminates with impact damage will be; damage propagation undergoes two stages during the fatigue test, namely the steady propagation and the rapid propagation, accounting for 80% and 20% of the overall fatigue life, respectively; damage propagation rate decreases with the reduction of stress level.

  15. Flexural and Impact Resistance of FRC/Bamboo Laminate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The flexural and impact resistance of a newly developed FRC/bamboo laminate have been investigated. The laminate considered in this study was combined with reformed bamboo plate and extruded fiber reinforced cementitious (FRC)sheet. Innovated from the raw bamboo, reformed bamboo showed high tensile strength and high strength to weight ratio. It can not only remarkably strengthen the FRC sheet but also reduce the total weight of the laminate. Flexural and impact load, broken energy, deflection and duration were measured. Test results showed that the flexural strength value for the laminate can be improved to greater than 90 MPa, while the impact resistance is increased more than 10 times for the laminate when compared with the FRC sheet only.

  16. Ballistic Impact on Glass/Epoxy Composite Laminates

    Directory of Open Access Journals (Sweden)

    R. Velmurugan

    2014-07-01

    Full Text Available Glass/epoxy composite laminates are subjected to impact loading and the energy absorbing capacity of the laminates is studied. In the present study, laminates with four different orientations and thickness values are considered. Analytical study is carried out based on energy method and results are compared with FE results obtained from Abaqus/Explicit software. Results obtained from the analytical methods are showing good agreement with the FE results. It is found that cross-ply laminates are most efficient in ballistic resistance when compared with the laminates of other orientations. It is also noticed that the energy absorbing capacity is decreasing with increase in velocity of the projectile for a given lay-up and thickness value.Defence Science Journal, Vol. 64, No. 4, July 2014, pp. 393-399, DOI:http://dx.doi.org/10.14429/dsj.64.3882 

  17. The mechanical behavior of GLARE laminates for aircraft structures

    Science.gov (United States)

    Wu, Guocai; Yang, J.-M.

    2005-01-01

    GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.

  18. High Pressure Laminates with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Sandra Magina

    2016-02-01

    Full Text Available High-pressure laminates (HPLs are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB was incorporated for the first time into melamine-formaldehyde resin (MF matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR. Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic (i.e., inhibited the growth of microorganisms, whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity (i.e., inactivated the inoculated microorganisms. The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material.

  19. Geometrically nonlinear behavior of piezoelectric laminated plates

    Science.gov (United States)

    Rabinovitch, Oded

    2005-08-01

    The geometrically nonlinear behavior of piezo-laminated plates actuated with isotropic or anisotropic piezoelectric layers is analytically investigated. The analytical model is derived using the variational principle of virtual work along with the lamination and plate theories, the von Karman large displacement and moderate rotation kinematic relations, and the anisotropic piezoelectric constitutive laws. A solution strategy that combines the approach of the method of lines, the advantages of the finite element concept, and the variational formulation is developed. This approach yields a set of nonlinear ordinary differential equations with nonlinear boundary conditions, which are solved using the multiple-shooting method. Convergence and verification of the model are examined through comparison with linear and nonlinear results of other approximation methods. The nonlinear response of two active plate structures is investigated numerically. The first plate is actuated in bending using monolithic piezoceramic layers and the second one is actuated in twist using macro-fiber composites. The results quantitatively reveal the complicated in-plane stress state associated with the piezoelectric actuation and the geometrically nonlinear coupling of the in-plane and out-of-plane responses of the plate. The influence of the nonlinear effects ranges from significant stiffening in certain combinations of electrical loads and boundary conditions to amplifications of the induced deflections in others. The paper closes with a summary and conclusions.

  20. Delamination tolerance studies in laminated composite panels

    Indian Academy of Sciences (India)

    K L Singh; B Dattaguru; T S Ramamurthy; P D Mangalgiri

    2000-08-01

    Determination of levels of tolerance in delaminated composite panels is an important issue in composite structures technology. The primary intention is to analyse delaminated composite panels and estimate Strain Energy Release Rate (SERR) parameters at the delamination front to feed into acceptability criteria. Large deformation analysis is necessary to cater for excessive rotational deformations in the delaminated sublaminate. Modified Virtual Crack Closure Integral (MVCCI) is used to estimate all the three SERR components at the delamination front from the finite element output containing displacements, strains and stresses. The applied loading conditions are particularly critical and compressive loading on the panel could lead to buckling of the delaminated sublaminate and consequent growth of delamination. Numerical results are presented for circular delamination of varioussizes and delamination at various interfaces (varying depth-wise location) between the base- and the sub-laminates. Numerical data are also presented on the effect of bi-axial loading and in particular on compressive loading in both directions. The results can be used to estimate delamination tolerance at various depths (or at various interfaces) in the laminate.

  1. Impact Damage Detection of Toughened CFRP Laminates with Time Domain Reflectometry

    Science.gov (United States)

    2013-01-30

    matching with the coaxial cable is cumbersome for actual CFRP structures. CFRP Copper mesh 0 GFRP Directional Coupler Waveform Generator Microstrip ...manufactured by Mini- Circuits (N.Y., USA). The input pulse was 5 Vp-p (peak-to-peak voltage) and the half-band width was 4 ns. 4. Results and discussion

  2. Low cost and high performance screen laminate regenerator matrix

    Energy Technology Data Exchange (ETDEWEB)

    Bin-Nun, Uri; Manitakos, Dan [FLIR Systems, North Billerica, MA (United States)

    2004-08-01

    A laminate screen matrix regenerator with 47 elements has been designed, analyzed, fabricated and tested. The laminate was fabricated from stainless steel screen sheets that were stacked on top of each other at certain angular orientation and then bonded at high temperature and pressure environment utilizing a sintering process. This laminate is a porous structure media with highly repeatable properties that can be controlled by varying mesh size, weave type, wire size and laminate sheet to sheet orientation. The flow direction in relation to the weave plan can be varied by cutting a cylindrical or rectangular laminate element along or across the weave. The regenerator flow resistance, thermal conductance losses, dead volume, surface area and heat transfer coefficient are analyzed. Regenerator cost and performance comparison data between the conventional widely used method of stacked screens and the new stacked laminate matrix regenerator is discussed. Also, a square stainless steel screen laminate was manufactured in a way which permits gas to flow along the screen wire instead of across it. (Author)

  3. Role of nuclear Lamin A/C in cardiomyocyte functions.

    Science.gov (United States)

    Carmosino, Monica; Torretta, Silvia; Procino, Giuseppe; Gerbino, Andrea; Forleo, Cinzia; Favale, Stefano; Svelto, Maria

    2014-10-01

    Lamin A/C is a structural protein of the nuclear envelope (NE) and cardiac involvement in Lamin A/C mutations was one of the first phenotypes to be reported in humans, suggesting a crucial role of this protein in the cardiomyocytes function. Mutations in LMNA gene cause a class of pathologies generically named 'Lamanopathies' mainly involving heart and skeletal muscles. Moreover, the well-known disease called Hutchinson-Gilford Progeria Syndrome due to extensive mutations in LMNA gene, in addition to the systemic phenotype of premature aging, is characterised by the death of patients at around 13 typically for a heart attack or stroke, suggesting again the heart as the main site sensitive to Lamin A/C disfunction. Indeed, the identification of the roles of the Lamin A/C in cardiomyocytes function is a key area of exploration. One of the primary biological roles recently conferred to Lamin A/C is to affect contractile cells lineage determination and senescence. Then, in differentiated adult cardiomyocytes both the 'structural' and 'gene expression hypothesis' could explain the role of Lamin A in the function of cardiomyocytes. In fact, recent advances in the field propose that the structural weakness/stiffness of the NE, regulated by Lamin A/C amount in NE, can 'consequently' alter gene expression. © 2014 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  4. Low cost and high performance screen laminate regenerator matrix

    Science.gov (United States)

    Bin-Nun, Uri; Manitakos, Dan

    2004-06-01

    A laminate screen matrix regenerator with 47 elements has been designed, analyzed, fabricated and tested. The laminate was fabricated from stainless steel screen sheets that were stacked on top of each other at certain angular orientation and then bonded at high temperature and pressure environment utilizing a sintering process. This laminate is a porous structure media with highly repeatable properties that can be controlled by varying mesh size, weave type, wire size and laminate sheet to sheet orientation. The flow direction in relation to the weave plan can be varied by cutting a cylindrical or rectangular laminate element along or across the weave. The regenerator flow resistance, thermal conductance losses, dead volume, surface area and heat transfer coefficient are analyzed. Regenerator cost and performance comparison data between the conventional widely used method of stacked screens and the new stacked laminate matrix regenerator is discussed. Also, a square stainless steel screen laminate was manufactured in a way which permits gas to flow along the screen wire instead of across it.

  5. Stress analysis of laminated glass with different interlayer materials

    Directory of Open Access Journals (Sweden)

    Mostafa M. El-Shami

    2012-03-01

    Full Text Available The use of window glass in building design is becoming increasingly popular. Laminated glass has gained popularity as a suitable and practical alternative to monolithic and insulating glass in many design situations. Laminated glass plate performance is influenced by several factors such as glass thickness, glass type, temperature, aspect ratio, load duration, and hardness of the interlayer material. A new higher order finite element model (presented by the first two authors using 9-noded quadrilateral elements was applied to investigate laminated glass plates with both different interlayer materials. An experimental load-testing program is described. Two types of interlayer materials, regular polyvinyl butyral and strong formulation of polyvinyl butyral were used. First, simply supported rectangular laminated glass plates with regular polyvinyl butyral interlayer with aspect ratios 1–5 under different temperatures were tested. Second, one set of laminated glass plates with the strong formulation of polyvinyl butyral interlayer was tested under room temperature. The experimental and theoretical results are compared and discussed. In general, the performance of laminated glass with regular polyvinyl butyral interlayer is closer to that of layered glass at higher temperature. Also, laminated glass with strong formulation of polyvinyl butyral interlayer has a significantly larger load resistance than similar regular polyvinyl butyral samples.

  6. Mitotic lamin disassembly is triggered by lipid-mediated signaling.

    Science.gov (United States)

    Mall, Moritz; Walter, Thomas; Gorjánácz, Mátyás; Davidson, Iain F; Nga Ly-Hartig, Thi Bach; Ellenberg, Jan; Mattaj, Iain W

    2012-09-17

    Disassembly of the nuclear lamina is a key step during open mitosis in higher eukaryotes. The activity of several kinases, including CDK1 (cyclin-dependent kinase 1) and protein kinase C (PKC), has been shown to trigger mitotic lamin disassembly, yet their precise contributions are unclear. In this study, we develop a quantitative imaging assay to study mitotic lamin B1 disassembly in living cells. We find that CDK1 and PKC act in concert to mediate phosphorylation-dependent lamin B1 disassembly during mitosis. Using ribonucleic acid interference (RNAi), we showed that diacylglycerol (DAG)-dependent PKCs triggered rate-limiting steps of lamin disassembly. RNAi-mediated depletion or chemical inhibition of lipins, enzymes that produce DAG, delayed lamin disassembly to a similar extent as does PKC inhibition/depletion. Furthermore, the delay of lamin B1 disassembly after lipin depletion could be rescued by the addition of DAG. These findings suggest that lipins activate a PKC-dependent pathway during mitotic lamin disassembly and provide evidence for a lipid-mediated mitotic signaling event.

  7. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  8. Formaldehyde and TVOC emission behavior of laminate flooring by structure of laminate flooring and heating condition.

    Science.gov (United States)

    An, Jae-Yoon; Kim, Sumin; Kim, Hyun-Joong

    2011-03-15

    Formaldehyde was measured with a desiccator, a 20 L chamber and the FLEC method. The formaldehyde emission rate from laminate was the highest at 32 °C using the desiccator, which then decreased with time. The formaldehyde emission using the 20 L small chamber and FLEC showed a similar tendency. There was a strong correlation between the formaldehyde and total volatile organic compounds (TVOCs) with both types of floorings using the two different methods. The formaldehyde emission rate and TVOC results were higher when tested using the FLEC method than with the 20 L small chamber method. The emission rate was affected by the joint edge length in laminate flooring. Toluene, ethylbenzene and xylene were the main VOCs emitted from laminate flooring, and there were more unidentified VOCs emitted than identified VOCs. The samples heated with a floor heating system emitted more formaldehyde than those heated using an air circulation system due to the temperature difference between the bottom panel and flooring. The TVOC emission level of the samples was higher when an air circulation system was used than when a floor heating system was used due to the high ventilation rate.

  9. An advanced higher-order theory for laminated composite plates with general lamination angles

    Institute of Scientific and Technical Information of China (English)

    Zhen Wu; Hong Zhu; Wan-Ji Chen

    2011-01-01

    This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations.The proposed theory a priori satisfies the continuity conditions of transverse shear stresses at interfaces.Moreover,the number of unknown variables is independent of the number of layers.The first derivatives of transverse displacements have been taken out from the inplane displacement fields,so that the C0 shape functions are only required during its finite element implementation.Due to C0 continuity requirements,the proposed model can be conveniently extended for implementation in commercial finite element codes.To verify the proposed theory,the fournode C0 quadrilateral element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate.Numerical results show that following the proposed theory,simple C0 finite elements could accurately predict the interlaminar stresses of laminated composite and sandwich plates directly from a constitutive equation,which has caused difficulty for the other global higher order theories.

  10. Reliability analysis of ceramic matrix composite laminates

    Science.gov (United States)

    Thomas, David J.; Wetherhold, Robert C.

    1991-01-01

    At a macroscopic level, a composite lamina may be considered as a homogeneous orthotropic solid whose directional strengths are random variables. Incorporation of these random variable strengths into failure models, either interactive or non-interactive, allows for the evaluation of the lamina reliability under a given stress state. Using a non-interactive criterion for demonstration purposes, laminate reliabilities are calculated assuming previously established load sharing rules for the redistribution of load as the failure of laminae occur. The matrix cracking predicted by ACK theory is modeled to allow a loss of stiffness in the fiber direction. The subsequent failure in the fiber direction is controlled by a modified bundle theory. Results using this modified bundle model are compared with previous models which did not permit separate consideration of matrix cracking, as well as to results obtained from experimental data.

  11. Penetration of Projectiles in Composite Laminates

    Directory of Open Access Journals (Sweden)

    B. P. Patel

    2004-04-01

    Full Text Available This paper deals with the prediction of the penetration phenomenon of a cylindro-conical impactor on the ke;labepoxy-laminated composites using C eight-nded serendipity q&drilateral finite elementbased on first-order shear deformation theory (FSDT. Local as well as global deformations during impact is considered in the evaluation of indentation, penetration, and perforation phases. Local strainsduring impact have been evaluated using the hypothesis made from the available experimental observations of bulging during penetration. A detailed parametric study, considering various projectilesand target plate variables, has been carried out to find their effect on the response of the plate, and ballistic parameters, such as ballistic limit and absorbed energy.

  12. Thermally-induced shapes of rigid FR-4 electrical laminates

    Science.gov (United States)

    Lyle, Phra Douglas

    In the process of a laminate cooling from the curing temperature to room temperature, a substantial level of thermal residual stresses develop. These residual thermal stresses arise due to the mismatch of the thermal expansion coefficient between lamina and between the reinforcing fibers and the matrix resin, generating warpage, or out of plane deformations, when the laminate is not symmetric about the midplane of the composite. Classical lamination theory has been used to predict the warped shape of an asymmetric laminate; this theory suggests that the cooled room temperature shape to be a stable anticlastic or saddle shape. In the 80s, nonlinear theories were developed in order to explain observations for (0/90) sbT cross-ply laminates that cool to a cylindrical shape and to predict the observed phenomena of an occasional "snap through" between two stable cylindrical shapes. Recently, the nonlinear approach has been successfully modified for the analysis of a square angle-ply laminate, allowing an even greater number of laminates to be evaluated. A rigid FR-4 electrical circuit board is a composite laminate that is designed to be symmetrical; however, after cooling from the press cycle or after cooling from other processing thermal excursions, warpage can occur. One potential cause for this warpage can be inadvertently introduced process or material nonuniformities. This investigation develops an FR-4 electrical laminate model that can transform selected material and process variations into input for the mechanical and thermal matrices required in the formulation of both classical lamination and the nonlinear theories. The output is the predicted warpage, for each theory, for each of the selected material and process variations. These warpage outputs are graphically displayed, quantified and compared for the classical lamination theory and for the four recent nonlinear theories. Also, the predicted warpage deformations are stack ranked in order to provide an

  13. Improved PMR Polyimides For Heat-Stable Laminates

    Science.gov (United States)

    Vannucci, R. D.; Malarik, D. C.; Papadapoulos, D. S.; Waters, John F.

    1994-01-01

    Second-generation PMR-type polyimides (PMR-II polyimides) of enhanced thermo-oxidative stability prepared by substitution of para-aminostyrene (PAS) end caps for nadic-ester (NE) end caps used in prior PMR-II polyimides. Laminates unidirectionally reinforced with graphite fibers and made with PAS-capped resins exhibited thermo-oxidative stabilities significantly greater than those of similar laminates made with NE-capped PMR-II resins. One new laminate exhibited high retention of weight and strength after 1,000 h of exposure to air at 371 degrees C.

  14. Plastic Foam Withstands Greater Temperatures And Pressures

    Science.gov (United States)

    Cranston, John A.; Macarthur, Doug

    1993-01-01

    Improved plastic foam suitable for use in foam-core laminated composite parts and in tooling for making fiber/matrix-composite parts. Stronger at high temperatures, more thermally and dimensionally stable, machinable, resistant to chemical degradation, and less expensive. Compatible with variety of matrix resins. Made of polyisocyanurate blown with carbon dioxide and has density of 12 to 15 pounds per cubic feet. Does not contibute to depletion of ozone from atmosphere. Improved foam used in cores of composite panels in such diverse products as aircraft, automobiles, railroad cars, boats, and sporting equipment like surfboards, skis, and skateboards. Also used in thermally stable flotation devices in submersible vehicles. Machined into mandrels upon which filaments wound to make shells.

  15. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    Energy Technology Data Exchange (ETDEWEB)

    You, J.-H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: j.h.you@ipp.mpg.de

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.

  16. Microstructure and Martensitic Transformation Behaviors of Explosively Welded NiTi/NiTi Laminates

    Institute of Scientific and Technical Information of China (English)

    YAN Zhu; CUI Li-shan; ZHENG Yan-jun

    2007-01-01

    The study is a first attempt to prepare bulk NiTi/NiTi shape memory alloy (SMA) laminates with a macroscopic heterogeneous composition by explosive welding and investigate their microstructures and martensitic transformation behaviors. After explosive welding, a perfect interfacial bonding between the two components and a reversible martensitic transformation are realized in the tandem.Results show achievement of a fine granular structure and the maximum value of microhardness near the welding interface because of the excessive cold plastic deformation and the high impact velocity during the explosive welding. Meanwhile, the effects of aging on the transformation of the welded tandem are investigated by differential scanning calorimeter (DSC) and subject to discussion. The transformation temperatures of NiTi/NiTi SMAs increase with the rise of the aging temperature. The experimental results indicate the shape memory properties of NiTi/NiTi SMA fabricated by explosive welding can be improved by optimizing the aging technology.

  17. The thermo-optical behavior of turbid composite laminates under highly energetic laser irradiations

    Science.gov (United States)

    Allheily, Vadim; Merlat, Lionel; Lacroix, Fabrice; Eichhorn, Alfred; L'Hostis, Gildas

    2017-01-01

    From their prior emergence in the military domain but also nowadays in the civilian area, unmanned air vehicles constitute a growing threat to the todays civilization. In this respect, novel laser weapons are considered to eradicate this menace and the vulnerability of typical aeronautic materials under 1.07μm-wavelength irradiations is also investigated. In this paper, Kubelka-Munk optical parameters of laminated glass fiber-reinforced plastic composites are first assessed to build up a basic analytical interaction model involving internal refraction and reflection as well as the scattering effect due to the presence of glass fibers. Moreover, a thermo-gravimetric analysis is carried out and the kinetic parameters of the decomposition reaction extracted from this test with the Friedman method are verified trough a comparison with experimental measurements.

  18. Impact Response of Cantilever Fiber Metal Laminate (FML Plates Using a Coupled Analytical-Numerical Method

    Directory of Open Access Journals (Sweden)

    Faramarz Ashenai Ghasemi

    2013-05-01

    Full Text Available In this study, dynamic response of cantilever Fiber Metal Laminate (FML plates subjected to the impact of a large mass is studied. Aluminum (Al sheets are placed instead of some Fiber Reinforced Plastic (FRP layers. The effect of the Al layers on contact force and deflection of the plates is investigated by considering the interaction between the impactor and the target in the impact analysis. A two degrees-of-freedom system consisting of springs-masses and finite element modeling of the ABAQUS/Explicit software were employed to model the interaction between the impactor and the target. The results indicate that some parameters like the layer sequence, mass and velocity of the impactor, mass of the target are important factors which affect the impact response of the plates.

  19. 77 FR 54930 - Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A Subsidiary of Plastics...

    Science.gov (United States)

    2012-09-06

    ... Employment and Training Administration Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A... plastic parts. New information shows that Fortis Plastics is now called Carlyle Plastics and Resins. In... of Carlyle Plastics and Resins, formerly known as Fortis Plastics, a subsidiary of...

  20. Our plastic age

    National Research Council Canada - National Science Library

    Richard C. Thompson; Shanna H. Swan; Charles J. Moore; Frederick S. vom Saal

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production...

  1. Weinig plastic in vissenmaag

    NARCIS (Netherlands)

    Foekema, E.M.

    2012-01-01

    Waar de magen van sommige zeevogels vol plastic zitten, lijken vissen in de Noordzee nauwelijks last te hebben van kunststofafval. Onderzoekers die plastic resten zochten in vissenmagen vonden ze in elk geval nauwelijks.

  2. Ear Plastic Surgery

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ear Plastic Surgery Ear Plastic Surgery Patient Health Information ... they may improve appearance and self-confidence. Can Ear Deformities Be Corrected? Formation of the ear during ...

  3. Nuclear lamins during gametogenesis, fertilization and early development

    Science.gov (United States)

    Maul, G. G.; Schatten, G.

    1986-01-01

    The distribution of lamins (described by Gerace, 1978, as major proteins of nuclear envelope) during gametogenesis, fertilization, and early development was investigated in germ cells of a mouse (Mus musculus), an echinoderm (Lytechinus variegatus), and the surf clam (Spisula solidissima) was investigated in order to determine whether the differences detected could be correlated with differences in the function of cells in these stages of the germ cells. In order to monitor the behavior of lamins, the gametes and embryos were labeled with antibodies to lamins A, C, and B extracted from autoimmune sera of patients with scleroderma and Lupus erythematosus. Results indicated that lamin B could be identified in nuclear envelopes on only those nuclei where chromatin is attached and where RNA synthesis takes place.

  4. Characterization of delamination onset and growth in a composite laminate

    Science.gov (United States)

    Obrien, T. K.

    1981-01-01

    The onset and growth of delaminations in unnotched (+ or - 30/+ or - 30/90/90 bar) sub S graphite epoxy laminates is described quantitatively. These laminates, designed to delaminate at the edges under tensile loads, were tested and analyzed. Delamination growth and stiffness loss were monitored nondestructively. Laminate stiffness decreased linearly with delamination size. The strain energy release rate, G, associated with delamination growth, was calculated from two analyses. A critical G for delamination onset was determined, and then was used to predict the onset of delaminations in (+45 sub n/-45 sub n/o sub n/90 sub n) sub s (n=1,2,3) laminates. A delamination resistance curve (R curve) was developed to characterize the observed stable delamination growth under quasi static loading. A power law correlation between G and delamination growth rates in fatigue was established.

  5. Finite elements modeling of delaminations in composite laminates

    DEFF Research Database (Denmark)

    Gaiotti, m.; Rizzo, C.M.; Branner, Kim;

    2011-01-01

    The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i.e., d...... by finite elements using different techniques. Results obtained with different finite element models are compared and discussed.......The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i...... of the buckling strength of composite laminates containing delaminations. Namely, non-linear buckling and post-buckling analyses are carried out to predict the critical buckling load of elementary composite laminates affected by rectangular delaminations of different sizes and locations, which are modelled...

  6. Optimum design of laminated composite under axial compressive load

    Indian Academy of Sciences (India)

    N G R Iyengar; Nilesh Vyas

    2011-02-01

    In the present study optimal design of composite laminates, with and without rectangular cut-out, is carried out for maximizing the buckling load. Optimization study is carried out for obtaining the maximum buckling load with design variables as ply thickness, cut-out size and orientation of cut-out with respect to laminate. Buckling load is evaluated using a ‘simple higher order shear deformation theory’ based on four unknown displacements $u,v,w_b$ and $w_s$. A C1 continuous shear flexible finite element based on HSDT model is developed using Hermite cubic polynomial. It is observed that for thick anti-symmetric laminates, the non-dimensional buckling load decreases with increase in aspect ratio and increase in fibre orientation angle. There is a decrease in the non-dimensional buckling load of symmetric laminate in the presence of cut-out.

  7. Natural fabric sandwich laminate composites: development and investigation

    Indian Academy of Sciences (India)

    C K ARVINDA PANDIAN; H SIDDHI JAILANI; A RAJADURAI

    2017-02-01

    In this work, eco-friendly natural fabric sandwich laminate (NFSL) composites are formulated using jute and linen-fabric-reinforced epoxy with different layer ratios (5:0, 4:1, 3:2, 2:3, 1:4 and 0:5) by hand layup system. Different mechanical attributes (tensile, flexural and impact) of the NFSL composites are quantified. Thermal stability and water absorption behaviour of the NFSL composites are also assessed. A scanning electron microscope (SEM) and optical microscope are used for qualitative analysis of NFSL composites’ interfacial properties. Two layers of jute and three layers of linen sandwich laminate have registered peak values in tensile and impact properties. The five layers of linen laminate composite have exhibited high flexural strength, been proven to have good thermal stability and furthermore shown better water absorption behaviour than any other laminate composites.

  8. Lamin A-dependent nuclear defects in human aging.

    Science.gov (United States)

    Scaffidi, Paola; Misteli, Tom

    2006-05-19

    Mutations in the nuclear structural protein lamin A cause the premature aging syndrome Hutchinson-Gilford progeria (HGPS). Whether lamin A plays any role in normal aging is unknown. We show that the same molecular mechanism responsible for HGPS is active in healthy cells. Cell nuclei from old individuals acquire defects similar to those of HGPS patient cells, including changes in histone modifications and increased DNA damage. Age-related nuclear defects are caused by sporadic use, in healthy individuals, of the same cryptic splice site in lamin A whose constitutive activation causes HGPS. Inhibition of this splice site reverses the nuclear defects associated with aging. These observations implicate lamin A in physiological aging.

  9. Tensile stress-strain behavior of hybrid composite laminates

    Science.gov (United States)

    Kennedy, J. M.

    1983-01-01

    A study was made of the stress-strain response of several hybrid laminates, and the damage was correlated with nonlinear stress-strain response and ultimate strength. The fibers used in the laminates were graphite, S-glass, and Kevlar. Some laminates with graphite fibers had perforated Mylar film between plies, which lowered the interlaminar bond strength. The laminate configurations were chosen to be like those of buffer strips in large panels and fracture coupons. Longitudinal and transverse specimens were loaded in tension to failure. Some specimens were radiographed to reveal damage due to edge effects. Stress-strain response is discussed in terms of damage shown by the radiographs. Ultimate strengths are compared with simple failure criteria, one of which account for damage.

  10. Reliability Based Optimization of Composite Laminates for Frequency Constraint

    Institute of Scientific and Technical Information of China (English)

    Wu Hao; Yan Ying; Liu Yujia

    2008-01-01

    The reliability based optimization (RBO) issue of composite laminates under fundamental frequency constraint is studied. Considering the uncertainties of material properties, the frequency constraint reliability of the structure is evaluated by the combination of response surface method (RSM) and finite element method. An optimization algorithm is developed based on the mechanism of laminate frequency characteristics, to optimize the laminate in terms of the ply amount and orientation angles. Numerical examples of composite laminates and cylindrical shell illustrate the advantages of the present optimization algorithm on the efficiency and applicability respects.The optimal solutions of RBO are obviously different from the deterministic optimization results, and the necessity of considering material property uncertainties in the composite srtuctural frequency constraint optimization is revealed.

  11. Determination of fatigue cracking direction in composite laminates

    Institute of Scientific and Technical Information of China (English)

    DAI Yao; HAO Gui-xiang; LI Yong-dong; HE Jia-wen; CUI Jian-guo; LI Nian; FU Yong-hui; SUN Jun

    2005-01-01

    The interface plays the central role in the failure analysis of composite laminates, therefore, the interface material properties are taken as the independent parameters. A simple, universal and practicable criterion, i.e. a ratio criterion of strain energy release rate, is proposed to determine the growing direction of a fatigue crack in the composite laminates. The method of arbitrary lines, which is very effective to solve the problems with high gradient feature, is used to analyze the experimental results at the key moments when a crack kinks, turns into the interface,or bifurcates. An approximate method of computing the energy release rate is given. The fatigue fracture tests of composite laminates are carried out, and the numerical predictions of crack growing directions agree well with the experimental results. It is concluded that the methods suggested in this paper are effective to obtain the cracking history and the growing path of a fatigue crack in composite laminates.

  12. Design and Ballistic Performance of Hybrid Composite Laminates

    Science.gov (United States)

    Ćwik, Tomasz K.; Iannucci, Lorenzo; Curtis, Paul; Pope, Dan

    2016-10-01

    This paper presents an initial design assessment of a series of novel, cost-effective, and hybrid composite materials for applications involving high velocity impacts. The proposed hybrid panels were designed in order to investigate various physical phenomenon occurring during high velocity impact on compliant laminates from a previous study on Dyneema® and Spectra®. In the first, screening phase of the study twenty different hybrid composite laminates were impacted with 20 mm Fragment Simulating Projectiles at 1 km/s striking velocity. The best performing concepts were put forward to phase II with other hybrid concepts involving shear thickening fluids, commonly used in low velocity impacts. The results indicated that it is possible to design hybrid laminates of similar ballistic performance as the reference Dyneema® laminate, but with lower material costs. The optimal hybrid concept involves a fibre reinforced Polypropylene front and a Dyneema® backing.

  13. Vibration analysis of composite laminate plate excited by piezoelectric actuators.

    Science.gov (United States)

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-01-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control.

  14. Biodegradability of Plastics

    OpenAIRE

    Yutaka Tokiwa; Calabia, Buenaventurada P.; Charles U. Ugwu; Seiichi Aiba

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical ...

  15. Support Assembly for Composite Laminate Materials During Roll Press Processing

    Science.gov (United States)

    Catella, Luke A.

    2011-01-01

    A composite laminate material is supported during the roll press processing thereof by an assembly having: first and second perforated films disposed adjacent to first and second opposing surfaces of a mixture of uncured resin and fibers defining the composite laminate material, a gas permeable encasement surrounding the mixture and the first and second films, a gas impervious envelope sealed about the gas permeable encasement, and first and second rigid plates clamped about the gas impervious envelope.

  16. Advanced Textile Laminates for Chemical Biological Protective Clothing

    Science.gov (United States)

    2008-12-01

    and were subjected to thermal calendering using a 2-roller B. F. Perkins thermal bonder with a 260 line/inch engraved calender roller. The...bonding ofthe laminate, the SB PP is being subjected to a second calendering process. In the first method, two laminates were prepared with both having a...were subjected to thermal calendering using a 2-roller B. F. Perkins thermal bonder at The University of Tennessee Nonwovens Research Laboratory

  17. Multi-material topology design of laminates with strength criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2012-01-01

    The objective of this paper is to present a novel approach for multi-material topology optimization of laminated composite structures where strength constraints are taken into account together with other global structural performance measures. The topology design problem considered contains very...... are illustrated for multi-material laminated design problems where the maximum failure index is minimized while compliance and mass constraints are taken into account....

  18. Porcelain laminate veneers: Clinical survey for evaluation of failure

    OpenAIRE

    Diemah F Alhekeir; Al-Sarhan, Rana A.; Al Mashaan, Abdulmohsen F.

    2014-01-01

    Objective: To investigate the association of the failure of porcelain laminate veneers with factors related to the patient, material, and operator. Methods: This clinical survey involved 29 patients (19 women and 10 men) and their dentists, including undergraduate and postgraduate dental students and dental interns. Two questionnaires were distributed to collect information from participants. All patients were clinically examined. Criteria for failure of the porcelain laminate veneers incl...

  19. Laminated microchannel devices, mixing units and method of making same

    Science.gov (United States)

    Bennett, Wendy D [Kennewick, WA; Hammerstrom, Donald J [West Richland, WA; Martin, Peter M [Kennewick, WA; Matson, Dean W [Kennewick, WA

    2002-10-17

    A laminated microchannel device is described in which there is a unit operation process layer that has longitudinal channel. The longitudinal channel is cut completely through the layer in which the unit process operation resides. Both the device structure and method of making the device provide significant advantages in terms of simplicity and efficiency. A static mixing unit that can be incorporated in the laminated microchannel device is also described.

  20. Analysis of lamination measurements for CERN's twin aperture quadrupoles

    CERN Document Server

    Clark, G S

    2002-01-01

    The European Organization for Nuclear Research (CERN) is constructing the Large Hadron Collider (LHC). The LHC's cleaning insertions require 48 twin aperture resistive quadrupoles. The laminations for these magnets are punched from low carbon steel sheet 1.5 mm thick. To check the quality of the laminations, samples are regularly collected and measured. This paper describes how these measurements are analyzed. This work is part of the Canadian contribution to the LHC. (5 refs).

  1. Review on antibacterial biocomposites of structural laminated veneer lumber

    Science.gov (United States)

    Chen, Zi-xiang; Lei, Qiong; He, Rui-lin; Zhang, Zhong-feng; Chowdhury, Ahmed Jalal Khan

    2015-01-01

    In this review, the characteristics and applications of structural laminated veneer lumber made from planted forest wood is introduced, and its preparation is explained, including various tree species and slab qualities, treatments for multiple effects and reinforced composites. The relevant factors in the bonding technology and pressing processes as well as the mechanical properties, research direction and application prospects of structural laminated veneer lumber made from planted forest wood are discussed. PMID:26858559

  2. Chemical Recycle of Plastics

    Directory of Open Access Journals (Sweden)

    Sara Fatima

    2014-11-01

    Full Text Available Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  3. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example...

  4. Werner complex deficiency in cells disrupts the Nuclear Pore Complex and the distribution of lamin B1.

    Science.gov (United States)

    Li, Zhi; Zhu, Yizhou; Zhai, Yujia; R Castroagudin, Michelle; Bao, Yifei; White, Tommy E; Glavy, Joseph S

    2013-12-01

    From the surrounding shell to the inner machinery, nuclear proteins provide the functional plasticity of the nucleus. This study highlights the nuclear association of Pore membrane (POM) protein NDC1 and Werner protein (WRN), a RecQ helicase responsible for the DNA instability progeria disorder, Werner Syndrome. In our previous publication, we connected the DNA damage sensor Werner's Helicase Interacting Protein (WHIP), a binding partner of WRN, to the NPC. Here, we confirm the association of the WRN/WHIP complex and NDC1. In established WRN/WHIP knockout cell lines, we further demonstrate the interdependence of WRN/WHIP and Nucleoporins (Nups). These changes do not completely abrogate the barrier of the Nuclear Envelope (NE) but do affect the distribution of FG Nups and the RAN gradient, which are necessary for nuclear transport. Evidence from WRN/WHIP knockout cell lines demonstrates changes in the processing and nucleolar localization of lamin B1. The appearance of "RAN holes" void of RAN corresponds to regions within the nucleolus filled with condensed pools of lamin B1. From WRN/WHIP knockout cell line extracts, we found three forms of lamin B1 that correspond to mature holoprotein and two potential post-translationally modified forms of the protein. Upon treatment with topoisomerase inhibitors lamin B1 cleavage occurs only in WRN/WHIP knockout cells. Our data suggest the link of the NDC1 and WRN as one facet of the network between the nuclear periphery and genome stability. Loss of WRN complex leads to multiple alterations at the NPC and the nucleolus.

  5. The assembly of C. elegans lamins into macroscopic fibers.

    Science.gov (United States)

    Zingerman-Koladko, Irena; Khayat, Maayan; Harapin, Jan; Shoseyov, Oded; Gruenbaum, Yosef; Salman, Ahmad; Medalia, Ohad; Ben-Harush, Kfir

    2016-10-01

    Intermediate filament (IF) proteins are known mainly by their propensity to form viscoelastic filamentous networks within cells. In addition, IF-proteins are essential parts of various biological materials, such as horn and hagfish slime threads, which exhibit a range of mechanical properties from hard to elastic. These properties and their self-assembly nature made IF-proteins attractive building blocks for biomimetic and biological materials in diverse applications. Here we show that a type V IF-protein, the Caenorhabditis elegans nuclear lamin (Ce-lamin), is a promising building block for protein-based fibers. Electron cryo-tomography of vitrified sections enabled us to depict the higher ordered assembly of the Ce-lamin into macroscopic fibers through the creation of paracrystalline fibers, which are prominent in vitro structures of lamins. The lamin fibers respond to tensile force as other IF-protein-based fibers, i.e., hagfish slime threads, and possess unique mechanical properties that may potentially be used in certain applications. The self-assembly nature of lamin proteins into a filamentous structure, which is further assembled into a complex network, can be easily modulated. This knowledge may lead to a better understanding of the relationship in IF-proteins-based fibers and materials, between their hierarchical structures and their mechanical properties.

  6. The effect of lamination angle on polymer retention

    Energy Technology Data Exchange (ETDEWEB)

    Gao, H.W.

    1992-09-01

    Polymer retention may be affected by the reservoir geological structure due to lamination of the mineral surfaces. These laminae are very prevalent in Class I reservoirs. To account for the effect of lamination angle on polymer retention, several corefloods with three fired, rectangular, Berea sandstone cores were conducted. The three cores were cut at three different angles, 0, 30, and 90 degrees, with respect to the direction of laminations. A multiple slug retention method was used to determine the retention of a biopolymer in each core. Tracer tests were conducted before and after the biopolymer flow to determine how the retained biopolymer affected the fluid advance. A computed tomography (CT) scanning method was used to monitor the advance of the tracer. All corefloods and tracer tests were conducted at low flow rates similar to that in reservoirs. Coreflood tests revealed that polymer retention, which was mainly caused by mechanical entrapment, was higher in cores that had laminations parallel to the direction of flow than in cores that had crossbed laminae. In cores that had crossbed laminae, polymer retention increased with an increase in the lamination angle. Retained polymer is harmful to the stability of fluid front in cores that have laminations parallel to the direction of flow, but is helpful in cores that have crossbed laminae.

  7. Coupled actin-lamin biopolymer networks and protecting DNA

    Science.gov (United States)

    Zhang, Tao; Rocklin, D. Zeb; Mao, Xiaoming; Schwarz, J. M.

    The mechanical properties of cells are largely determined by networks of semiflexible biopolymers forming the cytoskeleton. Similarly, the mechanical properties of cell nuclei are also largely determined by networks of semiflexible biopolymers forming the nuclear cytoskeleton. In particular, a network of filamentous lamin sits just inside the inner nuclear membrane to presumably protect the heart of the cell nucleus--the DNA. It has been demonstrated over the past decade that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins bridging the outer and inner nuclear membranes, known as the LINC complex. We, therefore, probe the consequences of such a coupling in a model biopolymer network system via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the actin cytoskeletal network. We find, for example, that the force transmission across the coupled system can depend sensitively on the concentration of LINC complexes. Such study could have implications for mechanical mechanisms of the regulation of transcription since DNA couples to lamin via lamin-binding domains so that deformations in the lamin network may result in deformations in the DNA.

  8. BioID Identification of Lamin-Associated Proteins.

    Science.gov (United States)

    Mehus, Aaron A; Anderson, Ruthellen H; Roux, Kyle J

    2016-01-01

    A- and B-type lamins support the nuclear envelope, contribute to heterochromatin organization, and regulate a myriad of nuclear processes. The mechanisms by which lamins function in different cell types and the mechanisms by which lamin mutations cause over a dozen human diseases (laminopathies) remain unclear. The identification of proteins associated with lamins is likely to provide fundamental insight into these mechanisms. BioID (proximity-dependent biotin identification) is a unique and powerful method for identifying protein-protein and proximity-based interactions in living cells. BioID utilizes a mutant biotin ligase from bacteria that is fused to a protein of interest (bait). When expressed in living cells and stimulated with excess biotin, this BioID-fusion protein promiscuously biotinylates directly interacting and vicinal endogenous proteins. Following biotin-affinity capture, the biotinylated proteins can be identified using mass spectrometry. BioID thus enables screening for physiologically relevant protein associations that occur over time in living cells. BioID is applicable to insoluble proteins such as lamins that are often refractory to study by other methods and can identify weak and/or transient interactions. We discuss the use of BioID to elucidate novel lamin-interacting proteins and its applications in a broad range of biological systems, and provide detailed protocols to guide new applications.

  9. Ceramic laminates with tailored residual stresses

    Directory of Open Access Journals (Sweden)

    Baudín, C.

    2009-12-01

    Full Text Available Severe environments imposed by new technologies demand new materials with better properties and ensured reliability. The intrinsic brittleness of ceramics has forced scientists to look for new materials and processing routes to improve the mechanical behaviour of ceramics in order to allow their use under severe thermomechanical conditions. The laminate approach has allowed the fabrication of a new family of composite materials with strength and reliability superior to those of monolithic ceramics with microstructures similar to those of the constituent layers. The different ceramic laminates developed since the middle 1970´s can be divided in two large groups depending on whether the development of residual stresses between layers is the main design tool. This paper reviews the developments in the control and tailoring of residual stresses in ceramic laminates. The tailoring of the thickness and location of layers in compression can lead to extremely performing structures in terms of strength values and reliability. External layers in compression lead to the strengthening of the structure. When relatively thin and highly compressed layers are located inside the material, threshold strength, crack bifurcation and crack arrest during fracture occur.

    Las severas condiciones de trabajo de las nuevas aplicaciones tecnológicas exigen el uso de materiales con mejores propiedades y alta fiabilidad. La potencialidad de uso de materiales frágiles, como los cerámicos, en estas aplicaciones exige el desarrollo de nuevos materiales y métodos de procesamiento que mejoren su comportamiento mecánico. El concepto de material laminado ha permitido la fabricación de una nueva familia de materiales con tensiones de fractura y fiabilidad superiores a las de materiales monolíticos con microestructuras similares a las de las láminas que conforman el laminado. Los distintos materiales laminados desarrollados desde mediados de los años 70 se pueden

  10. Processing, Dynamic Deformation and Fragmentation of Heterogeneous Materials (Aluminum-Tungsten Composites and Aluminum-Nickel Laminates)

    Science.gov (United States)

    Chiu, Po-Hsun

    Two types of heterogeneous reactive materials, Aluminum-Tungsten composites and Aluminum-Nickel laminates were investigated. The current interest in these materials is their ability to combine the high strength and energy output under critical condition of the mechanical deformation which may include their fragmentation. Mesoscale properties of reactive materials are very important for the generation of local hot spots to ignite reactions and generate critical size of debris suitable for fast oxidation kinetics. Samples with different mesostructures (e.g., coarse vs. fine W particles, bonded vs. non-bonded Al particles, W particles vs. W wires and concentric vs. corrugated Al-Ni laminates) were prepared by Cold Isostatic Pressing, Hot Isostatic Pressing and Swaging. Several dynamic tests were utilized including Split Hopkinson Pressure Bar, Drop Weight Test, Explosively Driven Fragmentation Test, and Thick-Walled Cylinder Method. A high speed camera was used to record images of the in situ behavior of materials under dynamic loading. Pre- and post-experiment analyses and characterization were done using Optical Microscopy, Scanning Electron Microscopy, X-ray Powder Diffraction, and Laser Diffraction. The numerical simulations were conducted to monitor the in situ dynamic behavior of materials and elucidate the mesoscale mechanisms of the plastic strain accommodation under high-strain, high-strain-rate conditions in investigated heterogeneous m aterials. Several interesting results should be specifically mentioned. They include observation that the fracture and dynamic properties of the Al-W composites are sensitive to porosity of samples, particles sizes of rigid inclusions (W particles or wires), and bonding strength between Al particles in the matrix. Soft Al particles were heavily deformed between the rigid W particles/wires during dynamic tests. Three plastic strain accommodation mechanisms are observed in Al-Ni laminates. They depend on the initial

  11. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  12. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  13. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  14. Journal of CHINA PLASTICS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Journal of CHINA PLASTICS was authorized and approved by The State Committee of Science and Technology of China and The Bureau of News Press of China, and published by The China Plastics Processing Industry Association,Beijing Technology and Business University and The Institute of Plastics Processing and Application of Light Industry, distributed worldwide. Since its birth in 1987, CHINA PLASTICS has become a leading magazine in plastics industry in China, a national Chinese core journal and journal of Chinese scientific and technological article statistics. It is covered by CA.

  15. STUDY ON THE TENSILE FATIGUE DAMAGE OF QUASI-ISOTROPIC COMPOSITE LAMINATES

    Institute of Scientific and Technical Information of China (English)

    I.G.Kim; I.S.Kim; O.S.Kim; Yaragarra K.D.V. Prasad4

    2003-01-01

    Quasi-isotropic laminates have isotropic elastic properties in all in-plane directions.Therefore, this kind of laminate is widely used for structural elements. The simpleststacking sequence of quasi-isotropic laminates is [0/-60/60]s. When the direction ofapplied axial load to [0/-60/60]s laminate is inclined at a 30-degree angle, we havethe other quasi-isotropic laminate [30/-30/90]s under axial load. The failure mecha-nisms of these two laminates are, however, entirely different from each other becausethese two laminates have different distribution of the interlaminar stresses. It wasconfirmed by tensile fatigue tests that the [0/-60/60]s laminate does not show any vis-ible fatigue damage, but the [30/-30/90]s laminate develops edge-delamination duringcyclic loading. The analytical results were in good agreement with the experimental results.

  16. The impact properties of laminated composites containing ultrahigh carbon (UHC) steels

    Science.gov (United States)

    Kum, D. W.; Oyama, T.; Wadsworth, J.; Sherby, O. D.

    AN ULTRAHIGH carbon (UHC) steel/mild steel laminated composite and a UHC steel/UHC steel laminate have been successfully manufactured by a roll-bonding procedure. Impact properties of these laminates, as well as of monolithic samples of the steels contained in these laminates, have been determined in the crackarrestor orientation over the temperature range 25 to -196°C. Both notched and unnotched samples of the laminated composite and laminate have been tested. Extremely low ductile-to-brittle temperatures of -140°C, and very high shelf energies (>325 J), have been found both for the laminated composites and the laminates. This remarkably good behavior is shown to be a result of notch blunting by delamination within the laminates.

  17. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  18. Glassy metallic plastics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper reports a class of bulk metallic glass including Ce-, LaCe-, CaLi-, Yb-, and Sr-based metallic glasses, which are regarded as glassy metallic plastics because they combine some unique properties of both plastics and metallic alloys. These glassy metallic plastics have very low glass transition temperature (Tg~25oC to 150oC) and low Young’s modulus (~20 GPa to 35 GPa). Similar to glassy plastics, these metallic plastics show excellent plastic-like deformability on macro-, micro- and even nano-scale in their supercooled liquid range and can be processed, such as elongated, compressed, bent, and imprinted at low temperatures, in hot water for instance. Under ambient conditions, they display such metallic properties as high thermal and electric conductivities and excellent mechanical properties and other unique properties. The metallic plastics have potential applications and are also a model system for studying issues in glass physics.

  19. Crush testing, characterizing, and modeling the crashworthiness of composite laminates

    Science.gov (United States)

    Garner, David Michael, Jr.

    Research in the field of crashworthiness of composite materials is presented. A new crush test method was produced to characterize the crush behavior of composite laminates. In addition, a model of the crush behavior and a method for rank ordering the energy absorption capability of various laminates were developed. The new crush test method was used for evaluating the crush behavior of flat carbon/epoxy composite specimens at quasi-static and dynamic rates. The University of Utah crush test fixture was designed to support the flat specimen against catastrophic buckling. A gap, where the specimen is unsupported, allowed unhindered crushing of the specimen. In addition, the specimen's failure modes could be clearly observed during crush testing. Extensive crush testing was conducted wherein the crush force and displacement data were collected to calculate the energy absorption, and high speed video was captured during dynamic testing. Crush tests were also performed over a range of fixture gap heights. The basic failure modes were buckling, crack growth, and fracture. Gap height variations resulted in poorly, properly, and overly constrained specimens. In addition, guidelines for designing a composite laminate for crashworthiness were developed. Modeling of the crush behavior consisted of the delamination and fracture of a single ply or group of like plies during crushing. Delamination crack extension was modeled using the mode I energy release rate, G lc, where an elastica approach was used to obtain the strain energy. Variations in Glc were briefly explored with double cantilever beam tests wherein crack extension occurred along a multidirectional ply interface. The model correctly predicted the failure modes for most of the test cases, and offered insight into how the input parameters affect the model. The ranking method related coefficients of the laminate and sublaminate stiffness matrices, the ply locations within the laminate, and the laminate thickness. The

  20. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch., E-mail: kerschbaum@ikv.rwth-aachen.de; Kerschbaum, M., E-mail: kerschbaum@ikv.rwth-aachen.de; Küsters, K., E-mail: kerschbaum@ikv.rwth-aachen.de [Institute of Plastics Processing at RWTH Aachen University (IKV), Pontstrasse 49, 52064 Aachen (Germany)

    2014-05-15

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.

  1. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    Science.gov (United States)

    Hopmann, Ch.; Kerschbaum, M.; Küsters, K.

    2014-05-01

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.

  2. Recycling disposable cups into paper plastic composites.

    Science.gov (United States)

    Mitchell, Jonathan; Vandeperre, Luc; Dvorak, Rob; Kosior, Ed; Tarverdi, Karnik; Cheeseman, Christopher

    2014-11-01

    The majority of disposable cups are made from paper plastic laminates (PPL) which consist of high quality cellulose fibre with a thin internal polyethylene coating. There are limited recycling options for PPLs and this has contributed to disposable cups becoming a high profile, problematic waste. In this work disposable cups have been shredded to form PPL flakes and these have been used to reinforce polypropylene to form novel paper plastic composites (PPCs). The PPL flakes and polypropylene were mixed, extruded, pelletised and injection moulded at low temperatures to prevent degradation of the cellulose fibres. The level of PPL flake addition and the use of a maleated polyolefin coupling agent to enhance interfacial adhesion have been investigated. Samples have been characterised using tensile testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis. Use of a coupling agent allows composites containing 40 wt.% of PPL flakes to increase tensile strength of PP by 50% to 30 MPa. The Young modulus also increases from 1 to 2.5 GPa and the work to fracture increases by a factor of 5. The work demonstrates that PPL disposable cups have potential to be beneficially reused as reinforcement in novel polypropylene composites.

  3. Mechanical properties and plastic anisotropy of aluminium laminates produced by accumulative roll bonding (ARB)

    Energy Technology Data Exchange (ETDEWEB)

    Chekhonin, Paul; Beausir, Benoit; Scharnweber, Juliane; Oertel, Carl-Georg; Skrotzki, Werner [Institut fuer Strukturphysik, Technische Universitaet Dresden (Germany); Hoeppel, Heinz Werner [Lehrstuhl Allgemeine Werkstoffwissenschaften, Universitaet Erlangen-Nuernberg (Germany); Jaschinski, Joern [Institut fuer Leichtbau und Kunststofftechnik, Technische Universitaet Dresden (Germany)

    2011-07-01

    Aluminium sheets with layers of different purity (99.999 and 99.5) have been produced by ARB. The tensile strength and Lankford parameter as a function of the number of ARB cycles are measured by tensile testing. ARB increases the tensile strength significantly. The planar anisotropy decreases with the number of ARB cycles while the normal anisotropy reaches a plateau after 2 cycles. The results will be compared with those of ARB aluminium with a purity of 99.5.

  4. Evaluation of Thrust force in Drilling Woven roving Glass fibre reinforced Aluminium Sandwich laminates with TiAlN coated drill using Taguchi analysis

    Science.gov (United States)

    Ramya Devi, G.; Palanikumar, K.

    2017-05-01

    TiAlN is a high-performance coating which outshines in coarse and hard-to-machine materials like cast iron, aluminium alloys, tool steels, and nickel alloys. This paper presents the prediction and evaluation of thrust force and Torque in drilling of Woven roving Glass Fibre Reinforced Plastic and Aluminium sandwich laminate. The Prediction is based on Taguchi method. The experimental results specify that the feed rate and the drill diameter are the most significant factors affecting the thrust force, while the feed rate and spindle speed contribute the most to the surface roughness. In this study, the objective was to establish a correlation between the feed rate, spindle speed and drill diameter with the induced thrust force and Torque in drilling sandwich laminate.

  5. COST REDUCTION STUDIES OF DECORATIVE LAMINATES

    Directory of Open Access Journals (Sweden)

    Dharm Dutt

    2011-03-01

    Full Text Available Barrier paper, which is made of bleached absorbent kraft pulp, is a significant layer of decorative laminates, since it controls the see-through of brown color of saturating kraft paper and its opacifying effect usually is achieved by a heavy loading of TiO2. The TiO2, due to its very small particle size, passes between the cellulosic fibers and drains into the white water. To overcome this problem, papermakers try to use various retention aids for improving overall retention of TiO2, but agglomeration of TiO2 causes a decrease in light scattering efficiency of TiO2. During the subsequent saturation operation, the air in the voids is replaced by melamine formaldehyde, which has a refractive index close to that of cellulose. As a result, the sheet becomes translucent and poses 'see through' problem. Keeping this in view, anhydrous magnesium silicate is used as an extender with TiO2 because it effectively increases the overall filler retention, sheet brightness, opacity. The dispersed aqueous slurry of anhydrous magnesium silicate forms fine gel that entraps TiO2 in the wet web and prevents removal of fines and fillers. The addition of 25% TiO2, 7% micronized soapstone powder, 8% anhydrous magnesium silicate, 1% melamine formaldehyde, and 0.1% sodium hexameta-phosphate was found to improve the overall retention by 65.25% and to cut the manufacturing cost by US$ 546.00 per tonne of pulp without affecting the product quality.

  6. Analytical study for deformability of laminated sheet metal

    Directory of Open Access Journals (Sweden)

    Mohammed H. Serror

    2013-01-01

    Full Text Available While a freestanding high-strength sheet metal subject to tension will rupture at a small strain, it is anticipated that lamination with a ductile sheet metal will retard this instability to an extent that depends on the relative thickness, the relative stiffness, and the hardening exponent of the ductile sheet. This paper presents an analytical study for the deformability of such laminate within the context of necking instability. Laminates of high-strength sheet metal and ductile low-strength sheet metal are studied assuming: (1 sheets are fully bonded; and (2 metals obey the power law material model. The effect of hardening exponent, volume fraction and relative stiffness of the ductile component has been studied. In addition, stability of both uniform and nonuniform deformations has been investigated under plane strain condition. The results have shown the retardation of the high-strength layer instability by lamination with the ductile layer. This has been achieved through controlling the aforementioned key parameters of the ductile component, while the laminate exhibits marked enhancement in strength–ductility combination that is essential for metal forming applications.

  7. Glucocorticoid-induced laminitis with hepatopathy in a Thoroughbred filly.

    Science.gov (United States)

    Ryu, Seung Ho; Kim, Byung Sun; Lee, Chang Woo; Yoon, Junghee; Lee, Yonghoon Lyon

    2004-09-01

    A 3-year-old Thoroughbred filly was referred to the Equine Hospital, Korea Racing Association for evaluation of hematuria, inappetite, weight loss and depression. From 25 days prior to admission, the horse was treated for right carpal lameness with 20 mg intramuscular administration of triamcinolone acetonide per day for consecutive 10 days by a local veterinarian. Clinical and laboratory findings included vaginal hyperemia, flare in bladder wall, neutrophilia, lymphopenia, polyuria, polydipsia and laminitis in the end. High activities of aspartate transaminase and gamma glutamyltransferase and high concentration of total bilirubin indicated hepatopathy. Further hematology, serum biochemistry and urinalysis did not reveal any abnormalities. Medical history, physical and clinicopathologic findings suggest that the laminitis and hepatopathy in this horse were most likely induced by repeated administration of exogenous corticosteroid. However, guarded prognosis of treating laminitis undermined the benefit of improvement of hematuria following electroacupuncture stimulation. The combined stimulation of kidney related acupoints (Shen Peng, Shen Shu), lumber related acupoints (Yao Qian, Yao Zhong) and associate acupoints (Guan Yuan Shu, Bai Hui) at 5Hz, 1-2V, for 40 minutes was of value in the treatment of hematuria. This case shows that horses under steroids may exhibit laminitis and steroid hepatopathy. Early recognition and good management of laminitis are important in the limitation of complications.

  8. Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites

    Institute of Scientific and Technical Information of China (English)

    Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong

    2013-01-01

    As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.

  9. 46 CFR 160.035-8 - Construction of fibrous glass reinforced plastic (F.R.P.), oar-, hand-, and motor-propelled...

    Science.gov (United States)

    2010-10-01

    ...) Plastic lifeboats shall comply with the general requirements for the construction and arrangement of steel... finish, and there shall be no protruding surface fibers, open voids, pits, cracks, bubbles or blisters... tackiness, and shall show no tendency to delaminate, peel, or craze in any overlay. The laminate shall...

  10. Plastic Pollution from Ships

    OpenAIRE

    Čulin, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  11. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plasti...... as a knowledge handbook for laser welding of plastic components. This document should provide the information for all aspects of plastic laser welding and help the design engineers to take all critical issues into consideration from the very beginning of the design phase....

  12. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  13. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  14. 40 CFR 426.70 - Applicability; description of the automotive glass laminating subcategory.

    Science.gov (United States)

    2010-07-01

    ... automotive glass laminating subcategory. 426.70 Section 426.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Laminating Subcategory § 426.70 Applicability; description of the automotive...

  15. Cloning and Characterization of Sf9 Cell Lamin and the Lamin Conformational Changes during Autographa californica multiple nucleopolyhedrovirus Infection

    Directory of Open Access Journals (Sweden)

    Wenqiang Wei

    2016-05-01

    Full Text Available At present, the details of lamina alterations after baculovirus infection remain elusive. In this study, a lamin gene in the Sf9 cell line of Spodoptera frugiperda was cloned. The open reading frame (orf of the Sf9 lamin was 1860 bp and encoded a protein with a molecular weight of 70 kDa. A transfection assay with a red fluorescence protein (rfp-lamin fusion protein indicated that Sf9 lamin was localized in the nuclear rim. Transmission electron microscopy observations indicated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV nucleocapsids may pass through the nuclear envelope. Immunofluorescence assay indicated that the lamina showed a ruffled staining pattern with the formation of invaginations in the Sf9 cells infected with AcMNPV, while it was evenly distributed at the nuclear periphery of mock-infected cells. Western blotting results indicated that the total amount of lamin in the baculovirus-infected Sf9 cells was significantly decreased compared with the mock-infected cells. These results imply that AcMNPV infection induces structural and biochemical rearrangements of lamina of Sf9 cells.

  16. Cloning and Characterization of Sf9 Cell Lamin and the Lamin Conformational Changes during Autographa californica multiple nucleopolyhedrovirus Infection.

    Science.gov (United States)

    Wei, Wenqiang; Wang, Hongju; Li, Xiaoya; Fang, Na; Yang, Shili; Liu, Hongyan; Kang, Xiaonan; Sun, Xiulian; Ji, Shaoping

    2016-05-07

    At present, the details of lamina alterations after baculovirus infection remain elusive. In this study, a lamin gene in the Sf9 cell line of Spodoptera frugiperda was cloned. The open reading frame (orf) of the Sf9 lamin was 1860 bp and encoded a protein with a molecular weight of 70 kDa. A transfection assay with a red fluorescence protein (rfp)-lamin fusion protein indicated that Sf9 lamin was localized in the nuclear rim. Transmission electron microscopy observations indicated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) nucleocapsids may pass through the nuclear envelope. Immunofluorescence assay indicated that the lamina showed a ruffled staining pattern with the formation of invaginations in the Sf9 cells infected with AcMNPV, while it was evenly distributed at the nuclear periphery of mock-infected cells. Western blotting results indicated that the total amount of lamin in the baculovirus-infected Sf9 cells was significantly decreased compared with the mock-infected cells. These results imply that AcMNPV infection induces structural and biochemical rearrangements of lamina of Sf9 cells.

  17. Using lamb waves tomonitor moisture absorption thermally fatigues composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sun; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-06-15

    Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.

  18. Hybrid Titanium Composite Laminates: A New Aerospace Material

    Science.gov (United States)

    Johnson, W. S.; Cobb, Ted Q.; Lowther, Sharon; St.Clair, T. L.

    1998-01-01

    In the realm of aerospace design and performance, there are few boundaries in the never-ending drive for increased performance. This thirst for ever-increased performance of aerospace equipment has driven the aerospace and defense industries into developing exotic, extremely high-performance composites that are pushing the envelope in terms of strength-to-weight ratios, durability, and several other key measurements. To meet this challenge of ever-increasing improvement, engineers and scientists at NASA-Langley Research Center (NASA-LaRC) have developed a high-temperature metal laminate based upon titanium, carbon fibers, and a thermoplastic resin. This composite, known as the Hybrid Titanium Composite Laminate, or HTCL, is the latest chapter in a significant, but relatively short, history of metal laminates.

  19. Laminations and microgranule formation in pediatric glomerular basement membranes.

    Science.gov (United States)

    Craver, Randall; Crespo-Salgado, Janice; Aviles, Diego

    2014-01-01

    Glomerular basement membrane (GBM) splitting, laminations, and microgranular formation are classically encountered with Alport disease, but can be found in other glomerular diseases. We found moderate to marked GBM laminations/microgranular formations in 51 of 724 (7%) pediatric diagnostic renal biopsies. These included 12 Alport disease, 12 thin basement membrane disease (TBM), 13 mesangial hypercellularity (MH), 6 focal segmental glomerulosclerosis (FSGS), and 8 other diseases. Follow-up demonstrated progression in most of the Alport disease and FSGS, as expected, but also in 40% of TBM and 30% of MH. Basement membrane laminations/microgranular formations are not specific for Alport disease, may represent a non-specific injury, and may herald a progressive clinical course.

  20. Fatigue Behavior for Composite Laminates with Circular Hole

    Institute of Scientific and Technical Information of China (English)

    Qi Hongyu; Wen Weidong; Sun Lianwen

    2004-01-01

    Based on the fatigue model of exponential function and WN criterion of static strength for the composite material laminates with a circular hole, the stress correct factorβ is presented. In order to gain the factorβ, the fatigue experiments of laminates with holes in different diameters and the same ratio of width and diameter. The fatigue behavior is usually accompanied with extensive damages. Those damages can affect composite materials in their strength and stiffness. The new model based on damage theory and strain equivalent hypothesis meets engineering requirement.T300/KH304, which is recently studied, is a high capability composite material. The fatigue analysis and tests of laminates with a hole in diameter of 5 mm are carried under difference stress levels. The simple, prompt and practical method was provided for the predication of fatigue life of composite material plate with a circular hole.

  1. Development of Textile Laminates for Improved Cut Resistance

    Directory of Open Access Journals (Sweden)

    G. Thilagavathi

    2010-06-01

    Full Text Available Mechanical properties of fibres viz. tensile modulus, tenacity, elongation are the key performance indicators of cut resistance besides yarn and fabric structure. p-aramid and UHDPE (Ultra High Density Polyethylene based high performance fibres are most commonly used for protection against mechanical risks. Specially engineered composite yarns and fabrics would help enhance cut resistance. This paper discusses on the influence textile structure configuration on the performance of cut resistant textiles. A three tier laminate composite was made using knitted Kevlar fabric (p-aramid as outer surface, Polyurethane foam in the middle and a knitted nylon fabric as skin contact layer. This specially engineered laminate showed a 20% increase in cut resistance force when compared with the Kevlar fabric used for lamination. The combination of breathable PU foam and knitted structure of fabric yielded high stretch with improved breathability and dexterity.

  2. POSTBUCKLING OF PRESSURE-LOADED SHEAR DEFORMABLE LAMINATED CYLINDRICAL PANELS

    Institute of Scientific and Technical Information of China (English)

    沈惠申

    2003-01-01

    A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation shell theory with yon Kdrmdn-Donnell-type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical panels under lateral pressure. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, moderately thick, cross-ply laminated cylindrical panels. The effects played by transverse shear deformation, panel geometric parameters, total number of plies, fiber orientation, and initial geometric imperfections are studied.

  3. Influence of mechanical load bias on converse magnetoelectric laminate composites

    Science.gov (United States)

    Wu, Tao; Emmons, Michael; Chung, Tien-Kan; Sorge, Jian; Carman, Gregory P.

    2010-05-01

    A piezofiber/Metglas (PFM) magnetoelectric (ME) laminate has been integrated into a graphite epoxy composite (GEC) to study the converse ME effect (CME). Experimental data on a PFM/GEC subjected to both a dc magnetic field bias and a dc mechanical load bias while exciting it with an ac electric driving voltage are presented. Results of these tests indicate that both the mechanical load and the dc magnetic field strongly influence the CME response. Furthermore, an optimum mechanical load exists to maximize the CME coefficient, which should also be present in standalone ME laminates. These results reveal that the CME coefficient can be further increased with a proper mechanical load bias. Therefore, the selection of an appropriate mechanical preload as well as dc magnetic bias will maximize the CME response and sensitivity in ME laminates as well as integrated structural systems.

  4. Low-temperature mechanical properties of glass/epoxy laminates

    Science.gov (United States)

    Reed, R. P.; Madhukar, M.; Thaicharoenporn, B.; Martovetsky, N. N.

    2014-01-01

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  5. Nuclear lamins and oxidative stress in cell proliferation and longevity.

    Science.gov (United States)

    Shimi, Takeshi; Goldman, Robert D

    2014-01-01

    In mammalian cells, the nuclear lamina is composed of a complex fibrillar network associated with the inner membrane of the nuclear envelope. The lamina provides mechanical support for the nucleus and functions as the major determinant of its size and shape. At its innermost aspect it associates with peripheral components of chromatin and thereby contributes to the organization of interphase chromosomes. The A- and B-type lamins are the major structural components of the lamina, and numerous mutations in the A-type lamin gene have been shown to cause many types of human diseases collectively known as the laminopathies. These mutations have also been shown to cause a disruption in the normal interactions between the A and B lamin networks. The impact of these mutations on nuclear functions is related to the roles of lamins in regulating various essential processes including DNA synthesis and damage repair, transcription and the regulation of genes involved in the response to oxidative stress. The major cause of oxidative stress is the production of reactive oxygen species (ROS), which is critically important for cell proliferation and longevity. Moderate increases in ROS act to initiate signaling pathways involved in cell proliferation and differentiation, whereas excessive increases in ROS cause oxidative stress, which in turn induces cell death and/or senescence. In this review, we cover current findings about the role of lamins in regulating cell proliferation and longevity through oxidative stress responses and ROS signaling pathways. We also speculate on the involvement of lamins in tumor cell proliferation through the control of ROS metabolism.

  6. Interlaminar damage of carbon fiber reinforced polymer composite laminate under continuous wave laser irradiation

    Science.gov (United States)

    Liu, Yan-Chi; Wu, Chen-Wu; Huang, Yi-Hui; Song, Hong-Wei; Huang, Chen-Guang

    2017-01-01

    The interlaminar damages were investigated on the carbon fiber reinforced polymer (CFRP) composite laminate under laser irradiation. Firstly, the laminated T700/BA9916 composites were exposed to continuous wave laser irradiation. Then, the interface cracking patterns of such composite laminates were examined by optical microscopy and scanning electron microscopy. Finally, the Finite Element Analysis (FEA) was performed to compute the interface stress of the laminates under laser irradiation. And the effects of the laser parameters on the interlaminar damage were discussed.

  7. The Shear Bond Strength of Porcelain Laminate to Prepared and Unprepared Anterior Teeth

    OpenAIRE

    Ali Asghar Alavi; Zeinab Behroozi; Farid Nik Eghbal

    2017-01-01

    Statement of the Problem: Porcelain laminate veneer is an esthetic restoration used as an alternative to full veneer crowns and requires minimal tooth preparation. In restoration with porcelain laminate veneers, both the longevity of the laminate and conservation of the sound tooth structure are imperative. Purpose: The present study aimed to investigate the shear bond strength of porcelain laminates to prepared- and unprepared- anterior teeth in order to compare their longevity and succes...

  8. Mouse B-Type Lamins Are Required for Proper Organogenesis But Not by Embryonic Stem Cells

    OpenAIRE

    Kim, Youngjo; Sharov, Alexei A; McDole, Katie; Cheng, Melody; Hao, Haiping; Fan, Chen-Ming; Gaiano, Nicholas; Minoru S.H. Ko; Zheng, Yixian

    2011-01-01

    B-type lamins, the major components of the nuclear lamina, are believed to be essential for cell proliferation and survival. We found that mouse embryonic stem cells (ESCs) do not need any lamins for self-renewal and pluripotency. Although genome-wide lamin-B binding profiles correlate with reduced gene expression, such binding is not directly required for gene silencing in ESCs or trophectoderm cells. However, B-type lamins are required for proper organogenesis. Defects in spindle orientatio...

  9. 新FRP技术加固钢筋混凝土矩形柱改善延性的试验研究%Experimental study on ductility improvement of reinforced concrete rectangular columns retrofitted with a new fiber reinforced plastics method

    Institute of Scientific and Technical Information of China (English)

    刘涛; 冯伟; 张智梅; 欧阳煜

    2008-01-01

    Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessaryductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a newretrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, wasdeveloped aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. CarbonFRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examinethe function of this new method for improving the ductility of columns. Responses of columns were examined before andafter being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismicbehavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column.

  10. Lamin A and lamin C form homodimers and coexist in higher complex forms both in the nucleoplasmic fraction and in the lamina of cultured human cells.

    Science.gov (United States)

    Kolb, Thorsten; Maass, Kendra; Hergt, Michaela; Aebi, Ueli; Herrmann, Harald

    2011-01-01

    We have investigated and quantified the nuclear A-type lamin pool from human HeLa S3 suspension cells with respect to their distribution to detergent soluble and insoluble fractions. We devised a sequential extraction protocol and found that maximally 10% of A-type lamins are recovered in the soluble fraction. Notably, lamin C is enriched in low detergent fractions and only with 0.5% Nonidet P-40 lamin A and C are recovered in ratios nearly equivalent to those found in whole cell extracts and in the lamina fraction. Authentic nucleoplasmic proteins such as LAP2a, pRB and p53 are co-extracted to a large part together with the A-type lamins in these fractions. By sucrose density centrifugation we revealed that the majority of lamins co-sedimented with human IgG indicating they form rather small complexes in the range of dimers and slightly larger complexes. Some lamin A - but not lamin C - is obtained in addition in a much faster sedimenting fraction. Authentic nuclear proteins such as PCNA, p53 and LAP2a were found both in the light and the heavy sucrose fractions together with lamin A. Last but not least, immunoprecipitation experiments from both soluble fractions and from RIPA lysates of whole cells revealed that lamin A and lamin C do not form heterodimers but segregate practically completely. Correspondingly, immunofluorescence microscopy of formaldehyde-fixed cells clearly demonstrated that lamin A and C are localized at least in part to distinct patches within the lamina. Hence, the structural segregation of lamin A and C is indeed retained in the nuclear envelope to some extent too.

  11. PORCELAIN LAMINATE VENEERS: A MINIMALLY INVASIVE ESTHETIC PROCEDURE

    Directory of Open Access Journals (Sweden)

    Tajammul

    2013-11-01

    Full Text Available ABSTRACT: With the advancement in the area of cosmetic dentistry, the dental profession has been offered new opportunities in conservative and esthetic restorative procedures. Multiple options are available to treat problems arising in the zone of high esthetic sensitivity. The use of porcelain laminate veneers to solve esthetic and/or functional problems has shown to be a valid treatment option especially in the anterior esthetic zone. The techniques and the materials employed to fabricate porcelain laminate veneers offer satisfactory, predictable and lasting results. The current porcelain veneers are esthetically superior, conservative and durable treatment modality

  12. Transient impact responses of laminated composite cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The generalized ray method(GRM) has been successfully used to study the transient elastic wave transmitting in the beams,planar trusses,space frames and infinite layered media.In this letter,the GRM is extended to investigate the early short time transient responses of laminated composite cylindrical shells under impact load.By using the Laplace transformation and referring to the boundary conditions,the ray groups transmitting in the finite laminated cylindrical shells under the shock load are obtained ...

  13. A Novel Rectangular Element for Piezoelectric Laminated Plates

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong; WANG Xing-wei; SUN Ya-fei

    2004-01-01

    Based on the classical laminated plate theory, a novel finite element formulation is presented for modeling the static response of laminated composites containing distributed piezoelectric ceramic subjected to electric loadings. A four-node rectangular composite element with an additional voltage freedom per piezoelectric layer is implemented for the analysis. The element can predict more accurately the bending response of the structure because of its new displacement radixes. Numerical examples ere performed and the calculated data compare very well with existing results in the literatures.

  14. LARGE AMPLITUDE FREE VIBRATIONS OF LAMINATED COMPOSITE PLATES

    Institute of Scientific and Technical Information of China (English)

    Wang Haowen; Gao Zheng; Zheng Zhaochang

    2000-01-01

    This paper deals with large amplitude free flexural vibrations of laminated composite plates using a 9-node Heterosis degenerated isoparametric quadrilateral element, including the effects of transverse shear and rotary inertia. The nonlinear dynamic equations of the plates are formulated in von Karman's sense. Amplitude-frequemcy relationships are obtained through dynamic response history using the Newmark numerical integration scheme. Detailed numerical results based on various parameters are presented for orthotropic laminated plates with different boundary conditions. The rectangular anti-symmetric cross-ply plates show the softening type of nonlinearity for initial small amplitudes. The displacement amplitudes decrease and nonlinear frequencies increase with the increment of time.

  15. The postbuckling analysis of laminated circular plate with elliptic delamination

    Science.gov (United States)

    Chen, Deliang; Chen, Changping; Fu, Yiming

    2011-01-01

    Based on the Von Karman plate theory, considering the effect of transverse shear deformation, and using the method of the dissociated three regions, the postbuckling governing equations for the axisymmetric laminated circular plates with elliptical delamination are derived. By using the orthogonal point collocation method, the governing equations, boundary conditions and continuity conditions are transformed into a group of nonlinear algebraically equation and the equations are solved with the alternative method. In the numerical examples, the effects of various elliptical in shape, delamination depth and different material properties on buckling and postbuckling of the laminated circular plates are discussed and the numerical results are compared with available data.

  16. A mixed finite element for the analysis of laminated plates

    Science.gov (United States)

    Putcha, N. S.; Reddy, J. N.

    1983-01-01

    A new mixed shear-flexible finite element based on the Hellinger-Reissner's variational principle is developed. The element is constructed using a mixed formulation of the shear deformation theory of laminated composite plates, and consists of three displacements, two shear rotations, and three moments as the independent degrees of freedom. The numerical convergence and accuracy characteristics of the element are investigated for bending of laminated anisotropic composite plates. The element is relatively simple to construct and has better accuracy and convergence features when compared to other conventional finite elements.

  17. Development of Improved LOX-Compatible Laminated Gasket Composite

    Science.gov (United States)

    1966-08-01

    NITROGEN TEMPERATURE WITH TFE LAMINATING RESIN Specimen Thickness, Cycle Energy Absorption, No. Type Resin in. No. in.-lb/in.3 101-B DuPont TFE 0.055...GASKETS AT LIQUID NITROGEN TEMPERATURE WITH HALON G-80 LAMINATING RESIN Specimen Thickness, Cycle Energy Absorption, No. Type Resin in. No. in.-lb/in. 3 107...Thickness, Cycle Energy Absorption, No. Type Resin in. No. in.-lb/in. 3 101-A DuPont TFE 0.069 1 41.2 2 42.9 10 38.6 102-A DuPont TFE 0.073 1 40.3 2 37.0

  18. Laminated active matrix organic light-emitting devices

    Science.gov (United States)

    Liu, Hongyu; Sun, Runguang

    2008-02-01

    Laminated active matrix organic light-emitting device (AMOLED) realizing top emission by using bottom-emitting organic light-emitting diode (OLED) structure was proposed. The multilayer structure of OLED deposited in the conventional sequence is not on the thin film transistor (TFT) backplane but on the OLED plane. The contact between the indium tin oxide (ITO) electrode of TFT backplane and metal cathode of OLED plane is implemented by using transfer electrode. The stringent pixel design for aperture ratio of the bottom-emitting AMOLED, as well as special technology for the top ITO electrode of top-emitting AMOLED, is unnecessary in the laminated AMOLED.

  19. EXPERIMENTAL RESEARCH ON STEEL-REINFORCED CONCRETE FILLED GFRP TUBE COLUMNS SUBJECTED TO AXIAL LOADING%玻璃纤维增强材料管劲性钢筋混凝土组合柱轴心受压试验研究

    Institute of Scientific and Technical Information of China (English)

    陈百玲; 王连广; 秦国鹏

    2011-01-01

    According to the experimental research on 8 composite columns,the axial compression property of GFRP tube filled with steel reinforced concrete was studied. The test results show that GFRP tube, concrete and section steel carry loads alone at the beginning of loading. Then the fiber surface of GFRP tube grows stretch marks when the loads reach 60% ultimate loads and GFRP tube has an obvious hooped effect on concrete when the loads reach 70% ultimate loads. While the loads reach 80% ultimate loads, GFRP tube can generate frequent noise. The damage of test specimen begins with the fracture of GFRP tube, the yield of steel and the crushing of concrete. The nonlinear analysis program of composite columns was developed, and the calculated results agree well with the experimented resuhs. According to the computing and analyses, the bearing capacity of composite columns is enhanced with the increase of GFRP tube wall thickness, concrete strength grade and steel ratio.%对8根组合柱进行试验,研究玻璃纤维增强材料(GFRP)管劲性钢筋混凝土组合柱的轴心受压性能。研究结果表明:荷载作用初期,GFRP管、混凝土及型钢单独受力,当荷载达到极限荷载60%左右时,GFRP管的纤维表面出现白纹,当荷载达到极限荷载的70%左右时,GFRP管对混凝土的套箍作用明显增加,当荷载达到极限荷载80%左右时,GFRP管出现频繁的响声,试件的破坏开始于GFRP管破裂、钢材屈服、混凝土压碎。编制组合柱的非线性分析程序,模拟计算结果与试验结果吻合良好。组合柱的承载力随着GFRP管壁厚度的增加、混凝土强度等级的提高及含钢率的增加而提高。

  20. Halos of Plastic

    Institute of Scientific and Technical Information of China (English)

    Maya Reid

    2012-01-01

    The halos that span South Africa's coastline are anything but angelic. Fanning out around four major urban centers-Cape Town, Port Elizabeth, East London and Durban-they are made up of innumerable bits and pieces of plastic. As a form of pollution, their shelflife is unfathomable. Plastic is essentially chemically inactive. It's designed to never break down.

  1. Biodegradation of plastics.

    Science.gov (United States)

    Shimao, M

    2001-06-01

    Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. Recent work has included studies of the distribution of synthetic polymer-degrading microorganisms in the environment, the isolation of new microorganisms for biodegradation, the discovery of new degradation enzymes, and the cloning of genes for synthetic polymer-degrading enzymes.

  2. Risk prediction of ventricular arrhythmias and myocardial function in Lamin A/C mutation positive subjects

    DEFF Research Database (Denmark)

    Hasselberg, Nina E; Edvardsen, Thor; Petri, Helle;

    2014-01-01

    Mutations in the Lamin A/C gene may cause atrioventricular block, supraventricular arrhythmias, ventricular arrhythmias (VA), and dilated cardiomyopathy. We aimed to explore the predictors and the mechanisms of VA in Lamin A/C mutation-positive subjects.METHODS AND RESULTS: We included 41 Lamin A...

  3. The Application of Plastics Stabilizaters in Unsatured Polyster Glass Fiber Reinforced Plastic (GFRP) Composites%塑料稳定剂在玻璃纤维增强不饱和聚酯树脂中的应用

    Institute of Scientific and Technical Information of China (English)

    王玉民; 宁培森; 丁著明

    2011-01-01

    Recent advances in the application of plastics stabilizaters including ultraviolet absorbent, hindered amine light stabilizers (HALS) and antioxidant in unsatured polyster glass fiber reinforced plastic (GFRP) composites were reviewed. The results of some research papers showed the effect is not good when using single stabilizer,the combined use of main and auxilary antioxidant has the better effect on anti-ageing of GFRP.%综述了塑料稳定剂(包括紫外线吸收剂、受阻胺光稳定剂和抗氧剂等)在不饱和聚酯玻璃纤维增强塑料(GFRP)上的应用研究情况。一些研究结果表明:只使用单一的稳定剂效果不佳,必须配合使用稳定剂,才能取得较好的防老化效果。

  4. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups...... answered the first Danish national survey, PD13[1], investigating the importance of industrial designers’ knowledge in plastics and the collaboration between designers and the polymer industry. The plastics industry and the industrial designers collaborate well, but both groups frequently experience...... that the designers’ lack of knowledge concerning polymer materials and manufacturing methods can be problematic or annoying, and design students from most Danish design universities express the need for more contact with the industry and more competencies and tools to handle even simple topics when designing plastic...

  5. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...... the relation between consciousness and brain functions. If consciousness is connected to specific brain structures (as a function or in identity) what happens to consciousness when those specific underlying structures change? It is therefore possible that the understanding and theories of neural plasticity can...

  6. 玻璃纤维布加固的钢筋混凝土梁试验研究与抗弯承载力计算%Experimental study and calculation of flexural capacity of RC beams strengthened with GFRP sheets

    Institute of Scientific and Technical Information of China (English)

    王文炜; 李果

    2004-01-01

    对9根玻璃纤维布加固的钢筋混凝土梁和3根对比梁进行了抗弯性能试验研究. 试验中考虑了配筋率、加固量、剪跨比与混凝土强度等级4个参数. 试验结果表明, 经玻璃纤维布加固的钢筋混凝土梁抗弯承载力有显著提高; 混凝土强度、配筋率、加固量对极限荷载有显著影响; 剪跨比对加固梁的破坏形态有影响. 根据不同的破坏模式, 提出了抗弯承载力计算方法.%Nine reinforced concrete (RC) beams strengthened with glass fiber reinforced polymer (GFRP) sheets and three control beams were tested. Four parameters considered in this experimental program included the concrete strength, the reinforcement ratio, the number of GFRP sheets, and the shear span ratio. It is shown that the application of GFRP sheets can increase the ultimate flexural capacity. The effect of the concrete strength, the reinforcement ratio and the number of GFRP sheets on load capacity is obvious. The shear span ratio can affect the failure mode of RC beams strengthened with GFRP sheets. A theoretical model for flexural behavior of the strengthened RC beam is also developed.

  7. Tensile strength of glulam laminations of Nordic spruce

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Bräuner, Lise; Boström, Lars;

    1999-01-01

    Design of glulam according to the European timber code Eurocode 5 is based on the standard document prEN1194 , according to which glulam beam strength is to be established either by full scale testing or by calculation. The calculation must be based on a knowledge of lamination tensile strength. ...

  8. Laser cutting of laminated sheet material: a modeling exercise

    NARCIS (Netherlands)

    Graaf, de R.F.; Meijer, J.

    1997-01-01

    Laser cutting has been investigated for a number of aluminum-synthetic laminates, newly developed materials for the aeronautic and automotive industry. The materials consist of alternating aluminum and synthetic layers. It is shown that these materials can be cut at rates comparable to those of homo

  9. Laser cutting of metal laminates: analysis and experimental validation

    NARCIS (Netherlands)

    Graaf, de R.F.; Meijer, J.

    2000-01-01

    Laser cutting has been investigated for a number of aluminum–synthetic laminates, newly developed materials for the aeronautic and automotive industry. The materials consist of alternating aluminum and synthetic layers. It is shown that these materials can be cut at the same speed as homogeneous alu

  10. Laser cutting of metal laminates: analysis and experimental validation

    NARCIS (Netherlands)

    de Graaf, R.F.; Meijer, J.

    2000-01-01

    Laser cutting has been investigated for a number of aluminum–synthetic laminates, newly developed materials for the aeronautic and automotive industry. The materials consist of alternating aluminum and synthetic layers. It is shown that these materials can be cut at the same speed as homogeneous

  11. Residual stresses in non-symmetrical carbon/epoxy laminates

    NARCIS (Netherlands)

    Wijskamp, S.; Akkerman, R.; Lamers, E.A.D.

    2003-01-01

    The curvature of unsymmetrical [0/90] laminates moulded from AS4/8552 uni-directional tape has been measured. A linear thermoelastic approach has been applied to predict the related residual stress state before demoulding, giving an estimate of the stress induced by polymerisation strain. The result

  12. Characterisation of fibre metal laminates under thermomechanical loadings

    NARCIS (Netherlands)

    Hagenbeek, M.

    2005-01-01

    Fibre metal laminates, such as Arall or Glare, can offer improved properties compared to monolithic materials. Glare for example shows improved fatigue, residual strength, burn-through, impact and corrosion properties with respect to aluminium 2024, together with a considerable weight reduction and

  13. Characterisation of fibre metal laminates under thermomechanical loadings

    NARCIS (Netherlands)

    Hagenbeek, M.

    2005-01-01

    Fibre metal laminates, such as Arall or Glare, can offer improved properties compared to monolithic materials. Glare for example shows improved fatigue, residual strength, burn-through, impact and corrosion properties with respect to aluminium 2024, together with a considerable weight reduction and

  14. Sigma phase formation kinetics in stainless steel laminate composites

    Energy Technology Data Exchange (ETDEWEB)

    Wenmen, D.W.; Olson, D.L.; Matlock, D.K. [Colorado School of Mines, Golden, CO (United States)] [and others

    1994-12-31

    Stainless steel laminate composites were made to simulate weld microstructures. The use of laminates with variations in chemical composition allows for one dimensional analysis of phase transformation associated with the more complex three-dimensional solidification experience of weld metal. Alternate layers of austenitic (304L and 316L) and ferritic (Ebrite) stainless steels allowed for the study of sigma phase formation at the austenite-ferrite interface in duplex stainless steel. Two austenitic stainless steels, 304L (18.5Cr-9.2Ni-0.3Mo) and 316L (16.2Cr-10.1Ni-2.6Mo), and one ferritic stainless steel, Ebrite (26.3Cr-0Ni-1.0Mo) were received in the form of sheet which was laboratory cold rolled to a final thickness of 0.25 mm (0.030 in.). Laminate composites were prepared by laboratory hot rolling a vacuum encapsulated compact of alternating layers of the ferrite steel with either 304L or 316L stainless steel sheets. Laminate composite specimens, which simulate duplex austenite-ferrite weld metal structure, were used to establish the kinetics of nucleation and growth of sigma phase. The factors affecting sigma phase formation were identified. The effects of time, temperature, and transport of chromium and nickel were evaluated and used to establish a model for sigma phase formation in the austenite-ferrite interfacial region. Information useful for designing stainless steel welding consumables to be used for high temperature service was determined.

  15. Purification of Lamins and Soluble Fragments of NETs.

    Science.gov (United States)

    Makarov, Alexandr A; Rizzotto, Andrea; Meinke, Peter; Schirmer, Eric C

    2016-01-01

    Lamins and associated nuclear envelope transmembrane proteins (NETs) present unique problems for biochemical studies. Lamins form insoluble intermediate filament networks, associate with chromatin, and are also connected via specific NETs to the cytoskeleton, thus further complicating their isolation and purification from mammalian cells. Adding to this complexity, NETs at the inner nuclear membrane function in three distinct environments: (a) their nucleoplasmic domain(s) can bind lamins, chromatin, and transcriptional regulators; (b) they possess one or more integral transmembrane domains; and (c) their lumenal domain(s) function in the unique reducing environment of the nuclear envelope/ER lumen. This chapter describes strategic considerations and protocols to facilitate biochemical studies of lamins and NET proteins in vitro. Studying these proteins in vitro typically involves first expressing specific polypeptide fragments in bacteria and optimizing conditions to purify each fragment. We describe parameters for choosing specific fragments and designing purification strategies and provide detailed purification protocols. Biochemical studies can provide fundamental knowledge including binding strengths and the molecular consequences of disease-causing mutations that will be essential to understand nuclear envelope-genome interactions and nuclear envelope linked disease mechanisms.

  16. Development of fibre-metal laminates for improved impact performance

    NARCIS (Netherlands)

    Morinière, F.D.; Alderliesten, R.C.; Benedictus, R.

    2012-01-01

    An analytical and experimental investigation into the low-velocity behaviour of GLARE Fibre-Metal Laminates (FMLs) has been performed. A quasi-static approach was developed to estimate the perforation energy absorbed between the constituents of GLARE. The analysis considered contact area increase du

  17. Low Velocity Impact Damage to Carbon/Epoxy Laminates

    Science.gov (United States)

    Nettles, Alan T.

    2011-01-01

    Impact damage tends to be more detrimental to a laminate's compression strength as compared to tensile strength. Proper use of Non Destructive Evaluation (NDE) Techniques can remove conservatism (weight) from many structures. Test largest components economically feasible as coupons. If damage tolerance is a driver, then consider different resin systems. Do not use a single knockdown factor to account for damage.

  18. SOLVING ∂¯b ON PARABOLIC LAMINATIONS

    Institute of Scientific and Technical Information of China (English)

    王刚

    2014-01-01

    Let X be a compact set which is laminated by parabolic Riemiann surfaces. For the CR positive line bundle L, there exists an integer N ∈ N such that for any s > N and any continuous v∈V(0,1) X N LN s, there exists a continuous u∈LN s solving ∂¯bu=v.

  19. Low Velocity Impact Behaviors of a Laminated Glass

    Directory of Open Access Journals (Sweden)

    Bong Hwan Kim

    2014-11-01

    Full Text Available Dynamic behaviors of a laminated glass subjected to foreign object impact are studied by the use of the developed finite element program. A finite element simulation based on a higher-order beam finite element and a PVB interlayer model is applied to compute the dynamic responses of laminated glass panel. In this analysis, the glass plies and PVB interlayer are modeled as linear elastic. The results such as the histories of contact force and deflection, and the distribution for strains, stresses through the beam thickness during impact are obtained. The impact behaviors of laminated glass panel are compared with those of the monolithic glass of the same total thickness. It shows that PVB interlayer can be prevented inner glass ply of LG beam from damage by reducing the stress to zero. Specially, stress distribution through the thickness except PVB interlayer in impact analysis shows nearly linear unlike that of static analysis in spite of its discontinuity of the short time shear modulus of PVB in a laminated glass.

  20. Laser cutting of laminated sheet material: a modeling exercise

    NARCIS (Netherlands)

    de Graaf, R.F.; Meijer, J.

    1997-01-01

    Laser cutting has been investigated for a number of aluminum-synthetic laminates, newly developed materials for the aeronautic and automotive industry. The materials consist of alternating aluminum and synthetic layers. It is shown that these materials can be cut at rates comparable to those of

  1. Acoustic plane wave reflection from a composite laminate: normal incidence

    NARCIS (Netherlands)

    Bagchi, A.; Bose, S.K.

    1994-01-01

    In using ultrasonic non-destructive evaluation methods for composite laminates, some features appear which are essentially due to the heterogeneity of the material. In performing backscattering phenomena, one such feature is the seemingly random backscattered amplitude with change of position in a c

  2. Visco-piezo-elastic parameter estimation in laminated plate structures

    DEFF Research Database (Denmark)

    Araujo, A. L.; Mota Soares, C. M.; Herskovits, J.;

    2009-01-01

    A parameter estimation technique is presented in this article, for identification of elastic, piezoelectric and viscoelastic properties of active laminated composite plates with surface-bonded piezoelectric patches. The inverse method presented uses experimental data in the form of a set of measu...

  3. LCO flutter of cantilevered woven glass/epoxy laminate in subsonic flow

    Institute of Scientific and Technical Information of China (English)

    Dayang Laila Abang Haji Abdul Majid; ShahNor Basri

    2008-01-01

    The paper presents aeroelastic characteristics of a cantilevered composite wing,idealized as a composite flat plate laminate.The composite laminate was made from woven glass fibers with epoxy matrix.The elastic and dynamic properties of the laminate were determined experimentally for aeroelastic calculations.Aeroelastic wind tunnel testing of the laminate was performed and the result showed that flutter,a dynamic instability occurred.The cantilevered laminate also displayed limit cycle amplitude,post-flutter oscillation.The experimental flutter velocity and frequency were verified by our computational analysis.

  4. A limiting analysis for edge effects in angle-ply laminates

    Science.gov (United States)

    Hsu, P. W.; Herakovich, C. T.

    1976-01-01

    A zeroth order solution for edge effects in angle ply composite laminates using perturbation techniques and a limiting free body approach was developed. The general method of solution for laminates is developed and then applied to the special case of a graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness to width ratio h/b and compared to existing numerical results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress for two laminates, and provides mathematical evidence for singular interlaminar shear stresses.

  5. Improving the Wear Resistance of Moulds for the Injection of Glass Fibre–Reinforced Plastics Using PVD Coatings: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Francisco Silva

    2017-02-01

    Full Text Available It is well known that injection of glass fibre–reinforced plastics (GFRP causes abrasive wear in moulds’ cavities and runners. Physical vapour deposition (PVD coatings are intensively used to improve the wear resistance of different tools, also being one of the most promising ways to increase the moulds’ lifespan, mainly when used with plastics strongly reinforced with glass fibres. This work compares four different thin, hard coatings obtained using the PVD magnetron sputtering process: TiAlN, TiAlSiN, CrN/TiAlCrSiN and CrN/CrCN/DLC. The first two are monolayer coatings while the last ones are nanostructured and consist of multilayer systems. In order to carry out the corresponding tribological characterization, two different approaches were selected: A laboratorial method, using micro-abrasion wear tests based on a ball-cratering configuration, and an industrial mode, analysing the wear resistance of the coated samples when inserted in a plastic injection mould. As expected, the wear phenomena are not equivalent and the results between micro-abrasion and industrial tests are not similar due to the different means used to promote the abrasion. The best wear resistance performance in the laboratorial wear tests was attained by the TiAlN monolayer coating while the best performance in the industrial wear tests was obtained by the CrN/TiAlCrSiN nanostructured multilayer coating.

  6. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saaidi, Rasha [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark); Rasmussen, Torsten B. [Department of Cardiology, Aarhus University Hospital, Aarhus (Denmark); Palmfeldt, Johan [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark); Nissen, Peter H. [Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus (Denmark); Beqqali, Abdelaziz [Heart Failure Research Center, Academic Medical Center, Amsterdam (Netherlands); Hansen, Jakob [Department of Forensic Medicine, Bioanalytical Unit, University of Aarhus (Denmark); Pinto, Yigal M. [Heart Failure Research Center, Academic Medical Center, Amsterdam (Netherlands); Boesen, Thomas [Department of Molecular Biology and Genetics, University of Aarhus (Denmark); Mogensen, Jens [Department of Cardiology, Odense University Hospital, Odense (Denmark); Bross, Peter, E-mail: peter.bross@ki.au.dk [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark)

    2013-11-15

    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that

  7. Influences of lamin A levels on induction of pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Bingfeng Zuo

    2012-09-01

    Lamin A is an inner nuclear membrane protein that maintains nuclear structure integrity, is involved in transcription, DNA damage response and genomic stability, and also links to cell differentiation, senescence, premature aging and associated diseases. Induced pluripotent stem (iPS cells have been successfully generated from various types of cells and used to model human diseases. It remains unclear whether levels of lamin A influence reprogramming of somatic cells to pluripotent states during iPS induction. Consistently, lamin A is expressed more in differentiated than in relatively undifferentiated somatic cells, and increases in expression levels with age. Somatic cells with various expression levels of lamin A differ in their dynamics and efficiency during iPS cell induction. Cells with higher levels of lamin A show slower reprogramming and decreased efficiency to iPS cells. Furthermore, depletion of lamin A by transient shRNA accelerates iPS cell induction from fibroblasts. Reduced levels of lamin A are associated with increased expression of pluripotent genes Oct4 and Nanog, and telomerase genes Tert and Terc. On the contrary, overexpression of lamin A retards somatic cell reprogramming to iPS-like colony formation. Our data suggest that levels of lamin A influence reprogramming of somatic cells to pluripotent stem cells and that artificial silencing of lamin A facilitates iPS cell induction. These findings may have implications in enhancing rejuvenation of senescent or older cells by iPS technology and manipulating lamin A levels.

  8. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation.

    Science.gov (United States)

    Swift, Joe; Ivanovska, Irena L; Buxboim, Amnon; Harada, Takamasa; Dingal, P C Dave P; Pinter, Joel; Pajerowski, J David; Spinler, Kyle R; Shin, Jae-Won; Tewari, Manorama; Rehfeldt, Florian; Speicher, David W; Discher, Dennis E

    2013-08-30

    Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination.

  9. Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation

    Science.gov (United States)

    Swift, Joe; Ivanovska, Irena L.; Buxboim, Amnon; Harada, Takamasa; Dingal, P. C. Dave P.; Pinter, Joel; Pajerowski, J. David; Spinler, Kyle R.; Shin, Jae-Won; Tewari, Manorama; Rehfeldt, Florian; Speicher, David W.; Discher, Dennis E.

    2014-01-01

    Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination. PMID:23990565

  10. DAMAGE PROGRESSIVE MODEL OF COMPRESSION OF COMPOSITE LAMINATES AFTER LOW VELOCITY IMPACT

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiao-quan; LI Zheng-neng

    2005-01-01

    Compressive properties of composite laminates after low velocity impact are one of the most serious circumstances that must be taken into account in damage tolerance design of composite structures. In order to investigate compressive properties of composite laminates after low velocity impact, three dimensional dynamic finite element method (FEM) was used to simulate low-velocity impact damage of 2 kinds of composite laminates firstly. Damage distributions and projective damage areas of the laminates were predicted under two impact energy levels. The analyzed damage after impact was considered to be the initial damage of the laminates under compressive loads. Then three dimensional static FEM was used to simulate the compressive failure process and to calculate residual compressive strengths of the impact damaged laminates. It is achieved to simulate the whole process from initial low-velocity impact damage to final compressive failure of composite laminates. Compared with experimental results, it shows that the numerical predicting results agree with the test results fairly well.

  11. Transverse isotropic modeling of the ballistic response of glass reinforced plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    The use of glass reinforced plastic (GRP) composites is gaining significant attention in the DoD community for use in armor applications. These materials typically possess a laminate structure consisting of up to 100 plies, each of which is constructed of a glass woven roving fabric that reinforces a plastic matrix material. Current DoD attention is focused on a high strength, S-2 glass cross-weave (0/90) fabric reinforcing a polyester matrix material that forms each ply of laminate structure consisting anywhere from 20 to 70 plies. The resulting structure displays a material anisotropy that is, to a reasonable approximation, transversely isotropic. When subjected to impact and penetration from a metal fragment projectile, the GRP displays damage and failure in an anisotropic manner due to various mechanisms such as matrix cracking, fiber fracture and pull-out, and fiber-matrix debonding. In this presentation, the author will describe the modeling effort to simulate the ballistic response of the GRP material described above using the transversely isotropic (TI) constitutive model which has been implemented in the shock physics code, CTH. The results of this effort suggest that the model is able to describe the delamination behavior of the material but has some difficulty capturing the in-plane (i.e., transverse) response of the laminate due to its cross-weave fabric reinforcement pattern which causes a departure from transverse isotropy.

  12. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of

  13. A Plastic Menagerie

    Science.gov (United States)

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  14. Cortical plasticity and rehabilitation.

    Science.gov (United States)

    Moucha, Raluca; Kilgard, Michael P

    2006-01-01

    The brain is constantly adapting to environmental and endogenous changes (including injury) that occur at every stage of life. The mechanisms that regulate neural plasticity have been refined over millions of years. Motivation and sensory experience directly shape the rewiring that makes learning and neurological recovery possible. Guiding neural reorganization in a manner that facilitates recovery of function is a primary goal of neurological rehabilitation. As the rules that govern neural plasticity become better understood, it will be possible to manipulate the sensory and motor experience of patients to induce specific forms of plasticity. This review summarizes our current knowledge regarding factors that regulate cortical plasticity, illustrates specific forms of reorganization induced by control of each factor, and suggests how to exploit these factors for clinical benefit.

  15. Mechanical plasticity of cells

    Science.gov (United States)

    Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben

    2016-10-01

    Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

  16. Targeting tumour Cell Plasticity

    Institute of Scientific and Technical Information of China (English)

    Elizabeth D. WILLIAMS

    2009-01-01

    @@ Her research is focused on understanding the mechanisms of tumour progression and metastasis, particularly in uro-logical carcinomas (bladder and prostate). Tumour cell plasticity, including epithelial-mesenchymal transition, is a cen-tral theme in Dr Williams' work.

  17. Variable frequency microwave (VFM) curing, processing of thermoset prepreg laminates. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Paulauskas, F.L.

    1996-09-30

    The objective of this work was to investigate the beneficial effect of the variable frequency microwave (VFM) technology to cure thermosetting prepreg laminates. Further, it was to investigate the interrelationship and effect on the curing process of frequency, band width, and curing time with different types of laminates. Previous studies of microwave-assisted curing of neat resins (epoxy) and unidirectional glass and carbon fiber laminates with a fixed frequency of 2.45 GHz, have shown that a substantial reduction in the curing time was obtained. Results of this earlier work indicate that the microwave-assisted curing of multidirectional glass fiber laminates also show a substantial reduction of the required curing time. This may be explained by the penetration of microwave energy directly and throughout the laminate with enhancement of the kinetics of the chemical reaction. The fixed frequency microwave radiation of 2.45 GHz has been demonstrated to be a partially acceptable method to cure unidirectional carbon fiber laminates. Multidirectional carbon fiber/epoxy laminates demonstrate a lack of coupling during the curing process. A direct curing of these laminates was not possible by microwave radiation with the experimental approach used in agreement with previous work. In addition to this short coming, the unidirectional laminate samples cured with the fixed frequency are visually nonuniform. Localized areas of darker colors (burn, hot spots, overheating) are attributed to the formation of standing waves within the microwave cavity. For this reason, the laminates are subject to proper rotation while curing through fixed frequency. The present research indicates that variable frequency microwave technology is a sound and acceptable processing method to effectively cure uni-, bi- or multi-directional thermosetting glass fiber laminates. Also, this methodology will effectively cure unidirectional thermosetting carbon fiber laminates. For all these cases, this

  18. An exact solution for the history-dependent material and delamination behavior of laminated plates subjected to cylindrical bending

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Todd O [Los Alamos National Laboratory

    2009-01-01

    The exact solution for the history-dependent behavior of laminated plates subjected to cylindrical bending is presented. The solution represents the extension of Pagano's solution to consider arbitrary types of constitutive behaviors for the individual lamina as well as arbitrary types of cohesive zones models for delamination behavior. Examples of the possible types of material behavior are plasticity, viscoelasticity, viscoplasticity, and damaging. Examples of possible CZMs that can be considered are linear, nonlinear hardening, as well as nonlinear with softening. The resulting solution is intended as a benchmark solution for considering the predictive capabilities of different plate theories. Initial results are presented for several types of history-dependent material behaviors. It is shown that the plate response in the presence of history-dependent behaviors can differ dramatically from the elastic response. These results have strong implications for what constitutes an appropriate plate theory for modeling such behaviors.

  19. Localization of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1976-04-01

    The localization of plastic deformation into a shear band is discussed as an instability of plastic flow and a precursor to rupture. Experimental observations are reviewed, a general theoretical framework is presented, and specific calculations of critical conditions are carried out for a variety of material models. The interplay between features of inelastic constitutive description, especially deviations from normality and vertex-like yielding, and the onset of localization is emphasized.

  20. Development of plastic surgery

    Directory of Open Access Journals (Sweden)

    Pećanac Marija Đ.

    2015-01-01

    Full Text Available Introduction. Plastic surgery is a medical specialty dealing with corrections of defects, improvements in appearance and restoration of lost function. Ancient Times. The first recorded account of reconstructive plastic surgery was found in ancient Indian Sanskrit texts, which described reconstructive surgeries of the nose and ears. In ancient Greece and Rome, many medicine men performed simple plastic cosmetic surgeries to repair damaged parts of the body caused by war mutilation, punishment or humiliation. In the Middle Ages, the development of all medical braches, including plastic surgery was hindered. New age. The interest in surgical reconstruction of mutilated body parts was renewed in the XVIII century by a great number of enthusiastic and charismatic surgeons, who mastered surgical disciplines and became true artists that created new forms. Modern Era. In the XX century, plastic surgery developed as a modern branch in medicine including many types of reconstructive surgery, hand, head and neck surgery, microsurgery and replantation, treatment of burns and their sequelae, and esthetic surgery. Contemporary and future plastic surgery will continue to evolve and improve with regenerative medicine and tissue engineering resulting in a lot of benefits to be gained by patients in reconstruction after body trauma, oncology amputation, and for congenital disfigurement and dysfunction.

  1. Sorting Plastic Waste in Hydrocyclone

    Directory of Open Access Journals (Sweden)

    Ernestas Šutinys

    2011-02-01

    Full Text Available The article presents material about sorting plastic waste in hydrocyclone. The tests on sorting plastic waste were carried out. Also, the findings received from the performed experiment on the technology of sorting plastic waste are interpreted applying an experimental model of the equipment used for sorting plastics of different density.Article in Lithuanian

  2. Seismic lamination and anisotropy of the Lower Continental Crust

    Science.gov (United States)

    Meissner, Rolf; Rabbel, Wolfgang; Kern, Hartmut

    2006-04-01

    Seismic lamination in the lower crust associated with marked anisotropy has been observed at various locations. Three of these locations were investigated by specially designed experiments in the near vertical and in the wide-angle range, that is the Urach and the Black Forrest area, both belonging to the Moldanubian, a collapsed Variscan terrane in southern Germany, and in the Donbas Basin, a rift inside the East European (Ukrainian) craton. In these three cases, a firm relationship between lower crust seismic lamination and anisotropy is found. There are more cases of lower-crustal lamination and anisotropy, e.g. from the Basin and Range province (western US) and from central Tibet, not revealed by seismic wide-angle measurements, but by teleseismic receiver function studies with a P-S conversion at the Moho. Other cases of lamination and anisotropy are from exhumed lower crustal rocks in Calabria (southern Italy), and Val Sesia and Val Strona (Ivrea area, Northern Italy). We demonstrate that rocks in the lower continental crust, apart from differing in composition, differ from the upper mantle both in terms of seismic lamination (observed in the near-vertical range) and in the type of anisotropy. Compared to upper mantle rocks exhibiting mainly orthorhombic symmetry, the symmetry of the rocks constituting the lower crust is either axial or orthorhombic and basically a result of preferred crystallographic orientation of major minerals (biotite, muscovite, hornblende). We argue that the generation of seismic lamination and anisotropy in the lower crust is a consequence of the same tectonic process, that is, ductile deformation in a warm and low-viscosity lower crust. This process takes place preferably in areas of extension. Heterogeneous rock units are formed that are generally felsic in composition, but that contain intercalations of mafic intrusions. The latter have acted as heat sources and provide the necessary seismic impedance contrasts. The observed

  3. Anoxic incubation of sediment in gas-tight plastic bags: a method for biogeochemical process studies

    DEFF Research Database (Denmark)

    Hansen, JW; Thamdrup, B.; Jørgensen, BB

    2000-01-01

    Incubation of sediment in gas-tight plastic bags is described as a method for experimental studies of biogeochemical processes. Sediment incubation in these bags allows time-course experiments to be conducted on homogenised sediment without dilution, continuous stirring, or gaseous head......-space. Consequently, bag incubations of sediment combine the advantage of low heterogeneity in slurry incubations with the more natural conditions in jar and whole-core incubations. The bag material is a transparent laminated plastic comprised of Nylon, ethylenevinyl alcohol, and polyethylene with a low permeability...... for the studied gases: O-2, CO2, H2S, CH4, N-2, H-2, and He. Estimated fluxes of biologically active gases through the plastic bag during sediment incubation were insignificant compared to rates of microbial processes and to gas concentrations in coastal sediments. An exception was CH4, for which process...

  4. Hygrothermal effects on the tensile strength of carbon/epoxy laminates with molded edges

    Directory of Open Access Journals (Sweden)

    Cândido Geraldo Maurício

    2000-01-01

    Full Text Available The interlaminar stresses are confined to a region near the free edge. Therefore, the laminate stacking sequence and the free edge finishing are some of the factors that affect the strength of the laminate and limit its life. The use of molded edges eliminates the need for trimming and machining the laminates edges thus improving productivity. However, this fabrication technique may have a detrimental effect on the laminate strength for certain stacking sequences. This effect in the presence of moisture has not been characterized. This work presents the results of a comparative study of the resistance to delamination of laminates with machined edges and molded edges. Additionally, two environmental conditions were considered: dry laminates and laminates saturated with moisture. The tensile strength of the laminates were measured and micrographs were used to analyze the microstructure of the laminates near the free edges. It is concluded that the mechanical properties of advanced composites depend on the environmental conditions and the fabrication techniques used to produce the laminates. Therefore, it is necessary to account for these factors when experimentally determining the design allowables.

  5. Ancient and Modern Laminated Composites - From the Great Pyramid of Gizeh to Y2K

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J.; Lesuer, D.R.

    2000-03-14

    Laminated metal composites have been cited in antiquity; for example, a steel laminate that may date as far back as 2750 B.C., was found in the Great Pyramid in Gizeh in 1837. A laminated shield containing bronze, tin, and gold layers, is described in detail by Homer. Well-known examples of steel laminates, such as an Adze blade, dating to 400 B.C. can be found in the literature. The Japanese sword is a laminated composite at several different levels and Merovingian blades were composed of laminated steels. Other examples are also available, including composites from China, Thailand, Indonesia, Germany, Britain, Belgium, France, and Persia. The concept of lamination to provide improved properties has also found expression in modern materials. Of particular interest is the development of laminates including high carbon and low carbon layers. These materials have unusual properties that are of engineering interest; they are similar to ancient welded Damascus steels. The manufacture of collectable knives, labeled ''welded Damascus'', has also been a focus of contemporary knifemakers. Additionally, in the Former Soviet Union, laminated composite designs have been used in engineering applications. Each of the above areas will be briefly reviewed, and some of the metallurgical principles will be described that underlie improvement in properties by lamination. Where appropriate, links are made between these property improvements and those that may have been present in ancient artifacts.

  6. Prediction of Bending Stiffness for Laminated CFRP and Its Application to Manufacturing of Roof Reinforcement

    Directory of Open Access Journals (Sweden)

    Jeong-Min Lee

    2014-05-01

    Full Text Available Recently, carbon fiber reinforced plastic (CFRP with high strength, stiffness, and lightweight is used widely in number of composite applications such as commercial aircraft, transportation, machinery, and sports equipment. Especially, it is necessary to apply lightweight materials to car components for reducing energy consumption and CO2 emissions. In case of car roof reinforcement manufactured using CFRP, superior strength and bending stiffness are required for the safety of drivers in the rollover accident. Mechanical properties of CFRP laminates are generally dependent on the stacking sequence. Therefore, research of stacking sequence using CFRP prepreg is required for superior bending stiffness. In this study, the 3-point bending FE-analysis for predicting the bending stiffness of CFRP roof reinforcement was carried out on three cases [0PW∘]5, [0PW°/0UD°/0-PW°]s, and [0UD∘]5. Material properties that the six independent elastic constants are E11, E22, G12, G23, G13, and ν12 used in FE-analysis were evaluated by the tensile test in 0°, 45°, and 90° directions. Through structural strength analysis of the automobile roof reinforcement fabricated using CFRP, the effect of the stacking sequence on the bending stiffness was evaluated and validated through experiments under the same conditions as the analysis.

  7. Modeling of Ultrasonic Testing of Woven Fabric Laminates: a Microstructure Approach

    Science.gov (United States)

    Hegemann, J.; Peiffer, A.; Van Den Broucke, B.; Baier, H.

    2009-03-01

    New complex materials constitute new challenges for the well established nondestructive ultrasonic testing (UT) methods. In aeronautic industry Carbon Fiber Reinforced Plastics (CFRP) with a high level of inner inhomogeneity are used. New construction methods of these materials lead to manufacturing problems that cannot be monitored satisfactorily yet. Therefore a consolidated knowledge of the materials and of the interactions during testing is necessary. Modeling is a promising tool to improve the understanding of physical backgrounds and thus, to reduce testing costs. In this work UT of three-dimensional models of woven fabrics on microstructure level is simulated for the first time. Therefore, model generation and simulation performance are performed separately. The inner geometry of laminates made of woven fabrics is modeled using the software module WiseTex, a textile pre-processor developed by the Catholic University of Leuven, Belgium. In these models the wave propagation is numerically calculated using the Elastodynamic Finite Integration Technique (EFIT) implemented with C++. The calculations are performed for fully orthotropic and heterogeneous media. The resolution of the investigated inner structure is in the range of micrometers depending on the frequency range. The possibility of introducing defects in the structure is shown. The influence of the interfaces between carbon fiber rovings, matrix and defects on the wave propagation is investigated. Finally comparisons of the results with experimental data are presented.

  8. ULTRASONIC INFLUENCE OF POROSITY LEVEL ON CFRP COMPOSITE LAMINATES USING RAYLEIGH PROBE WAVES

    Institute of Scientific and Technical Information of China (English)

    Je-Woong Park; Do-Jung Kim; Kwang-Hee Im; Sang-Kyu Park; David K.Hsu; Adam H.Kite; Sun-Kyu Kim; Kil-Sung Lee; In-Young Yang

    2008-01-01

    It was found that a pitch-catch signal was more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composites (damages,fiber orientation,low level porosity,ply waviness,and cracks).Both the strength and stiffness depend on the fiber orientation and porosity volume in the composites.The porosity content of a composite structure is critical to the strength and performance of the structure in general.The depth of the sampling volume where the pitch-catch signal came from was relatively shallow with the head to-head miniature Rayleigh probes,but the depth can be increased by increasing the separation distance of the transmitting and receiving probes.Also,a method was utilized to determine the porosity content of a composite lay-up by processing micrograph images of the laminate.A free software package was utilized to process micrograph images of the test sample.The results from the image processing method were compared with existing data.Beam profile was characterized in unidirectional CFRP(carbon fiber reinforced plastics) using pitch-catch Rayleigh probes and the one-sided pitch-catch technique was utilized to produce C-scan images with the aid of the automatic scanner.

  9. Fabrication of alumina films with laminated structures by ac anodization

    Directory of Open Access Journals (Sweden)

    Hiroyo Segawa

    2014-01-01

    Full Text Available Anodization techniques by alternating current (ac are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50–200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials.

  10. A high order theory for uniform and laminated plates

    Science.gov (United States)

    Lo, K. H.; Christensen, R. M.; Wu, E. M.

    1976-01-01

    A theory of plate deformation is derived which accounts for the effects of transverse shear deformation, transverse normal strain, and a nonlinear distribution of the in-plane displacements with respect to the thickness coordinate. The theory is compared with lower order plate theories through application to a particular problem involving a plate acted upon by a sinusoidal surface pressure. Comparison is also made with exact elasticity solution of this problem. It is found that when the ratio of the characteristic length of the load pattern to the plate thickness is of the order of unity, lower order theories are inadequate and the present high order theory is required to give meaningful results. Results are given for the bending of symmetric cross-ply and angle-ply laminates. Comparison with exact elasticity solutions indicates that the present plate theory is sufficiently accurate for predicting the behavior of thick laminates.

  11. Vibration suppression for laminated composite plates with arbitrary boundary conditions

    Science.gov (United States)

    Li, J.; Narita, Y.

    2013-11-01

    An analysis of vibration suppression for laminated composite plates subject to active constrained layer damping under various boundary conditions is presented. Piezoelectric-fiber-reinforced composites (PFRCs) are used as active actuators, and the effect of PFRC patches on vibration control is reported here. An analytical approach is expanded to analyze the vibration of laminated composites with arbitrary boundary conditions. By using Hamilton's principle and the Rayleigh-Ritz method, the equation of motion for the resulting electromechanical coupling system is derived. A velocity feedback control rule is employed to obtain an effective active damping in the vibration control. The orientation effect of piezoelectric fibers in the PFRC patches on the suppression of forced vibrations is also investigated.

  12. Free vibration and transverse stresses of viscoelastic laminated plates

    Institute of Scientific and Technical Information of China (English)

    Ming-yong HU; An-wen WANG

    2009-01-01

    Based on Reddy's layerwise theory, the governing equations for dynamic response of viscoelastic laminated plate are derived by using the quadratic interpolation function for displacement in the direction of plate thickness. Vibration frequencies and loss factors are calculated for flee vibration of simply supported viscoelastic sandwich plate, showing good agreement with the results in the literature. Harmonious transverse stresses can be obtained. The results show that the transverse shear stresses are the main factor to the delamination of viscoelastic laminated plate in lower-frequency free vibra-tion, and the transverse normal stress is the main one in higher-frequency free vibration. Relationship between the modulus of viscoelastic materials and transverse stress is an-alyzed. Ratio between the transverse stress's maximum value and the in-plane stress's maximum-value is obtained. The results show that the proposed method, and the adopted equations and programs are reliable.

  13. Fabrication of thermoplastics chips through lamination based techniques.

    Science.gov (United States)

    Miserere, Sandrine; Mottet, Guillaume; Taniga, Velan; Descroix, Stephanie; Viovy, Jean-Louis; Malaquin, Laurent

    2012-04-24

    In this work, we propose a novel strategy for the fabrication of flexible thermoplastic microdevices entirely based on lamination processes. The same low-cost laminator apparatus can be used from master fabrication to microchannel sealing. This process is appropriate for rapid prototyping at laboratory scale, but it can also be easily upscaled to industrial manufacturing. For demonstration, we used here Cycloolefin Copolymer (COC), a thermoplastic polymer that is extensively used for microfluidic applications. COC is a thermoplastic polymer with good chemical resistance to common chemicals used in microfluidics such as acids, bases and most polar solvents. Its optical quality and mechanical resistance make this material suitable for a large range of applications in chemistry or biology. As an example, the electrokinetic separation of pollutants is proposed in the present study.

  14. An experimental investigation of glare and restructured fiber metal laminates

    Science.gov (United States)

    Benedict, Adelina Vanessa

    Fiber Metal Laminates (FMLs) are a group of materials fabricated by bonding glass/epoxy layers within metal layers. This class of materials can provide good mechanical properties, as well as weight savings. An FML known as Glass Laminate Aluminum Reinforced Epoxy (GLARE) was studied. An experimental investigation comprising of microscopy and tensile testing was carried out using different grades of GLARE. Microscopy revealed the construction details of GLARE, while tensile testing provided means of measuring and analyzing its stress-strain responses. Next, different metal surface pretreatment methods were explored. These included sandblasting, Phosphoric Acid Anodizing (PAA), and AC-130 Sol-Gel treatment. Woven S-2 glass, an epoxy adhesive, and aluminum alloy sheet metal were used to fabricate restructured FMLs using time and cost effective procedures. Additional microscopy and tensile testing allowed for comparisons with GLARE and aircraft grade aluminum alloys. The restructured FMLs showed similar behaviors to GLARE with potential significant improvements in fabrication efficiency.

  15. Protein footprinting by pyrite shrink-wrap laminate.

    Science.gov (United States)

    Leser, Micheal; Pegan, Jonathan; El Makkaoui, Mohammed; Schlatterer, Joerg C; Khine, Michelle; Law, Matt; Brenowitz, Michael

    2015-04-07

    The structure of macromolecules and their complexes dictate their biological function. In "footprinting", the solvent accessibility of the residues that constitute proteins, DNA and RNA can be determined from their reactivity to an exogenous reagent such as the hydroxyl radical (·OH). While ·OH generation for protein footprinting is achieved by radiolysis, photolysis and electrochemistry, we present a simpler solution. A thin film of pyrite (cubic FeS2) nanocrystals deposited onto a shape memory polymer (commodity shrink-wrap film) generates sufficient ·OH via Fenton chemistry for oxidative footprinting analysis of proteins. We demonstrate that varying either time or H2O2 concentration yields the required ·OH dose-oxidation response relationship. A simple and scalable sample handling protocol is enabled by thermoforming the "pyrite shrink-wrap laminate" into a standard microtiter plate format. The low cost and malleability of the laminate facilitates its integration into high throughput screening and microfluidic devices.

  16. Axisymmetric buckling of laminated thick annular spherical cap

    Science.gov (United States)

    Dumir, P. C.; Dube, G. P.; Mallick, A.

    2005-03-01

    Axisymmetric buckling analysis is presented for moderately thick laminated shallow annular spherical cap under transverse load. Buckling under central ring load and uniformly distributed transverse load, applied statically or as a step function load is considered. The central circular opening is either free or plugged by a rigid central mass or reinforced by a rigid ring. Annular spherical caps have been analysed for clamped and simple supports with movable and immovable inplane edge conditions. The governing equations of the Marguerre-type, first order shear deformation shallow shell theory (FSDT), formulated in terms of transverse deflection w, the rotation ψ of the normal to the midsurface and the stress function Φ, are solved by the orthogonal point collocation method. Typical numerical results for static and dynamic buckling loads for FSDT are compared with the classical lamination theory and the dependence of the effect of the shear deformation on the thickness parameter for various boundary conditions is investigated.

  17. Free Vibration of Laminated Composite Hypar Shell Roofs with Cutouts

    Directory of Open Access Journals (Sweden)

    Sarmila Sahoo

    2011-01-01

    Full Text Available Use of laminated composites in civil engineering structural components including shell roofs is increasing day by day due to their light weight, high specific strength, and stiffness properties. In the present paper, laminated composite hypar shell (hyperbolic paraboloidal shells bounded by straight edges roofs with cutouts are analyzed for their free vibration characteristics using finite element method. An eight-noded curved shell element is used for modeling the shell. Specific numerical problems of earlier investigators are solved to compare their results with the present formulation. A number of problems are further solved where the size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints. The results are furnished in the form of figures and tables. The results are examined thoroughly to arrive at some meaningful conclusions useful to designers.

  18. Asymptotic analysis of laminated plates and shallow shells

    Science.gov (United States)

    Skoptsov, K. A.; Sheshenin, S. V.

    2011-02-01

    It was noted long ago [1] that the material strength theory develops both by improving computational methods and by widening the physical foundations. In the present paper, we develop a computational technique based on asymptotic methods, first of all, on the homogenization method [2, 3]. A modification of the homogenization method for plates periodic in the horizontal projection was proposed in [4], where the bending of a homogeneous plate with periodically repeating inhomogeneities on its surface was studied. A more detailed asymptotic analysis of elastic plates periodic in the horizontal projection can be found, e.g., in [5, 6]. In [6], three asymptotic approximations were considered, local problems on the periodicity cell were obtained for them, and the solvability of these problems was proved. In [7], it was shown that the techniques developed for plates periodic in the horizontal projection can also be used for laminated plates. In [7], this was illustrated by an example of asymptotic analysis of an isotropic plate symmetric with respect to the midplane. In what follows, these methods are generalized to the case of combined bending and extension of a longitudinal laminated plate up to the third approximation, which permits finding all components of the stress tensor. The study of the plate behavior is based on the method of homogenization of the three-dimensional problem of linear elasticity and does not use any hypotheses. It turns out that the Kirchhoff-Love hypothesis for the entire packet of layers is simply a consequence of the method in the zeroth approximation, and the bending stresses corresponding to the classical theory of laminated plates [8] are obtained in the first approximation. The successive approximations describe the behavior of the normal and the stress more precisely. In the present paper, the results obtained in [7] are refined, and the asymptotic solution is compared with the direct analysis of a laminated plate by the finite

  19. Estimation of piezoelastic and viscoelastic properties in laminated structures

    DEFF Research Database (Denmark)

    Araujo, A. L.; Soares, C. M. Mota; Herskovits, J.;

    2009-01-01

    An inverse method for material parameter estimation of elastic, piezoelectric and viscoelastic laminated plate structures is presented. The method uses a gradient based optimization technique in order to solve the inverse problem, through minimization of an error functional which expresses...... the difference between experimental free vibration data and corresponding numerical data produced by a finite element model. The complex modulus approach is used to model the viscoelastic material behavior, assuming hysteretic type damping. Applications that illustrate the influence of adhesive material...

  20. Fiber Metal Laminates Made by the VARTM Process

    Science.gov (United States)

    Jensen, Brian J.; Cano, Roberto J.; Hales, Stephen J.; Alexa, Joel A.; Weiser, Erik S.; Loos, Alfred; Johnson, W.S.

    2009-01-01

    Fiber metal laminates (FMLs) are multi-component materials utilizing metals, fibers and matrix resins. Tailoring their properties is readily achievable by varying one or more of these components. Established FMLs like GLARE utilize aluminum foils, glass fibers and epoxy matrices and are manufactured using an autoclave. Two new processes for manufacturing FMLs using vacuum assisted resin transfer molding (VARTM) have been developed at the NASA Langley Research Center (LaRC). A description of these processes and the resulting FMLs are presented.