WorldWideScience

Sample records for plastic dynamics hibler

  1. Synchronization in multicell systems exhibiting dynamic plasticity

    Indian Academy of Sciences (India)

    C Suguna; Somdatta Sinha

    2008-08-01

    Collective behaviour in multicell systems arises from exchange of chemicals/signals between cells and may be different from their intrinsic behaviour. These chemicals are products of regulated networks of biochemical pathways that underlie cellular functions, and can exhibit a variety of dynamics arising from the non-linearity of the reaction processes. We have addressed the emergent synchronization properties of a ring of cells, diffusively coupled by the end product of an intracellular model biochemical pathway exhibiting non-robust birhythmic behaviour. The aim is to examine the role of intercellular interaction in stabilizing the non-robust dynamics in the emergent collective behaviour in the ring of cells. We show that, irrespective of the inherent frequencies of individual cells, depending on the coupling strength, the collective behaviour does synchronize to only one type of oscillations above a threshold number of cells. Using two perturbation analyses, we also show that this emergent synchronized dynamical state is fairly robust under external perturbations. Thus, the inherent plasticity in the oscillatory phenotypes in these model cells may get suppressed to exhibit collective dynamics of a single type in a multicell system, but environmental influences can sometimes expose this underlying plasticity in its collective dynamics.

  2. Dynamics and plasticity of spinal locomotor circuits.

    Science.gov (United States)

    El Manira, Abdeljabbar

    2014-12-01

    Spinal circuits generate coordinated locomotor movements. These hardwired circuits are supplemented with neuromodulation that provide the necessary flexibility for animals to move smoothly through their environment. This review will highlight some recent insights gained in understanding the functional dynamics and plasticity of the locomotor circuits. First the mechanisms governing the modulation of the speed of locomotion will be discussed. Second, advantages of the modular organization of the locomotor networks with multiple circuits engaged in a task-dependent manner will be examined. Finally, the neuromodulation and the resulting plasticity of the locomotor circuits will be summarized with an emphasis on endocannabinoids and nitric oxide. The intention is to extract general principles of organization and discuss some onto-genetic and phylogenetic divergences.

  3. Unusual predator-prey dynamics under reciprocal phenotypic plasticity.

    Science.gov (United States)

    Mougi, Akihiko

    2012-07-21

    Recent theories and experiments have shown that plasticity, such as an inducible defense or an inducible offense in predator-prey interactions, strongly influences the stability of the population dynamics. However, such plastic adaptation has not been expected to cause unusual dynamics such as antiphase cycles, which occur in experimental predator-prey systems with evolutionary adaptation in the defensive trait of prey. Here I show that antiphase cycles and cryptic cycles (a large population fluctuation in one species with almost no change in the population of the other species) can occur in a predator-prey system when both member species can change their phenotypes through adaptive plasticity (inducible defenses and offenses). I consider a familiar type of predator-prey system in which both species can change their morphology or behavior through phenotypic plasticity. The plasticity, that is, the ability to change between distinct phenotypes, is assumed to occur so as to maximize their fitness. I examined how the reciprocal adaptive plasticity influences the population dynamics. The results show that unusual dynamics such as antiphase population cycles and cryptic cycles can occur when both species show inducible plasticity. The unusual dynamics are particularly likely to occur when the carrying capacity of the prey is small (the density dependence of the prey's growth is strong). The unusual predator-prey dynamics may be induced by phenotypic plasticity as long as the phenotypic change occurs to maximize fitness.

  4. Equivalent Plastic Strain Gradient Plasticity with Grain Boundary Hardening and Comparison to Discrete Dislocation Dynamics

    CERN Document Server

    Bayerschen, E; Wulfinghoff, S; Weygand, D; Böhlke, T

    2015-01-01

    The gradient crystal plasticity framework of Wulfinghoff et al. [53] incorporating an equivalent plastic strain and grain boundary yielding, is extended with additional grain boundary hardening. By comparison to averaged results from many discrete dislocation dynamics (DDD) simulations of an aluminum type tricrystal under tensile loading, the new hardening parameter in the continuum model is calibrated. It is shown that although the grain boundaries (GBs) in the discrete simulations are impenetrable, an infinite GB yield strength corresponding to microhard GB conditions, is not applicable in the continuum model. A combination of a finite GB yield strength with an isotropic bulk Voce hardening relation alone also fails to model the plastic strain profiles obtained by DDD. Instead, a finite GB yield strength in combination with GB hardening depending on the equivalent plastic strain at the GBs is shown to give a better agreement to DDD results. The differences in the plastic strain profiles obtained in DDD simu...

  5. Plastic instabilities in statically and dynamically loaded spherical vessels

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, Thomas A [Los Alamos National Laboratory; Rodriguez, Edward A [Los Alamos National Laboratory

    2010-01-01

    Significant changes were made in design limits for pressurized vessels in the 2007 version of the ASME Code (Section VIII, Div. 3) and 2008 and 2009 Addenda. There is now a local damage-mechanics based strain-exhaustion limit as well as the well-known global plastic collapse limit. Moreover, Code Case 2564 (Section VIII, Div. 3) has recently been approved to address impulsively loaded vessels. It is the purpose of this paper to investigate the plastic collapse limit as it applies to dynamically loaded spherical vessels. Plastic instabilities that could potentially develop in spherical shells under symmetric loading conditions are examined for a variety of plastic constitutive relations. First, a literature survey of both static and dynamic instabilities associated with spherical shells is presented. Then, a general plastic instability condition for spherical shells subjected to displacement controlled and impulsive loading is given. This instability condition is evaluated for six plastic and visco-plastic constitutive relations. The role of strain-rate sensitivity on the instability point is investigated. Calculations for statically and dynamically loaded spherical shells are presented, illustrating the formation of instabilities as well as the role of imperfections. Conclusions of this work are that there are two fundamental types of instabilities associated with failure of spherical shells. In the case of impulsively loaded vessels, where the pulse duration is short compared to the fundamental period of the structure, one instability type is found not to occur in the absence of static internal pressure. Moreover, it is found that the specific role of strain-rate sensitivity on the instability strain depends on the form of the constitutive relation assumed.

  6. Recrystallization kinetics of nanostructured copper processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Pantleon, Wolfgang;

    2012-01-01

    The recrystallization kinetics of nanostructured copper samples processed by dynamic plastic deformation was investigated by electron backscatter diffraction. It was found that the evolution of the recrystallized volume fraction as a function of annealing time has a very low slope (n=0.37) when...

  7. Dislocation dynamics simulations of plasticity at small scales

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Caizhi [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  8. Green’s function molecular dynamics meets discrete dislocation plasticity

    Science.gov (United States)

    Venugopalan, Syam P.; Müser, Martin H.; Nicola, Lucia

    2017-09-01

    Metals deform plastically at the asperity level when brought in contact with a counter body even when the nominal contact pressure is small. Modeling the plasticity of solids with rough surfaces is challenging due to the multi-scale nature of surface roughness and the length-scale dependence of plasticity. While discrete-dislocation plasticity (DDP) simulations capture size-dependent plasticity by keeping track of the motion of individual dislocations, only simple two-dimensional surface geometries have so far been studied with DDP. The main computational bottleneck in contact problems modeled by DDP is the calculation of the dislocation image fields. We address this issue by combining two-dimensional DDP with Green’s function molecular dynamics. The resulting method allows for an efficient boundary-value-method based treatment of elasticity in the presence of dislocations. We demonstrate that our method captures plasticity quantitatively from single to many dislocations and that it scales more favorably with system size than conventional methods. We also derive the relevant Green’s functions for elastic slabs of finite width allowing arbitrary boundary conditions on top and bottom surface to be simulated.

  9. Shaping the learning curve: epigenetic dynamics in neural plasticity

    Directory of Open Access Journals (Sweden)

    Zohar Ziv Bronfman

    2014-07-01

    Full Text Available A key characteristic of learning and neural plasticity is state-dependent acquisition dynamics reflected by the non-linear learning curve that links increase in learning with practice. Here we propose that the manner by which epigenetic states of individual cells change during learning contributes to the shape of the neural and behavioral learning curve. We base our suggestion on recent studies showing that epigenetic mechanisms such as DNA methylation, histone acetylation and RNA-mediated gene regulation are intimately involved in the establishment and maintenance of long-term neural plasticity, reflecting specific learning-histories and influencing future learning. Our model, which is the first to suggest a dynamic molecular account of the shape of the learning curve, leads to several testable predictions regarding the link between epigenetic dynamics at the promoter, gene-network and neural-network levels. This perspective opens up new avenues for therapeutic interventions in neurological pathologies.

  10. Microglia: Dynamic Mediators of Synapse Development and Plasticity.

    Science.gov (United States)

    Wu, Yuwen; Dissing-Olesen, Lasse; MacVicar, Brian A; Stevens, Beth

    2015-10-01

    Neuronal communication underlies all brain activity and the genesis of complex behavior. Emerging research has revealed an unexpected role for immune molecules in the development and plasticity of neuronal synapses. Moreover microglia, the resident immune cells of the brain, express and secrete immune-related signaling molecules that alter synaptic transmission and plasticity in the absence of inflammation. When inflammation does occur, microglia modify synaptic connections and synaptic plasticity required for learning and memory. Here we review recent findings demonstrating how the dynamic interactions between neurons and microglia shape the circuitry of the nervous system in the healthy brain and how altered neuron-microglia signaling could contribute to disease. Copyright © 2015. Published by Elsevier Ltd.

  11. Studying plastic shear localization in aluminum alloys under dynamic loading

    Science.gov (United States)

    Bilalov, D. A.; Sokovikov, M. A.; Chudinov, V. V.; Oborin, V. A.; Bayandin, Yu. V.; Terekhina, A. I.; Naimark, O. B.

    2016-12-01

    An experimental and theoretical study of plastic shear localization mechanisms observed under dynamic deformation using the shear-compression scheme on a Hopkinson-Kolsky bar has been carried out using specimens of AMg6 alloy. The mechanisms of plastic shear instability are associated with collective effects in the microshear ensemble in spatially localized areas. The lateral surface of the specimens was photographed in the real-time mode using a CEDIP Silver 450M high-speed infrared camera. The temperature distribution obtained at different times allowed us to trace the evolution of the localization of the plastic strain. Based on the equations that describe the effect of nonequilibrium transitions on the mechanisms of structural relaxation and plastic flow, numerical simulation of plastic shear localization has been performed. A numerical experiment relevant to the specimen-loading scheme was carried out using a system of constitutive equations that reflect the part of the structural relaxation mechanisms caused by the collective behavior of microshears with the autowave modes of the evolution of the localized plastic flow. Upon completion of the experiment, the specimens were subjected to microstructure analysis using a New View-5010 optical microscope-interferometer. After the dynamic deformation, the constancy of the Hurst exponent, which reflects the relationship between the behavior of defects and roughness induced by the defects on the surfaces of the specimens is observed in a wider range of spatial scales. These investigations revealed the distinctive features in the localization of the deformation followed by destruction to the script of the adiabatic shear. These features may be caused by the collective multiscale behavior of defects, which leads to a sharp decrease in the stress-relaxation time and, consequently, a localized plastic flow and generation of fracture nuclei in the form of adiabatic shear. Infrared scanning of the localization zone of the

  12. Dislocation dynamics: simulation of plastic flow of bcc metals

    Energy Technology Data Exchange (ETDEWEB)

    Lassila, D H

    2001-02-20

    This is the final report for the LDRD strategic initiative entitled ''Dislocation Dynamic: Simulation of Plastic Flow of bcc Metals'' (tracking code: 00-SI-011). This report is comprised of 6 individual sections. The first is an executive summary of the project and describes the overall project goal, which is to establish an experimentally validated 3D dislocation dynamics simulation. This first section also gives some information of LLNL's multi-scale modeling efforts associated with the plasticity of bcc metals, and the role of this LDRD project in the multiscale modeling program. The last five sections of this report are journal articles that were produced during the course of the FY-2000 efforts.

  13. SOME IMPROVEMENTS IN VISCO-PLASTIC MODEL CONSIDERING DYNAMIC RECRYSTALLIZATION

    Institute of Scientific and Technical Information of China (English)

    QU Jie; JIN Quanlin; XU Bingye

    2004-01-01

    Some improvements in Jin's thermal visco-plastic constitutive model considering dynamic recrysytallization is presented in this paper. By introducing the influence of the strain rate on the mobility of dynamic recovery, the improved model can be more smoothly applied to numerical simulation of material flow behaviour and microstructure prediction during hot working. Another improvement is to consider the accumulated dislocation energy in the newly recrystallized grains as a resistance to the driving force of dynamic recrystallization volume. This improvement makes the predicted results of dynamic recrystallization progress agree better with the actual physical process.Finally, some numerical examples are given to show the advantages of the improved model and the ability to predict the dynamic recrystallization.

  14. Mitochondrial dynamics in neuronal injury, development and plasticity.

    Science.gov (United States)

    Flippo, Kyle H; Strack, Stefan

    2017-02-15

    Mitochondria fulfill numerous cellular functions including ATP production, Ca(2+) buffering, neurotransmitter synthesis and degradation, ROS production and sequestration, apoptosis and intermediate metabolism. Mitochondrial dynamics, a collective term for the processes of mitochondrial fission, fusion and transport, governs mitochondrial function and localization within the cell. Correct balance of mitochondrial dynamics is especially important in neurons as mutations in fission and fusion enzymes cause peripheral neuropathies and impaired development of the nervous system in humans. Regulation of mitochondrial dynamics is partly accomplished through post-translational modification of mitochondrial fission and fusion enzymes, in turn influencing mitochondrial bioenergetics and transport. The importance of post-translational regulation is highlighted by numerous neurodegenerative disorders associated with post-translational modification of the mitochondrial fission enzyme Drp1. Not surprisingly, mitochondrial dynamics also play an important physiological role in the development of the nervous system and synaptic plasticity. Here, we highlight recent findings underlying the mechanisms and regulation of mitochondrial dynamics in relation to neurological disease, as well as the development and plasticity of the nervous system. © 2017. Published by The Company of Biologists Ltd.

  15. Accurate direct Eulerian simulation of dynamic elastic-plastic flow

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James R [Los Alamos National Laboratory; Walter, John W [Los Alamos National Laboratory

    2009-01-01

    The simulation of dynamic, large strain deformation is an important, difficult, and unsolved computational challenge. Existing Eulerian schemes for dynamic material response are plagued by unresolved issues. We present a new scheme for the first-order system of elasto-plasticity equations in the Eulerian frame. This system has an intrinsic constraint on the inverse deformation gradient. Standard Godunov schemes do not satisfy this constraint. The method of Flux Distributions (FD) was devised to discretely enforce such constraints for numerical schemes with cell-centered variables. We describe a Flux Distribution approach that enforces the inverse deformation gradient constraint. As this approach is new and novel, we do not yet have numerical results to validate our claims. This paper is the first installment of our program to develop this new method.

  16. Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity.

    Science.gov (United States)

    Hlushchenko, Iryna; Koskinen, Mikko; Hotulainen, Pirta

    2016-09-01

    The majority of the postsynaptic terminals of excitatory synapses in the central nervous system exist on small bulbous structures on dendrites known as dendritic spines. The actin cytoskeleton is a structural element underlying the proper development and morphology of dendritic spines. Synaptic activity patterns rapidly change actin dynamics, leading to morphological changes in dendritic spines. In this mini-review, we will discuss recent findings on neuronal maturation and synaptic plasticity-induced changes in the dendritic spine actin cytoskeleton. We propose that actin dynamics in dendritic spines decrease through actin filament crosslinking during neuronal maturation. In long-term potentiation, we evaluate the model of fast breakdown of actin filaments through severing and rebuilding through polymerization and later stabilization through crosslinking. We will discuss the role of Ca(2+) in long-term depression, and suggest that actin filaments are dissolved through actin filament severing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity.

    Science.gov (United States)

    Bertholet, A M; Delerue, T; Millet, A M; Moulis, M F; David, C; Daloyau, M; Arnauné-Pelloquin, L; Davezac, N; Mils, V; Miquel, M C; Rojo, M; Belenguer, P

    2016-06-01

    Mitochondria are dynamic organelles that continually move, fuse and divide. The dynamic balance of fusion and fission of mitochondria determines their morphology and allows their immediate adaptation to energetic needs, keeps mitochondria in good health by restoring or removing damaged organelles or precipitates cells in apoptosis in cases of severe defects. Mitochondrial fusion and fission are essential in mammals and their disturbances are associated with several diseases. However, while mitochondrial fusion/fission dynamics, and the proteins that control these processes, are ubiquitous, associated diseases are primarily neurological disorders. Accordingly, inactivation of the main actors of mitochondrial fusion/fission dynamics is associated with defects in neuronal development, plasticity and functioning, both ex vivo and in vivo. Here, we present the central actors of mitochondrial fusion and fission and review the role of mitochondrial dynamics in neuronal physiology and pathophysiology. Particular emphasis is placed on the three main actors of these processes i.e. DRP1,MFN1-2, and OPA1 as well as on GDAP1, a protein of the mitochondrial outer membrane preferentially expressed in neurons. This article is part of a Special Issue entitled: Mitochondria & Brain.

  18. DMPD: Developmental plasticity of lymphocytes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18472258 Developmental plasticity of lymphocytes. Cobaleda C, Busslinger M. Curr Op...in Immunol. 2008 Apr;20(2):139-48. Epub 2008 May 9. (.png) (.svg) (.html) (.csml) Show Developmental plastic...ity of lymphocytes. PubmedID 18472258 Title Developmental plasticity of lymphocytes. Authors Cobaleda C, Bus

  19. Key Questions on the Role of Phenotypic Plasticity in Eco-Evolutionary Dynamics.

    Science.gov (United States)

    Hendry, Andrew P

    2016-01-01

    Ecology and evolution have long been recognized as reciprocally influencing each other, with recent research emphasizing how such interactions can occur even on very short (contemporary) time scales. Given that these interactions are mediated by organismal phenotypes, they can be variously shaped by genetic variation, phenotypic plasticity, or both. I here address 8 key questions relevant to the role of plasticity in eco-evolutionary dynamics. Focusing on empirical evidence, especially from natural populations, I offer the following conclusions. 1) Plasticity is--not surprisingly--sometimes adaptive, sometimes maladaptive, and sometimes neutral. 2) Plasticity has costs and limits but these constraints are highly variable, often weak, and hard to detect. 3) Variable environments favor the evolution of increased trait plasticity, which can then buffer fitness/performance (i.e., tolerance). 4) Plasticity sometimes aids colonization of new environments (Baldwin Effect) and responses to in situ environmental change. However, plastic responses are not always necessary or sufficient in these contexts. 5) Plasticity will sometimes promote and sometimes constrain genetic evolution. 6) Plasticity will sometimes help and sometimes hinder ecological speciation but, at present, empirical tests are limited. 7) Plasticity can show considerable evolutionary change in contemporary time, although the rates of this reaction norm evolution are highly variable among taxa and traits. 8) Plasticity appears to have considerable influences on ecological dynamics at the community and ecosystem levels, although many more studies are needed. In summary, plasticity needs to be an integral part of any conceptual framework and empirical investigation of eco-evolutionary dynamics.

  20. Dynamic learning and memory, synaptic plasticity and neurogenesis: An update

    Directory of Open Access Journals (Sweden)

    Ales eStuchlik

    2014-04-01

    Full Text Available Mammalian memory is the result of the interaction of millions of neurons in the brain and their coordinated activity. Candidate mechanisms for memory are synaptic plasticity changes, such as long-term potentiation (LTP. LTP is essentially an electrophysiological phenomenon manifested in hours-lasting increase on postsynaptic potentials after synapse tetanization. It is thought to ensure long-term changes in synaptic efficacy in distributed networks, leading to persistent changes in the behavioral patterns, actions and choices, which are often interpreted as the retention of information, i.e., memory. Interestingly, new neurons are born in the mammalian brain and adult hippocampal neurogenesis is proposed to provide a substrate for dynamic and flexible aspects of behavior such as pattern separation, prevention of interference, flexibility of behavior and memory resolution. This work provides a brief review on the memory and involvement of LTP and adult neurogenesis in memory phenomena.

  1. Circuit reactivation dynamically regulates synaptic plasticity in neocortex

    Science.gov (United States)

    Kruskal, Peter B.; Li, Lucy; Maclean, Jason N.

    2013-10-01

    Circuit reactivations involve a stereotyped sequence of neuronal firing and have been behaviourally linked to memory consolidation. Here we use multiphoton imaging and patch-clamp recording, and observe sparse and stereotyped circuit reactivations that correspond to UP states within active neurons. To evaluate the effect of the circuit on synaptic plasticity, we trigger a single spike-timing-dependent plasticity (STDP) pairing once per circuit reactivation. The pairings reliably fall within a particular epoch of the circuit sequence and result in long-term potentiation. During reactivation, the amplitude of plasticity significantly correlates with the preceding 20-25 ms of membrane depolarization rather than the depolarization at the time of pairing. This circuit-dependent plasticity provides a natural constraint on synaptic potentiation, regulating the inherent instability of STDP in an assembly phase-sequence model. Subthreshold voltage during endogenous circuit reactivations provides a critical informative context for plasticity and facilitates the stable consolidation of a spatiotemporal sequence.

  2. Contact dynamics of elasto-plastic thin beams simulated via absolute nodal coordinate formulation

    Institute of Scientific and Technical Information of China (English)

    Qing-Tao Wang; Qiang Tian; Hai-Yan Hu

    2016-01-01

    Under the frame of multibody dynamics, the contact dynamics of elasto-plastic spatial thin beams is numerically studied by using the spatial thin beam elements of absolute nodal coordinate formulation (ANCF). The inter-nal force of the elasto-plastic spatial thin beam element is derived under the assumption that the plastic strain of the beam element depends only on its longitudinal deformation. A new body-fixed local coordinate system is introduced into the spatial thin beam element of ANCF for efficient con-tact detection in the contact dynamics simulation. The linear isotropic hardening constitutive law is used to describe the elasto-plastic deformation of beam material, and the classical return mapping algorithm is adopted to evaluate the plastic strains. A multi-zone contact approach of thin beams previ-ously proposed by the authors is also introduced to detect the multiple contact zones of beams accurately, and the penalty method is used to compute the normal contact force of thin beams in contact. Four numerical examples are given to demonstrate the applicability and effectiveness of the pro-posed elasto-plastic spatial thin beam element of ANCF for flexible multibody system dynamics.

  3. The Plastic and Liquid Phases of CCl$_3$Br Studied by Molecular Dynamics Simulations

    CERN Document Server

    Caballero, Nirvana; Carignano, Marcelo; Serra, Pablo

    2013-01-01

    We present a molecular dynamics study of the liquid and plastic crystalline phases of CCl$_3$Br. We investigated the short-range orientational order using a recently developed classification method and we found that both phases behave in a very similar way. The only differences occur at very short molecular separations, which are shown to be very rare. The rotational dynamics was explored using time correlation functions of the molecular bonds. We found that the relaxation dynamics corresponds to an isotropic diffusive mode for the liquid phase, but departs from this behavior as the temperature is decreased and the system transitions into the plastic phase.

  4. Dynamic phenotypic plasticity in photosynthesis and biomass patterns in Douglas-fir seedlings

    Science.gov (United States)

    A. C. Koehn; G. I. McDonald; D. L. Turner; D. L. Adams

    2010-01-01

    As climate changes, understanding the mechanisms long-lived conifers use to adapt becomes more important. Light gradients within a forest stand vary constantly with the changes in climate, and the minimum light required for survival plays a major role in plant community dynamics. This study focuses on the dynamic plasticity of Douglas-fir (Pseudotsuga menziesii var....

  5. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation.

    Science.gov (United States)

    Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.

  6. A viscoelastic-plastic constitutive model with Mohr-Coulomb yielding criterion for sea ice dynamics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new viscoelastic-plastic (VEP) constitutive model for sea ice dynamics was developed based on continuum mechanics. This model consists of four components: Kelvin-Vogit viscoelastic model, Mohr-Coulomb yielding criterion, associated normality flow rule for plastic rehololgy, and hydrostatic pressure. The numerical simulations for ice motion in an idealized rectangular basin were made using smoothed particle hydrodynamics (SPH) method, and compared with the analytical solution as well as those based on the modified viscous plastic(VP) model and static ice jam theory. These simulations show that the new VEP modelcan simulate ice dynamics accurately. The new constitutive model was further applied to simulate ice dynamics of the Bohai Sea and compared with the traditional VP, and modified VP models. The results of the VEP model are compared better with the satellite remote images, and the simulated ice conditions in the JZ20-2 oil platform area were more reasonable.

  7. Molecular dynamics simulation of the plastic behavior anisotropy of shock-compressed monocrystal nickel

    Science.gov (United States)

    Chen, Ya-Zhou; Zhou, Liu-Cheng; He, Wei-Feng; Sun, Yu; Li, Ying-Hong; Jiao, Yang; Luo, Si-Hai

    2017-01-01

    Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and [1̅10] directions.

  8. Dynamic Elasto-Plastic Model for Reinforced Concrete Members

    NARCIS (Netherlands)

    Van der Veen, C.; Blaauwendraad. J.

    1983-01-01

    It is becoming increasingly necessary to investigate the strength of reinforced concrete structures subjected to dynamic loading. Experience and knowledge relating to the non-linear dynamic behaviour of such structures is still limited, however. Attempts to solve this type of problems with the aid o

  9. Molecular Dynamics Study on the Distributed Plasticity of Penta-twinned Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Sangryun eLee

    2015-08-01

    Full Text Available The distributed plasticity of pentatwinned silver nanowires has been revealed in recent computational and experimental studies. However, the molecular dynamics (MD simulations have not considered the imperfections seen in experiments, such as irregular surface undulations, the high aspect ratio of nanowires, and the stiffness of loading devices. In this work, we report the effect of such inherent imperfections on the distributed plasticity of penta-twinned silver nanowires in MD simulations. We find that the distributed plasticity occurs for nanowires having undulations that are less than 5% of the nanowire diameter. The elastic stress field induced by a stacking fault promotes the nucleation of successive stacking fault decahedrons (SFDs at long distance, making it hard for necking to occur. By comparing the tensile simulation using the steered molecular dynamics (SMD method with the tensile simulation with periodic boundary condition (PBC, we show that a sufficiently long nanowire must be used in the constant strain rate simulations with PBC, because the plastic displacement burst caused by the SFD formation induces compressive stress, promoting the removal of other SFDs. Our finding can serve as a guidance for the molecular dynamics simulation of crystalline materials with large plastic deformation, and in the design of mechanically reliable devices based on silver nanowires.

  10. PLASTICITY OF SELECTED METALLIC MATERIALS IN DYNAMIC DEFORMATION CONDITIONS

    OpenAIRE

    2014-01-01

    Characteristics of a modernized flywheel machine has been presented in the paper. The laboratory stand enables to perform dynamic tensile tests and impact bending with a linear velocity of the enforcing element in the range of 5÷40 m/s. A new data acquisition system, based on the tensometric sensors, allows for significant qualitative improvement of registered signals. Some preliminary dynamic forming tests were performed for the selected group of metallic materials. Subsequent microstruct...

  11. Effect of dynamic plastic deformation on microstructure and annealing behaviour of modified 9Cr-1Mo steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg V.; Tao, N. R.;

    2015-01-01

    The effect of dynamic plastic deformation on the microstructure of a modified 9Cr - 1Mo steel has been investigated in comparison with the effect of quasi- static compression. It is found that the boundary spacing after dynamic plastic deformation is smaller and the hardness is higher than those ...

  12. ELASTIC-PLASTIC DYNAMIC RESPONSE OF A CANTILEVER BEAM SUBJECTED TO OBLIQUE IMPACT AT ITS TIP

    Institute of Scientific and Technical Information of China (English)

    Xi Feng; Liu Feng

    2005-01-01

    By employing large deformation governing equations expressed in the form of finite difference, the dynamic responses of an elastic, perfectly plastic cantilever subjected to an oblique impact at its tip was numerically studied. Through analyzing the instantaneous distribution of the yield function (ψ= |M/Mo|+ (N/No)2), bending moment and axial force during the early stage of the response, the elastic-plastic deformation mechanism and the influence of axial component of an oblique impact on the dynamic response of a cantilever beam were discussed. The present analysis shows that the deformation mechanism of an elastic-plastic cantilever subjected to an obtained by using the rigid, perfectly plastic approach, the mode of shrinking plastic region that occurred instantly after the oblique impact and the mode of stationary hinge were both confirmed.The primary features of the deformation mechanism are captured by both analysis methods. It has also been found that the beam's deformation is mainly controlled by the axial component of the oblique impact in the early phase of the dynamic response, the deformation mechanism is obviously different from the case of a transverse impact. With further development of the response,the axial component attenuates rapidly and gives negligible contribution to the yielding of the beam cross-section. At the same time, the bending moments along the cantilever develop gradually and dominate the beam's deformation. The numerical results indicate that the mass, impact speed and oblique angle are the important factors that influence the elastic-plastic dynamic response of a cantilever beam.

  13. Evaluation of the inelastic heat fraction in the context of microstructure supported dynamic plasticity modelling

    OpenAIRE

    Longère, Patrice; Dragon, A. André

    2008-01-01

    Evaluation of the inelastic heat fraction in the context of microstructure supported dynamic plasticity modelling correspondence: Corresponding author. (Longere, Patrice) (Longere, Patrice) (Dragon, A. Andre) Laboratoire de Genie Mecanique et Materiaux ? Universite de Bretagne Sud ? Rue de Saint-Maude - BP 92116--> , 56321 LORIENT Cedex--> - FRANCE (Longere, Patrice)...

  14. An Earth multi-body system elasticity and plasticity dynamics model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qingxian; BI Siwen; GONG Huili

    2006-01-01

    Research on the elasticity and plasticity dynamics of the Earth multi-body system, including the Earth multi-body system stratum-block's equivalent inertia force system and generalized inertia force, the Earth multi-body system stratum-block's equivalent inertia force system expressed with partial velocity and partial palstance, and Earth multi-body system generalized inertia force expressed with partial velocity and partial palstance. This research provides a theoretical foundation for further investigation of Earth multi-body dynamics.

  15. PLASTICITY OF SELECTED METALLIC MATERIALS IN DYNAMIC DEFORMATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jacek PAWLICKI

    2014-06-01

    Full Text Available Characteristics of a modernized flywheel machine has been presented in the paper. The laboratory stand enables to perform dynamic tensile tests and impact bending with a linear velocity of the enforcing element in the range of 5÷40 m/s. A new data acquisition system, based on the tensometric sensors, allows for significant qualitative improvement of registered signals. Some preliminary dynamic forming tests were performed for the selected group of metallic materials. Subsequent microstructural examinations and identification of the fracture type enabled to describe a correlation between strain rate, strain and microstructure.

  16. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  17. Source properties of dynamic rupture pulses with off-fault plasticity

    KAUST Repository

    Gabriel, A.-A.

    2013-08-01

    Large dynamic stresses near earthquake rupture fronts may induce an inelastic response of the surrounding materials, leading to increased energy absorption that may affect dynamic rupture. We systematically investigate the effects of off-fault plastic energy dissipation in 2-D in-plane dynamic rupture simulations under velocity-and-state-dependent friction with severe weakening at high slip velocity. We find that plasticity does not alter the nature of the transitions between different rupture styles (decaying versus growing, pulse-like versus crack-like, and subshear versus supershear ruptures) but increases their required background stress and nucleation size. We systematically quantify the effect of amplitude and orientation of background shear stresses on the asymptotic properties of self-similar pulse-like ruptures: peak slip rate, rupture speed, healing front speed, slip gradient, and the relative contribution of plastic strain to seismic moment. Peak slip velocity and rupture speed remain bounded. From fracture mechanics arguments, we derive a nonlinear relation between their limiting values, appropriate also for crack-like and supershear ruptures. At low background stress, plasticity turns self-similar pulses into steady state pulses, for which plastic strain contributes significantly to the seismic moment. We find that the closeness to failure of the background stress state is an adequate predictor of rupture speed for relatively slow events. Our proposed relations between state of stress and earthquake source properties in the presence of off-fault plasticity may contribute to the improved interpretation of earthquake observations and to pseudodynamic source modeling for ground motion prediction.

  18. Recent Progress in Discrete Dislocation Dynamics and Its Applications to Micro Plasticity

    KAUST Repository

    Po, Giacomo

    2014-09-27

    We present a self-contained review of the discrete dislocation dynamics (DDD) method for the numerical investigation of plasticity in crystals, focusing on recent development and implementation progress. The review covers the theoretical foundations of DDD within the framework of incompatible elasticity, its numerical implementation via the nodal method, the extension of the method to finite domains and several implementation details. Applications of the method to current topics in micro-plasticity are presented, including the size effects in nano-indentation, the evolution of the dislocation microstructure in persistent slip bands, and the phenomenon of dislocation avalanches in micro-pillar compression.

  19. Dynamic Plastic Deformation (DPD): A Novel Technique for Synthesizing Bulk Nanostructured Metals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    While some superior properties of nanostructured materials (with structural scales below 100 nm) have attracted numerous interests of material scientists, technique development for synthesizing nanostructured metals and alloys in 3-dimensional (3D) bulk forms is still challenging despite of extensive investigations over decades.Here we report a novel synthesis technique for bulk nanostructured metals based on plastic deformation at high Zener-Hollomon parameters (high strain rates or low temperatures), i.e., dynamic plastic deformation (DPD).The basic concept behind this approach will be addressed together with a few examples to demonstrate the capability and characteristics of this method. Perspectives and future developments of this technique will be highlighted.

  20. DYNAMIC BUCKLING OF ELASTIC-PLASTIC COLUMN IMPACTED BY RIGID BODY

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The dynamic buckling of an elastic-plastic column subjected to an axial impact by a rigid body was discussed by using the energy law. The traveling process of elastic-plastic waves under impact action was analyzed by characteristics method. The equation of lateral disturbance used to analyze the problem was developed by taking into account the effect of elastic-plastic stress wave. The power series solution of this problem has been the power series approach. The buckling criterion of this problem was proposed by analyzing the characteristics of the solution. The relationship among critical velocity and impact mass, critical buckling length, hardening modulus was given by using theoretical analysis and numerical computation.

  1. A large dynamic range readout design for the plastic scintillator detector of DAMPE

    Science.gov (United States)

    Zhou, Yong; Sun, Zhiyu; Yu, Yuhong; Zhang, Yongjie; Fang, Fang; Chen, Junling; Hu, Bitao

    2016-08-01

    A large dynamic range is required by the Plastic Scintillator Detector (PSD) of DArk Matter Particle Explorer (DAMPE) to detect particles from electron to heavy ions with Z ≤ 20. To expand the dynamic range, the readout design based on the double-dynodes signal extraction from the photomultiplier tube has been proposed and adopted by PSD. To verify this design, a prototype detector module has been constructed and tested with cosmic ray and relativistic ion beam. The results match with the estimation and the readout unit could easily cover the required dynamic range of about 4 orders of magnitude.

  2. The overshoot and phenotypic equilibrium in characterizing cancer dynamics of reversible phenotypic plasticity.

    Science.gov (United States)

    Chen, Xiufang; Wang, Yue; Feng, Tianquan; Yi, Ming; Zhang, Xingan; Zhou, Da

    2016-02-07

    The paradigm of phenotypic plasticity indicates reversible relations of different cancer cell phenotypes, which extends the cellular hierarchy proposed by the classical cancer stem cell (CSC) theory. Since it is still questionable if the phenotypic plasticity is a crucial improvement to the hierarchical model or just a minor extension to it, it is worthwhile to explore the dynamic behavior characterizing the reversible phenotypic plasticity. In this study we compare the hierarchical model and the reversible model in predicting the cell-state dynamics observed in biological experiments. Our results show that the hierarchical model shows significant disadvantages over the reversible model in describing both long-term stability (phenotypic equilibrium) and short-term transient dynamics (overshoot) in cancer cell populations. In a very specific case in which the total growth of population due to each cell type is identical, the hierarchical model predicts neither phenotypic equilibrium nor overshoot, whereas the reversible model succeeds in predicting both of them. Even though the performance of the hierarchical model can be improved by relaxing the specific assumption, its prediction to the phenotypic equilibrium strongly depends on a precondition that may be unrealistic in biological experiments. Moreover, it still does not show as rich dynamics as the reversible model in capturing the overshoots of both CSCs and non-CSCs. By comparison, it is more likely for the reversible model to correctly predict the stability of the phenotypic mixture and various types of overshoot behavior.

  3. Plasticity-modulated seizure dynamics for seizure termination in realistic neuronal models

    Science.gov (United States)

    Koppert, M. M. J.; Kalitzin, S.; Lopes da Silva, F. H.; Viergever, M. A.

    2011-08-01

    In previous studies we showed that autonomous absence seizure generation and termination can be explained by realistic neuronal models eliciting bi-stable dynamics. In these models epileptic seizures are triggered either by external stimuli (reflex epilepsies) or by internal fluctuations. This scenario predicts exponential distributions of the duration of the seizures and of the inter-ictal intervals. These predictions were validated in rat models of absence epilepsy, as well as in a few human cases. Nonetheless, deviations from the predictions with respect to seizure duration distributions remained unexplained. The objective of the present work is to implement a simple but realistic computational model of a neuronal network including synaptic plasticity and ionic current dynamics and to explore the dynamics of the model with special emphasis on the distributions of seizure and inter-ictal period durations. We use as a basis our lumped model of cortical neuronal circuits. Here we introduce 'activity dependent' parameters, namely post-synaptic voltage-dependent plasticity, as well as a voltage-dependent hyperpolarization-activated current driven by slow and fast activation conductances. We examine the distributions of the durations of the seizure-like model activity and the normal activity, described respectively by the limit cycle and the steady state in the dynamics. We use a parametric γ-distribution fit as a quantifier. Our results show that autonomous, activity-dependent membrane processes can account for experimentally obtained statistical distributions of seizure durations, which were not explainable using the previous model. The activity-dependent membrane processes that display the strongest effect in accounting for these distributions are the hyperpolarization-dependent cationic (Ih) current and the GABAa plastic dynamics. Plastic synapses (NMDA-type) in the interneuron population show only a minor effect. The inter-ictal statistics retain their

  4. Computer Modeling of the Dynamic Strength of Metal-Plastic Cylindrical Shells Under Explosive Loading

    Science.gov (United States)

    Abrosimov, N. A.; Novosel'tseva, N. A.

    2017-05-01

    A technique for numerically analyzing the dynamic strength of two-layer metal-plastic cylindrical shells under an axisymmetric internal explosive loading is developed. The kinematic deformation model of the layered package is based on a nonclassical theory of shells. The geometric relations are constructed using relations of the simplest quadratic version of the nonlinear elasticity theory. The stress and strain tensors in the composite macrolayer are related by Hooke's law for an orthotropic body with account of degradation of the stiffness characteristics of the multilayer package due to local failure of some its elementary layers. The physical relations in the metal layer are formulated in terms of a differential theory of plasticity. An energy-correlated resolving system of dynamic equations for the metal-plastic cylindrical shells is derived by minimizing the functional of total energy of the shells as three-dimensional bodies. The numerical method for solving the initial boundary-value problem formulated is based on an explicit variational-difference scheme. The reliability of the technique considered is verified by comparing numerical results with experimental data. An analysis of the ultimate strains and strength of one-layer basalt-and glass-fiber-reinforced plastic and two-layer metalplastic cylindrical shells is carried out.

  5. Time-resolved plastic scintillator dosimetry in a dynamic thorax phantom

    DEFF Research Database (Denmark)

    Sibolt, Patrik; Andersen, Claus E.; Ottosson, Wiviann

    2017-01-01

    Motion managed and dynamic radiotherapy of lung cancer patients is increasingly complex and subject to challenges related to respiratory motion and heterogeneous tissue densities. This puts high demands on methods for quality assurance and especially time-resolved dose verification of the treatment...... in a lung. The phantom motion was controlled by a script in-house developed using LabVIEW (National Instruments) and synchronized with the in-house developed ME40 scintillator dosimetry system (DTU Nutech). The dose in the center of the tumor was measured, using a BCF-60 plastic scintillator detector (Saint......-Gobain Ceramics & Plastics Inc.), during dynamic 6 MV half-arc treatments on a TrueBeam linear accelerator (Varian Medical Systems). Deviations of ∼2% from the corresponding dose calculated by the treatment planning system (TPS) were detected. The results emphasize the shortcomings of commercial TPSs to handle...

  6. Dynamic visco-plastic memorial nested yield surface model of soil

    Institute of Scientific and Technical Information of China (English)

    Haiyang ZHUANG; Guoxing CHEN; Dinghua ZHU

    2008-01-01

    Under cyclic loadings, the plastic strain of soft soil will take place under very small shear strain. So the viscoplastic model is appropriate to be used to model the dynamic characteristics of soft soil. Based on the principles of geotechnical plastic mechanics, the incremental visco-plastic memorial nested yield surface model is developed by using the field theory of nonlinear isotropic materials and the theory of kinematical hardening modulus. At the end of anyone time increment, the inverted loading surface, the damaged surface and the initial loading surface which is tangent with the inside of inverted loading surface are memorized respectively. The kinematical behavior of yield surface is defined by using these three surfaces. The developed model in this paper is successfully implemented in ABAQUS using FORTRAN subroutine. The predicted stress-strain relationships of soft soil are compared with the test results given by dynamic triaxial tests. It is proved that the cyclic undrained stress-strain relation of soils can be fairly simulated by the model. At last, the nonlinear earthquake response of a representative soft site in Nanjing city is calculated with the dynamic behavior of soils modeled by the new developed model. The results are accordant to the earthquake response of soft site given by other scholars.

  7. Elastic-Plastic Strain Acceptance Criteria for Structures Subject to Rapidly Applied Transient Dynamic Loading

    Energy Technology Data Exchange (ETDEWEB)

    W.R. Solonick

    2003-04-01

    Rapidly applied transient dynamic loads produce stresses and deflections in structures that typically exceed those from static loading conditions. Previous acceptance criteria for structures designed for rapidly applied transient dynamic loading limited stresses to those determined from elastic analysis. Different stress limits were established for different grades of structure depending upon the amount of permanent set considered acceptable. Structure allowed to sustain very limited permanent set is designed to stress limits not significantly greater than yield stress. Greater permanent set in structure under rapidly applied transient dynamic loading conditions is permitted by establishing stress limits that are significantly greater than yield stress but still provide adequate safety margin (with respect to failure). This paper presents a strain-based elastic-plastic (i.e., inelastic) analysis criterion developed as an alternative to the more conservative stress-based elastic analysis stress criterion for structures subjected to rapidly applied transient dynamic loading. The strain limits established are based on material ductility considerations only and are set as a fraction of the strain at ultimate stress obtained from an engineering stress/strain curve of the material. Strains limits are categorized by type as membrane or surface and by region as general, local , or concentrated. The application of the elastic-plastic criterion provides a more accurate, less conservative design/analysis basis for structures than that used in elastic stress-based analysis criteria, while still providing adequate safety margins.

  8. Dynamic recrystallization of electroformed copper liners of shaped charges in high—strain—rate plastic deformation

    Institute of Scientific and Technical Information of China (English)

    WenhuaiTian; QiSun; 等

    2002-01-01

    The microstructures in the electroformed copper liners of shaped charges after high-strain-rate plastic deformation were in vestigated by transmission microscopy(TEM).Meanwhile,the orientation distribution of the grains in the recovered slug was examined by the electron backscattering Kikuchi pattern(EBSP) technique.EBSP analysis illustrated that unlike the as-formed electroformed copper liners of shaped charges the grain orientations in the recovered slug are distributed along randomly all the directions after undergoing heavily strain deformation at high-strain rate.Optical microscopy shows a typical recrystallization structure,and TEM examination reveals dislocation cells existed in the thin foil specimen.These results indicate that dynamic recovery and recrystallization occur during this plastic deformation process,and the associated deformation temperature is considered to be higher than 0.6 times the melting point of copper.

  9. Dynamic recrystallization of electroformed copper liners of shaped charges in high-strain-rate plastic deformation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructures in the electroformed copper liners of shaped charges after high-strain-rate plastic deformation were investigated by transmission electron microscopy (TEM). Meanwhile, the orientation distribution of the grains in the recovered slug was examined by the electron backscattering Kikuchi pattern (EBSP) technique. EBSP analysis illustrated that unlike the as-formed electroformed copper linersof shaped charges the grain orientations in the recovered slug are distributed along randomly all the directions after undergoing heavily strain deformation at high-strain rate. Optical microscopy shows a typical recrystallization structure, and TEM examination reveals dislocation cells existed in the thin foil specimen. These results indicate that dynamic recovery and recrystallization occur during this plastic deformation process, and the associated deformation temperature is considered to be higher than 0.6 times the melting point of copper.

  10. THE DYNAMIC BUCKLING OF ELASTIC-PLASTIC COLUMN SUBJECTED TO AXIAL IMPACT BY A RIGID BODY

    Institute of Scientific and Technical Information of China (English)

    Han Zhijun; Wang Jingchao; Cheng Guoqiang; Ma Hongwei; Zhang Shanyuan

    2005-01-01

    The dynamic buckling of an elastic-plastic column subjected to axial impact by a rigid body has been discussed in this paper. The whole traveling process of elastic-plastic waves under impact action is analyzed with the characteristics method. The regularity of stress changes in both column ends and the first separating time of a rigid body and column are obtained. By using the energy principle and taking into account the propagation and reflection of stress waves the lateral disturbance equation is derived and the power series solution is given. In addition,the critical buckling condition can be obtained from the stability analysis of the solution. By numerical computation and analysis, the relationship among critical velocity and impact mass,hardening modulus, and buckling time is given.

  11. Rigid-Plastic Dynamic Response of Reinforced Concrete Bridge Pier Impacted by Automobile

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xiaoning; DIAO Bo; YE Yinghua

    2006-01-01

    Bridge piers are impacted by autos sometimes.The pier usually has not been destroyed after once impact by auto.But there are few research on damage which will affect pier's capability,and most relative studies have focused the problems on piers impacted by vessels.The methods involve mainly sutra experience theory,numerical analysis,and experimental method.Owing to the complicacy of the bridge pier impacted by a vessel,there are few research derived with the sutra mechanics model and the piers impacted by autos.The dynamic response is studied here under the assumption of the rigid-plastic small-deformation for the pier impacted by auto.According to the Parkes beam model,the rigid-plastic theoretical solution is deduced.The final deformation is calculated by a practical example for the pier impacted by auto.

  12. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  13. A COMBINED PARAMETRIC QUADRATIC PROGRAMMING AND PRECISE INTEGRATION METHOD BASED DYNAMIC ANALYSIS OF ELASTIC-PLASTIC HARDENING/SOFTENING PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    张洪武; 张新伟

    2002-01-01

    The objective of the paper is to develop a new algorithm for numericalsolution of dynamic elastic-plastic strain hardening/softening problems. The gradientdependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis.The equations for the dynamic elastic-plastic problems are derived in terms of theparametric variational principle, which is valid for associated, non-associated andstrain softening plastic constitutive models in the finite element analysis. The preciseintegration method, which has been widely used for discretization in time domain ofthe linear problems, is introduced for the solution of dynamic nonlinear equations.The new algorithm proposed is based on the combination of the parametric quadraticprogramming method and the precise integration method and has all the advantagesin both of the algorithms. Results of numerical examples demonstrate not only thevalidity, but also the advantages of the algorithm proposed for the numerical solutionof nonlinear dynamic problems.

  14. Nanostructures in a ferritic and an oxide dispersion strengthened steel induced by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo

    fission and fusion reactors. In this study, two candidate steels for nuclear reactors, namely a ferritic/martensitic steel (modified 9Cr-1Mo steel) and an oxide dispersion strengthened (ODS) ferritic steel (PM2000), were nanostructured by dynamic plastic deformation (DPD). The resulting microstructure...... place, when both steels after DPD are annealed. Both oriented nucleation and oriented growth of oriented lamellae are demonstrated to account for such an orientation dependence. The underlying mechanisms are discussed, including the differences in stored energy, structural variation, and recovery...

  15. Short-Term Plasticity of a Thalamocortical Pathway Dynamically Modulated by Behavioral State

    Science.gov (United States)

    Castro-Alamancos, Manuel A.; Connors, Barry W.

    1996-04-01

    The neocortex receives information about the environment and the rest of the brain through pathways from the thalamus. These pathways have frequency-dependent properties that can strongly influence their effect on the neocortex. In 1943 Morison and Dempsey described "augmenting responses," a form of short-term plasticity in some thalamocortical pathways that is triggered by 8- to 15-hertz activation. Results from anesthetized rats showed that the augmenting response is initiated by pyramidal cells in layer V. The augmenting response was also observed in awake, unrestrained animals and was found to be dynamically modulated by their behavioral state.

  16. Orientation-dependent recrystallization in an oxide dispersion strengthened steel after dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Tao, N.R.; Mishin, Oleg V.

    2015-01-01

    dynamic plastic deformation. Different boundary spacings and different stored energy densities for regions belonging to either of the two fibre texture components result in a quite heterogeneous deformation microstructure. Upon annealing, preferential recovery and preferential nucleation...... of recrystallization are found in the 〈111〉- oriented lamellae, which had a higher stored energy density in the as-deformed condition. In the course of recrystallization, the initial duplex fibre texture is replaced by a strong 〈111〉 fibre recrystallization texture....

  17. Effects of heterogeneity on recrystallization kinetics of nanocrystalline copper prepared by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Tao, Nairong;

    2014-01-01

    Recrystallization and mechanical behavior of nanocrystalline copper prepared by dynamic plastic deformation (DPD) and DPD with additional cold-rolling (DPD+CR) were investigated, with an emphasis on the effects of heterogeneity within the deformation microstructure. The DPD sample was found...... than 1, which is explained using a two-stage kinetics model incorporating the heterogeneity. The heterogeneity of the DPD sample is largely reduced by applying additional rolling. This change in deformation path leads to a more random distribution of the recrystallized grains and more conventional...

  18. Evolution of oxide nanoparticles during dynamic plastic deformation of ODS steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, Nairong;

    2014-01-01

    The microstructure as well as the deformation behavior of oxide nanoparticles has been analyzed in the ferritic ODS steel PM2000 after compression by dynamic plastic deformation (DPD) to different strains. A dislocation cell structure forms after deformation to a strain of 1.0. DPD to a strain of 2.......1 results in nanoscale lamellae with an average lamellar spacing of approximately 70 nm. During DPD oxide nanoparticles, identified as yttrium aluminum perovskite YAlO3, are found to deform differently depending on their size. Whereas particles with a size of less than 15 nm change their shape and aspect...

  19. A Dynamic Discrete Dislocation Plasticity study of elastodynamic shielding of stationary cracks

    Science.gov (United States)

    Gurrutxaga-Lerma, B.; Balint, D. S.; Dini, D.; Sutton, A. P.

    2017-01-01

    Employing Dynamic Discrete Dislocation Plasticity (D3P), an elastodynamic analysis of the shielding of a stationary crack tip by dislocations is studied. Dislocations are generated via Frank-Read sources, and make a negligible contribution to the shielding of the crack tip, whereas dislocations generated at the crack tip via homogeneous nucleation dominate the shielding. Their effect is found to be highly localised around the crack, leading to a magnification of the shielding when compared to time-independent, elastostatic predictions. The resulting attenuation of KI(t) is computed, and is found to be directly proportional to the applied load and to √{ t }.

  20. Simultaneous imaging of structural plasticity and calcium dynamics in developing dendrites and axons.

    Science.gov (United States)

    Siegel, Friederike; Lohmann, Christian

    2013-11-01

    During nervous system development, the formation of synapses between pre- and postsynaptic neurons is a remarkably specific process. Both structural and functional plasticity are critical for the selection of synaptic partners and for the establishment and maturation of synapses. To unravel the respective contributions of structural and functional mechanisms as well as their interactions during synaptogenesis, it is important to directly observe structural changes and functional signaling simultaneously. Here, we present an imaging approach to simultaneously follow changes in structure and function. Differential labeling of individual cells and the neuronal network with distinct dyes allows the study of structural plasticity and changes in calcium signaling associated with neural activity at the same time and with high resolution. This is achieved by bulk loading of neuronal populations with a calcium-sensitive indicator in combination with electroporation of individual cells with a calcium indicator and an additional noncalcium-sensitive dye with a different excitation spectrum. Recordings of the two differently labeled structures can be acquired simultaneously using confocal microscopy. Thus, structural plasticity and calcium dynamics of the individually labeled neuron and the surrounding network can be related to each other. This combined imaging approach can be applied to virtually all systems of neuronal networks to study structure and function. We provide a comprehensive description of the labeling procedure, the imaging parameters, and the important aspects of analysis for simultaneous recordings of structure and function in individual neurons.

  1. Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution

    Indian Academy of Sciences (India)

    Stuart A Newman; Ramray Bhat; Nadejda V Mezentseva

    2009-10-01

    Ancient metazoan organisms arose from unicellular eukaryotes that had billions of years of genetic evolution behind them. The transcription factor networks present in single-celled ancestors at the origin of the Metazoa (multicellular animals) were already capable of mediating the switching of the unicellular phenotype among alternative states of gene activity in response to environmental conditions. Cell differentiation, therefore, had its roots in phenotypic plasticity, with the ancient regulatory proteins acquiring new targets over time and evolving into the ``developmental transcription factors” (DTFs) of the ``developmental-genetic toolkit.” In contrast, the emergence of pattern formation and morphogenesis in the Metazoa had a different trajectory. Aggregation of unicellular metazoan ancestors changed the organisms’ spatial scale, leading to the first ``dynamical patterning module” (DPM): cell-cell adhesion. Following this, other DPMs (defined as physical forces and processes pertinent to the scale of the aggregates mobilized by a set of toolkit gene products distinct from the DTFs), transformed simple cell aggregates into hollow, multilayered, segmented, differentiated and additional complex structures, with minimal evolution of constituent genes. Like cell differentiation, therefore, metazoan morphologies also originated from plastic responses of cells and tissues. Here we describe examples of DTFs and most of the important DPMs, discussing their complementary roles in the evolution of developmental mechanisms. We also provide recently characterized examples of DTFs in cell type switching and DPMs in morphogenesis of avian limb bud mesenchyme, an embryo-derived tissue that retains a high degree of developmental plasticity.

  2. Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors.

    Science.gov (United States)

    Gray, J D; Milner, T A; McEwen, B S

    2013-06-03

    Brain-derived neurotrophic factor (BDNF) is a secreted protein that has been linked to numerous aspects of plasticity in the central nervous system (CNS). Stress-induced remodeling of the hippocampus, prefrontal cortex and amygdala is coincident with changes in the levels of BDNF, which has been shown to act as a trophic factor facilitating the survival of existing and newly born neurons. Initially, hippocampal atrophy after chronic stress was associated with reduced BDNF, leading to the hypothesis that stress-related learning deficits resulted from suppressed hippocampal neurogenesis. However, recent evidence suggests that BDNF also plays a rapid and essential role in regulating synaptic plasticity, providing another mechanism through which BDNF can modulate learning and memory after a stressful event. Numerous reports have shown BDNF levels are highly dynamic in response to stress, and not only vary across brain regions but also fluctuate rapidly, both immediately after a stressor and over the course of a chronic stress paradigm. Yet, BDNF alone is not sufficient to effect many of the changes observed after stress. Glucocorticoids and other molecules have been shown to act in conjunction with BDNF to facilitate both the morphological and molecular changes that occur, particularly changes in spine density and gene expression. This review briefly summarizes the evidence supporting BDNF's role as a trophic factor modulating neuronal survival, and will primarily focus on the interactions between BDNF and other systems within the brain to facilitate synaptic plasticity. This growing body of evidence suggests a more nuanced role for BDNF in stress-related learning and memory, where it acts primarily as a facilitator of plasticity and is dependent upon the coactivation of glucocorticoids and other factors as the determinants of the final cellular response.

  3. Atomic and dislocation dynamics simulations of plastic deformation in reactor pressure vessel steel

    Science.gov (United States)

    Monnet, Ghiath; Domain, Christophe; Queyreau, Sylvain; Naamane, Sanae; Devincre, Benoit

    2009-11-01

    The collective behavior of dislocations in reactor pressure vessel (RPV) steel involves dislocation properties on different phenomenological scales. In the multiscale approach, adopted in this work, we use atomic simulations to provide input data for larger scale simulations. We show in this paper how first-principles calculations can be used to describe the Peierls potential of screw dislocations, allowing for the validation of the empirical interatomic potential used in molecular dynamics simulations. The latter are used to compute the velocity of dislocations as a function of the applied stress and the temperature. The mobility laws obtained in this way are employed in dislocation dynamics simulations in order to predict properties of plastic flow, namely dislocation-dislocation interactions and dislocation interactions with carbides at low and high temperature.

  4. Atomic and dislocation dynamics simulations of plastic deformation in reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Monnet, Ghiath, E-mail: ghiathmonnet@yahoo.f [EDF-R and D, MMC, Avenue des Renardieres, 77818 Moret sur Loing (France); Domain, Christophe; Queyreau, Sylvain; Naamane, Sanae [EDF-R and D, MMC, Avenue des Renardieres, 77818 Moret sur Loing (France); Devincre, Benoit [LEM, CNRS-ONERA, 29 av. de la division Leclerc, 92130 Chatillon (France)

    2009-11-15

    The collective behavior of dislocations in reactor pressure vessel (RPV) steel involves dislocation properties on different phenomenological scales. In the multiscale approach, adopted in this work, we use atomic simulations to provide input data for larger scale simulations. We show in this paper how first-principles calculations can be used to describe the Peierls potential of screw dislocations, allowing for the validation of the empirical interatomic potential used in molecular dynamics simulations. The latter are used to compute the velocity of dislocations as a function of the applied stress and the temperature. The mobility laws obtained in this way are employed in dislocation dynamics simulations in order to predict properties of plastic flow, namely dislocation-dislocation interactions and dislocation interactions with carbides at low and high temperature.

  5. Dynamic impact of temporal context of Ca²⁺ signals on inhibitory synaptic plasticity.

    Science.gov (United States)

    Kawaguchi, Shin-Ya; Nagasaki, Nobuhiro; Hirano, Tomoo

    2011-01-01

    Neuronal activity-dependent synaptic plasticity, a basis for learning and memory, is tightly correlated with the pattern of increase in intracellular Ca(2+) concentration ([Ca(2+)](i)). Here, using combined application of electrophysiological experiments and systems biological simulation, we show that such a correlation dynamically changes depending on the context of [Ca(2+)](i) increase. In a cerebellar Purkinje cell, long-term potentiation of inhibitory GABA(A) receptor responsiveness (called rebound potentiation; RP) was induced by [Ca(2+)](i) increase in a temporally integrative manner through sustained activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). However, the RP establishment was canceled by coupling of two patterns of RP-inducing [Ca(2+)](i) increase depending on the temporal sequence. Negative feedback signaling by phospho-Thr305/306 CaMKII detected the [Ca(2+)](i) context, and assisted the feedforward inhibition of CaMKII through PDE1, resulting in the RP impairment. The [Ca(2+)](i) context-dependent dynamic regulation of synaptic plasticity might contribute to the temporal refinement of information flow in neuronal networks.

  6. Dynamic analysis of fault rockburst based on gradient-dependent plasticity and energy criterion

    Institute of Scientific and Technical Information of China (English)

    Xuebin Wang; Xiaobin Yang; Zhihui Zhang; Yishan Pan

    2004-01-01

    Fault rockburst is treated as a strain localization problem under dynamic loading condition considering strain gradient and strain rate. As a kind of dynamic fracture phenomena, rockburst has characteristics of strain localization, which is considered as a one-dimensional shear problem subjected to normal compressive stress and tangential shear stress. The constitutive relation of rock material is bilinear (elastic and strain softening) and sensitive to shear strain rate. The solutions proposed based on gradientdependent plasticity show that intense plastic strain is concentrated in fault band and the thickness of the band depends on the characteristic length of rock material. The post-peak stiffness of the fault band was determined according to the constitutive parameters of rock material and shear strain rate. Fault band undergoing strain softening and elastic rock mass outside the band constitute a system and the instability criterion of the system was proposed based on energy theory. The criterion depends on the constitutive relation of rock material, the structural size and the strain rate. The static result regardless of the strain rate is the special case of the present analytical solution. High strain rate can lead to instability of the system.

  7. Dynamic neural networking as a basis for plasticity in the control of heart rate.

    Science.gov (United States)

    Kember, G; Armour, J A; Zamir, M

    2013-01-21

    A model is proposed in which the relationship between individual neurons within a neural network is dynamically changing to the effect of providing a measure of "plasticity" in the control of heart rate. The neural network on which the model is based consists of three populations of neurons residing in the central nervous system, the intrathoracic extracardiac nervous system, and the intrinsic cardiac nervous system. This hierarchy of neural centers is used to challenge the classical view that the control of heart rate, a key clinical index, resides entirely in central neuronal command (spinal cord, medulla oblongata, and higher centers). Our results indicate that dynamic networking allows for the possibility of an interplay among the three populations of neurons to the effect of altering the order of control of heart rate among them. This interplay among the three levels of control allows for different neural pathways for the control of heart rate to emerge under different blood flow demands or disease conditions and, as such, it has significant clinical implications because current understanding and treatment of heart rate anomalies are based largely on a single level of control and on neurons acting in unison as a single entity rather than individually within a (plastically) interconnected network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Mouse Social Network Dynamics and Community Structure are Associated with Plasticity-Related Brain Gene Expression.

    Science.gov (United States)

    Williamson, Cait M; Franks, Becca; Curley, James P

    2016-01-01

    Laboratory studies of social behavior have typically focused on dyadic interactions occurring within a limited spatiotemporal context. However, this strategy prevents analyses of the dynamics of group social behavior and constrains identification of the biological pathways mediating individual differences in behavior. In the current study, we aimed to identify the spatiotemporal dynamics and hierarchical organization of a large social network of male mice. We also sought to determine if standard assays of social and exploratory behavior are predictive of social behavior in this social network and whether individual network position was associated with the mRNA expression of two plasticity-related genes, DNA methyltransferase 1 and 3a. Mice were observed to form a hierarchically organized social network and self-organized into two separate social network communities. Members of both communities exhibited distinct patterns of socio-spatial organization within the vivaria that was not limited to only agonistic interactions. We further established that exploratory and social behaviors in standard behavioral assays conducted prior to placing the mice into the large group was predictive of initial network position and behavior but were not associated with final social network position. Finally, we determined that social network position is associated with variation in mRNA levels of two neural plasticity genes, DNMT1 and DNMT3a, in the hippocampus but not the mPOA. This work demonstrates the importance of understanding the role of social context and complex social dynamics in determining the relationship between individual differences in social behavior and brain gene expression.

  9. Simulating the Effects of Short-Term Synaptic Plasticity on Postsynaptic Dynamics in the Globus Pallidus

    Directory of Open Access Journals (Sweden)

    Moran eBrody

    2013-08-01

    Full Text Available The rat globus pallidus (GP is one of the nuclei of the basal ganglia and plays an important role in a variety of motor and cognitive processes. In vivo studies have shown that repetitive stimulation evokes complex modulations of GP activity. In vitro and computational studies have suggested that short-term synaptic plasticity (STP could be one of the underlying mechanisms. The current study used simplified single compartment modeling to explore the possible effect of STP on the activity of GP neurons during low and high frequency stimulation. To do this we constructed a model of a GP neuron connected to a small network of neurons from the three major input sources to GP neurons: striatum (Str, subthalamic nucleus (STN and GP collaterals. All synapses were implemented with a kinetic model of STP. The in vitro recordings of responses to low frequency repetitive stimulation were highly reconstructed, including rate changes and locking to the stimulus. Mainly involved were fast forms of plasticity which have been found at these synapses. . The simulations were qualitatively compared to a data set previously recorded in vitro in our lab. Reconstructions of experimental responses to high frequency stimulation required adding slower forms of plasticity to the STN and GP collateral synapses, as well as adding metabotropic receptors to the STN-GP synapses. These finding suggest the existence of as yet unreported slower short-term dynamics in the GP. The computational model made additional predictions about GP activity during low and high frequency stimulation that may further our understanding of the mechanisms underlying repetative stimulation of the GP.

  10. DYNAMIC RESPONSE OF A RIGID,PERFECTLY PLASTIC FREE-FREE BEAM STRUCK BY A PROJECTILE ATANY CROSS-SECTION ALONG ITS SPAN

    Institute of Scientific and Technical Information of China (English)

    YangJialing; LiuXuhong

    2004-01-01

    The rigid, perfectly plastic dynamic response of a free-free beam subjected to impact by a projectile at any cross-section is studied. The instantaneous deformations of the beam are given through an analysis of the complete solution for rigid plastic structures. The influence of some parameters such as the input energy and mass ratio on the plastic deformation, travelling plastic hinge position and energy partitioning of the beam are discussed.

  11. Shock Waves Propagation in Scope of the Nonlocal Theory of Dynamical Plasticity

    Science.gov (United States)

    Khantuleva, Tatyana A.

    2004-07-01

    From the point of view of the modern statistical mechanics the problems on shock compression of solids require a reformulation in terms of highly nonequilibrium effects arising inside the wave front. The self-organization during the multiscale and multistage momentum and energy exchange are originated by the correlation function. The theory of dynamic plasticity has been developed by the author on the base of the self-consistent nonlocal hydrodynamic approach had been applied to the shock wave propagation in solids. Nonlocal balance equations describe both the reversible wave type transport at the initial stage and the diffusive (dissipative) one in the end. The involved inverse influence of the mesoeffects on the wave propagation makes the formulation of problems self-consistent and involves a concept of the cybernetic control close-loop.

  12. TIME DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR DYNAMIC ANALYSES IN SATURATED PORO-ELASTO-PLASTIC MEDIUM

    Institute of Scientific and Technical Information of China (English)

    LI Xikui; YAO Dongmei

    2004-01-01

    A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed. As compared with the existing discontinuous Galerkin finite element methods, the distinct feature of the proposed method is that the continuity of the displacement vector at each discrete time instant is automatically ensured, whereas the discontinuity of the velocity vector at the discrete time levels still remains. The computational cost is then obviously reduced,particularly, for material non-linear problems. Both the implicit and explicit algorithms to solve the derived formulations for material non-linear problems are developed. Numerical results show a good performance of the present method in eliminating spurious numerical oscillations and providing with much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain.

  13. Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms.

    Science.gov (United States)

    Morikawa, H; Paladini, C A

    2011-12-15

    Although the roles of dopaminergic signaling in learning and behavior are well established, it is not fully understood how the activity of dopaminergic neurons is dynamically regulated under different conditions in a constantly changing environment. Dopamine neurons must integrate sensory, motor, and cognitive information online to inform the organism to pursue outcomes with the highest reward probability. In this article, we provide an overview of recent advances on the intrinsic, extrinsic (i.e., synaptic), and plasticity mechanisms controlling dopamine neuron activity, mostly focusing on mechanistic studies conducted using ex vivo brain slice preparations. We also hope to highlight some unresolved questions regarding information processing that takes place at dopamine neurons, thereby stimulating further investigations at different levels of analysis.

  14. Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow

    Science.gov (United States)

    Calibasi Kocal, Gizem; Güven, Sinan; Foygel, Kira; Goldman, Aaron; Chen, Pu; Sengupta, Shiladitya; Paulmurugan, Ramasamy; Baskin, Yasemin; Demirci, Utkan

    2016-12-01

    Cancer microenvironment is a remarkably heterogeneous composition of cellular and non-cellular components, regulated by both external and intrinsic physical and chemical stimuli. Physical alterations driven by increased proliferation of neoplastic cells and angiogenesis in the cancer microenvironment result in the exposure of the cancer cells to elevated levels of flow-based shear stress. We developed a dynamic microfluidic cell culture platform utilizing eshopagael cancer cells as model cells to investigate the phenotypic changes of cancer cells upon exposure to fluid shear stress. We report the epithelial to hybrid epithelial/mesenchymal transition as a result of decreasing E-Cadherin and increasing N-Cadherin and vimentin expressions, higher clonogenicity and ALDH positive expression of cancer cells cultured in a dynamic microfluidic chip under laminar flow compared to the static culture condition. We also sought regulation of chemotherapeutics in cancer microenvironment towards phenotypic control of cancer cells. Such in vitro microfluidic system could potentially be used to monitor how the interstitial fluid dynamics affect cancer microenvironment and plasticity on a simple, highly controllable and inexpensive bioengineered platform.

  15. Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Nanyu Han

    Full Text Available Neuraminidase (NA of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1 was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150 of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.

  16. Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations.

    Science.gov (United States)

    Han, Nanyu; Mu, Yuguang

    2013-01-01

    Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.

  17. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  18. Dynamic and buckling analysis of a thin elastic-plastic square plate in a uniform temperature field

    Institute of Scientific and Technical Information of China (English)

    Shifu Xiao; Bin Chen

    2005-01-01

    The nonlinear models of the elastic and elasticlinear strain-hardening square plates with four immovably simply-supported edges are established by employing Hamilton's Variational Principle in a uniform temperature field. The unilateral equilibrium equations satisfied by the plastically buckled equilibria are also established. Dynamics and stability of the elastic and plastic plates are investigated analytically and the buckled equilibria are investigated by employing Galerkin-Ritz's method. The vibration frequencies, the first critical temperature differences of instability or buckling, the elastically buckled equilibria and the extremes depending on the final loading temperature difference of the plastically buckled equillibria of the plate are obtained. The results indicate that the critical buckling value of the plastic plate is lower than its critical instability value and the critical value of its buckled equilibria turning back to the trivial equilibrium are higher than the value. However, three critical values of the elastic plate are equal. The unidirectional snap-through may occur both at the stress-strain boundary of elasticity and plasticity and at the initial stage of unloading of the plastic plate.

  19. Multiscale Analysis of Structurally-Graded Microstructures Using Molecular Dynamics, Discrete Dislocation Dynamics and Continuum Crystal Plasticity

    Science.gov (United States)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri

    2014-01-01

    A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.

  20. Integrated isotachophoretic stacking and gel electrophoresis on a plastic substrate and variations in detection dynamic range.

    Science.gov (United States)

    Lin, Chun-Che; Hsu, Bi-Kei; Chen, Shu-Hui

    2008-03-01

    In this study, we demonstrated an integrated ITP-gel electrophoresis (GE) device on a plastic substrate, in which 50 nL of samples could be hydrodynamically or electrokinetically injected and enriched by ITP into narrow bands and then subsequently introduced into a homogeneous GE channel for separation and detection. This microchip design rendered a simple introduction scheme for creating sandwiched stacking buffer system and flexibilities in choosing separation and stacking buffers independently. We used gel sieving buffers which compositions were different from those for stacking buffers to separate DNA and protein molecules based on sizing mechanism. Compared to conventional microchip GE, the sensitivity of microchip ITP-GE was estimated to increase by one to two orders of magnitude based on the dilution factor of the injected sample and the S/N ratio detected from the electropherogram. Moreover, it is interesting to note that ITP stacking leads to a preferential enhancement for analytes with lower concentrations compared to those with higher concentrations. Therefore, a reduction in the detection dynamic range for ITP-GE was gained. We demonstrated that ITP-GE could lead to 2-4-folds of reduction in the signal dynamic range for two PCR products in a mixture. Such advantage is demonstrated to be useful for the detection of two products amplified from a multiplex PCR in which one product is poorly amplified compared to the other.

  1. High purity ultrafine-grained nickel processed by dynamic plastic deformation: microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Farbaniec, Lukasz; Dirras, Guy [Universite Paris 13, Sorbonne Paris Cite LSPM-CNRS, 99, Avenue J. B. Clement, 93430 Villetaneuse (France); Abdul-Latif, Akrum [Laboratoire d' Ingenierie des Systemes Mecaniques et des Materiaux 3, Rue Fernand Hainaut, 93407 St. Ouen Cedex (France); Gubicza, Jeno [Department of Materials Physics, Eoetvoes Lorand University Budapest, P.O. Box 32, H-1518 (Hungary)

    2012-11-15

    Bulk ultrafine-grained samples are processed by dynamic plastic deformation at an average strain rate of 3.3 x 10{sup 2} s{sup -1} from bulk coarse-grained nickel with purity higher than 98.4 wt.%. The obtained microstructure is investigated by electron backscattering diffraction, transmission electron microscopy and X-ray line profile analysis. After dynamic deformation the microstructure evolves into submicron-size lamellar and subgrain structures. Evaluation of average grain size shows a heterogeneous microstructure along both the diameter and the thickness of the sample. X-ray line profile analysis reveals high dislocation density of about 13 {+-} 2 x 10{sup 14} m{sup -2} in the impacted material. The mechanical properties are investigated by means of uniaxial quasi-static compression tests conducted at room temperature. The stress-strain behavior of the impacted Ni depends on the location in the impacted disk and on the orientation of the compression axis relative to the impact direction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Dynamics of supercooled liquid and plastic crystalline ethanol: Dielectric relaxation and AC nanocalorimetry distinguish structural α- and Debye relaxation processes

    Science.gov (United States)

    Chua, Y. Z.; Young-Gonzales, A. R.; Richert, R.; Ediger, M. D.; Schick, C.

    2017-07-01

    Physical vapor deposition has been used to prepare glasses of ethanol. Upon heating, the glasses transformed into the supercooled liquid phase and then crystallized into the plastic crystal phase. The dynamic glass transition of the supercooled liquid is successfully measured by AC nanocalorimetry, and preliminary results for the plastic crystal are obtained. The frequency dependences of these dynamic glass transitions observed by AC nanocalorimetry are in disagreement with conclusions from previously published dielectric spectra of ethanol. Existing dielectric loss spectra have been carefully re-evaluated considering a Debye peak, which is a typical feature in the dielectric loss spectra of monohydroxy alcohols. The re-evaluated dielectric fits reveal a prominent dielectric Debye peak, a smaller and asymmetrically broadened peak, which is identified as the signature of the structural α-relaxation and a Johari-Goldstein secondary relaxation process. This new assignment of the dielectric processes is supported by the observation that the AC nanocalorimetry dynamic glass transition temperature, Tα, coincides with the dielectric structural α-relaxation process rather than the Debye process. The combined results from dielectric spectroscopy and AC nanocalorimetry on the plastic crystal of ethanol suggest the occurrence of a Debye process also in the plastic crystal phase.

  3. Modelling plastic deformation in BCC metals: Dynamic recovery and cell formation effects

    Energy Technology Data Exchange (ETDEWEB)

    Galindo-Nava, E.I. [Department of Materials Science and Metallurgy, Pembroke Street, CB2 3QZ, University of Cambridge, Cambridge (United Kingdom); Department of Materials Science and Engineering, Mekelweg 2 2628 CD, Delft University of Technology, Delft (Netherlands); Rivera-Diaz-del-Castillo, P.E.J., E-mail: pejr2@cam.ac.uk [Department of Materials Science and Metallurgy, Pembroke Street, CB2 3QZ, University of Cambridge, Cambridge (United Kingdom)

    2012-12-15

    A recently developed model for describing plasticity in FCC metals (E.I., Galindo-Nava, P.E.J., Rivera-Diaz-del-Castillo, Mater. Sci. Eng. A 543 (2012) 110-116; E.I. Galindo-Nava, P.E.J. Rivera-Diaz-del-Castillo, Acta Mater. 60 (2012) 4370-4378) has now been applied to BCC. The core of the theory is the thermostatistical description of dislocation annihilation paths, which determines the dynamic recovery rate of the material. Input to this is the energy for the formation, migration and ordering of dislocation paths; the latter term corresponds to the statistical entropy which features strongly on the solution. The distinctions between FCC and BCC stem primarily from the possible directions and planes for dislocation slip and cross-slip, as well as from the presence of the kink-pair mechanism for dislocation migration in BCC, which are incorporated to the mathematical formulation of the model. The theory is unique in describing the stress-strain response for pure iron, molybdenum, tantalum, vanadium and tungsten employing physical parameters as input; the description is made for wide ranges of temperature and strain rate. Additionally, succinct equations to predict dislocation cell size variation with strain, strain rate and temperature are provided and validated for pure iron.

  4. Microstructure characterization of high-purity aluminum processed by dynamic severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Dirras, Guy; Chauveau, Thierry; Ramtani, Salah; Bui, Quang-Hien [LPMTM, CNRS, UPR 9001, Universite Paris 13, 99 avenue J. B. Clement, 93430 Villetaneuse (France); Abdul-Latif, Akrum [Laboratoire d' Ingenierie des Systemes Mecaniques et des Materiaux, 3 rue Fernand Hainaut, 93407 St Ouen Cedex (France)

    2010-10-15

    Fine-grained aluminum (700-1000 nm) was processed by dynamic severe plastic deformation of coarse-grained (3 mm) pure aluminum (99.999 wt.%). The resulting microstructure was characterized by transmission electron microscopy (TEM) and X-ray profile analyses. It is observed that the grain size determined by TEM departs from measurements made by X-ray profile analysis. In the latter case, the average crystallite size determined over the global crystallographic or on the deformation-induced texture components, namely {l_brace}123{r_brace} left angle 751 right angle, {l_brace}100{r_brace} left angle 011 right angle, and {l_brace}223{r_brace} left angle 154 right angle, yields similar values ({proportional_to}225 nm). By contrast, the dislocation density determined on these texture components is about two times higher than the one measured on the global texture. The difference might be related to the specificities of the induced crystallographic texture. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives.

    Science.gov (United States)

    Zhu, Wei; Xiao, Jijun; Zhu, Weihua; Xiao, Heming

    2009-05-30

    Molecular dynamics simulations have been performed to investigate well-known energetic material cyclotrimethylene trinitramine (RDX) crystal and RDX-based plastic-bonded explosives (PBXs) with four typical fluorine-polymers, polyvinylidenedifluoride (PVDF), polychlorotri-fluoroethylene (PCTFE), fluorine rubber (F(2311)), and fluorine resin (F(2314)). The elastic coefficients, mechanical properties, binding energies, and detonation performances are obtained for the RDX crystal and RDX-based PBXs. The results indicate that the mechanical properties of RDX can be effectively improved by blending with a small amount of fluorine polymers and the overall effect of fluorine polymers on the mechanical properties of the PBXs along three crystalline surfaces is (001)>(010) approximately (100) and PVDF is regarded to best improve the mechanical properties of the PBXs on three surfaces. The order of the improvement in the ductibility made by the fluorine polymers on different surfaces is (001) approximately (010)>(100). The average binding energies between different RDX crystalline surfaces and different polymer binders are obtained, and the sequence of the binding energies of the PBXs with the four fluorine polymers on the three different surfaces is varied. Among the polymer binders, PVDF is considered as best one for RDX-based PBXs. The detonation performances of the PBXs decrease in comparison with the pure crystal but are superior to those of TNT.

  6. A model for plasticity kinetics and its role in simulating the dynamic behavior of Fe at high strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, J D; Minich, R W; Kalantar, D H

    2007-03-29

    The recent diagnostic capability of the Omega laser to study solid-solid phase transitions at pressures greater than 10 GPa and at strain rates exceeding 10{sup 7} s{sup -1} has also provided valuable information on the dynamic elastic-plastic behavior of materials. We have found, for example, that plasticity kinetics modifies the effective loading and thermodynamic paths of the material. In this paper we derive a kinetics equation for the time-dependent plastic response of the material to dynamic loading, and describe the model's implementation in a radiation-hydrodynamics computer code. This model for plasticity kinetics incorporates the Gilman model for dislocation multiplication and saturation. We discuss the application of this model to the simulation of experimental velocity interferometry data for experiments on Omega in which Fe was shock compressed to pressures beyond the {alpha}-to-{var_epsilon} phase transition pressure. The kinetics model is shown to fit the data reasonably well in this high strain rate regime and further allows quantification of the relative contributions of dislocation multiplication and drag. The sensitivity of the observed signatures to the kinetics model parameters is presented.

  7. Dynamic behavior of oscillatory plastic flow in a smectic liquid crystal

    Science.gov (United States)

    Herke, Richard A.; Clark, 1., Noel A.; Handschy, Mark A.

    1997-09-01

    Dynamic surface force measurements are used to study the response of a smectic-A liquid crystal under layer-normal stress. The smectic A is confined in a spherical wedge between crossed cylindrical surfaces having a minimum gap spacing of 0.5-4 μm. The force transmitted between the surfaces by the liquid crystal is measured vs surface spacing using a capacitance micrometer-based surface force apparatus. Above a threshold stress plastic flow results, consisting of individual layers being excluded or included. Each layer flow event has an intriguing dynamical structure, beginning with an enhanced drift rate, which can last for many minutes, accelerating to a rapid separation change of ~1 or 2 s duration wherein the bulk of the relaxation occurs, and tapering off to a background drift rate over a period of a 100 s or more. The single-layer nature of the observed jumps in liquid crystal thickness indicates that they are topological in origin, i.e., slippage events in the phase of the smectic-A order parameter that must necessarily involve edge or screw dislocations. A model based on the Glaberson-Clem-Oswald-Kléman helical instability in screw dislocations is the only one found to explain the data, the layering events arising from a cascade of these helical instabilities sweeping radially outward through the smectic-A sample. The slow precursor acceleration is due to the nucleation of a few helices in the thin central portion of the sample. As time goes on, the force relieved is transferred to the rest of the sample, pushing larger and larger amounts of the area into the unstable regime, and a type of chain reaction occurs whereby the bulk of a layer is removed. In the end only the material at the edge of the droplet, where the thickness is largest, is left to slowly continue to nucleate, producing a long-term tail.

  8. The brain decade in debate: VI. Sensory and motor maps: dynamics and plasticity

    Directory of Open Access Journals (Sweden)

    A. Das

    2001-12-01

    Full Text Available This article is an edited transcription of a virtual symposium promoted by the Brazilian Society of Neuroscience and Behavior (SBNeC. Although the dynamics of sensory and motor representations have been one of the most studied features of the central nervous system, the actual mechanisms of brain plasticity that underlie the dynamic nature of sensory and motor maps are not entirely unraveled. Our discussion began with the notion that the processing of sensory information depends on many different cortical areas. Some of them are arranged topographically and others have non-topographic (analytical properties. Besides a sensory component, every cortical area has an efferent output that can be mapped and can influence motor behavior. Although new behaviors might be related to modifications of the sensory or motor representations in a given cortical area, they can also be the result of the acquired ability to make new associations between specific sensory cues and certain movements, a type of learning known as conditioning motor learning. Many types of learning are directly related to the emotional or cognitive context in which a new behavior is acquired. This has been demonstrated by paradigms in which the receptive field properties of cortical neurons are modified when an animal is engaged in a given discrimination task or when a triggering feature is paired with an aversive stimulus. The role of the cholinergic input from the nucleus basalis to the neocortex was also highlighted as one important component of the circuits responsible for the context-dependent changes that can be induced in cortical maps.

  9. Modeling the population dynamics and community impacts of Ambystoma tigrinum: A case study of phenotype plasticity.

    Science.gov (United States)

    McCarthy, Maeve L; Wallace, Dorothy; Whiteman, Howard H; Rheingold, Evan T; Dunham, Ann M; Prosper, Olivia; Chen, Michelle; Hu-Wang, Eileen

    2017-06-01

    Phenotypic plasticity is the ability of an organism to change its phenotype in response to changes in the environment. General mathematical descriptions of the phenomenon rely on an abstract measure of "viability" that, in this study, is instantiated in the case of the Tiger Salamander, Ambystoma tigrinum. This organism has a point in its development when, upon maturing, it may take two very different forms. One is a terrestrial salamander (metamorph)that visits ponds to reproduce and eat, while the other is an aquatic form (paedomorph) that remains in the pond to breed and which consumes a variety of prey including its own offspring. A seven dimensional nonlinear system of ordinary differential equations is developed, incorporating small (Z) and large (B) invertebrates, Ambystoma young of the year (Y), juveniles (J), terrestrial metamorphs (A) and aquatic paedomorphs (P). One parameter in the model controls the proportion of juveniles maturing into A versus P. Solutions are shown to remain non-negative. Every effort was made to justify parameters biologically through studies reported in the literature. A sensitivity analysis and equilibrium analysis of model parameters demonstrate that morphological choice is critical to the overall composition of the Ambystoma population. Various population viability measures were used to select optimal percentages of juveniles maturing into metamorphs, with optimal choices differing considerably depending on the viability measure. The model suggests that the criteria for viability for this organism vary, both from location to location and also in time. Thus, optimal responses change with spatiotemporal variation, which is consistent with other phenotypically plastic systems. Two competing hypotheses for the conditions under which metamorphosis occurs are examined in light of the model and data from an Ambystoma tigrinum population at Mexican Cut, Colorado. The model clearly supports one of these over the other for this data set

  10. Closed-form dynamic stability criterion for elastic-plastic structures under near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2016-03-01

    Full Text Available A dynamic stability criterion for elastic-plastic structures under near-fault ground motions is derived in closed-form. A negative post-yield stiffness is treated in order to consider the P-delta effect. The double impulse is used as a substitute of the fling-step near-fault ground motion. Since only the free-vibration appears under such double impulse, the energy approach plays a critical role in the derivation of the closed-form solution of a complicated elastic-plastic response of structures with the P-delta effect. It is remarkable that no iteration is needed in the derivation of the closed-form dynamic stability criterion on the critical elastic-plastic response. It is shown via the closed-form expression that several patterns of unstable behaviors exist depending on the ratio of the input level of the double impulse to the structural strength and on the ratio of the negative post-yield stiffness to the initial elastic stiffness. The validity of the proposed dynamic stability criterion is investigated by the numerical response analysis for structures under double impulses with stable or unstable parameters. Furthermore the reliability of the proposed theory is tested through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.

  11. Fluctuations in population composition dampen the impact of phenotypic plasticity on trait dynamics in superb fairy-wrens.

    Science.gov (United States)

    van de Pol, Martijn; Osmond, Helen L; Cockburn, Andrew

    2012-03-01

    1. In structured populations, phenotypic change can result from changes throughout an individual's lifetime (phenotypic plasticity, age-related changes), selection and changes in population composition (environment- or density-driven fluctuations in age-structure). 2. The contribution of population dynamics to phenotypic change has often been ignored. However, for understanding trait dynamics, it is important to identify both the individual- and population-level mechanisms responsible for trait change, because they potentially reinforce or counteract each other. 3. We use 22 years of field data to investigate the dynamics of a sexually selected phenological trait, the timing of nuptial moult in superb fairy-wrens Malurus cyaneus. 4. We show that trait expression is both climate- and age-dependent, but that phenotypic plasticity in response to climate variability also varies with age. Old males can acquire nuptial plumage very early after high rainfall, but 1- to 2-year-olds cannot. However, males of all ages that defer moult to later in the year acquire nuptial plumage earlier when conditions are warmer. 5. The underlying mechanism appears to be that old males may risk moulting in the most challenging period of the year: in autumn, when drought restricts food abundance and during the cold winter. By contrast, young males always moult during the spring transition to benign - warmer and generally wetter - conditions. Temperature changes dominate this transition that heralds the breeding season, thereby causing both young and late-moulting older birds to be temperature sensitive. 6. Climate and age also affect trait dynamics via a population dynamical pathway. The same high rainfall that triggers early moulting in old males concurrently increases offspring recruitment and thereby reduces the average age of males in the population. Consequently, effects of rainfall on trait dynamics through phenotypic plasticity of old males are dampened by synchronous rejuvenation of

  12. A molecular dynamics study of dislocation density generation and plastic relaxation during shock of single crystal Cu

    Science.gov (United States)

    Sichani, Mehrdad M.; Spearot, Douglas E.

    2016-07-01

    The molecular dynamics simulation method is used to investigate the dependence of crystal orientation and shock wave strength on dislocation density evolution in single crystal Cu. Four different shock directions , , , and are selected to study the role of crystal orientation on dislocation generation immediately behind the shock front and plastic relaxation as the system reaches the hydrostatic state. Dislocation density evolution is analyzed for particle velocities between the Hugoniot elastic limit ( up H E L ) for each orientation up to a maximum of 1.5 km/s. Generally, dislocation density increases with increasing particle velocity for all shock orientations. Plastic relaxation for shock in the , , and directions is primarily due to a reduction in the Shockley partial dislocation density. In addition, plastic anisotropy between these orientations is less apparent at particle velocities above 1.1 km/s. In contrast, plastic relaxation is limited for shock in the orientation. This is partially due to the emergence of sessile stair-rod dislocations with Burgers vectors of 1/3 and 1/6. The nucleation of 1/6 dislocations at lower particle velocities is mainly due to the reaction between Shockley partial dislocations and twin boundaries. On the other hand, for the particle velocities above 1.1 km/s, the nucleation of 1/3 dislocations is predominantly due to reaction between Shockley partial dislocations at stacking fault intersections. Both mechanisms promote greater dislocation densities after relaxation for shock pressures above 34 GPa compared to the other three shock orientations.

  13. Dynamic Plasticity and Fracture in High Density Polycrystals: Constitutive Modeling and Numerical Simulation

    Science.gov (United States)

    2006-09-01

    polycrystalline WHA specimens on the response under combined compressive -shear loading and found that a certain degree of pre-twisting of the...conducted via isostatic pressing and sintering of a mixture of W, Ni, and Fe powders, followed by annealing to remove absorbed hydrogen and then possible...this ‘‘stored energy of cold work’’ can be viewed as an extension to finite crystal plasticity theory of the macroscopic, linearized elastic–plastic

  14. Various sizes of sliding event bursts in the plastic flow of metallic glasses based on a spatiotemporal dynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jingli, E-mail: renjl@zzu.edu.cn, E-mail: g.wang@shu.edu.cn; Chen, Cun [School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001 (China); Wang, Gang, E-mail: renjl@zzu.edu.cn, E-mail: g.wang@shu.edu.cn [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Cheung, Wing-Sum [Department of Mathematics, The University of HongKong, HongKong (China); Sun, Baoan; Mattern, Norbert [IFW-dresden, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); Siegmund, Stefan [Department of Mathematics, TU Dresden, D-01062 Dresden (Germany); Eckert, Jürgen [IFW-dresden, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); Institute of Materials Science, TU Dresden, D-01062 Dresden (Germany)

    2014-07-21

    This paper presents a spatiotemporal dynamic model based on the interaction between multiple shear bands in the plastic flow of metallic glasses during compressive deformation. Various sizes of sliding events burst in the plastic deformation as the generation of different scales of shear branches occurred; microscopic creep events and delocalized sliding events were analyzed based on the established model. This paper discusses the spatially uniform solutions and traveling wave solution. The phase space of the spatially uniform system applied in this study reflected the chaotic state of the system at a lower strain rate. Moreover, numerical simulation showed that the microscopic creep events were manifested at a lower strain rate, whereas the delocalized sliding events were manifested at a higher strain rate.

  15. Dynamic rupture simulations on complex fault zone structures with off-fault plasticity using the ADER-DG method

    Science.gov (United States)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Igel, Heiner

    2015-04-01

    In dynamic rupture models, high stress concentrations at rupture fronts have to to be accommodated by off-fault inelastic processes such as plastic deformation. As presented in (Roten et al., 2014), incorporating plastic yielding can significantly reduce earlier predictions of ground motions in the Los Angeles Basin. Further, an inelastic response of materials surrounding a fault potentially has a strong impact on surface displacement and is therefore a key aspect in understanding the triggering of tsunamis through floor uplifting. We present an implementation of off-fault-plasticity and its verification for the software package SeisSol, an arbitrary high-order derivative discontinuous Galerkin (ADER-DG) method. The software recently reached multi-petaflop/s performance on some of the largest supercomputers worldwide and was a Gordon Bell prize finalist application in 2014 (Heinecke et al., 2014). For the nonelastic calculations we impose a Drucker-Prager yield criterion in shear stress with a viscous regularization following (Andrews, 2005). It permits the smooth relaxation of high stress concentrations induced in the dynamic rupture process. We verify the implementation by comparison to the SCEC/USGS Spontaneous Rupture Code Verification Benchmarks. The results of test problem TPV13 with a 60-degree dipping normal fault show that SeisSol is in good accordance with other codes. Additionally we aim to explore the numerical characteristics of the off-fault plasticity implementation by performing convergence tests for the 2D code. The ADER-DG method is especially suited for complex geometries by using unstructured tetrahedral meshes. Local adaptation of the mesh resolution enables a fine sampling of the cohesive zone on the fault while simultaneously satisfying the dispersion requirements of wave propagation away from the fault. In this context we will investigate the influence of off-fault-plasticity on geometrically complex fault zone structures like subduction

  16. Dynamic Strength and Accumulated Plastic Strain Development Laws and Models of the Remolded Red Clay under Long-Term Cyclic Loads: Laboratory Test Results

    Directory of Open Access Journals (Sweden)

    Li Jian

    2015-09-01

    Full Text Available The dynamic strength and accumulated plastic strain are two important parameters for evaluating the dynamic response of soil. As a special clay, the remolded red clay is often used as the high speed railway subgrade filling, but studies on its dynamic characteristics are few. For a thorough analysis of the suitability of the remolded red clay as the subgrade filling, a series of long-term cyclic load triaxial test under different load histories are carried out. Considering the influence of compactness, confining pressure, consolidation ratio, vibration frequency and dynamic load to the remolded red clay dynamic property, the tests obtain the development curves of the dynamic strength and accumulated plastic strain under different test conditions. Then, through curve fitting method, two different hyperbolic models respectively for the dynamic strength and accumulated plastic strain are built, which can match the test datum well. By applying the dynamic strength model, the critical dynamic strength of the remolded red clay are gained. Meanwhile, for providing basic datum and reference for relevant projects, all key parameters for the dynamic strength and accumulated plastic strain of the remolded red clay are given in the paper.

  17. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, N.R.;

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level...... of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization...

  18. Dynamic buckling of elastic-plastic cylindrical shells and axial stress waves

    Institute of Scientific and Technical Information of China (English)

    徐新生; 苏先樾; 王仁

    1995-01-01

    The mechanism for bifurcation of elastic-plastic buckling of the semi-infinite cylindrical shell under impacting axial loads is proposed based on the theory of stress wave. Numerical results on three kinds of end supports and step and impulse loads are given.

  19. Nogo-A controls structural plasticity at dendritic spines by rapidly modulating actin dynamics

    NARCIS (Netherlands)

    Kellner, Yves; Fricke, Steffen; Kramer, Stella; Iobbi, Cristina; Wierenga, Corette J; Schwab, Martin E; Korte, Martin; Zagrebelsky, Marta

    Nogo-A and its receptors have been shown to control synaptic plasticity, including negatively regulating long-term potentiation (LTP) in the cortex and hippocampus at a fast time scale and restraining experience-dependent turnover of dendritic spines over days. However, the molecular mechanisms and

  20. Modeling water flow and nitrate dynamics in a plastic mulch vegetable cultivation system using HYDRUS-2D

    Science.gov (United States)

    Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.

    2016-04-01

    Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation

  1. DYNAMIC PLASTICITY: THE ROLE OF GLUCOCORTICOIDS, BRAIN-DERIVED NEUROTROPHIC FACTOR AND OTHER TROPHIC FACTORS

    OpenAIRE

    Gray, J. D.; MILNER, T. A.; MCEWEN, B. S.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is a secreted protein that has been linked to numerous aspects of plasticity in the central nervous system (CNS). Stress-induced remodeling of the hippocampus, prefrontal cortex and amygdala is coincident with changes in the levels of BDNF, which has been shown to act as a trophic factor facilitating the survival of existing and newly born neurons. Initially, hippocampal atrophy after chronic stress was associated with reduced BDNF, leading to the hypo...

  2. Dynamic Measurements of Plastic Deformation in a Water-Filled Aluminum Tube in Response to Detonation of a Small Explosives Charge

    Directory of Open Access Journals (Sweden)

    Harold Sandusky

    1999-01-01

    Full Text Available Experiments have been conducted to benchmark computer code calculations for the dynamic interaction of explosions in water with structures. Aluminum cylinders with a length slightly more than twice their diameter were oriented vertically, sealed on the bottom by a thin plastic sheet, and filled with distilled water. An explosive charge suspended in the center of the tube plastically deformed but did not rupture the wall. Tube wall velocity, displacement, and strain were directly measured. The agreement among the three sets of dynamic data and the agreement of the terminal displacement measurements with the residual deformation were excellent.

  3. A Computational Model of the Temporal Dynamics of Plasticity in Procedural Learning: Sensitivity to Feedback Timing

    Directory of Open Access Journals (Sweden)

    Vivian V. Valentin

    2014-07-01

    Full Text Available The evidence is now good that different memory systems mediate the learning of different types of category structures. In particular, declarative memory dominates rule-based (RB category learning and procedural memory dominates information-integration (II category learning. For example, several studies have reported that feedback timing is critical for II category learning, but not for RB category learning – results that have broad support within the memory systems literature. Specifically, II category learning has been shown to be best with feedback delays of 500ms compared to delays of 0 and 1000ms, and highly impaired with delays of 2.5 seconds or longer. In contrast, RB learning is unaffected by any feedback delay up to 10 seconds. We propose a neurobiologically detailed theory of procedural learning that is sensitive to different feedback delays. The theory assumes that procedural learning is mediated by plasticity at cortical-striatal synapses that are modified by dopamine-mediated reinforcement learning. The model captures the time-course of the biochemical events in the striatum that cause synaptic plasticity, and thereby accounts for the empirical effects of various feedback delays on II category learning.

  4. Plastic Surgery

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A A ... forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word "plastic" ...

  5. DRUCKER-PRAGER YIELD CRITERIA IN VISCOELASTIC-PLASTIC CONSTITUTIVE MODEL FOR THE STUDY OF SEA ICE DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; JI Shun-ying; LV He-xiang; YUE Qian-jin

    2006-01-01

    Based on the characteristics of sea ice drifting and ridging at meso-small scale, the Drucker-Prager (D-P) yield criteria was introduced into the Viscoelastic-Plastic (VEP) constitutive model for the study of sea ice dynamics. In this model, the Kelvin-Vogit viscoelastic model was adopted in the elastic stage, and the associated normal flow rule was used in the plastic stage. Using the VEP model, the sea ice ridging process was simulated in an idealized rectangular basin, and the simulation results show that the simulated ice ridge thickness is consistent with the analytical solution. Moreover, the VEP model with the D-P yield criteria was also applied for the sea ice simulation of Bohai Sea, and the ice thickness, concentration, velocity, and ice stress were obtained in 48 h. The simulated thickness distributions agree well with the satellite images. The singular problem in the Mohr-Coulomb (M-C) yield criteria was overcome by the D-P yield criteria, and the computational efficiency was also improved. In the numerical simulations described above, the smoothed particle hydrodynamics was applied.

  6. Modelling the time dependent movements of the La Saxe Rockslide by a dynamic visco-plastic model

    Science.gov (United States)

    Battista Crosta, Giovanni; di Prisco, Claudio; Castellanza, Riccardo; Frattini, Paolo; Agliardi, Federico; Frigerio, Gabriele

    2013-04-01

    A challenging issue in geological and geotechnical problems associated with slope stability concerns the analysis of sliding masses subject to continuous slow movements and intermittent stages of slowing and accelerating motion. In this work an attempt for simulating and forecasting the movement of the La Saxe rockslide (Aosta valley; Italian Western Alps; volume: about 8*10e6 m3) will be shown. The La Saxe rockslide movement could be interpreted as the result of two specific behaviours: i) a continuous creep-like movement occurring independently on groundwater conditions, even under dry-winter conditions, when the water table is mainly below or close to the failure surface; ii) a superimposed acceleration-exhaustion trend, occurring during the snow melting period (late spring-early summer) and directly related to the associated water table fluctuations, which disappears when the water inputs are reduced (late summer and winter conditions). A reliable, monitoring-driven approach to model such rockslide behaviour should account for: a) the time-dependent behaviour by means of a viscous-plastic constitutive law reproducing the creep behaviour; b) the water table fluctuation as main input to reproduce the late spring - early summer acceleration; c) 3D rockslide behaviour maintaining at the same time an high level of simplicity so to allow implementation within EWS (Early Warning System) for risk management. To this purpose a 1D pseudo-dynamic visco-plastic Newmark approach, based on Perzyna's theory (Secondi et. al 2011) has been applied. Newmark's approach considers the slope as a rigid block placed in the centre of mass of the rock slide, where the active forces are: the landslide weight, the inertial forces and the seepage force deriving from the water table level which is a function of time. All the non-linearities are condensed in an interface thin layer between the rigid block and the bedrock, whose mechanical response is assumed to be visco-plastic. In order to

  7. Dynamic response of Cu4Zr54 metallic glass to high strain rate shock loading: plasticity, spall and atomic-level structures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shengnian [Los Alamos National Laboratory; Arman, Bedri [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Cagin, Tahir [TEXAS A& M UNIV

    2009-01-01

    We investigate dynamic response of Cu{sub 46}Zr{sub 54} metallic glass under adiabatic planar shock wave loading (one-dimensional strain) wjth molecular dynamics simulations, including Hugoniot (shock) states, shock-induced plasticity and spallation. The Hugoniot states are obtained up to 60 CPa along with the von Mises shear flow strengths, and the dynamic spall strength, at different strain rates and temperatures. The spall strengths likely represent the limiting values achievable in experiments such as laser ablation. For the steady shock states, a clear elastic-plastic transition is identified (e.g., in the shock velocity-particle velocity curve), and the shear strength shows strain-softening. However, the elastic-plastic transition across the shock front displays transient stress overshoot (hardening) above the Hugoniot elastic limit followed by a relatively sluggish relaxation to the steady shock state, and the plastic shock front steepens with increasing shock strength. The local von Mises shear strain analysis is used to characterize local deformation, and the Voronoi tessellation analysis, the corresponding short-range structures at various stages of shock, release, tension and spallation. The plasticity in this glass is manifested as localized shear transformation zones and of local structure rather than thermal origin, and void nucleation occurs preferentially at the highly shear-deformed regions. The Voronoi and shear strain analyses show that the atoms with different local structures are of different shear resistances that lead to shear localization (e.g., the atoms indexed with (0,0,12,0) are most shear-resistant, and those with (0,2,8,1) are highly prone to shear flow). The dynamic changes in local structures are consistent with the observed deformation dynamics.

  8. Plasticity-modulated seizure dynamics for seizure termination in realistic neuronal models

    NARCIS (Netherlands)

    Koppert, M.M.J.; Kalitzin, S.; Lopes da Silva, F.H.; Viergever, M.A.

    2011-01-01

    In previous studies we showed that autonomous absence seizure generation and termination can be explained by realistic neuronal models eliciting bi-stable dynamics. In these models epileptic seizures are triggered either by external stimuli (reflex epilepsies) or by internal fluctuations. This scena

  9. Plasticity-modulated seizure dynamics for seizure termination in realistic neuronal models

    NARCIS (Netherlands)

    Koppert, M.M.J.; Kalitzin, S.; Lopes da Silva, F.H.; Viergever, M.A.

    2011-01-01

    In previous studies we showed that autonomous absence seizure generation and termination can be explained by realistic neuronal models eliciting bi-stable dynamics. In these models epileptic seizures are triggered either by external stimuli (reflex epilepsies) or by internal fluctuations. This

  10. Conformational Plasticity in Glycomimetics: Fluorocarbamethyl-L-idopyranosides Mimic the Intrinsic Dynamic Behaviour of Natural Idose Rings.

    Science.gov (United States)

    Unione, Luca; Xu, Bixue; Díaz, Dolores; Martín-Santamaría, Sonsoles; Poveda, Ana; Sardinha, João; Rauter, Amelia Pilar; Blériot, Yves; Zhang, Yongmin; Cañada, F Javier; Sollogoub, Matthieu; Jiménez-Barbero, Jesus

    2015-07-13

    Sugar function, structure and dynamics are intricately correlated. Ring flexibility is intrinsically related to biological activity; actually plasticity in L-iduronic rings modulates their interactions with biological receptors. However, the access to the experimental values of the energy barriers and free-energy difference for conformer interconversion in water solution has been elusive. Here, a new generation of fluorine-containing glycomimetics is presented. We have applied a combination of organic synthesis, NMR spectroscopy and computational methods to investigate the conformational behaviour of idose- and glucose-like rings. We have used low-temperature NMR spectroscopic experiments to slow down the conformational exchange of the idose-like rings. Under these conditions, the exchange rate becomes slow in the (19) F NMR spectroscopic chemical shift timescale and allows shedding light on the thermodynamic and kinetic features of the equilibrium. Despite the minimal structural differences between these compounds, a remarkable difference in their dynamic behaviour indeed occurs. The importance of introducing fluorine atoms in these sugars mimics is also highlighted. Only the use of (19) F NMR spectroscopic experiments has permitted the unveiling of key features of the conformational equilibrium that would have otherwise remained unobserved.

  11. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response

    Science.gov (United States)

    Bhaumik, Suniti; Basu, Rajatava

    2017-01-01

    After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared

  12. Microscopic dynamics of AC{sub 60} compounds in the plastic, polymer, and dimer phases investigated by inelastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schober, H.; Toelle, A. [Institut Laue-Langevin, F-38042 Grenoble (France); Renker, B.; Heid, R.; Gompf, F. [INFP, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Federal Republic of Germany)

    1997-09-01

    We present inelastic neutron-scattering results for AC{sub 60} (A=K,Rb,Cs) compounds. The spectra of the high-temperature fcc phases strongly resemble the ones of pristine C{sub 60} in the plastic phase. At equal temperatures we find identical rotational diffusion constants for pristine C{sub 60} and Rb{sub 1}C{sub 60} (D{sub r}=2.4 10{sup 10} s{sup {minus}1} at 400 K). The changes taking place in the inelastic part of the spectra on cooling AC{sub 60} indicate the formation of strong intermolecular bonds. The buildup of intensities in the gap region separating internal and external vibrations in pure C{sub 60} is the most prominent signature of this transition. The spectra of the low-temperature phases depend on their thermal history. The differences can be explained by the formation of a polymer phase (upon slow cooling from the fcc phase) and a dimer phase (upon fast cooling), respectively. The experimental data are analyzed on the basis of lattice dynamical calculations. The density-of-states are well modeled assuming a [2+2] bond for the polymer and a single intercage bond for the dimer. Indications for different intercage bonding are also found in the internal mode spectra, which, on the other hand, react only weakly to the charge transfer. The dimer phase is metastable and converts into the polymer phase with a strongly temperature-dependent time constant. The transition from the polymer to the fcc phase is accompanied by inelastic precursor effects which are interpreted as the signature of inhomogeneities arising from plastic monomer regions embedded in the polymer phase. In the polymer phase AC{sub 60} compounds show strong anharmonic behavior in the low-temperature region. The possible connection with the metal-to-insulator transition is discussed. {copyright} {ital 1997} {ital The American Physical Society}

  13. LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics.

    Directory of Open Access Journals (Sweden)

    Itai Hayut

    2011-10-01

    Full Text Available Somatostatin-expressing, low threshold-spiking (LTS cells and fast-spiking (FS cells are two common subtypes of inhibitory neocortical interneuron. Excitatory synapses from regular-spiking (RS pyramidal neurons to LTS cells strongly facilitate when activated repetitively, whereas RS-to-FS synapses depress. This suggests that LTS neurons may be especially relevant at high rate regimes and protect cortical circuits against over-excitation and seizures. However, the inhibitory synapses from LTS cells usually depress, which may reduce their effectiveness at high rates. We ask: by which mechanisms and at what firing rates do LTS neurons control the activity of cortical circuits responding to thalamic input, and how is control by LTS neurons different from that of FS neurons? We study rate models of circuits that include RS cells and LTS and FS inhibitory cells with short-term synaptic plasticity. LTS neurons shift the RS firing-rate vs. current curve to the right at high rates and reduce its slope at low rates; the LTS effect is delayed and prolonged. FS neurons always shift the curve to the right and affect RS firing transiently. In an RS-LTS-FS network, FS neurons reach a quiescent state if they receive weak input, LTS neurons are quiescent if RS neurons receive weak input, and both FS and RS populations are active if they both receive large inputs. In general, FS neurons tend to follow the spiking of RS neurons much more closely than LTS neurons. A novel type of facilitation-induced slow oscillations is observed above the LTS firing threshold with a frequency determined by the time scale of recovery from facilitation. To conclude, contrary to earlier proposals, LTS neurons affect the transient and steady state responses of cortical circuits over a range of firing rates, not only during the high rate regime; LTS neurons protect against over-activation about as well as FS neurons.

  14. Molecular Dynamics for Elastic and Plastic Deformation of a Single-Walled Carbon Nanotube Under Nanoindentation

    Institute of Scientific and Technical Information of China (English)

    FANG Te-Hua; JIAN Sheng-Rui; CHUU Der-San

    2004-01-01

    @@ Mechanical characteristics of a suspended (10, 10) single-walled carbon nanotube (SWCNT) during atomic force microscopy (AFM) nanoindentation are investigated at different temperatures by molecular dynamics simulations.The results indicate that the Young modulus of the (10, 10) SWCNT under temperatures of 300-600K is 1.2-1.3 TPa. As the temperature increases, the Young modulus of the SWCNT increases, but the axial strain of the SWCNT decreases. The strain-induced spontaneous formation of the Stone-Wales defects and the rippled behaviour under inhomogeneous stress are studied. The rippled behaviour of the SWCNT is enhanced with the increasing axial strain. The adhesive phenomenon between the probe and the nanotube and the elastic recovery of the nanotube during the retraction are also investigated.

  15. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    Science.gov (United States)

    Zhang, Z. B.; Mishin, O. V.; Tao, N. R.; Pantleon, W.

    2015-03-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength.

  16. Microstructure and annealing behavior of a modified 9Cr−1Mo steel after dynamic plastic deformation to different strains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.B.; Mishin, O.V. [Danish-Chinese Center for Nanometals, Section for Materials Science and Advanced Characterization, Department of Wind Energy, Technical University of Denmark, Risø Campus, 4000 Roskilde (Denmark); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark); Tao, N.R. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark); Pantleon, W., E-mail: pawo@dtu.dk [Section for Materials and Surface Engineering, Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark)

    2015-03-15

    The microstructure, hardness and tensile properties of a modified 9Cr−1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength.

  17. Dynamics of shock waves and cavitation bubbles in bilinear elastic-plastic media, and the implications to short-pulsed laser surgery

    Science.gov (United States)

    Brujan, E.-A.

    2005-01-01

    The dynamics of shock waves and cavitation bubbles generated by short laser pulses in water and elastic-plastic media were investigated theoretically in order to get a better understanding of their role in short-pulsed laser surgery. Numerical simulations were performed using a spherical model of bubble dynamics which include the elastic-plastic behaviour of the medium surrounding the bubble, compressibility, viscosity, density and surface tension. Breakdown in water produces a monopolar acoustic signal characterized by a compressive wave. Breakdown in an elastic-plastic medium produces a bipolar acoustic signal, with a leading positive compression wave and a trailing negative tensile wave. The calculations revealed that consideration of the tissue elasticity is essential to describe the bipolar shape of the shock wave emitted during optical breakdown. The elastic-plastic response of the medium surrounding the bubble leads to a significant decrease of the maximum size of the cavitation bubble and pressure amplitude of the shock wave emitted during bubble collapse, and shortening of the oscillation period of the bubble. The results are discussed with respect to collateral damage in short-pulsed laser surgery.

  18. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides.

    Science.gov (United States)

    Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl

    2015-12-15

    The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPAadsorption of contaminants is favored at acid pH (pHactivated carbon decreased by around 50% and 70% in the presence of DPA and BPA, respectively, indicating that both compounds are adsorbed on the same adsorption sites of the activated carbon.

  19. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby (Texas-MED)

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  20. Vascular endothelial growth factor-dependent angiogenesis and dynamic vascular plasticity in the sensory circumventricular organs of adult mouse brain.

    Science.gov (United States)

    Morita, Shoko; Furube, Eriko; Mannari, Tetsuya; Okuda, Hiroaki; Tatsumi, Kouko; Wanaka, Akio; Miyata, Seiji

    2015-03-01

    The sensory circumventricular organs (CVOs), which comprise the organum vasculosum of the lamina terminalis (OVLT), the subfornical organ (SFO) and the area postrema (AP), lack a typical blood-brain barrier (BBB) and monitor directly blood-derived information to regulate body fluid homeostasis, inflammation, feeding and vomiting. Until now, almost nothing has been documented about vascular features of the sensory CVOs except fenestration of vascular endothelial cells. We therefore examine whether continuous angiogenesis occurs in the sensory CVOs of adult mouse. The angiogenesis-inducing factor vascular endothelial growth factor-A (VEGF-A) and the VEGF-A-regulating transcription factor hypoxia-inducible factor-1α were highly expressed in neurons of the OVLT and SFO and in both neurons and astrocytes of the AP. Expression of the pericyte-regulating factor platelet-derived growth factor B was high in astrocytes of the sensory CVOs. Immunohistochemistry of bromodeoxyuridine and Ki-67, a nuclear protein that is associated with cellular proliferation, revealed active proliferation of endothelial cells. Moreover, immunohistochemistry of caspase-3 and the basement membrane marker laminin showed the presence of apoptosis and sprouting of endothelial cells, respectively. Treatment with the VEGF receptor-associated tyrosine kinase inhibitor AZD2171 significantly reduced proliferation and filopodia sprouting of endothelial cells, as well as the area and diameter of microvessels. The mitotic inhibitor cytosine-b-D-arabinofuranoside reduced proliferation of endothelial cells and the vascular permeability of blood-derived low-molecular-weight molecules without changing vascular area and microvessel diameter. Thus, our data indicate that continuous angiogenesis is dependent on VEGF signaling and responsible for the dynamic plasticity of vascular structure and permeability.

  1. Static and dynamic flow analysis of PBDEs in plastics from used and end-of-life TVs and computer monitors by life cycle in Korea.

    Science.gov (United States)

    Lee, Seunghun; Jang, Yong-Chul; Kim, Jong-Guk; Park, Jong-Eun; Kang, Young-Yeul; Kim, Woo-Il; Shin, Sun-Kyoung

    2015-02-15

    This study focused on a quantitative substance flow analysis (SFA) of polybrominated diphenyl ethers (PBDEs) in plastics from obsolete TVs and computer monitors that often contain large amounts of the flame retardants. According to the results of the static SFA study, 1.87 tons and 0.28 tons of PBDEs from newly manufactured TVs and computer monitors were introduced into households in 2011 in Korea, respectively. There were approximately 924 tons and 90.3 tons of PBDEs present in TVs and computer monitors in households during product use, respectively. The results of the dynamic SFA study indicated that in 2017 the amount of PBDEs from TVs and computer monitors in the recycling stage is expected to be 2.63 tons and 0.1 tons, respectively. Large fractions of PBDEs from used TVs are present in recycled plastics, while PBDE-containing computer monitors are exported to Southeast Asian countries. This research indicates that PBDEs were emitted the most from recycled plastic pellet processes upon recycling. Further study may be warranted to focus the flow of PBDEs in recycled plastic products in order to determine the final destination and disposal of these chemicals in the environment.

  2. 废旧塑料改性沥青混合料动态模量研究%Research on dynamic modulus of waste plastic modified asphalt mixture

    Institute of Scientific and Technical Information of China (English)

    张倩; 谢来斌; 李彦伟; 何勇海; 刘建

    2011-01-01

    Waste plastic is reused in pavement engineering in this research. The purpose of the study is to probe the possibility of using waste plastic in asphalt mixture as a kind of modifier so as to find a way to solve the problem of the waste plastic disposal. High Density Polyethylene plastic bags obtained from supermarket were shredded into pieces and were added into asphalt mixture at three percentages of 2%, 5% and 8%. The corresponding control samples were also made and tested. Three different temperatures were used (4°C, 21. 3°C and 39. 2°C) and the frequencies ranged from 0. 1 Hz to 25 Hz in this dynamic modulus test. When compared with the test results of the control samples, almost all the dynamic modulus of the plastic modified samples( except 4 results) are greater than those of the control samples. No regular pattern is shown in the test results of the phase angle. Modified asphalt mixture with 2% plastic is of the greatest dynamic modulus and phase angle.%针对目前大量废旧塑料处置问题,尝试将其用于改性沥青混合料,以探索其在道路工程中使用的可能性.采用超市废旧高密度聚乙烯购物塑料袋,将其切碎后按照2%.5%和8%的掺量制作沥青混合料试件,采用三种试验温度在六种加载频率下进行动态模量试验,与未掺加塑料混合料的相应指标进行对比.试验结果显示在各个试验温度和加载频率下,掺加塑料屑的混合料动态模量普遍提高.掺加塑料与否对相位角指标的影响未呈现一定规律.在各个试验温度和加载频率下,2%塑料掺量混合料均具有较高的动态模量和相位角.

  3. Plastic Jellyfish.

    Science.gov (United States)

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  4. Dynamic earthquake sequence simulations with fault constitutive law accounting for brittle-plastic transition and pressure solution-precipitation creep

    Science.gov (United States)

    Noda, Hiroyuki; Shimamoto, Toshihiko

    2015-04-01

    Fault mechanical behavior is presumably dictated by a pressure-sensitive friction law in the brittle regime where cataclastic deformation dominates, and by a pressure-insensitive flow law in the plastic regime where milonytes are generated. A fault constitutive law in the transitional regime is of great importance in considering earthquake cycles as evidenced by field observations of repeating brittle and ductile deformations [e.g., Sibson 1980]. Shimamoto and Noda [2014] proposed an empirical method of connecting the friction law and the flow law without introducing a new parameter, and demonstrated 2-D dynamic earthquake sequence simulations for a strike-slip fault [e.g., Lapusta et al., 2000] with the friction-to-flow law. A logarithmic rate- and state-dependent friction law (aging law) and a rate- and state-dependent flow law (power law) [Noda and Shimamoto, 2010] with a quartzite steady-state flow law (power exponent n = 4) [Hirth et al., 2001] were adopted for the friction law and the flow law, respectively. Our numerical models are realization of conceptual fault models [e.g., Scholz, 1988]. "Christmas tree" stress profiles appear as a result of evolution of the system, and fluctuate with time. During the interseismic periods, creep fronts penetrated into the locked depth, slow slip events were generated, and then nucleation of dynamic rupture took place either in the shallower or deeper creeping region. The dynamic ruptures spanned the locked depth, reaching the ground surface and extending downwards even deeper than the depth of maximum pre-stress where the deformation mode was in the transitional regime preseismically where S-C mylonitic texture was expected [Shimamoto, 1989]. The coseismic deformation was in the frictional regime because the pure flow law predicts tremendously high flow stress at high strain rate and "the weaker wins". Our simulations reproduced repeating overprint of brittle and ductile deformations. We attempt here to include pressure

  5. Dynamic metabolic adjustments and genome plasticity are implicated in the heat shock response of the extremely thermoacidophilic archaeon Sulfolobus solfataricus.

    Science.gov (United States)

    Tachdjian, Sabrina; Kelly, Robert M

    2006-06-01

    Approximately one-third of the open reading frames encoded in the Sulfolobus solfataricus genome were differentially expressed within 5 min following an 80 to 90 degrees C temperature shift at pH 4.0. This included many toxin-antitoxin loci and insertion elements, implicating a connection between genome plasticity and metabolic regulation in the early stages of stress response.

  6. Deformation mechanisms of plasticized starch materials.

    Science.gov (United States)

    Mikus, P-Y; Alix, S; Soulestin, J; Lacrampe, M F; Krawczak, P; Coqueret, X; Dole, P

    2014-12-19

    The aim of this paper is to understand the influence of plasticizer and plasticizer amount on the mechanical and deformation behaviors of plasticized starch. Glycerol, sorbitol and mannitol have been used as plasticizers. After extrusion of the various samples, dynamic mechanical analyses and video-controlled tensile tests have been performed. It was found that the nature of plasticizer, its amount as well as the aging of the material has an impact on the involved deformation mechanism. The variations of volume deformation could be explained by an antiplasticization effect (low plasticizer amount), a phase-separation phenomenon (excess of plasticizer) and/or by the retrogradation of starch.

  7. Mechanical plasticity of cells

    Science.gov (United States)

    Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben

    2016-10-01

    Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

  8. Dynamic Metabolic Adjustments and Genome Plasticity Are Implicated in the Heat Shock Response of the Extremely Thermoacidophilic Archaeon Sulfolobus solfataricus†

    Science.gov (United States)

    Tachdjian, Sabrina; Kelly, Robert M.

    2006-01-01

    Approximately one-third of the open reading frames encoded in the Sulfolobus solfataricus genome were differentially expressed within 5 min following an 80 to 90°C temperature shift at pH 4.0. This included many toxin-antitoxin loci and insertion elements, implicating a connection between genome plasticity and metabolic regulation in the early stages of stress response. PMID:16740961

  9. Plastics Technology.

    Science.gov (United States)

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  10. Plasticization effect of C{sub 60} on the fast dynamics of polystyrene and related polymers: an incoherent neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Alejandro; Ruppel, Markus; Cabral, Joao T [Department of Chemical Engineering, Imperial College, London SW7 2AZ (United Kingdom); Douglas, Jack F [Polymers Division, NIST, Gaithersburg, MD 20899 (United States)], E-mail: j.cabral@imperial.ac.uk

    2008-03-12

    We utilize inelastic incoherent neutron scattering (INS) to quantify how fullerenes affect the 'fast' molecular dynamics of a family of polystyrene related macromolecules. In particular, we prepared bulk nanocomposites of (hydrogenous and ring-deuterated) polystyrene and poly(4-methyl styrene) using a rapid precipitation method where the C{sub 60} relative mass fraction ranged from 0% to 4%. Elastic window scan measurements, using a high resolution (0.9 {mu}eV) backscattering spectrometer, are reported over a wide temperature range (2-450 K). Apparent Debye-Waller (DW) factors , characterizing the mean-square amplitude of proton displacements, are determined as a function of temperature, T. We find that the addition of C{sub 60} to these polymers leads to a progressive increase in relative to the pure polymer value over the entire temperature range investigated, where the effect is larger for larger nanoparticle concentration. This general trend seems to indicate that the C{sub 60} nanoparticles plasticize the fast ({approx}10{sup -15} s) local ({approx}1 A) dynamics of these polymer glasses. Generally, we expect nanoparticle additives to affect polymer dynamics in a similar fashion to thin films in the sense that the high interfacial area may cause both a speeding up and slowing down of the glass state dynamics depending on the polymer-surface interaction.

  11. Computational materials science: Nanoscale plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2002-01-01

    How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour.......How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour....

  12. Universal features of amorphous plasticity

    Science.gov (United States)

    Budrikis, Zoe; Castellanos, David Fernandez; Sandfeld, Stefan; Zaiser, Michael; Zapperi, Stefano

    2017-07-01

    Plastic yielding of amorphous solids occurs by power-law distributed deformation avalanches whose universality is still debated. Experiments and molecular dynamics simulations are hampered by limited statistical samples, and although existing stochastic models give precise exponents, they require strong assumptions about fixed deformation directions, at odds with the statistical isotropy of amorphous materials. Here, we introduce a fully tensorial, stochastic mesoscale model for amorphous plasticity that links the statistical physics of plastic yielding to engineering mechanics. It captures the complex shear patterning observed for a wide variety of deformation modes, as well as the avalanche dynamics of plastic flow. Avalanches are described by universal size exponents and scaling functions, avalanche shapes, and local stability distributions, independent of system dimensionality, boundary and loading conditions, and stress state. Our predictions consistently differ from those of mean-field depinning models, providing evidence that plastic yielding is a distinct type of critical phenomenon.

  13. A physically-based and fully coupled model of elasto-plasticity and damage for dynamic failure in ductile metals

    Science.gov (United States)

    Oussouaddi, O.; Campagne, L.; Daridon, L.; Ahzi, S.

    2006-08-01

    It is well established that spall fracture and other rapid failures in ductile materials are often dominated by nucleation and growth of micro-voids. In the present work, a mechanistic model for failure by cumulative nucleation and growth of voids is fully coupled with the thermo-elastoplastic constitutive equations of the Mechanical Threshold Stress (MTS) which is used to model the evolution of the flow stress. The damage modeling includes both ductile and brittle mechanisms. It accounts for the effects of inertia, rate sensitivity, fracture surface energy, and nucleation frequency. The MTS model used for plasticity includes the superposition of different thermal activation barriers for dislocation motion. Results obtained in the case of uncoupled and coupled model of plasticity and damage from the simulations of the planar impact with cylindrical target, are presented and compared with the experimental results for OFHC copper. This comparison shows the model capabilities in predicting the experimentally measured free surface velocity profile as well as the observed spall and other damage patterns in the material under impact loading. These results are obtained using the finite element code Abaqus/Explicit.

  14. Modeling the Dynamic Failure of Railroad Tank Cars Using a Physically Motivated Internal State Variable Plasticity/Damage Nonlocal Model

    Directory of Open Access Journals (Sweden)

    Fazle R. Ahad

    2013-01-01

    Full Text Available We used a physically motivated internal state variable plasticity/damage model containing a mathematical length scale to idealize the material response in finite element simulations of a large-scale boundary value problem. The problem consists of a moving striker colliding against a stationary hazmat tank car. The motivations are (1 to reproduce with high fidelity finite deformation and temperature histories, damage, and high rate phenomena that may arise during the impact accident and (2 to address the material postbifurcation regime pathological mesh size issues. We introduce the mathematical length scale in the model by adopting a nonlocal evolution equation for the damage, as suggested by Pijaudier-Cabot and Bazant in the context of concrete. We implement this evolution equation into existing finite element subroutines of the plasticity/failure model. The results of the simulations, carried out with the aid of Abaqus/Explicit finite element code, show that the material model, accounting for temperature histories and nonlocal damage effects, satisfactorily predicts the damage progression during the tank car impact accident and significantly reduces the pathological mesh size effects.

  15. Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca(2+)-calmodulin-Munc13-1 signaling.

    Science.gov (United States)

    Lipstein, Noa; Sakaba, Takeshi; Cooper, Benjamin H; Lin, Kun-Han; Strenzke, Nicola; Ashery, Uri; Rhee, Jeong-Seop; Taschenberger, Holger; Neher, Erwin; Brose, Nils

    2013-07-10

    Short-term synaptic plasticity, the dynamic alteration of synaptic strength during high-frequency activity, is a fundamental characteristic of all synapses. At the calyx of Held, repetitive activity eventually results in short-term synaptic depression, which is in part due to the gradual exhaustion of releasable synaptic vesicles. This is counterbalanced by Ca(2+)-dependent vesicle replenishment, but the molecular mechanisms of this replenishment are largely unknown. We studied calyces of Held in knockin mice that express a Ca(2+)-Calmodulin insensitive Munc13-1(W464R) variant of the synaptic vesicle priming protein Munc13-1. Calyces of these mice exhibit a slower rate of synaptic vesicle replenishment, aberrant short-term depression and reduced recovery from synaptic depression after high-frequency stimulation. Our data establish Munc13-1 as a major presynaptic target of Ca(2+)-Calmodulin signaling and show that the Ca(2+)-Calmodulin-Munc13-1 complex is a pivotal component of the molecular machinery that determines short-term synaptic plasticity characteristics.

  16. Comparative study of sea ice dynamics simulations with a Maxwell elasto-brittle rheology and the elastic-viscous-plastic rheology in NEMO-LIM3

    Science.gov (United States)

    Raulier, Jonathan; Dansereau, Véronique; Fichefet, Thierry; Legat, Vincent; Weiss, Jérôme

    2017-04-01

    Sea ice is a highly dynamical environment characterized by a dense mesh of fractures or leads, constantly opening and closing over short time scales. This characteristic geomorphology is linked to the existence of linear kinematic features, which consist of quasi-linear patterns emerging from the observed strain rate field of sea ice. Standard rheologies used in most state-of-the-art sea ice models, like the well-known elastic-viscous-plastic rheology, are thought to misrepresent those linear kinematic features and the observed statistical distribution of deformation rates. Dedicated rheologies built to catch the processes known to be at the origin of the formation of leads are developed but still need evaluations on the global scale. One of them, based on a Maxwell elasto-brittle formulation, is being integrated in the NEMO-LIM3 global ocean-sea ice model (www.nemo-ocean.eu; www.elic.ucl.ac.be/lim). In the present study, we compare the results of the sea ice model LIM3 obtained with two different rheologies: the elastic-viscous-plastic rheology commonly used in LIM3 and a Maxwell elasto-brittle rheology. This comparison is focused on the statistical characteristics of the simulated deformation rate and on the ability of the model to reproduce the existence of leads within the ice pack. The impact of the lead representation on fluxes between ice, atmosphere and ocean is also assessed.

  17. Plastic bronchitis

    National Research Council Canada - National Science Library

    Singhi, Anil Kumar; Vinoth, Bharathi; Kuruvilla, Sarah; Sivakumar, Kothandam

    2015-01-01

    Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics...

  18. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  19. Plastic Bridge

    Institute of Scientific and Technical Information of China (English)

    履之

    1994-01-01

    Already ubiquitous in homes and cars, plastic is now appearing inbridges. An academic-industrial consortium based at the University ofCalifornia in San Diego is launching a three-year research program aimed atdeveloping the world’s first plastic highway bridge, a 450-foot span madeentirely from glass-,carbon,and polymer-fiber-reinforced composite mate-rials, the stuff of military aircraft. It will cross Interstate 5 to connect thetwo sides of the school’s campus.

  20. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  1. Conformational plasticity and dynamics in the generic protein folding catalyst SlyD unraveled by single-molecule FRET.

    Science.gov (United States)

    Kahra, Dana; Kovermann, Michael; Löw, Christian; Hirschfeld, Verena; Haupt, Caroline; Balbach, Jochen; Hübner, Christian Gerhard

    2011-08-26

    The relation between conformational dynamics and chemistry in enzyme catalysis recently has received increasing attention. While, in the past, the mechanochemical coupling was mainly attributed to molecular motors, nowadays, it seems that this linkage is far more general. Single-molecule fluorescence methods are perfectly suited to directly evidence conformational flexibility and dynamics. By labeling the enzyme SlyD, a member of peptidyl-prolyl cis-trans isomerases of the FK506 binding protein type with an inserted chaperone domain, with donor and acceptor fluorophores for single-molecule fluorescence resonance energy transfer, we directly monitor conformational flexibility and conformational dynamics between the chaperone domain and the FK506 binding protein domain. We find a broad distribution of distances between the labels with two main maxima, which we attribute to an open conformation and to a closed conformation of the enzyme. Correlation analysis demonstrates that the conformations exchange on a rate in the 100 Hz range. With the aid from Monte Carlo simulations, we show that there must be conformational flexibility beyond the two main conformational states. Interestingly, neither the conformational distribution nor the dynamics is significantly altered upon binding of substrates or other known binding partners. Based on these experimental findings, we propose a model where the conformational dynamics is used to search the conformation enabling the chemical step, which also explains the remarkable substrate promiscuity connected with a high efficiency of this class of peptidyl-prolyl cis-trans isomerases.

  2. Dynamics and plasticity of the epithelial to mesenchymal transition induced by miR-200 family inhibition.

    Science.gov (United States)

    Haraguchi, Takeshi; Kondo, Masayuki; Uchikawa, Ryo; Kobayashi, Kazuyoshi; Hiramatsu, Hiroaki; Kobayashi, Kyousuke; Chit, Ung Weng; Shimizu, Takanobu; Iba, Hideo

    2016-02-18

    Whereas miR-200 family is known to be involved in the epithelial-to-mesenchymal transition (EMT), a crucial biological process observed in normal and pathological contexts, it has been largely unclear how far the functional levels of these tiny RNAs alone can propagate the molecular events to accomplish this process within several days. By developing a potent inhibitor of miR-200 family members (TuD-141/200c), the expression of which is strictly regulatable by the Tet (tetracycline)-On system, we found using a human colorectal cell line, HCT116, that several direct gene target mRNAs (Zeb1/Zeb2, ESRP1, FN1and FHOD1) of miR-200 family were elevated with distinct kinetics. Prompt induction of the transcriptional suppressors, Zeb1/Zeb2 in turn reduced the expression levels of miR-200c/-141 locus, EpCAM, ESRP1 and E-Cad. The loss of ESRP1 subsequently switched the splicing isoforms of CD44 and p120 catenin mRNAs to mesenchymal type. Importantly, within 9 days after the release from the inhibition of miR-200 family, all of the expression changes in the 14 genes observed in this study returned to their original levels in the epithelial cells. This suggests that the inherent epithelial plasticity is supported by a weak retention of key regulatory gene expression in either the epithelial or mesenchymal states through epigenetic regulation.

  3. Computational modeling and experimental studies of the dynamic performance of ultrasonic horn profiles used in plastic welding.

    Science.gov (United States)

    Roopa Rani, M; Rudramoorthy, R

    2013-03-01

    Ultrasonic horns are tuned components designed to vibrate in a longitudinal mode at ultrasonic frequencies. Reliable performance of such horns is normally decided by the uniformity of vibration amplitude at the working surface and the stress developed during loading condition. The horn design engineer must pay particular attention to designing a tool that will produce the desired amplitude without fracturing. The present work discusses horn configurations which satisfy these criteria and investigates the design requirements of horns in ultrasonic system. Different horn profiles for ultrasonic welding of thermoplastics have been characterized in terms of displacement amplitude and von-Mises stresses using modal and harmonic analysis. To validate the simulated results, five different horns are fabricated from Aluminum, tested and tuned to the operating frequency. Standard ABS plastic parts are welded using these horns. Temperature developed during the welding of ABS test parts using different horns is recorded using sensors and National Instruments (NIs) data acquisition system. The recorded values are compared with the predicted values. Experimental results show that welding using a Bezier horn has a high interface temperature and the welded joints had higher strength as compared to the other horn profiles.

  4. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  5. Adsorption of xenobiotics to plastic tubing incorporated into dynamic in vitro systems used in pharmacological research--limits and progress.

    Science.gov (United States)

    Unger, J K; Kuehlein, G; Schroers, A; Gerlach, J C; Rossaint, R

    2001-07-01

    Commonly used materials incorporated into dynamic culture systems typically show the feature of adsorption of lipophilic xenobiotics. Yet, this phenomenon is strongly limiting the use of dynamic culture models and ex vivo organ perfusions in pharmacological and toxicological research. The aim of the study was to characterize different materials with respect to their capacity for drug adsorption and to find methods or materials to reduce the loss of substrate by adsorption in order to improve the use of dynamic in vitro systems. The adsorption of different xenobiotics (lidocaine, midazolam, lormetazepam, phenobarbital, testosterone, ethoxyresoroufine) to tubes used in dynamic in vitro systems (polyvinyl-chloride, silicone) were investigated and compared to a new material (silicone-caoutchouc-mixture). In addition, the role of protein deposition onto the tubing was studied and it was investigated whether it was possible to reach saturation of the inner tube surface by pre-loading it with the test compound. We found that silicone tubes provided the highest comfort with respect to handling and reusability, but they also demonstrated the highest capacity for substrate adsorption. Polyvinyl-chloride was the second best in handling but also demonstrated a high complexity in its adsorption behavior. The silicone-caoutchouc-mixture reached acceptable experimental results with respect to its handling and demonstrated a very low capacity for substrate adsorption.

  6. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  7. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Science.gov (United States)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  8. Plastic Bronchitis.

    Science.gov (United States)

    Rubin, Bruce K

    2016-09-01

    Plastic bronchitis is an uncommon and probably underrecognized disorder, diagnosed by the expectoration or bronchoscopic removal of firm, cohesive, branching casts. It should not be confused with purulent mucous plugging of the airway as seen in patients with cystic fibrosis or bronchiectasis. Few medications have been shown to be effective and some are now recognized as potentially harmful. Current research directions in plastic bronchitis research include understanding the genetics of lymphatic development and maldevelopment, determining how abnormal lymphatic malformations contribute to cast formation, and developing new treatments. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  10. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  11. Plastic zonnecellen

    NARCIS (Netherlands)

    Roggen, Marjolein

    1998-01-01

    De zonnecel van de toekomst is in de maak. Onderzoekers van uiteenlopend pluimage werken eendrachtig aan een plastic zonnecel. De basis is technisch gelegd met een optimale, door invallend licht veroorzaakte, vorming van ladingdragers binnen een composiet van polymeren en buckyballs. Nu is het zaak

  12. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  13. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  14. Mathematical modeling of phenomena of dynamic recrystallization during hot plastic deformation in high-carbon bainitic steel

    Directory of Open Access Journals (Sweden)

    T. Dembiczak

    2017-01-01

    Full Text Available Based on the research results, coefficients were determined in constitutive equations, describing the kinetics of dynamic recrystallization in high-carbon bainitic steel during hot deformation. The developed mathematical model takes into account the dependence of changing kinetics in the size evolution of the initial austenite grains, the value of strain, strain rate, temperature and time. Physical simulations were carried out on rectangular specimens measuring 10 × 15 × 20 mm. Compression tests with a plane state of deformation were carried out using a Gleeble 3800.

  15. Plastic Surgery Statistics

    Science.gov (United States)

    ... PSN PSEN GRAFT Contact Us News Plastic Surgery Statistics Plastic surgery procedural statistics from the American Society of Plastic Surgeons. Statistics by Year Print 2016 Plastic Surgery Statistics 2015 ...

  16. Plastic bronchitis

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singhi

    2015-01-01

    Full Text Available Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics. They are ominous with poor prognosis. Sometimes, infection or airway reactivity may provoke cast bronchitis as a two-step insult on a vulnerable vascular bed. In such instances, aggressive management leads to longer survival. This report of cast bronchitis discusses its current understanding.

  17. Dynamic Shear Modulus Prediction of Wood Plastic Composite Materials Based on Gray Neural Network%基于灰色神经网络木塑复合材料动态剪切模量预测

    Institute of Scientific and Technical Information of China (English)

    秦楠; 马莉英; 王琳

    2015-01-01

    Based on the characteristics of wood-plastic composite materials processing technology, this paper designed the wood-plastic composite materials processing experiment under different process conditions, and obtained the mechanical properties under different conditions. Based on gray neural network forecasting model, this paper established the prediction model of wood-plastic composite materials dynamic shear modulus. The results show that this model can predict the wood-plastic composite materials dynamic shear modulus well, and the prediction maximum error is 0.69%, which achieves practical engineering requirements.%基于木塑复合材料加工工艺的特点,设计了不用工艺条件下的木塑复合材料工艺实验,并得到了不同条件下的力学性能。本文在灰色神经网络组合预测模型的基础上,建立了木塑复合材料动态剪切模量的预测模型。结果表明:该模型能够较好地预测出木塑复合材料动态剪切模量,预测最大误差为0.69%,能够达到工程实际要求。

  18. Steady-state dynamics and experience-dependent plasticity of dendritic spines of layer 4/5a pyramidal neurons in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Amaya Miquelajauregui

    2014-04-01

    Full Text Available The steady state dynamics and experience-dependent plasticity of dendritic spines of layer (L 2/3 and L5B cortical pyramidal neurons have recently been assessed using in vivo two-photon microscopy (Trachtenberg et al., 2002; Zuo et al., 2005; Holtmaat et al., 2006. In contrast, not much is known about spine dynamics in L4/5a neurons, regarded as direct recipients of thalamocortical input (Constantinople and Bruno, 2013. In the adult mouse somatosensory cortex (SCx, the transcription factor Ebf2 is enriched in excitatory neurons of L4/5a, including pyramidal neurons. We assessed the molecular and electrophysiological properties of these neurons as well as the morphology of their apical tufts (Scholl analysis and cortical outputs (optogenetics within the SCx. To test the hypothesis that L4/5a pyramidal neurons play an important role in sensory processing (given their key laminar position; soma depth ~450-480 µm, we successfully labeled them in Ebf2-Cre mice with EGFP by expressing recombinant rAAV vectors in utero. Using longitudinal in vivo two-photon microscopy through a craniotomy (Mostany and Portera-Cailliau, 2008, we repeatedly imaged spines in apical dendritic tufts of L4/5a neurons under basal conditions and after sensory deprivation. Under steady-state conditions in adults, the morphology of the apical tufts and the mean spine density were stable at 0.39 ± 0.05 spines/μm (comparable to L5B, Mostany et al., 2011. Interestingly, spine elimination increases 4-8 days after sensory deprivation, probably due to input loss. This suggests that Ebf2+ L4/5a neurons could be involved in early steps of processing of thalamocortical information.

  19. Elastic-plastic dynamic time-history analysis of tall frame-corewall structure%某超限高层框筒结构弹塑性动力时程分析

    Institute of Scientific and Technical Information of China (English)

    程柯; 桂国强

    2012-01-01

    Dynamic elastic-plastic analyses are carried out for a tall frame-corewall structure by the commercial FE program MIDAS BUILDING. The structural dynamic response and member plastic developing process are investigated under practical earthquake effects, and seismic perform- ance of structure is meanwhile evaluated. Proposals are also put forward for improvement of engineering design.%应用MIDAS BUILDING结构软件对一个高层框筒结构进行了罕遇地震下的动力弹塑性分析,给出了结构在实际地震作用下的动力响应及各部位、构件的塑性发展情况,对结构的抗震性能做出评价,并对工程设计提出改进建议。

  20. Overcoming maladaptive plasticity through plastic compensation

    Directory of Open Access Journals (Sweden)

    Matthew R.J. MORRIS, Sean M. ROGERS

    2013-08-01

    Full Text Available Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single genotype to produce multiple environmentally-induced phenotypes. Yet, not all plasticity is adaptive. Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution, much less is known about maladaptive plasticity. However, maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments. This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity, two of which involve genetic changes (standing genetic variation, genetic compensation and two of which do not (standing epigenetic variation, plastic compensation. Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity. In particular, plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence. We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change [Current Zoology 59 (4: 526–536, 2013].

  1. Overcoming maladaptive plasticity through plastic compensation

    Institute of Scientific and Technical Information of China (English)

    Matthew R.J.MORRIS; Sean M.ROGERS

    2013-01-01

    Most species evolve within fluctuating environments,and have developed adaptations to meet the challenges posed by environmental heterogeneity.One such adaptation is phenotypic plasticity,or the ability of a single genotype to produce multiple environmentally-induced phenotypes.Yet,not all plasticity is adaptive.Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution,much less is known about maladaptive plasticity.However,maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments.This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity,two of which involve genetic changes (standing genetic variation,genetic compensation) and two of which do not (standing epigenetic variation,plastic compensation).Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity.In particular,plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence.We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change.

  2. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  3. Biobased additive plasticizing Polylactic acid (PLA

    Directory of Open Access Journals (Sweden)

    Mounira Maiza

    2015-12-01

    Full Text Available Polylactic acid (PLA is an attractive candidate for replacing petrochemical polymers because it is from renewable resources. In this study, a specific PLA 2002D was melt-mixed with two plasticizers: triethyl citrate (TEC and acetyl tributyl citrate (ATBC. The plasticized PLA with various concentrations were analyzed by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, melt flow index (MFI, thermogravimetric analysis (TGA, X-ray diffraction (XRD, UV-Visible spectroscopy and plasticizer migration test. Differential scanning calorimetry demonstrated that the addition of TEC and ATBC resulted in a decrease in glass transition temperature (Tg, and the reduction was the largest with the plasticizer having the lowest molecular weight (TEC. Plasticizing effect was also shown by decrease in the dynamic storage modulus and viscosity of plasticized mixtures compared to the treated PLA. The TGA results indicated that ATBC and TEC promoted a decrease in thermal stability of the PLA. The X-ray diffraction showed that the PLA have not polymorphic crystalline transition. Analysis by UV-Visible spectroscopy showed that the two plasticizers: ATBC and TEC have no effect on the color change of the films. The weight loss plasticizer with heating time and at 100°C is lesser than at 135 °C. Migration of TEC and ATBC results in cracks and changed color of material. We have concluded that the higher molecular weight of citrate in the studied exhibited a greater plasticizing effect to the PLA.

  4. Computational fluid dynamics analysis of a twisted airfoil shaped two-bladed H-Darrieus rotor made from fibreglass reinforced plastic (FRP

    Directory of Open Access Journals (Sweden)

    Rajat Gupta, Sukanta Roy, Agnimitra Biswas

    2010-11-01

    Full Text Available H-Darrieus rotor is a lift type device having two to three blades designed as airfoils. The blades are attached vertically to the central shaft through support arms. The support to vertical axis helps the rotor maintain its shape. In this paper, Computational Fluid Dynamics (CFD analysis of an airfoil shaped two-bladed H-Darrieus rotor using Fluent 6.2 software was performed. Based on the CFD results, a comparative study between experimental and computational works was carried out. The H-Darrieus rotor was 20cm in height, 5cm in chord and twisted with an angle of 30° at the trailing end. The blade material of rotor was Fiberglass Reinforced Plastic (FRP. The experiments were earlier conducted in a subsonic wind tunnel for various height-to-diameter (H/D ratios. A two dimensional computational modeling was done with the help of Gambit tool using unstructured grid. Realistic boundary conditions were provided for the model to have synchronization with the experimental conditions. Two dimensional steady-state segregated solver with absolute velocity formulation and cell based grid was considered, and a standard k-epsilon viscous model with standard wall functions was chosen. A first order upwind discretization scheme was adopted for pressure velocity coupling of the flow. The inlet velocities and rotor rotational speeds were taken from the experimental results. From the computational analysis, power coefficient (Cp and torque coefficient (Ct values at ten different H/D ratios namely 0.85, 1.0, 1.10, 1.33, 1.54, 1.72, 1.80, 1.92, 2.10 and 2.20 were calculated in order to predict the performances of the twisted H-rotor. The variations of Cp and Ct with tip speed ratios were analyzed and compared with the experimental results. The standard deviations of computational Cp and Ct from experimental Cp and Ct were obtained. From the computational analysis, the highest values of Cp and Ct were obtained at H/D ratios of 1.0 and 1.54 respectively. The

  5. Flotation separation of waste plastics for recycling-A review.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Fu, Jian-gang; Liu, You-nian

    2015-07-01

    The sharp increase of plastic wastes results in great social and environmental pressures, and recycling, as an effective way currently available to reduce the negative impacts of plastic wastes, represents one of the most dynamic areas in the plastics industry today. Froth flotation is a promising method to solve the key problem of recycling process, namely separation of plastic mixtures. This review surveys recent literature on plastics flotation, focusing on specific features compared to ores flotation, strategies, methods and principles, flotation equipments, and current challenges. In terms of separation methods, plastics flotation is divided into gamma flotation, adsorption of reagents, surface modification and physical regulation.

  6. VISCO-ELASTIC (PLASTIC) EFFECTS AND FAILURE BEHAVIOR OF PUR FOAMED PLASTICS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The viscous effects and failure behavior of PUR foamed plastics are investigated by the cycling loading and preloading experiments. On the basis of static and dynamic compressive experiments, the SEM analysis is given for the PUR foamed plastics specimens which have been tested and the deformation as well as failure mechanisms are determined at the same time. In addition, the relaxation characteristics and the failure criterion of foamed plastics are discussed adequately.

  7. Regulation of a dynamic interaction between two microtubule-binding proteins, EB1 and TIP150, by the mitotic p300/CBP-associated factor (PCAF) orchestrates kinetochore microtubule plasticity and chromosome stability during mitosis.

    Science.gov (United States)

    Ward, Tarsha; Wang, Ming; Liu, Xing; Wang, Zhikai; Xia, Peng; Chu, Youjun; Wang, Xiwei; Liu, Lifang; Jiang, Kai; Yu, Huijuan; Yan, Maomao; Wang, Jianyu; Hill, Donald L; Huang, Yuejia; Zhu, Tongge; Yao, Xuebiao

    2013-05-31

    The microtubule cytoskeleton network orchestrates cellular dynamics and chromosome stability in mitosis. Although tubulin acetylation is essential for cellular plasticity, it has remained elusive how kinetochore microtubule plus-end dynamics are regulated by p300/CBP-associated factor (PCAF) acetylation in mitosis. Here, we demonstrate that the plus-end tracking protein, TIP150, regulates dynamic kinetochore-microtubule attachments by promoting the stability of spindle microtubule plus-ends. Suppression of TIP150 by siRNA results in metaphase alignment delays and perturbations in chromosome biorientation. TIP150 is a tetramer that binds an end-binding protein (EB1) dimer through the C-terminal domains, and overexpression of the C-terminal TIP150 or disruption of the TIP150-EB1 interface by a membrane-permeable peptide perturbs chromosome segregation. Acetylation of EB1-PCAF regulates the TIP150 interaction, and persistent acetylation perturbs EB1-TIP150 interaction and accurate metaphase alignment, resulting in spindle checkpoint activation. Suppression of the mitotic checkpoint serine/threonine protein kinase, BubR1, overrides mitotic arrest induced by impaired EB1-TIP150 interaction, but cells exhibit whole chromosome aneuploidy. Thus, the results identify a mechanism by which the TIP150-EB1 interaction governs kinetochore microtubule plus-end plasticity and establish that the temporal control of the TIP150-EB1 interaction by PCAF acetylation ensures chromosome stability in mitosis.

  8. Regulation of a Dynamic Interaction between Two Microtubule-binding Proteins, EB1 and TIP150, by the Mitotic p300/CBP-associated Factor (PCAF) Orchestrates Kinetochore Microtubule Plasticity and Chromosome Stability during Mitosis*

    Science.gov (United States)

    Ward, Tarsha; Wang, Ming; Liu, Xing; Wang, Zhikai; Xia, Peng; Chu, Youjun; Wang, Xiwei; Liu, Lifang; Jiang, Kai; Yu, Huijuan; Yan, Maomao; Wang, Jianyu; Hill, Donald L.; Huang, Yuejia; Zhu, Tongge; Yao, Xuebiao

    2013-01-01

    The microtubule cytoskeleton network orchestrates cellular dynamics and chromosome stability in mitosis. Although tubulin acetylation is essential for cellular plasticity, it has remained elusive how kinetochore microtubule plus-end dynamics are regulated by p300/CBP-associated factor (PCAF) acetylation in mitosis. Here, we demonstrate that the plus-end tracking protein, TIP150, regulates dynamic kinetochore-microtubule attachments by promoting the stability of spindle microtubule plus-ends. Suppression of TIP150 by siRNA results in metaphase alignment delays and perturbations in chromosome biorientation. TIP150 is a tetramer that binds an end-binding protein (EB1) dimer through the C-terminal domains, and overexpression of the C-terminal TIP150 or disruption of the TIP150-EB1 interface by a membrane-permeable peptide perturbs chromosome segregation. Acetylation of EB1-PCAF regulates the TIP150 interaction, and persistent acetylation perturbs EB1-TIP150 interaction and accurate metaphase alignment, resulting in spindle checkpoint activation. Suppression of the mitotic checkpoint serine/threonine protein kinase, BubR1, overrides mitotic arrest induced by impaired EB1-TIP150 interaction, but cells exhibit whole chromosome aneuploidy. Thus, the results identify a mechanism by which the TIP150-EB1 interaction governs kinetochore microtubule plus-end plasticity and establish that the temporal control of the TIP150-EB1 interaction by PCAF acetylation ensures chromosome stability in mitosis. PMID:23595990

  9. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    S. Mukhopadhyay

    2003-06-01

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources.

  10. Disorientations and work-hardening behaviour during severe plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang

    2012-01-01

    Orientation differences develop during plastic deformation even in grains of originally uniform orientation. The evolution of these disorientations is modelled by dislocation dynamics taking into account different storage mechanisms. The predicted average disorientation angles across different...... types of boundaries are in agreement with experimental data for small and moderate plastic strains. At large plastic strains after severe plastic deformation, saturation of the measured average disorientation angle is observed. This saturation is explained as an immediate consequence of the restriction...

  11. Effects of Planting Density, Duration of Disclosing Plastic Film and Nitrogen Fertilization on the Growth Dynamics of Rapeseed under No-tillage Cultivation%不同密度·揭膜时间和施氮量对免耕油菜生育动态的影响

    Institute of Scientific and Technical Information of China (English)

    曾志三; 艾复清; 张一帆

    2009-01-01

    [Objective] This study was to understend the optimized combination of planting density, duration of disclosing plastic film and nitrogen fertilization under no-tillage cultivation. [Method] Quadratic polynomial regression and saturated D-optimal design were employed to investigate the effects of planting density, duration of disclosing plastic film and nitrogen fertilization on the dynamics growth of rapeseed under no-tillage cultivation. [Result] Within the experimental range, the growth dynamics of no-tillage cultivated rapeseed assumed a rise-fall tend. For the effects to the growth dynamics of no-tillage cultivated rapeseed, nitrogen application amount was higher than planting density and duration of disclosing plastic film. The interaction effect between planting density and duration of disclosing plastic film was higher than that between nitrogen application amount and planting density, and between nitrogen application amount and duration of disclosing plastic film. [Conclusion] The optimized combination of these factors for dynamic growth of rapeseed under no-tillage cultivation was determined to be: planting density of per hectare 154 925 individuals, duration of disclosing plastic film of 110 d, nitrogen application amount of 315 kg/hm2.

  12. The Genetics of Phenotypic Plasticity. XIV. Coevolution.

    Science.gov (United States)

    Scheiner, Samuel M; Gomulkiewicz, Richard; Holt, Robert D

    2015-05-01

    Plastic changes in organisms' phenotypes can result from either abiotic or biotic effectors. Biotic effectors create the potential for a coevolutionary dynamic. Through the use of individual-based simulations, we examined the coevolutionary dynamic of two species that are phenotypically plastic. We explored two modes of biotic and abiotic interactions: ecological interactions that determine the form of natural selection and developmental interactions that determine phenotypes. Overall, coevolution had a larger effect on the evolution of phenotypic plasticity than plasticity had on the outcome of coevolution. Effects on the evolution of plasticity were greater when the fitness-maximizing coevolutionary outcomes were antagonistic between the species pair (predator-prey interactions) than when those outcomes were augmenting (competitive or mutualistic). Overall, evolution in the context of biotic interactions reduced selection for plasticity even when trait development was responding to just the abiotic environment. Thus, the evolution of phenotypic plasticity must always be interpreted in the full context of a species' ecology. Our results show how the merging of two theory domains--coevolution and phenotypic plasticity--can deepen our understanding of both and point to new empirical research.

  13. Neuronal cytoskeleton in synaptic plasticity and regeneration.

    Science.gov (United States)

    Gordon-Weeks, Phillip R; Fournier, Alyson E

    2014-04-01

    During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system. © 2013 International Society for Neurochemistry.

  14. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  15. 77 FR 54930 - Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A Subsidiary of Plastics...

    Science.gov (United States)

    2012-09-06

    ... Employment and Training Administration Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A... plastic parts. New information shows that Fortis Plastics is now called Carlyle Plastics and Resins. In... of Carlyle Plastics and Resins, formerly known as Fortis Plastics, a subsidiary of...

  16. Our plastic age

    National Research Council Canada - National Science Library

    Richard C. Thompson; Shanna H. Swan; Charles J. Moore; Frederick S. vom Saal

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production...

  17. Weinig plastic in vissenmaag

    NARCIS (Netherlands)

    Foekema, E.M.

    2012-01-01

    Waar de magen van sommige zeevogels vol plastic zitten, lijken vissen in de Noordzee nauwelijks last te hebben van kunststofafval. Onderzoekers die plastic resten zochten in vissenmagen vonden ze in elk geval nauwelijks.

  18. Ear Plastic Surgery

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ear Plastic Surgery Ear Plastic Surgery Patient Health Information ... they may improve appearance and self-confidence. Can Ear Deformities Be Corrected? Formation of the ear during ...

  19. Making environmental sensors on plastic foil

    Directory of Open Access Journals (Sweden)

    Danick Briand

    2011-09-01

    Full Text Available With the emergence of the printed electronics industry, the development of sensing technologies on non conventional substrates such as plastic foils is on-going. In this article, we review the work performed and the trends in the development of environmental sensors on plastic and flexible foils. Our main focus is on the integration of temperature, humidity, and gas sensors on plastic substrates targeting low-power operation for wireless applications. Some perspectives in this dynamic field are also provided showing the potential for the realization of several types of transducers on substrates of different natures and their combination with other components to realize smart systems.

  20. Biodegradability of Plastics

    OpenAIRE

    Yutaka Tokiwa; Calabia, Buenaventurada P.; Charles U. Ugwu; Seiichi Aiba

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical ...

  1. Chemical Recycle of Plastics

    Directory of Open Access Journals (Sweden)

    Sara Fatima

    2014-11-01

    Full Text Available Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  2. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example...

  3. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  4. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  5. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  6. Journal of CHINA PLASTICS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Journal of CHINA PLASTICS was authorized and approved by The State Committee of Science and Technology of China and The Bureau of News Press of China, and published by The China Plastics Processing Industry Association,Beijing Technology and Business University and The Institute of Plastics Processing and Application of Light Industry, distributed worldwide. Since its birth in 1987, CHINA PLASTICS has become a leading magazine in plastics industry in China, a national Chinese core journal and journal of Chinese scientific and technological article statistics. It is covered by CA.

  7. Dynamic range of GSK3α not GSK3β is essential for bidirectional synaptic plasticity at hippocampal CA3-CA1 synapses

    Science.gov (United States)

    Shahab, Lion; Plattner, Florian; Irvine, Elaine E; Cummings, Damian M; Edwards, Frances A

    2014-01-01

    Glycogen synthase kinase-3 (GSK3), particularly the isoform GSK3β, has been implicated in a wide range of physiological systems and neurological disorders including Alzheimer's Disease. However, the functional importance of GSK3α has been largely untested. The multifunctionality of GSK3 limits its potential as a drug target because of inevitable side effects. Due to its greater expression in the CNS, GSK3β rather than GSK3α has also been assumed to be of primary importance in synaptic plasticity. Here, we investigate bidirectional long-term synaptic plasticity in knockin mice with a point mutation in GSK3α or GSK3β that prevents their inhibitory regulation. We report that only the mutation in GSK3α affects long-term potentiation (LTP) and depression (LTD). This stresses the importance of investigating isoform specificity for GSK3 in all systems and suggests that GSK3α should be investigated as a drug target in cognitive disorders including Alzheimer's Disease. © 2014 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:25208523

  8. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  9. Glassy metallic plastics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper reports a class of bulk metallic glass including Ce-, LaCe-, CaLi-, Yb-, and Sr-based metallic glasses, which are regarded as glassy metallic plastics because they combine some unique properties of both plastics and metallic alloys. These glassy metallic plastics have very low glass transition temperature (Tg~25oC to 150oC) and low Young’s modulus (~20 GPa to 35 GPa). Similar to glassy plastics, these metallic plastics show excellent plastic-like deformability on macro-, micro- and even nano-scale in their supercooled liquid range and can be processed, such as elongated, compressed, bent, and imprinted at low temperatures, in hot water for instance. Under ambient conditions, they display such metallic properties as high thermal and electric conductivities and excellent mechanical properties and other unique properties. The metallic plastics have potential applications and are also a model system for studying issues in glass physics.

  10. Strain rate dependence in plasticized and un-plasticized PVC

    Directory of Open Access Journals (Sweden)

    Siviour C.R.

    2012-08-01

    Full Text Available An experimental and analytical investigation has been made into the mechanical behaviour of two poly (vinyl chloride (PVC polymers – an un-plasticized PVC and a diisononyl phthalate (DINP-plasticized PVC. Measurements of the compressive stress-strain behaviour of the PVCs at strain rates ranging from 10−3 to 103s−1 and temperatures from − 60 to 100∘C are presented. Dynamic Mechanical Analysis was also performed in order to understand the material transitions observed in compression testing as the strain rate is increased. This investigation develops a better understanding of the interplay between the temperature dependence and rate dependence of polymers, with a focus on locating the temperature and rate-dependent material transitions that occur during high rate testing.

  11. Strain rate dependence in plasticized and un-plasticized PVC

    Science.gov (United States)

    Kendall, M. J.; Siviour, C. R.

    2012-08-01

    An experimental and analytical investigation has been made into the mechanical behaviour of two poly (vinyl chloride) (PVC) polymers - an un-plasticized PVC and a diisononyl phthalate (DINP)-plasticized PVC. Measurements of the compressive stress-strain behaviour of the PVCs at strain rates ranging from 10-3 to 103s-1 and temperatures from - 60 to 100∘C are presented. Dynamic Mechanical Analysis was also performed in order to understand the material transitions observed in compression testing as the strain rate is increased. This investigation develops a better understanding of the interplay between the temperature dependence and rate dependence of polymers, with a focus on locating the temperature and rate-dependent material transitions that occur during high rate testing.

  12. Pathological Plasticity in Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Brandon S. Martin

    2012-01-01

    Full Text Available Deficits in neuronal plasticity are common hallmarks of many neurodevelopmental disorders. In the case of fragile-X syndrome (FXS, disruption in the function of a single gene, FMR1, results in a variety of neurological consequences directly related to problems with the development, maintenance, and capacity of plastic neuronal networks. In this paper, we discuss current research illustrating the mechanisms underlying plasticity deficits in FXS. These processes include synaptic, cell intrinsic, and homeostatic mechanisms both dependent on and independent of abnormal metabotropic glutamate receptor transmission. We place particular emphasis on how identified deficits may play a role in developmental critical periods to produce neuronal networks with permanently decreased capacity to dynamically respond to changes in activity central to learning, memory, and cognition in patients with FXS. Characterizing early developmental deficits in plasticity is fundamental to develop therapies that not only treat symptoms but also minimize the developmental pathology of the disease.

  13. Astrocyte and Neuronal Plasticity in the Somatosensory System

    OpenAIRE

    Sims, Robert E.; Butcher, John B.; Parri, H. Rheinallt; Glazewski, Stanislaw

    2015-01-01

    Changing the whisker complement on a rodent's snout can lead to two forms of experience-dependent plasticity (EDP) in the neurons of the barrel cortex, where whiskers are somatotopically represented. One form, termed coding plasticity, concerns changes in synaptic transmission and connectivity between neurons. This is thought to underlie learning and memory processes and so adaptation to a changing environment. The second, called homeostatic plasticity, serves to maintain a restricted dynamic...

  14. Plastic Pollution from Ships

    OpenAIRE

    Čulin, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  15. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plasti...... as a knowledge handbook for laser welding of plastic components. This document should provide the information for all aspects of plastic laser welding and help the design engineers to take all critical issues into consideration from the very beginning of the design phase....

  16. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  17. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  18. Glassy features of crystal plasticity

    Science.gov (United States)

    Lehtinen, Arttu; Costantini, Giulio; Alava, Mikko J.; Zapperi, Stefano; Laurson, Lasse

    2016-08-01

    Crystal plasticity occurs by deformation bursts due to the avalanchelike motion of dislocations. Here we perform extensive numerical simulations of a three-dimensional dislocation dynamics model under quasistatic stress-controlled loading. Our results show that avalanches are power-law distributed and display peculiar stress and sample size dependence: The average avalanche size grows exponentially with the applied stress, and the amount of slip increases with the system size. These results suggest that intermittent deformation processes in crystalline materials exhibit an extended critical-like phase in analogy to glassy systems instead of originating from a nonequilibrium phase transition critical point.

  19. Halos of Plastic

    Institute of Scientific and Technical Information of China (English)

    Maya Reid

    2012-01-01

    The halos that span South Africa's coastline are anything but angelic. Fanning out around four major urban centers-Cape Town, Port Elizabeth, East London and Durban-they are made up of innumerable bits and pieces of plastic. As a form of pollution, their shelflife is unfathomable. Plastic is essentially chemically inactive. It's designed to never break down.

  20. Biodegradation of plastics.

    Science.gov (United States)

    Shimao, M

    2001-06-01

    Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. Recent work has included studies of the distribution of synthetic polymer-degrading microorganisms in the environment, the isolation of new microorganisms for biodegradation, the discovery of new degradation enzymes, and the cloning of genes for synthetic polymer-degrading enzymes.

  1. Human Maternal Brain Plasticity: Adaptation to Parenting

    Science.gov (United States)

    Kim, Pilyoung

    2016-01-01

    New mothers undergo dynamic neural changes that support positive adaptation to parenting and the development of mother-infant relationships. In this article, I review important psychological adaptations that mothers experience during pregnancy and the early postpartum period. I then review evidence of structural and functional plasticity in human…

  2. Human Maternal Brain Plasticity: Adaptation to Parenting

    Science.gov (United States)

    Kim, Pilyoung

    2016-01-01

    New mothers undergo dynamic neural changes that support positive adaptation to parenting and the development of mother-infant relationships. In this article, I review important psychological adaptations that mothers experience during pregnancy and the early postpartum period. I then review evidence of structural and functional plasticity in human…

  3. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups...... answered the first Danish national survey, PD13[1], investigating the importance of industrial designers’ knowledge in plastics and the collaboration between designers and the polymer industry. The plastics industry and the industrial designers collaborate well, but both groups frequently experience...... that the designers’ lack of knowledge concerning polymer materials and manufacturing methods can be problematic or annoying, and design students from most Danish design universities express the need for more contact with the industry and more competencies and tools to handle even simple topics when designing plastic...

  4. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...... the relation between consciousness and brain functions. If consciousness is connected to specific brain structures (as a function or in identity) what happens to consciousness when those specific underlying structures change? It is therefore possible that the understanding and theories of neural plasticity can...

  5. Astrocyte and Neuronal Plasticity in the Somatosensory System.

    Science.gov (United States)

    Sims, Robert E; Butcher, John B; Parri, H Rheinallt; Glazewski, Stanislaw

    2015-01-01

    Changing the whisker complement on a rodent's snout can lead to two forms of experience-dependent plasticity (EDP) in the neurons of the barrel cortex, where whiskers are somatotopically represented. One form, termed coding plasticity, concerns changes in synaptic transmission and connectivity between neurons. This is thought to underlie learning and memory processes and so adaptation to a changing environment. The second, called homeostatic plasticity, serves to maintain a restricted dynamic range of neuronal activity thus preventing its saturation or total downregulation. Current explanatory models of cortical EDP are almost exclusively neurocentric. However, in recent years, increasing evidence has emerged on the role of astrocytes in brain function, including plasticity. Indeed, astrocytes appear as necessary partners of neurons at the core of the mechanisms of coding and homeostatic plasticity recorded in neurons. In addition to neuronal plasticity, several different forms of astrocytic plasticity have recently been discovered. They extend from changes in receptor expression and dynamic changes in morphology to alteration in gliotransmitter release. It is however unclear how astrocytic plasticity contributes to the neuronal EDP. Here, we review the known and possible roles for astrocytes in the barrel cortex, including its plasticity.

  6. Structural plasticity of axon terminals in the adult.

    Science.gov (United States)

    Gogolla, Nadine; Galimberti, Ivan; Caroni, Pico

    2007-10-01

    There is now conclusive evidence for widespread ongoing structural plasticity of presynaptic boutons and axon side-branches in the adult brain. The plasticity complements that of postsynaptic spines, but axonal plasticity samples larger volumes of neuropil, and has a larger impact on circuit remodeling. Axons from distinct neurons exhibit unique ratios of stable (t1/2>9 months) and dynamic (t1/2 5-20 days) boutons, which persist as spatially intermingled subgroups along terminal arbors. In addition, phases of side-branch dynamics mediate larger scale remodeling guided by synaptogenesis. The plasticity is most pronounced during critical periods; its patterns and outcome are controlled by Hebbian mechanisms and intrinsic neuronal factors. Novel experience, skill learning, life-style, and age can persistently modify local circuit structure through axonal structural plasticity.

  7. Sorption of hydrophobic organic compounds to plastics in marine environments: Equilibrium

    NARCIS (Netherlands)

    Endo, S.; Koelmans, A.A.

    2016-01-01

    Marine plastics have shown to contain various environmental chemicals. For evaluating the potential of plastics to influence regional and global dynamics of these chemicals and to serve as a vector to marine biota, understanding of sorption and desorption of chemicals by plastics is important. In

  8. Sorption of hydrophobic organic compounds to plastics in marine environments: Equilibrium

    NARCIS (Netherlands)

    Endo, S.; Koelmans, A.A.

    2016-01-01

    Marine plastics have shown to contain various environmental chemicals. For evaluating the potential of plastics to influence regional and global dynamics of these chemicals and to serve as a vector to marine biota, understanding of sorption and desorption of chemicals by plastics is important. In th

  9. A Calcium-Dependent Plasticity Rule for HCN Channels Maintains Activity Homeostasis and Stable Synaptic Learning

    Science.gov (United States)

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    for experimentally observed plasticity in HCN channels accompanying synaptic plasticity in hippocampal neurons, and uncover potential links between HCN-channel plasticity and calcium influx, dynamic gain control and stable synaptic learning. PMID:23390543

  10. The latest progress in research of plastics processing technology

    Institute of Scientific and Technical Information of China (English)

    Qu Jinping

    2012-01-01

    According to the great demand for the" green" plastics processing technology of the low energy consumption, high efficiency and environmental protection in plastics industry, the plastics processing method and technology based on the elongation rheology, with continuing evolution and innovation of the plastics plasticating and conveying method, are presented and researched on the basis of the plastics dynamic processing method arid equipment, and the plastics plasticating and conveying process in the vane extrusion system, the technical characteristics and the applications of vane plasticating and conveying technology are discussed. The research results show that compared with the conventional processing equipment, this new technology and equipment shows many outstanding advantages, such as shortening the thermo-meehanical history of the plastics processing by more than 50 % , reducing the energy consumption by 30 % or so, improving the mixing and blending effects, improving the quality of the products and the adaptability to materials, etc. , and it is found that the new technology and equipment has special superiority in the fields of the processing for material systems, such as the multiphase and multicomponent composite materials, the shear heat sensitive macromolecular materials, etc.

  11. Opposing Effects of Neuronal Activity on Structural Plasticity.

    Science.gov (United States)

    Fauth, Michael; Tetzlaff, Christian

    2016-01-01

    The connectivity of the brain is continuously adjusted to new environmental influences by several activity-dependent adaptive processes. The most investigated adaptive mechanism is activity-dependent functional or synaptic plasticity regulating the transmission efficacy of existing synapses. Another important but less prominently discussed adaptive process is structural plasticity, which changes the connectivity by the formation and deletion of synapses. In this review, we show, based on experimental evidence, that structural plasticity can be classified similar to synaptic plasticity into two categories: (i) Hebbian structural plasticity, which leads to an increase (decrease) of the number of synapses during phases of high (low) neuronal activity and (ii) homeostatic structural plasticity, which balances these changes by removing and adding synapses. Furthermore, based on experimental and theoretical insights, we argue that each type of structural plasticity fulfills a different function. While Hebbian structural changes enhance memory lifetime, storage capacity, and memory robustness, homeostatic structural plasticity self-organizes the connectivity of the neural network to assure stability. However, the link between functional synaptic and structural plasticity as well as the detailed interactions between Hebbian and homeostatic structural plasticity are more complex. This implies even richer dynamics requiring further experimental and theoretical investigations.

  12. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of

  13. A Plastic Menagerie

    Science.gov (United States)

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  14. Cortical plasticity and rehabilitation.

    Science.gov (United States)

    Moucha, Raluca; Kilgard, Michael P

    2006-01-01

    The brain is constantly adapting to environmental and endogenous changes (including injury) that occur at every stage of life. The mechanisms that regulate neural plasticity have been refined over millions of years. Motivation and sensory experience directly shape the rewiring that makes learning and neurological recovery possible. Guiding neural reorganization in a manner that facilitates recovery of function is a primary goal of neurological rehabilitation. As the rules that govern neural plasticity become better understood, it will be possible to manipulate the sensory and motor experience of patients to induce specific forms of plasticity. This review summarizes our current knowledge regarding factors that regulate cortical plasticity, illustrates specific forms of reorganization induced by control of each factor, and suggests how to exploit these factors for clinical benefit.

  15. Targeting tumour Cell Plasticity

    Institute of Scientific and Technical Information of China (English)

    Elizabeth D. WILLIAMS

    2009-01-01

    @@ Her research is focused on understanding the mechanisms of tumour progression and metastasis, particularly in uro-logical carcinomas (bladder and prostate). Tumour cell plasticity, including epithelial-mesenchymal transition, is a cen-tral theme in Dr Williams' work.

  16. Laser cutting plastic materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  17. Localization of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1976-04-01

    The localization of plastic deformation into a shear band is discussed as an instability of plastic flow and a precursor to rupture. Experimental observations are reviewed, a general theoretical framework is presented, and specific calculations of critical conditions are carried out for a variety of material models. The interplay between features of inelastic constitutive description, especially deviations from normality and vertex-like yielding, and the onset of localization is emphasized.

  18. Development of plastic surgery

    Directory of Open Access Journals (Sweden)

    Pećanac Marija Đ.

    2015-01-01

    Full Text Available Introduction. Plastic surgery is a medical specialty dealing with corrections of defects, improvements in appearance and restoration of lost function. Ancient Times. The first recorded account of reconstructive plastic surgery was found in ancient Indian Sanskrit texts, which described reconstructive surgeries of the nose and ears. In ancient Greece and Rome, many medicine men performed simple plastic cosmetic surgeries to repair damaged parts of the body caused by war mutilation, punishment or humiliation. In the Middle Ages, the development of all medical braches, including plastic surgery was hindered. New age. The interest in surgical reconstruction of mutilated body parts was renewed in the XVIII century by a great number of enthusiastic and charismatic surgeons, who mastered surgical disciplines and became true artists that created new forms. Modern Era. In the XX century, plastic surgery developed as a modern branch in medicine including many types of reconstructive surgery, hand, head and neck surgery, microsurgery and replantation, treatment of burns and their sequelae, and esthetic surgery. Contemporary and future plastic surgery will continue to evolve and improve with regenerative medicine and tissue engineering resulting in a lot of benefits to be gained by patients in reconstruction after body trauma, oncology amputation, and for congenital disfigurement and dysfunction.

  19. Sorting Plastic Waste in Hydrocyclone

    Directory of Open Access Journals (Sweden)

    Ernestas Šutinys

    2011-02-01

    Full Text Available The article presents material about sorting plastic waste in hydrocyclone. The tests on sorting plastic waste were carried out. Also, the findings received from the performed experiment on the technology of sorting plastic waste are interpreted applying an experimental model of the equipment used for sorting plastics of different density.Article in Lithuanian

  20. A two-speed model for finite-strain elasto-plasticity

    OpenAIRE

    Rindler, Filip

    2015-01-01

    This work presents a new modeling approach to macroscopic, polycrystalline elasto-plasticity starting from first principles and a few well-defined structural assumptions, incorporating the mildly rate-dependent (viscous) nature of plastic flow and the microscopic origins of plastic deformations. For the global dynamics, we start from a two-stage time-stepping scheme, expressing the fact that in most real materials plastic flow is much slower than elastic deformations, and then perform a detai...

  1. Ventral striatal plasticity and spatial memory.

    Science.gov (United States)

    Ferretti, Valentina; Roullet, Pascal; Sargolini, Francesca; Rinaldi, Arianna; Perri, Valentina; Del Fabbro, Martina; Costantini, Vivian J A; Annese, Valentina; Scesa, Gianluigi; De Stefano, Maria Egle; Oliverio, Alberto; Mele, Andrea

    2010-04-27

    Spatial memory formation is a dynamic process requiring a series of cellular and molecular steps, such as gene expression and protein translation, leading to morphological changes that have been envisaged as the structural bases for the engram. Despite the role suggested for medial temporal lobe plasticity in spatial memory, recent behavioral observations implicate specific components of the striatal complex in spatial information processing. However, the potential occurrence of neural plasticity within this structure after spatial learning has never been investigated. In this study we demonstrate that blockade of cAMP response element binding protein-induced transcription or inhibition of protein synthesis or extracellular proteolytic activity in the ventral striatum impairs long-term spatial memory. These findings demonstrate that, in the ventral striatum, similarly to what happens in the hippocampus, several key molecular events crucial for the expression of neural plasticity are required in the early stages of spatial memory formation.

  2. Can previous learning alter future plasticity mechanisms?

    Science.gov (United States)

    Crestani, Ana Paula; Quillfeldt, Jorge Alberto

    2016-02-01

    The dynamic processes related to mnemonic plasticity have been extensively researched in the last decades. More recently, studies have attracted attention because they show an unusual plasticity mechanism that is independent of the receptor most usually related to first-time learning--that is, memory acquisition-the NMDA receptor. An interesting feature of this type of learning is that a previous experience may cause modifications in the plasticity mechanism of a subsequent learning, suggesting that prior experience in a very similar task triggers a memory acquisition process that does not depend on NMDARs. The intracellular molecular cascades necessary to assist the learning process seem to depend on the activation of hippocampal CP-AMPARs. Moreover, most of these studies were performed on hippocampus-dependent tasks, even though other brain areas, such as the basolateral amygdala, also display NMDAR-independent learning.

  3. 垄作覆膜条件下冬小麦田的氨挥发研究%The dynamics of ammonia volatilization in winter wheat field with furrow planting system and ridge with plastic film mulching

    Institute of Scientific and Technical Information of China (English)

    上官宇先; 师日鹏; 韩坤; 王林权

    2011-01-01

    implied that soil ammonia volatilization mainly occurred in the first month after seeding, and had a great drop after turning green stage. The simulation results indicated that ammonia accumulation loss complied with Elovich dynamic equation before the winter, and linear equation after turning green stage. Laboratory simulation experiment showed that deep application of N fertilizer had more effects than plastic film mulch on limiting ammonia volatilization.

  4. Phenotypic plasticity in bacterial plasmids.

    Science.gov (United States)

    Turner, Paul E

    2004-01-01

    Plasmid pB15 was previously shown to evolve increased horizontal (infectious) transfer at the expense of reduced vertical (intergenerational) transfer and vice versa, a key trade-off assumed in theories of parasite virulence. Whereas the models predict that susceptible host abundance should determine which mode of transfer is selectively favored, host density failed to mediate the trade-off in pB15. One possibility is that the plasmid's transfer deviates from the assumption that horizontal spread (conjugation) occurs in direct proportion to cell density. I tested this hypothesis using Escherichia coli/pB15 associations in laboratory serial culture. Contrary to most models of plasmid transfer kinetics, my data show that pB15 invades static (nonshaking) bacterial cultures only at intermediate densities. The results can be explained by phenotypic plasticity in traits governing plasmid transfer. As cells become more numerous, the plasmid's conjugative transfer unexpectedly declines, while the trade-off between transmission routes causes vertical transfer to increase. Thus, at intermediate densities the plasmid's horizontal transfer can offset selection against plasmid-bearing cells, but at high densities pB15 conjugates so poorly that it cannot invade. I discuss adaptive vs. nonadaptive causes for the phenotypic plasticity, as well as potential mechanisms that may lead to complex transfer dynamics of plasmids in liquid environments. PMID:15166133

  5. Plasticity and rectangularity in survival curves

    Science.gov (United States)

    Weon, Byung Mook; Je, Jung Ho

    2011-09-01

    Living systems inevitably undergo a progressive deterioration of physiological function with age and an increase of vulnerability to disease and death. To maintain health and survival, living systems should optimize survival strategies with adaptive interactions among molecules, cells, organs, individuals, and environments, which arises plasticity in survival curves of living systems. In general, survival dynamics in a population is mathematically depicted by a survival rate, which monotonically changes from 1 to 0 with age. It would be then useful to find an adequate function to describe complicated survival dynamics. Here we describe a flexible survival function, derived from the stretched exponential function by adopting an age-dependent shaping exponent. We note that the exponent is associated with the fractal-like scaling in cumulative mortality rate. The survival function well depicts general features in survival curves; healthy populations exhibit plasticity and evolve towards rectangular-like survival curves, as examples in humans or laboratory animals.

  6. High-pressure, high-temperature deformation of CaGeO3 (perovskite)±MgO aggregates: Elasto-ViscoPlastic Self-Consistent modeling and dynamics in the lower mantle

    Science.gov (United States)

    Hilairet, Nadège; Tomé, Carlos; Wang, Huamiao; Merkel, Sébastien; Wang, Yanbin; Gasc, Julien; Feng, Shi; Nishiyama, Norimasa

    2016-04-01

    As the largest rocky layer in the Earth, the lower mantle plays a critical role in controlling convective patterns in our planet. Current mineralogical models suggest that the lower mantle is dominated by (Mg,Fe)SiO3 perovskite (SiPv; about 70 - 90% in volume fraction) and (Mg,Fe)O ferropericlase (Fp). Knowledge of rheological properties and textures of the major constituent minerals is critical in understanding dynamic processes of the deep Earth, and relating seismic observations to mineralogy. While individual properties of these phases have been studied, fewer informations on polyphase aggregates are available. Fundamental understanding about the stress-strain interactions among the phases and their effect on the bulk rheology still remains to be properly addressed. We examine stress/strain partitioning and rheological properties of a two-phase polycrystal CaGeO3 perovskite (GePv) and MgO, deformed in the D-DIA at controlled speed ~1 - 3×10-5 s-1 at high pressures and temperatures (between 3 to 10 GPa and 300 to 1200 K), with bulk axial strains up to ~30%. We use Elasto-Visco Plastic Self-Consistent modeling (EVPSC) to reproduce lattice strains and textures measured in-situ with synchrotron X-ray diffraction. We compare the results to those on an identical deformation experiment with a single phase (GePv) polycrystal. We will discuss stress distributions between the two phases in the composite, texture developments, relationships with active slip systems, and finally the implications for rheological and seismic properties of the lower mantle.

  7. Dynamics of Western Flower Thrips and Its Natural Enemy Categories on Plastic Shed Cultivation Vegetables%大棚蔬菜西花蓟马的种群动态及其天敌种类

    Institute of Scientific and Technical Information of China (English)

    郝晨彦; 王相晶; 侯文杰; 施秀珍; 吴青君; 徐宝云; 张友军

    2011-01-01

    对北京地区大棚栽培蔬菜上西花蓟马种群动态和天敌种类进行调查.结果显示,春茬甜椒在定植30 d内,西花蓟马种群数量增长缓慢,但进入开花期,其数量迅速增长,到6月后持续保持在高数量水平.秋茬甜椒上西花蓟马的种群数量明显低于春季,也主要集中在花中取食.西花蓟马的天敌有瓢虫类、草蛉类和花蝽类,以花蝽类昆虫最多,并对西花蓟马种群具有一定的控制作用.%The dynamics of western flower thrips ( WFT) ( Frankliniella occidentalis ( Pergande ) ] and its natural enemies on plastic shed cultivation vegetables were investigated during spring and autumn seasons in Beijing. The results showed that the population grew slowly on sweet pepper planted in spring season during 30 days after transplanting. But the pest number increased rapidly with the emergence of flowering period and remained at a high level in June. The number of WFT in autumn season sweet pepper was obviously lower than that in spring. The pest preferred to feed in flowers. The observed natural enemies of WFT were ladybirds, lacewings and flower bugs, and the flower bug ( Orius spp.) was the dominant insect, which had some control effect to WFT.

  8. 门式刚架结构整体弹塑性时程分析%Dynamic elas-to-plastic time-history analysis of the portal frame of whole structural

    Institute of Scientific and Technical Information of China (English)

    邵雪超; 李启才; 苏明周

    2012-01-01

    As the portal frame of light steel structure extensive application, the seismic performance pay for attention. However, at present,the research on seismic behavior of portal frame is lack, the relative standards on seismic design are also not well treated, which lead to the application of this structure is limited in high seismic areas. In this paper,dynamic elas-to-plastic time-history analysis of the portal frame of two frames,is simulated by ANSYS program a-large-scale integrated general-purpose finite element analysis software, through with a hinged frame and experimental data contrast,analysing the portal frame structure under earthquake effect reaction. And, it gets some useful conclusions in regard to engineers and technicians. To provide the reference for the following the theoretical analysis and engineering practice.%随着门式刚架轻钢结构的广泛应用,其抗震性能得到关注,但是目前门式刚架结构抗震性能方面的研究还相对较少,相关规范规程对其抗震设计的规定也不够细致,制约着这种结构形式在高烈度抗震设防地区的应用.本文利用ANSYS软件对由两榀刚架组成的整体结构进行弹塑性时程分析,通过与一榀刚架和实验数据的对比,分析门式刚架结构在地震作用下的反应,并得出一些有用的结论,对以后的理论分析和工程实践提供参考.

  9. Plastic response and correlations in athermally sheared amorphous solids

    Science.gov (United States)

    Puosi, F.; Rottler, J.; Barrat, J.-L.

    2016-09-01

    The onset of irreversible deformation in low-temperature amorphous solids is due to the accumulation of elementary events, consisting of spatially and temporally localized atomic rearrangements involving only a few tens of atoms. Recently, numerical and experimental work addressed the issue of spatiotemporal correlations between these plastic events. Here, we provide further insight into these correlations by investigating, via molecular dynamics (MD) simulations, the plastic response of a two-dimensional amorphous solid to artificially triggered local shear transformations. We show that while the plastic response is virtually absent in as-quenched configurations, it becomes apparent if a shear strain was previously imposed on the system. Plastic response has a fourfold symmetry, which is characteristic of the shear stress redistribution following the local transformation. At high shear rate we report evidence for a fluctuation-dissipation relation, connecting plastic response and correlation, which seems to break down if lower shear rates are considered.

  10. The notion of a plastic material spin in atomistic simulations

    Science.gov (United States)

    Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.

    2016-12-01

    A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.

  11. Ventral striatal plasticity and spatial memory

    OpenAIRE

    Ferretti, Valentina; Roullet, Pascal; Sargolini, Francesca; Rinaldi, Arianna; Perri, Valentina; Del Fabbro, Martina; Costantini, Vivian J. A.; ANNESE, VALENTINA; Scesa, Gianluigi; De Stefano, Maria Egle; Oliverio, Alberto; Mele, Andrea

    2010-01-01

    Spatial memory formation is a dynamic process requiring a series of cellular and molecular steps, such as gene expression and protein translation, leading to morphological changes that have been envisaged as the structural bases for the engram. Despite the role suggested for medial temporal lobe plasticity in spatial memory, recent behavioral observations implicate specific components of the striatal complex in spatial information processing. However, the potential occurrence of neural plasti...

  12. SABIC Innovative Plastics: Be the World Best Plastic Resin Manufacturer

    Institute of Scientific and Technical Information of China (English)

    Jenny Du

    2007-01-01

    @@ "SABIC Innovative Plastics is a global supplier of plastic resins, manufacturing and compounding polycarbonate, ABS, SAN, ASA, PPE, PC/ABS, PBT and PEI resins, as well as the LNP* line of high performance specialty compounds," said Hiroshi Yoshida, the Global Market Director for Electronics of SABIC Innovative Plastics based in Tokyo at the press conference held by SABIC Innovative Plastics, November 8th 2007, Shanghai.

  13. Molecular Dynamics Simulation and Experimental Study of DNTF on Plasticizing Properties of NC%DNTF 对 NC 塑化特性的分子动力学模拟及实验研究

    Institute of Scientific and Technical Information of China (English)

    孟玲玲; 齐晓飞; 王江宁; 樊学忠

    2015-01-01

    为研究 DNTF 对 CMDB 推进剂力学性能的作用机理,通过分子动力学模拟方法建立了 NC 纯物质和 NC/DNTF 共混物分子模型,研究了 DNTF 对 NC 塑化过程中微观结构的影响,采用拉伸试验研究了 DNTF 对 CMDB推进剂力学性能的影响。结果表明,DNTF 与 NC 分子形成氢键,使 NC 内分子的氢键减弱,NC 分子的刚性降低;加入 DNTF 后,DNTF-CMDB 推进剂的抗拉强度降低、延伸率增加;20℃时延伸率由8.69%增加到33.6%,50℃时延伸率由14.86%增加到45.6%。分子动力学模拟计算结果与拉伸试验结果一致。%To investigate the acting mechanism of 3,4-dinitrofurazanfuroxan (DNTF)on the mechanical properties of CMDB propellants,the molecular models of nitrocellulose (NC)pure substance and NC/ DNTF blends were established by molecular dynamics simulation method.The effects of DNTF on the microstructure of NC in plastici-zing process were studied.The effects of DNTF on the mechanical properties of CMDB propellants were explored using the tensile test.Results show that DNTF and NC molecules form hydrogen bonds,which make the inner-molecule hydrogen bonds for NC weaken and the rigidity of NC molecules reduce.After addition of DNTF in CMDB propellants,the elongation of the DNTF-CMDB propellant increases,while the tensile strength decreases.The elongation increases from 8.69% to 33.6% at 20℃ and increases from 14.86 to 45.6% at 50℃.The results of molecular dynamics simulation are in agreement with those of tensile test.

  14. Preserving in Plastic.

    Science.gov (United States)

    Wahla, James

    1985-01-01

    Outlines steps for casting insects in permanent molds prepared from commercially available liquid plastic. Also describes dry mountings in glass, acrylic, and petri dishes. The rationale for specimen use, hints for producing quality results, purchasing information, and safety precautions are considered. (DH)

  15. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of acti

  16. Discrete dislocation plasticity

    NARCIS (Netherlands)

    van der Giessen, E.; Finel, A; Maziere, D; Veron, M

    2003-01-01

    Conventional continuum mechanics models of inelastic deformation processes axe size scale independent. In contrast, there is considerable experimental evidence that plastic flow in crystalline materials is size dependent over length scales of the order of tens of microns and smaller. At present ther

  17. Progress in neural plasticity

    Institute of Scientific and Technical Information of China (English)

    POO; Mu-Ming

    2010-01-01

    One of the properties of the nervous system is the use-dependent plasticity of neural circuits.The structure and function of neural circuits are susceptible to changes induced by prior neuronal activity,as reflected by short-and long-term modifications of synaptic efficacy and neuronal excitability.Regarded as the most attractive cellular mechanism underlying higher cognitive functions such as learning and memory,activity-dependent synaptic plasticity has been in the spotlight of modern neuroscience since 1973 when activity-induced long-term potentiation(LTP) of hippocampal synapses was first discovered.Over the last 10 years,Chinese neuroscientists have made notable contributions to the study of the cellular and molecular mechanisms of synaptic plasticity,as well as of the plasticity beyond synapses,including activity-dependent changes in intrinsic neuronal excitability,dendritic integration functions,neuron-glia signaling,and neural network activity.This work highlight some of these significant findings.

  18. New plastic recycling technology

    Science.gov (United States)

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy de...

  19. Persisting Plastic Addiction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The policy on curbing plastic shopping bag use implemented three years ago has produced mixed results In a bustling farmers’market tucked in a narrow street in Xisanqi residential community in north Beijing,stalls selling vegetables,fruits and other foods line the sidewalk.

  20. Homeostatic role of heterosynaptic plasticity: Models and experiments

    Directory of Open Access Journals (Sweden)

    Marina eChistiakova

    2015-07-01

    Full Text Available Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and refinement of connectivity during development in a variety of biological systems. In this review we argue that a complimentary form of plasticity - heterosynaptic plasticity - represents a necessary cellular component for homeostatic regulation of synaptic weights and neuronal activity. The required properties of a homeostatic mechanism which acutely constrains the runaway dynamics imposed by Hebbian associative plasticity have been well-articulated by theoretical and modeling studies. Such mechanism(s should robustly support the stability of operation of neuronal networks and synaptic competition, include changes at non-active synapses, and operate on a similar time scale to Hebbian-type plasticity. The experimentally observed properties of heterosynaptic plasticity have introduced it as a strong candidate to fulfill this homeostatic role. Subsequent modeling studies which incorporate heterosynaptic plasticity into model neurons with Hebbian synapses (utilizing an STDP learning rule have confirmed its ability to robustly provide stability and competition. In contrast, properties of homeostatic synaptic scaling, which is triggered by extreme and long lasting (hours and days changes of neuronal activity, do not fit two crucial requirements for a hypothetical homeostatic mechanism needed to provide stability of operation in the face of on-going synaptic changes driven by Hebbian-type learning rules. Both the trigger and the time scale of homeostatic synaptic scaling are fundamentally different from those of the Hebbian-type plasticity. We conclude that heterosynaptic plasticity, which is triggered by the same episodes of strong postsynaptic activity and operates on the same time scale as Hebbian-type associative plasticity, is ideally suited to serve homeostatic role during on-going synaptic plasticity.

  1. Spikes Synchronization in Neural Networks with Synaptic Plasticity

    CERN Document Server

    Borges, Rafael R; Batista, Antonio M; Caldas, Iberê L; Borges, Fernando S; Lameu, Ewandson L

    2015-01-01

    In this paper, we investigated the neural spikes synchronisation in a neural network with synaptic plasticity and external perturbation. In the simulations the neural dynamics is described by the Hodgkin Huxley model considering chemical synapses (excitatory) among neurons. According to neural spikes synchronisation is expected that a perturbation produce non synchronised regimes. However, in the literature there are works showing that the combination of synaptic plasticity and external perturbation may generate synchronised regime. This article describes the effect of the synaptic plasticity on the synchronisation, where we consider a perturbation with a uniform distribution. This study is relevant to researches of neural disorders control.

  2. Pixels Intensity Evolution to Describe the Plastic Films Deformation

    Directory of Open Access Journals (Sweden)

    Juan C. Briñez-De León

    2013-11-01

    Full Text Available This work proposes an approach for mechanical behavior description in the plastic film deformation using techniques for the images analysis, which are based on the intensities evolution of fixed pixels applied to an images sequence acquired through polarizing optical assembly implemented around the platform of the plastic film deformation. The pixels intensities evolution graphs, and mechanical behavior graphic of the deformation has dynamic behaviors zones which could be associated together.

  3. Spatiotemporal computations of an excitable and plastic brain: neuronal plasticity leads to noise-robust and noise-constructive computations.

    Science.gov (United States)

    Toutounji, Hazem; Pipa, Gordon

    2014-03-01

    It is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation. Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain's input. Here, we introduce a geometric theory of learning spatiotemporal computations through neuronal plasticity. To that end, we rigorously formulate the problem of neural representations as a relation in space between stimulus-induced neural activity and the asymptotic dynamics of excitable cortical networks. Backed up by computer simulations and numerical analysis, we show that two canonical and widely spread forms of neuronal plasticity, that is, spike-timing-dependent synaptic plasticity and intrinsic plasticity, are both necessary for creating neural representations, such that these computations become realizable. Interestingly, the effects of these forms of plasticity on the emerging neural code relate to properties necessary for both combating and utilizing noise. The neural dynamics also exhibits features of the most likely stimulus in the network's spontaneous activity. These properties of the spatiotemporal neural code resulting from plasticity, having their grounding in nature, further consolidate the biological relevance of our findings.

  4. Dynamics

    CERN Document Server

    Goodman, Lawrence E

    2001-01-01

    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  5. The stress statistics of the first pop-in or discrete plastic event in crystal plasticity

    Science.gov (United States)

    Derlet, P. M.; Maaß, R.

    2016-12-01

    The stress at which the first discrete plastic event occurs is investigated using extreme value statistics. It is found that the average of this critical stress is inversely related to the deforming volume, via an exponentially truncated power-law. This is demonstrated for the first pop-in event observed in experimental nano-indentation data as a function of the indenter volume, and for the first discrete plastic event seen in a dislocation dynamics simulation. When the underlying master distribution of critical stresses is assumed to be a power-law, it becomes possible to extract the density of discrete plastic events available to the crystal, and to understand the exponential truncation as a break-down of the asymptotic Weibull limit.

  6. A QSPR for the plasticization efficiency of polyvinylchloride plasticizers.

    Science.gov (United States)

    Chandola, Mridula; Marathe, Sujata

    2008-01-01

    A simple quantitative structure property relationship (QSPR) for correlating the plasticization efficiency of 25 polyvinylchloride (PVC) plasticizers was obtained using molecular modeling. The plasticizers studied were-aromatic esters (phthalate, terephthalate, benzoate, trimellitate), aliphatic esters (adipate, sebacate, azelate), citrates and a phosphate. The low temperature flex point, Tf, of plasticized polyvinylchloride resins was considered as an indicator of plasticization efficiency. Initially, we attempted to predict plasticization efficiency of PVC plasticizers from physical and structural descriptors derived from the plasticizer molecule alone. However, the correlation of these descriptors with Tf was not very good with R=0.78 and r2=0.613. This implied that the selected descriptors were unable to predict all the interactions between PVC and plasticizer. Hence, to account for these interactions, a model containing two polyvinylchloride (PVC) chain segments along with a plasticizer molecule in a simulation box was constructed, using molecular mechanics. A good QSPR equation correlating physical and structural descriptors derived from the model to Tf of the plasticized resins was obtained with R=0.954 and r2=0.909.

  7. Detecting plastic events in emulsions simulations

    Science.gov (United States)

    Lulli, Matteo; Matteo Lulli, Massimo Bernaschi, Mauro Sbragaglia Team

    2016-11-01

    Emulsions are complex systems which are formed by a number of non-coalescing droplets dispersed in a solvent leading to non-trivial effects in the overall flowing dynamics. Such systems possess a yield stress below which an elastic response to an external forcing occurs, while above the yield stress the system flows as a non-Newtonian fluid, i.e. the stress is not proportional to the shear. In the solid-like regime the network of the droplets interfaces stores the energy coming from the work exerted by an external forcing, which can be used to move the droplets in a non-reversible way, i.e. causing plastic events. The Kinetic-Elasto-Plastic (KEP) theory is an effective theory describing some features of the flowing regime relating the rate of plastic events to a scalar field called fluidity f =γ˙/σ , i.e. the inverse of an effective viscosity. Boundary conditions have a non-trivial role not captured by the KEP description. In this contribution we will compare numerical results against experiments concerning the Poiseuille flow of emulsions in microchannels with complex boundary geometries. Using an efficient computational tool we can show non-trivial results on plastic events for different realizations of the rough boundaries. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007- 2013)/ERC Grant Agreement no. [279004].

  8. Sustainable harvest: managing plasticity for resilient crops.

    Science.gov (United States)

    Bloomfield, Justin A; Rose, Terry J; King, Graham J

    2014-06-01

    Maintaining crop production to feed a growing world population is a major challenge for this period of rapid global climate change. No consistent conceptual or experimental framework for crop plants integrates information at the levels of genome regulation, metabolism, physiology and response to growing environment. An important role for plasticity in plants is assisting in homeostasis in response to variable environmental conditions. Here, we outline how plant plasticity is facilitated by epigenetic processes that modulate chromatin through dynamic changes in DNA methylation, histone variants, small RNAs and transposable elements. We present examples of plant plasticity in the context of epigenetic regulation of developmental phases and transitions and map these onto the key stages of crop establishment, growth, floral initiation, pollination, seed set and maturation of harvestable product. In particular, we consider how feedback loops of environmental signals and plant nutrition affect plant ontogeny. Recent advances in understanding epigenetic processes enable us to take a fresh look at the crosstalk between regulatory systems that confer plasticity in the context of crop development. We propose that these insights into genotype × environment (G × E) interaction should underpin development of new crop management strategies, both in terms of information-led agronomy and in recognizing the role of epigenetic variation in crop breeding. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Sustainable reverse logistics for household plastic waste

    OpenAIRE

    Bing, X

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than that of virgin plastics. Therefore, it is environmentally and economically beneficial to improve the plastic recycling system to ensure more plastic waste from households is properly collected and pr...

  10. Plasticity modeling & computation

    CERN Document Server

    Borja, Ronaldo I

    2013-01-01

    There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.

  11. Evolutionary plasticity of insect immunity.

    Science.gov (United States)

    Vilcinskas, Andreas

    2013-02-01

    Many insect genomes have been sequenced and the innate immune responses of several species have been studied by transcriptomics, inviting the comparative analysis of immunity-related genes. Such studies have demonstrated significant evolutionary plasticity, with the emergence of novel proteins and protein domains correlated with insects adapting to both abiotic and biotic environmental stresses. This review article focuses on effector molecules such as antimicrobial peptides (AMPs) and proteinase inhibitors, which display greater evolutionary dynamism than conserved components such as immunity-related signaling molecules. There is increasing evidence to support an extended role for insect AMPs beyond defense against pathogens, including the management of beneficial endosymbionts. The total number of AMPs varies among insects with completed genome sequences, providing intriguing examples of immunity gene expansion and loss. This plasticity is discussed in the context of recent developments in evolutionary ecology suggesting that the maintenance and deployment of immune responses reallocates resources from other fitness-related traits thus requiring fitness trade-offs. Based on our recent studies using both model and non-model insects, I propose that insect immunity genes can be lost when alternative defense strategies with a lower fitness penalty have evolved, such as the so-called social immunity in bees, the chemical sanitation of the microenvironment by some beetles, and the release of antimicrobial secondary metabolites in the hemolymph. Conversely, recent studies provide evidence for the expansion and functional diversification of insect AMPs and proteinase inhibitors to reflect coevolution with a changing pathosphere and/or adaptations to habitats or food associated with microbial contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Elephants for Mr. Lincoln: American Civil War-Era Diplomacy in Southeast Asia, William Strobridge & Anita Hibler

    Directory of Open Access Journals (Sweden)

    Adela Baer

    2012-11-01

    Full Text Available This curious book, which begins with events in the 1810s, emphasizes Burma and Siam but undervalues other parts of Southeast Asia. The title refers to the offer by the king of Siam to send elephants to the United States to help President Lincoln win the Civil War. The book rightly discusses commerce, diplomats, and military actions in Southeast Asia. Missionaries are, for unclear reasons, also given prominence; in fact, much of the authors’ information comes from Protestant missionary sources...

  13. Low temperature creep plasticity

    Directory of Open Access Journals (Sweden)

    Michael E. Kassner

    2014-07-01

    Full Text Available The creep behavior of crystalline materials at low temperatures (T < 0.3Tm is discussed. In particular, the phenomenological relationships that describe primary creep are reviewed and analyzed. A discussion of the activation energy for creep at T < 0.3Tm is discussed in terms of the context of higher temperature activation energy. The basic mechanism(s of low temperature creep plasticity are discussed, as well.

  14. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Microelectronics plastic molded packaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R. [Ktech Corp., Albuquerque, NM (United States); Palmer, D.W.; Peterson, D.W. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  16. Interfacial interactions between plastic particles in plastics flotation.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation.

  17. 代森锰锌、乙撑硫脲在大棚、露地黄瓜上的残留动态对比研究%Comparison of Residual Dynamics of Mancozeb and Ethylenethioureaon Cucumbers Grown in Plastic House and Open Field

    Institute of Scientific and Technical Information of China (English)

    范志先; 叶志强; 许允成; 初丽伟

    2001-01-01

    The residual dynamics of mancozeb and ethylenethio urea on cucumbers grown in plastic house and open field were compared. After application, the dynamics of mancozeb residues on cucumbers grown in plastic house and field could be described, respectively, as Ct=1.058e-0.1282t,Ct=0.751 e-0.4689t, with a half-life of 5.4 and 1.4 days, respectively. The degradation of mancozeb on cucumbers grown in the plastic house was slower than that of cucumbers grown in open field. The dynamics of ethylenethiourea residues on cucumbers grown in plastic house and field could be described, respectively, as Ct=0.152e-0.1794t ,Ct=0.059e-0.1366t, and respectively with a half-life of 3.9 and 5.4 days. The degradation of eth ylenethiourea on cucumbers grown in the plastic house was faster than that of cucumbers grown in open field.%对代森锰锌、乙撑硫脲在大棚、露地黄瓜上的残留动态进行了对比研究。喷药后,代森锰锌在大棚黄瓜上的降解动态方程为Ct=1.058e-0. 1282t,露地为Ct=0.751e-0.4689t。半衰期分别为5.4 d和1.4 d。代森锰锌在大棚黄瓜上的降解速度要慢于露地黄瓜。乙撑硫脲在大棚黄瓜上的降解动态方程为Ct=0.152e-0.1794t,露地为Ct=0 .059e-0.1366t 。半衰期分别为3.9 d和5.4 d。乙撑硫脲在大棚黄瓜上的降解速度要稍快于露地黄瓜。

  18. Cancer stem cell plasticity and tumor hierarchy

    Institute of Scientific and Technical Information of China (English)

    Marina Carla Cabrera; Robert E Hollingsworth; Elaine M Hurt

    2015-01-01

    The origins of the complex process of intratumoralheterogeneity have been highly debated and differentcellular mechanisms have been hypothesized to accountfor the diversity within a tumor. The clonal evolution andcancer stem cell (CSC) models have been proposed asdrivers of this heterogeneity. However, the concept ofcancer stem cell plasticity and bidirectional conversionbetween stem and non-stem cells has added additionalcomplexity to these highly studied paradigms and may helpexplain the tumor heterogeneity observed in solid tumors.The process of cancer stem cell plasticity in which cancercells harbor the dynamic ability of shifting from a non-CSCstate to a CSC state and vice versa may be modulated byspecific microenvironmental signals and cellular interactionsarising in the tumor niche. In addition to promoting CSCplasticity, these interactions may contribute to the cellulartransformation of tumor cells and affect response tochemotherapeutic and radiation treatments by providingCSCs protection from these agents. Herein, we review theliterature in support of this dynamic CSC state, discussthe effectors of plasticity, and examine their role in thedevelopment and treatment of cancer.

  19. Botulinum toxin in ophthalmic plastic surgery

    Directory of Open Access Journals (Sweden)

    Naik Milind

    2005-01-01

    Full Text Available Botulinum toxin chemodenervation has evolved greatly over the past 30 years since its introduction in the 1970s for the management of strabismus. Among ophthalmic plastic surgeons, botulinum toxins are often used as the first line treatment for facial dystonias. These toxins are also efficacious for the temporary management of various other conditions including keratopathies (through so called chemo-tarsorraphy, upper eyelid retraction, orbicularis overaction-induced lower eyelid entropion, gustatory epiphora, Frey′s syndrome, and dynamic facial rhytids such as lateral canthal wrinkles (crow′s feet, glabellar creases and horizontal forehead lines. This article describes the pharmacology, reconstitution techniques and common current applications of botulinum toxins in ophthalmic plastic surgery.

  20. Use of recycled plastics in wood plastic composites - a review.

    Science.gov (United States)

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs.

  1. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  2. Plastic Surgery and Suicide: A Clinical Guide for Plastic Surgeons.

    Science.gov (United States)

    Reddy, Vikram; Coffey, M Justin

    2016-08-01

    Several studies have identified an increased risk of suicide among patient populations which a plastic surgeon may have a high risk of encountering: women undergoing breast augmentation, cosmetic surgery patients, and breast cancer patients. No formal guidelines exist to assist a plastic surgeon when faced with such a patient, and not every plastic surgery team has mental health clinicians that are readily accessible for consultation or referral. The goal of this clinical guide is to offer plastic surgeons a set of practical approaches to manage potentially suicidal patients. In addition, the authors review a screening tool, which can assist surgeons when encountering high-risk patients.

  3. How predictable is plastic damage at the atomic scale?

    Science.gov (United States)

    Li, D.; Bucholz, E. W.; Peterson, G.; Reich, B. J.; Russ, J. C.; Brenner, D. W.

    2017-02-01

    The title of this letter implies two questions: To what degree is plastic damage inherently predictable at the atomic scale, and can this predictability be quantified? We answer these questions by combining image analysis with molecular dynamics (MD) simulation to quantify similarities between atomic structures of plastic damage in a database of strained copper bi-crystals. We show that a manifold of different outcomes can originate ostensibly from the same initial structure, but that with this approach complex plastic damage within this manifold can be statistically connected to the initial structure. Not only does this work introduce a powerful approach for analyzing MD simulations of a complex plastic damage but also provides a much needed and critical framework for analyzing and organizing atomic-scale microstructural databases.

  4. Modeling phenotypic plasticity in growth trajectories: a statistical framework.

    Science.gov (United States)

    Wang, Zhong; Pang, Xiaoming; Wu, Weimiao; Wang, Jianxin; Wang, Zuoheng; Wu, Rongling

    2014-01-01

    Phenotypic plasticity, that is multiple phenotypes produced by a single genotype in response to environmental change, has been thought to play an important role in evolution and speciation. Historically, knowledge about phenotypic plasticity has resulted from the analysis of static traits measured at a single time point. New insight into the adaptive nature of plasticity can be gained by an understanding of how organisms alter their developmental processes in a range of environments. Recent advances in statistical modeling of functional data and developmental genetics allow us to construct a dynamic framework of plastic response in developmental form and pattern. Under this framework, development, genetics, and evolution can be synthesized through statistical bridges to better address how evolution results from phenotypic variation in the process of development via genetic alterations.

  5. Tree plastic bark

    OpenAIRE

    Casado Arroyo, Carlos

    2016-01-01

    “Tree plastic bark" consiste en la realización de una intervención artística en un entorno natural concreto, generando de esta manera un Site Specific(1). Como hace alusión Rosalind Krauss en sus reflexiones “La escultura en el campo expandido”(2), comenta que su origen esta claramente ligado con el concepto de monumentalidad. La escultura es un monumento, se crea para conmemorar algún hecho o personaje relevante y está realizada para una ubicación concreta. La investigación parte de la id...

  6. Fabrication of plastic biochips

    Energy Technology Data Exchange (ETDEWEB)

    Saaem, Ishtiaq; Ma, Kuo-Sheng; Alam, S. Munir; Tian Jingdong [Department of Biomedical Engineering and Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708 (United States); Department of Medicine and Human Vaccine Institute, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering and Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708 (United States)

    2010-07-15

    A versatile surface functionalization procedure based on rf magnetron sputtering of silica was performed on poly(methylmethacrylate), polycarbonate, polypropylene, and cyclic olefin copolymers (Topas 6015). The hybrid thermoplastic surfaces were characterized by x-ray photoelectron spectrometer analysis and contact angle measurements. The authors then used these hybrid materials to perform a sandwich assay targeting an HIV-1 antibody using fluorescent detection and biotinylated peptides immobilized using the bioaffinity of biotin-neutravidin. They found a limit of detection similar to arrays on glass surfaces and believed that this plastic biochip platform may be used for the development of disposable immunosensing and diagnostic applications.

  7. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  8. The commercialization of plastic surgery.

    Science.gov (United States)

    Swanson, Eric

    2013-09-01

    The last decade has brought a major challenge to the traditional practice of plastic surgery from corporations that treat plastic surgery as a commercial product and market directly to the public. This corporate medicine model may include promotion of a trademarked procedure or device, national advertising that promises stunning results, sales consultants, and claims of innovation, superiority, and improved safety. This article explores the ethics of this business practice and whether corporate medicine is a desirable model for patients and plastic surgeons.

  9. Neural field theory of plasticity in the cerebral cortex.

    Science.gov (United States)

    Fung, P K; Haber, A L; Robinson, P A

    2013-02-07

    A generalized timing-dependent plasticity rule is incorporated into a recent neural field theory to explore synaptic plasticity in the cerebral cortex, with both excitatory and inhibitory populations included. Analysis in the time and frequency domains reveals that cortical network behavior gives rise to a saddle-node bifurcation and resonant frequencies, including a gamma-band resonance. These system resonances constrain cortical synaptic dynamics and divide it into four classes, which depend on the type of synaptic plasticity window. Depending on the dynamical class, synaptic strengths can either have a stable fixed point, or can diverge in the absence of a separate saturation mechanism. Parameter exploration shows that time-asymmetric plasticity windows, which are signatures of spike-timing dependent plasticity, enable the richest variety of synaptic dynamics to occur. In particular, we predict a zone in parameter space which may allow brains to attain the marginal stability phenomena observed experimentally, although additional regulatory mechanisms may be required to maintain these parameters.

  10. Multiscale modeling and synaptic plasticity.

    Science.gov (United States)

    Bhalla, Upinder S

    2014-01-01

    Synaptic plasticity is a major convergence point for theory and computation, and the process of plasticity engages physiology, cell, and molecular biology. In its many manifestations, plasticity is at the hub of basic neuroscience questions about memory and development, as well as more medically themed questions of neural damage and recovery. As an important cellular locus of memory, synaptic plasticity has received a huge amount of experimental and theoretical attention. If computational models have tended to pick specific aspects of plasticity, such as STDP, and reduce them to an equation, some experimental studies are equally guilty of oversimplification each time they identify a new molecule and declare it to be the last word in plasticity and learning. Multiscale modeling begins with the acknowledgment that synaptic function spans many levels of signaling, and these are so tightly coupled that we risk losing essential features of plasticity if we focus exclusively on any one level. Despite the technical challenges and gaps in data for model specification, an increasing number of multiscale modeling studies have taken on key questions in plasticity. These have provided new insights, but importantly, they have opened new avenues for questioning. This review discusses a wide range of multiscale models in plasticity, including their technical landscape and their implications.

  11. Plastics recycling: challenges and opportunities

    National Research Council Canada - National Science Library

    Jefferson Hopewell; Robert Dvorak; Edward Kosior

    2009-01-01

    .... Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public...

  12. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2010-07-15

    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  13. [Erythropoietin in plastic surgery].

    Science.gov (United States)

    Günter, C I; Rezaeian, F; Harder, Y; Lohmeyer, J A; Egert, S; Bader, A; Schilling, A F; Machens, H-G

    2013-04-01

    EPO is an autologous hormone, which is known to regulate erythropoiesis. For 30 years it has been used for the therapy of diverse forms of anaemia, such as renal anaemia, tumour-related anaemias, etc. Meanwhile, a multitude of scientific publications were able to demonstrate its pro-regenerative effects after trauma. These include short-term effects such as the inhibition of the "primary injury response" or apoptosis, and mid- and long-term effects for example the stimulation of stem cell recruitment, growth factor production, angiogenesis and re-epithelialisation. Known adverse reactions are increases of thromboembolic events and blood pressure, as well as a higher mortality in patients with tumour anaemias treated with EPO. Scientific investigations of EPO in the field of plastic surgery included: free and local flaps, nerve regeneration, wound healing enhancement after dermal thermal injuries and in chronic wounds.Acute evidence for the clinical use of EPO in the field of plastic surgery is still not satisfactory, due to the insufficient number of Good Clinical Practice (GCP)-conform clinical trials. Thus, the initiation of more scientifically sound trials is indicated.

  14. Optogenetics and synaptic plasticity.

    Science.gov (United States)

    Xie, Yu-feng; Jackson, Michael F; Macdonald, John F

    2013-11-01

    The intricate and complex interaction between different populations of neurons in the brain has imposed limits on our ability to gain detailed understanding of synaptic transmission and its integration when employing classical electrophysiological approaches. Indeed, electrical field stimulation delivered via traditional microelectrodes does not permit the targeted, precise and selective control of neuronal activity amongst a varied population of neurons and their inputs (eg, cholinergic, dopaminergic or glutamatergic neurons). Recently established optogenetic techniques overcome these limitations allowing precise control of the target neuron populations, which is essential for the elucidation of the neural substrates underlying complex animal behaviors. Indeed, by introducing light-activated channels (ie, microbial opsin genes) into specific neuronal populations, optogenetics enables non-invasive optical control of specific neurons with milliseconds precision. These approaches can readily be applied to freely behaving live animals. Recently there is increased interests in utilizing optogenetics tools to understand synaptic plasticity and learning/memory. Here, we summarize recent progress in applying optogenetics in in the study of synaptic plasticity.

  15. Homeostatic role of heterosynaptic plasticity: models and experiments

    Science.gov (United States)

    Chistiakova, Marina; Bannon, Nicholas M.; Chen, Jen-Yung; Bazhenov, Maxim; Volgushev, Maxim

    2015-01-01

    Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and refinement of connectivity during development in a variety of biological systems. In this review we argue that a complimentary form of plasticity—heterosynaptic plasticity—represents a necessary cellular component for homeostatic regulation of synaptic weights and neuronal activity. The required properties of a homeostatic mechanism which acutely constrains the runaway dynamics imposed by Hebbian associative plasticity have been well-articulated by theoretical and modeling studies. Such mechanism(s) should robustly support the stability of operation of neuronal networks and synaptic competition, include changes at non-active synapses, and operate on a similar time scale to Hebbian-type plasticity. The experimentally observed properties of heterosynaptic plasticity have introduced it as a strong candidate to fulfill this homeostatic role. Subsequent modeling studies which incorporate heterosynaptic plasticity into model neurons with Hebbian synapses (utilizing an STDP learning rule) have confirmed its ability to robustly provide stability and competition. In contrast, properties of homeostatic synaptic scaling, which is triggered by extreme and long lasting (hours and days) changes of neuronal activity, do not fit two crucial requirements for a hypothetical homeostatic mechanism needed to provide stability of operation in the face of on-going synaptic changes driven by Hebbian-type learning rules. Both the trigger and the time scale of homeostatic synaptic scaling are fundamentally different from those of the Hebbian-type plasticity. We conclude that heterosynaptic plasticity, which is triggered by the same episodes of strong postsynaptic activity and operates on the same time scale as Hebbian-type associative plasticity, is ideally suited to serve a homeostatic role during on-going synaptic plasticity. PMID:26217218

  16. Dynamic triggering

    Science.gov (United States)

    Hill, David P.; Prejean, Stephanie; Schubert, Gerald

    2015-01-01

    Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.

  17. Molecular mechanisms underlying neuronal synaptic plasticity: systems biology meets computational neuroscience in the wilds of synaptic plasticity.

    Science.gov (United States)

    Blackwell, Kim T; Jedrzejewska-Szmek, Joanna

    2013-01-01

    Interactions among signaling pathways that are activated by transmembrane receptors produce complex networks and emergent dynamical behaviors that are implicated in synaptic plasticity. Temporal dynamics and spatial aspects are critical determinants of cell responses such as synaptic plasticity, although the mapping between spatiotemporal activity pattern and direction of synaptic plasticity is not completely understood. Computational modeling of neuronal signaling pathways has significantly contributed to understanding signaling pathways underlying synaptic plasticity. Spatial models of signaling pathways in hippocampal neurons have revealed mechanisms underlying the spatial distribution of extracellular signal-related kinase (ERK) activation in hippocampal neurons. Other spatial models have demonstrated that the major role of anchoring proteins in striatal and hippocampal synaptic plasticity is to place molecules near their activators. Simulations of yet other models have revealed that the spatial distribution of synaptic plasticity may differ for potentiation versus depression. In general, the most significant advances have been made by interactive modeling and experiments; thus, an interdisciplinary approach should be applied to investigate critical issues in neuronal signaling pathways. These issues include identifying which transmembrane receptors are key for activating ERK in neurons, and the crucial targets of kinases that produce long-lasting synaptic plasticity. Although the number of computer programs for computationally efficient simulation of large reaction-diffusion networks is increasing, parameter estimation and sensitivity analysis in these spatial models remain more difficult than in single compartment models. Advances in live cell imaging coupled with further software development will continue to accelerate the development of spatial models of synaptic plasticity. Copyright © 2013 Wiley Periodicals, Inc.

  18. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than th

  19. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than

  20. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than th

  1. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model

    DEFF Research Database (Denmark)

    Tarp, Jens M.; Angheluta, Luiza; Mathiesen, Joachim;

    2014-01-01

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Disloc...

  2. Converging shocks in elastic-plastic solids.

    Science.gov (United States)

    Ortega, A López; Lombardini, M; Hill, D J

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the

  3. Converging shocks in elastic-plastic solids

    Science.gov (United States)

    López Ortega, A.; Lombardini, M.; Hill, D. J.

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=es(I1)+eh(ρ,ς), where es accounts for shear through the first invariant of the Cauchy-Green tensor, and eh represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., eh=eh(ρ), with a power-law dependence eh∝ρα, shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M∝[log(1/R)]α, independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M∝R-(s-1) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part eh is that of an ideal gas, is also tested, recovering the strong-shock limit M∝R-(s-1)/n(γ) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the hydrostatic part of the energy essentially commands the strong-shock behavior, the shear

  4. Epigenetic inheritance and plasticity: The responsive germline.

    Science.gov (United States)

    Jablonka, Eva

    2013-04-01

    Developmental plasticity, the capacity of a single genotype to give rise to different phenotypes, affects evolutionary dynamics by influencing the rate and direction of phenotypic change. It is based on regulatory changes in gene expression and gene products, which are partially controlled by epigenetic mechanisms. Plasticity involves not just epigenetic changes in somatic cells and tissues; it can also involve changes in germline cells. Germline epigenetic plasticity increases evolvability, the capacity to generate heritable, selectable, phenotypic variations, including variations that lead to novel functions. I discuss studies that show that some complex adaptive responses to new challenges are mediated by germline epigenetic processes, which can be transmitted over variable number of generations, and argue that the heritable variations that are generated epigenetically have an impact on both small-scale and large-scale aspects of evolution. First, I review some recent ecological studies and models that show that germline (gametic) epigenetic inheritance can lead to cumulative micro-evolutionary changes that are rapid and semi-directional. I suggest that "priming" and "epigenetic learning" may be of special importance in generating heritable, fine-tuned adaptive responses in populations. Second, I consider work showing how genomic and environmental stresses can also lead to epigenome repatterning, and produce changes that are saltational.

  5. Reversible phenotypic plasticity with continuous adaptation.

    Science.gov (United States)

    Pfab, Ferdinand; Gabriel, Wilfried; Utz, Margarete

    2016-01-01

    We introduce a novel model for continuous reversible phenotypic plasticity. The model includes a one-dimensional environmental gradient, and we describe performance of an organism as a function of the environmental state by a Gaussian tolerance curve. Organisms are assumed to adapt their tolerance curve after a change of the environmental state. We present a general framework for calculating the genotype fitness if such adaptations happen in a continuous manner and apply the model to a periodically changing environment. Significant differences of our model with previous models for plasticity are the continuity of adaptation, the presence of intermediate phenotypes, that the duration of transformations depends on their extent, fewer restrictions on the distribution of the environment, and a higher robustness with respect to assumptions about environmental fluctuations. Further, we show that continuous reversible plasticity is beneficial mainly when environmental changes occur slow enough so that fully developed phenotypes can be exhibited. Finally we discuss how the model framework can be generalized to a wide variety of biological scenarios from areas that include population dynamics, evolution of environmental tolerance and physiology.

  6. Plastic in North Sea Fish

    NARCIS (Netherlands)

    Foekema, E.M.; Gruijter, de C.; Mergia, M.T.; Franeker, van J.A.; Murk, A.J.; Koelmans, A.A.

    2013-01-01

    To quantify the occurrence of ingested plastic in fish species caught at different geographical positions in the North Sea, and to test whether the fish condition is affected by ingestion of plastics, 1203 individual fish of seven common North Sea species were investigated: herring, gray gurnard, wh

  7. The scope of plastic surgery

    African Journals Online (AJOL)

    2013-08-03

    Aug 3, 2013 ... areas of surgery (especially general surgery), plastic surgeons are arguably the .... Who do you feel are experts in laparoscopic surgery? e (general surgeons) a. Maxillofacial .... of pressure sore. ORIF = open reduction internal fixation. ... Plastic versus cosmetic surgery: What's the difference? Plast Reconstr.

  8. New Life for Old Plastics

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Recycling joint venture utilizes innovative technology to reuse plastics Recycling,despite its green connotations,can be a messy business.In China,more than 400,000 companies are engaged in plastic recycling,but 70 percent of them are family enterprises,

  9. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...

  10. Architecture of European Plastic Surgery

    NARCIS (Netherlands)

    Nicolai, J. -P. A.; Banic, A.; Molea, G.; Mazzola, R.; Poell, J. G.

    2006-01-01

    The architecture of European Plastic Surgery was published in 1996 [Nicolai JPA, Scuderi N. Plastic surgical Europe in an organogram. Eur J Plast Surg 1996; 19: 253-6.] It is the objective of this paper to update information of that article. Continuing medical education (CME), science, training,

  11. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  12. Adaptation by Plasticity of Genetic Regulatory Networks

    Science.gov (United States)

    Brenner, Naama

    2007-03-01

    Genetic regulatory networks have an essential role in adaptation and evolution of cell populations. This role is strongly related to their dynamic properties over intermediate-to-long time scales. We have used the budding yeast as a model Eukaryote to study the long-term dynamics of the genetic regulatory system and its significance in evolution. A continuous cell growth technique (chemostat) allows us to monitor these systems over long times under controlled condition, enabling a quantitative characterization of dynamics: steady states and their stability, transients and relaxation. First, we have demonstrated adaptive dynamics in the GAL system, a classic model for a Eukaryotic genetic switch, induced and repressed by different carbon sources in the environment. We found that both induction and repression are only transient responses; over several generations, the system converges to a single robust steady state, independent of external conditions. Second, we explored the functional significance of such plasticity of the genetic regulatory network in evolution. We used genetic engineering to mimic the natural process of gene recruitment, placing the gene HIS3 under the regulation of the GAL system. Such genetic rewiring events are important in the evolution of gene regulation, but little is known about the physiological processes supporting them and the dynamics of their assimilation in a cell population. We have shown that cells carrying the rewired genome adapted to a demanding change of environment and stabilized a population, maintaining the adaptive state for hundreds of generations. Using genome-wide expression arrays we showed that underlying the observed adaptation is a global transcriptional programming that allowed tuning expression of the recruited gene to demands. Our results suggest that non-specific properties reflecting the natural plasticity of the regulatory network support adaptation of cells to novel challenges and enhance their evolvability.

  13. Phenotypic Plasticity and Species Coexistence.

    Science.gov (United States)

    Turcotte, Martin M; Levine, Jonathan M

    2016-10-01

    Ecologists are increasingly interested in predicting how intraspecific variation and changing trait values impact species interactions and community composition. For many traits, much of this variation is caused by phenotypic plasticity, and thus the impact of plasticity on species coexistence deserves robust quantification. Partly due to a lack of sound theoretical expectations, empirical studies make contradictory claims regarding plasticity effects on coexistence. Our critical review of this literature, framed in modern coexistence theory, reveals that plasticity affects species interactions in ways that could impact stabilizing niche differences and competitive asymmetries. However, almost no study integrates these measures to quantify the net effect of plasticity on species coexistence. To address this challenge, we outline novel empirical approaches grounded in modern theory.

  14. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  15. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  16. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  17. Biodegradability of degradable plastic waste.

    Science.gov (United States)

    Agamuthu, P; Faizura, Putri Nadzrul

    2005-04-01

    Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.

  18. Overcoming the plasticity of plant specialized metabolism for selective diterpene production in yeast

    DEFF Research Database (Denmark)

    Ignea, Codruta; Athanasakoglou, Anastasia; Andreadelli, Aggeliki

    2017-01-01

    Plants synthesize numerous specialized metabolites (also termed natural products) to mediate dynamic interactions with their surroundings. The complexity of plant specialized metabolism is the result of an inherent biosynthetic plasticity rooted in the substrate and product promiscuity...

  19. Plasticity and beyond microstructures, crystal-plasticity and phase transitions

    CERN Document Server

    Hackl, Klaus

    2014-01-01

    The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

  20. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review.

    Science.gov (United States)

    Xanthos, Dirk; Walker, Tony R

    2017-02-18

    Marine plastic pollution has been a growing concern for decades. Single-use plastics (plastic bags and microbeads) are a significant source of this pollution. Although research outlining environmental, social, and economic impacts of marine plastic pollution is growing, few studies have examined policy and legislative tools to reduce plastic pollution, particularly single-use plastics (plastic bags and microbeads). This paper reviews current international market-based strategies and policies to reduce plastic bags and microbeads. While policies to reduce microbeads began in 2014, interventions for plastic bags began much earlier in 1991. However, few studies have documented or measured the effectiveness of these reduction strategies. Recommendations to further reduce single-use plastic marine pollution include: (i) research to evaluate effectiveness of bans and levies to ensure policies are having positive impacts on marine environments; and (ii) education and outreach to reduce consumption of plastic bags and microbeads at source.

  1. In vitro investigation of the effect of plasticizers on the blood compatibility of medical grade plasticized poly (vinyl chloride).

    Science.gov (United States)

    Zhong, Rui; Wang, Hong; Wu, Xia; Cao, Ye; He, Zeng; He, Yuliang; Liu, Jiaxin

    2013-08-01

    This paper reports the results of an in vitro investigation into the blood response of medical grade poly (vinyl chloride) (PVC), and two types of plasticized PVC in tubing or sheet form, with di-(2-ethylhexyl)phthalate (DEHP) and di(isononyl) cyclohexane-1,2-dicarboxylate (HEXAMOLL(®) DINCH) as plasticizer, were selected for assessment of complement activation, coagulation system and platelet activation. The results of the study show that not only the plasticizers at PVC surface have an influence on complement activation, but also the incubation condition such as incubation time and the diameter of PVC tubing. Under static status, C3a, C5a and SC5b-9 concentration in the blood were higher after contacting with PVC plasticized with DEHP (PVC1) than after contacting with PVC plasticized with DINCH (PVC2). However, under dynamic circulation, the results were totally converse, which may be due to smaller diameter and higher shear rate of PVC2. In addition, there was a significant increase of activated partial thrombin time (APTT) and decrease of FIX concentration after plasma contacting with the PVC tubing, which indicated that the intrinsic pathway may be impacted when blood contacted with PVC tubing. However, there was no significant difference of APTT, FIX concentration and CD62p expression rate between the two materials. Moreover, the migration in the DINCH system was considerably lower than for DEHP, which indicates that DINCH could be a promising alterative plasticizer of DEHP.

  2. Spine neck plasticity regulates compartmentalization of synapses.

    Science.gov (United States)

    Tønnesen, Jan; Katona, Gergely; Rózsa, Balázs; Nägerl, U Valentin

    2014-05-01

    Dendritic spines have been proposed to transform synaptic signals through chemical and electrical compartmentalization. However, the quantitative contribution of spine morphology to synapse compartmentalization and its dynamic regulation are still poorly understood. We used time-lapse super-resolution stimulated emission depletion (STED) imaging in combination with fluorescence recovery after photobleaching (FRAP) measurements, two-photon glutamate uncaging, electrophysiology and simulations to investigate the dynamic link between nanoscale anatomy and compartmentalization in live spines of CA1 neurons in mouse brain slices. We report a diversity of spine morphologies that argues against common categorization schemes and establish a close link between compartmentalization and spine morphology, wherein spine neck width is the most critical morphological parameter. We demonstrate that spine necks are plastic structures that become wider and shorter after long-term potentiation. These morphological changes are predicted to lead to a substantial drop in spine head excitatory postsynaptic potential (EPSP) while preserving overall biochemical compartmentalization.

  3. Plasticity of Cu nanoparticles: Dislocation-dendrite-induced strain hardening and a limit for displacive plasticity

    Directory of Open Access Journals (Sweden)

    Antti Tolvanen

    2013-03-01

    Full Text Available The plastic behaviour of individual Cu crystallites under nanoextrusion is studied by molecular dynamics simulations. Single-crystal Cu fcc nanoparticles are embedded in a spherical force field mimicking the effect of a contracting carbon shell, inducing pressure on the system in the range of gigapascals. The material is extruded from a hole of 1.1–1.6 nm radius under athermal conditions. Simultaneous nucleation of partial dislocations at the extrusion orifice leads to the formation of dislocation dendrites in the particle causing strain hardening and high flow stress of the material. As the extrusion orifice radius is reduced below 1.3 Å we observe a transition from displacive plasticity to solid-state amorphisation.

  4. Knowledge representation of rock plastic deformation

    Science.gov (United States)

    Davarpanah, Armita; Babaie, Hassan

    2017-04-01

    The first iteration of the Rock Plastic Deformation (RPD) ontology models the semantics of the dynamic physical and chemical processes and mechanisms that occur during the deformation of the generally inhomogeneous polycrystalline rocks. The ontology represents the knowledge about the production, reconfiguration, displacement, and consumption of the structural components that participate in these processes. It also formalizes the properties that are known by the structural geology and metamorphic petrology communities to hold between the instances of the spatial components and the dynamic processes, the state and system variables, the empirical flow laws that relate the variables, and the laboratory testing conditions and procedures. The modeling of some of the complex physio-chemical, mathematical, and informational concepts and relations of the RPD ontology is based on the class and property structure of some well-established top-level ontologies. The flexible and extensible design of the initial version of the RPD ontology allows it to develop into a model that more fully represents the knowledge of plastic deformation of rocks under different spatial and temporal scales in the laboratory and in solid Earth. The ontology will be used to annotate the datasets related to the microstructures and physical-chemical processes that involve them. This will help the autonomous and globally distributed communities of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and enhanced data integration and software interoperability.

  5. Plasticity and Kinky Chemistry of Carbon Nanotubes

    Science.gov (United States)

    Srivastava, Deepak; Dzegilenko, Fedor

    2000-01-01

    Since their discovery in 1991, carbon nanotubes have been the subject of intense research interest based on early predictions of their unique mechanical, electronic, and chemical properties. Materials with the predicted unique properties of carbon nanotubes are of great interest for use in future generations of aerospace vehicles. For their structural properties, carbon nanotubes could be used as reinforcing fibers in ultralight multifunctional composites. For their electronic properties, carbon nanotubes offer the potential of very high-speed, low-power computing elements, high-density data storage, and unique sensors. In a continuing effort to model and predict the properties of carbon nanotubes, Ames accomplished three significant results during FY99. First, accurate values of the nanomechanics and plasticity of carbon nanotubes based on quantum molecular dynamics simulations were computed. Second, the concept of mechanical deformation catalyzed-kinky-chemistry as a means to control local chemistry of nanotubes was discovered. Third, the ease of nano-indentation of silicon surfaces with carbon nanotubes was established. The elastic response and plastic failure mechanisms of single-wall nanotubes were investigated by means of quantum molecular dynamics simulations.

  6. Phenotypic plasticity, costs of phenotypes, and costs of plasticity

    DEFF Research Database (Denmark)

    Callahan, Hilary S; Maughan, Heather; Steiner, Uli

    2008-01-01

    Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns...... of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both...... types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic...

  7. Biodegradable plastics from renewable sources.

    Science.gov (United States)

    Flieger, M; Kantorová, M; Prell, A; Rezanka, T; Votruba, J

    2003-01-01

    Plastic waste disposal is a huge ecotechnological problem and one of the approaches to solving this problem is the development of biodegradable plastics. This review summarizes data on their use, biodegradability, commercial reliability and production from renewable resources. Some commercially successful biodegradable plastics are based on chemical synthesis (i.e. polyglycolic acid, polylactic acid, polycaprolactone, and polyvinyl alcohol). Others are products of microbial fermentations (i.e. polyesters and neutral polysaccharides) or are prepared from chemically modified natural products (e.g., starch, cellulose, chitin or soy protein).

  8. Plastics recycling: challenges and opportunities

    OpenAIRE

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to pro...

  9. Circadian Regulation of Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Marcos G. Frank

    2016-07-01

    Full Text Available Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity.

  10. PLASMA GASIFICATION OF WASTE PLASTICS

    Directory of Open Access Journals (Sweden)

    Tadeusz Mączka

    2013-01-01

    Full Text Available The article presents the process of obtaining liquid fuels and fuel gas in the process of plasma processing of organic materials, including waste plastics. The concept of plasma pyrolysis of plastics was presented and on its basis a prototype installation was developed. The article describes a general rule of operating the installation and its elements in the process and basic operation parameters determined during its start-up. Initial results of processing plastics and the directions further investigations are also discussed. The effect of the research is to be the design of effective technology of obtaining fuels from gasification/pyrolysis of organic waste and biomass.

  11. Plastic evolution behavior of H340LAD_Z steel by an optical method

    Science.gov (United States)

    Guo, Nan; Liang, Jin; Yu, Qiang; Qian, Boxing

    2017-02-01

    An optical method based on digital image correlation (DIC) technology was proposed to measure the plastic evolution of the high-strength low alloy steel H340LAD_Z. The basic principle of DIC technology is introduced, and then, the use of a 3D deformation measurement system and electronic universal testing machine to dynamically measure plastic evolution during the tensile yield stage is described. Through the full-field full-process measurement of plastic deformation during the yield stage in the 0°, 45° and 90° loading directions, the plastic evolution law was revealed. The results demonstrate that the proposed 3D DIC method can accurately reveal the starting and ending times for plastic evolution. The specimens in the three directions exhibit different plastic evolution behaviors, although they have similar yield strengths and yield times. The specimens in the 45° and 90° loading directions began to enter plastic deformation from bottom to top and the plastic area was maintained in a constant deformed state, while the evolution behavior in the 0° direction transited from both sides to the middle and plastic deformation was uneven. It is important to study plastic evolution of a metal sheet to determine the material properties and to provide an accurate basis for finite element modeling.

  12. Regulatory gene networks that shape the development of adaptive phenotypic plasticity in a cichlid fish.

    Science.gov (United States)

    Schneider, Ralf F; Li, Yuanhao; Meyer, Axel; Gunter, Helen M

    2014-09-01

    Phenotypic plasticity is the ability of organisms with a given genotype to develop different phenotypes according to environmental stimuli, resulting in individuals that are better adapted to local conditions. In spite of their ecological importance, the developmental regulatory networks underlying plastic phenotypes often remain uncharacterized. We examined the regulatory basis of diet-induced plasticity in the lower pharyngeal jaw (LPJ) of the cichlid fish Astatoreochromis alluaudi, a model species in the study of adaptive plasticity. Through raising juvenile A. alluaudi on either a hard or soft diet (hard-shelled or pulverized snails) for between 1 and 8 months, we gained insight into the temporal regulation of 19 previously identified candidate genes during the early stages of plasticity development. Plasticity in LPJ morphology was first detected between 3 and 5 months of diet treatment. The candidate genes, belonging to various functional categories, displayed dynamic expression patterns that consistently preceded the onset of morphological divergence and putatively contribute to the initiation of the plastic phenotypes. Within functional categories, we observed striking co-expression, and transcription factor binding site analysis was used to examine the prospective basis of their coregulation. We propose a regulatory network of LPJ plasticity in cichlids, presenting evidence for regulatory crosstalk between bone and muscle tissues, which putatively facilitates the development of this highly integrated trait. Through incorporating a developmental time-course into a phenotypic plasticity study, we have identified an interconnected, environmentally responsive regulatory network that shapes the development of plasticity in a key innovation of East African cichlids.

  13. Plastic evolution behavior of H340LAD-Z steel by an optical method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Nan; Liang, Jin; Yu, Qiang; Qian, Boxing

    2017-02-01

    An optical method based on digital image correlation (DIC) technology was proposed to measure the plastic evolution of the high-strength low alloy steel H340LAD-Z. The basic principle of DIC technology is introduced, and then, the use of a 3D deformation measurement system and electronic universal testing machine to dynamically measure plastic evolution during the tensile yield stage is described. Through the full-field full-process measurement of plastic deformation during the yield stage in the 0°, 45° and 90° loading directions, the plastic evolution law was revealed. The results demonstrate that the proposed 3D DIC method can accurately reveal the starting and ending times for plastic evolution. The specimens in the three directions exhibit different plastic evolution behaviors, although they have similar yield strengths and yield times. The specimens in the 45° and 90° loading directions began to enter plastic deformation from bottom to top and the plastic area was maintained in a constant deformed state, while the evolution behavior in the 0° direction transited from both sides to the middle and plastic deformation was uneven. It is important to study plastic evolution of a metal sheet to determine the material properties and to provide an accurate basis for finite element modeling.

  14. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  15. A mathematical model of cancer cells with phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    Da Zhou

    2015-12-01

    Full Text Available Purpose: The phenotypic plasticity of cancer cells is recently becoming a cutting-edge research area in cancer, which challenges the cellular hierarchy proposed by the conventional cancer stem cell theory. In this study, we establish a mathematical model for describing the phenotypic plasticity of cancer cells, based on which we try to find some salient features that can characterize the dynamic behavior of the phenotypic plasticity especially in comparison to the hierarchical model of cancer cells. Methods: We model cancer as population dynamics composed of different phenotypes of cancer cells. In this model, not only can cancer cells divide (symmetrically and asymmetrically and die, but they can also convert into other cellular phenotypes. According to the Law of Mass Action, the cellular processes can be captured by a system of ordinary differential equations (ODEs. On one hand, we can analyze the long-term stability of the model by applying qualitative method of ODEs. On the other hand, we are also concerned about the short-term behavior of the model by studying its transient dynamics. Meanwhile, we validate our model to the cell-state dynamics in published experimental data.Results: Our results show that the phenotypic plasticity plays important roles in both stabilizing the distribution of different phenotypic mixture and maintaining the cancer stem cells proportion. In particular, the phenotypic plasticity model shows decided advantages over the hierarchical model in predicting the phenotypic equilibrium and cancer stem cells’ overshoot reported in previous biological experiments in cancer cell lines.Conclusion: Since the validity of the phenotypic plasticity paradigm and the conventional cancer stem cell theory is still debated in experimental biology, it is worthy of theoretically searching for good indicators to distinguish the two models through quantitative methods. According to our study, the phenotypic equilibrium and overshoot

  16. A multi-phenotypic cancer model with cell plasticity.

    Science.gov (United States)

    Zhou, Da; Wang, Yue; Wu, Bin

    2014-09-21

    The conventional cancer stem cell (CSC) theory indicates a hierarchy of CSCs and non-stem cancer cells (NSCCs), that is, CSCs can differentiate into NSCCs but not vice versa. However, an alternative paradigm of CSC theory with reversible cell plasticity among cancer cells has received much attention very recently. Here we present a generalized multi-phenotypic cancer model by integrating cell plasticity with the conventional hierarchical structure of cancer cells. We prove that under very weak assumption, the nonlinear dynamics of multi-phenotypic proportions in our model has only one stable steady state and no stable limit cycle. This result theoretically explains the phenotypic equilibrium phenomena reported in various cancer cell lines. Furthermore, according to the transient analysis of our model, it is found that cancer cell plasticity plays an essential role in maintaining the phenotypic diversity in cancer especially during the transient dynamics. Two biological examples with experimental data show that the phenotypic conversions from NCSSs to CSCs greatly contribute to the transient growth of CSCs proportion shortly after the drastic reduction of it. In particular, an interesting overshooting phenomenon of CSCs proportion arises in three-phenotypic example. Our work may pave the way for modeling and analyzing the multi-phenotypic cell population dynamics with cell plasticity.

  17. 基于杆系模型的磁流变阻尼结构弹塑性动力反应分析%Elastic-plastic dynamic response analysis on frame structure incorporated with MR dampers based on the member model of system

    Institute of Scientific and Technical Information of China (English)

    张香成; 徐赵东; 冉成崧; 朱俊涛

    2013-01-01

    磁流变阻尼器(MRD)是一种性能优越的半主动控制装置.首先推导了设置有MRD框架结构中MRD的位置矩阵,然后将框架结构简化为杆系模型,用MATLAB编制了加入MRD的框架结构的弹塑性动力时程分析程序,分别计算并对比了框架结构在未控和有控下各层的位移、加速度响应和各杆端塑性铰分布情况.结果表明,设置MRD的框架结构各层位移和加速度响应显著减小,其中位移的减震效果优于加速度的减震效果,同时杆件屈服数量相应减少.%Magneto-rheological damper (MRD) is an excellent semi-active control device. The location matrix of MRD in the frame structure incorporated with MRD was derived. Then a member model was selected as the mathematical model of the structure. An elastic-plastic dynamic response analysis of the structure incorporated with MRD was programmed by using MATLAB. The displacement and acceleration responses of the structure with and without MRD, as well as the distribution of plastic hinges of the member, were calculated and compared. Comparison results show that the displacement and the acceleration responses of each floor of the structure with MRD were reduced significantly, in which the vibration mitigation effect on displacement is superior to that on acceleration. At the same time, the number of plastic hinges is also reduced.

  18. Plasticity and creep of metals

    CERN Document Server

    Rusinko, Andrew

    2011-01-01

    Here is a systematic presentation of the postulates, theorems and principles of mathematical theories of plasticity and creep in metals, and their applications. Special attention is paid to analysis of the advantages and shortcomings of the classical theories.

  19. American Society of Plastic Surgeons

    Science.gov (United States)

    ... PRS PRS GO PSN PSEN GRAFT Contact Us Cosmetic Surgery New procedures and advanced technologies offer plastic surgery ... David Berman MD 14 Pidgeon Hill Drive Berman Cosmetic Surgery & S... Sterling, VA 20165 Website Franklin Richards MD Suite ...

  20. Plastic deformation of nanocrystalline nickel

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline (NC) Ni subject to cold rolling at liquid nitrogen temperature. The activation of grain-boundary-mediated-plasticity is evidenced in NC-Ni, including twinning and formation of stacking fault via partial dislocation slips from the grain boundary. The formation and storage of 60? full dislocations are observed inside NC-grains. The grain/twin boundaries act as the barriers of dislocation slips, leading to dislocation pile-up, severe lattice distortion, and formation of sub-grain boundary. The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation. The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.

  1. Plastic deformation of nanocrystalline nickel

    Institute of Scientific and Technical Information of China (English)

    WU XiaoLei

    2009-01-01

    A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline(NC)Ni subject to cold rolling at liquid nitrogen temperature.The acti vation of grain-boundary-mediated-plasticity is evidenced in NC-Ni,including twinning and formation of stacking fault via partial dislocation slips from the grain boundary.The formation and storage of 60° full dislocations are observed inside NC-grains.The grain/twin boundaries act as the barriers of dislocation slips,leading to dislocation pile-up,severe lattice distortion,and formation of sub-grain boundary.The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation.The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.

  2. Exceptional plasticity of silicon nanobridges

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Tadashi; Sato, Takaaki; Toshiyoshi, Hiroshi; Collard, Dominique; Fujita, Hiroyuki [University of Tokyo, Institute of Industrial Science, 4-6-1 Komaba Meguro, Tokyo 153-8505 (Japan); Cleri, Fabrizio [Institut d' Electronique Microelectronique et Nanotechnologie (CNRS UMR 8520), Universite de Lille I, Avenue Poincare BP60069 59652 Villeneuve d' Ascq (France); Kakushima, Kuniyuki [Tokyo Institute of Technology, 4259, Nagatsuda, Midori, Yokohama, Kanagawa 226-8502 (Japan); Mita, Makoto [Department of Spacecraft Engineering, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Miyata, Masaki; Itamura, Noriaki; Sasaki, Naruo [Department of Materials and Life Sciences, Seikei University, 3-3-1, Kitamachi, Kichijoji, Musashino, Tokyo 180-8633 (Japan); Endo, Junji, E-mail: tadashii@iis.u-tokyo.ac.jp [FK Optical laboratory, 1-13-4 Nakano Niiza Saitama, 352-0005 (Japan)

    2011-09-02

    The plasticity of covalently bonded materials is a subject at the forefront of materials science, bearing on a wide range of technological and fundamental aspects. However, covalent materials fracture in a brittle manner when the deformation exceeds just a few per cent. It is predicted that a macroscopically brittle material like silicon can show nanoscale plasticity. Here we report the exceptional plasticity observed in silicon nanocontacts ('nanobridges') at room temperature using a special experimental setup combining a transmission electron microscope and a microelectromechanical system. When accounting for surface diffusion, we succeeded in elongating the nanocontact into a wire-like structure, with a fivefold increase in volume, up to more than twenty times the original length. Such a large plasticity was caused by the stress-assisted diffusion and the sliding of the intergranular, amorphous-like material among the nanocrystals.

  3. Globally Oriented Chinese Plastics Industry

    Institute of Scientific and Technical Information of China (English)

    Liao Zhengpin

    2004-01-01

    @@ Through continued endeavor and persistent opening to the whole world the Chinese plastics industry has been developed into a comprehensive industrial system that forms the basic material industries side by side with the steel, cement and the timber industry.

  4. Sorting Techniques for Plastics Recycling

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents the basic principles of three different types of separating methods and a general guideline for choosing the most effective method for sorting plastic mixtures. It also presents the results of the tests carried out for separation of PVC, ABS and PET from different kinds of plastic mixtures in order to improve the grade of the raw input used in mechanical or feedstock recycling.

  5. [Modern neuroimaging of brain plasticity].

    Science.gov (United States)

    Kasprian, G; Seidel, S

    2010-02-01

    Modern neuroimaging methods offer new insights into the plasticity of the human brain. As the techniques of functional MRI and diffusion tensor imaging are increasingly being applied in a clinical setting, the examiner is now frequently confronted with the interpretation of imaging findings related to regenerative processes in response to lesions of the central and also of the peripheral nervous system. In this article individual results of modern neuroimaging studies are discussed in the context of structural and functional plasticity of the CNS.

  6. Plastic bronchitis: a management challenge.

    Science.gov (United States)

    Eberlein, Michael H; Drummond, Michael B; Haponik, Edward F

    2008-02-01

    Plastic bronchitis is an uncommon and underdiagnosed entity, characterized by recurrent expectoration of large, branching bronchial casts. We describe a 39-year-woman with no prior lung disease who had episodic wheezing, severe dyspnea with expectoration of large and thick secretions, branching in appearance, which she described as resembling squid. A comprehensive evaluation revealed no specific cause and a diagnosis of idiopathic plastic bronchitis was made. In plastic bronchitis the bronchial casts may vary in size from small segmental casts of a bronchus to casts filling the airways of an entire lung. Plastic bronchitis can therefore present as an acute life-threatening emergency if mechanical obstruction of major airways occurs. The casts are differentiated into type I, inflammatory casts, or type II, acellular casts. The type I inflammatory casts are often associated with bronchial disease and often have an acute presentation. The acellular type of cast production is often chronic or recurrent. Numerous systemic illnesses are associated with plastic bronchitis, but often, as in our patient, no underlying cause can be identified. The treatment of plastic bronchitis includes acute therapy to aid the removal and expectoration of casts, and specific short- or long-term treatments attempting to address the underlying hypersecretory process. The therapeutic options are supported only by anecdotal evidence based on case reports as the rarity and heterogeneity of plastic bronchitis confounds systematic investigations of its treatment. Improved understanding of the regulation of mucus production may allow for new treatment options in plastic bronchitis and other chronic lung diseases characterized by hypersecretion of mucus.

  7. ARE PLASTIC GROCERY BAGS SACKING THE ENVIRONMENT?

    OpenAIRE

    Mangal Gogte

    2009-01-01

    This paper is oriented on analysis impacts of plastic bags on environment. In this paper is analyzed did plastic bags are so harmful, and what are the main ingredients of it. One part of this paper is oriented on effects of plastic bags and management of their usage. There is also made comparative analysis between impacts of plastic and paper bags on environment.

  8. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Ditlevsen, Ove Dalager

    1996-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  9. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-Thomsen, S.; Ditlevsen, Ove Dalager

    1999-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  10. 49 CFR 192.281 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  11. 49 CFR 192.59 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  12. The Story of the Plastics Industry.

    Science.gov (United States)

    Masson, Don, Ed.

    This is an illustrated informative booklet, designed to serve members of the Society of the Plastics Industry, Inc., and the plastics industry as a whole. It provides basic information about the industry's history and growth, plastics raw materials, typical uses of plastics, properties, and methods of processing and fabricating. (Author/DS)

  13. Gradient Plasticity Model and its Implementation into MARMOT

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.; Sun, Xin

    2013-08-01

    The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.

  14. Constitutive model of discontinuous plastic flow at cryogenic temperatures

    CERN Document Server

    Skoczen, B; Bielski, J; Marcinek, D

    2010-01-01

    FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. Some of these materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha) and evolution of micro-damage. The constitutive model presented in the paper is focused on the discontinuous plastic flow (serrated yielding) and takes into account the relevant thermodynamic background. The discontinuous plastic flow reflecting the DSA effect is described by the mechanism of local catastrophic failure of Lomer-Cottrell (LC) locks under the stress fields related to the accumulating edge dislocations (below the transition temperature from the screw dislocations to the edge dislocations mode T-1). The failure of LC locks leads to mass...

  15. Modulation of Hippocampal Neural Plasticity by Glucose-Related Signaling

    Directory of Open Access Journals (Sweden)

    Marco Mainardi

    2015-01-01

    Full Text Available Hormones and peptides involved in glucose homeostasis are emerging as important modulators of neural plasticity. In this regard, increasing evidence shows that molecules such as insulin, insulin-like growth factor-I, glucagon-like peptide-1, and ghrelin impact on the function of the hippocampus, which is a key area for learning and memory. Indeed, all these factors affect fundamental hippocampal properties including synaptic plasticity (i.e., synapse potentiation and depression, structural plasticity (i.e., dynamics of dendritic spines, and adult neurogenesis, thus leading to modifications in cognitive performance. Here, we review the main mechanisms underlying the effects of glucose metabolism on hippocampal physiology. In particular, we discuss the role of these signals in the modulation of cognitive functions and their potential implications in dysmetabolism-related cognitive decline.

  16. Mechanical behavior of plastic materials for automobile cockpit module

    Science.gov (United States)

    Woo, Changsu.; Park, Hyunsung.; Jo, Jinho.

    2013-12-01

    Engineering plastics are used in instrument panels, interior trims, and other vehicle applications, and the thermo-mechanical behaviors of plastic materials are strongly influenced by many environmental factors such as temperature, sunlight, and rain. As the material properties change, the mechanical parts create unexpected noise. In this study, the dynamic mechanical property changes of plastics used in automobiles are measured to investigate the effect of temperature. Visco-elastic properties such as the glass transition temperature and storage modulus and loss factors under temperature and frequency sweeps were measured. The data results were compared with the original ones before aging to analyze the behavioral changes. It was found that as the temperature increased, the storage modulus decreased and the loss factor increased slightly.

  17. Modulation of hippocampal neural plasticity by glucose-related signaling.

    Science.gov (United States)

    Mainardi, Marco; Fusco, Salvatore; Grassi, Claudio

    2015-01-01

    Hormones and peptides involved in glucose homeostasis are emerging as important modulators of neural plasticity. In this regard, increasing evidence shows that molecules such as insulin, insulin-like growth factor-I, glucagon-like peptide-1, and ghrelin impact on the function of the hippocampus, which is a key area for learning and memory. Indeed, all these factors affect fundamental hippocampal properties including synaptic plasticity (i.e., synapse potentiation and depression), structural plasticity (i.e., dynamics of dendritic spines), and adult neurogenesis, thus leading to modifications in cognitive performance. Here, we review the main mechanisms underlying the effects of glucose metabolism on hippocampal physiology. In particular, we discuss the role of these signals in the modulation of cognitive functions and their potential implications in dysmetabolism-related cognitive decline.

  18. Shape memory polymer network with thermally distinct elasticity and plasticity.

    Science.gov (United States)

    Zhao, Qian; Zou, Weike; Luo, Yingwu; Xie, Tao

    2016-01-01

    Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices.

  19. Evolution of phenotypic plasticity in colonizing species.

    Science.gov (United States)

    Lande, Russell

    2015-05-01

    I elaborate an hypothesis to explain inconsistent empirical findings comparing phenotypic plasticity in colonizing populations or species with plasticity from their native or ancestral range. Quantitative genetic theory on the evolution of plasticity reveals that colonization of a novel environment can cause a transient increase in plasticity: a rapid initial increase in plasticity accelerates evolution of a new optimal phenotype, followed by slow genetic assimilation of the new phenotype and reduction of plasticity. An association of colonization with increased plasticity depends on the difference in the optimal phenotype between ancestral and colonized environments, the difference in mean, variance and predictability of the environment, the cost of plasticity, and the time elapsed since colonization. The relative importance of these parameters depends on whether a phenotypic character develops by one-shot plasticity to a constant adult phenotype or by labile plasticity involving continuous and reversible development throughout adult life. © 2014 John Wiley & Sons Ltd.

  20. Effects of Bio-based Plasticizers on Mechanical and Thermal Properties of PVC/Wood Flour Composites

    Directory of Open Access Journals (Sweden)

    Zhenhua Xie

    2014-10-01

    Full Text Available Poly(vinyl chloride/wood flour (WPVC composites with dioctyl phthalate (DOP, dibutyl phthalate (DBP, cardanol acetate (CA, or epoxy fatty acid methyl ester (EFAME were prepared using twin-screw extrusion. The effects of plasticizers on the mechanical, dynamic mechanical, and melt rheological properties of composites and the thermal migration of plasticizers were characterized. The results demonstrated that WPVC/ DBP and WPVC/EFAME composites had better elongation at break; however, composites with bio-based plasticizers exhibited significantly higher impact strength. The morphology indicated that the compatibility between CA and WPVC was poor, while the surface of the composites showed good plasticity with the addition of DBP or EFAME. The PVC matrix with a plasticizer of higher molecular weight exhibited a higher glass transition temperature (Tg. The dynamic rheological test showed that WPVC/EFAME composites had the lowest storage modulus, loss modulus, and complex viscosity, but EFAME migrated more easily from composites than other plasticizers.

  1. Dynamic elasto-plastic analysis of the Shenzhen Ping'an Financial Center Tower%深圳平安金融中心塔楼动力弹塑性分析

    Institute of Scientific and Technical Information of China (English)

    杨先桥; 傅学怡; 黄用军

    2011-01-01

    The 118-story Shenzhen Ping'an Financial Center(PAFC) Tower is 660 meters to spire top, 597 meters to main structural roof above ground. After converting the ETABS tower model to SAP2000 model, MDB database was exported from SAP2000 model. The ABAQUS analysis model was build by the SAPTRANS software which was developed by the author to translate SAP2000 MDB database to ABAQUS data. Modal analysis shows that results from both models are very similar. Five natural waves and two generated waves were inducted to the ABAQUS model. Fourteen rare seismic cases of intensity 7 were defined. Elastic and elasto-plastic analysis were conducted to get the structural displacements, member forces and wall damage. Compared to elastic analysis results, elasto-plastic analysis can reveal the structural rigidity degradation caused by the member plastic deformation development. The elasto-plastic analysis results also show that the maximum story drift ratio is less than 1/100. Different damages are found in the spandrels. Most shear wall damage factors are small. The outrigger trusses, belt trusses and the steel plates in the steel plate walls do not yield. The tower structure can meet the requirements of no collapse under rare earthquake.%深圳平安金融中心主塔楼地上118层,塔尖高度660m,结构高度597m.将主塔楼ETABS模型转为SAP2000模型后,采用自行研制的SAPTRANS软件,将SAP2000模型导出的数据库转换为ABAQUS整体结构分析模型,经过模态分析表明结果与ETABS模型分析结果相近.考虑5组天然波、2组人工波、7度罕遇地震作用下14个工况,分析结构的弹性和弹塑性时程反应,得到结构在地震作用下的变形、内力和损伤情况.分析结果表明:罕遇地震作用下弹性分析和弹塑性分析结果相比,后者反映了结构在地震作用过程中构件塑性发展导致的结构刚度的变化;考虑了材料的弹塑性,结构最大层间位移角满足1/100的限值要求,连梁出现不

  2. Cancer cells exhibit clonal diversity in phenotypic plasticity.

    Science.gov (United States)

    Mathis, Robert Austin; Sokol, Ethan S; Gupta, Piyush B

    2017-02-01

    Phenotypic heterogeneity in cancers is associated with invasive progression and drug resistance. This heterogeneity arises in part from the ability of cancer cells to switch between phenotypic states, but the dynamics of this cellular plasticity remain poorly understood. Here we apply DNA barcodes to quantify and track phenotypic plasticity across hundreds of clones in a population of cancer cells exhibiting epithelial or mesenchymal differentiation phenotypes. We find that the epithelial-to-mesenchymal cell ratio is highly variable across the different clones in cancer cell populations, but remains stable for many generations within the progeny of any single clone-with a heritability of 0.89. To estimate the effects of combination therapies on phenotypically heterogeneous tumours, we generated quantitative simulations incorporating empirical data from our barcoding experiments. These analyses indicated that combination therapies which alternate between epithelial- and mesenchymal-specific treatments eventually select for clones with increased phenotypic plasticity. However, this selection could be minimized by increasing the frequency of alternation between treatments, identifying designs that may minimize selection for increased phenotypic plasticity. These findings establish new insights into phenotypic plasticity in cancer, and suggest design principles for optimizing the effectiveness of combination therapies for phenotypically heterogeneous tumours.

  3. Independent genetic control of maize (Zea mays L.) kernel weight determination and its phenotypic plasticity.

    Science.gov (United States)

    Alvarez Prado, Santiago; Sadras, Víctor O; Borrás, Lucas

    2014-08-01

    Maize kernel weight (KW) is associated with the duration of the grain-filling period (GFD) and the rate of kernel biomass accumulation (KGR). It is also related to the dynamics of water and hence is physiologically linked to the maximum kernel water content (MWC), kernel desiccation rate (KDR), and moisture concentration at physiological maturity (MCPM). This work proposed that principles of phenotypic plasticity can help to consolidated the understanding of the environmental modulation and genetic control of these traits. For that purpose, a maize population of 245 recombinant inbred lines (RILs) was grown under different environmental conditions. Trait plasticity was calculated as the ratio of the variance of each RIL to the overall phenotypic variance of the population of RILs. This work found a hierarchy of plasticities: KDR ≈ GFD > MCPM > KGR > KW > MWC. There was no phenotypic and genetic correlation between traits per se and trait plasticities. MWC, the trait with the lowest plasticity, was the exception because common quantitative trait loci were found for the trait and its plasticity. Independent genetic control of a trait per se and genetic control of its plasticity is a condition for the independent evolution of traits and their plasticities. This allows breeders potentially to select for high or low plasticity in combination with high or low values of economically relevant traits.

  4. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity.

    Directory of Open Access Journals (Sweden)

    Sadra Sadeh

    2015-06-01

    Full Text Available In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational

  5. Smartphones and the plastic surgeon.

    Science.gov (United States)

    Al-Hadithy, Nada; Ghosh, Sudip

    2013-06-01

    Surgical trainees are facing limited training opportunities since the introduction of the European Working Time Directive. Smartphone sales are increasing and have usurped computer sales for the first time. In this context, smartphones are an important portable reference and educational tool, already in the possession of the majority of surgeons in training. Technology in the palm of our hands has led to a revolution of accessible information for the plastic surgery trainee and surgeon. This article reviews the uses of smartphones and applications for plastic surgeons in education, telemedicine and global health. A comprehensive guide to existing and upcoming learning materials and clinical tools for the plastic surgeon is included. E-books, podcasts, educational videos, guidelines, work-based assessment tools and online logbooks are presented. In the limited resource setting of modern clinical practice, savvy plastic surgeons can select technological tools to democratise access to education and best clinical care. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Mechanisms of GABAergic Homeostatic Plasticity

    Directory of Open Access Journals (Sweden)

    Peter Wenner

    2011-01-01

    Full Text Available Homeostatic plasticity ensures that appropriate levels of activity are maintained through compensatory adjustments in synaptic strength and cellular excitability. For instance, excitatory glutamatergic synapses are strengthened following activity blockade and weakened following increases in spiking activity. This form of plasticity has been described in a wide array of networks at several different stages of development, but most work and reviews have focussed on the excitatory inputs of excitatory neurons. Here we review homeostatic plasticity of GABAergic neurons and their synaptic connections. We propose a simplistic model for homeostatic plasticity of GABAergic components of the circuitry (GABAergic synapses onto excitatory neurons, excitatory connections onto GABAergic neurons, cellular excitability of GABAergic neurons: following chronic activity blockade there is a weakening of GABAergic inhibition, and following chronic increases in network activity there is a strengthening of GABAergic inhibition. Previous work on GABAergic homeostatic plasticity supports certain aspects of the model, but it is clear that the model cannot fully account for some results which do not appear to fit any simplistic rule. We consider potential reasons for these discrepancies.

  7. Mitochondria, synaptic plasticity, and schizophrenia.

    Science.gov (United States)

    Ben-Shachar, Dorit; Laifenfeld, Daphna

    2004-01-01

    The conceptualization of schizophrenia as a disorder of connectivity, i.e., of neuronal?synaptic plasticity, suggests abnormal synaptic modeling and neuronal signaling, possibly as a consequence of flawed interactions with the environment, as at least a secondary mechanism underlying the pathophysiology of this disorder. Indeed, deficits in episodic memory and malfunction of hippocampal circuitry, as well as anomalies of axonal sprouting and synapse formation, are all suggestive of diminished neuronal plasticity in schizophrenia. Evidence supports a dysfunction of mitochondria in schizophrenia, including mitochondrial hypoplasia, and a dysfunction of the oxidative phosphorylation system, as well as altered mitochondrial-related gene expression. Mitochondrial dysfunction leads to alterations in ATP production and cytoplasmatic calcium concentrations, as well as reactive oxygen species and nitric oxide production. All of the latter processes have been well established as leading to altered synaptic strength or plasticity. Moreover, mitochondria have been shown to play a role in plasticity of neuronal polarity, and studies in the visual cortex show an association between mitochondria and synaptogenesis. Finally, mitochondrial gene upregulation has been observed following synaptic and neuronal activity. This review proposes that mitochondrial dysfunction in schizophrenia could cause, or arise from, anomalies in processes of plasticity in this disorder.

  8. Recycling disposable cups into paper plastic composites.

    Science.gov (United States)

    Mitchell, Jonathan; Vandeperre, Luc; Dvorak, Rob; Kosior, Ed; Tarverdi, Karnik; Cheeseman, Christopher

    2014-11-01

    The majority of disposable cups are made from paper plastic laminates (PPL) which consist of high quality cellulose fibre with a thin internal polyethylene coating. There are limited recycling options for PPLs and this has contributed to disposable cups becoming a high profile, problematic waste. In this work disposable cups have been shredded to form PPL flakes and these have been used to reinforce polypropylene to form novel paper plastic composites (PPCs). The PPL flakes and polypropylene were mixed, extruded, pelletised and injection moulded at low temperatures to prevent degradation of the cellulose fibres. The level of PPL flake addition and the use of a maleated polyolefin coupling agent to enhance interfacial adhesion have been investigated. Samples have been characterised using tensile testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis. Use of a coupling agent allows composites containing 40 wt.% of PPL flakes to increase tensile strength of PP by 50% to 30 MPa. The Young modulus also increases from 1 to 2.5 GPa and the work to fracture increases by a factor of 5. The work demonstrates that PPL disposable cups have potential to be beneficially reused as reinforcement in novel polypropylene composites.

  9. Macrophage plasticity and polarization: in vivo veritas

    Science.gov (United States)

    Sica, Antonio; Mantovani, Alberto

    2012-01-01

    Diversity and plasticity are hallmarks of cells of the monocyte-macrophage lineage. In response to IFNs, Toll-like receptor engagement, or IL-4/IL-13 signaling, macrophages undergo M1 (classical) or M2 (alternative) activation, which represent extremes of a continuum in a universe of activation states. Progress has now been made in defining the signaling pathways, transcriptional networks, and epigenetic mechanisms underlying M1-M2 or M2-like polarized activation. Functional skewing of mononuclear phagocytes occurs in vivo under physiological conditions (e.g., ontogenesis and pregnancy) and in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer). However, in selected preclinical and clinical conditions, coexistence of cells in different activation states and unique or mixed phenotypes have been observed, a reflection of dynamic changes and complex tissue-derived signals. The identification of mechanisms and molecules associated with macrophage plasticity and polarized activation provides a basis for macrophage-centered diagnostic and therapeutic strategies. PMID:22378047

  10. China Plastics Industry (2011) China Plastics Processing Industry Association

    Institute of Scientific and Technical Information of China (English)

    Li Ying

    2012-01-01

    General situation of China plastics industry in 2011 was reviewed, including the output and export/import of plastics products, synthetic resins,and plastics processing machinery, as well as major economic data, such as the total industrial values, sales and profits of plastics products, etc. Analysis of the market of plastics products in 2011 was made, and the developing trend of China plastics industry in 2012 was proposed.

  11. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  12. Plasticity in glutamatergic NTS neurotransmission.

    Science.gov (United States)

    Kline, David D

    2008-12-10

    Changes in the physiological state of an animal or human can result in alterations in the cardiovascular and respiratory system in order to maintain homeostasis. Accordingly, the cardiovascular and respiratory systems are not static but readily adapt under a variety of circumstances. The same can be said for the brainstem circuits that control these systems. The nucleus tractus solitarius (NTS) is the central integration site of baroreceptor and chemoreceptor sensory afferent fibers. This central nucleus, and in particular the synapse between the sensory afferent and second-order NTS cell, possesses a remarkable degree of plasticity in response to a variety of stimuli, both acute and chronic. This brief review is intended to describe the plasticity observed in the NTS as well as the locus and mechanisms as they are currently understood. The functional consequence of NTS plasticity is also discussed.

  13. Modeling the drift of plastics in the Adriatic Basin

    Science.gov (United States)

    Liubartseva, Svitlana; Coppini, Giovanni; Lecci, Rita; Creti, Sergio

    2016-04-01

    Recently, plastic pollution at sea has become widely recognized as an acute environmental problem. Distribution of plastics in the marine environment is controlled by (1) locations and time-varying intensity of inputs; (2) the dynamics of the upper mixed layer of the ocean, where the majority of plastics float; and (3) the sinks of plastics. In the present work, we calculate the plastic concentrations at the sea surface and fluxes onto the coastline (2009-2015) that originated from terrestrial and maritime inputs. We construct a Markov chain model based on coupling the MEDSLIK-II model (De Dominicis et al., 2013) with the daily Adriatic Forecasting System (AFS) ocean currents simulations (1/45° horizontal resolution) (Guarneri et al., 2010) and ECMWF surface wind analyses (0.25° horizontal and 6-h temporal resolutions). We assume that the coastline is the main sink of plastics in the Adriatic Sea (Liubartseva et al., 2015). Our calculations have shown that the mean particle half-life in the basin approximately equals 43.7 days, which allows us to define the Adriatic Sea as a highly dissipative system with respect to floating plastics. On long-term time-mean scales, the most polluted sea surface area (more than 10 g/km2 floating plastics) is represented by an elongated band shifted to the Italian coastline and narrowed from northwest to southeast. That corresponds to the spatial distributions of plastic inputs, and indicates a tight connection with patterns of the general Adriatic circulation, including the Western Adriatic Coastal Current and the South Adriatic gyre. On seasonal time-mean scales, we indicate the winter plastics' expansion into the basin's interior, spring trapping in the northern Adriatic, summer cleansing the middle and southern Adriatic and autumn spreading into the southeastern Adriatic. Distinctive coastal "hot spot" is found on the Po Delta coastline that receives a plastic flux of 70 kg/(kmṡday). Complex source-receptor relationships

  14. Decoding the Epigenetic Language of Neuronal Plasticity

    Science.gov (United States)

    Borrelli, Emiliana; Nestler, Eric J.; Allis, C. David; Sassone-Corsi, Paolo

    2009-01-01

    Neurons are submitted to an exceptional variety of stimuli and are able to convert these into high-order functions, such as storing memories, controlling behavior, and governing consciousness. These unique properties are based on the highly flexible nature of neurons, a characteristic that can be regulated by the complex molecular machinery that controls gene expression. Epigenetic control, which largely involves events of chromatin remodeling, appears to be one way in which transcriptional regulation of gene expression can be modified in neurons. This review will focus on how epigenetic control in the mature nervous system may guide dynamic plasticity processes and long-lasting cellular neuronal responses. We outline the molecular pathways underlying chromatin transitions, propose the presence of an “epigenetic indexing code,” and discuss how central findings accumulating at an exponential pace in the field of epigenetics are conceptually changing our perspective of adult brain function. PMID:19109904

  15. BOOK REVIEW: Introduction to Computational Plasticity

    Science.gov (United States)

    Hartley, P.

    2006-04-01

    Jaumann rate of stress. It is tempting here to suggest that a more complete description should be given together with other measures of strain and stress, of which there are several, but there would be a danger of changing the book from an `introduction' to a more comprehensive text, and examples of such exist already. Chapter four begins the process of developing the plasticity theories into a form suitable for inclusion in the finite-element method. The starting point is Hamilton's principle for equilibrium of a dynamic system. A very brief introduction to the finite-element method is then given, followed by the finite-element equilibrium equations and a description of how they are incorporated into Hamilton's principle. A useful clarification is provided by comparing tensor notation and the form normally used in finite-element expressions, i.e. Voigt notation. The chapter concludes with a brief overview of implicit integration methods, i.e. tangent stiffness, initial tangent stiffness and Newton Raphson. Chapter five deals with the more specialized topic of implicit and explicit integration of von Mises plasticity. One of the techniques described is the radial-return method which ensures that the stresses at the end of an increment of deformation always lie on the expanded yield surface. Although this method guarantees a solution it may not always be the most accurate for large deformation, this is one area where reference to alternative methods would have been a helpful addition. Chapter six continues with further detail of how the plasticity models may be incorporated into finite-element codes, with particular reference to the Abaqus package and the use of user-defined subroutines, introduced via a `UMAT' subroutine. This completes part I of the book. Part II focuses on plasticity models, each chapter dealing with a particular process or material model. For example, chapter seven deals with superplasticity, chapter eight with porous plasticity, chapter nine with

  16. Polishing compound for plastic surfaces

    Science.gov (United States)

    Stowell, Michael S.

    1995-01-01

    A polishing compound for plastic surfaces. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS.TM., LEXAN.TM., LUCITE.TM., polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  17. Polishing compound for plastic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stowell, M.S.

    1993-01-01

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains colloidal silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{sup TM}, LEXAN{sup TM}, LUCITE{sup TM}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  18. Cell resolved, multiparticle model of plastic tissue deformations and morphogenesis

    CERN Document Server

    Czirok, Andras

    2014-01-01

    We propose a three dimensional mechanical model of embryonic tissue dynamics. Mechanically coupled adherent cells are represented as particles interconnected with elastic beams which can exert non-central forces and torques. Tissue plasticity is modeled by a stochastic process consisting of a connectivity change (addition or removal of a single link) followed by a complete relaxation to mechanical equilibrium. In particular, we assume that (i) two non-connected, but adjacent particles can form a new link; and (ii) the lifetime of links is reduced by tensile forces. We demonstrate that the proposed model yields a realistic macroscopic elasto-plastic behavior and we establish how microscopic model parameters affect the material properties at the macroscopic scale. Based on these results, microscopic parameter values can be inferred from tissue thickness, macroscopic elastic modulus and the magnitude and dynamics of intercellular adhesion forces. In addition to their mechanical role, model particles can also act...

  19. A novel biobased plasticizer of epoxidized cardanol glycidylether: Synthesis and application in soft poly(vinyl chloride) films

    Science.gov (United States)

    A novel plasticizer derived from cardanol, epoxied cardanol glycidyl ether (ECGE), was synthesized and characterized by 1H-NMR and 13C-NMR. Effects of the ECGE combined with dioctyl phthalate (DOP), a commercial plasticizer, in soft poly(vinyl chloride) (PVC) films were studied. Dynamic mechanical a...

  20. Determination of dynamic fracture initiation toughness of elastic-plastic materials at intermediate strain rates; Obtencion de la tenacidad de fractura dinamica de iniciacion de materiales elastolasticos a velocidad de deformacion intermedias

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Saez, J.; Luna de, S.; Rubio, L.; Perez-Castellanos, J. L.; Navarro, C.

    2001-07-01

    An earlier paper dealt with the experimental techniques used to determine the dynamic fracture properties of linear elastic materials. Here we describe those most commonly used as elastoplastic materials, limiting the study to the initiation fracture toughness at the intermediate strain rate (of around 10''2 s''-1). In this case the inertial forces are negligible and it is possible to apply the static solutions. With this stipulation, the analysis can be based on the methods of testing in static conditions. The dynamic case differs basically, from the static one, in the influence of the strain rate on the properties of the material. (Author) 57 refs.

  1. Influence of stimulated plasticity training method on coordination indicators of high pedagogic educational estableshments’ girl students

    Directory of Open Access Journals (Sweden)

    Kolumbet A.N.

    2015-12-01

    Full Text Available Purpose: study of stimulated plasticity training’s influence on coordination indicators of pedagogic HEEs’ girl students. Material: 264 girl students participated in the research. Experiment was being carried out during three years. Responding abilities, static and dynamic balance, orientation in space, promptness of operative thinking, volume of mechanical memorizing, distribution of attention, accuracy, quickness and of attention re-switching, accuracy of tasks’ fulfillment were assessed. Results: it was found that plasticity has different kinds and forms of manifestation. Creative motor tasks require different conditions for their realization. We determined rates of plasticity increment by its main kinds. Plasticity of body movements was achieved at high level of different muscular groups’ coordination, optimal rhythm, rational correlation of tension and relaxation. Conclusions: it was found that plasticity shall be trained in compliance with its kinds and manifestations. It requires appropriated approach to content of methodic of its perfection.

  2. Structural plasticity with preserved topology in the postsynaptic protein network

    OpenAIRE

    Blanpied, Thomas A.; Kerr, Justin M.; Ehlers, Michael D.

    2008-01-01

    The size, shape, and molecular arrangement of the postsynaptic density (PSD) determine the function of excitatory synapses in the brain. Here, we directly measured the internal dynamics of scaffold proteins within single living PSDs, focusing on the principal scaffold protein PSD-95. We found that individual PSDs undergo rapid, continuous changes in morphology driven by the actin cytoskeleton and regulated by synaptic activity. This structural plasticity is accompanied by rapid fluctuations i...

  3. Ways of Viewing Pictorial Plasticity

    Directory of Open Access Journals (Sweden)

    Maarten W. A. Wijntjes

    2017-03-01

    Full Text Available The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter. By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.

  4. Vascular plasticity in cerebrovascular disorders

    DEFF Research Database (Denmark)

    Edvinsson, Lars I H; Povlsen, Gro Klitgaard

    2011-01-01

    Cerebral ischemia remains a major cause of morbidity and mortality with little advancement in subacute treatment options. This review aims to cover and discuss novel insight obtained during the last decade into plastic changes in the vasoconstrictor receptor profiles of cerebral arteries and micr...

  5. American Society of Plastic Surgeons

    Science.gov (United States)

    ... know the risks and trust a board-certified plastic surgeon to perform your cosmetic or reconstructive surgery. ASPS member surgeons have the training and experience that ... 1300 Chain Bridge Road McLean, VA 22101 (703) 790-5454 Timothy Germain ...

  6. Biobased plastics in a bioeconomy.

    Science.gov (United States)

    Philp, J C; Ritchie, R J; Guy, K

    2013-02-01

    Bioeconomy plans include a biobased industries sector in which some oil-derived plastics and chemicals are replaced by new or equivalent products derived, at least partially, from biomass. Some of these biobased products are here today, but to fulfil their societal potential, greater attention is required to promote awareness, and to improve their market share while making valuable contributions to climate change mitigation.

  7. Field based plastic contamination sensing

    Science.gov (United States)

    The United States has a long-held reputation of being a dependable source of high quality, contaminant-free cotton. Recently, increased incidence of plastic contamination from sources such as shopping bags, vegetable mulch, surface irrigation tubing, and module covers has threatened the reputation o...

  8. Plasticity Theory of Fillet Welds

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    This paper deals with simple methods for calculation of fillet welds based on the theory of plasticity. In developing the solutions the lower-bound theorem is used. The welding material and parts of the base material are subdivided into triangular regions with homogeneous stress fields; thereby...

  9. For the Classroom: "Plastic" Jellyfish.

    Science.gov (United States)

    Current: The Journal of Marine Education, 1989

    1989-01-01

    Describes an activity in which students monitor the plastic waste production in their households, research its effects on freshwater and marine life, and propose ways to lessen the problem. Provides objectives, background information, materials, procedures, extension activities, and an evaluation for students. (Author/RT)

  10. Oxytocin and Maternal Brain Plasticity

    Science.gov (United States)

    Kim, Sohye; Strathearn, Lane

    2016-01-01

    Although dramatic postnatal changes in maternal behavior have long been noted, we are only now beginning to understand the neurobiological mechanisms that support this transition. The present paper synthesizes growing insights from both animal and human research to provide an overview of the plasticity of the mother's brain, with a particular…

  11. Making sense of plastics recycling

    NARCIS (Netherlands)

    Van Bruggen, E.; Koster, R.P.; Rageart, K.; Cardon, L.; Moerman, M.; Blessing, E.

    2012-01-01

    Major benefits of plastics recycling are reduced depletion of non-renewable resources and reduction of world-wide waste. Traditional thermo-mechanical recycling causes reduction of mechanical properties for most thermoplastics. Down-cycled materials may nevertheless be suited for certain useful appl

  12. Plastic Surgeons Often Miss Patients' Mental Disorders

    Science.gov (United States)

    ... More Health News on: Mental Disorders Plastic and Cosmetic Surgery Recent Health News Related MedlinePlus Health Topics Mental Disorders Plastic and Cosmetic Surgery About MedlinePlus Site Map FAQs Customer Support Get ...

  13. Lecture notes on Elasto-plastic materials

    DEFF Research Database (Denmark)

    Hededal, Ole

    2007-01-01

    Brief introduction to material modelling within the framework of rate independent elasto-plastic constitutive modelling......Brief introduction to material modelling within the framework of rate independent elasto-plastic constitutive modelling...

  14. Phenotypic plasticity with instantaneous but delayed switches

    NARCIS (Netherlands)

    Utz, Margarete; Jeschke, Jonathan M.; Loeschcke, Volker; Gabriel, Wilfried

    2014-01-01

    Phenotypic plasticity is a widespread phenomenon, allowing organisms to better adapt to changing environments. Most empirical and theoretical studies are restricted to irreversible plasticity where the expression of a specific phenotype is mostly determined during development. However, reversible pl

  15. Interpretation on Recycling Plastics from Shredder Residue

    Science.gov (United States)

    EPA is considering an interpretation of its regulations that would generally allow for recycling of plastic separated from shredder residue under the conditions described in the Voluntary Procedures for Recycling Plastics from Shredder Residue.

  16. Developmental plasticity and evolution--quo vadis?

    National Research Council Canada - National Science Library

    Moczek, A P

    2015-01-01

    The role of developmental (phenotypic) plasticity in ecology and evolution is receiving a growing appreciation among the biologists, and many plasticity-specific concepts have become well established as part of the mainstream evolutionary...

  17. Gas Experiments with Plastic Soda Bottles.

    Science.gov (United States)

    Kavanah, Patrick; Zipp, Arden P.

    1998-01-01

    Describes the use of an inexpensive device consisting of a plastic soda bottle and a modified plastic cap in a range of demonstrations and experimental activities having to do with the behavior of gases. (Author/WRM)

  18. [The history of plastic surgery in Israel].

    Science.gov (United States)

    Wiser, Itay; Scheflan, Michael; Heller, Lior

    2014-09-01

    The medical institutions in the country have advanced together with the development of the state of Israel. Plastic surgery, which has progressed significantly during the 20th century, has also grown rapidly in the new state. The arrival of Jewish plastic surgeons from all over the world with the knowledge and experience gained in their countries of origin, as well as the need for reconstructive surgical treatment for many combat injured soldiers, also contributed to the development of plastic surgery. This review tells the story of plastic surgery in Israel, since its foundation until nowadays. This article reviews the work of the founders of plastic surgery in Israel, indicating significant milestones in its development, and clinical and scientific contribution to the international plastic surgery profession. Moreover, the article describes the current condition of the field of plastic surgery in Israel and presents the trends and the future challenges facing the next generation of plastic surgery in Israel.

  19. Innovation Promotes Development of Plastic Assistant

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Driven by the rapid growth of China's plastic product sector, the development of the plastic sector has been accelerated and assistant products are now becoming more multi-function, high performance, high in molecular weight and environmentfriendly.

  20. Increased incidence of infertility treatment among women working in the plastics industry

    DEFF Research Database (Denmark)

    Hougaard, K.S.; Hannerz, H.; Feveile, H.

    2009-01-01

    Several plastic chemicals adversely affect reproductive ability. This study examined the possible association between employment in the plastics industry and infertility. Dynamic cohorts of economically active women and men were followed for hospital contacts due to infertility in the Danish...... infertility were observed among female plastic workers, as opposed to an expected 87.15 cases, i.e. relative risk was 1.23 (95% CI: 1.01-1.48). For male workers the numbers were 41 respectively 49.9 cases, with relative risk being 0.82 (95% CI: 0.59-1.11). The increased incidence of infertility treatment...

  1. Simplified non-linear time-history analysis based on the Theory of Plasticity

    DEFF Research Database (Denmark)

    Costa, Joao Domingues

    2005-01-01

    is based on the Theory of Plasticity. Firstly, the formulation and the computational procedure to perform time-history analysis of a rigid-plastic single degree of freedom (SDOF) system are presented. The necessary conditions for the method to incorporate pinching as well as strength degradation......This paper aims at giving a contribution to the problem of developing simplified non-linear time-history (NLTH) analysis of structures which dynamical response is mainly governed by plastic deformations, able to provide designers with sufficiently accurate results. The method to be presented...

  2. Simplified non-linear time-history analysis based on the Theory of Plasticity

    DEFF Research Database (Denmark)

    Costa, Joao Domingues

    2005-01-01

    is based on the Theory of Plasticity. Firstly, the formulation and the computational procedure to perform time-history analysis of a rigid-plastic single degree of freedom (SDOF) system are presented. The necessary conditions for the method to incorporate pinching as well as strength degradation......This paper aims at giving a contribution to the problem of developing simplified non-linear time-history (NLTH) analysis of structures which dynamical response is mainly governed by plastic deformations, able to provide designers with sufficiently accurate results. The method to be presented...

  3. Dynamic change of spectral-domain optical coherence tomography in rat retina during critical period plasticity%视觉发育关键期大鼠视网膜频域OCT测量值的变化特征

    Institute of Scientific and Technical Information of China (English)

    华宁; 李筱荣; 赵乐冬; 林松; 刘勃实; 袁佳琴

    2011-01-01

    Background Retinal development continues during the early postnatal period in mammals.Correct arrangement of layers and precise location of various cells in the retina are vital for forming normal visual function during critical period plasticity.Spectral-domain optical coherence tomography(SD-OCT)provides highquality in vivo retinal imaging and the possibility to measure retinal thickness longitudinally. Objective The present study was to investigate the changes of retinal thickness during critical period plasticity in rats. Methods In vivo consecutive scanning of retinal image was performed in 10 SPF Sprague-Dawley rats at postnatal day 14(P14),P18,P21,P24 and P42 with SD-OCT,and retinal histopathological examination was used to detect retinal morphologic changes at the same postnatal ages in 20 matched rats.The whole retinal thickness,the thickness from inner limiting membrane(ILM)to inner plexiform layer(IPL),the thickness of inner nuclear layer(INL)and the thickness from outer nuclear layer(ONL)to retinal pigment epithelium(RPE)were measured using Cirrus HD-OCT system and HMIAS-2000 Imaging System in retinal sections.The measurement parameters by Cirrus HD-OCT and those by hematoxylin-eosin staining were compared.The use of animals followed the Statement of National Institute of Health (USA). Results In vivo high-resolution images of rat retinas with SD-OCT compared well with histology,which enabled quantitative comparison of the SD-OCT and histological data during critical period plasticity in rats.From P14 to P42,the retinal thickness gradually decreased with the increase of rat ages(F=15.425,P=0.000),and so were the thickness from ILM to IPL,the thickness of INL and the thickness from ONL to RPE(F=3.973,P=0.007;F=17.529,P=0.000;F=7.038,P=0.000).The retinal thickness,thickness of INL.thickness from ONL to RPE measured by Cirrus HD-OCT were significantly correlated with those measured by retinal sections among P14,P18,P21,P24 and P42 rats(r=0.794,P=0.000;r=0

  4. Changes in mobility of plastic crystal ethanol during its transformation into the monoclinic crystal state

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Alejandro, E-mail: alejandro.sanz@csic.es; Nogales, Aurora; Ezquerra, Tiberio A. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Puente-Orench, Inés [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Instituto de Ciencia de Materiales de Aragón, ICMA-CSIC, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Jiménez-Ruiz, Mónica [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France)

    2014-02-07

    Transformation of deuterated ethanol from the plastic crystal phase into the monoclinic one is investigated by means of a singular setup combining simultaneously dielectric spectroscopy with neutron diffraction. We postulate that a dynamic transition from plastic crystal to supercooled liquid-like configuration through a deep reorganization of the hydrogen-bonding network must take place as a previous step of the crystallization process. Once these precursor regions are formed, subsequent crystalline nucleation and growth develop with time.

  5. ARE PLASTIC GROCERY BAGS SACKING THE ENVIRONMENT?

    Directory of Open Access Journals (Sweden)

    Mangal Gogte

    2009-12-01

    Full Text Available This paper is oriented on analysis impacts of plastic bags on environment. In this paper is analyzed did plastic bags are so harmful, and what are the main ingredients of it. One part of this paper is oriented on effects of plastic bags and management of their usage. There is also made comparative analysis between impacts of plastic and paper bags on environment.

  6. Economical and Ecological Fesasibility of Plastic Recycling

    OpenAIRE

    Hirschpold, Andrew; Juctye, Kristina; Renzhong, Jiang; Debin, LIU; Varona, Hector P.; Kevelaitis, Karolis

    2005-01-01

    #Group 3 International Nat Bas Economical and Ecological Feasibility of Plastic Recycling Abstract This project is carried out as the final project for the first semester of Bachelor of Science studies. Our project will aim on plastic recycling. Plastic is a manmade material which covers a range of synthetic or semi-synthetic products made thru polymerization. The development of plastic products has accompanied the development of human’s history since it was invented while they ...

  7. WE(EE) Demand - Recycled Plastic

    OpenAIRE

    Førby, Marie; Pedersen, Jakob; Borgen, Nanna; Hansen, Rasmus Nør

    2015-01-01

    Plastic management – from production to waste – has massive negative effects on the environment of which one of the main problems are the CO2 released from the fossil fuels. The focus of this paper lies on the possibilities of increasing demand for recycled plastics from electric and electronic equipment (WEEE-plastic) through modifications in the Danish waste systems. Due to the chemical build of plastic, it is not possible to reprocess it with mechanical recycle technologies while keeping t...

  8. Think small: nanotechnology for plastic surgeons.

    Science.gov (United States)

    Nasir, Amir R; Brenner, Sara A

    2012-11-01

    The purpose of this article is to introduce the topic of nanotechnology to plastic surgeons and to discuss its relevance to medicine in general and plastic surgery in particular. Nanotechnology will be defined, and some important historical milestones discussed. Common applications of nanotechnology in various medical and surgical subspecialties will be reviewed. Future applications of nanotechnology to plastic surgery will be examined. Finally, the critical field of nanotoxicology and the safe use of nanotechnology in medicine and plastic surgery will be addressed.

  9. The advent of the restorative plastic surgeon.

    Science.gov (United States)

    Carty, Matthew J; Pribaz, Julian J; Talbot, Simon G; Caterson, Edward J; Pomahac, Bohdan

    2014-01-01

    Plastic surgery is presently typified by the existence of discrete clinical identities, namely that of the cosmetic plastic surgeon and the reconstructive plastic surgeon. The emergence of vascularized composite allotransplantation has been accompanied by the development of a third distinct clinical identity, that of the restorative plastic surgeon. The authors describe the core competencies that characterize this new identity, and discuss the implications of the advent of this new professional paradigm.

  10. Economical and Ecological Fesasibility of Plastic Recycling

    OpenAIRE

    Hirschpold, Andrew; Juctye, Kristina; Renzhong, Jiang; Debin, Liu; Varona, Hector P.; Kevelaitis, Karolis

    2005-01-01

    #Group 3 International Nat Bas Economical and Ecological Feasibility of Plastic Recycling Abstract This project is carried out as the final project for the first semester of Bachelor of Science studies. Our project will aim on plastic recycling. Plastic is a manmade material which covers a range of synthetic or semi-synthetic products made thru polymerization. The development of plastic products has accompanied the development of human’s history since it was invented while they ...

  11. Will Banning Free Plastic Bags Reduce Pollution?

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    No more free plastic bags from June 1,2008.That’s the message to Chinese shoppers after a government ban on all production,sales or use of plastic bags less than 0.025 mm thick comes into force from this date.Nowadays,supermarkets give out 1 billion plastic bags every day while other shops collectively use double that amount. Consumers will have to pay for plastic bags exceeding this thickness,if they want this option.

  12. Formation and subdivision of deformation structures during plastic deformation

    DEFF Research Database (Denmark)

    Jakobsen, B.; Poulsen, H.F.; Lienert, U.;

    2006-01-01

    During plastic deformation of metals and alloys, dislocations arrange in ordered patterns. How and when these self-organization processes take place have remained elusive, because in situ observations have not been feasible. We present an x-ray diffraction method that provided data on the dynamics...... of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting behavior....... Insight into these processes is relevant for an understanding of the strength and work-hardening of deformed materials....

  13. Plastics. A Handbook for Workplace Educators.

    Science.gov (United States)

    Curry, Donna; Smith, Mikki

    This handbook was designed to help adult literacy education teachers to understand the plastics industry, develop a curriculum, and teach basic skills classes in a plastics company. The book contains four main sections. The first section, on the basics of plastics, contains a brief history of the industry, an elementary description of the…

  14. 7 CFR 58.326 - Plastic cream.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Plastic cream. 58.326 Section 58.326 Agriculture... Material § 58.326 Plastic cream. To produce plastic cream eligible for official certification, the quality of the cream used shall meet the requirements of cream acceptable for the manufacture of U.S....

  15. Adult myelination:wrapping up neuronal plasticity

    Institute of Scientific and Technical Information of China (English)

    Megan ORourke; Robert Gasperini; Kaylene M.Young

    2014-01-01

    In this review, we outline the major neural plasticity mechanisms that have been identiifed in the adult central nervous system (CNS), and offer a perspective on how they regulate CNS function. In particular we examine how myelin plasticity can operate alongside neurogenesis and synaptic plasticity to inlfuence information processing and transfer in the mature CNS.

  16. The evolution of age-dependent plasticity

    NARCIS (Netherlands)

    Fischer, Barbara; van Doorn, G. Sander; Dieckmann, Ulf; Taborsky, Barbara

    2014-01-01

    When organisms encounter environments that are heterogeneous in time, phenotypic plasticity is often favored by selection. The degree of such plasticity can vary during an organism''s lifetime, but the factors promoting differential plastic responses at different ages or life stages remain poorly un

  17. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Science.gov (United States)

    2010-06-16

    ... Employment and Training Administration Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium... Assistance on March 18, 2010, applicable to workers of Plastic Omnium Automotive Exteriors, LLC, Anderson... have occurred involving workers in support of the Anderson, South Carolina location of Plastic...

  18. Plastic deformation and contact area of an elastic-plastic contact of ellipsoid bodies after unloading

    NARCIS (Netherlands)

    Jamari, Jamari; Schipper, Dirk J.

    2007-01-01

    This paper presents theoretical and experimental results of the residual or plastic deformation and the plastic contact area of an elastic–plastic contact of ellipsoid bodies after unloading. There are three regime responses of the deformation and contact area: elastic, elastic–plastic and fully

  19. American Academy of Facial Plastic and Reconstructive Surgery

    Science.gov (United States)

    ... is the world's largest specialty association for facial plastic surgery. It represents more than 2,700 facial plastic ... the American Board of Otolaryngology , which includes facial plastic surgery. Others are certified in plastic surgery, ophthalmology, and ...

  20. Thermoplastic Starch Prepared with Different Plasticizers:Relation between Degree of Plasticization and Properties

    Institute of Scientific and Technical Information of China (English)

    ZUO Yingfeng; GU Jiyou; TAN Haiyan; ZHANG Yanhua

    2015-01-01

    Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch (TPS) from corn starch. The properties of TPS were tested by analysis method. The results showed that TPSs were more highly plasticized with amines than alcohols. For the same type of plasticizer, the degree of plasticization decreased as the molecular weight of plasticizer increased. The relationship between plasticization degree and TPS properties was characterized and described by mechanical properties and water absorption. The experimental results showed that when the degree of plasticization increased, the tensile strength decreased and the elongation at breakage and water absorption increased.

  1. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large...... recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...... product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications...

  2. Plastic Deformation of Metal Tubes Subjected to Lateral Blast Loads

    Directory of Open Access Journals (Sweden)

    Kejian Song

    2014-01-01

    Full Text Available When subjected to the dynamic load, the behavior of the structures is complex and makes it difficult to describe the process of the deformation. In the paper, an analytical model is presented to analyze the plastic deformation of the steel circular tubes. The aim of the research is to calculate the deflection and the deformation angle of the tubes. A series of assumptions are made to achieve the objective. During the research, we build a mathematical model for simply supported thin-walled metal tubes with finite length. At a specified distance above the tube, a TNT charge explodes and generates a plastic shock wave. The wave can be seen as uniformly distributed over the upper semicircle of the cross-section. The simplified Tresca yield domain can be used to describe the plastic flow of the circular tube. The yield domain together with the plastic flow law and other assumptions can finally lead to the solving of the deflection. In the end, tubes with different dimensions subjected to blast wave induced by the TNT charge are observed in experiments. Comparison shows that the numerical results agree well with experiment observations.

  3. Plastic waste as a resource. Strategies for reduction and utilization of plastic waste

    OpenAIRE

    Pasqual i Camprubí, Gemma

    2010-01-01

    Plastic materials have experienced a spectacular rate of growth in recent decades, consequently, production of plastics, and likewise their consumption, has increased markedly since 1950. Moreover, they are lightweight and durable, as well as can be moulded into a variety of products that can be manufactured in many different types of plastic and in a wide range of applications. Inevitably, continually increasing amounts of used plastic are originating daily, resulting in a plastic waste prob...

  4. Public health impact of plastics: An overview

    Directory of Open Access Journals (Sweden)

    Neeti Rustagi

    2011-01-01

    Full Text Available Plastic, one of the most preferred materials in today′s industrial world is posing serious threat to environment and consumer′s health in many direct and indirect ways. Exposure to harmful chemicals during manufacturing, leaching in the stored food items while using plastic packages or chewing of plastic teethers and toys by children are linked with severe adverse health outcomes such as cancers, birth defects, impaired immunity, endocrine disruption, developmental and reproductive effects etc. Promotion of plastics substitutes and safe disposal of plastic waste requires urgent and definitive action to take care of this potential health hazard in future.

  5. Public health impact of plastics: An overview

    Science.gov (United States)

    Rustagi, Neeti; Pradhan, S. K.; Singh, Ritesh

    2011-01-01

    Plastic, one of the most preferred materials in today's industrial world is posing serious threat to environment and consumer's health in many direct and indirect ways. Exposure to harmful chemicals during manufacturing, leaching in the stored food items while using plastic packages or chewing of plastic teethers and toys by children are linked with severe adverse health outcomes such as cancers, birth defects, impaired immunity, endocrine disruption, developmental and reproductive effects etc. Promotion of plastics substitutes and safe disposal of plastic waste requires urgent and definitive action to take care of this potential health hazard in future. PMID:22412286

  6. Process for remediation of plastic waste

    Science.gov (United States)

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  7. New Class of Plastic Bulk Metallic Glass

    Science.gov (United States)

    Chen, L. Y.; Fu, Z. D.; Zhang, G. Q.; Hao, X. P.; Jiang, Q. K.; Wang, X. D.; Cao, Q. P.; Franz, H.; Liu, Y. G.; Xie, H. S.; Zhang, S. L.; Wang, B. Y.; Zeng, Y. W.; Jiang, J. Z.

    2008-02-01

    An intrinsic plastic Cu45Zr46Al7Ti2 bulk metallic glass (BMG) with high strength and superior compressive plastic strain of up to 32.5% was successfully fabricated by copper mold casting. The superior compressive plastic strain was attributed to a large amount of randomly distributed free volume induced by Ti minor alloying, which results in extensive shear band formation, branching, interaction and self-healing of minor cracks. The mechanism of plasticity presented here suggests that the creation of a large amount of free volume in BMGs by minor alloying or other methods might be a promising new way to enhance the plasticity of BMGs.

  8. Public health impact of plastics: An overview.

    Science.gov (United States)

    Rustagi, Neeti; Pradhan, S K; Singh, Ritesh

    2011-09-01

    Plastic, one of the most preferred materials in today's industrial world is posing serious threat to environment and consumer's health in many direct and indirect ways. Exposure to harmful chemicals during manufacturing, leaching in the stored food items while using plastic packages or chewing of plastic teethers and toys by children are linked with severe adverse health outcomes such as cancers, birth defects, impaired immunity, endocrine disruption, developmental and reproductive effects etc. Promotion of plastics substitutes and safe disposal of plastic waste requires urgent and definitive action to take care of this potential health hazard in future.

  9. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness......Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...... of metal components. An optimization of processes and material parameters must be based on a quantification of stress and strain gradients at the surface and in near surface layer where the structural scale can reach few tens of nanometers. For such fine structures it is suggested to quantify structural...

  10. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....

  11. Vascular plasticity in cerebrovascular disorders

    DEFF Research Database (Denmark)

    Edvinsson, Lars I H; Povlsen, Gro Klitgaard

    2011-01-01

    Cerebral ischemia remains a major cause of morbidity and mortality with little advancement in subacute treatment options. This review aims to cover and discuss novel insight obtained during the last decade into plastic changes in the vasoconstrictor receptor profiles of cerebral arteries and micr......Cerebral ischemia remains a major cause of morbidity and mortality with little advancement in subacute treatment options. This review aims to cover and discuss novel insight obtained during the last decade into plastic changes in the vasoconstrictor receptor profiles of cerebral arteries...... therapeutic target for prevention of vasoconstrictor receptor upregulation after stroke. Together, those findings provide new perspectives on the pathophysiology of ischemic stroke and point toward a novel way of reducing vasoconstriction, neuronal cell death, and thus neurologic deficits after stroke....

  12. Polishing compound for plastic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stowell, M.S.

    1991-01-01

    This invention is comprised of a polishing compound for plastic materials. The compound includes approximately by approximately by weight 25 to 80 parts at least one petroleum distillate lubricant, 1 to 12 parts mineral spirits, 50 to 155 parts abrasive paste, and 15 to 60 parts water. Preferably, the compound includes approximately 37 to 42 parts at least one petroleum distillate lubricant, up to 8 parts mineral spirits, 95 to 110 parts abrasive paste, and 50 to 55 parts water. The proportions of the ingredients are varied in accordance with the particular application. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC), and similar plastic materials whenever a smooth, clear polished surface is desired.

  13. Exercise and plasticize the brain

    DEFF Research Database (Denmark)

    Mala, Hana; Wilms, Inge

    Neuroscientific studies continue to shed light on brain’s plasticity and its innate mechanisms to recover. The recovery process includes re-wiring of the existing circuitry, establishment of new connections, and recruitment of peri-lesional and homologous areas in the opposite hemisphere. The pla......Neuroscientific studies continue to shed light on brain’s plasticity and its innate mechanisms to recover. The recovery process includes re-wiring of the existing circuitry, establishment of new connections, and recruitment of peri-lesional and homologous areas in the opposite hemisphere...... potential through available training methods. Furthermore, research into neurorehabilitation is dependent on input from a number of fields (such as neuropsychology, neurology, physiotherapy, speech and language therapy, special education, and social work) and requires a close collaboration between...

  14. Synaptic Plasticity, Dementia and Alzheimer Disease.

    Science.gov (United States)

    Skaper, Stephen D; Facci, Laura; Zusso, Morena; Giusti, Pietro

    2017-01-13

    Neuroplasticity is not only shaped by learning and memory but is also a mediator of responses to neuron attrition and injury (compensatory plasticity). As an ongoing process it reacts to neuronal cell activity and injury, death, and genesis, which encompasses the modulation of structural and functional processes of axons, dendrites, and synapses. The range of structural elements that comprise plasticity includes long-term potentiation (a cellular correlate of learning and memory), synaptic efficacy and remodelling, synaptogenesis, axonal sprouting and dendritic remodelling, and neurogenesis and recruitment. Degenerative diseases of the human brain continue to pose one of biomedicine's most intractable problems. Research on human neurodegeneration is now moving from descriptive to mechanistic analyses. At the same time, it is increasing apparent that morphological lesions traditionally used by neuropathologists to confirm post-mortem clinical diagnosis might furnish us with an experimentally tractable handle to understand causative pathways. Consider the aging-dependent neurodegenerative disorder Alzheimer's disease (AD) which is characterised at the neuropathological level by deposits of insoluble amyloid b-peptide (Ab) in extracellular plaques and aggregated tau protein, which is found largely in the intracellular neurofibrillary tangles. We now appreciate that mild cognitive impairment in early AD may be due to synaptic dysfunction caused by accumulation of non-fibrillar, oligomeric Ab, occurring well in advance of evident widespread synaptic loss and neurodegeneration. Soluble Ab oligomers can adversely affect synaptic structure and plasticity at extremely low concentrations, although the molecular substrates by which synaptic memory mechanisms are disrupted remain to be fully elucidated. The dendritic spine constitutes a primary locus of excitatory synaptic transmission in the mammalian central nervous system. These structures protruding from dendritic shafts

  15. Endogenous neurotrophins and plasticity following spinal deafferentation.

    Science.gov (United States)

    Ramer, Matt S

    2012-05-01

    Neurons intrinsic to the spinal cord dorsal horn receive input from various classes of long-distance projection systems. Two of the best known of these are primary afferent and descending monoaminergic axons. Together with intrinsic interneurons, activity in these axonal populations shapes the early part of the sensory experience before it is transmitted to supraspinal structures via ascending projection axons. Injury to dorsal roots, which contain the centrally projecting branches of primary afferent axons, results in their permanent disconnection from the spinal cord, as well as sensory dysfunction such as pain. In animals, experimental dorsal root injuries affecting a small number of roots produce dynamic behavioural changes, providing evidence for the now familiar concept that sensory processing at the level of the spinal cord is not hard-wired. Changes in behaviour following rhizotomy suggest changes in spinal sensory circuitry, and we and others have shown that the density of spinal serotonergic axons as well as processes of inhibitory interneurons increases following rhizotomy. Intact primary afferent axons are less apt to sprout into denervated territory. Recent work from our group has asked (1) what is the stimulus that induces sprouting of serotonergic (and other) axons and (2) what prevents spared primary afferent axons from occupying the territory of those lost to injury. This article will review the evidence that a single factor upregulated by dorsal root injury, brain-derived neurotrophic factor (BDNF), underpins both serotonergic sprouting and a lack of primary afferent plasticity. BDNF also differentially modulates some of the behavioural consequences of dorsal root injury: antagonizing endogenous BDNF improves spontaneous mechanosensory recovery but prevents recovery from rhizotomy-induced hypersensitivity to cold. These findings reinforce the notion that in disease states as complex and variable as spinal cord injury, single pharmacological

  16. Brain plasticity and aerobic fitness

    OpenAIRE

    2014-01-01

    Regular aerobic exercise has a wide range of positive effects on health and cognition. Exercise has been demonstrated to provide a particularly powerful and replicable method of triggering a wide range of structural changes within both human and animal brains. However, the details and mechanisms of these changes remain poorly understood. This thesis undertakes a comprehensive examination of the relationship between brain plasticity and aerobic exercise. A large, longitudinal experiment ...

  17. The rise of plastic bioelectronics

    Science.gov (United States)

    Someya, Takao; Bao, Zhenan; Malliaras, George G.

    2016-12-01

    Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics. The resulting electronic materials and devices are soft, stretchable and mechanically conformable, which are important qualities for interacting with biological systems in both wearable and implantable devices. Work is currently aimed at improving these devices with a view to making the electronic-biological interface as seamless as possible.

  18. The Future of Plastic Surgery: Surgeon's Perspective.

    Science.gov (United States)

    Ozturk, Sinan; Karagoz, Huseyin; Zor, Fatih

    2015-11-01

    Since the days of Sushruta, innovation has shaped the history of plastic surgery. Plastic surgeons have always been known as innovators or close followers of innovations. With this descriptive international survey study, the authors aimed to evaluate the future of plastic surgeons by analyzing how plastic surgery and plastic surgeons will be affected by new trends in medicine. Aesthetic surgery is the main subclass of plastic surgery thought to be the one that will change the most in the future. Stem cell therapy is considered by plastic surgeons to be the most likely "game changer." Along with changes in surgery, plastic surgeons also expect changes in plastic surgery education. The most approved assumption for the future of plastic surgery is, "The number of cosmetic nonsurgical procedures will increase in the future." If surgeons want to have better outcomes in their practice, they must at least be open minded for innovations if they do not become innovators themselves. Besides the individual effort of each surgeon, international and local plastic surgery associations should develop new strategies to adopt these innovations in surgical practice and education.

  19. Cross-talk induces bifurcations in nonlinear models of synaptic plasticity.

    Science.gov (United States)

    Elliott, Terry

    2012-02-01

    Linear models of synaptic plasticity provide a useful starting-point for examining the dynamics of neuronal development and learning, but their inherent problems are well known. Models of synaptic plasticity that embrace the demands of biological realism are therefore typically nonlinear. Viewed from a more abstract perspective, nonlinear models of synaptic plasticity are a subset of nonlinear dynamical systems. As such, they may therefore exhibit bifurcations under the variation of control parameters, including noise and errors in synaptic updates. One source of noise or error is the cross-talk that occurs during otherwise Hebbian plasticity. Under cross-talk, stimulation of a set of synapses can induce or modify plasticity in adjacent, unstimulated synapses. Here, we analyze two nonlinear models of developmental synaptic plasticity and a model of independent component analysis in the presence of a simple model of cross-talk. We show that cross-talk does indeed induce bifurcations in these models, entirely destroying their ability to acquire either developmentally or learning-related patterns of fixed points. Importantly, the critical level of cross-talk required to induce bifurcations in these models is very sensitive to the statistics of the afferents' activities and the number of afferents synapsing on a postsynaptic cell. In particular, the critical level can be made arbitrarily small. Because bifurcations are inevitable in nonlinear models, our results likely apply to many nonlinear models of synaptic plasticity, although the precise details vary by model. Hence, many nonlinear models of synaptic plasticity are potentially fatally compromised by the toxic influence of cross-talk and other sources of noise and errors more generally. We conclude by arguing that biologically realistic models of synaptic plasticity must be robust against noise-induced bifurcations and that biological systems may have evolved strategies to circumvent their possible dangers.

  20. Applications and societal benefits of plastics.

    Science.gov (United States)

    Andrady, Anthony L; Neal, Mike A

    2009-07-27

    This article explains the history, from 1600 BC to 2008, of materials that are today termed 'plastics'. It includes production volumes and current consumption patterns of five main commodity plastics: polypropylene, polyethylene, polyvinyl chloride, polystyrene and polyethylene terephthalate. The use of additives to modify the properties of these plastics and any associated safety, in use, issues for the resulting polymeric materials are described. A comparison is made with the thermal and barrier properties of other materials to demonstrate the versatility of plastics. Societal benefits for health, safety, energy saving and material conservation are described, and the particular advantages of plastics in society are outlined. Concerns relating to littering and trends in recycling of plastics are also described. Finally, we give predictions for some of the potential applications of plastic over the next 20 years.

  1. Regulatory mechanisms link phenotypic plasticity to evolvability.

    Science.gov (United States)

    van Gestel, Jordi; Weissing, Franz J

    2016-04-18

    Organisms have a remarkable capacity to respond to environmental change. They can either respond directly, by means of phenotypic plasticity, or they can slowly adapt through evolution. Yet, how phenotypic plasticity links to evolutionary adaptability is largely unknown. Current studies of plasticity tend to adopt a phenomenological reaction norm (RN) approach, which neglects the mechanisms underlying plasticity. Focusing on a concrete question - the optimal timing of bacterial sporulation - we here also consider a mechanistic approach, the evolution of a gene regulatory network (GRN) underlying plasticity. Using individual-based simulations, we compare the RN and GRN approach and find a number of striking differences. Most importantly, the GRN model results in a much higher diversity of responsive strategies than the RN model. We show that each of the evolved strategies is pre-adapted to a unique set of unseen environmental conditions. The regulatory mechanisms that control plasticity therefore critically link phenotypic plasticity to the adaptive potential of biological populations.

  2. Anaesthetic complications in plastic surgery.

    Science.gov (United States)

    Nath, Soumya Sankar; Roy, Debashis; Ansari, Farrukh; Pawar, Sundeep T

    2013-05-01

    Anaesthesia related complications in plastic surgeries are fortunately rare, but potentially catastrophic. Maintaining patient safety in the operating room is a major concern of anaesthesiologists, surgeons, hospitals and surgical facilities. Circumventing preventable complications is essential and pressure to avoid these complications in cosmetic surgery is increasing. Key aspects of patient safety in the operating room are outlined, including patient positioning, airway management and issues related to some specific conditions, essential for minimizing post-operative morbidity. Risks associated with extremes of age in the plastic surgery population, may be minimised by a better understanding of the physiologic changes as well as the pre-operative and post-operative considerations in caring for this special group of patients. An understanding of the anaesthesiologist's concerns during paediatric plastic surgical procedures can facilitate the coordination of efforts between the multiple services involved in the care of these children. Finally, the reader will have a better understanding of the perioperative care of unique populations including the morbidly obese and the elderly. Attention to detail in these aspects of patient safety can help avoid unnecessary complication and significantly improve the patients' experience and surgical outcome.

  3. Anaesthetic complications in plastic surgery

    Directory of Open Access Journals (Sweden)

    Soumya Sankar Nath

    2013-01-01

    Full Text Available Anaesthesia related complications in plastic surgeries are fortunately rare, but potentially catastrophic. Maintaining patient safety in the operating room is a major concern of anaesthesiologists, surgeons, hospitals and surgical facilities. Circumventing preventable complications is essential and pressure to avoid these complications in cosmetic surgery is increasing. Key aspects of patient safety in the operating room are outlined, including patient positioning, airway management and issues related to some specific conditions, essential for minimizing post-operative morbidity. Risks associated with extremes of age in the plastic surgery population, may be minimised by a better understanding of the physiologic changes as well as the pre-operative and post-operative considerations in caring for this special group of patients. An understanding of the anaesthesiologist′s concerns during paediatric plastic surgical procedures can facilitate the coordination of efforts between the multiple services involved in the care of these children. Finally, the reader will have a better understanding of the perioperative care of unique populations including the morbidly obese and the elderly. Attention to detail in these aspects of patient safety can help avoid unnecessary complication and significantly improve the patients′ experience and surgical outcome.

  4. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in no...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing.......The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...

  5. Self-organization in Balanced State Networks by STDP and Homeostatic Plasticity.

    Directory of Open Access Journals (Sweden)

    Felix Effenberger

    2015-09-01

    Full Text Available Structural inhomogeneities in synaptic efficacies have a strong impact on population response dynamics of cortical networks and are believed to play an important role in their functioning. However, little is known about how such inhomogeneities could evolve by means of synaptic plasticity. Here we present an adaptive model of a balanced neuronal network that combines two different types of plasticity, STDP and synaptic scaling. The plasticity rules yield both long-tailed distributions of synaptic weights and firing rates. Simultaneously, a highly connected subnetwork of driver neurons with strong synapses emerges. Coincident spiking activity of several driver cells can evoke population bursts and driver cells have similar dynamical properties as leader neurons found experimentally. Our model allows us to observe the delicate interplay between structural and dynamical properties of the emergent inhomogeneities. It is simple, robust to parameter changes and able to explain a multitude of different experimental findings in one basic network.

  6. Unified characteristics line theory of spacial axisymmetric plastic problem

    Institute of Scientific and Technical Information of China (English)

    YU; Maohong; (

    2001-01-01

    Computational Mechanics(in Chinese), 1997, 14, 659.[29]Zhao, J. H., Zhang, Y. Q., Li, J. C., Solutions of some plastic plain strain problems based on unified strength theory and unified slip line theory, J. Mechanical Engng. (in Chinese with English abstract), 1999, 35(6): 61—65. [30]Suh, N. P., Lee, R. S., Rogers, C. R., The yielding or truncated solid cones under quasi-static and dynamic loading, J. Mech. Phys. Solids, 1968, 16: 357.

  7. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2015-08-01

    Full Text Available The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.

  8. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.

    Science.gov (United States)

    Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent

    2015-08-01

    The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.

  9. 考虑墙体作用的低层冷弯薄壁型钢轻型房屋住宅体系弹塑性动力分析%ELASTIC-PLASTIC DYNAMIC ANALYSIS OF COLD-FORMED THIN-WALLED STEEL FRAMING SYSTEM OF LOW-RISE RESIDENTIAL BUILDINGS WITH COMPOSITE WALL

    Institute of Scientific and Technical Information of China (English)

    史艳莉; 王文达; 靳垚

    2012-01-01

    低层冷弯薄壁型钢结构住宅体系的抗震性能是进行该类结构推广应用的关键。该文基于ANSYS软件建立了该类结构体系的数值模型,在考虑冷弯薄型钢构件及门窗洞口加强与否、考虑组合墙体作用与否等情况下,分别进行了设防烈度为7度时常遇地震下的静力分析和弹性时程分析和设防烈度分别为7度、8度和9度时罕遇地震下的弹塑性时程分析。结果表明:常遇地震作用时结构弹性层间位移由风荷载控制,罕遇地震作用下结构弹塑性层问侧移则由地震作用控制;是否考虑组合墙体及墙面板材料特性对结构承载力、变形及抗震性能影响显著。在设防烈度分别为7度、8度和9度时的罕遇地震作用下,考虑组合墙体时结构最大弹塑性层间位移角可满足现行抗震规范(GB50011-2010)要求,双面OSB墙面板且角柱进行加强时抗震性能最好。该文结果可为进一步进行此类结构体系的抗震性能研究及应用提供参考。%The seismic behavior of the cold-formed thin-walled steel framing system of low-rise residential buildings is essential for their wide application. A numerical model was developed to simulate the performance of this type of structures using ANSYS. The steel members and the holes at doors or windows with or without the stiffened ribs, and the frames with or without composite walls were considered. Static and elastic dynamic time history analysis were performed under frequent earthquake based on the design earthquake intensity 7, and elastic-plastic dynamic time history analysis was performed under rare earthquake based on the design earthquake intensity 7, 8 and 9, respectively. It is shown that the elastic story-drift of the structure was determined by the wind loads mainly under the loading combination with frequent earthquake action, and the elastic-plastic story-drift was determined by the loading combination with rare

  10. Molecular dynamics of silicon indentation

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, J.S.; Hoover, W.G.; Hoover, C.G.; De Groot, A.J.; Lee, S.M.; Wooten, F. (Department of Applied Science Davis-Livermore, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

    1993-04-01

    We use nonequilibrium molecular dynamics to simulate the elastic-plastic deformation of silicon under tetrahedral nanometer-sized indentors. The results are described in terms of a rate-dependent and temperature-dependent phenomenological yield strength. We follow the structural change during indentation with a computer technique that allows us to model the dynamic simulation of diffraction patterns.

  11. Recycling of plastic waste: Presence of phthalates in plastics from households and industry.

    Science.gov (United States)

    Pivnenko, K; Eriksen, M K; Martín-Fernández, J A; Eriksson, E; Astrup, T F

    2016-08-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large volumes and are commonly used as plasticisers in plastics manufacturing. Potential impacts on human health require restricted use in selected applications and a need for the closer monitoring of potential sources of human exposure. Although the presence of phthalates in a variety of plastics has been recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP had the highest frequency of detection in the samples analysed, with 360μg/g, 460μg/g and 2700μg/g as the maximum measured concentrations, respectively. Among other, statistical analysis of the analytical results suggested that phthalates were potentially added in the later stages of plastic product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications is recommended if recycled plastics are to be used as raw material in production.

  12. Filopodia: A Rapid Structural Plasticity Substrate for Fast Learning

    Directory of Open Access Journals (Sweden)

    Ahmet S. Ozcan

    2017-06-01

    Full Text Available Formation of new synapses between neurons is an essential mechanism for learning and encoding memories. The vast majority of excitatory synapses occur on dendritic spines, therefore, the growth dynamics of spines is strongly related to the plasticity timescales. Especially in the early stages of the developing brain, there is an abundant number of long, thin and motile protrusions (i.e., filopodia, which develop in timescales of seconds and minutes. Because of their unique morphology and motility, it has been suggested that filopodia can have a dual role in both spinogenesis and environmental sampling of potential axonal partners. I propose that filopodia can lower the threshold and reduce the time to form new dendritic spines and synapses, providing a substrate for fast learning. Based on this proposition, the functional role of filopodia during brain development is discussed in relation to learning and memory. Specifically, it is hypothesized that the postnatal brain starts with a single-stage memory system with filopodia playing a significant role in rapid structural plasticity along with the stability provided by the mushroom-shaped spines. Following the maturation of the hippocampus, this highly-plastic unitary system transitions to a two-stage memory system, which consists of a plastic temporary store and a long-term stable store. In alignment with these architectural changes, it is posited that after brain maturation, filopodia-based structural plasticity will be preserved in specific areas, which are involved in fast learning (e.g., hippocampus in relation to episodic memory. These propositions aim to introduce a unifying framework for a diversity of phenomena in the brain such as synaptogenesis, pruning and memory consolidation.

  13. Thermal Recovery of Plastic Deformation in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Dongxiao [Tsinghua Univ., Beijing (China); Yu, Xinghua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Wei [The Ohio State Univ., Columbus, OH (United States); Crooker, Paul [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); David, Stan A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-05-23

    Stainless steel has been widely used in challenging environments typical to nuclear power plant structures, due its excellent corrosion resistance. Nickel filler metals containing high chromium concentration, including Alloy 82/182, are used for joining stainless steel to carbon steel components to achieve similar high resistance to stress corrosion cracking. However, the joint usually experience weld metal stress corrosion cracking (SCC), which affects the safety and structural integrity of light water nuclear reactor systems. A primary driving force for SCC is the high tensile residual stress in these welds. Due to large dimension of pressure vessel and limitations in the field, non-destructive residual stress measurement is difficult. As a result, finite element modeling has been the de facto method to evaluate the weld residual stresses. Recent studies on this subject from researchers worldwide report different residual stress value in the weldments [5]. The discrepancy is due to the fact that most of investigations ignore or underestimate the thermal recovery in the heat-affect zone or reheated region in the weld. In this paper, the effect of heat treatment on thermal recovery and microhardness is investigated for materials used in dissimilar metal joint. It is found that high equivalent plastic strains are predominately accumulated in the buttering layer, the root pass, and the heat affected zone, which experience multiple welding thermal cycles. The final cap passes, experiencing only one or two welding thermal cycles, exhibit less plastic strain accumulation. Moreover, the experimental residual plastic strains are compared with those predicted using an existing weld thermo-mechanical model with two different strain hardening rules. The importance of considering the dynamic strain hardening recovery due to high temperature exposure in welding is discussed for the accurate simulation of weld residual stresses and plastic strains. In conclsuion, the

  14. Films from Glyoxal-Crosslinked Spruce Galactoglucomannans Plasticized with Sorbitol

    Directory of Open Access Journals (Sweden)

    Kirsi S. Mikkonen

    2012-01-01

    Full Text Available Films were prepared from a renewable and biodegradable forest biorefinery product, spruce O-acetyl-galactoglucomannans (GGMs, crosslinked with glyoxal. For the first time, cohesive and self-standing films were obtained from GGM without the addition of polyol plasticizer. In addition, glyoxal-crosslinked films were prepared using sorbitol at 10, 20, 30, and 40% (wt.-% of GGM. Glyoxal clearly strengthened the GGM matrix, as detected by tensile testing and dynamic mechanical analysis. The elongation at break of films slightly increased, and Young's modulus decreased with increasing sorbitol content. Interestingly, the tensile strength of films was constant with the increased plasticizer content. The effect of sorbitol on water sorption and water vapor permeability (WVP depended on relative humidity (RH. At low RH, the addition of sorbitol significantly decreased the WVP of films. The glyoxal-crosslinked GGM films containing 20% sorbitol exhibited the lowest oxygen permeability (OP and WVP of the studied films and showed satisfactory mechanical performance.

  15. Calcium, synaptic plasticity and intrinsic homeostasis in Purkinje neuron models

    Directory of Open Access Journals (Sweden)

    Pablo Achard

    2008-12-01

    Full Text Available We recently reproduced the complex electrical activity of a Purkinje cell (PC with very different combinations of ionic channel maximum conductances, suggesting that a large parameter space is available to homeostatic mechanisms. It has been hypothesized that cytoplasmic calcium concentrations control the homeostatic activity sensors. This raises many questions for PCs since in these neurons calcium plays an important role in the induction of synaptic plasticity. To address this question, we generated 148 new PC models. In these models the somatic membrane voltages are stable, but the somatic calcium dynamics are very variable, in agreement with experimental results. Conversely, the calcium signal in spiny dendrites shows only small variability. We demonstrate that this localized control of calcium conductances preserves the induction of long-term depression for all models. We conclude that calcium is unlikely to be the sole activity-sensor in this cell but that there is a strong relationship between activity homeostasis and synaptic plasticity.

  16. Emotion Processing by ERP Combined with Development and Plasticity

    Directory of Open Access Journals (Sweden)

    Rui Ding

    2017-01-01

    Full Text Available Emotions important for survival and social interaction have received wide and deep investigations. The application of the fMRI technique into emotion processing has obtained overwhelming achievements with respect to the localization of emotion processes. The ERP method, which possesses highly temporal resolution compared to fMRI, can be employed to investigate the time course of emotion processing. The emotional modulation of the ERP component has been verified across numerous researches. Emotions, described as dynamically developing along with the growing age, have the possibility to be enhanced through learning (or training or to be damaged due to disturbances in growth, which is underlain by the neural plasticity of emotion-relevant nervous systems. And mood disorders with typical symptoms of emotion discordance probably have been caused by the dysfunctional neural plasticity.

  17. Formation and maintenance of neuronal assemblies through synaptic plasticity.

    Science.gov (United States)

    Litwin-Kumar, Ashok; Doiron, Brent

    2014-11-14

    The architecture of cortex is flexible, permitting neuronal networks to store recent sensory experiences as specific synaptic connectivity patterns. However, it is unclear how these patterns are maintained in the face of the high spike time variability associated with cortex. Here we demonstrate, using a large-scale cortical network model, that realistic synaptic plasticity rules coupled with homeostatic mechanisms lead to the formation of neuronal assemblies that reflect previously experienced stimuli. Further, reverberation of past evoked states in spontaneous spiking activity stabilizes, rather than erases, this learned architecture. Spontaneous and evoked spiking activity contains a signature of learned assembly structures, leading to testable predictions about the effect of recent sensory experience on spike train statistics. Our work outlines requirements for synaptic plasticity rules capable of modifying spontaneous dynamics and shows that this modification is beneficial for stability of learned network architectures.

  18. Evaluation of Blast-Resistant Performance Predicted by Damaged Plasticity Model for Concrete

    Institute of Scientific and Technical Information of China (English)

    HUAN Yi; FANG Qin; CHEN Li; ZHANG Yadong

    2008-01-01

    In order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS.Simulation results agree with the experimental observations.It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures.

  19. A review of plastic waste biodegradation.

    Science.gov (United States)

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  20. Visualization and orchestration of the dynamic molecular society in cells

    Institute of Scientific and Technical Information of China (English)

    Xuebiao Yao; Guowei Fang

    2009-01-01

    @@ Visualization of specific molecules and their interactions in real space and time is essential to delineate how cellular plasticity and dynamics are achieved and orchestrated as perturbation of cellular plasticity and dynamics is detrimental to health. Elucidation of cellular dynamics requires molecular imaging at nanometer scale at millisecond resolution. The 1st International Conference on Cellular Dynamics and Chemical Biology held in Hefei, China (from 12 September to 15 September,2008) launched the quest by bringing synergism among photonics, chemistry and biology.

  1. Characterization of plastic blends made from mixed plastics waste of different sources.

    Science.gov (United States)

    Turku, Irina; Kärki, Timo; Rinne, Kimmo; Puurtinen, Ari

    2017-02-01

    This paper studies the recyclability of construction and household plastic waste collected from local landfills. Samples were processed from mixed plastic waste by injection moulding. In addition, blends of pure plastics, polypropylene and polyethylene were processed as a reference set. Reference samples with known plastic ratio were used as the calibration set for quantitative analysis of plastic fractions in recycled blends. The samples were tested for the tensile properties; scanning electron microscope-energy-dispersive X-ray spectroscopy was used for elemental analysis of the blend surfaces and Fourier transform infrared (FTIR) analysis was used for the quantification of plastics contents.

  2. Epigenetic control of cell identity and plasticity

    KAUST Repository

    Orlando, Valerio

    2014-04-02

    The DNA centered dogma for genetic information and cell identity is now evolving into a much more complex and flexible dimension provided by the discovery of the Epigenome. This comprises those chromosome structural and topological components that complement DNA information and contribute to genome functional organization. Current concept is that the Epigenome constitutes the dynamic molecular interface allowing the Genome to interact with the Environment. Exploring how the genome interacts with the environment is a key to fully understand cellular and complex organism mechanisms of adaptation and plasticity. Our work focuses on the role of an essential, specialized group or chromatin associated proteins named Polycomb (PcG) that control maintenance of transcription programs during development and in adult life. In particular PcG proteins exert epigenetic “memory” function by modifying chromosome structures at various levels to maintain gene silencing in particular through cell division. While in the past decade substantial progress was made in understanding PcG mechanisms acting in development and partially during cell cycle, very little is known about their role in adult post-mitotic tissues and more in general the role of the epigenome in adaptation. To this, we studied the role of PcG in the context of mammalian skeletal muscle cell differentiation. We previously reported specific dynamics of PRC2 proteins in myoblasts and myotubes, in particular the dynamics of PcG Histone H3 K27 Methyl Transferases (HMT), EZH2 and EZH1, the latter apparently replacing for EZH2 in differentiated myotubes. Ezh1 protein, although almost identical to Ezh2, shows a weak H3K27 HMT activity and its primary function remains elusive. Recent ChIPseq studies performed in differentiating muscle cells revealed that Ezh1 associates with active and not repressed regulatory regions to control RNA pol II elongation. Since H3K27 tri-methylation levels are virtually steady in non

  3. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus.

    Science.gov (United States)

    Wiera, Grzegorz; Mozrzymas, Jerzy W

    2015-01-01

    Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed long-term potentiation (LTP) that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tissue plasminogen activator (tPA)/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  4. Cognitive plasticity as a modulating variable on the effects of memory training in elderly persons.

    Science.gov (United States)

    Calero, M Dolores; Navarro, Elena

    2007-01-01

    Cognitive plasticity is a topic of interest since it allows us to analyse the potential cognitive modifiability of a person. Previous research has demonstrated the existence of plasticity in old age [Baltes, P. B. (1987). Theoretical propositions of life-span developmental psychology: On the dynamics between growth and decline. Developmental Psychology, 23(5), 611-626] regardless of presence or absence of cognitive deterioration [Calero, M. D., & Navarro, E. (2004). Relationship between plasticity, mild cognitive impairment and cognitive decline. Archives of Clinical Neuropsychology, 19, 653-660]. In this context, the present study was designed to analyse the presence of plasticity in elderly persons who seemed to present cognitive deterioration, and to explore the relation between cognitive plasticity and the results obtained from a memory training programme. One hundred and thirty-three elderly persons participated in the study and were evaluated by means of a cognitive plasticity test (Position test) and various tests for measuring the effects of the training. Part of the elderly population received the memory training, whose effects were measured immediately after the training and again after 9 months. The results demonstrate that the programme significantly improves cognitive performance, while plasticity is shown to be an important modulating variable on the improvement achieved.

  5. Integrated Index in Consideration of Appropriate Plastic Recycling System in Waste Bank Operation

    Directory of Open Access Journals (Sweden)

    Firdaus Pambudi Noorhan

    2016-01-01

    Full Text Available Several appropriate technology had been developed to maintain plastic waste in society according to minimize environmental impact. Landfill is no longer appropriate to maintain plastic waste based on the environmental impact that might be occurred for instance. However in developing countries such as Indonesia, although plastic recycling technology have been promoted by maintain waste bank policy for support community willingness to exchange their recyclable waste with certain monetary values, there is no guarantee that community will fully accept plastic recycling technology. This research aims to assess the performance of plastic recycling in environmental and social aspects as its integrated index. From that assessment, appropriate strategies in plastic recycling will be delivered in this research. Environmental aspects will be assessed by using life cycle assessment (LCA through MiLCA software and selected by using data envelopment analysis (DEA. Social aspects will be analyzed by using qualitative and quantitative methodology such as observation, interview, secondary data, and questionnaires. Simulation and modelling will also developed by using agent-based modelling (ABM to describe social dynamic of community in supporting waste bank policy. The appropriate system of plastic recycling will be promoted as expected results for this research.

  6. Cancer Stem Cell Plasticity as Tumor Growth Promoter and Catalyst of Population Collapse

    Directory of Open Access Journals (Sweden)

    Jan Poleszczuk

    2016-01-01

    Full Text Available It is increasingly argued that cancer stem cells are not a cellular phenotype but rather a transient state that cells can acquire, either through intrinsic signaling cascades or in response to environmental cues. While cancer stem cell plasticity is generally associated with increased aggressiveness and treatment resistance, we set out to thoroughly investigate the impact of different rates of plasticity on early and late tumor growth dynamics and the response to therapy. We develop an agent-based model of cancer stem cell driven tumor growth, in which plasticity is defined as a spontaneous transition between stem and nonstem cancer cell states. Simulations of the model show that plasticity can substantially increase tumor growth rate and invasion. At high rates of plasticity, however, the cells get exhausted and the tumor will undergo spontaneous remission in the long term. In a series of in silico trials, we show that such remission can be facilitated through radiotherapy. The presented study suggests that stem cell plasticity has rather complex, nonintuitive implications on tumor growth and treatment response. Further theoretical, experimental, and integrated studies are needed to fully decipher cancer stem cell plasticity and how it can be harnessed for novel therapeutic approaches.

  7. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus

    Directory of Open Access Journals (Sweden)

    Grzegorz eWiera

    2015-11-01

    Full Text Available Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed LTP that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tPA/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1 and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  8. "Oriental anthropometry" in plastic surgery

    Directory of Open Access Journals (Sweden)

    Senna-Fernandes Vasco

    2008-01-01

    Full Text Available Background : According to Chinese medicine, the acupuncture-points′ (acupoints locations are proportionally and symmetrically distributed in well-defined compartment zones on the human body surface Oriental Anthropometry" (OA. Acupoints, if considered as aesthetic-loci, might be useful as reference guides in plastic surgery (PS. Aim: This study aimed to use aesthetic-loci as anatomical reference in surgical marking of Aesthetic Plastic Surgery. Method: This was an observational study based on aesthetic surgeries performed in private clinic. This study was based on 106 cases, comprising of 102 women and 4 men, with ages varying from 07 to 73 years, and with heights of between 1.34 m and 1.80 m. Patients were submitted to aesthetic surgical planning by relating aesthetic-loci to conventional surgical marking, including breast surgeries, abdominoplasty, rhytidoplasty, blepharoplasty, and hair implant. The aesthetic-surgical-outcome (ASO of the patients was assessed by a team of plastic surgeons (who were not involved in the surgical procedures over a follow-up period of one year by using a numeric-rating-scale in percentage (% terms. A four-point-verbal-rating-scale was used to record the patients′ opinion of therapeutic-satisfaction (TS. Results: ASO was 75.3 ± 9.4% and TS indicated that most patients (58.5% obtained "good" results. Of the remainder, 38.7% found the results "excellent", and 2.8% found them "fair". Discussion and Conclusion : The data suggested that the use of aesthetic-loci may be a useful tool for PS as an anatomical reference for surgical marking. However, further investigation is required to assess the efficacy of the OA by providing the patients more reliable balance and harmony in facial and body contours surgeries.

  9. Survey analysis of volatile organics released from plastics under thermal stress

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, D.A.

    1986-05-01

    Irritating or toxic vapors can be produced from plastic process materials by a variety of operations, such as injection molding, hot wire cutting, bandsawing and milling. These components typically are not reported in the combustion toxicology literature for the materials used, but rather represent the volatilization of plasticizers, unreacted monomer, mold-release agents or other additives, or lubricants. A method for the characterization of the complex mixtures that can result from thermal stressing of plastic and of relating quantitatively to process temperatures and amounts of plastic used is presented. The method utilizes both Thermo-Gravimetric analysis (TGA) and dynamic headspace GC/MS with on-column cryogenic focusing. Application to actual occupational situations is illustrated with three examples.

  10. Switching of the electrical conductivity of plasticized PVC films under uniaxial pressure

    Science.gov (United States)

    Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtob, V. I.

    2011-11-01

    The jumplike switching of the electrical conductivity in wide-band-gap polymer (antistatic plasticized polyvinylchloride) films under uniaxial pressure is studied. In various plasticized PVC materials, the uniaxial pressure inducing a conductivity jump by four orders of magnitude or higher changes from several to several hundreds of bars, and this effect is retained at a film thickness of several hundred microns, which is two orders of magnitude larger than the critical film thicknesses known for other wide-band-gap polymers. In addition to the earlier interpretation of the conductivity anomalies in plasticized PVC, we proposed a phenomenological electron-molecular dynamic nanotrap model, in which local charge transfer is provided by mobile molecule segments in a plasticized polymer.

  11. Investigation of conductivity switching upon action of monoaxial pressure on plasticized PVC films

    CERN Document Server

    Vlasov, D V; Krystob, V I; Vlasova, T V

    2010-01-01

    The effect of conductivity switching of wideband polymers -plasticized PVC films under the influence of mono axial pressure is experimentally investigated. For various plasticizers the value of monoaxial pressure, causing jumps of conductivity on four and more orders, changes from units to hundreds bars, and the effect remains at a thickness of films of an order of hundreds micron, that is on two orders more than critical thickness for others wideband polymers. In addition to the reasons stated earlier on the interpretation of anomalies of plastic compounds conductivity, the phenomenological electron-molecular model of dynamic traps is considered, in which local transfer of charges is carried out by mobile segments of the plasticized polymer molecules.

  12. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity.

    Science.gov (United States)

    Murren, C J; Auld, J R; Callahan, H; Ghalambor, C K; Handelsman, C A; Heskel, M A; Kingsolver, J G; Maclean, H J; Masel, J; Maughan, H; Pfennig, D W; Relyea, R A; Seiter, S; Snell-Rood, E; Steiner, U K; Schlichting, C D

    2015-10-01

    Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits.

  13. Evolution of environmental cues for phenotypic plasticity.

    Science.gov (United States)

    Chevin, Luis-Miguel; Lande, Russell

    2015-10-01

    Phenotypically plastic characters may respond to multiple variables in their environment, but the evolutionary consequences of this phenomenon have rarely been addressed theoretically. We model the evolution of linear reaction norms in response to several correlated environmental variables, in a population undergoing stationary environmental fluctuations. At evolutionary equilibrium, the linear combination of environmental variables that acts as a developmental cue for the plastic trait is the multivariate best linear predictor of changes in the optimum. However, the reaction norm with respect to any single environmental variable may exhibit nonintuitive patterns. Apparently maladaptive, or hyperadaptive plasticity can evolve with respect to single environmental variables, and costs of plasticity may increase, rather than reduce, plasticity in response to some variables. We also find conditions for the evolution of an indirect environmental indicator that affects expression of a plastic phenotype, despite not influencing natural selection on it.

  14. River plastic emissions to the world's oceans

    Science.gov (United States)

    Lebreton, Laurent C. M.; van der Zwet, Joost; Damsteeg, Jan-Willem; Slat, Boyan; Andrady, Anthony; Reisser, Julia

    2017-06-01

    Plastics in the marine environment have become a major concern because of their persistence at sea, and adverse consequences to marine life and potentially human health. Implementing mitigation strategies requires an understanding and quantification of marine plastic sources, taking spatial and temporal variability into account. Here we present a global model of plastic inputs from rivers into oceans based on waste management, population density and hydrological information. Our model is calibrated against measurements available in the literature. We estimate that between 1.15 and 2.41 million tonnes of plastic waste currently enters the ocean every year from rivers, with over 74% of emissions occurring between May and October. The top 20 polluting rivers, mostly located in Asia, account for 67% of the global total. The findings of this study provide baseline data for ocean plastic mass balance exercises, and assist in prioritizing future plastic debris monitoring and mitigation strategies.

  15. Tunable plasticity in amorphous silicon carbide films.

    Science.gov (United States)

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold.

  16. Environmental evaluation of plastic waste management scenarios

    DEFF Research Database (Denmark)

    Rigamonti, L.; Grosso, M.; Møller, Jacob

    2014-01-01

    The management of the plastic fraction is one of the most debated issues in the discussion on integrated municipal solid waste systems. Both material and energy recovery can be performed on such a waste stream, and different separate collection schemes can be implemented. The aim of the paper...... is to contribute to the debate, based on the analysis of different plastic waste recovery routes. Five scenarios were defined and modelled with a life cycle assessment approach using the EASEWASTE model. In the baseline scenario (P0) the plastic is treated as residual waste and routed partly to incineration...... with energy recovery and partly to mechanical biological treatment. A range of potential improvements in plastic management is introduced in the other four scenarios (P1–P4). P1 includes a source separation of clean plastic fractions for material recycling, whereas P2 a source separation of mixed plastic...

  17. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus

    OpenAIRE

    José Maria Rodrigues da Luz; Sirlaine Albino Paes; Mateus Dias Nunes; Marliane de Cássia Soares da Silva; Maria Catarina Megumi Kasuya

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ul...

  18. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus

    OpenAIRE

    José Maria Rodrigues da Luz; Sirlaine Albino Paes; Mateus Dias Nunes; Marliane de Cássia Soares da Silva; Maria Catarina Megumi Kasuya

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ul...

  19. Effect of high molecular weight plasticizers on the gelatinization of starch under static and shear conditions.

    Science.gov (United States)

    Taghizadeh, Ata; Favis, Basil D

    2013-02-15

    Starch gelatinization in the presence of high molecular weight polyol plasticizers and water was studied under static and dynamic conditions and was compared to a glycerol reference. For static gelatinization, glycerol, sorbitol, diglycerol and polyglycerol were examined using polarized light microscopy and differential scanning calorimetry. A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The plasticizers show that the onset and conclusion temperatures for sorbitol and glycerol are in the same range and are lower than the other two plasticizers. On the other hand, polyglycerol shows a higher gelatinization temperature than diglycerol because of its higher molecular weight and viscosity. The results indicate that in the case of all plasticizers, increasing the water content tends to decrease the gelatinization temperature and, except for polyglycerol, increasing the plasticizer content increases the gelatinization temperature. In the case of polyglycerol, however, increasing the plasticizer content had the opposite effect and this was found to be related to the borderline solubility of polyglycerol in water. When the polyglycerol/water solubility was increased by increasing the temperature of the water/plasticizer/starch slurry, the gelatinization temperature dependence was found to be similar to the other polyols. A rheological technique was developed to study the dynamic gelatinization process by tracking the influence of shear on the complex viscosity in a couette flow system. Glycerol, diglycerol and sorbitol were subjected to different dynamic gelatinization treatments and the results were compared with static gelatinization. It is quantitatively shown that shear has a major effect on the gelatinization process. The conclusion temperature of gelatinization is significantly diminished (up to 21 °C) in the presence of shear whereas the onset temperature of gelatinization remains

  20. A mathematical model of the global processes of plastic degradation in the World Ocean with account for the surface temperature distribution

    Science.gov (United States)

    Bartsev, S. I.; Gitelson, J. I.

    2016-02-01

    The suggested model of plastic garbage degradation allows us to obtain an estimate of the stationary density of their distribution over the surface of the World Ocean with account for the temperature dependence on the degradation rate. The model also allows us to estimate the characteristic time periods of degradation of plastic garbage and the dynamics of the mean density variation as the mean rate of plastic garbage entry into the ocean varies

  1. Activation of InsP3 receptors is sufficient for inducing graded intrinsic plasticity in rat hippocampal pyramidal neurons

    Science.gov (United States)

    Ashhad, Sufyan; Johnston, Daniel

    2014-01-01

    The synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signaling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. In this study, we complemented the recently established necessity of inositol trisphosphate (InsP3) receptors (InsP3R) in a form of intrinsic plasticity by asking if InsP3R activation was sufficient to induce intrinsic plasticity in hippocampal neurons. Specifically, incorporation of d-myo-InsP3 in the recording pipette reduced input resistance, maximal impedance amplitude, and temporal summation but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead. Strikingly, the magnitude of plasticity in all these measurements was dependent on InsP3 concentration, emphasizing the graded dependence of such plasticity on InsP3R activation. Mechanistically, we found that this InsP3-induced plasticity depended on hyperpolarization-activated cyclic nucleotide-gated channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP3Rs, the influx of calcium through N-methyl-d-aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. Our results delineate a causal role for InsP3Rs in graded adaptation of neuronal response dynamics, revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis. PMID:25552640

  2. Stochastically forced dislocation density distribution in plastic deformation

    CERN Document Server

    Chattopadhyay, Amit K

    2016-01-01

    The dynamical evolution of dislocations in plastically deformed metals is controlled by both deterministic factors arising out of applied loads and stochastic effects appearing due to fluctuations of internal stress. Such type of stochastic dislocation processes and the associated spatially inhomogeneous modes lead to randomness in the observed deformation structure. Previous studies have analyzed the role of randomness in such textural evolution but none of these models have considered the impact of a finite decay time (all previous models assumed instantaneous relaxation which is "unphysical") of the stochastic perturbations in the overall dynamics of the system. The present article bridges this knowledge gap by introducing a colored noise in the form of an Ornstein-Uhlenbeck noise in the analysis of a class of linear and nonlinear Wiener and Ornstein-Uhlenbeck processes that these structural dislocation dynamics could be mapped on to. Based on an analysis of the relevant Fokker-Planck model, our results sh...

  3. Phenotypic plasticity and diversity in insects

    OpenAIRE

    Moczek, Armin P.

    2010-01-01

    Phenotypic plasticity in general and polyphenic development in particular are thought to play important roles in organismal diversification and evolutionary innovation. Focusing on the evolutionary developmental biology of insects, and specifically that of horned beetles, I explore the avenues by which phenotypic plasticity and polyphenic development have mediated the origins of novelty and diversity. Specifically, I argue that phenotypic plasticity generates novel targets for evolutionary pr...

  4. Plastic Recycling Experiments in Materials Education

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  5. Studies of elastic-plastic instabilities

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1999-01-01

    Analyses of plastic instabilities are reviewed, with focus on results in structural mechanics as well as continuum mechanics. First the basic theories for bifurcation and post-bifurcation behavior are briefly presented. Then, localization of plastic flow is discussed, including shear band formation...... in solids, localized necking in biaxially stretched metal sheets, and the analogous phenomenon of buckling localization in structures. Also some recent results for cavitation instabilities in elastic-plastic solids are reviewed....

  6. 新型可降解聚碳酸亚丙酯的动态流变性能%Dynamic Rheological Properties of Novel Biodegradable Poly(Propylene Carbonate) Plastics

    Institute of Scientific and Technical Information of China (English)

    石璞; 钟苗苗; 陈浪; 刘跃军

    2015-01-01

    The solvent residue, thermal stability and dynamic rheological properties of industrial grade Poly (propylene carbonate) (PPC) were characterized by Gas Chromatography (GC), Thermal Gravimetric analysis (TG), Rotational Rheom-eter and Melt Index Meter. The GC results showed that PPC contained 1.281wt%residual monomer propylene oxide. The TG results indicated poor processing thermal stability of PPC. The rotation rheological results further revealed poor processing thermal stability of PPC. The degradation of PPC was more intensified for great heat because of huge amounts of energy consumed in the friction processing of between the molecular chain. Therefore, the shear rate should not be too great for preventing serious degradation in characterization. The results of melt index indicated that under the requirements of the conventional processing, PPC had proper fluidity when the processing temperature reached 180℃. PPC manufacturers should reduce the molecular weight with the narrowing of molecular weight distribution to improve material flow and thus greatly reduce the difficulty in processing.%利用气相色谱(GC)仪、热重分析(TG)仪、旋转流变仪和熔融指数仪等,研究了工业级聚碳酸亚丙酯(PPC)的溶剂残留、热稳定性能和动态流变性能。GC结果表明,工业级PPC含有质量分数为1.281%的残留环氧丙烷单体;TG及旋转流变测试结果表明,材料的加工热稳定性能较差。同时,加工过程中分子链之间的摩擦内耗能极大,产热量极大,更易加剧其降解。因此,加工的剪切速率不可太大,否则降解严重。熔融指数测试结果表明:从常规加工的要求看,加工温度需要达到180℃才有合适的流动性。基于所得研究结果,建议生产厂商考虑适当减小PPC的分子量,并使其相对分子量分布变窄,以提高材料的流动性,这样可极大降低PPC的加工难度。

  7. Neuronal plasticity: beyond the critical period.

    Science.gov (United States)

    Hübener, Mark; Bonhoeffer, Tobias

    2014-11-06

    Neuronal plasticity in the brain is greatly enhanced during critical periods early in life and was long thought to be rather limited thereafter. Studies in primary sensory areas of the neocortex have revealed a substantial degree of plasticity in the mature brain, too. Often, plasticity in the adult neocortex lies dormant but can be reactivated by modifications of sensory input or sensory-motor interactions, which alter the level and pattern of activity in cortical circuits. Such interventions, potentially in combination with drugs targeting molecular brakes on plasticity present in the adult brain, might help recovery of function in the injured or diseased brain.

  8. Biodegradable and compostable alternatives to conventional plastics

    National Research Council Canada - National Science Library

    J. H. Song; R. J. Murphy; R. Narayan; G. B. H. Davies

    2009-01-01

    .... Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality...

  9. Extruded plastic scintillator for MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Pla-Dalmau, Anna; Bross, Alan D.; /Fermilab; Rykalin, Victor V.; Wood, Brian M.; /NICADD, DeKalb

    2005-11-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here.

  10. Phenotypic plasticity: molecular mechanisms and adaptive significance.

    Science.gov (United States)

    Kelly, Scott A; Panhuis, Tami M; Stoehr, Andrew M

    2012-04-01

    Phenotypic plasticity can be broadly defined as the ability of one genotype to produce more than one phenotype when exposed to different environments, as the modification of developmental events by the environment, or as the ability of an individual organism to alter its phenotype in response to changes in environmental conditions. Not surprisingly, the study of phenotypic plasticity is innately interdisciplinary and encompasses aspects of behavior, development, ecology, evolution, genetics, genomics, and multiple physiological systems at various levels of biological organization. From an ecological and evolutionary perspective, phenotypic plasticity may be a powerful means of adaptation and dramatic examples of phenotypic plasticity include predator avoidance, insect wing polymorphisms, the timing of metamorphosis in amphibians, osmoregulation in fishes, and alternative reproductive tactics in male vertebrates. From a human health perspective, documented examples of plasticity most commonly include the results of exercise, training, and/or dieting on human morphology and physiology. Regardless of the discipline, phenotypic plasticity has increasingly become the target of a plethora of investigations with the methodological approaches utilized ranging from the molecular to whole organsimal. In this article, we provide a brief historical outlook on phenotypic plasticity; examine its potential adaptive significance; emphasize recent molecular approaches that provide novel insight into underlying mechanisms, and highlight examples in fishes and insects. Finally, we highlight examples of phenotypic plasticity from a human health perspective and underscore the use of mouse models as a powerful tool in understanding the genetic architecture of phenotypic plasticity.

  11. Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect

    Science.gov (United States)

    Haryono, Agus; Triwulandari, Evi; Jiang, Pingping

    2017-01-01

    Plasticizer molecules are low molecular weight compounds that are widely used in polymer industries especially in polyvinyl chloride (PVC) resin. As an additive in PVC resin, the important role of plasticizer molecules is to improve the flexibility and processability of PVC by lowering the glass transition temperature (Tg). However, the commercial plasticizer like di(2-ethylhexyl)phthalate (DEHP) is known to cause liver cancer, at least in laboratory rats. DEHP can leach out from PVC into blood, certain drug solutions and fatty foods, which has been detected in the bloodstream of patients undergoing transfusion. Vegetable oil based plasticizers have some attractive properties such as non-toxic, bio-degradable, good heat and light stability, renewable resources, and environmentally friendly. Here we discussed the main results and development of vegetable oil based plasticizer, and especially palm oil based plasticizer. The interaction between plasticizer and polymer was discussed from the properties of the plasticized polymeric material.

  12. The plasticity of social emotions.

    Science.gov (United States)

    Klimecki, Olga M

    2015-01-01

    Social emotions such as empathy or compassion greatly facilitate our interactions with others. Despite the importance of social emotions, scientific studies have only recently revealed functional neural plasticity associated with the training of such emotions. Using the framework of two antagonistic neural systems, the threat and social disconnection system on the one hand, and the reward and social connection system on the other, this article describes how training compassion and empathy can change the functioning of these systems in a targeted manner. Whereas excessive empathic sharing of suffering can increase negative feelings and activations in the insula and anterior cingulate cortex (corresponding to the threat and social disconnection system), compassion training can strengthen positive affect and neural activations in the medial orbitofrontal cortex and striatum (corresponding to the reward and social connection system). These neuroimaging findings are complemented by results from behavioral studies showing that compassion is linked to helping and forgiveness behavior, whereas empathic distress not only decreases helping behavior, but is even associated with increased aggressive behavior. Taken together, these data provide encouraging evidence for the plasticity of adaptive social emotions with wide-ranging implications for basic science and applied settings.

  13. Astrocyte-Synapse Structural Plasticity

    Directory of Open Access Journals (Sweden)

    Yann Bernardinelli

    2014-01-01

    Full Text Available The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmission. Astrocytic structures are frequently observed in close association with glutamatergic synapses, providing a morphological entity for bidirectional interactions with synapses. Experimental evidence indicates that astrocytes sense neuronal activity by elevating their intracellular calcium in response to neurotransmitters and may communicate with neurons. The precise role of astrocytes in regulating synaptic properties, function, and plasticity remains however a subject of intense debate and many aspects of their interactions with neurons remain to be investigated. A particularly intriguing aspect is their ability to rapidly restructure their processes and modify their coverage of the synaptic elements. The present review summarizes some of these findings with a particular focus on the mechanisms driving this form of structural plasticity and its possible impact on synaptic structure and function.

  14. PLASTIC SCINTILLATOR FOR RADIATION DOSIMETRY.

    Science.gov (United States)

    Kim, Yewon; Yoo, Hyunjun; Kim, Chankyu; Lim, Kyung Taek; Moon, Myungkook; Kim, Jongyul; Cho, Gyuseong

    2016-09-01

    Inorganic scintillators, composed of high-atomic-number materials such as the CsI(Tl) scintillator, are commonly used in commercially available a silicon diode and a scintillator embedded indirect-type electronic personal dosimeters because the light yield of the inorganic scintillator is higher than that of an organic scintillator. However, when it comes to tissue-equivalent dose measurements, a plastic scintillator such as polyvinyl toluene (PVT) is a more appropriate material than an inorganic scintillator because of the mass energy absorption coefficient. To verify the difference in the absorbed doses for each scintillator, absorbed doses from the energy spectrum and the calculated absorbed dose were compared. From the results, the absorbed dose of the plastic scintillator was almost the same as that of the tissue for the overall photon energy. However, in the case of CsI, it was similar to that of the tissue only for a photon energy from 500 to 4000 keV. Thus, the values and tendency of the mass energy absorption coefficient of the PVT are much more similar to those of human tissue than those of the CsI. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Network-timing-dependent plasticity

    Directory of Open Access Journals (Sweden)

    Vincent eDelattre

    2015-06-01

    Full Text Available Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP. In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD, with STDP-induced long-term potentiation and depression (LTP and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding.

  16. Network-timing-dependent plasticity.

    Science.gov (United States)

    Delattre, Vincent; Keller, Daniel; Perich, Matthew; Markram, Henry; Muller, Eilif B

    2015-01-01

    Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD), with STDP-induced long-term potentiation (LTP) and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding.

  17. [Galactorrhea after mammary plastic surgery].

    Science.gov (United States)

    Inguenault, C; Capon-Degardin, N; Martinot-Duquennoy, V; Pellerin, P

    2005-04-01

    Galactorrhoea is a complication rarely observed after mammary plastic surgery. Our experience in the domain extends to three clinical cases - two after prosthetic insertion and one after breast reduction - wich will be presented here. The origin of this complication is uncertain. Nevertheless, it is likely to be multifocal, as surgery alone is not the only cause. Postsurgical galactorrhoea often follows a benign course culminating in spontaneous resolution. However, it may reveal the presence of o prolactin secreting adenoma, as was the case with one of our patients. A detailed history, exploring antecedent factors, is an essential step in guiding subsequent management. When faced with postsurgical galactorrhoea, serum prolactin levels should be measured. If serum prolactin levels exceed 150 ng/ml further investigation by way of an MRI of the sella turcica is advisable to rule out pituitary adenoma. Depending on symptom severity, treatment may be medical with the prescription of dopaminergic agonists, and/or surgical with drainage or removal of prostheses. Increased awareness of galactorrhea as a possible complication of plastic surgery to the breast will improve management.

  18. Plasticity and functional recovery in neurology.

    Science.gov (United States)

    Ramachandran, V S

    2005-01-01

    Experiments on patients with phantom limbs suggest that neural connections in the adult human brain are much more malleable than previously assumed. Three weeks after amputation of an arm, sensations from the ipsilateral face are referred to the phantom; this effect is caused by the sensory input from the face skin 'invading' and activating deafferented hand zones in the cortex and thalamus. Many phantom arms are 'paralysed' in a painful position. If a mirror is propped vertically in the sagittal plane and the patient looks at the reflection of his/her normal hand, this reflection appears superimposed on the 'felt' position of the phantom. Remarkably, if the real arm is moved, the phantom is felt to move as well and this sometimes relieves the painful cramps in the phantom. Mirror visual feedback (MVF) has shown promising results with chronic regional pain syndrome and hemiparesis following stroke. These results suggest two reasons for a paradigm shift in neurorehabilitation. First, there appears to be tremendous latent plasticity even in the adult brain. Second, the brain should be thought of, not as a hierarchy of organised autonomous modules, each of which delivers its output to the next level, but as a set of complex interacting networks that are in a state of dynamic equilibrium with the brain's environment. Both principles can be potentially exploited in a clinical context to facilitate recovery of function.

  19. Critical Role of Histone Turnover in Neuronal Transcription and Plasticity.

    Science.gov (United States)

    Maze, Ian; Wenderski, Wendy; Noh, Kyung-Min; Bagot, Rosemary C; Tzavaras, Nikos; Purushothaman, Immanuel; Elsässer, Simon J; Guo, Yin; Ionete, Carolina; Hurd, Yasmin L; Tamminga, Carol A; Halene, Tobias; Farrelly, Lorna; Soshnev, Alexey A; Wen, Duancheng; Rafii, Shahin; Birtwistle, Marc R; Akbarian, Schahram; Buchholz, Bruce A; Blitzer, Robert D; Nestler, Eric J; Yuan, Zuo-Fei; Garcia, Benjamin A; Shen, Li; Molina, Henrik; Allis, C David

    2015-07-01

    Turnover and exchange of nucleosomal histones and their variants, a process long believed to be static in post-replicative cells, remains largely unexplored in brain. Here, we describe a novel mechanistic role for HIRA (histone cell cycle regulator) and proteasomal degradation-associated histone dynamics in the regulation of activity-dependent transcription, synaptic connectivity, and behavior. We uncover a dramatic developmental profile of nucleosome occupancy across the lifespan of both rodents and humans, with the histone variant H3.3 accumulating to near-saturating levels throughout the neuronal genome by mid-adolescence. Despite such accumulation, H3.3-containing nucleosomes remain highly dynamic-in a modification-independent manner-to control neuronal- and glial-specific gene expression patterns throughout life. Manipulating H3.3 dynamics in both embryonic and adult neurons confirmed its essential role in neuronal plasticity and cognition. Our findings establish histone turnover as a critical and previously undocumented regulator of cell type-specific transcription and plasticity in mammalian brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Melting the Plastic Ceiling: Overcoming Obstacles to Foster Leadership in Women Plastic Surgeons.

    Science.gov (United States)

    Silva, Amanda K; Preminger, Aviva; Slezak, Sheri; Phillips, Linda G; Johnson, Debra J

    2016-09-01

    The underrepresentation of women leaders in plastic surgery echoes a phenomenon throughout society. The importance of female leadership is presented, and barriers to gender equality in plastic surgery, both intrinsic and extrinsic, are discussed. Strategies for fostering women in leadership on an individual level and for the specialty of plastic surgery are presented.

  1. Self-organization of a recurrent network under ongoing synaptic plasticity.

    Science.gov (United States)

    Aoki, Takaaki

    2015-02-01

    We investigated the organization of a recurrent network under ongoing synaptic plasticity using a model of neural oscillators coupled by dynamic synapses. In this model, the coupling weights changed dynamically, depending on the timing between the oscillators. We determined the phase coupling function of the oscillator model, Γ(ϕ), using conductance-based neuron models. Furthermore, we examined the effects of the Fourier zero mode of Γ(ϕ), which has a critical role in the case of spike-time-dependent plasticity-organized recurrent networks. Heterogeneous layered clusters with different frequencies emerged from homogeneous populations as the Fourier zero mode increased. Our findings may provide new insights into the self-assembly mechanisms of neural networks related to synaptic plasticity.

  2. Lipid dynamics at dendritic spines.

    Science.gov (United States)

    Dotti, Carlos Gerardo; Esteban, Jose Antonio; Ledesma, María Dolores

    2014-01-01

    Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity.

  3. Motor cortical plasticity in Parkinson's disease.

    Science.gov (United States)

    Udupa, Kaviraja; Chen, Robert

    2013-09-04

    In Parkinson's disease (PD), there are alterations of the basal ganglia (BG) thalamocortical networks, primarily due to degeneration of nigrostriatal dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1), which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS) have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of l-DOPA-induced dyskinesias (LID), the plasticity protocol used, medication, and stimulation status in patients treated with deep brain stimulation (DBS). The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g., brain derived neurotropic factor and other neurotransmitters or receptors polymorphism), emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic, and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  4. Intestinal microbiota is a plastic factor responding to environmental changes.

    Science.gov (United States)

    Candela, Marco; Biagi, Elena; Maccaferri, Simone; Turroni, Silvia; Brigidi, Patrizia

    2012-08-01

    Traditionally regarded as stable through the entire lifespan, the intestinal microbiota has now emerged as an extremely plastic entity, capable of being reconfigured in response to different environmental factors. In a mutualistic context, these microbiome fluctuations allow the host to rapidly adjust its metabolic and immunologic performances in response to environmental changes. Several circumstances can disturb this homeostatic equilibrium, inducing the intestinal microbiota to shift from a mutualistic configuration to a disease-associated profile. A mechanistic comprehension of the dynamics involved in this process is needed to deal more rationally with the role of the human intestinal microbiota in health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Carmen E Flores

    2014-10-01

    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  6. Role of BDNF epigenetics in activity-dependent neuronal plasticity.

    Science.gov (United States)

    Karpova, Nina N

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a key mediator of the activity-dependent processes in the brain that have a major impact on neuronal development and plasticity. Impaired control of neuronal activity-induced BDNF expression mediates the pathogenesis of various neurological and psychiatric disorders. Different environmental stimuli, such as the use of pharmacological compounds, physical and learning exercises or stress exposure, lead to activation of specific neuronal networks. These processes entail tight temporal and spatial transcriptional control of numerous BDNF splice variants through epigenetic mechanisms. The present review highlights recent findings on the dynamic and long-term epigenetic programming of BDNF gene expression by the DNA methylation, histone-modifying and microRNA machineries. The review also summarizes the current knowledge on the activity-dependent BDNF mRNA trafficking critical for rapid local regulation of BDNF levels and synaptic plasticity. Current data open novel directions for discovery of new promising therapeutic targets for treatment of neuropsychiatric disorders. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Unexpected Patterns of Plastic Energy Allocation in Stochastic Environments

    Science.gov (United States)

    Fischer, Barbara; Taborsky, Barbara; Dieckmann, Ulf

    2012-01-01

    When environmental conditions vary stochastically, individuals accrue fitness benefits by exhibiting phenotypic plasticity. Here we analyze a general dynamic-programming model describing an individual’s optimal energy allocation in a stochastic environment. After maturation, individuals repeatedly decide how to allocate incoming energy between reproduction and maintenance. We analyze the optimal fraction of energy invested in reproduction and the resultant degree of plasticity in dependence on environmental variability and predictability. Our analyses reveal unexpected patterns of optimal energy allocation. When energy availability is low, all energy is allocated to reproduction, although this implies that individuals will not survive after reproduction. Above a certain threshold of energy availability, the optimal reproductive investment decreases to a minimum and even vanishes entirely in highly variable environments. With further improving energy availability, optimal reproductive investment gradually increases again. Costs of plasticity affect this allocation pattern only quantitatively. Our results show that optimal reproductive investment does not increase monotonically with growing energy availability and that small changes in energy availability can lead to major variations in optimal energy allocation. Our results help to unify two apparently opposing predictions from life-history theory, that organisms should increase reproductive investment both with improved environmental conditions and when conditions deteriorate (“terminal investment”). PMID:19196158

  8. Plastic Accumulation in the Mediterranean Sea

    Science.gov (United States)

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J. Ignacio; Ubeda, Bárbara; Gálvez, José Á.; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region. PMID:25831129

  9. Cyclic Plastic Deformation and Welding Simulation

    NARCIS (Netherlands)

    Ten Horn, C.H.L.J.

    2003-01-01

    One of the concerns of a fitness for purpose analysis is the quantification of the relevant material properties. It is known from experiments that the mechanical properties of a material can change due to a monotonic plastic deformation or a cyclic plastic deformation. For a fitness for purpose anal

  10. Nano-plastics in the aquatic environment.

    Science.gov (United States)

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  11. Reliability of Elasto-Plastic Structural Systems

    DEFF Research Database (Denmark)

    Delmar, M. V.; Sørensen, John Dalsgaard

    1990-01-01

    This paper proposes a method for generating safety margins and failure mode equations for elasto-plastic structures where interaction of load effects is taken into account. Structural failure is defined by large nodal displacements or plastic collapse. A branch-and-bound technique is used...

  12. Marine Debris and Plastic Source Reduction Toolkit

    Science.gov (United States)

    Many plastic food service ware items originate on college and university campuses—in cafeterias, snack rooms, cafés, and eateries with take-out dining options. This Campus Toolkit is a detailed “how to” guide for reducing plastic waste on college campuses.

  13. Demonstrating Fluorescence with Neon Paper and Plastic

    Science.gov (United States)

    Birriel, Jennifer J.; Roe, Clarissa

    2015-01-01

    Several papers in this journal have dealt with the fluorescence in orange neon plastic, olive oil, and soda. In each case, the fluorescent emission was excited by either green or violet-blue laser light. In this paper, we examine the fluorescent emission spectra of so-called neon colored papers and plastic clipboards available in department and…

  14. Developments in Plasticity Approach to Shear

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1999-01-01

    The paper deals with plastic methods applied to shear design of reinforced concrete beams. Emphasis is put on the recently developed crack sliding model applicable to non-shear reinforced and lightly shear reinforced beams and slabs. The model, which is an upper bound plasticity approach, takes...

  15. Plasticity under rough surface contact and friction

    NARCIS (Netherlands)

    Sun, F.

    2016-01-01

    The ultimate objective of this work is to gain a better understanding of the plastic behavior of rough metal surfaces under contact loading. Attention in this thesis focuses on the study of single and multiple asperities with micrometer scale dimensions, a scale at which plasticity is known to be si

  16. Biological degradation of plastics: a comprehensive review.

    Science.gov (United States)

    Shah, Aamer Ali; Hasan, Fariha; Hameed, Abdul; Ahmed, Safia

    2008-01-01

    Lack of degradability and the closing of landfill sites as well as growing water and land pollution problems have led to concern about plastics. With the excessive use of plastics and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Awareness of the waste problem and its impact on the environment has awakened new interest in the area of degradable polymers. The interest in environmental issues is growing and there are increasing demands to develop material which do not burden the environment significantly. Biodegradation is necessary for water-soluble or water-immiscible polymers because they eventually enter streams which can neither be recycled nor incinerated. It is important to consider the microbial degradation of natural and synthetic polymers in order to understand what is necessary for biodegradation and the mechanisms involved. This requires understanding of the interactions between materials and microorganisms and the biochemical changes involved. Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. This paper reviews the current research on the biodegradation of biodegradable and also the conventional synthetic plastics and also use of various techniques for the analysis of degradation in vitro.

  17. Plastic accumulation in the Mediterranean sea.

    Directory of Open Access Journals (Sweden)

    Andrés Cózar

    Full Text Available Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2, as well as its frequency of occurrence (100% of the sites sampled, are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  18. Plastic accumulation in the Mediterranean sea.

    Science.gov (United States)

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J Ignacio; Ubeda, Bárbara; Gálvez, José Á; Irigoien, Xabier; Duarte, Carlos M

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  19. Constraints on the evolution of phenotypic plasticity

    DEFF Research Database (Denmark)

    Murren, Courtney J; Auld, Josh R.; Callahan, Hilary S

    2015-01-01

    Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an opti...

  20. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    Science.gov (United States)

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...