WorldWideScience

Sample records for plastic combustion products

  1. Combustion products of plastics as indicators for refuse burning in the atmosphere.

    Science.gov (United States)

    Simoneit, Bernd R T; Medeiros, Patricia M; Didyk, Borys M

    2005-09-15

    Despite all of the economic problems and environmental discussions on the dangers and hazards of plastic materials, plastic production worldwide is growing at a rate of about 5% per year. Increasing techniques for recycling polymeric materials have been developed during the last few years; however, a large fraction of plastics are still being discarded in landfills or subjected to intentional or incidental open-fire burning. To identify specific tracer compounds generated during such open-fire combustion, both smoke particles from burning and plastic materials from shopping bags, roadside trash, and landfill garbage were extracted for gas chromatography-mass spectrometry analyses. Samples were collected in Concón, Chile, an area frequently affected by wildfire incidents and garbage burning, and the United States for comparison. Atmospheric samples from various aerosol sampling programs are also presented as supportive data. The major components of plastic extracts were even-carbon-chain n-alkanes (C16-C40), the plasticizer di-2-ethylhexyl phthalate, and the antioxidants and lubricants/antiadhesives Irganox 1076, Irgafos 168, and its oxidation product tris(2,4-di-tertbutylphenyl) phosphate. Major compounds in smoke from burning plastics include the non-source-specific n-alkanes (mainly even predominance), terephthalic acid, phthalates, and 4-hydroxybenzoic acid, with minor amounts of polycyclic aromatic hydrocarbons (including triphenylbenzenes) and tris(2,4-di-tert-butylphenyl)phosphate. 1,3,5-Triphenylbenzene and tris(2,4-di-tert-butylphenyl)- phosphate were found in detectable amounts in atmospheric samples where plastics and refuse were burned in open fires, and thus we propose these two compounds as specific tracers for the open-burning of plastics.

  2. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic.

    Science.gov (United States)

    Linak, W P; Ryan, J V; Perry, E; Williams, R W; DeMarini, D M

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used

  3. Combustible gas and biochar production from co-pyrolysis of agricultural plastic wastes and animal manures

    Science.gov (United States)

    Researchers report that manure-derived biochar has considerable potential both for improving soil quality and reducing water pollution. One of obstacles in obtaining manure biochar is its high energy requirement for pyrolyzing wet and low-energy-density animal manures. The combustible gas produced f...

  4. Publication sites productive uses of combustion ash

    Science.gov (United States)

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public waste combustion ash in landfills. The new technology brief describes recent studies where ash was used

  5. Biocide Usage in Plastic Products

    OpenAIRE

    Kavak, Nergizhan; Çakır, Ayşegül; Koltuk, Fatmagül; Uzun, Utku

    2015-01-01

    People’s demand of improving their life quality caused to the term of hygiene become popular and increased the tendency to use more reliable and healthy products. This tendency makes the continuous developments in the properties of the materials used in manufactured goods compulsory. It is possible to create anti-bacterial plastic products by adding biocidal additives to plastic materials which have a wide-range of application in the areas such as health (medicine), food and many other indust...

  6. Internal Combustion Engine Powered by Synthesis Gas from Pyrolysed Plastics

    Directory of Open Access Journals (Sweden)

    Chríbik Andrej

    2016-07-01

    Full Text Available The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic parameters in term of brake specific fuel consumption, and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by 120 %. In terms of burning, synthesis gas has similar properties as natural gas. Compared with [5] a more detailed study has been prepared on the effects of angle of spark advance on the engine torque, giving more detailed assessment of engine cycle variability and considering specification of start and end of combustion in the logarithm p-V diagram.

  7. Toxicology of Biodiesel Combustion products

    Science.gov (United States)

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  8. Coal Combustion Products Extension Program

    Energy Technology Data Exchange (ETDEWEB)

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to

  9. Use of Plastic Mulch for Vegetable Production

    OpenAIRE

    Maughan, Tiffany; Drost, Dan

    2016-01-01

    Plastic mulches are used commercially for both vegetables and small fruit crops. Vegetable crops well suited for production with plastic mulch are typically high value row crops. This fact sheet describes the advantages, disadvantages, installation, and planting considerations. It includes sources for plastic and equipment.

  10. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    Science.gov (United States)

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan

    2002-10-14

    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.

  11. The role of chlorine and additives of PVC-plastic in combustion

    International Nuclear Information System (INIS)

    Mattila, H.

    1991-01-01

    The PVC differs from other common plastics due to the chlorine content. As the PVC is combusted, the chlorine is released mainly as hydrogen chloride. The content of chlorinated hydrocarbons is small, but these can also contain polychlorinated dibenzofuranes and dibenzodioxines, which are extremely poisonous. The aim of this study was to find out, what is the portion of PVC combustion in total emission of chlorinated hydrocarbons. Additionally, the amounts chlorine coming into combustion process with ordinary fuels have been estimated, and they are compared with the amounts of PVC. The chloride content of municipal wastes vary in between 0.4-0.9 %. The portion of plastics is about 30 % of the total, and the rest being from paper, food , wood and garden wastes an textiles. Both organic and inorganic chlorine form gaseous hydrogen chlorid in combustion processes. HCl can then react with oxygen and produce caseous chlorine. This can react with unreacted carbon of the smoke and produce different kinds of chlorinated hydrocarbons. The portion of PVC of the chlorine going into combustion in Finland has been estimated to be about 1-2 %. Combustion tests were made using coal and bark and plastic waste as additional fuel. It was noticed that addition of plastic decreased the amount of polyaromatic hydrocarbons in the smoke. Chlorinated dioxins and furans occurred a little less in the gases of combustion of plastic mixtures not containing PVC than in reference tests, but they increased when PVC containing plastic mixture was combusted, but more chlorinated dioxins and furans were absorbed into fly ash, so the emissions remained almost the same

  12. Sulfur equilibrium desulfurization of sulfur containing products of combustion

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Abichandani, J.S.

    1990-01-01

    This patent describes the method for the combustion of a carbon- and sulfur-containing fuel for substantially reducing emission of gaseous sulfur compounds formed during combustion of the fuel in a combustion zone. The zone having one or more fuel inlets and one or more oxidizer inlets, and having a combustion products outlet spaced therefrom, and having one or more inorganic sorbent inlets downstream of the fuel inlet(s) and oxidizer inlet(s) and upstream of the combustion products outlet

  13. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    J.Y. Hwang; X. Huang; M.G. McKimpson; R.E. Tieder; A.M. Hein; J.M. Gillis; D.C. Popko; K.L. Paxton; Z. Li; X. Liu; X. Song; R.I. Kramer

    1998-12-01

    Low NO{sub x} combustion practices are critical for reducing NO{sub x} emissions from power plants. These low NO{sub x} combustion practices, however, generate high residual carbon contents in the fly ash produced. These high carbon contents threaten utilization of this combustion by-product. This research has successfully developed a separation technology to render fly ash into useful, quality-controlled materials. This technology offers great flexibility and has been shown to be applicable to all of the fly ashes tested (more than 10). The separated materials can be utilized in traditional fly ash applications, such as cement and concrete, as well as in nontraditional applications such as plastic fillers, metal matrix composites, refractories, and carbon adsorbents. Technologies to use beneficiated fly ash in these applications are being successfully developed. In the future, we will continue to refine the separation and utilization technologies to expand the utilization of fly ash. The disposal of more than 31 million tons of fly ash per year is an important environmental issue. With continued development, it will be possible to increase economic, energy and environmental benefits by re-directing more of this fly ash into useful materials.

  14. Spark Ignition of Combustible Vapor in a Plastic Bottle as a Demonstration of Rocket Propulsion

    Science.gov (United States)

    Mattox, J. R.

    2017-01-01

    I report an innovation that provides a compelling demonstration of rocket propulsion, appropriate for students of physics and other physical sciences. An electrical spark is initiated from a distance to cause the deflagration of a combustible vapor mixed with air in a lightweight plastic bottle that is consequently propelled as a rocket by the…

  15. Improved Combustion Products Monitor for the ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Compound Specific Analyzer – Combustion Products, used on the International Space Station as a warning monitor of smoldering or combustion events, is being...

  16. Improved Combustion Products Monitor for the ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Compound Specific Analyzer - Combustion Products is used on the International Space Station as a warning monitor of smoldering or combustion events and, after...

  17. Systems and methods of storing combustion waste products

    Science.gov (United States)

    Chen, Shen-En; Wang, Peng; Miao, Xiexing; Feng, Qiyan; Zhu, Qianlin

    2016-04-12

    In one aspect, methods of storing one or more combustion waste products are described herein. Combustion waste products stored by a method described herein can include solid combustion waste products such as coal ash and/or gaseous combustion products such as carbon dioxide. In some embodiments, a method of storing carbon dioxide comprises providing a carbon dioxide storage medium comprising porous concrete having a macroporous and microporous pore structure and flowing carbon dioxide captured from a combustion flue gas source into the pore structure of the porous concrete.

  18. Coal combustion products: trash or treasure?

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-07-15

    Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

  19. Possibility of Coal Combustion Product Conditioning

    Science.gov (United States)

    Błaszczyński, Tomasz Z.; Król, Maciej R.

    2018-03-01

    This paper is focused on properties of materials known as green binders. They can be used to produce aluminium-siliceous concrete and binders known also as geopolymers. Comparing new ecological binders to ordinary cements we can see huge possibility of reducing amount of main greenhouse gas which is emitted to atmosphere by 3 to even 10 times depending of substrate type used to new green material production. Main ecological source of new materials obtaining possibility is to use already available products which are created in coal combustion and steel smelting process. Most of them are already used in many branches of industry. They are mostly civil engineering, chemistry or agriculture. Conducted research was based on less popular in civil engineering fly ash based on lignite combustion. Materials were examine in order to verify possibility of obtaining hardened mortars based of different factors connected with process of geopolymerization, which are temperature, amount of reaction reagent and time of heat treatment. After systematizing the matrices for the basic parameters affecting the strength of the hardened mortars, the influence of the fly ash treatment for increasing the strength was tested.

  20. Exposure assessment of JAVELIN missile combustion products

    Science.gov (United States)

    Lundy, Donald O.; Langford, Roland E.

    1994-02-01

    Characterization and analysis of combustion products resulting from firing the JAVELIN missile were performed. Of those combustion products analyzed, it was determined that airborne lead concentrations exceeded the OSHA PEL of 50 micrograms each time the missile was fired while in the enclosure. Since the OSHA PEL standard is based upon a continuous rather than a short-term exposures blood lead concentrations were sought to ascertain the relationship between a short duration airborne exposure and its physiological effect on the body. Blood lead levels were taken on 49 test subjects prior to various JAVELIN missile test firings. Of those 49, 21 were outfitted With personal sampling equipment to determine airborne concentrations at the Assistant Gunner and Gunner positions. Periodic blood sampling after a single exposure showed an average increase of 2.27 micrograms/dL for all test subjects. Recommendations were made to consider changes in the positioning of the enclosure inhabitants to minimize airborne lead concentrations, to limit the number of missiles fired (situation dependent), and replacement of the lead B-resorcyolate with a non-lead containing burn rate modifier for the launch motor.

  1. Nitrogen oxides in the combustion products of gas cookers

    Energy Technology Data Exchange (ETDEWEB)

    Benes, M.; Zahourek, J.

    1981-07-01

    The combustion of town gas and natural gas in two types of gas ranges manufactured in Czechoslovakia resulted in measurable amounts of NO/sub x/ in both the combustion products and the surrounding air. In all the cases tested, the amounts of NO/sub x/ given off exceeded levels permitted by current Czech standards. These results indicate that before the widespread use of any new gas ranges, their combustion products should be tested for NO/sub x/.

  2. Toxic combustion products from pesticide fires. Executive summary

    NARCIS (Netherlands)

    Molag, M.; Bartelds, H.; Weger, D. de

    1992-01-01

    In order to obtain reliable data on the generation of toxic combustion products and to get more insight into the risks of fires in pesticide warehouses TNO performed the research project 'Toxic combustion products from pesticide fires'. The following research activities have been performed during

  3. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.

    Science.gov (United States)

    Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael

    2014-09-01

    Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Assessment of Combustion and Potash Production as Options for ...

    African Journals Online (AJOL)

    This study assessed combustion and potash production as options for management of wood waste. The percentage reduction in volume by combustion and potash generation potential of wood waste from nine different common species of wood obtained from a wood factory in Ibadan were evaluated. Potash from the ashes ...

  5. Plasmonic Structural Colors for Plastic Consumer Products

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Mortensen, N. Asger; Kristensen, Anders

    2014-01-01

    Today colorants, such as pigments or dyes, are used to color plastic-based consumer products, either as base for solid colored bulk polymer or in inks for surface decoration. After usage, the products must be mechanically sorted by color before recycling, limiting any large-scale efficient...... can be avoided in the recycling state. Plasmon color technology based on aluminum has recently been firmly established as a route towards structural coloring of polymeric materials. We report on the fabrication of colors by localized surface plasmon resonances (LSPR) using roll-to-roll printing...

  6. A study of thermaů decomposition and combustion products of disposable polyethylene terephtalate plastic using high resolution fourier transform infrared spectroscopy, selected ion flow tube mass spectrometry and gas chromatography mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Sovová, Kristýna; Ferus, Martin; Matulková, Irena; Španěl, Patrik; Dryahina, Kseniya; Dvořák, O.; Civiš, Svatopluk

    2008-01-01

    Roč. 106, 9-10 (2008), s. 1205-1214 ISSN 0026-8976 R&D Projects: GA AV ČR IAA400400705; GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : polyethylene terephtalate (PET) * combustion * high resolution FTIR spectroscopy * GC-MS * SIFT-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.478, year: 2008

  7. Elemental analysis of combustion products by neutron activation

    International Nuclear Information System (INIS)

    Heft, R.E.; Koszykowski, R.F.

    1980-01-01

    This paper gives a brief description of the neutron activation analysis method, which is being used to determine the elemental profile of combustion products from coal-fired power plants, oil shale retorting, and underground coal gasification

  8. Sources of Combustion Products: An Introduction to Indoor Air Quality

    Science.gov (United States)

    In addition to environmental tobacco smoke, other sources of combustion products are unvented kerosene and gas space heaters, woodstoves, fireplaces, and gas stoves. The major pollutants released are carbon monoxide, nitrogen dioxide, and particles.

  9. Products derived from waste plastics (PC, HIPS, ABS, PP and PA6) via hydrothermal treatment: Characterization and potential applications.

    Science.gov (United States)

    Zhao, Xuyuan; Zhan, Lu; Xie, Bing; Gao, Bin

    2018-05-26

    In this study, hydrothermal method was applied for the treatment of five typical waste plastics (PC, HIPS, ABS, PP and PA6). The hydrothermal products of oils and solid residues were analyzed for the product slate and combustion behaviors. Some predominant chemical feedstock were detected in the oils, such as phenolic compounds and bisphenol A (BPA) in PC oils, single-ringed aromatic compounds and diphenyl-sketetons compounds in HIPS and ABS oils, alkanes in PP oils, and caprolactam (CPL) in PA6 oils. The hydrothermal solid residues were subjected to DSC analysis. Except the solid residues of PA6, all the solid residues had enormous improvement on the enthalpy of combustion. The solid residues of PC had the maximum promotion up to 576.03% compared to the raw material. The hydrothermal treatment significantly improved the energy density and facilitated effective combustion. Meanwhile, the glass fiber was recovered from the PA6 plastics. In addition, the combustion behaviors of the uplifting residues were investigated to provide the theoretical foundation for further study of combustion optimization. All the results indicated that the oils of waste plastics after hydrothermal treatment could be used as chemical feedstock; the solid residues of waste plastics after hydrothermal treatment could be used as potentially clean and efficient solid fuels. The hydrothermal treatment for various waste plastics was verified as a novel waste-to-energy technique. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Combustion of diesel fuel from a toxicological perspective. I. Origin of incomplete combustion products.

    Science.gov (United States)

    Scheepers, P T; Bos, R P

    1992-01-01

    Since the use of diesel engines is still increasing, the contribution of their incomplete combustion products to air pollution is becoming ever more important. The presence of irritating and genotoxic substances in both the gas phase and the particulate phase constituents is considered to have significant health implications. The quantity of soot particles and the particle-associated organics emitted from the tail pipe of a diesel-powered vehicle depend primarily on the engine type and combustion conditions but also on fuel properties. The quantity of soot particles in the emissions is determined by the balance between the rate of formation and subsequent oxidation. Organics are absorbed onto carbon cores in the cylinder, in the exhaust system, in the atmosphere and even on the filter during sample collection. Diesel fuel contains polycyclic aromatic hydrocarbons (PAHs) and some alkyl derivatives. Both groups of compounds may survive the combustion process. PAHs are formed by the combustion of crankcase oil or may be resuspended from engine and/or exhaust deposits. The conversion of parent PAHs to oxygenated and nitrated PAHs in the combustion chamber or in the exhaust system is related to the vast amount of excess combustion air that is supplied to the engine and the high combustion temperature. Whether the occurrence of these derivatives is characteristic for the composition of diesel engine exhaust remains to be ascertained. After the emission of the particles, their properties may change because of atmospheric processes such as aging and resuspension. The particle-associated organics may also be subject to (photo)chemical conversions or the components may change during sampling and analysis. Measurement of emissions of incomplete combustion products as determined on a chassis dynamometer provides knowledge of the chemical composition of the particle-associated organics. This knowledge is useful as a basis for a toxicological evaluation of the health hazards of

  11. Modeling of combustion products composition of hydrogen-containing fuels

    International Nuclear Information System (INIS)

    Assad, M.S.

    2010-01-01

    Due to the usage of entropy maximum principal the algorithm and the program of chemical equilibrium calculation concerning hydrogen--containing fuels are devised. The program enables to estimate the composition of combustion products generated in the conditions similar to combustion conditions in heat engines. The program also enables to reveal the way hydrogen fraction in the conditional composition of the hydrocarbon-hydrogen-air mixture influences the harmful components content. It is proven that molecular hydrogen in the mixture is conductive to the decrease of CO, CO 2 and CH x concentration. NO outlet increases due to higher combustion temperature and N, O, OH concentrations in burnt gases. (authors)

  12. Ejector device for returning incomplete combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Szule, T.; Minas, E.; Pietrowski, K.

    1977-12-19

    A device is proposed for separating the fine fraction of incompletely burned clinker and delivering it to the firebox for combustion. The clinker is fed into the two-chambered device from the top through an open gate. The inside chamber of the device consists of a side enclosure with an inspection hole and a hatch, and a gate with a screen on top. An ejector is located in the chamber. The case of the outside chamber, also with an inspection hole and hatch, forms a bypass channel with the enclosure of the inside chamber. Fine clinker is poured through the screen into the inside chamber, and some of it is removed by the ejector for combustion; the coarser fraction builds up on top of the gate, and is periodically passed through it. Large pieces of clinker which do not fit through the screen pass down through the bypass channel.

  13. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  14. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility.

    Science.gov (United States)

    van den Oever, Martien; Molenveld, Karin

    2017-07-25

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio-based plastics were presented, together with economic considerations. The present paper discusses the mechanical and thermal properties of a range of commercially available bio-based plastics based on polylactic acid (PLA), cellulose esters, starch and polyamides, and the feasibility of replacing fossil-based counterparts based on performance. The evaluation is approached from an end user perspective. First, potentially suitable bio-based plastics are selected based on manufacturers' specifications in technical data sheets, then a first experimental evaluation is performed on injection moulded ISO specimens, and finally a further selection of plastics is tested on large 50×70cm panels. This technical feasibility study indicates that so far bio-based plastics do not completely match the properties of high performance materials like flame retardant V-0 PC/ABS blends used in electronic devices. The performance gap is being decreased by the development of stereocomplex PLA and hybrid PLA blends with polycarbonate, which offer clearly improved properties with respect to maximum usage temperature and toughness. In addition, several materials meet the V-0 flammability requirements needed in specific durable applications. On the other hand, improving these properties so far has negative consequences for the bio-based content. This study also shows that replacement of bulk polymers like PS is feasible using PLA compounds with a bio-based content as high as 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Waste product profile: Plastic film and bags

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C. [Environmental Industry Associations, Washington, DC (United States)

    1996-10-01

    Plastic film is recycled by being pelletized following a granulation or densifying process. Manufacturing and converting plants are the major sources of plastic film for recycling because they can supply sufficient amounts of clean raw material of a known resin type. Post-consumer collection programs are more recent. They tend to focus on businesses such as grocery stores that are large generators of plastic bags. In this case, the recycling process is more complex, requiring sorting, washing, and removal of contaminants as a first step. Curbside collection of plastic bags is rare.

  16. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  17. Elemental analysis of Kuwaiti petroleum and combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Reid, J.S.; Cahill, T.A.; Gearhart, E.A.; Flocchini, R.G. (California Univ., Davis, CA (United States). Crocker Nuclear Lab.); Schweitzer, J.S.; Peterson, C.A. (Schlumberger-Doll Research Center, Ridgefield, CT (United States))

    1993-03-01

    Crude oil from eight Kuwaiti fields and aerosols generated by their combustion in the laboratory have been analyzed by composition and particulate size. Liquid petroleum and petroleum combustion products were subjected to elemental analysis by proton induced x-ray techniques and by x-ray fluorescence techniques. The mean sulfur content of the burning wells was weighted by their production rates to obtain the mean sulfur content of the burning oil, 2.66%. The liquid samples were also analyzed by neutron activation analyses. Results show that Kuwaiti oil and smoke aerosols from laboratory combustion generally contain very low amounts of chlorine, contrary to what is found in airborne samples above Kuwait. Trace element signatures were developed to aid in tracing smoke from the oil fires. (Author).

  18. Role of coal combustion products in sustainable construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Naik, T.R.; Siddique, R.; Vaniker, S. [University of Wisconsin-Milwaukee, Milwaukee, WI (USA). UWM Center for Products Utilization, College of Engineering and Applied Science

    2003-07-01

    The paper describes various coal combustion products, CCPs produced in the process of power generation. These include fly ash, bottom ash, boiler slag and flue gas desulfurization products. Typical test protocol used for testing, analysis and evaluation of CCPs, as well as the current best recycling use options for these materials are discussed. Materials, productions, properties, and potential applications in the manufacture of emerging materials for sustainable construction, as well as environmental impact are also briefly discussed. 47 refs., 16 figs., 8 tabs.

  19. Managing plastic waste in East Africa: Niche innovations in plastic production and solid waste

    NARCIS (Netherlands)

    Ombis, L.O.; Vliet, van B.J.M.; Mol, A.P.J.

    2015-01-01

    This paper assesses the uptake of environmental innovation practices to cope with plastic waste in Kenyan urban centres at the interface of solid waste management and plastic production systems. The Multi Level Perspective on Technological Transitions is used to evaluate 7 innovation pathways of

  20. Production of Methane and Water from Crew Plastic Waste

    Science.gov (United States)

    Captain, Janine; Santiago, Eddie; Parrish, Clyde; Strayer, Richard F.; Garland, Jay L.

    2008-01-01

    Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented.

  1. Gas cooking, kitchen ventilation, and exposure to combustion products

    NARCIS (Netherlands)

    Willers, SM; Brunekreef, B; Oldenwening, M; Smit, HA; Kerkhof, M; De Vries, H

    We evaluated a questionnaire-based system for classifying homes into groups with distinctly different chances of accumulating combustion products from cooking appliances. The system was based on questions about type of cooking appliance, type and use of ventilation provisions, and kitchen size.

  2. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  3. Characteristics of combustion products: a review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Chan, M.K.W.; Mishima, J.

    1983-07-01

    To determine the effects of fires in nuclear-fuel-cycle facilities, Pacific Northwest Laboratory (PNL) has surveyed the literature to gather data on the characteristics of combustion products. This report discusses the theories of the origin of combustion with an emphasis on the behavior of the combustible materials commonly found in nuclear-fuel-cycle facilities. Data that can be used to calculate particulate generation rate, size, distribution, and concentration are included. Examples are given to illustrate the application of this data to quantitatively predict both the mass and heat generated from fires. As the final result of this review, information gaps are identified that should be filled for fire-accident analyses in fuel-cycle facilities. 29 figures, 32 tables.

  4. Characteristics of combustion products: a review of the literature

    International Nuclear Information System (INIS)

    Chan, M.K.W.; Mishima, J.

    1983-07-01

    To determine the effects of fires in nuclear-fuel-cycle facilities, Pacific Northwest Laboratory (PNL) has surveyed the literature to gather data on the characteristics of combustion products. This report discusses the theories of the origin of combustion with an emphasis on the behavior of the combustible materials commonly found in nuclear-fuel-cycle facilities. Data that can be used to calculate particulate generation rate, size, distribution, and concentration are included. Examples are given to illustrate the application of this data to quantitatively predict both the mass and heat generated from fires. As the final result of this review, information gaps are identified that should be filled for fire-accident analyses in fuel-cycle facilities. 29 figures, 32 tables

  5. Priority pollutant analysis of MHD-derived combustion products

    Science.gov (United States)

    Parks, Katherine D.

    An important factor in developing Magnetohydrodynamics (MHD) for commercial applications is environmental impact. Consequently, an effort was initiated to identify and quantify any possible undesirable minute chemical constituents in MHD waste streams, with special emphasis on the priority pollutant species. This paper discusses how priority pollutant analyses were used to accomplish the following goals at the University of Tennessee Space Institute (UTSI): comparison of the composition of solid combustion products collected from various locations along a prototypical MHD flow train during the firing of Illinois No. 6 and Montana Rosebud coals; comparison of solid waste products generated from MHD and conventional power plant technologies; and identification of a suitable disposal option for various MHD derived combustion products. Results from our ongoing research plans for gas phase sampling and analysis of priority pollutant volatiles, semi-volatiles, and metals are discussed.

  6. Conversion of hazardous plastic wastes into useful chemical products.

    Science.gov (United States)

    Siddiqui, Mohammad Nahid

    2009-08-15

    Azoisobutylnitrile (AIBN) initiator was used in the treatment of most widely used domestic plastics in lieu of catalysts. The pyrolysis of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), poly-ethylene terephthalate (PET) and polystyrene (PS) plastics with azoisobutylnitrile was carried out individually under nitrogen atmosphere. A series of single (plastic/AIBN) and binary (mixed plastics/AIBN) reactions were carried out in a 25-cm(3) micro-autoclave reactor. The optimum conditions selected for this study were: 5% AIBN by weight of total plastics, 60 min, 650 psi and 420 degrees C. It was found that HDPE, LDPE, PP underwent to a maximum cracking and produced highest amounts of liquid and gaseous products. Pyrolysis of PET and PS plastics with AIBN afforded comparatively significant amount of insoluble organic materials. In other reactions, fixed ratios of mixed plastics were pyrolyzed with AIBN that afforded excellent yields of liquid hydrocarbons. This result shows a very significant increase in the liquid portions of the products on using AIBN in the pyrolysis of plastics. The use of AIBN in the pyrolysis of plastics is seems to be feasible and an environmental friendly alternative to catalytic process for maximizing the liquid fuels or chemical feed stocks in higher amounts.

  7. Conversion of hazardous plastic wastes into useful chemical products

    International Nuclear Information System (INIS)

    Siddiqui, Mohammad Nahid

    2009-01-01

    Azoisobutylnitrile (AIBN) initiator was used in the treatment of most widely used domestic plastics in lieu of catalysts. The pyrolysis of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), poly-ethylene terephthalate (PET) and polystyrene (PS) plastics with azoisobutylnitrile was carried out individually under nitrogen atmosphere. A series of single (plastic/AIBN) and binary (mixed plastics/AIBN) reactions were carried out in a 25-cm 3 micro-autoclave reactor. The optimum conditions selected for this study were: 5% AIBN by weight of total plastics, 60 min, 650 psi and 420 o C. It was found that HDPE, LDPE, PP underwent to a maximum cracking and produced highest amounts of liquid and gaseous products. Pyrolysis of PET and PS plastics with AIBN afforded comparatively significant amount of insoluble organic materials. In other reactions, fixed ratios of mixed plastics were pyrolyzed with AIBN that afforded excellent yields of liquid hydrocarbons. This result shows a very significant increase in the liquid portions of the products on using AIBN in the pyrolysis of plastics. The use of AIBN in the pyrolysis of plastics is seems to be feasible and an environmental friendly alternative to catalytic process for maximizing the liquid fuels or chemical feed stocks in higher amounts.

  8. Combustion of animal or vegetable based liquid waste products

    International Nuclear Information System (INIS)

    Wikman, Karin; Berg, Magnus

    2002-04-01

    In this project experiences from combustion of animal and vegetable based liquid waste products have been compiled. Legal aspects have also been taken into consideration and the potential for this type of fuel on the Swedish energy market has been evaluated. Today the supply of animal and vegetable based liquid waste products for energy production in Sweden is limited. The total production of animal based liquid fat is about 10,000 tonnes annually. The animal based liquid waste products origin mainly from the manufacturing of meat and bone meal. Since meat and bone meal has been banned from use in animal feeds it is possible that the amount of animal based liquid fat will decrease. The vegetable based liquid waste products that are produced in the processing of vegetable fats are today used mainly for internal energy production. This result in limited availability on the commercial market. The potential for import of animal and vegetable based liquid waste products is estimated to be relatively large since the production of this type of waste products is larger in many other countries compared to Sweden. Vegetable oils that are used as food or raw material in industries could also be imported for combustion, but this is not reasonable today since the energy prices are relatively low. Restrictions allow import of SRM exclusively from Denmark. This is today the only limit for increased imports of animal based liquid fat. The restrictions for handle and combustion of animal and vegetable based liquid waste products are partly unclear since this is covered in several regulations that are not easy to interpret. The new directive for combustion of waste (2000/76/EG) is valid for animal based waste products but not for cadaver or vegetable based waste products from provisions industries. This study has shown that more than 27,400 tonnes of animal based liquid waste products and about 6,000 tonnes of vegetable based liquid waste products were used for combustion in Sweden

  9. Production, use, and fate of all plastics ever made.

    Science.gov (United States)

    Geyer, Roland; Jambeck, Jenna R; Law, Kara Lavender

    2017-07-01

    Plastics have outgrown most man-made materials and have long been under environmental scrutiny. However, robust global information, particularly about their end-of-life fate, is lacking. By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, we present the first global analysis of all mass-produced plastics ever manufactured. We estimate that 8300 million metric tons (Mt) as of virgin plastics have been produced to date. As of 2015, approximately 6300 Mt of plastic waste had been generated, around 9% of which had been recycled, 12% was incinerated, and 79% was accumulated in landfills or the natural environment. If current production and waste management trends continue, roughly 12,000 Mt of plastic waste will be in landfills or in the natural environment by 2050.

  10. Production of grids in plastic detectors

    CERN Document Server

    Birabeau, J P; Brun, R; Cordaillat, A; Mendola, Onofrio

    1972-01-01

    In order to facilitate the locating of tracks of charged particles in cellulose nitrate and polycarbonate (makrofol, lexan) foils, a method has been developed for the photo-deposition of translucent coordinate grids on this materials. The grids are resistant to the strongly caustic solutions used in developing tracks in plastic foils. (9 refs) .

  11. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    Science.gov (United States)

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.

  12. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic

    International Nuclear Information System (INIS)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-01-01

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 deg. C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher

  13. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.

    Science.gov (United States)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-08-15

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher

  14. The changing nicotine products landscape: time to outlaw sales of combustible tobacco products?

    Science.gov (United States)

    Hefler, Marita

    2018-01-01

    Combustible tobacco products are unique both for the extraordinary harm they cause, and the fact that more than 50 years after these harms became known, they continue to be widely and legally available globally. However, the rapid evolution of the nicotine product marketplace in recent years warrants a re-assessment of the viability of phasing out commercial sales of combustible tobacco, and presents an opportunity to end the exceptionalism of combustible tobacco being permitted for sale. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. AKR1C1 as a Biomarker for Differentiating the Biological Effects of Combustible from Non-Combustible Tobacco Products.

    Science.gov (United States)

    Woo, Sangsoon; Gao, Hong; Henderson, David; Zacharias, Wolfgang; Liu, Gang; Tran, Quynh T; Prasad, G L

    2017-05-03

    Smoking has been established as a major risk factor for developing oral squamous cell carcinoma (OSCC), but less attention has been paid to the effects of smokeless tobacco products. Our objective is to identify potential biomarkers to distinguish the biological effects of combustible tobacco products from those of non-combustible ones using oral cell lines. Normal human gingival epithelial cells (HGEC), non-metastatic (101A) and metastatic (101B) OSCC cell lines were exposed to different tobacco product preparations (TPPs) including cigarette smoke total particulate matter (TPM), whole-smoke conditioned media (WS-CM), smokeless tobacco extract in complete artificial saliva (STE), or nicotine (NIC) alone. We performed microarray-based gene expression profiling and found 3456 probe sets from 101A, 1432 probe sets from 101B, and 2717 probe sets from HGEC to be differentially expressed. Gene Set Enrichment Analysis (GSEA) revealed xenobiotic metabolism and steroid biosynthesis were the top two pathways that were upregulated by combustible but not by non-combustible TPPs. Notably, aldo-keto reductase genes, AKR1C1 and AKR1C2 , were the core genes in the top enriched pathways and were statistically upregulated more than eight-fold by combustible TPPs. Quantitative real time polymerase chain reaction (qRT-PCR) results statistically support AKR1C1 as a potential biomarker for differentiating the biological effects of combustible from non-combustible tobacco products.

  16. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  17. Combustion and environmental performance of clean coal end products

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Sakellaropoulos, G. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications]|[Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab]|[Chemical Process Engineering Research Inst., Thessaloniki (Greece). Lab. of Solid Fuels and Environment; Someus, E. [Thermal Desorption Technology Group (Greece); Grammelis, P.; Amarantos, P.S. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications; Palladas, A.; Basinas, P.; Natas, P.; Prokopidou, M.; Diamantopoulou, I.; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab

    2006-07-01

    Clean and affordable power production is needed in order to achieve sustainable economic development. This paper focused on clean coal technologies in which coal-fired power plants are used in conjunction with large amounts of renewable energy sources to offer a high level of process safety and long term management of all residual operation streams. Thermal Desorption Recycle-Reduce-Reuse Technology (TDT-3R) was described as being a promising solid fuel pretreatment process for clean energy production up to 300 MWe capacities. TDT-3R is based on low temperature carbonisation fuel pre-treatment principles, which produce cleansed anthracite type fuels from coal and other carbonaceous material such as biomass and organic wastes. The combustion efficiency of such clean coals and the environmental performance of the TDT-3R process were investigated in this study via pilot scale tests of clean fuel production. Tests included flue gas emissions monitoring, raw fuel and product characterisation and thermogravimetric tests, polychlorinated dibenzo-p-dioxins and dibenzo-furans, and heavy metals analyses, and toxicity tests. Raw material included coal and biomass, such as willow, straw and demolition wood. The fuels were heated in a rotary kiln operating at 550 degrees C under slightly vacuum conditions. Clean coals were tested either alone or in conjunction with biomass fuels in a pilot scale combustion facility at Dresden, Germany. The clean coal samples were shown to have higher fixed carbon and ash content and lower volatiles compared to the respective raw coal samples. The major advantage of the TDT-3R process is the production of fuels with much lower pollutants content. Low nitrogen, sulphur, chlorine and heavy metal contents result in produced fuels that have excellent environmental performance, allow boiler operation in higher temperatures and overall better efficiency. Moreover, the use of clean fuels reduces deposition problems in the combustion chamber due to the

  18. Environmental remediation with products of fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A.G.

    1999-07-01

    Commercialization of fluidized bed combustion (FBC) technology could be enhanced by increased utilization of FBC products (ash). In the US, coal combustion products (CCP) are not hazardous under RCRA and are regulated as residual waste by the states. The composition of CCP from fluidized beds is primarily determined by the inorganic constituents in coal, the sorbent reaction products and the unreacted sorbent. The combustion system and the inclusion of other fuels may also affect the chemical composition, physical properties and leaching behavior. The alkalinity of the FBC material, residual lime and pozzolanic properties are desirable characteristics for use in soil stabilization and mine reclamation. At reclaimed surface coal mines, placement of CCP is intended to reduce the amount of acid mine drainage (AMD) produced at such sites. Neutralization, inhibition of acid forming bacteria, encapsulation of the pyrite or water diversion are believed to be the mechanisms facilitated by the alkaline material. Comparison of water quality, before and after injection of a grout composed of FBC ash and water indicated small increases in pH and decreases in acidity at discharge points. The concentrations of calcium and magnesium in water samples generally increased compared to background levels. The average concentration of trace elements (arsenic, cobalt, copper, nickel and zinc) was slightly elevated in the injection areas, but in down dip and discharge water samples were comparable to background levels. Over a four year period, the average acidity in the injected area decreased by approximately 30%, a value similar to another site where a mixture of class F fly ash and cement was injected. Although coal mine remediation is a beneficial environmental use of FBC products, its effectiveness may be related to the amount of FBCB used and the method of emplacement.

  19. Environmental remediation with products of fluidized bed combustion

    International Nuclear Information System (INIS)

    Kim, A.G.

    1999-01-01

    Commercialization of fluidized bed combustion (FBC) technology could be enhanced by increased utilization of FBC products (ash). In the US, coal combustion products (CCP) are not hazardous under RCRA and are regulated as residual waste by the states. The composition of CCP from fluidized beds is primarily determined by the inorganic constituents in coal, the sorbent reaction products and the unreacted sorbent. The combustion system and the inclusion of other fuels may also affect the chemical composition, physical properties and leaching behavior. The alkalinity of the FBC material, residual lime and pozzolanic properties are desirable characteristics for use in soil stabilization and mine reclamation. At reclaimed surface coal mines, placement of CCP is intended to reduce the amount of acid mine drainage (AMD) produced at such sites. Neutralization, inhibition of acid forming bacteria, encapsulation of the pyrite or water diversion are believed to be the mechanisms facilitated by the alkaline material. Comparison of water quality, before and after injection of a grout composed of FBC ash and water indicated small increases in pH and decreases in acidity at discharge points. The concentrations of calcium and magnesium in water samples generally increased compared to background levels. The average concentration of trace elements (arsenic, cobalt, copper, nickel and zinc) was slightly elevated in the injection areas, but in down dip and discharge water samples were comparable to background levels. Over a four year period, the average acidity in the injected area decreased by approximately 30%, a value similar to another site where a mixture of class F fly ash and cement was injected. Although coal mine remediation is a beneficial environmental use of FBC products, its effectiveness may be related to the amount of FBCB used and the method of emplacement

  20. Hydrocarbon composition products of the catalytic recycling plastics waste

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The paper represents the IR spectroscopy results of the hydrocarbon composition of products, which is obtained from catalytic processing of plastic wastes. The optimal conditions for the hydrogenation with to producny liquid of products are identified.  These liquid products are enriched with aromatics, paraffinic- naphthenic and unsaturated hydrocarbons. The main characteristics of the distillates received by hydrogenation of plastics (as density, refractive index, iodine number, pour point, cloud point, filtering, sulfur content,  fractional and composition of the hydrocarbon group.

  1. 21 CFR 310.509 - Parenteral drug products in plastic containers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Parenteral drug products in plastic containers... Parenteral drug products in plastic containers. (a) Any parenteral drug product packaged in a plastic... parenteral drug product for intravenous use in humans that is packaged in a plastic immediate container on or...

  2. Production low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    2011-01-01

    Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matrix. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). By changing the composition of plastic Scintillators some features such as light yield, radiation hardening, decay time etc. can be controlled. Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Many research projects have concentrated on improving the fundamental properties of plastic scintillators, but little attention has focussed on their cost and easier manufacturing techniques. First plastic Scintillators were produced in 1950's. Activities for production of low cost Scintillators accelerated in second half of 1970's. In 1975 acrylic based Plexipop Scintillator was developed. Despite its low cost, since its structure was not aromatic the light yield of Plexipop was about one quarter of classical Scintillators. Problems arising from slow response time and weak mechanical properties in scintillators developed, has not been solved until 1980. Within the last decade extrusion method became very popular in preparation of low cost and high quality plastic scintillators. In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion plus compression method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared in June 2008 by use of the extruder and pres in SANAEM. Molds suitable for accoupling to extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and moulding pressure were obtained hence, PS Scintillator Blocks

  3. Effect of boron compounds on the thermal and combustion properties of wood-plastic composites

    OpenAIRE

    Altuntaş, Ertuğrul; Karaoğul, Eyyup; Alma, Mehmet Hakkı

    2017-01-01

    In this study, the thermal properties and fire resistancesof the wood plastic composites produced with waste lignocellulosic materialswere investigated. For this purpose, lignocellulosic waste, high densitypolyethylene, (HDPE) sodium borate (borax) and boric acid was used to producethe wood-plastic composites. A twin-screw extruder was used during theproduction of the wood plastic composites. The produced composite granule waspressed at 175 °C hot press. The effects of boric acid and borax ad...

  4. Burners and combustion apparatus for carbon nanomaterial production

    Science.gov (United States)

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  5. Plastic raw materials in Neolithic pottery production

    Directory of Open Access Journals (Sweden)

    Alexander A. Bobrinsky

    2012-12-01

    Full Text Available The paper is dedicated to the investigation of various natural silts as the most ancient type of raw material used in pottery production. The authors describe the specific features of the composition of plain and mountain silts, and discover the same features in ancient ceramics from different regions in Russia. It can be concluded that silts were the earliest raw material used, a tradition that faded away during the evolution of pottery production.

  6. Plasmonic Metasurfaces for Coloration of Plastic Consumer Products

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik; Højlund-Nielsen, Emil; Christiansen, Alexander Bruun

    2014-01-01

    We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large-area struc......We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large......-area structurally colored plastic surfaces robust to daily life handling. We utilize the hybridization between LSPR modes in aluminum nanodisks and nanoholes to design and fabricate bright angle-insensitive colors that may be tuned across the entire visible spectrum....

  7. Means of regulating combustible materials and products in external walls

    Directory of Open Access Journals (Sweden)

    Mikkola Esko

    2016-01-01

    Full Text Available This report presents proposals for defining means of regulating the use of combustible materials and products in external walls. Required protections are based on the quantities of fire loads and their contribution to fire development. The study is based on life safety and protection of property priorities taking into account reaction to fire classes related to different types of fire loads and fire compartmentation requirements of the adjacent spaces of concern. The proposals include the following main principles in relation to fire-separation requirements: In case of internal fire exposure the protective structure for combustible building parts needs to meet at least half of the fire-separating requirement for the compartment of concern. In case of external fire exposure the protection time requirement can be 15 minutes less than for the internal protection. The proposals are applicable for residential buildings and offices. In case of buildings with longer evacuation times more stringent requirement levels may be considered. For verification of protection performance of fire loads it is proposed to use existing standardized test methods (fire protection ability (K classes and fire-separating function (EI classes validated methods of calculation and/or large scale fire testing.

  8. Production of nanocrystalline metal powders via combustion reaction synthesis

    Science.gov (United States)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  9. Production of biodegradable plastic from agricultural wastes

    Directory of Open Access Journals (Sweden)

    N.A. Mostafa

    2018-05-01

    Full Text Available Agricultural residues management is considered to be a vital strategy in order to accomplish resource conservation and to maintain the quality of the environment. In recent years, biofibers have attracted increasing interest due to their wide applications in food packaging and in the biomedical sciences. These eco-friendly polymers reduce rapidly and replace the usage of the petroleum-based synthetic polymers due to their safety, low production costs, and biodegradability. This paper reports an efficient method for the production of the cellulose acetate biofiber from flax fibers and cotton linters. The used process satisfied a yield of 81% and 54% for flax fibers and cotton linters respectively (based on the weight of the cellulosic residue used. The structure of the produced bioplastic was confirmed by X-ray diffraction, FT-IR and gel permeation chromatography. Moreover, this new biopolymer is biodegradable and is not affected by acid or salt treatment but is alkali labile. A comparison test showed that the produced cellulose acetate was affected by acids to a lesser extent than polypropylene and polystyrene. Therefore, this new cellulose acetate bioplastics can be applied in both the food industry and medicine. Keywords: Cotton linters, Flax fibers, Cellulose acetate, Preparation, Characterization

  10. Characterization of products of combustion of mineral coal

    International Nuclear Information System (INIS)

    Pinheiro, H.S.; Albuquerque, J. S. V.; Sales, J.C.; Nogueira, R.E.F.Q.

    2011-01-01

    During the burning of coal in power plants, various types of waste or by products are generated. These materials have been the subject of several studies. They contain ashes and have many technological applications, such as in the production of various types of ceramic pieces. The objective of this work was to study the feasibility of adding the coal combustion products as filler for ceramics. X-ray fluorescence analysis was used to identify and quantify the proportions of the elements contained in the sample and x-ray diffraction to identify the phases present. The analysis by X-ray diffraction revealed a diffraction pattern of silicon sulfide, calcium silicate and sulfide phases of Aluminium, Potassium and Titanium. X-ray fluorescence analysis showed silica (37.14%), calcium (21.86%), aluminum (14.69%) and sulfur (8.70%). These results show characteristics of materials with potential for incorporation in ceramic bodies, provided that some processing is done to eliminate the sulfur. (author)

  11. Reinforced Plastic Composites Production: National Emission Standards for Hazardous Air Pollutants

    Science.gov (United States)

    National emissions standards for hazardous air pollutants for reinforced plastic composites production facilities. Regulates production and ancillary processes used to manufacture products with thermoset resins and gel coats.

  12. Improvement studies on emission and combustion characteristics of DICI engine fuelled with colloidal emulsion of diesel distillate of plastic oil, TiO2 nanoparticles and water.

    Science.gov (United States)

    Karisathan Sundararajan, Narayanan; Ammal, Anand Ramachandran Bhagavathi

    2018-04-01

    Experimentation was conducted on a single cylinder CI engine using processed colloidal emulsions of TiO 2 nanoparticle-water-diesel distillate of crude plastic diesel oil as test fuel. The test fuel was prepared with plastic diesel oil as the principal constituent by a novel blending technique with an aim to improve the working characteristics. The results obtained by the test fuel from the experiments were compared with that of commercial petro-diesel (CPD) fuel for same engine operating parameters. Plastic oil produced from high density polyethylene plastic waste by pyrolysis was subjected to fractional distillation for separating plastic diesel oil (PDO) that contains diesel range hydrocarbons. The blending process showed a little improvement in the field of fuel oil-water-nanometal oxide colloidal emulsion preparation due to the influence of surfactant in electrostatic stabilization, dielectric potential, and pH of the colloidal medium on the absolute value of zeta potential, a measure of colloidal stability. The engine tests with nano-emulsions of PDO showed an increase in ignition delay (23.43%), and decrease in EGT (6.05%), BSNO x (7.13%), and BSCO (28.96%) relative to PDO at rated load. Combustion curve profiles, percentage distribution of compounds, and physical and chemical properties of test fuels ascertains these results. The combustion acceleration at diffused combustion phase was evidenced in TiO 2 emulsion fuels under study.

  13. Study of combustion and emission characteristics of fuel derived from waste plastics by various waste to energy (W-t-E) conversion processes

    Science.gov (United States)

    Hazrat, M. A.; Rasul, M. G.; Khan, M. M. K.

    2016-07-01

    Reduction of plastic wastes by means of producing energy can be treated as a good investment in the waste management and recycling sectors. In this article, conversion of plastics into liquid fuel by two thermo-chemical processes, pyrolysis and gasification, are reviewed. The study showed that the catalytic pyrolysis of homogenous waste plastics produces better quality and higher quantity of liquefied fuel than that of non-catalytic pyrolysis process at a lower operating temperature. The syngas produced from gasification process, which occurs at higher temperature than the pyrolysis process, can be converted into diesel by the Fischer-Tropsch (FT) reaction process. Conducive bed material like Olivine in the gasification conversion process can remarkably reduce the production of tar. The waste plastics pyrolysis oil showed brake thermal efficiency (BTE) of about 27.75%, brake specific fuel consumption (BSFC) of 0.292 kg/kWh, unburned hydrocarbon emission (uHC) of 91 ppm and NOx emission of 904 ppm in comparison with the diesel for BTE of 28%, BSFC of 0.276 kg/kWh, uHC of 57 ppm and NOx of 855 ppm. Dissolution of Polystyrene (PS) into biodiesel also showed the potential of producing alternative transport fuel. It has been found from the literature that at higher engine speed, increased EPS (Expanded Polystyrene) quantity based biodiesel blends reduces CO, CO2, NOx and smoke emission. EPS-biodiesel fuel blend increases the brake thermal efficiency by 7.8%, specific fuel consumption (SFC) by 7.2% and reduces brake power (Pb) by 3.2%. More study using PS and EPS with other thermoplastics is needed to produce liquid fuel by dissolving them into biodiesel and to assess their suitability as a transport fuel. Furthermore, investigation to find out most suitable W-t-E process for effective recycling of the waste plastics as fuel for internal combustion engines is necessary to reduce environmental pollution and generate revenue which will be addressed in this article.

  14. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  15. Radiolytic gas production in the alpha particle degradation of plastics

    International Nuclear Information System (INIS)

    Reed, D.T.; Hoh, J.; Emery, J.; Hobbs, D.

    1992-01-01

    Net gas generation due to alpha particle irradiation of polyethylene and polyvinyl chloride was investigated. Experiments were performed in an air environment at 30, 60, and 100 degree C. The predominant radiolytic degradation products of polyethylene were hydrogen and carbon dioxide with a wide variety of trace organic species noted. Irradiation of polyvinyl chloride resulted in the formation of HCl in addition to the products observed for polyethylene. For both plastic materials, a strong enhancement of net yields was noted at 100 degree C

  16. Boron availability to plants from coal combustion by-products

    International Nuclear Information System (INIS)

    Kukier, U.; Sumner, M.E.

    1996-01-01

    Agronomic use of coal combustion by-products is often associated with boron (B) excess in amended soils and subsequently in plants. A greenhouse study with corn (Zea mays L.) as test plant was conducted to determine safe application rates of five fly ashes and one flue gas desulfurization gypsum (FDG). All by-products increased soil and corn tissue B concentration, in some cases above toxicity levels which are 5 mg hot water soluble B (hwsB)kg -1 soil and 100 mg B kg -1 in corn tissue. Acceptable application rates varied from 4 to 100 Mg ha -1 for different by-products. Leaching and weathering of a high B fly ash under ponding conditions decreased its B content and that of corn grown in fly ash amended soil, while leaching of the same fly ash under laboratory conditions increased fly ash B availability to corn in comparison to the fresh fly ash. Hot water soluble B in fly ash or FDG amended soil correlated very well with corn tissue B. Hot water soluble B in fly ash amended soil could be predicted based on soil pH and B solubility in ash at different pH values but not so in the case of FDG. Another greenhouse study was conducted to compare the influence of FDG and Ca(OH 2 ) on B concentration in spinach (Spinacia oleracea L.) leaves grown in soil amended with the high B fly ash. The Ca(OH) 2 significantly decreased tissue B content, while FDG did not affect B uptake from fly ash amended soil. 41 refs., 6 figs., 5 tabs

  17. Speciation of arsenic in Canadian feed-coal and combustion by-products

    Energy Technology Data Exchange (ETDEWEB)

    F. Goodarzi; F.E. Huggins [Natural Resourses Canada (Canada). Geological Survey of Canada-Calgary Division

    2003-07-01

    It is important to determine the oxidation state of arsenic in coal and coal combustion products, as this is generally the single most critical factor determining the toxicity of this element towards humans. However, the same factor is also important for understanding the volatility and reactions of arsenic forms in combustion and their leachability and mobility in ash-disposal situations. In this work, XAFS spectroscopy has been used to examine the speciation of arsenic in Canadian subbituminous and bituminous feed-coals and their combustion products. The concentration of arsenic in the feed-coals varied from < 2 ppm for subbituminous to 54 ppm for bituminous coals. Significant differences were noted in how arsenic occurs in subbituminous and bituminous coals, but, although such differences might influence the initial volatility and reactions of arsenic during coal combustion, arsenic is found almost entirely in the less toxic As{sup 5+} oxidation state in combustion products from both types of coal. (Abstract only)

  18. DEVELOPMENT OF A HAZARDOUS WASTE INCINERATOR TARGET ANALYTE LIST OF PRODUCTS OF INCOMPLETE COMBUSTION

    Science.gov (United States)

    The report gives results of pilot-scale incineration testing to develop a comprehensive list of products of incomplete combustion (PICs) from hazardous waste combustion (HWC) systems. Project goals were to: (1) identify the total mass of organic compounds sufficiently to estimate...

  19. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T.; Pinto, F.; Franco, C.; Gulyurtlu, I.; Armesto, L.; Cabanillas, A.; Caballero, M.A.; Aznar, M.P.

    2006-01-01

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  20. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility

    NARCIS (Netherlands)

    Oever, van den Martien; Molenveld, Karin

    2017-01-01

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of

  1. Contact heating of water products of combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, I Z

    1978-01-01

    The USSR's NIIST examined the processes and equipment for heating water by submerged combustion using natural gas. Written for engineers involved with the design and application of thermal engineering equipment operating with natural gas, the book emphasizes equipment, test results, and methods of calculating heat transfer for contact gas economizers developed by Scientific Research Institute of Sanitary Engineering and other Soviet organizations. The economic effectiveness of submerged-combustion heating depends on several factors, including equipment design. Recommendations cover cost-effective designs and applications of contact economizers and boilers.

  2. Investigations of co-combustion of plastics in a coal dust furnace; Untersuchungen zur Mitverbrennung von Kunststoffen in einer Kohlestaubfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, T.; Spliethoff, H.; Hein, K.R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen (IVD); Christill, M.; Kicherer, A.; Seifert, H. [BASF AG, Verfahrenstechnik-ZET/EH-L544, Ludwigshafen am Rhein (Germany)

    1996-12-31

    In a cooperation project of the Institute of Process Engineering and Power Plant TEchnology (IVD) at the University of Stuttgart and the BASF AG, investigations of co-combustion of plastic material in a coal dust furnace were carried out. The central question of the research work was the ignition and burnout of the particles in dependence of the residence time in the hot part of the furnace. Particle sizes were varied with the aim to define the largest possible particle size in order to minimize the cost of fuel preparation by grinding. On the other hand, tests were made with pure materials and synthetic mixtures of these in order to characterize the influence of different types of plastic. The investigations showed that plastics are suited as fuels for coal dust furnaces, and that the cost of fuel preparation can be reduced to an acceptable level. With polyethylene, which is difficult to ignite, an upper particle size limit of 1.25 to 1.5 mm was reached in the IVD test stand. In industrial applications with a different burner arrangement, even better results may be expected. (orig/AKB) [Deutsch] In einer Zusammenarbeit zwischen dem Institut fuer Verfahrenstechnik und Dampfkesselwesen (IVD) der Universitaet Stuttgart und der BASF AG wurden Versuche zur Coverbrennung von Kunststoffen in einer Kohlenstaubfeuerung durchgefuehrt. Im Mittelpunkt der Untersuchungen standen Zuendung und Abbrand der Kunststoffpartikel in Abhaengigkeit von der Verweilzeit im heissen Bereich der Brennkanner. Variiert wurden hierzu zum einen die Partikelgroessen mit dem Ziel, den Aufbereitungsaufwand durch Zerkleinerung zu minimieren. Zur Charakterisierung der Einfluesse verschiedener Kunststoffarten wurden die Versuche mit unterschiedlichen Reinkunststoffen und synthetischen Mischungen durchgefuehrt. Die Versuche zeigen, dass sich Kunststoffe mit vertretbarem Mahlaufwand in der Staubfeuerung einsetzen lassen. Am Beispiel des Polyethylen, eines der thermogravimetrischen Analyse nach relativ

  3. Investigations of co-combustion of plastics in a coal dust furnace; Untersuchungen zur Mitverbrennung von Kunststoffen in einer Kohlestaubfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, T; Spliethoff, H; Hein, K R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen (IVD); Christill, M; Kicherer, A; Seifert, H [BASF AG, Verfahrenstechnik-ZET/EH-L544, Ludwigshafen am Rhein (Germany)

    1997-12-31

    In a cooperation project of the Institute of Process Engineering and Power Plant TEchnology (IVD) at the University of Stuttgart and the BASF AG, investigations of co-combustion of plastic material in a coal dust furnace were carried out. The central question of the research work was the ignition and burnout of the particles in dependence of the residence time in the hot part of the furnace. Particle sizes were varied with the aim to define the largest possible particle size in order to minimize the cost of fuel preparation by grinding. On the other hand, tests were made with pure materials and synthetic mixtures of these in order to characterize the influence of different types of plastic. The investigations showed that plastics are suited as fuels for coal dust furnaces, and that the cost of fuel preparation can be reduced to an acceptable level. With polyethylene, which is difficult to ignite, an upper particle size limit of 1.25 to 1.5 mm was reached in the IVD test stand. In industrial applications with a different burner arrangement, even better results may be expected. (orig/AKB) [Deutsch] In einer Zusammenarbeit zwischen dem Institut fuer Verfahrenstechnik und Dampfkesselwesen (IVD) der Universitaet Stuttgart und der BASF AG wurden Versuche zur Coverbrennung von Kunststoffen in einer Kohlenstaubfeuerung durchgefuehrt. Im Mittelpunkt der Untersuchungen standen Zuendung und Abbrand der Kunststoffpartikel in Abhaengigkeit von der Verweilzeit im heissen Bereich der Brennkanner. Variiert wurden hierzu zum einen die Partikelgroessen mit dem Ziel, den Aufbereitungsaufwand durch Zerkleinerung zu minimieren. Zur Charakterisierung der Einfluesse verschiedener Kunststoffarten wurden die Versuche mit unterschiedlichen Reinkunststoffen und synthetischen Mischungen durchgefuehrt. Die Versuche zeigen, dass sich Kunststoffe mit vertretbarem Mahlaufwand in der Staubfeuerung einsetzen lassen. Am Beispiel des Polyethylen, eines der thermogravimetrischen Analyse nach relativ

  4. A comprehensive study of combustion products generated from pulverized peat combustion in the furnace of BKZ-210-140F steam boiler

    Science.gov (United States)

    Kuzmin, V. A.; Zagrai, I. A.

    2017-11-01

    The experimental and theoretical study of combustion products has been carried out for the conditions of pulverized peat combustion in BKZ-210-140F steam boiler. Sampling has been performed in different parts of the boiler system in order to determine the chemical composition, radiative properties and dispersity of slag and ash particles. The chemical composition of particles was determined using the method of x-ray fluorescence analysis. Shapes and sizes of the particles were determined by means of electron scanning microscopy. The histograms and the particle size distribution functions were computed. The calculation of components of the gaseous phase was based on the combustion characteristics of the original fuel. The software package of calculation of thermal radiation of combustion products from peat combustion was used to simulate emission characteristics (flux densities and emissivity factors). The dependence of emission characteristics on the temperature level and on the wavelength has been defined. On the basis of the analysis of emission characteristics the authors give some recommendations how to determine the temperature of peat combustion products in the furnace of BKZ-210-140F steam boiler. The findings can be used to measure the combustion products temperature, support temperature control in peat combustion and solve the problem of boiler furnace slagging.

  5. Good news to use from the environmental front: coal combustion products as an environmental success story

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.N. [ISG Resources, Inc., Salt Lake City, UT (United States)

    2002-07-01

    ISG Resources in the USA's largest manager and marketer of coal combustion products, involved also in developing new technologies and applications for treatment and use of fly ash, bottom ash, boiler slag and FGD by-products. The paper, outlined in a series of 14 overheads, describes the USA's successes and initiatives so far in coal combustion products utilization. Further opportunities for the coal industry were discussed. The industry is encouraged to become involved now in carbon trading mechanisms for fly ash utilization displacing cement production.

  6. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion

    DEFF Research Database (Denmark)

    Bruhn, Annette; Dahl, Jonas; Bangsø Nielsen, Henrik

    2011-01-01

    The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating...... in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production...

  7. Numerical and experimental study of the influence of the operational parameters on the formation mechanisms of oxides of nitrogen during the combustion of mixtures of cellulosic and plastic materials; Etude experimentale et numerique de l'influence des parametres operatoires sur les mecanismes de formation des oxydes d'azote lors de la combustion de melanges de materiaux cellulosiques et plastiques

    Energy Technology Data Exchange (ETDEWEB)

    Andzi Barhe, T.

    2004-10-15

    The current thesis was performed within a collaboration between the Laboratoire de Combustion et de Detonique (LCD of the University of Poitiers) and the Laboratoire de Physique et de Chimie d'Environnement (LPCE) of the University of Ouagadougou. It was financed by Agency for Environment and Energy Management (ADEME). The principle object of this study is the optimisation of the combustion process during the incineration of waste. This optimisation is aimed at the reduction of the polluting emissions, principally CO and NO, during the incineration of cellulosic and plastic materials. It involves the analysis of the influence of the operational parameters on the polluting emissions and the control of reaction mechanisms of formation and reduction of these pollutants during the combustion process. Consequently, the study was performed in two parts: an experimental part and a numerical part. The experimental part was realised using a fixed bed counterflow reactor. This setup simulates the combustion within an industrial waste incinerator. The reactor allows the combustion of a vertical layer of waste mixture (wood, cardboard, PET, polyamide) to be followed. Three model mixtures representative of the makeup of household waste were studied in order to determine the influence of the composition of the waste on the emission of pollutants (CO and NO). The obtained results show that this parameter has a practically negligible influence within the tested parameter range. Consequently the formation of pollutants depends on the operating parameters - the equivalence ratio and the temperature. A numerical study of the influence of these parameters in order to show their impact on the mechanisms of pollutant formation and to determine the chemical mechanisms involved in the formation of oxides of nitrogen. The numerical study was performed with software developed at the LCD. This programme based on a detailed chemical model coupled to a simple physical model. It uses the

  8. Evaluating the acute effects of oral, non-combustible potential reduced exposure products marketed to smokers.

    Science.gov (United States)

    Cobb, C O; Weaver, M F; Eissenberg, T

    2010-10-01

    Non-combustible potential reduced exposure products (PREPs; eg, Star Scientific's Ariva; a variety of other smokeless tobacco products) are marketed to reduce the harm associated with smoking. This marketing occurs despite an absence of objective data concerning the toxicant exposure and effects of these PREPs. Methods used to examine combustible PREPs were adapted to assess the acute effects of non-combustible PREPs for smokers. 28 overnight abstinent cigarette smokers (17 men, 14 non-white) each completed seven, Latin-squared ordered, approximately 2.5 h laboratory sessions that differed by product administered: Ariva, Marlboro Snus (Philip Morris, USA), Camel Snus (RJ Reynolds, Winston-Salem, North Carolina, USA), Commit nicotine lozenge (GlaxoSmithKline; 2 mg), own brand cigarettes, Quest cigarettes (Vector Tobacco; delivers very low levels of nicotine) and sham smoking (ie, puffing on an unlit cigarette). In each session, the product was administered twice (separated by 60 min), and plasma nicotine levels, expired air CO and subjective effects were assessed regularly. Non-combustible products delivered less nicotine than own brand cigarettes, did not expose smokers to CO and failed to suppress tobacco abstinence symptoms as effectively as combustible products. While decreased toxicant exposure is a potential indicator of harm reduction potential, a failure to suppress abstinence symptoms suggests that currently marketed non-combustible PREPs may not be a viable harm reduction strategy for US smokers. This study demonstrates how clinical laboratory methods can be used to evaluate the short-term effects of non-combustible PREPs for smokers.

  9. Wood products in the waste stream: Characterization and combustion emissions. Volume 1. Final report

    International Nuclear Information System (INIS)

    1992-11-01

    Waste wood is wood separated from the solid-waste stream and processed into a uniform-sized product that is reused for other purposes such as fuel. As an alternative to the combustion of fossil fuels, it has raised concerns that if it is 'contaminated' with paints, resins, preservatives, etc., unacceptable environmental impacts may be generated during combustion. Given the difficulty of separating contaminated materials from waste wood and the large energy potential existing in the resource, it is important to identify possible problems associated with contaminated waste wood combustion. The study describes research about technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. The project's purpose was to provide environmental regulators, project developers, and others with data to make informed decisions on the use of waste wood materials as a combustion resource. Potential environmental problems and solutions were identified. A specific project result was the identification of combustion system operation parameters and air pollution control technologies that can minimize emissions of identified air and solid waste contaminants from combustion of wood waste

  10. Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns

    International Nuclear Information System (INIS)

    Granados, D.A.; Chejne, F.; Mejía, J.M.

    2015-01-01

    Highlights: • A one-dimensional model for oxy-fuel combustion in a rotary kiln was developed. • Flue gas recirculation becomes an important parameter for controlling the process. • Combustion process decreases the flame length making it more dense. • Increases of 12% in raw material with 40% of FGR and conversion of 98% was obtained. - Abstract: The effect of Flue Gas Recirculation (FGR) on the decarbonation process during oxy-fuel combustion in a lime (and cement) rotary kiln is analyzed using an unsteady one-dimensional Eulerian–Lagrangian mathematical model. The model considers gas and limestone as continuous phases and the coal particles as the discrete phase. The model predicts limestone decarbonation, temperature and species distribution of gas and solid phases along the kiln. Simulation results of an air-combustion case are successfully validated with reported experimental data. This model is used to study and to compare the conventional air combustion process with oxy-fuel combustion with FGR ratios between 30% and 80% as controller parameter in this process. Changes in decarbonation process due to energy fluxes by convection and radiation with different FGRs were simulated and analyzed. Simulation results indicate a temperature increase of 20% in the gas and solid phases and a higher decarbonation rate of 40% in relation to the air-combustion case, for a given constant fuel consumption rate. However, for a given temperature, the increase of the CO_2 partial pressure in the oxy-fuel case promotes a reduction of the decarbonation rate. Therefore, there is a compromise between FGR and decarbonation rate, which is analyzed in the present study. Simulation results of the decarbonation step in low FGR cases, compared to air-combustion case, shows that conversion takes place in shorter distances in the kiln, suggesting that the production rate can be increased for existing kilns in oxy-fuel kilns or, equivalently, shorter kilns can be designed for an

  11. Structures of the particles of the condensed dispersed phase in solid fuel combustion products plasma

    International Nuclear Information System (INIS)

    Samaryan, A.A.; Chernyshev, A.V.; Nefedov, A.P.; Petrov, O.F.; Fortov, V.E.; Mikhailov, Yu.M.; Mintsev, V.B.

    2000-01-01

    The results of experimental investigations of a type of dusty plasma which has been least studied--the plasma of solid fuel combustion products--were presented. Experiments to determine the parameters of the plasma of the combustion products of synthetic solid fuels with various compositions together with simultaneous diagnostics of the degree of ordering of the structures of the particles of the dispersed condensed phase were performed. The measurements showed that the charge composition of the plasma of the solid fuels combustion products depends strongly on the easily ionized alkali-metal impurities which are always present in synthetic fuel in one or another amount. An ordered arrangement of the particles of a condensed dispersed phase in structures that form in a boundary region between the high-temperature and condensation zones was observed for samples of aluminum-coated solid fuels with a low content of alkali-metal impurities

  12. The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1,3,5- triphenylbenzene.

    Science.gov (United States)

    Tomsej, Tomas; Horak, Jiri; Tomsejova, Sarka; Krpec, Kamil; Klanova, Jana; Dej, Milan; Hopan, Frantisek

    2018-04-01

    The aim of this study was to simulate a banned but widely spread practice of co-combustion of plastic with wood in a small residential boiler and to quantify its impact on emissions of gaseous pollutants, particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and 1,3,5-triphenylbenzene (135TPB), a new tracer of polyethylene plastic combustion. Supermarket polyethylene shopping bags (PE) and polyethylene terephthalate bottles (PET) were burnt as supplementary fuels with beech logs (BL) in an old-type 20 kW over-fire boiler both at a nominal and reduced heat output. An impact of co-combustion was more pronounced at the nominal heat output: an increase in emissions of PM, total organic carbon (TOC), toxic equivalent (TEQ) of 7 carcinogenic PAHs (c-PAHs) and a higher ratio of c-PAHs TEQ in particulate phase was observed during co-combustion of both plastics. 135TPB was found in emissions from both plastics both at a nominal and reduced output. In contrast to findings reported in the literature, 135TPB was a dominant compound detected by mass spectrometry on m/z 306 exclusively in emissions from co-combustion of PE. Surprisingly, six other even more abundant compounds of unknown identity were found on this m/z in emissions from co-combustion of PET. One of these unknown compounds was identified as p-quaterphenyl (pQ). Principal component analysis revealed strong correlation among 135TPB, pQ and five unknown compounds. pQ seems to be suitable tracers of polyethylene terephthalate plastic co-combustion, while 135TPB proved its suitability to be an all-purpose tracer of polyethylene plastics combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Laser fluorescent diagnostics of a plasma of combustion products with an alkali additive

    International Nuclear Information System (INIS)

    Mokhov, A.V.; Nefedov, A.P.

    1993-01-01

    Methods of laser fluorescent determination of sodium atom and hydroxyl molecule (impurity fire component) concentration are described. A method of wide-band detection is presented in detail. A monochromator, its transmission band allowing one to detect all rotational lines of hydroxyl electron-vibrational transition, is used as wide-bond filter. High efficiency of using the methods described in studying the combustion chemistry, kinetics of sodium atom compound production in combustion product plasma and pre-electrode processes is demonstrated. 95 refs., 12 figs., 4 tabs

  14. Comparative study of combustion product emissions of Pakistani coal briquettes and traditional Pakistani domestic fuels

    International Nuclear Information System (INIS)

    Wachter, E.A.; Gammage, R.B.; Haas, J.W. III; Wilson, D.L.; DePriest, J.C.; Wade, J.; Ahmad, N.; Sibtain, F.; Zahid Raza, M.

    1992-10-01

    A comparative emissions study was conducted on combustion products of various solid domestic cooking fuels; the objective was to compare relative levels of organic and inorganic toxic emissions from traditional Pakistani fuels (wood, wood charcoal, and dried animal dung) with manufactured low-rank coal briquettes (Lakhra and Sor- Range coals) under conditions simulating domestic cooking. A small combustion shed 12 m 3 internal volume, air exchange rate 14 h -1 was used to simulate south Asian cooking rooms. 200-g charges of the various fuels were ignited in an Angethi stove located inside the shed, then combusted to completion; effluents from this combustion were monitored as a function of time. Measurements were made of respirable particulates, volatile and semi-volatile organics, CO, SO 2 , and NO x . Overall it appears that emissions from coal briquettes containing combustion amendments (slaked lime, clay, and potassium nitrate oxidizer) are no greater than emissions from traditional fuels, and in some cases are significantly lower; generally, emissions are highest for all fuels in the early stages of combustion

  15. A study on compound contents for plastic injection molding products of metallic resin pigment

    International Nuclear Information System (INIS)

    Park, Young Whan; Kwak, Jae Seob; Lee, Gyu Sang

    2016-01-01

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated

  16. A study on compound contents for plastic injection molding products of metallic resin pigment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Whan; Kwak, Jae Seob [Dept. of Mechanical Engineering, Pukyong National University, Busan (Korea, Republic of); Lee, Gyu Sang [Alliance Molding Engineering TeamLG Electronics Inc., Osan (Korea, Republic of)

    2016-12-15

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated.

  17. Co-combustion of coal and non-recyclable paper and plastic waste in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    D. Boavida; P. Abelha; I. Gulyurtlu; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2003-10-01

    Co-combustion of waste with coal was carried out using a fluidised bed combustor with the aim of achieving a fuel mixture with little variations in its heating value and simultaneously reducing the accumulation of non-toxic waste material by upgrading them for energy purposes. Results obtained indicate that the feeding of waste materials plays an important role to achieve conditions for a stable combustion. The form in which the fuel is fed to the combustor makes a significant contribution to achieve desirable combustion performance and differences were observed in results regarding the combustion efficiency and emissions when waste was fed densified or in a fluffy state when it was burned mixed with coal. Part of the combustion of waste material, contrary to that of coal, was observed to take place in the freeboard where the temperature was as much as 150{sup o}C above that of the bed. 15 refs., 8 figs., 8 tabs.

  18. Coal combustion by-product (CCB) utilization in turfgrass sod production

    Energy Technology Data Exchange (ETDEWEB)

    Schlossberg, M.J.; Miller, W.P. [University of Georgia, Athens, GA (United States). Dept. of Crop & Soil Science

    2004-04-01

    Coal combustion by-products (CCB) are produced nationwide, generating 101 Mg of waste annually. Though varied, the majority of CCB are crystalline alumino-silicate minerals. Both disposal costs of CCB and interest in alternative horticultural/agricultural production systems have increased recently. Field studies assessed the benefit of CCB and organic waste/product mixtures as supplemental soil/growth media for production of hybrid bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy) sod. Growth media were applied at depths of 2 to 4 cm (200 to 400 m{sup 3}{center_dot}ha{sup -1}) and vegetatively established by sprigging. Cultural practices typical of commercial methods were employed over 99- or 114-day growth periods. Sod was monitored during these propagation cycles, then harvested, evaluated, and installed offsite in a typical lawn-establishment method. Results showed mixtures of CCB and biosolids as growth media increased yield of biomass, with both media and tissue having greater nutrient content than the control media. Volumetric water content of CCB-containing media significantly exceeded that of control media and soil included with a purchased bermudagrass sod. Once installed, sod grown on CCB-media did not differ in rooting strength from control or purchased sod. When applied as described, physicochemical characteristics of CCB-media are favorable and pose little environmental risk to soil or water resources.

  19. Association of Electronic Cigarette Use With Initiation of Combustible Tobacco Product Smoking in Early Adolescence.

    Science.gov (United States)

    Leventhal, Adam M; Strong, David R; Kirkpatrick, Matthew G; Unger, Jennifer B; Sussman, Steve; Riggs, Nathaniel R; Stone, Matthew D; Khoddam, Rubin; Samet, Jonathan M; Audrain-McGovern, Janet

    2015-08-18

    Exposure to nicotine in electronic cigarettes (e-cigarettes) is becoming increasingly common among adolescents who report never having smoked combustible tobacco. To evaluate whether e-cigarette use among 14-year-old adolescents who have never tried combustible tobacco is associated with risk of initiating use of 3 combustible tobacco products (ie, cigarettes, cigars, and hookah). Longitudinal repeated assessment of a school-based cohort at baseline (fall 2013, 9th grade, mean age = 14.1 years) and at a 6-month follow-up (spring 2014, 9th grade) and a 12-month follow-up (fall 2014, 10th grade). Ten public high schools in Los Angeles, California, were recruited through convenience sampling. Participants were students who reported never using combustible tobacco at baseline and completed follow-up assessments at 6 or 12 months (N = 2530). At each time point, students completed self-report surveys during in-classroom data collections. Student self-report of whether he or she ever used e-cigarettes (yes or no) at baseline. Six- and 12-month follow-up reports on use of any of the following tobacco products within the prior 6 months: (1) any combustible tobacco product (yes or no); (2) combustible cigarettes (yes or no), (3) cigars (yes or no); (4) hookah (yes or no); and (5) number of combustible tobacco products (range: 0-3). Past 6-month use of any combustible tobacco product was more frequent in baseline e-cigarette ever users (n = 222) than never users (n = 2308) at the 6-month follow-up (30.7% vs 8.1%, respectively; difference between groups in prevalence rates, 22.7% [95% CI, 16.4%-28.9%]) and at the 12-month follow-up (25.2% vs 9.3%, respectively; difference between groups, 15.9% [95% CI, 10.0%-21.8%]). Baseline e-cigarette use was associated with greater likelihood of use of any combustible tobacco product averaged across the 2 follow-up periods in the unadjusted analyses (odds ratio [OR], 4.27 [95% CI, 3.19-5.71]) and in the analyses adjusted

  20. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  1. Assessment of the content of arsenic in solid by-products from coal combustion

    Directory of Open Access Journals (Sweden)

    Wierońska Faustyna

    2017-01-01

    Full Text Available The coal combustion processes constitute one of the major sources of heavy metals emission into the atmosphere. From the point of view of the reduction of the emission of heavy metals and the selection of the correct exhaust gas treatment system, it is important to monitor the amount of trace elements in the solid fuels and in the solid by-products from coal combustion. One of these highly toxic elements is arsenic. The average content of arsenic in Polish hard coals and lignites is 0 ÷ 40 mg/kg [1] and 5 ÷ 15 mg/kg [2], respectively. The world average content of arsenic in hard coals and lignites, is equal to 9.0 ± 0.8 and 7.4 ± 1.4 mg/kg [3], respectively. During coal combustion processes, a significant amount of arsenic enters the atmosphere through gases and fly ashes. The proportions in which those two forms of arsenic occur in exhaust gases depend on the conditions of combustion processes [4]. The aim of the research was to determine the content of arsenic in coal blends and by-products of their combustion (slag, fly ash, gypsum, filter cakes. The determination of the arsenic quantity was performed using the Atomic Absorption Spectrometry with the electrothermal atomization.

  2. Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels

    Directory of Open Access Journals (Sweden)

    Mazen A. Eldeeb

    2018-02-01

    Full Text Available There is growing interest in the use of furans, a class of alternative fuels derived from biomass, as transportation fuels. This paper reviews recent progress in the characterization of its combustion properties. It reviews their production processes, theoretical kinetic explorations and fundamental combustion properties. The theoretical efforts are focused on the mechanistic pathways for furan decomposition and oxidation, as well as the development of detailed chemical kinetic models. The experiments reviewed are mostly concerned with the temporal evolutions of homogeneous reactors and the propagation of laminar flames. The main thrust in homogeneous reactors is to determine global chemical time scales such as ignition delay times. Some studies have adopted a comparative approach to bring out reactivity differences. Chemical kinetic models with varying degrees of predictive success have been established. Experiments have revealed the relative behavior of their combustion. The growing body of literature in this area of combustion chemistry of alternative fuels shows a great potential for these fuels in terms of sustainable production and engine performance. However, these studies raise further questions regarding the chemical interactions of furans with other hydrocarbons. There are also open questions about the toxicity of the byproducts of combustion.

  3. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    Science.gov (United States)

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  4. Production and thickness determination of thin plastic scintillator foils

    International Nuclear Information System (INIS)

    Xiao, B.; Lee, S.; Hagel, K.; Haddad, F.; Li, J.; Lou, Y.; Mdeiwayeh, N.; Tezkratt, R.; Wada, R.; Utley, D.; Natowitz, J.B.

    1995-01-01

    A method of making large thin plastic scintillator foils with good uniformity is presented. The use of Fourier Transform Infrared Spectroscopy (FTIR) to test the foil uniformity and to establish an empirical thickness calibration curve is described. ((orig.))

  5. Combustible and non-combustible tobacco product preparations differentially regulate human peripheral blood mononuclear cell functions.

    Science.gov (United States)

    Arimilli, Subhashini; Damratoski, Brad E; Prasad, G L

    2013-09-01

    Natural killer (NK) cells and T cells play essential roles in innate and adaptive immune responses in protecting against microbial infections and in tumor surveillance. Although evidence suggests that smoking causes immunosuppression, there is limited information whether the use of smokeless tobacco (ST) products affects immune responses. In this study, we assessed the effects of two preparations of cigarette smoke, ST extract and nicotine on T cell and NK cell responses using Toll-like receptor-ligand stimulated human peripheral blood mononuclear cells (PBMCs). The tobacco product preparations (TPPs) tested included whole smoke conditioned media (WS-CM), total particulate matter (TPM) and a ST product preparation in complete artificial saliva (ST/CAS). The PBMCs were stimulated with polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharide (LPS). A marked reduction of the expression of intracellular IFN-γ and TNF-α was evident in NK cells and T cells treated with WS-CM and TPM. Consistently, attenuation of ligand-induced secretion of cytokines (IL-1β, IL-10, IL-12 and TNF-α) from PBMCs treated with WS-CM and TPM were observed. While the treatment with TPPs did not alter the expression of the maturation marker CD69, WS-CM and TPM inhibited the cytolytic activity of human PBMCs. Suppression of perforin by WS-CM was also detected. Although interference from the vehicle confounded the interpretation of effects of ST/CAS, some effects were evident only at high concentrations. Nicotine treatment minimally impacted expression of cytokines and cytolytic activity. Data presented herein suggests that the function of NK cells and T cells is influenced by exposure to TPPs (based on equi-nicotine units) in the following order: WS-CM>TPM>ST/CAS. These findings are consistent with the hypothesis put forward by others that chronic smoking leads to immunosuppression, an effect that may contribute to increased microbial infections and cancer incidence among smokers

  6. GROWTH PERFORMANCE AND PRODUCTIVITY OF RUBBER & PLASTIC PRODUCTS INDUSTRY IN PUNJAB

    Directory of Open Access Journals (Sweden)

    GULSHAN KUMAR

    2010-01-01

    Full Text Available Present study is an endeavour to investigate growth pattern and productivity trends in small scale rubber and plastic products industry of Punjab. The growth of industry has been gauged in terms of variables - number of units, fixed investment, employment and production. Yearly growth rates have been computed to catch year- to- year fluctuations in growth and compound annual growth rates (CAGRs have been worked out to ascertain the impact of the policies of liberalized regime on growth of this industry. Productivity trends have been sketched in terms of partial factor productivities of labour and capital. In order to understand the strengths and weaknesses of the industry, SWOT analysis has been conducted. The study revealed that the liberalisation has promoted the use of capital intensive and labour saving techniques of production leading to a dismal growth of employment and sluggish growth of number of units.

  7. Spallation products induced by energetic neutrons in plastic detector material

    CERN Document Server

    Grabisch, K; Enge, W; Scherzer, R

    1977-01-01

    Cellulose nitrate plastic detector sheets were irradiated with secondary neutrons of the 22 GeV/c proton beam at the CERN accelerator. He, Li and Be particles which are produced in nuclear interactions of the neutrons with the target elements C, N and O of the plastic detector material are measured. Preliminary angle and range distributions and isotropic abundances of the secondary particles are discussed. (6 refs).

  8. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    International Nuclear Information System (INIS)

    Wäger, Patrick A.; Hischier, Roland

    2015-01-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses

  9. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    Energy Technology Data Exchange (ETDEWEB)

    Wäger, Patrick A., E-mail: patrick.waeger@empa.ch; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses.

  10. Bio-based and biodegradable plastics for use in crop production.

    Science.gov (United States)

    Riggi, Ezio; Santagata, Gabriella; Malinconico, Mario

    2011-01-01

    The production and management of crops uses plastics for many applications (e.g., low tunnels, high tunnels, greenhouses, mulching, silage bags, hay bales, pheromone traps, coatings of fertilizers or pesticides or hormones or seeds, and nursery pots and containers for growing transplants). All these applications have led some authors to adopt the term "plasticulture" when discussing the use of plastic materials in agriculture and related industries. Unfortunately, the sustainability of this use of plastics is low, and renewability and degradability have become key words in the debate over sustainable production and utilization of plastic. Recently, researchers and the plastics industry have made strong efforts (i) to identify new biopolymers and natural additives from renewable sources that can be used in plastics production and (ii) to enhance the degradability (biological or physical) of the new ecologically sustainable materials. In the present review, we describe the main research results, current applications, patents that have been applied for in the last two decades, and future perspectives on sustainable use of plastics to support crop production. The article presents some promising patents on bio-based and biodegradable plastics for use in crop production.

  11. Transport of CO2 and other combustion products in soils during slash-pile burns [Presentation

    Science.gov (United States)

    W. J. Massman; M. M. Nobles; G. Butters; S. J. Mooney

    2010-01-01

    The most obvious indication of transport of mass during a fire is flames and smoke. Furthermore it is well known that localized heating during the fire creates 3-D convective currents in the atmosphere and that these currents carry the combustion products away from the fire.

  12. Development and testing of synthetic riprap constructed from coal combustion products (CCPs).

    Science.gov (United States)

    2014-07-01

    Even with an increase in the amount of coal combustion products (CCPs) used in concrete con-struction, soil stabilization, and other : applications, the coal power industry must dispose of a sig-nificant amount of fly ash and bottom ash. One potentia...

  13. Co-combustion of coal and non-recyclable paper & plastic waste in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, D.; Abelha, P.; Gulyurtlu, I.; Cabrita, I. [DEECA-INETI, Lisbon (Portugal)

    2002-07-01

    Co-combustion of waste with coal was carried out using a fluidised bed combustor with the aim of achieving a fuel mixture with little variations in its heating value and simultaneously reducing the accumulation of non-toxic waste material by upgrading them for energy purposes. Results obtained indicate that the feeding of waste materials could present serious problems which could render conditions for a stable combustion difficult to achieve. The waste was fed mixed with coal and there was some difference observed in results regarding the combustion efficiency and emissions. Part of the combustion of waste material, contrary to that of coal, was observed to take place in the freeboard where the temperature was as much as 150{degree}C above that of the bed. 6 refs., 8 figs., 8 tabs.

  14. Variation in excess oxidant factor in combustion products of MHD generator. [Natural gas fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pinkhasik, M S; Mironov, V D; Zakharko, Yu A; Plavinskii, A I

    1977-12-01

    Methods and difficulties associated with determining the excess oxidant factor for natural gas-fired MHD generators are discussed. The measurement of this factor is noted to be essential for the optimization of the combustion chamber and operation of MHD generators. A gas analyzer of electrochemical type is considered as a quick - response sensor capable of analyzing the composition of the combustion products and thus determining accurately the excess oxidant factor. The principle of operation of this sensor is discussed and the dependence of the electrochemical sensor emf on excess oxidant factor is shown. Three types of sensors are illustrated and tables of test results are provided.

  15. Formation of Liquid Products at the Filtration Combustion of Solid Fuels

    Directory of Open Access Journals (Sweden)

    E. A. Salgansky

    2016-01-01

    Full Text Available Yields of liquid and gaseous products of the filtration combustion of cellulose, wood, peat, coal, and rubber have been investigated. Experiments have shown that the gasification of solid fuels in the regime with superadiabatic heating yields liquid hydrocarbons with quantity and quality, which are close to those produced using other methods, for example, by pyrolysis. But in this case no additional energy supply is needed to carry out the gasification process. The low calorific combustible gas, which forms in this process, contains a substantial quantity of carbon monoxide and hydrogen, which are components of syngas.

  16. Utilization of low NOx coal combustion by-products. Quarterly report, July 1--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The objective of this project was to commercialize fly ash beneficiation at various facilities around the country. The paper describes laboratory characterization of fly ash samples, pilot plant testing, product testing, and market and economic analyses. Products include concrete, concrete blocks and bricks, plastic fillers, activated carbon, and metal matrix composites.

  17. Pyrolysis of plastic waste for liquid fuel production as prospective energy resource

    Science.gov (United States)

    Sharuddin, S. D. A.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    The worldwide plastic generation expanded over years because of the variety applications of plastics in numerous sectors that caused the accumulation of plastic waste in the landfill. The growing of plastics demand definitely affected the petroleum resources availability as non-renewable fossil fuel since plastics were the petroleum-based material. A few options that have been considered for plastic waste management were recycling and energy recovery technique. Nevertheless, several obstacles of recycling technique such as the needs of sorting process that was labour intensive and water pollution that lessened the process sustainability. As a result, the plastic waste conversion into energy was developed through innovation advancement and extensive research. Since plastics were part of petroleum, the oil produced through the pyrolysis process was said to have high calorific value that could be used as an alternative fuel. This paper reviewed the thermal and catalytic degradation of plastics through pyrolysis process and the key factors that affected the final end product, for instance, oil, gaseous and char. Additionally, the liquid fuel properties and a discussion on several perspectives regarding the optimization of the liquid oil yield for every plastic were also included in this paper.

  18. Investigation of the Influence of Acoustic Oscillation Parameters on the Mechanism of Waste Rubber Products Combustion

    Science.gov (United States)

    Shakurov, R. F.; Sitnikov, O. R.; Galimova, A. I.; Sabitova, A. F.

    2018-03-01

    The article presents an analysis of the used methods of recycling of waste rubber products. The worn out tires are exposed to natural decomposition only after 50 - 100 years, and toxic organic compounds used in the manufacture constitute a danger to the environment. It contemplates a method of recycling waste rubber products in devices where pulsating combustion is realized. The dependence of the influence of acoustic pulsation parameters on the combustion mechanism of waste rubber products and on the composition of combustion products was experimentally investigated and established. For this purpose, the setup scheme based on the Rijke effect is optimized. The resonance pipe is coaxially embedded in the shaft. The known mathematical model of finding the combustion zones in the Rijke pipe, corresponding to the gas flow oscillations with the maximum amplitude, is applied to the chosen scheme. Investigations were carried out for three positions of the grate relative to the lower section of the experimental pipe, in which 1st, 2nd, 3rd modes of oscillation are formed. There are favorable conditions arise for the secondary combustion of mechanical particles entrained in the gas flow in the tube. The favorable conditions for afterburning also include the fact that through the upper section of the resonant pipe, the ambient air, caused by the features of the standing wave, is mixed into the gas stream. A comparative analysis of the change of gas concentration composition along the length of the resonance tube is carried out. It is established that the basic mode of oscillations contributes to the reduction of nitrogen oxides, in comparison with the oscillations occurring simultaneously at several harmonics, considering the main one. The results of research for the three positions of the grate in relation to the lower section of the installation are presented in tabular form, in which 1, 2, 3 modes of oscillation are formed. The analysis of experimental results confirms

  19. Investigation of the combustion kinetics and polycyclic aromatic hydrocarbon emissions from polycaprolactone combustion.

    Science.gov (United States)

    Chien, Y C; Yang, S H

    2013-01-01

    Polycaprolactone (PCL) is one of the most attractive biodegradable plastics that has been widely used in medicine and agriculture fields. Because of the large increase in biodegradable plastics usage, the production of waste biodegradable plastics will be increasing dramatically, producing a growing environmental problem. Generally, waste PCL is collected along with municipal solid wastes and then incinerated. This study investigates the combustion kinetics and emission factors of 16 US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) in the PCL combustion. Experimentally, two reactions are involved in the PCL combustion process, possibly resulting in the emission of carbon dioxide, propanal, protonated caprolactone and very small amounts of PAH produced by incomplete combustion. The intermediate products may continuously be oxidized to form CO2. The emission factors for 16 US EPA priority PAHs are n.d. -2.95 microg/g, which are much lower than those of poly lactic acid and other plastics combustion. The conversion of PCL is 100%. Results from this work suggest that combustion is a good choice for the waste PCL disposal.

  20. The industrial production of fuel elements; La fabrication en france des elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Boussard, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires; Nadal, J [Societe Industrielle de Combustible Nucleaire (SICN), 75 - Paris (France); Pellen, A [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques (CERCA), 75 - Paris (France)

    1964-07-01

    -pool type reactors. The authors show how the problem of the industrial production of rolled fuel elements has been solved in France, and give the three steps involved: 1 - Assembly of the plates made in the U.S.A., 2 - Rolling of the cores made in the U.S.A. to obtain the plates, 3 - Fabrication of the U-Al alloy and production of the cores. They then recall briefly the characteristics of the different fuel elements now in production. A description is given of the various stages of the production including information about the equipment; stress is laid on the extent of the controls carried out at each stage. In conclusion the authors consider the future development of this type of production taking into account the improvements planned and those which are possible. (authors) [French] Les auteurs traitent successivement de la fabrication industrielle des elements combustibles pour reacteurs de puissance de la filiere U naturel graphite-gaz et plus particulierement pour les centrales energetiques d'E.D.F. et de celle des elements combustibles a base d'U enrichi destines aux reacteurs experimentaux du type 'piscine'. 1ere Partie - LES ELEMENTS COMBUSTIBLES AVANCES POUR LES REACTEURS E.D.F.: Apres un bref rappel des caracteristiques des elements combustibles actuellement fabriques industriellement pour les reacteurs de MARCOULE et de CHINON, les auteurs indiquent les differentes etapes suivies pour aboutir au stade de la fabrication industrielle d'un element combustible nouveau, tant en ce qui concerne la gaine et eventuellement la chemise de graphite que le combustible lui-meme. Pour ce qui est de l'elaboration du combustible, ils decrivent les differentes operations en insistant sur les points originaux de la fabrication et de l'appareillage tels que: - coulees en moules chauds, - traitement thermique des alliages U.Mo 1 p. 100, - soudure des pastilles de fermeture des tubes, - gainage - controle aux differents stades. En ce qui concerne la fabrication des gaines, ils

  1. Novel pre-combustion power production : membrane Reactors

    NARCIS (Netherlands)

    Gallucci, F.; Van Sint Annaland, M.

    2015-01-01

    It is well known that conversion of fossil fuels for power production leads to an enormous amount of greenhouse gas emissions widely accepted as responsible for climate change. As fossil fuels will remain the primary energy source for the next decades, different studies are ongoing to make the

  2. Thermodynamic evaluation of chemical looping combustion for combined cooling heating and power production driven by coal

    International Nuclear Information System (INIS)

    Fan, Junming; Hong, Hui; Zhu, Lin; Wang, Zefeng; Jin, Hongguang

    2017-01-01

    Highlights: • An ex-situ coal gasification chemical looping combustion integrated with CCHP process has been presented. • This novel process maintains a maximum energy efficiency of 60.34%. • The fossil energy saving ratio of this process is optimize to be 27.20%. - Abstract: This study carries out an investigation concerning on the benefits of ex-situ coal gasification chemical looping combustion integrated with combined cooling, heating and power generation (CCHP-CLC) by means of thermodynamic evaluation. The coal gasification syngas is introduced into chemical looping combustion for inherent separation of CO_2 without extra energy consumed. The combustion flue gases from both air reactor and fuel reactor are sequentially fed into gas turbines for electricity production, a heat recovery vapor generator unit for further electricity generation with driving a LiBr-H_2O absorption chiller for cooling production in summer and finally a heat exchanger for daily heat water production. A preliminary parameter analysis helps to obtain the optimum operating condition, as steam-to-coal ratio (S/C) of 0.05, oxygen-to-coal ratio (O/C) of 0.75, and operating pressure of chemical looping combustion process of 5 bar. The overall energy efficiency of the CCHP-CLC process is calculated equal to 58.20% in summer compared with that of 60.34% in winter. Importantly, by utilization of such process, the reduction potential of fossil fuel (coal) consumption has been demonstrated to be 23.36% in summer and 27.20% in winter.

  3. Coal combustion products in Europe valuable raw materials for the construction industry

    Energy Technology Data Exchange (ETDEWEB)

    Berg, W. vom; Feuerborn, H.J. [European Coal Combustion Products Association e.V., Essen (Germany)

    2005-07-01

    Coal combustion products (CCPs) are formed with the production of electricity in coal-fired power plants. The production of these CCPs has been increased by the years due to legal requirements for flue gas cleaning. The utilisation of CCPS is well is established in some European countries, based on long term experience and technical as well as environmental benefits. As CCPs are defined as waste materials by existing legislation the power industry has to handle the stigma put on the products and hamper the beneficial use. (orig.)

  4. Comparison of solute-binding properties of plastic materials used as pharmaceutical product containers.

    Science.gov (United States)

    Jenke, Dennis; Couch, Tom; Gillum, Amy

    2010-01-01

    Material/water equilibrium binding constants (E(b)) were determined for 11 organic solutes and 2 plastic materials commonly used in pharmaceutical product containers (plasticized polyvinyl chloride and polyolefin). In general, solute binding by the plasticized polyvinyl chloride material was greater, by nearly an order of magnitude, than the binding by the polyolefin (on an equal weight basis). The utilization of the binding constants to facilitate container compatibility assessments (e.g., drug loss by container binding) for drug-containing products is discussed.

  5. Methods for the continuous production of plastic scintillator materials

    Science.gov (United States)

    Bross, Alan; Pla-Dalmau, Anna; Mellott, Kerry

    1999-10-19

    Methods for producing plastic scintillating material employing either two major steps (tumble-mix) or a single major step (inline-coloring or inline-doping). Using the two step method, the polymer pellets are mixed with silicone oil, and the mixture is then tumble mixed with the dopants necessary to yield the proper response from the scintillator material. The mixture is then placed in a compounder and compounded in an inert gas atmosphere. The resultant scintillator material is then extruded and pelletized or formed. When only a single step is employed, the polymer pellets and dopants are metered into an inline-coloring extruding system. The mixture is then processed under a inert gas atmosphere, usually argon or nitrogen, to form plastic scintillator material in the form of either scintillator pellets, for subsequent processing, or as material in the direct formation of the final scintillator shape or form.

  6. Dew point of combustion products of coal from the Berezovo deposit

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, V.A. (UralVTI (USSR))

    1990-11-01

    Evaluates properties of brown coal from the Berezovo deposit, Kansk-Achinsk basin, and properties of its combustion products. Coal properties are the following: sulfur content from 0.26 to 0.49%, ash content from 3.49 to 6.58%, moisture content from 31.6 to 36.9%, calorific value from 14,200 to 15,840 kJ/kg. Dew point of the combustion products amounts to 51 C and is equal to that of water vapor present in flue gases. Changing boiler output does not influence dew point. Increase in the excess air coefficient from 1.2 to 1.4 results in an increase in dew point by 2-3 K; further increase in air excess coefficient to 1.64 causes a decline in dew point by 3-4 K. 2 refs.

  7. Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.

    Science.gov (United States)

    Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

    2011-06-01

    In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.

  8. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change.

    Science.gov (United States)

    Aspinwall, Michael J; Loik, Michael E; Resco de Dios, Victor; Tjoelker, Mark G; Payton, Paxton R; Tissue, David T

    2015-09-01

    Climate change threatens the ability of agriculture and forestry to meet growing global demands for food, fibre and wood products. Information gathered from genotype-by-environment interactions (G × E), which demonstrate intraspecific variation in phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental change), may prove important for bolstering agricultural and forest productivity under climate change. Nonetheless, very few studies have explicitly quantified genotype plasticity-productivity relationships in agriculture or forestry. Here, we conceptualize the importance of intraspecific variation in agricultural and forest species plasticity, and discuss the physiological and genetic factors contributing to intraspecific variation in phenotypic plasticity. Our discussion highlights the need for an integrated understanding of the mechanisms of G × E, more extensive assessments of genotypic responses to climate change under field conditions, and explicit testing of genotype plasticity-productivity relationships. Ultimately, further investigation of intraspecific variation in phenotypic plasticity in agriculture and forestry may prove important for identifying genotypes capable of increasing or sustaining productivity under more extreme climatic conditions. © 2014 John Wiley & Sons Ltd.

  9. Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste.

    Science.gov (United States)

    Hedman, Björn; Burvall, Jan; Nilsson, Calle; Marklund, Stellan

    2005-01-01

    In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.

  10. Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste

    International Nuclear Information System (INIS)

    Hedman, Bjoern; Burvall, Jan; Nilsson, Calle; Marklund, Stellan

    2005-01-01

    In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations

  11. Exploring the Disappearing Ocean Micro Plastic Mystery: New Insights from Dissolved Organic Carbon photo production

    Science.gov (United States)

    Zhu, L.; Zhao, S.; Li, D.; Stubbins, A.

    2017-12-01

    Emerging as a novel planetary threat, plastic waste, dominated by millimeter-sized plastic (microplastic), is omnipresent in the oceans, posing broad environmental threats. However, only 1% of the microplastic waste exported from the land is found in the ocean. Most of the lost fraction is in the form of microplastics. The fate of these buoyant plastic fragments is a fundamental gap in our understanding of the fate and impact of plastics in marine ecosystems. To date, an effective sink for the lost microplastics has not been found. In this study, dissolved organic carbon (DOC) photo-production from the three dominant forms of ocean microplastics was assessed. These plastics were: 1) Polyethylene (PE) both for postconsumer samples and pure standard samples; 2) polypropylene (PP); and, expanded polystyrene (EPS). In addition, a Neustonic microplastic samples from the North Pacific Gyre were irradiated. These real-world samples were dominated by PE ( 80%). All samples were placed in seawater, in quartz flasks, and irradiated in a solar simulator for 2 months. During irradiation, DOC photo-production from PP, EPS, and the PE standard was exponential, while DOC photo-production from postconsumer PE and the Neustonic samples was linear. Scanning electron microscopy indicated surface ablation and micro-fragmentation during the irradiation of the three plastics that showed exponential DOC production (PP, EPS and standard PE), suggesting the increase in photo-reactivity of these plastics was a result of an increase in their surface to volume ratios and therefore their per-unit mass light exposure. Based on DOC production, the half-life of the microplastics ranged from 0.26 years for EPS to 86 years for PE, suggesting sunlight is a major removal term for buoyant oceanic microplastics. With respect to the broader carbon cycle, we conservatively estimate that plastic photodegradation releases 6 to 17 thousand metric tons of radiocarbon dead DOC to the surface ocean each year.

  12. Conversion of Hazardous Motor Vehicle Used Tire and Polystyrene Waste Plastic Mixture into useful Chemical Products

    OpenAIRE

    Moinuddin Sarker; Mohammad Mamunor Rashid

    2014-01-01

    Motor vehicle used tire and polystyrene waste plastic mixture into fuel recovery using thermal degradation process in laboratory batch process. Motor vehicle used tire and polystyrene waste plastic was use 75 gm by weight. Motor vehicle tire was 25 gm and polystyrene waste plastic was 50 gm. In presence of oxygen experiment was performed under laboratory fume hood. Thermal degradation temperature range was 100 - 420 oC and experiment run time was 5 hours. Product fuel density is 0.84 gm/ml an...

  13. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant.

    Science.gov (United States)

    Wäger, Patrick A; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6-10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  15. Control Scheme Formulation for the Production of Hydrogen on Demand to Feed an Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jarniel García Morales

    2016-12-01

    Full Text Available In this work, a control strategy is presented to produce hydrogen on demand to feed an internal combustion (IC engine. For this purpose, the modeling of the IC engine fueled by gasoline blended with 10 % v/v of anhydrous ethanol (E10 and hydrogen as an additive is developed. It is considered that the hydrogen gas is produced according to the IC engine demand, and that the hydrogen gas is obtained by an alkaline electrolyzer. The gasoline–ethanol blend added into the combustion chamber is determined according to the stoichiometric ratio and the production of hydrogen gas is regulated by a proportional and integral controller (P.I.. The controller reference is varying according to the mass flow air induced into the cylinder, in order to ensure an adequate production of hydrogen gas for any operating condition of the IC engine. The main contribution of this work is the control scheme developed, through simulation, in order to produce hydrogen on demand for any operating point of an internal combustion engine fueled by an E10 blend. The simulation results showed that the use of hydrogen gas as an additive in an E10 blend decreases the E10 fuel consumption 23 % on average, and the thermal efficiency is increased approximately 2.13 % , without brake power loss in the IC engine.

  16. Research productivity and gender disparities: a look at academic plastic surgery.

    Science.gov (United States)

    Paik, Angie M; Mady, Leila J; Villanueva, Nathaniel L; Goljo, Erden; Svider, Peter F; Ciminello, Frank; Eloy, Jean Anderson

    2014-01-01

    The h-index has utility in examining the contributions of faculty members by quantifying both the amount and the quality of research output and as such is a metric in approximating academic productivity. The objectives of this study were (1) to evaluate the relationship between h-index and academic rank in plastic surgery and (2) to describe the current gender representation in academic plastic surgery to assess whether there are any gender disparities in academic productivity. The h-index was used to evaluate the research contributions of plastic surgeons from academic departments in the United States. There were 426 (84%) men and 79 (16%) women in our sample. Those in higher academic ranks had higher h-index scores (p productivity between men and women in assistant and associate professor positions (6.4 vs 5.1, respectively; p = 0.04). The h-index is able to objectively and reliably quantify academic productivity in plastic surgery. We found that h-indices increased with higher academic rank, and men had overall higher scores than their female colleagues. Adoption of this metric as an adjunct to other objective and subjective measures by promotions committees may provide a more reliable measure of research relevance and academic productivity in academic plastic surgery. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  17. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  18. Trace impurities analysis of aluminum nanopowder and its air combustion product

    Science.gov (United States)

    Kabanov, Denis V.; Merkulov, Viktor G.; Mostovshchikov, Andrey V.; Ilyin, Alexander P.

    2018-03-01

    Neutron activation analysis (NAA) allows estimating micro-concentrations of chemicals and analyzes tens of elements at one measurement. In this paper we have used NAA to examine metal impurities in the electroexplosive aluminum nanopowder (ANP) and its air-combustion products produced by burning in crucibles in an electric and magnetic field and without application of fields. It has been revealed that in the air-combustion products impurities content is reduced. The presence of impurities in the ANP is associated with electric explosion technology (erosion of electrode and chamber materials) and with the previous development of various nanopowders in the composition of this electric explosive device. NAA is characterized by a high sensitivity and reproducibility to elements content and low metering error. According to the obtained results it has been concluded that NAA metering error does not exceed 10% in the wide concentration range, from 0.01 to 2100 ppm, particularly. Besides, there is high reproducibility of the method that has been proved on macro-elements of Ca (>1000 ppm), Fe (>2000 ppm), and micro-elements as Sm, U, Ce, Sb, Th, etc. (<0.9 ppm). It is recommended to use an individual unit for the production of pure metal powders for electric explosion and production of nanopowders, which is possible with mass production of nanopowders.

  19. Evaluating exposures to complex mixtures of chemicals during a new production process in the plastics industry

    NARCIS (Netherlands)

    Meijster, T.; Burstyn, I.; Wendel de Joode, B. van; Posthumus, M.A.; Kromhout, H.

    2004-01-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations.

  20. Recent activities in flame retardancy of wood-plastic composites at the Forest Products Laboratory

    Science.gov (United States)

    Robert H. White; Nicole M. Stark; Nadir Ayrilmis

    2011-01-01

    For a variety of reasons, wood-plastic composite (WPC) products are widely available for some building applications. In applications such as outdoor decking, WPCs have gained a significant share of the market. As an option to improve the efficient use of wood fiber, the USDA Forest Service, Forest Products Laboratory (FPL), has an extensive research program on WPCs....

  1. Evaluating Exposures to Complex Mixtures of Chemicals During a New Production Process in the Plastics Industry

    NARCIS (Netherlands)

    Meijster, T.; Burstyn, I.; Wendel de Joode, van B.; Posthumus, M.A.; Kromhout, H.

    2004-01-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations.

  2. Phenotypic plasticity of fine root growth increases plant productivity in pine seedlings

    Directory of Open Access Journals (Sweden)

    Grissom James E

    2004-09-01

    Full Text Available Abstract Background The plastic response of fine roots to a changing environment is suggested to affect the growth and form of a plant. Here we show that the plasticity of fine root growth may increase plant productivity based on an experiment using young seedlings (14-week old of loblolly pine. We use two contrasting pine ecotypes, "mesic" and "xeric", to investigate the adaptive significance of such a plastic response. Results The partitioning of biomass to fine roots is observed to reduce with increased nutrient availability. For the "mesic" ecotype, increased stem biomass as a consequence of more nutrients may be primarily due to reduced fine-root biomass partitioning. For the "xeric" ecotype, the favorable influence of the plasticity of fine root growth on stem growth results from increased allocation of biomass to foliage and decreased allocation to fine roots. An evolutionary genetic analysis indicates that the plasticity of fine root growth is inducible, whereas the plasticity of foliage is constitutive. Conclusions Results promise to enhance a fundamental understanding of evolutionary changes of tree architecture under domestication and to design sound silvicultural and breeding measures for improving plant productivity.

  3. Digital prototyping technique applied for redesigning plastic products

    Science.gov (United States)

    Pop, A.; Andrei, A.

    2015-11-01

    After products are on the market for some time, they often need to be redesigned to meet new market requirements. New products are generally derived from similar but outdated products. Redesigning a product is an important part of the production and development process. The purpose of this paper is to show that using modern technology, like Digital Prototyping in industry is an effective way to produce new products. This paper tries to demonstrate and highlight the effectiveness of the concept of Digital Prototyping, both to reduce the design time of a new product, but also the costs required for implementing this step. The results of this paper show that using Digital Prototyping techniques in designing a new product from an existing one available on the market mould offers a significantly manufacturing time and cost reduction. The ability to simulate and test a new product with modern CAD-CAM programs in all aspects of production (designing of the 3D model, simulation of the structural resistance, analysis of the injection process and beautification) offers a helpful tool for engineers. The whole process can be realised by one skilled engineer very fast and effective.

  4. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    Science.gov (United States)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  5. Plastic Bottles Waste Utilization as Modifier for Asphalt Mixture Production

    Directory of Open Access Journals (Sweden)

    Jan Hakeem

    2017-01-01

    Full Text Available Plastic Bottles was used as the polymeric waste to investigate performance of asphalt mixture Aggregates obtained from Margalla, Burhan and Karak quarries. 12 samples were prepared for conventional asphalt mixtures and 48 samples were prepared for PB modified asphalt mixture of each quarries at various proportions of PB waste. The PB used for modification according to wet process are 15%, 20%, 25% and 30% by weight of Optimum Bitumen Content (OBC. OBC of 4.2 % was concluded for conventional asphalt mixtures. The stability and flow values of the conventional and modified Asphalt Mixture were compared. The average Stability of the modified Margalla asphalt mixtures when 15% PB was used was much higher as compared to conventional asphalt mixtures. But when PB was used beyond 15%, the Marshall stability showed a decreasing trend for Margalla aggregates, increasing trend for Karak aggregates and decreasing trend for Burhan aggregates. This decline in stability is attributed to a decline in interlocking of aggregates due to lubricating effect. The corresponding flow for the Modified asphalt mixtures first showed a decreasing trend for Margalla aggregates at 15% PB modification but beyond 15%, an increasing trend in flow as compared to conventional asphalt mixtures The decrease in flow or increase in Marshall Stability is attributed to improvement in interlocking and decline in flow or stability is attributed to a decline in interlocking offered by binder and PB coated aggregate particles in modified asphalt.

  6. Use of glass-reinforced plastic vessels in petrochemical production plants

    International Nuclear Information System (INIS)

    Makarov, V.G.; Baikin, V.G.; Perlin, S.M.

    1984-01-01

    At present, petrochemical plant production equipment is made of scarce high-alloy steels and alloys or carbon steel with subsequent chemical protection. Traditional methods of protection frequently do not provide reliable and safe service of equipment for the length of the normal operating life. One of the effective methods of combatting corrosion is the use of glass-reinforced plastic equipment. Glass-reinforced equipment is not subject to electrochemical corrosion and has a high chemical resistance. Weight is approximately a third of similar vessels. The paper provides recommendations and precautions for the production, installation, use and maintenance of glass-reinforced plastic vessels

  7. The second green revolution? Production of plant-based biodegradable plastics.

    Science.gov (United States)

    Mooney, Brian P

    2009-03-01

    Biodegradable plastics are those that can be completely degraded in landfills, composters or sewage treatment plants by the action of naturally occurring micro-organisms. Truly biodegradable plastics leave no toxic, visible or distinguishable residues following degradation. Their biodegradability contrasts sharply with most petroleum-based plastics, which are essentially indestructible in a biological context. Because of the ubiquitous use of petroleum-based plastics, their persistence in the environment and their fossil-fuel derivation, alternatives to these traditional plastics are being explored. Issues surrounding waste management of traditional and biodegradable polymers are discussed in the context of reducing environmental pressures and carbon footprints. The main thrust of the present review addresses the development of plant-based biodegradable polymers. Plants naturally produce numerous polymers, including rubber, starch, cellulose and storage proteins, all of which have been exploited for biodegradable plastic production. Bacterial bioreactors fed with renewable resources from plants--so-called 'white biotechnology'--have also been successful in producing biodegradable polymers. In addition to these methods of exploiting plant materials for biodegradable polymer production, the present review also addresses the advances in synthesizing novel polymers within transgenic plants, especially those in the polyhydroxyalkanoate class. Although there is a stigma associated with transgenic plants, especially food crops, plant-based biodegradable polymers, produced as value-added co-products, or, from marginal land (non-food), crops such as switchgrass (Panicum virgatum L.), have the potential to become viable alternatives to petroleum-based plastics and an environmentally benign and carbon-neutral source of polymers.

  8. Analysis of the influencing factors of PAEs volatilization from typical plastic products.

    Science.gov (United States)

    Chen, Weidong; Chi, Chenchen; Zhou, Chen; Xia, Meng; Ronda, Cees; Shen, Xueyou

    2018-04-01

    The primary emphasis of this research was to investigate the foundations of phthalate (PAEs) pollutant source researches and then firstly confirmed the concept of the coefficient of volatile strength, namely phthalate total content in per unit mass and unit surface area of pollutant sources. Through surveying and evaluating the coefficient of volatile strength of PAEs from typical plastic products, this research carried out reasonable classification of PAEs pollutant sources into three categories and then investigated the relationship amongst the coefficient of volatile strength as well as other environmental factors and the concentration level of total PAEs in indoor air measured in environment chambers. Research obtained phthalate concentration results under different temperature, humidity, the coefficient of volatile strength and the closed time through the chamber experiment. In addition, this study further explored the correlation and ratio of influencing factors that affect the concentration level of total PAEs in environment chambers, including environmental factors, the coefficient of volatile strengths of PAEs and contents of total PAEs in plastic products. The research created an improved database system of phthalate the coefficient of volatile strengths of each type of plastic goods, and tentatively revealed that the volatile patterns of PAEs from different typical plastic goods, finally confirmed that the coefficient of volatile strengths of PAEs is a major factor that affects the indoor air total PAEs concentration, which laid a solid foundation for further establishing the volatile equation of PAEs from plastic products. Copyright © 2017. Published by Elsevier B.V.

  9. Contamination Detection and Mitigation Strategies for Unsymmetric Dimethylhydrazine/Nitrogen Tetroxide Non-Combustion Product Residues

    Science.gov (United States)

    Greene, Benjamin; Buchanan, Vanessa D.; Baker, David L.

    2006-01-01

    Dimethylamine and nitrite, which are non-combustion reaction products of unsymmetrical dimethylhydrazine (UDMH) and nitrogen tetroxide (NTO) propellants, can contaminate spacesuits during extra-vehicular activity (EVA) operations. They can react with water in the International Space Station (ISS) airlock to form N-nitrosodimethylamine (NDMA), a carcinogen. Detection methods for assessing nitrite and dimethylamine contamination were investigated. The methods are based on color-forming reactions in which intensity of color is proportional to concentration. A concept color detection kit using a commercially available presumptive field test for methamphetamine coupled with nitrite test strips was developed and used to detect dimethylamine and nitrite. Contamination mitigation strategies were also developed.

  10. Production of plastic scintillation survey meter for clearance verification measurement

    International Nuclear Information System (INIS)

    Tachibana, Mitsuo; Shiraishi, Kunio; Ishigami, Tsutomu; Tomii, Hiroyuki

    2008-03-01

    In the Nuclear Science Research Institute, the decommissioning of various nuclear facilities is carried out according to the plan for meeting the midterm goal of the Japan Atomic Energy Agency (JAEA). An increase in the clearance verification measurement of concrete on buildings and the radiation measurement for releasing controlled areas will be expected along with the dismantlement of nuclear facilities in the future. The radiation measurement for releasing controlled areas has been carried out in small-scale nuclear facilities including the JPDR (Japan Power Demonstration Reactor). However, the radiation measurement with an existing measuring device was difficult in effects of radiation from radioactive materials that remains in buried piping. On the other hand, there is no experience that the clearance verification measurement is executed in the JAEA. The generation of a large amount of clearance object will be expected along with the decommissioning of the nuclear facilities in the future. The plastic scintillation survey meter (hereafter, 'PL measuring device') was produced to apply to the clearance verification measurement and the radiation measurement for releasing controlled areas. The basic characteristic test and the actual test were confirmed using the PL measuring device. As a result of these tests, it was found that the evaluation value of radioactivity with the PL measuring device was accuracy equal with the existing measuring device. The PL measuring device has feature of the existing measuring device with a light weight and easy operability. The PL measuring device can correct the gamma ray too. The PL measuring device is effective to the clearance verification measurement of concrete on buildings and the radiation measurement for releasing controlled areas. (author)

  11. Fuel oil combustion with low production of nitrogen oxides; Combustion de combustoleo con baja produccion de oxidos de nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Escalera Campoverde, Rogelio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-09-01

    This work presents the results of the theoretical-experimental study of the effects of the secondary air jet directed perpendicularly to the flame axis in the fuel oil combustion in a 500 Kw furnace. The main purpose of this study was to obtain low nitrogen oxides (NO{sub x}) emissions without increasing the CO, which is observed in low NO{sub x} conventional burners. The experimental results showed a significative reduction of the NO{sub x} and of the CO, from 320 to 90 ppm and from 50 ppm to negligible values, respectively. A commercial computational code of fluid dynamics was employed for modeling the combustion in base line conditions, without secondary air and with the injection of secondary air. The experimental results were compared with calculated ones. [Espanol] En este trabajo se presentan los resultados del estudio teorico experimental de los efectos de los chorro de aire secundario dirigidos en forma perpendicular al eje de la flama en la combustion del combustoleo en un horno de 500 kW. El proposito principal del estudio fue obtener bajas emisiones de oxidos de nitrogeno (NO{sub x}) sin incrementar el CO, lo cual se observa en quemadores convencionales de bajo NO{sub x}. Los resultados experimentales demostraron una reduccion significativa del NO{sub x} y del CO: de 320 a 90 ppm y de 50 ppm a valores despreciables, respectivamente. Se empleo un codigo computacional comercial de dinamica de fluidos para modelar la combustion en condiciones de linea base, sin aire secundario, y con la inyeccion del aire secundario. Se comparan resultados experimentales con los calculados.

  12. Analysis of causes of combustible mixture explosions inside production floor areas

    Directory of Open Access Journals (Sweden)

    Lyapin Anton

    2016-01-01

    Full Text Available The work provides a cause analysis for major industrial explosions and a review of the causes of combustive air-gas mixture generation in a production environment. It has been established that during operation of explosive production facilities, it is process equipment that, as a rule, creates explosive environment inside the floor area. A qualitative method for determination of a potential accident has been reviewed. Analysis of the nature of explosion effect on building structures and equipment has shown that exposions characterised by absence of equipment and building structure disintegration normally have a localized character. It has been identified that during explosions inside process equipment, the largest structural damage occurs in spots hit by equipment debris. Complete destruction of building structures and equipment is caused by explosions inside equipment containing large quantities of combustible products. It has been identified that most explosions are accompanied by partial or total destruction of building structures and equipment. Therefore, measures taken to protect equipment and buildings from explosion effects lack efficiency.

  13. Gaseous products and smoke generation on combustion of the insulation materials of nuclear cables

    International Nuclear Information System (INIS)

    Noguchi, Isamu; Takami, Hiroshi; Ueyama, Michio; Fujimura, Shun-ichi.

    1976-01-01

    Serious requirements have been introduced to the cables used for nuclear power plants on their flame retardation in the IEEE Standard 383-1974. The movements that the users prescribe the quantity of corrosive gas generated from cables are also observed. This report describes on the measured results of the gaseous products generated by burning polyethylene, polyvinyl-chloride (PVC) and their flame-resistant products, and a part of the covering materials of the cables for nuclear power plants (flame-resistant, crosslinking polyethylene, flame-resistant, low hydrochloric acid PVC, flame-resistant jute) in the infra-red rapid heating combustion test facility designed by the Furukawa Electric Co. Ltd. In addition, the report introduces the test method for the smoke generation evaluation of polymers and a part of the measured results. The gaseous products of combustion were collected and determined quantitatively by gas chromatographic method. Since smoke generation is affected greatly by the kinds, shape, atmosphere, temperature, ignition procedure and others of burnt matters, the establishment of the evaluation test method is difficult, and a number of methods have been proposed. As the measured results showed, it is clear that smoke generation increases with the increase of flame resistant reagent addition. The smoke generation of PVC was of course great in quantity because it contains considerable amount of chlorine for its molecular structure. Flame-resistant polyethylene generates smoke much more than polyethylene without flame-resisting treatment because of its flame resistivity, but less than that of PVC. (Wakatsuki, Y.)

  14. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges.

    Science.gov (United States)

    Wilkes, R A; Aristilde, L

    2017-09-01

    Synthetic plastics, which are widely present in materials of everyday use, are ubiquitous and slowly-degrading polymers in environmental wastes. Of special interest are the capabilities of microorganisms to accelerate their degradation. Members of the metabolically diverse genus Pseudomonas are of particular interest due to their capabilities to degrade and metabolize synthetic plastics. Pseudomonas species isolated from environmental matrices have been identified to degrade polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polyethylene terephthalate, polyethylene succinate, polyethylene glycol and polyvinyl alcohol at varying degrees of efficiency. Here, we present a review of the current knowledge on the factors that control the ability of Pseudomonas sp. to process these different plastic polymers and their by-products. These factors include cell surface attachment within biofilms, catalytic enzymes involved in oxidation or hydrolysis of the plastic polymer, metabolic pathways responsible for uptake and assimilation of plastic fragments and chemical factors that are advantageous or inhibitory to the biodegradation process. We also highlight future research directions required in order to harness fully the capabilities of Pseudomonas sp. in bioremediation strategies towards eliminating plastic wastes. © 2017 The Society for Applied Microbiology.

  15. Production and technological plasticity of commercially pure Titanium in submicrocrystalline state

    International Nuclear Information System (INIS)

    Danilov, V. I.; Zuev, L. B.; Shlyahova, G. V.; Orlova, D. V; Sharkeev, Yu. P.

    2010-01-01

    Presented is the method for producing solid billets of commercially pure titanium having low dimensional nanostructure (structural elements < 100 nm). The method is based on multiple unidirectional pressing, with the direction of pressing being changed every other cycle, followed by cold rolling. The microstructure, mechanical characteristics and plastic deformation behavior of material produced by the above method was investigated. The results obtained are presented herein. The loading diagram of titanium alloy in nanostructure state shows a lengthy prefracture portion, which suggests that material undergoes practically no deformation hardening. The latter stage is also distinguished by the emergence of macroscopic nuclei of localized plastic flow, which differ in the level of accumulated deformation. The maximal-amplitude nucleus will remain stationary, pinpointing the place of future fracture. On the meso-scale level formation of meso-bands (folds) is observed, with the distribution and characteristic sizes of the meso-bands corresponding to the arrangement of localized plastic flow macro-nuclei. Characteristically, the local and global loss of plastic flow stability will occur simultaneously in titanium alloy in nanostructure state. On the base of experimental evidence certain modifications can be introduced into the pressing schedules employed by the production of materials in nanostructure state. Key words: titanium, nanostructure state, method of severe plastic deformation, deformation behavior, localized plastic flow, fracture

  16. Coal combustion by-products: A survey of use and disposal provisions

    International Nuclear Information System (INIS)

    Jagiella, D.M.

    1993-01-01

    Over 50% of all electricity in the United States is generated by the combustion of coal. Currently, coal fired power plants produce approximately 85 million to 100 million tons of coal combustion byproducts each year. The generation of these byproducts is expected to increase to 120 million tons by the year 2000, an increase of about 72% over 1984 levels. There are four basic types of byproducts produced by coal combustion - fly as, bottom ash, boiler slag, and flue gas desulfurization sludge (FGD), and are useful as engineering materials in a variety of applications. Fly ash represents nearly 75% of all ash wastes generated in the United States. Fly ash is a powder like substance with bonding properties. The properties of fly ash depend on the type of boiler utilized. The collected fly ash can be used to partially replace cement in concrete or the clay tit bricks or as part of nine reclamation. The technology for use of fly ash in cement concrete and road bases is well developed and has been practical for many years. The United States Environmental Protection Agency (USEPA) has recognized the applications of fly ash and promulgated a federal procurement guideline for the use of fly ash in cement and concrete. Although fly ash is the second most widely used waste product, much opportunity remains to expand the use of this product, In 1984, 80% of all fly ash was not recycled but rather disposed of, Ash particles that do not escape in flue gas as fly ash become bottom ash or boiler slag. Bottom ash and boiler slag settles on the bottom of the power plant's boiler. Bottom ash is a sand like substance which has some bonding capability. Depending on the type of boiler, tile bottom ash may be open-quotes dry bottom ashclose quotes or open-quotes wet bottom ashclose quotes, Wet bottom ash falls in a molten state into water

  17. Predicting the formation and the dispersion of toxic combustion products from the fires of dangerous substances

    Science.gov (United States)

    Nevrlý, V.; Bitala, P.; Danihelka, P.; Dobeš, P.; Dlabka, J.; Hejzlar, T.; Baudišová, B.; Míček, D.; Zelinger, Z.

    2012-04-01

    Natural events, such as wildfires, lightning or earthquakes represent a frequent trigger of industrial fires involving dangerous substances. Dispersion of smoke plume from such fires and the effects of toxic combustion products are one of the reference scenarios expected in the framework of major accident prevention. Nowadays, tools for impact assessment of these events are rather missing. Detailed knowledge of burning material composition, atmospheric conditions, and other factors are required in order to describe quantitatively the source term of toxic fire products and to evaluate the parameters of smoke plume. Nevertheless, an assessment of toxic emissions from large scale fires involves a high degree of uncertainty, because of the complex character of physical and chemical processes in the harsh environment of uncontrolled flame. Among the others, soot particle formation can be mentioned as still being one of the unresolved problems in combustion chemistry, as well as decomposition pathways of chemical substances. Therefore, simplified approach for estimating the emission factors from outdoor fires of dangerous chemicals, utilizable for major accident prevention and preparedness, was developed and the case study illustrating the application of the proposed method was performed. ALOFT-FT software tool based on large eddy simulation of buoyant fire plumes was employed for predicting the local toxic contamination in the down-wind vicinity of the fire. The database of model input parameters can be effectively modified enabling the simulation of the smoke plume from pool fires or jet fires of arbitrary flammable (or combustible) gas, liquid or solid. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic via the project LD11012 (in the frame of the COST CM0901 Action) and the Ministry of Environment of the Czech Republic (project no. SPII 1a10 45/70).

  18. plastic waste recycling

    African Journals Online (AJOL)

    Dr Ahmed

    incinerators is increasing around the world. Discarded plastic products ... Agency (EPA) estimated that the amount of plastics throw away is. 50 % greater in the ... The waste plastics were identified using the Society of the Plastic. Industry (SPI) ...

  19. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  20. A study of oxidative degradation of plastics by GC and GC-MS

    NARCIS (Netherlands)

    Pacakova, V.; Leclercq, P.A.; Holotik, S.; Beroun, I.

    1985-01-01

    The behaviour of plastics, namely, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyamide and some copolymers, was studied in a combustion chamber in which the conditions of large-scale fires were simulated. Volatile combustion products were frozen-out or analyzed directly on two

  1. Dispersive solid-phase imprinting of proteins for the production of plastic antibodies

    DEFF Research Database (Denmark)

    Ashley, Jon; Feng, Xiaotong; Halder, Arnab

    2018-01-01

    We describe a novel dispersive solid-phase imprinting technique for the production of nano-sized molecularly imprinted polymers (nanoMIPs) as plastic antibodies. The template was immobilized on in-house synthesized magnetic microspheres instead of conventional glass beads. As a result, high...

  2. Evaluation of plastic packaging materials used in radiation sterilized medical products and food

    International Nuclear Information System (INIS)

    Li Fengmei; Wang Ying; Liu Xiaoguang; Yang Baoyu

    2000-01-01

    This paper studied the results of evaluation on resistance to radiation, moisture permeability, bacteria permeability, tensile strength, elongation at break and sealing ability for several plastic films available on the market. The result shows that nylon, sarin, and polyethylene complex films, high and low density polyethylene films are applicable for packing of radiation sterilized products. (author)

  3. Predictions of the product compositions for combustion or gasification of biomass and others hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Hendrick Maxil Zarate; Itai, Yuu; Nogueira, Manoel Fernandes Martins; Moraes, Sinfronio Brito; Rocha, Brigida Ramati Pereira da [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Faculdade de Engenharia Mecanica]. E-mails: hendrick@ufpa.br; yuuitai@ufpa.br; mfmn@ufpa.br; sbrito@ufpa.br; brigida@ufpa.br

    2008-07-01

    Processes involving combustion and gasification are object of study of many researchers. To simulate these processes in a detailed way, it is necessary to solve equations for chemical kinetics whose resolution many times is difficult due lack of information in the literature a simples way to bypass tis problem is due the chemical equilibrium. Prediction of the flu gases composition through chemical equilibrium is an important step in the mathematical modelling for gasification and combustion processes. Some free programs exists to solve problems that involve the chemical equilibrium, such as STANJAN, CEA, GASEQ, CANTERA and others.These programs have difficulty for cases involving fuel such as: biomass, vegetable oils, biodiesel, natural gas, etc., because they do not have database with the fuel composition and is hard to supply their HHV and their elementary analysis. In this work, using numeric methods, a program was developed to predict the gases composition on equilibrium after combustion and gasification processes with the for constant pressure or volume. In the program the chemical formula of the fuel is defined as C{sub x}H{sub y}O{sub z}N{sub w}S{sub v}A{sub u} that reacts with an gaseous oxidizer composed by O{sub 2}, N{sub 2}, Ar, He, CO{sub 2} e H{sub 2}O to have as final result the composition of the products CO{sub 2}, CO, H{sub 2}O, H{sub 2}, H, OH, O{sub 2}, O, N{sub 2}, NO, SO{sub 2}, CH{sub 4}, Ar, He, and ash. To verify the accuracy of the calculated values, it was compared with the program CEA (developed by NASA) and with experimental data obtained from literature. (author)

  4. Sustainable Product: Personal Protective Equipment Manufactured with Green Plastic

    Directory of Open Access Journals (Sweden)

    Hamilton Aparecido Boa Vista

    2015-04-01

    Full Text Available This study analyzed the case of manufacturing of Personal Protective Equipment (PPE using as raw material biopolymers produced from ethanol from sugar cane, known as green polypropylene, produced since 2008 by BRASKEM. This article studied the PPE for the employee’s head protection, named helmet by NR 6, which is used in situations of exposure to weather and work scenarios in places where there is risk of impact from falling or projecting objects, burns, electric shock, and solar radiation. The MSA, green helmet manufacturer, made an inventory of greenhouse gas emissions into the atmosphere by comparing the two manufacturing processes of the helmet shell, covering the January 1 to December 31, 2011 period. It concluded that the sustainable helmet (green polyethylene and pigments robs 231g of CO2 from the atmosphere per produced unit, while the helmet’s production with traditional raw materials (polyethylene and petrochemical pigments found that, for each unit produced, 1029g of CO2 are emitted into the atmosphere. The study showed that substitution of raw materials has led to reduction in the impact generated in the helmets’ production.

  5. Production of fines during co-combustion of coal with biomass fuels by fragmentation and attrition

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; D. Boavida; H. Lopes (and others) [DEECA-INETI, Lisbon (Portugal)

    2005-07-01

    Results are reported from a project funded by the RFCS Programme of the European Union. The aim is to investigate, experimentally and by modeling, the production of fine char and ash particles during co-combustion of coal with wastes and biofuels in circulating fluidized bed. Work was undertaken at installations of different scales. Polish and Colombian coals were base fuels. The additional fuels were two sewage sludges. Bed temperature, feeding system, sand particle size, devolatilisation behaviour and char burn-out were studied to verify their influence on the fine particle production. Modeling was also carried out to understand the mechanisms of fragmentation and attrition. Samples from bed and cyclone were collected to determine particle size distributions. 11 refs.

  6. Co-production of electricity and ethanol, process economics of value prior combustion

    International Nuclear Information System (INIS)

    Treasure, T.; Gonzalez, R.; Venditti, R.; Pu, Y.; Jameel, H.; Kelley, S.; Prestemon, Jeffrey

    2012-01-01

    Highlights: ► Economics of producing cellulosic ethanol and bio-power in the same facility using an autohydrolysis process. ► Feedstock considerably affect the economics of the biorefinery facility. ► Lower moisture content improves financial performance of the bio-power business. - Abstract: A process economic analysis of co-producing bioethanol and electricity (value prior to combustion) from mixed southern hardwood and southern yellow pine is presented. Bioethanol is produced by extracting carbohydrates from wood via autohydrolysis, membrane separation of byproducts, enzymatic hydrolysis of extracted oligomers and fermentation to ethanol. The residual solids after autohydrolysis are pressed and burned in a power boiler to generate steam and electricity. A base case scenario of biomass combustion to produce electricity is presented as a reference to understand the basics of bio-power generation economics. For the base case, minimum electricity revenue of $70–$96/MWh must be realized to achieve a 6–12% internal rate of return. In the alternative co-production cases, the ethanol facility is treated as a separate business entity that purchases power and steam from the biomass power plant. Minimum ethanol revenue required to achieve a 12% internal rate of return was estimated to be $0.84–$1.05/l for hardwood and $0.74–$0.85/l for softwood. Based on current market conditions and an assumed future ethanol selling price of $0.65/l, the co-production of cellulosic bioethanol and power does not produce financeable returns. A risk analysis indicates that there is a probability of 26.6% to achieve an internal rate of return equal or higher than 12%. It is suggested that focus be placed on improving yield and reducing CAPEX before this technology can be applied commercially. This modeling approach is a robust method to evaluate economic feasibility of integrated production of bio-power and other products based on extracted hemicellulose.

  7. Activated sludge is a potential source for production of biodegradable plastics from wastewater.

    Science.gov (United States)

    Khardenavis, A; Guha, P K; Kumar, M S; Mudliar, S N; Chakrabarti, T

    2005-05-01

    Increased utilization of synthetic plastics caused severe environmental pollution due to their non-biodegradable nature. In the search for environmentally friendly materials to substitute for conventional plastics, different biodegradable plastics have been developed by microbial fermentations. However, limitations of these materials still exist due to high cost. This study aims at minimization of cost for the production of biodegradable plastics P(3HB) and minimization of environmental pollution. The waste biological sludge generated at wastewater treatment plants is used for the production of P(3HB) and wastewater is used as carbon source. Activated sludge was induced by controlling the carbon: nitrogen ratio to accumulate storage polymer. Initially polymer accumulation was studied by using different carbon and nitrogen sources. Maximum accumulation of polymer was observed with carbon source acetic acid and diammonium hydrogen phosphate (DAHP) as nitrogen source. Further studies were carried out to optimize the carbon: nitrogen ratios using acetic acid and DAHP. A maximum of 65.84% (w/w) P(3HB) production was obtained at C/N ratio of 50 within 96 hours of incubation.

  8. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation.

    Science.gov (United States)

    Srivastava, S K; Tripathi, Abhishek Dutt

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l -1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l -1 PHA was produced with a PHB yield (Y P/X ) and productivity of 75.89 % and 0.14 g l -1  h, respectively.

  9. DETERMINING THE COMPOSITION OF HIGH TEMPERATURE COMBUSTION PRODUCTS OF FOSSIL FUEL BASED ON VARIATIONAL PRINCIPLES AND GEOMETRIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Velibor V Vujović

    2011-01-01

    Full Text Available This paper presents the algorithm and results of a computer program for calculation of complex equilibrium composition for the high temperature fossil fuel combustion products. The method of determining the composition of high temperatures combustion products at the temperatures appearing in the open cycle MHD power generation is given. The determination of combustion product composition is based on minimization of the Gibbs free energy. The number of equations to be solved is reduced by using variational principles and a method of geometric programming and is equal to the sum of the numbers of elements and phases. A short description of the computer program for the calculation of the composition and an example of the results are also given.

  10. Improvement in the production of cylinder shirt of inner diesel combustion engines

    International Nuclear Information System (INIS)

    Martinez-Perez, F.; Barroso-Moreno, A.

    2013-01-01

    This study deals with the different types of wear as well as other parameters present in the tribological system piston segment- cylinder in a combustion engine. By means of engineering methods were defined the wear rates in the three components of the system. The biggest wear in the analysis resulted in the cylinder shirt. Specialized methods applied were used to analyze the prevailing metallographic characteristics in its original construction, obtaining a gray melted iron with perlitic matrix. A new material with bainitic matrix has been proposed for increasing wear resistance. To demonstrate the efficiency of this new product, the experimental techniques carried out, were based on a dynamometric testing in a internal combustion engine diesel cycle Scania of 150 kW. It was exposed to a full charge during 500 h with 30 % of potency rising. Compared with the perlitic one, it has been proved that the bainitic matrix allows a better result. Besides, a superior dimensional stability was obtained. The piston segments had a similar wear rate in both materials in reference to the original tribological pair of the project. (Author)

  11. Are Quantitative Measures of Academic Productivity Correlated with Academic Rank in Plastic Surgery? A National Study.

    Science.gov (United States)

    Susarla, Srinivas M; Lopez, Joseph; Swanson, Edward W; Miller, Devin; O'Brien-Coon, Devin; Zins, James E; Serletti, Joseph M; Yaremchuk, Michael J; Manson, Paul N; Gordon, Chad R

    2015-09-01

    The purpose of this study was to investigate the correlation between quantitative measures of academic productivity and academic rank among full-time academic plastic surgeons. Bibliometric indices were computed for all full-time academic plastic surgeons in the United States. The primary study variable was academic rank. Bibliometric predictors included the Hirsch index, I-10 index, number of publications, number of citations, and highest number of citations for a single publication. Descriptive, bivariate, and correlation analyses were computed. Multiple comparisons testing was used to calculate adjusted associations for subgroups. For all analyses, a value of p productivity. Although academic promotion is the result of success in multiple different areas, bibliometric measures may be useful adjuncts for assessment of research productivity.

  12. Valorization of lignite combustion residues and ferroalumina in the production of aggregates.

    Science.gov (United States)

    Anagnostopoulos, I M; Stivanakis, V E; Angelopoulos, G N; Papamantellos, D C

    2010-02-15

    The present research study investigates the synergy of industrial solid by-products from lignite combustion (fly ash and bottom ash) and aluminum production (ferroalumina) in the production of lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering. Bottom ash (BA) is used as the principal raw material in mixtures while ferroalumina (FAL) is added in lower percentages (5-30 wt%). BA carbon content is used as the fuel of sintering process in high temperatures, around 1250 degrees C, and gas generation is responsible for porous structure formation. Physical properties such as porosity, water absorption and bulk density, of sintering products are measured. Increase of FAL percentage in sintering mixtures results in decrease of porosity from 61% to 35% and of water absorption from 61% to 21% and in increase of bulk density from 1.02 g/cm(3) to 1.80 g/cm(3) of the produced aggregates. Aggregates produced by FAL addition up to 20 wt% are characterized as LWA. Aggregates formed are used in the production of concrete specimens. Compressive strength of concrete increases by increasing FAL addition in aggregates from 5 wt% to 15 wt% (highest strength value), while decrease by increasing FAL addition from 20 wt% to 30 wt%. FAL addition in lignite ashes sintering mixtures (up to 15 wt%) is considered as an important parameter for enhancing aggregates strength.

  13. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.

    Science.gov (United States)

    Saad, Juniza Md; Williams, Paul T

    2016-12-01

    Catalytic dry reforming of mixed waste plastics, from a range of different municipal, commercial and industrial sources, were processed in a two-stage fixed bed reactor. Pyrolysis of the plastics took place in the first stage and dry (CO 2 ) reforming of the evolved pyrolysis gases took place in the second stage in the presence of Ni/Al 2 O 3 and Ni-Co/Al 2 O 3 catalysts in order to improve the production of syngas from the dry reforming process. The results showed that the highest amount of syngas yield was obtained from the dry reforming of plastic waste from the agricultural industry with the Ni/Al 2 O 3 catalyst, producing 153.67mmol syngas g -1 waste . The addition of cobalt metal as a promoter to the Ni/Al 2 O 3 catalyst did not have a major influence on syngas yield. Overall, the catalytic-dry reforming of waste plastics from various waste treatment plants showed great potential towards the production of synthesis gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Identifying Sources of Funding That Contribute to Scholastic Productivity in Academic Plastic Surgeons.

    Science.gov (United States)

    Ruan, Qing Zhao; Cohen, Justin B; Baek, Yoonji; Chen, Austin D; Doval, Andres F; Singhal, Dhruv; Fukudome, Eugene Y; Lin, Samuel J; Lee, Bernard T

    2018-04-01

    Scholastic productivity has previously been shown to be positively associated with National Institute of Health (NIH) grants and industry funding. This study examines whether society, industry, or federal funding contributes toward academic productivity as measured by scholastic output of academic plastic surgeons. Institution Web sites were used to acquire academic attributes of full-time academic plastic surgeons. The Center for Medicare and Medicaid Services Open Payment database, NIH reporter, the Plastic Surgery Foundation (PSF), and American Association of Plastic Surgeons (AAPS) Web sites were accessed for funding and endowment details. Bibliometric data of each surgeon were then collected via Scopus to ascertain strengths of association with each source. Multiple linear regression analysis was used to identify significant contributors to high scholastic output. We identified 935 academic plastic surgeons with 94 (10.1%), 24 (2.6%), 724 (77.4%), and 62 (6.6%) receiving funding from PSF, AAPS, industry, and NIH, respectively. There were positive correlations in receiving NIH, PSF, and/or AAPS funding (P funding was found to negatively associate with PSF (r = -0.75, P = 0.022) grants. The NIH R award was consistently found to be the most predictive of academic output across bibliometrics, followed by the AAPS academic scholarship award. Conventional measures of academic seniority remained predictive across all measures used. Our study demonstrates for the first time interactions between industry, federal, and association funding. The NIH R award was the strongest determinant of high scholastic productivity. Recognition through AAPS academic scholarships seemed to associate with subsequent success in NIH funding.

  15. Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP-based propellant

    Science.gov (United States)

    Ao, Wen; Liu, Peijin; Yang, Wenjing

    2016-12-01

    In solid propellants, aluminum is widely used to improve the performance, however the condensed combustion products especially the large agglomerates generated from aluminum combustion significantly affect the combustion and internal flow inside the solid rocket motor. To clarify the properties of the condensed combustion products of aluminized propellants, a constant-pressure quench vessel was adopted to collect the combustion products. The morphology and chemical compositions of the collected products, were then studied by using scanning electron microscopy coupled with energy dispersive (SEM-EDS) method. Various structures have been observed in the condensed combustion products. Apart from the typical agglomerates or smoke oxide particles observed before, new structures including the smoke oxide clusters, irregular agglomerates and carbon-inclusions are discovered and investigated. Smoke oxide particles have the highest amount in the products. The highly dispersed oxide particle is spherical with very smooth surface and is on the order of 1-2 μm, but due to the high temperature and long residence time, these small particles will aggregate into smoke oxide clusters which are much larger than the initial particles. Three types of spherical agglomerates have been found. As the ambient gas temperature is much higher than the boiling point of Al2O3, the condensation layer inside which the aluminum drop is burning would evaporate quickly, which result in the fact that few "hollow agglomerates" has been found compared to "cap agglomerates" and "solid agglomerates". Irregular agglomerates usually larger than spherical agglomerates. The formation of irregular agglomerates likely happens by three stages: deformation of spherical aluminum drops; combination of particles with various shape; finally production of irregular agglomerates. EDS results show the ratio of O to Al on the surface of agglomerates is lower in comparison to smoke oxide particles. C and O account for

  16. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani; Oß wald, Patrick; Hansen, Nils; Kohse-Hö inghaus, Katharina

    2014-01-01

    . While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides

  17. Fuel-Flexible Combustion System for Co-production Plant Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  18. THE EFFECT OF AMOUNT OF NATURAL ZEOLIT CATALYST IN PRODUCT OF POLYPROPILENE (PP PLASTIC WASTE PYROLYSIS

    Directory of Open Access Journals (Sweden)

    khalimatus sa'diyah

    2015-12-01

    Full Text Available To overcome the waste problem, especially plastic waste , environmental concerned scientists from various disciplines have conducted various research and actions. Catalytic pyrolysis processes was chosen as an alternative method to recycle plastic waste. The purpose of this experiment was to determine the effect of natural zeolit catalyst on the pyrolysis process with oxygen-free conditions to obtain maximum hydrocarbon compounds (gasoline fraction in C5-C9. The process of pyrolysis was conducted in 3.5 dm3 unstirred stainless steel semi-batch reactor. This process operated at atmospheric pressure with nitrogen injection. Plastic waste that used in this particular paper was 50 grams of polypropylene (PP. In pyrolysis process, natural zeolite catalysts was added 2,5 gram (5% weight of natural zeolite per weight of plastic waste samples, 5 gram (10% , and 10 gram (20%. Temperature of pyrolysis was 450°C and were maintained until 30 minutes. Steam that produced from pyrolisis was condensed and analysed by gas chromatography–mass spectrometry (GC-MS to determine yield of hydrocarbons produced. From the analysis of GC-MS, liquid products of pyrolysis contained lots of aromatic hydrocarbons. The optimal amount of catalyst that produce liquid with hydrocarbon compound that has the quality of gasoline was 10 gram (20% with ≤C9 composition as 29,16% n-paraffin, 9,22% cycloparaffin, and 61,64% aromatics.

  19. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  20. Reduce, reuse, recycle: Acceptance of CO_2-utilization for plastic products

    International Nuclear Information System (INIS)

    Heek, Julia van; Arning, Katrin; Ziefle, Martina

    2017-01-01

    Global warming is a central threat for today's society caused by greenhouse gas emissions, mostly carbon dioxide emissions. Carbon dioxide capture and utilization (CCU) is a promising approach to reduce emissions and the use of expensive and limited fossil resources. Applying CCU, carbon dioxide (CO_2) can be incorporated as raw material during the manufacture of plastic products. While most of the studies address technical feasibilities, hardly any systematic research on public perception and acceptance of those specific products exists so far. This study empirically investigates the acceptance of CCU plastic products (mattress as example). First, interviews with experts and lay people revealed critical acceptance factors (CO_2 proportion, saving of fossil resources, disposal conditions, perceived health complaints). Their relative importance was detailed in two consecutive conjoint studies. Study 1 revealed disposal conditions and saving of fossil resources as essential for product selection, while the products’ CO_2 proportion was less important. In study 2, potential health complaints were integrated as well as individual levels of domain knowledge and risk perception, which significantly affected acceptance of CCU products. Recommendations concerning communication strategies for policy and industry were derived. - Highlights: • Study provides insights into the acceptance of specific CCU products. • Disposal conditions and savings of fossil resource are main drivers of acceptance. • Concerns about potential health effects act as major barrier especially for laypeople. • Perceived knowledge and risk perception affect CCU product acceptance. • Communication strategy recommendations for policy and industry are derived.

  1. Effect of different phosphates on the manurial value of aerobically fermented cowdung in the production of combustible gas

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A; Paul, N B; Rewari, R B

    1956-01-01

    N content of cow dung was increased by anaerobic fermentation (for combustible gas production), though to a lesser extent if phosphates were added. Rates of nitrification of the fermented manure in soil were low and were not improved by P additions; the manure consequently induced little response in rice, but it improved pea yields considerably.

  2. Accessories modifying based on plastic waste of shampoo bottle as home economic product

    Science.gov (United States)

    Setyowati, Erna; Sukesi, Siti

    2018-03-01

    Plastic is a waste that can not decompose by the soil and if its left without a good handling can pollute the environment. Plastic waste needs processing by the recycle bottles principle. Shampoo bottle is one of plastic waste with high density polyethylene type (HDPE). One of the innovation to recycling shampoo bottles waste into the new products whichbeneficially and aestheticallyform by engineered the buns accesories. Accessories are one of the tools used by most women, in the form of trinkets or ornaments which ajusted to the trend to beautify the look. Accessories from shampoo bottle waste can be obtained from household waste, beauty salon and the beauty program study by inculcating human beings' behavior by transforming waste into blessing while also increasing family income. Technique of making its by compiling through improvement of panelist team. The goal of this research is to engineering theaccessories based on shampoo bottle waste as home economics. The method are using experiment, observation and documentation, analysis using descriptive. The results obtained from the overall sensory test averaged at 93%, while the favored test averaged at 85.5%. The product can be ordered according to the desired design, but it takes a long time. Therefore accessories engineering from shampoo bottles waste-based can be used as home economics. The production of shampoo bottles waste-based accessories should improved its quality and quantity, to be marketed through the community, by the cooperation with accessories and bun craftsmen.

  3. The production of hydrogen through the uncatalyzed partial oxidation of methane in an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Ghazi A.; Wierzba, I. [Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary (Canada)

    2008-04-15

    The thermodynamic and kinetic limitations of the uncatalyzed partial oxidation of methane for the production of synthesis gas, which is made up of mostly hydrogen and carbon monoxide in a variety of proportions, are reviewed. It is suggested that such processes can be made to proceed successfully in a conventional internal combustion engine when operated on excessively rich mixtures of methane and oxygenated air. This is achieved while simultaneously producing power and regenerative exhaust gas heating. Experimental results are described that show a dual fuel engine of the compression ignition type with pilot liquid fuel injection can be operated on excessively rich mixtures of methane and air supplemented with oxygen gas to produce hydrogen rich gas with high methane conversion rates. Similarly, a spark ignition engine was reported to be equally capable of such production and performance. It is shown that there are viable prospects for the simultaneous production of synthesis gas in engines with efficient useful mechanical power and exhaust gas regenerative heating. (author)

  4. Methods to evaluate cytotoxicity and immunosuppression of combustible tobacco product preparations.

    Science.gov (United States)

    Arimilli, Subhashini; Damratoski, Brad E; G L, Prasad

    2015-01-10

    Among other pathophysiological changes, chronic exposure to cigarette smoke causes inflammation and immune suppression, which have been linked to increased susceptibility of smokers to microbial infections and tumor incidence. Ex vivo suppression of receptor-mediated immune responses in human peripheral blood mononuclear cells (PBMCs) treated with smoke constituents is an attractive approach to study mechanisms and evaluate the likely long-term effects of exposure to tobacco products. Here, we optimized methods to perform ex vivo assays using PBMCs stimulated by bacterial lipopolysaccharide, a Toll-like receptor-4 ligand. The effects of whole smoke-conditioned medium (WS-CM), a combustible tobacco product preparation (TPP), and nicotine were investigated on cytokine secretion and target cell killing by PBMCs in the ex vivo assays. We show that secreted cytokines IFN-γ, TNF, IL-10, IL-6, and IL-8 and intracellular cytokines IFN-γ, TNF-α, and MIP-1α were suppressed in WS-CM-exposed PBMCs. The cytolytic function of effector PBMCs, as determined by a K562 target cell killing assay was also reduced by exposure to WS-CM; nicotine was minimally effective in these assays. In summary, we present a set of improved assays to evaluate the effects of TPPs in ex vivo assays, and these methods could be readily adapted for testing other products of interest.

  5. Motion of water droplets in the counter flow of high-temperature combustion products

    Science.gov (United States)

    Volkov, R. S.; Strizhak, P. A.

    2018-01-01

    This paper presents the experimental studies of the deceleration, reversal, and entrainment of water droplets sprayed in counter current flow to a rising stream of high-temperature (1100 K) combustion gases. The initial droplets velocities 0.5-2.5 m/s, radii 10-230 μm, relative volume concentrations 0.2·10-4-1.8·10-4 (m3 of water)/(m3 of gas) vary in the ranges corresponding to promising high-temperature (over 1000 K) gas-vapor-droplet applications (for example, polydisperse fire extinguishing using water mist, fog, or appropriate water vapor-droplet veils, thermal or flame treatment of liquids in the flow of combustion products or high-temperature air; creating coolants based on flue gas, vapor and water droplets; unfreezing of granular media and processing of the drossed surfaces of thermal-power equipment; ignition of liquid and slurry fuel droplets). A hardware-software cross-correlation complex, high-speed (up to 105 fps) video recording tools, panoramic optical techniques (Particle Image Velocimetry, Particle Tracking Velocimetry, Interferometric Particle Imagine, Shadow Photography), and the Tema Automotive software with the function of continuous monitoring have been applied to examine the characteristics of the processes under study. The scale of the influence of initial droplets concentration in the gas flow on the conditions and features of their entrainment by high-temperature gases has been specified. The dependencies Red = f(Reg) and Red' = f(Reg) have been obtained to predict the characteristics of the deceleration of droplets by gases at different droplets concentrations.

  6. Characterization of combustion chamber products by core-level photoabsorption spectroscopy

    International Nuclear Information System (INIS)

    Kellar, S.A.; Huff, W.R.A.; Moler, E.J.

    1997-01-01

    The lubricating performance of motor oil is adversely affected by the carbon soot contamination that is a natural by-product of the combustion process. Particularly in diesel engines, open-quote blow-by close-quote is a problem that greatly decreases the longevity of the engine-lubricating oil. Motor oil manufacturers spend considerable resources developing new oil formulations that counteract the adverse affects of this combustion soot. At present, the only effective way to test new formulations is in a working engine. This process is obviously expensive and not especially efficient. In this ongoing work in collaboration with Chevron Research and Technology, the authors goal is to find a form of carbon that chemically resembles the soot created by the open-quote blow-by close-quote in a diesel engine. The chemically correct soot substitute can be used in bench tests to replace the expensive full motor testing for new formulations. The final testing would still be done in the test motors but only with promising candidates. To these ends, Near Edge X-ray Adsorption spectroscopy Extended Fine Structure (NEXAFS) is an attractive technique in that it has chemical specificity through the core-level binding energy and because it probes the chemically important unoccupied molecular orbitals of the material. Core-level photoabsorption has been used to characterize the empty electronic states of a wide variety of materials. Specifically, the near-edge region of the photoabsorption process has been used to determine the relative quantity of sp 2 and sp 3 bonding in carbon films. The samples were fine grained powders pressed into pellets. The C(1s) absorption spectra were collected from each sample by measuring the total electron yield from the sample as a function of photon energy. The absorption intensity was normalized to the incoming photon flux by measuring the photoyield from a fine gold mesh

  7. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Science.gov (United States)

    2010-07-01

    ... for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source? (a) A reinforced plastic composites production facility is a new...

  8. Production of recyclates – compared with virgin Plastics – a LCA Study

    Directory of Open Access Journals (Sweden)

    Storm Birgit Kjærside

    2017-01-01

    Full Text Available Plastix A/S is a Danish cleantech company transforming discarded fishing trawls and nets into valuable green raw materials. Plastix– technology and processes solve a maritime waste problem and contribute to a more circular green economy and reduce landfilling, marine pollution, CO2 emissions and especially loss of valuable resources. Plastix– recycling technology enables recovery of discarded fishing trawls and nets via mechanical and thermal processes transforming the waste into valuable recycles which can be converted into plastic products replacing virgin raw materials. The performance has been proved through a Life Cycle Assessment (LCA study. The results from the LCA study are compared with the production of virgin materials. The results of the LCA show that especially the carbon footprint is remarkable better for Oceanix than for virgin plastics. Oceanix HDPE is 5 times better than virgin HDPE, when talking about the carbon foot print, and the results for Oceanix PP and Oceanix PA6 are 5 times and 20 times better compared with virgin PP and PA6. Also other environmental indicators are better for Oceanix compared with virgin plastics.

  9. Determinants of recycling common types of plastic product waste in environmental horticulture industry: The case of Georgia.

    Science.gov (United States)

    Meng, Ting; Klepacka, Anna M; Florkowski, Wojciech J; Braman, Kristine

    2016-02-01

    Environmental horticulture firms provide a variety of commercial/residential landscape products and services encompassing ornamental plant production, design, installation, and maintenance. The companies generate tons of waste including plastic containers, trays, and greenhouse/field covers, creating the need to reduce and utilize plastic waste. Based on survey data collected in Georgia in 2013, this paper investigates determinants of the environmental horticulture firms' recycling decision (plastic containers, flats, and greenhouse poly). Our findings indicate that the decision to discard vs. recycle plastic containers, flats, and greenhouse poly is significantly influenced by firm scope, size, location, and partnership with recycling providers, as well as whether recycling providers offer additional waste pickup services. Insights from this study are of use to local governments and environmental organizations interested in increasing horticultural firm participation in recycling programs and lowering the volume of plastic destined for landfills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. DEVELOPMENT OF THE BOILER FOR COMBUSTION OF AGRICULTURAL BIOMASS BY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Valentina Turanjanin

    2010-01-01

    Full Text Available Republic of Serbia consumes about 15 million tons of equivalent oil per year (Mtoe. At the same time potential of the renewable energy sources is about 3,5 Mtoe/year. Main renewable source is biomass, with its potential of about 2,6 Mtoe/year, and 60% of the total biomass source is of agricultural origin. Mainly, that type of biomass is collected, transported and stored in form of bales. At the same time in one of the largest agricultural companies in Serbia (PKB there are over 2000 ha of soya plantations, and also 4000 t/year of baled soya straw available, none of which being used for energy purposes. Therefore, efforts have been made in the Laboratory for Thermal Engineering and Energy of the "Vinča" Institute to develop a technology for utilizing bales of various sizes and shapes for energy production. Satisfactory test results of the 1 MW experimental facility - low CO levels and stable thermal output - led to the building-up of a 1.5 MW soya straw bales-fired hot water boiler, with cigarette type of combustion, for the purposes of greenhouse and office heating in the PKB. Further more, achieving good results in exploitation of that hot water boiler, the next step is building up the first combined heat and power (electricity production facility (CHP, which will use agricultural biomass as a fuel, in Serbia.

  11. Production of steam cracking feedstocks by mild cracking of plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Angyal, Andras; Miskolczi, Norbert; Bartha, Laszlo; Tungler, Antal; Nagy, Lajos; Vida, Laszlo; Nagy, Gabor

    2010-11-15

    In this work the utility of new possible petrochemical feedstocks obtained by plastic waste cracking has been studied. The cracking process of polyethylene (PE), polyethylene-polypropylene (PEPP) and polyethylene-polystyrene (PEPS) has been carried out in a pilot scale tubular reactor. In this process mild reaction parameters has been applied, with the temperature of 530 C and the residence time of 15 min. The produced hydrocarbon fractions as light- and middle distillates were tested by using a laboratory steam cracking unit. It was concluded that the products of the mild cracking of plastic wastes could be applied as petrochemical feedstocks. Based on the analytical data it was determined that these liquid products contained in significant concentration (25-50 wt.%) of olefin hydrocarbons. Moreover the cracking of polystyrene containing raw material resulted in liquid products with significant amounts of aromatic hydrocarbons too. The steam cracking experiments proved that the products obtained by PE and PEPP cracking resulted in similar or better ethylene and propylene yields than the reference samples, however the aromatic content of PEPS products reduced the ethylene and propylene yields. (author)

  12. Improvement in the production of cylinder shirt of inner diesel combustion engines; Mejoras en la construccion de camisas de cilindro de motores de combustion interna ciclo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Perez, F.; Barroso-Moreno, A.

    2013-06-01

    This study deals with the different types of wear as well as other parameters present in the tribological system piston segment- cylinder in a combustion engine. By means of engineering methods were defined the wear rates in the three components of the system. The biggest wear in the analysis resulted in the cylinder shirt. Specialized methods applied were used to analyze the prevailing metallographic characteristics in its original construction, obtaining a gray melted iron with perlitic matrix. A new material with bainitic matrix has been proposed for increasing wear resistance. To demonstrate the efficiency of this new product, the experimental techniques carried out, were based on a dynamometric testing in a internal combustion engine diesel cycle Scania of 150 kW. It was exposed to a full charge during 500 h with 30 % of potency rising. Compared with the perlitic one, it has been proved that the bainitic matrix allows a better result. Besides, a superior dimensional stability was obtained. The piston segments had a similar wear rate in both materials in reference to the original tribological pair of the project. (Author)

  13. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  14. Experimental Investigation of the Productivity of a Wet Separation Process of Traditional and Bio-Plastics

    Directory of Open Access Journals (Sweden)

    Monica Moroni

    2018-05-01

    Full Text Available The separation process within a mechanical recycling plant plays a major role in the context of the production of high-quality secondary raw materials and the reduction of extensive waste disposal in landfills. Traditional plants for plastic separation employ dry or wet processes that rely on the different physical properties among the polymers. The hydraulic separator is a device employing a wet technology for particle separation. It allows the separation of two-polymer mixtures into two products, one collected within the instrument and the other one expelled through its outlet ducts. Apparatus performance were analyzed as a function of fluid and solid flow rates, flow patterns developing within the apparatus, in addition to the density, shape, and size of the polymers. For the hydraulic configurations tested, a two-way coupling takes place where the fluid exerts an influence on the plastic particles and the opposite occurs too. The interaction between the solid and liquid phases determines whether a certain polymer settles within the device or is expelled from the apparatus. Tests carried out with samples of increasing volumes of solid particles demonstrate that there are no significant differences in the apparatus effectiveness as far as a two-way interaction takes place. Almost pure concentrates of Polyethylene Terephthalate (PET, Polyvinyl Chloride (PVC, and Polycarbonate (PC can be obtained from a mixture of traditional polymers. Tests conducted on Polylactic Acid (PLA and Mater-Bi® samples showed that the hydraulic separator can be effectively employed to separate bio-plastics from conventional plastics with remarkable grade and recovery.

  15. Final Rule to Reduce Toxic Air Pollutants from Surface Coating of Plastic Parts and Products Fact Sheet

    Science.gov (United States)

    This page contains an August 2004 fact sheet with information regarding the final NESHAP for Surface Coating of Plastic Parts and Products. This document provides a summary of the information for the information for this regulation.

  16. Final Report Product Imaging of Molecular Dynamics Relevant to Combustion Grant No. DE-FG02-88ER13934

    International Nuclear Information System (INIS)

    Houston, Paul L.

    2005-01-01

    Product imaging has been used to investigate several processes important to a fundamental understanding of combustion. The imaging technique produces a ''snapshot'' of the three-dimensional velocity distribution of a state-selected reaction product. Research in three main areas is planned or underway. First, product imaging has been used to investigate the reactive scattering of radicals or atoms with species important in combustion. These experiments, while more difficult than studies of inelastic scattering or photodissociation, are now becoming feasible. They provide both product distributions of important processes as well as angular information important to the interpretation of reaction mechanisms. Second, the imaging technique has been used to measure rotationally inelastic energy transfer on collision of closed-shell species with important combustion radicals. Such measurements improve our knowledge of intramolecular potentials and provide important tests of ab initio calculations. Finally, experiments using product imaging have explored the vacuum ultraviolet photodissociation of O2, N2O, SO2, CO2 and other important species. Little is known about the highly excited electronic states of these molecules and, in particular, how they dissociate. These studies provide product vibrational energy distributions as well as angular information that can aid in understanding the symmetry and crossings among the excited electronic states

  17. CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel

    2003-12-15

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane

  18. Bermudagrass sod growth and metal uptake in coal combustion by-product-amended media

    Energy Technology Data Exchange (ETDEWEB)

    Schlossberg, M.J.; Vanags, C.P.; Miller, W.P. [University of Georgia, Athens, GA (USA). Dept. of Crop & Soil Science

    2004-04-01

    Coal combustion by-products (CCB) include fly ash and bottom ash and are generated nationally at rates of 10{sup 8} Mg yr{sup -1}. Land applications of CCB have improved physicochemical properties of soil, yet inherent bulkiness and trace metal content of CCB often limit their use. Likewise, utilization of biosolids and manure as fertilizer can be problematic due to unfavorable nutrient ratios. A 2-yr field study evaluated environmental and technical parameters associated with CCB-organic waste utilization as growth media in turfgrass sod production. Experimental growth media formulated with CCB and organic waste and a sand-compost control mixture were uniformly spread at rates from 200 to 400 m{sup 3} ha{sup -1} and sprigged with hybrid bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy). Leaf clippings were collected and analyzed for total elemental content each year. In Year 2, growth media samples were collected during establishment 47 and 84 days after planting (DAP) and viable Escherichia coli organisms were quantified. At harvest (99 or 114 DAP), sod biomass and physicochemical properties of the growth media were measured. During sod propagation, micronutrient and metal content in leaf clippings varied by growth media and time. After 47 d of typical sod field management, viable E. coli pathogens were detected in only one biosolids-amended plot. No viable E. coli were measured at 84 DAP. In both years, sod biomass was greatest in media containing biosolids and fly ash. Following installation of sod, evaluations did not reveal differences by media type or application volume. Using CCB-organic waste mixes at the rates described herein is a rapid and environmentally safe method of bermudagrass sod production.

  19. Reduced nicotine product standards for combustible tobacco: building an empirical basis for effective regulation.

    Science.gov (United States)

    Donny, Eric C; Hatsukami, Dorothy K; Benowitz, Neal L; Sved, Alan F; Tidey, Jennifer W; Cassidy, Rachel N

    2014-11-01

    Both the Tobacco Control Act in the U.S. and Article 9 of the Framework Convention on Tobacco Control enable governments to directly address the addictiveness of combustible tobacco by reducing nicotine through product standards. Although nicotine may have some harmful effects, the detrimental health effects of smoked tobacco are primarily due to non-nicotine constituents. Hence, the health effects of nicotine reduction would likely be determined by changes in behavior that result in changes in smoke exposure. Herein, we review the current evidence on nicotine reduction and discuss some of the challenges in establishing the empirical basis for regulatory decisions. To date, research suggests that very low nicotine content cigarettes produce a desirable set of outcomes, including reduced exposure to nicotine, reduced smoking, and reduced dependence, without significant safety concerns. However, much is still unknown, including the effects of gradual versus abrupt changes in nicotine content, effects in vulnerable populations, and impact on youth. A coordinated effort must be made to provide the best possible scientific basis for regulatory decisions. The outcome of this effort may provide the foundation for a novel approach to tobacco control that dramatically reduces the devastating health consequences of smoked tobacco. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Investigation of coal combustion by-product utilization for oyster reef development in Texas bay waters

    International Nuclear Information System (INIS)

    Baker, W.B. Jr.; Ray, S.M.; Landry, A.M. Jr.

    1991-01-01

    Houston Lighting and Power Company (HL and P), Texas A and M University at Galveston and JTM Industries, Inc. initiated research in May 1988 and coordinated it with state and federal resource protection agencies to investigate the use of certain HL and P coal combustion by-products (CCBP) for enhancing and creating oyster reefs. Initial research involved determining and optimum mix design based on compressive strength, leaching potential, biofouling success, and cost. CCBP material was found to exceed compressive strength criterion (300 psi for at sign 14 days) and was not a significant leaching source. Candidate mix designs and oyster shell controls were exposed to hatchery-reared oyster larvae to determine spat setability and biofouling success. Larvae setting on CCBP substrate developed into spat and grew at a rate comparable to that for larvae on controls. Since all candidate mix designs exhibited excellent biofouling, an optimum design was chosen based on strength and material cost factors. Chemical analyses conducted to determine materials did not significantly contribute to the trace element load in oysters. Development of oyster cultch material was initiated with input from commercial 2.5 to 7.6 cm (1 to 3 inch) diameter pellets which are irregularly shaped and rough textured. These pellets greatly enhance water circulation, provide maximum setting potential for oyster larvae, and maximize the surface area to volume potential of the CCBP material

  1. Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities

    Energy Technology Data Exchange (ETDEWEB)

    K. Ladwig

    2005-12-31

    The overall objective of this project was to evaluate the impact of key constituents captured from power plant air streams (principally arsenic and selenium) on the disposal and utilization of coal combustion products (CCPs). Specific objectives of the project were: (1) to develop a comprehensive database of field leachate concentrations at a wide range of CCP management sites, including speciation of arsenic and selenium, and low-detection limit analyses for mercury; (2) to perform detailed evaluations of the release and attenuation of arsenic species at three CCP sites; and (3) to perform detailed evaluations of the release and attenuation of selenium species at three CCP sites. Each of these objectives was accomplished using a combination of field sampling and laboratory analysis and experimentation. All of the methods used and results obtained are contained in this report. For ease of use, the report is subdivided into three parts. Volume 1 contains methods and results for the field leachate characterization. Volume 2 contains methods and results for arsenic adsorption. Volume 3 contains methods and results for selenium adsorption.

  2. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film

    International Nuclear Information System (INIS)

    Wang, Jun; Luo, Yongming; Teng, Ying; Ma, Wenting; Christie, Peter; Li, Zhengao

    2013-01-01

    The concentrations of six priority phthalic acid esters (PAEs) in intensively managed suburban vegetable soils in Nanjing, east China, were analyzed using gas chromatography–mass spectrometry (GC–MS). The total PAE concentrations in the soils ranged widely from 0.15 to 9.68 mg kg −1 with a median value of 1.70 mg kg −1 , and di-n-butyl phthalate (DnBP), bis-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) were the most abundant phthalate esters. Soil PAE concentrations depended on the mode of use of plastic film in which PAEs were incorporated as plasticizing agents and both the plastic film and poultry manure appeared to be important sources of soil PAEs. Vegetables in rotation with flooded rice led to lower concentrations of PAEs in soil. The results indicate that agricultural plastic film can be an important source of soil PAE contamination and further research is required to fully elucidate the mechanisms of PAE contamination of intensive agricultural soils with different use modes of use of plastic film. -- Highlights: •Phthalate esters in soils from suburban intensive vegetable production systems were investigated. •Phthalate levels and risks of the vegetable soils with different plastic film use modes were examined. •Sources of phthalate esters in vegetable production soils were analyzed. -- PAE contamination of intensively managed vegetable soils varied widely depending on the mode of use of plastic film in different production systems

  3. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like...

  4. Evaluation of ground calcite/water heavy media cyclone suspensions for production of residual plastic concentrates.

    Science.gov (United States)

    Gent, Malcolm; Sierra, Héctor Muñiz; Menéndez, Mario; de Cos Juez, Francisco Javier

    2018-01-01

    Viable recycled residual plastic (RP) product(s) must be of sufficient quality to be reusable as a plastic or source of hydrocarbons or fuel. The varied composition and large volumes of such wastes usually requires a low cost, high through-put recycling method(s) to eliminate contaminants. Cyclone separation of plastics by density is proposed as a potential method of achieving separations of specific types of plastics. Three ground calcite separation medias of different grain size distributions were tested in a cylindrical cyclone to evaluate density separations at 1.09, 1.18 and 1.27 g/cm 3 . The differences in separation recoveries obtained with these medias by density offsets produced due to displacement of separation media solid particles within the cyclone caused by centrifugal settling is evaluated. The separation density at which 50% of the material of that density is recovered was found to increase from 0.010 to 0.026 g/cm 3 as the separation media density increased from 1.09 to 1.27 g/cm 3 . All separation medias were found to have significantly low Ep 95 values of 0.012-0.033 g/cm 3 . It is also demonstrated that the presence of an excess content of 75%) resulted in reduced separation efficiencies. It is shown that the optimum separations were achieved when the media density offset was 0.03-0.04 g/cm 3 . It is shown that effective heavy media cyclone separations of RP denser than 1.0 g/cm 3 can produce three sets of mixed plastics containing: PS and ABS/SAN at densities of >1.0-1.09 g/cm 3 ; PC, PMMA at a density of 1.09-1.18 g/cm 3 ; and PVC and PET at a density of >1.27 g/cm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Reconstruction of industrial boiler type DKVR-13 aiming for combustion of waste materials from oil-yielding production

    International Nuclear Information System (INIS)

    Gadzhanov, P.

    1997-01-01

    One of the methods for improving of the energy efficiency is the use of a secondary energy resources such as waste products from industrial processes. In case of the oil extraction a great amount of waste product (sunflower shells) with a good thermal potential is available. During the industrial process from 100 kg raw material 15 kg shells are obtained. The combustion heat is about 1700 kJ/kg. The volatile compounds yield is 66.1%. An installation has been constructed intended to use the waste product from the extraction, consisting of: a water tube boiler with a steam capacity of 20 t/h and two PKM-12 type flue boilers and two DKVR 10-13 type water tube boilers. The DKVR 10-13 type boilers are designed for the production of 22.77 kg/s saturated steam with pressure 1.28 MPa and temperature 194 o C. They have an unified constructional schemes with a two-drum evaporating system and a natural circulation. The furnace has a horizontally evaporation beam washed by the gas flux. The reconstruction is aimed to create condition for the use of the sunflower shells as a main fuel and the natural gas or other fuel as additional. The scheme is one using the sloping bed combustion. 70% of the steam production is due to the shells combustion. Calculations for the grid parameters have been done. An additional heater improves the efficiency with 4.5% and the expected annual fuel saving is 300 t. The introduction of hot air (165 o C) provides both combustion and ecological benefits

  6. Plant growth response in experimental soilless mixes prepared from coal combustion products and organic waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, S.; Watson, M.; Dick, W.A. [Ohio State University, Wooster, OH (United States)

    2008-07-15

    Large quantities of organic materials such as animal manures, yard trimmings, and biosolids are produced each year. Beneficial use options for them are often limited, and composting has been proposed as a way to better manage these organic materials. Similarly, burning of coal created 125 million tons of coal combustion products (CCP) in the United States in 2006. An estimated 53 million tons of CCP were reused, whereas the remainder was deposited in landfills. By combining CCP and composted organic materials (COM), we were able to create soilless plant growth mixes with physicochemical conditions that can support excellent plant growth. An additional benefit is the conservation of natural raw materials, such as peat, which is generally used for making soilless mixes. Experimental mixes were formulated by combining CCP and COM at ratios ranging from 2:8 to 8:2 (vol/vol), respectively. Water content at saturation for the created mixes was 63% to 72%, whereas for the commercial control, it was 77%. pH values for the best performing mixes ranged between 5.9 and 6.8. Electrical conductivity and concentrations of required plant nutrient were also within plant growth recommendations for container media. Significantly (P < 0.0001) higher plant biomass growth (7%-130%) was observed in the experimental mixes compared with a commercial mix. No additional fertilizers were provided during the experiment, and reduced fertilization costs can thus accrue as an added benefit to the grower. In summary, combining CCP and COM, derived from source materials often viewed as wastes, can create highly productive plant growth mixes.

  7. Volume reduction of waste contaminated by fission product elements and plutonium using molten salt combustion

    International Nuclear Information System (INIS)

    McKenzie, D.E.; Grantham, L.F.; Paulson, R.B.

    1979-01-01

    In the Molten Salt Combustion Process, transuranic or β-γ organic waste and air are continuously introduced beneath the surface of a sodium carbonate-containing melt at a temperature of about 800 0 C. Complete combustion of the organic material to carbon dioxide and steam occurs without the conversion of nitrogen to nitrogen oxides. The noxious gases formed by combustion of the chloride, sulfur or phosphorus content of the waste instantly react with the melt to form the corresponding sodium compounds. These compounds as well as the ash and radionuclides are retained in the molten salt. The spent salt is either fused cast into an engineered disposal container or processed to recover salt and plutonium. Molten salt combustion reduces the waste to about 2% of its original volume. Many reactor or reprocessing wastes which cannot be incinerated without difficulty are readily combusted in the molten salt. A 50 kg/hr molten salt combustion system is being designed for the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. Construction of the combustor started during 1977, and combustor startup was scheduled for the spring of 1978

  8. Flameless Combustion Workshop

    National Research Council Canada - National Science Library

    Gutmark, Ephraim

    2005-01-01

    .... "Flameless Combustion" is characterized by high stability levels with virtually no thermoacoustic instabilities, very low lean stability limits and therefore extremely low NOx production, efficient...

  9. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  10. Biological activity of a leached chernozem contaminated with the products of combustion of petroleum gas and its restoration upon phytoremediation

    Science.gov (United States)

    Kireeva, N. A.; Novoselova, E. I.; Shamaeva, A. A.; Grigoriadi, A. S.

    2009-04-01

    It is shown that contamination of leached chernozems by combustion products of petroleum gas favors changes in the biological activity of the soil: the number of hydrocarbon-oxidizing bacteria and micromycetes has increased, as well as the activity of catalase and lipase and phytotoxicity. Bromopsis inermis Leys used as a phytoameliorant has accelerated the destruction of hydrocarbons in the rhizosphere. The benzpyrene concentration in plants on contaminated soils considerably exceeds its background concentration.

  11. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.

    Science.gov (United States)

    Breyer, Sacha; Mekhitarian, Loucine; Rimez, Bart; Haut, B

    2017-02-01

    This work is a preliminary study for the development of a co-pyrolysis process of plastic wastes excavated from a landfill and used lubrication oils, with the aim to produce an alternative liquid fuel for industrial use. First, thermogravimetric experiments were carried out with pure plastics (HDPE, LDPE, PP and PS) and oils (a motor oil and a mixture of used lubrication oils) in order to highlight the interactions occurring between a plastic and an oil during their co-pyrolysis. It appears that the main decomposition event of each component takes place at higher temperatures when the components are mixed than when they are alone, possibly because the two components stabilize each other during their co-pyrolysis. These interactions depend on the nature of the plastic and the oil. In addition, co-pyrolysis experiments were led in a lab-scale reactor using a mixture of excavated plastic wastes and used lubrication oils. On the one hand, the influence of some key operating parameters on the outcome of the process was analyzed. It was possible to produce an alternative fuel for industrial use whose viscosity is lower than 1Pas at 90°C, from a plastic/oil mixture with an initial plastic mass fraction between 40% and 60%, by proceeding at a maximum temperature included in the range 350-400°C. On the other hand, the amount of energy required to successfully co-pyrolyze, in lab conditions, 1kg of plastic/oil mixture with an initial plastic mass fraction of 60% was estimated at about 8MJ. That amount of energy is largely used for the thermal cracking of the molecules. It is also shown that, per kg of mixture introduced in the lab reactor, 29MJ can be recovered from the combustion of the liquid resulting from the co-pyrolysis. Hence, this co-pyrolysis process could be economically viable, provided heat losses are addressed carefully when designing an industrial reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of plastic mulches and high tunnel raspberry production systems on soil physicochemical quality indicators

    Science.gov (United States)

    Domagała-Świątkiewicz, Iwona; Siwek, Piotr

    2018-01-01

    In horticulture, degradable materials are desirable alternatives to plastic films. Our aim was to study the impact of soil plastic mulching on the soil properties in the high tunnel and open field production systems of raspberry. The raised beds were mulched with a polypropylene non-woven and two degradable mulches: polypropylene with a photodegradant and non-woven polylactide. The results indicated that the system of raspberry production, as well as the type of mulching had significant impact on soil organic carbon stock, moisture content and water stable aggregate amount. Soils taken from the open field system had a lower bulk density and water stability aggregation index, but higher organic carbon and capillary water content as compared to soils collected from high tunnel conditions. In comparison with the open field system, soil salinity was also found to be higher in high tunnel, as well as with higher P, Mg, Ca, S, Na and B content. Furthermore, mulch covered soils had more organic carbon amount than the bare soils. Soil mulching also enhanced the water capacity expressed as a volume of capillary water content. In addition, mulching improved the soil structure in relation to the bare soil, in particular, in open field conditions. The impact of the compared mulches on soil quality indicators was similar.

  13. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    OpenAIRE

    SU Yong-zhong; ZHANG Ke; LIU Ting-na; WANG Ting

    2016-01-01

    A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP) in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different texture...

  14. Numerical model describing the heat transfer between combustion products and ventilation-system duct walls

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Foster, R.D.; Gregory, W.S.

    1983-01-01

    A package of physical models simulating the heat transfer processes occurring between combustion gases and ducts in ventilation systems is described. The purpose of the numerical model is to predict how the combustion gas in a system heats up or cools down as it flows through the ducts in a ventilation system under fire conditions. The model treats a duct with (forced convection) combustion gases flowing on the inside and stagnant ambient air on the outside. The model is composed of five submodels of heat transfer processes along with a numerical solution procedure to evaluate them. Each of these quantities is evaluated independently using standard correlations based on experimental data. The details of the physical assumptions, simplifications, and ranges of applicability of the correlations are described. A typical application of this model to a full-scale fire test is discussed, and model predictions are compared with selected experimental data

  15. Producer gas production of Indonesian biomass in fixed-bed downdraft gasifier as an alternative fuels for internal combustion engines

    Science.gov (United States)

    Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.

    2018-03-01

    downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.

  16. Novel room-temperature-setting phosphate ceramics for stabilizing combustion products and low-level mixed wastes

    International Nuclear Information System (INIS)

    Wagh, A.S.; Singh, D.

    1994-01-01

    Argonne National Laboratory, with support from the Office of Technology in the US Department of Energy (DOE), has developed a new process employing novel, chemically bonded ceramic materials to stabilize secondary waste streams. Such waste streams result from the thermal processes used to stabilize low-level, mixed wastes. The process will help the electric power industry treat its combustion and low-level mixed wastes. The ceramic materials are strong, dense, leach-resistant, and inexpensive to fabricate. The room-temperature-setting process allows stabilization of volatile components containing lead, mercury, cadmium, chromium, and nickel. The process also provides effective stabilization of fossil fuel combustion products. It is most suitable for treating fly and bottom ashes

  17. The use of halogen carriers and buffers in the spectrographic determination of boron in carbonaceous materials and their combustion products

    International Nuclear Information System (INIS)

    Rucandio, M.I.; Martin, M.; Roca, M.

    1992-01-01

    For the determination of boron in carbonaceous materials (high purity graphite, coals and their processed products, such as ashes and slags from thermoelectric power plants) by atomic emission spectroscopy with direct current arc excitation and photographic recording, the behaviour of the analyte in the presence of halide compounds or spectrochemical buffers has been studied. Among the halides, cupric fluoride at a low concentration (2%) becomes very suitable for the graphite analysis, and at a higher concentration (25%) for coals being necessary in this case to carry out a dilution of samples with graphite. Strontium carbonate as a spectrochemical buffer allows to analyse satisfactorily coals and their combustion products. (author)

  18. The use of halogen carriers and buffers in the spectrographic determination of boron in carbonaceous materials and their combustion products

    International Nuclear Information System (INIS)

    Rucandio, M. I.; Martin, M.; Roca, M.

    1992-01-01

    For the determination of boron in carbonaceous materials (high purity graphite, coals and their processed products, such as ashes and slags from thermoelectric power plants) by atomic emission spectroscopy with direct current are excitation and photographic recording, the behaviour of the analyte in the presence of halide compounds or spectrochemical buffers has been studied. Among the halides, cupric fluoride at a low concentration (2%) becomes very suitable for the graphite analysis, and at a higher concentration (25 %) for coals, being necessary in this case to carry out a dilution of samples with graphite. Strontium carbonate as a spectrochemical buffer allows to analyse satisfactorily coals and their combustion products. (Author) 13 refs

  19. Production of green biodegradable plastics of poly(3-hydroxybutyrate) from renewable resources of agricultural residues.

    Science.gov (United States)

    Dahman, Yaser; Ugwu, Charles U

    2014-08-01

    This work describes potential opportunities for utilization of agro-industrial residues to produce green biodegradable plastics of poly(3-hydroxybutyrate) (PHB). Wheat straws were examined with good efficacy of carbon substrates using Cupriavidus necator. Production was examined in separate hydrolysis and fermentation (SHF) in the presence and absence of WS hydrolysis enzymes, and in simultaneous saccharification and fermentation (SSF) with enzymes. Results showed that production of PHB in SSF was more efficient in terms of viable cell count, cell dry weight, and PHB production and yield compared to those of SHF and glucose-control cultures. While glucose control experiment produced 4.6 g/L PHB; SSF produced 10.0 g/L compared to 7.1 g/L in SHF when utilizing enzymes during WS hydrolysis. Results showed that most of sugars produced during the hydrolysis were consumed in SHF (~98 %) compared to 89.2 % in SSF. Results also demonstrated that a combination of glucose and xylose can compensate for the excess carbon required for enhancing PHB production by C. necator. However, higher concentration of sugars at the beginning of fermentation in SHF can lead to cell inhibition and consequently catabolite repressions. Accordingly, results demonstrated that the gradual release of sugars in SSF enhanced PHB production. Moreover, the presence of sugars other than glucose and xylose can eliminate PHB degradation in medium of low carbon substrate concentrations in SSF.

  20. A Lesson Plan to Develop Structured Discussion of the Benefits and Disadvantages of Selected Plastics Using the Product-Testing Method

    Science.gov (United States)

    Burmeister, Mareike; Eilks, Ingo

    2014-01-01

    People use many different products made from plastics every day. But conventional plastics such as polyvinyl chloride (PVC) do not always have a good reputation in society at large. Bioplastics such as thermoplastic starch (TPS) promise to be better alternatives but are they really better than conventional plastics? This article presents a new…

  1. Production of palm frond based wood plastic composite by using twin screw extruder

    Science.gov (United States)

    Russita, M.; Bahruddin

    2018-04-01

    Wood plastic composite (WPC) is the blending product from wood as filler and polymer thermoplastic as matric. Palm frond waste is a material with selulose about 68%, so it has potential to be developed as raw material for WPC. The purpose of this research was to learn how to produce WPC based on palm frond use twin screw extruder. It used popropilen as matric. As for aditif, it used Maleated Polypropilene (MAPP) as compatibilizer and paraffin as plasticizer. The size of palm frond is 40 – 80 mesh. WPC is made from blending polipropylene, palm frond, MAPP and paraffin with dry mixing method in room temperature. Then, PP, Palm frond and additive from dry mixing is fed into twin screw extruder at 190°C and 60 rpm. It use palm frond/polypropylene 60/40, MAPP 5% w/w and paraffin 2% w/w. From the result, it shown that WPC based on palm frond met the standards forcommercial WPC. It has tensile strength up to 19.2 MPa, bending strength 43.6 MPa and water adsorption 0,32% w/w. So, WPC based on palm frond has prospective to be developed for commercial WPC.

  2. Impact of Subspecialty Fellowship Training on Research Productivity Among Academic Plastic Surgery Faculty in the United States.

    Science.gov (United States)

    Sood, Aditya; Therattil, Paul J; Chung, Stella; Lee, Edward S

    2015-01-01

    The impact of subspecialty fellowship training on research productivity among academic plastic surgeons is unknown. The authors' aim of this study was to (1) describe the current fellowship representation in academic plastic surgery and (2) evaluate the relationship between h-index and subspecialty fellowship training by experience and type. Academic plastic surgery faculty (N = 590) were identified through an Internet-based search of all ACGME-accredited integrated and combined residency programs. Research output was measured by h-index from the Scopus database as well as a number of peer-reviewed publications. The Kruskal-Wallis test, with a subsequent Mann-Whitney U test, was used for statistical analysis to determine correlations. In the United States, 72% (n = 426) of academic plastic surgeons had trained in 1 or more subspecialty fellowship program. Within this cohort, the largest group had completed multiple fellowships (28%), followed by hand (23%), craniofacial (22%), microsurgery (15%), research (8%), cosmetic (3%), burn (2%), and wound healing (0.5%). Higher h-indices correlated with a research fellowship (12.5; P productivity compared with their colleagues. Craniofacial-trained physicians also demonstrated a higher marker for academic productivity than multiple other specialties. In this study, we show that the type and number of fellowships influence the h-index and further identification of such variables may help improve academic mentorship and productivity within academic plastic surgery.

  3. Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material.

    Science.gov (United States)

    Getachew, Anteneh; Woldesenbet, Fantahun

    2016-12-12

    Polyhydroxybutyrates (PHBs) are macromolecules synthesized by bacteria. They are inclusion bodies accumulated as reserve materials when the bacteria grow under different stress conditions. Because of their fast degradability under natural environmental conditions, PHBs are selected as alternatives for production of biodegradable plastics. The aim of this work was to isolate potential PHB producing bacteria, evaluate PHB production using agro-residues as carbon sources. Among fifty bacterial strains isolated from different localities, ten PHB accumulating strains were selected and compared for their ability to accumulate PHB granules inside their cells. Isolate Arba Minch Waste Water (AWW) identified as Bacillus spp was found to be the best producer. The optimum pH, temperature, and incubation period for best PHB production by the isolate were 7, 37 °C, and 48 h respectively at 150 rpm. PHB production was best with glucose as carbon source and peptone as nitrogen source. The strain was able to accumulate 55.6, 51.6, 37.4 and 25% PHB when pretreated sugar cane bagasse, corn cob, teff straw (Eragrostis tef) and banana peel were used as carbon sources respectively. Fourier transform-infrared authentication results of the extracted and purified PHB identified its functional units as C-H, CH 2 , C=O and C-O groups. UV-Vis spectrophotometric analysis and biodegradability test confirmed the similarity of the extract with standard PHB and its suitability for bioplastic production. The isolated Bacillus sp can be used for feasible production of PHB using agro-residues especially sugarcane bagasse which can reduce the production cost in addition to reducing the disposal problem of these substrates. The yield of PHB can further be boosted by optimization of production parameters as substrates.

  4. Geochemical database of feed coal and coal combustion products (CCPs) from five power plants in the United States

    Science.gov (United States)

    Affolter, Ronald H.; Groves, Steve; Betterton, William J.; William, Benzel; Conrad, Kelly L.; Swanson, Sharon M.; Ruppert, Leslie F.; Clough, James G.; Belkin, Harvey E.; Kolker, Allan; Hower, James C.

    2011-01-01

    The principal mission of the U.S. Geological Survey (USGS) Energy Resources Program (ERP) is to (1) understand the processes critical to the formation, accumulation, occurrence, and alteration of geologically based energy resources; (2) conduct scientifically robust assessments of those resources; and (3) study the impacts of energy resource occurrence and (or) their production and use on both the environment and human health. The ERP promotes and supports research resulting in original, geology-based, non-biased energy information products for policy and decision makers, land and resource managers, other Federal and State agencies, the domestic energy industry, foreign governments, non-governmental groups, and academia. Investigations include research on the geology of oil, gas, and coal, and the impacts associated with energy resource occurrence, production, quality, and utilization. The ERP's focus on coal is to support investigations into current issues pertaining to coal production, beneficiation and (or) conversion, and the environmental impact of the coal combustion process and coal combustion products (CCPs). To accomplish these studies, the USGS combines its activities with other organizations to address domestic and international issues that relate to the development and use of energy resources.

  5. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    Directory of Open Access Journals (Sweden)

    Gennady G. Kuvshinov

    2012-12-01

    Full Text Available The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  6. CARBON DIOXIDE EMISSION ASSOCIATED WITH THE PRODUCTION OF PLASTICS - A COMPARISON OF PRODUCTION FROM CRUDE OIL AND RECYCLING FOR THE DUTCH CASE

    DEFF Research Database (Denmark)

    Rem, Peter C.; Olsen, Stig Irving; Welink, Jan-Henk

    2009-01-01

    recycling to the production of plastics from crude oil as a reference. The first scenario deals with packaging waste from selective collection, in which data from the current practice of the German DSD system were translated for the Dutch situation. In the second scenario, plastic packaging recovered from...... household waste using mechanical separation techniques is considered. It is assumed in the second scenario that the plastics are separated from the rest of the household waste and processed further to a compound close to the site at which the rest of the waste is disposed of, e.g. at an incinerator plant...

  7. Evaluation of the plastic characteristics of piping products in relation to ASME code criteria

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Moore, S.E.

    1978-07-01

    Theories and test data relevant to the plastic characteristics of piping products are presented and compared with Code Equations in NB-3652 for Class 1 piping; in NC/ND-3652.2 for Class 2 and Class 3 piping. Comparisons are made for (a) straight pipe, (b) elbows, (c) branch connections, and (d) tees. The status of data (or lack of data) for other piping components is discussed. Comparisons are made between available data and the Code equations for two typical piping materials, SA106 Grade B and SA312 TP304, for Code Design Limits, and Service Limits A, B, C, and D. Conditions under which the Code Limits cannot be shown to be conservative from available data are pointed out. Based on the results of the study, recommendations for Code revisions are presented, along with recommendations for additional work

  8. Occurrence, distribution and characteristics of beached plastic production pellets on the island of Malta (central Mediterranean).

    Science.gov (United States)

    Turner, Andrew; Holmes, Luke

    2011-02-01

    The distribution, abundance and chemical characteristics of plastic production pellets on beaches of the island of Malta have been determined. Pellets were observed at all locations visited and were generally most abundant (> 1000m⁻² at the surface) on the backshores of beaches with a westerly aspect. Most pellets were disc-shaped or flattened cylinders and could be categorised as white, yellow, amber or brown. The polymeric matrix of all pellets analysed by infrared spectroscopy was polyethylene and the degree of yellowing or darkening was associated with an increase in the carbonyl index, hence extent of photo-oxidation or aging. Qualitatively, pellets are similar to those reported for other regions of the Mediterranean in surveys spanning three decades, suggesting that they are a general and persistent characteristic of the region. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    Energy Technology Data Exchange (ETDEWEB)

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury

  10. Volcanic ash in feed coal and its influence on coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O' Connor, J.T.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the

  11. Rate of hexabromocyclododecane decomposition and production of brominated polycyclic aromatic hydrocarbons during combustion in a pilot-scale incinerator.

    Science.gov (United States)

    Miyake, Yuichi; Tokumura, Masahiro; Wang, Qi; Amagai, Takashi; Horii, Yuichi

    2017-11-01

    Here, we examined the incineration of extruded polystyrene containing hexabromocyclododecane (HBCD) in a pilot-scale incinerator under various combustion temperatures (800-950°C) and flue gas residence times (2-8sec). Rates of HBCD decomposition ranged from 99.996% (800°C, 2sec) to 99.9999% (950°C, 8sec); the decomposition of HBCD, except during the initial stage of combustion (flue gas residence timepolycyclic aromatic hydrocarbons (BrPAHs) were detected as unintentional by-products. Of the 11 BrPAHs detected, 2-bromoanthracene and 1-bromopyrene were detected at the highest concentrations. The mutagenic and carcinogenic BrPAHs 1,5-dibromoanthracene and 1-bromopyrene were most frequently detected in the flue gases analyzed. The total concentration of BrPAHs exponentially increased (range, 87.8-2,040,000ng/m 3 ) with increasing flue gas residence time. Results from a qualitative analysis using gas chromatography/high-resolution mass spectrometry suggest that bromofluorene and bromopyrene (or fluoranthene) congeners were also produced during the combustion. Copyright © 2017. Published by Elsevier B.V.

  12. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    International Nuclear Information System (INIS)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won

    2016-01-01

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT

  13. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT.

  14. Some Exploitation Properties of Wood Plastic Hybrid Composites Based on Polypropylene and Plywood Production Waste

    Science.gov (United States)

    Kajaks, Janis; Kalnins, Karlis; Uzulis, Sandris; Matvejs, Juris

    2015-12-01

    During the last 20-30 years many researchers have paid attention to the studies of properties of thewood polymer composites (WPC). A lot of works are closely related to investigations of exploitation properties of wood fibres or wood flour containing polyolefine composites [1, 2]. The most useful from wide selection of polyolefines are polypropylenes, but timber industry waste materials comprising lignocellulose fibres are often used as reinforcement of WPC [3-12]. Plywood industry is not an exception - part of waste materials (by-products) are used for heat energy, i.e. burned. In this work we have approbated reinforcing of polypropylene (PP) with one of the plywood industry by-products, such as birch plywood sawdust (PSWD),which containswood fibre fractions with different length [13]. The main fraction (50%) includes fibres with length l = 0.5 - 1 mm. Our previous study [13] has confirmed that PSWD is a promising filler for PP reinforcing. Addition of PSWD up to 40-50 wt.% has increased WPC tensile and flexural modulus, but decreased deformation ability of PP matrix, impact strength, water resistance and fluidity of composite melts. It was shown [13] that modification of the composites with interfacial modifier - coupling agent maleated polypropylene (MAPP content up to 5-7 wt.%) considerably improved all the abovementioned properties. SEM investigations also confirmed positive action of coupling agent on strengthening of adhesion interaction between components wood and PP matrix. Another way how to make better properties of the WPC is to form hybridcomposites [1, 14-24]. Very popular WPC modifiers are nanoparticle additions like organonanoclays, which increase WPC physical-mechanical properties - microhardness, water resistance and diminish barrier properties and combustibility [1, 2, 14-17, 19, 20]. The goal of this study was to investigate organonanoclays influence on plywood production industry by-product birch plywood sawdust (PSWD) containing

  15. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    Science.gov (United States)

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  16. A comparative parametric study of a catalytic plate methane reformer coated with segmented and continuous layers of combustion catalyst for hydrogen production

    Science.gov (United States)

    Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.

    2017-03-01

    A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.

  17. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting

  18. ASSESSMENTS OF FUTURE ENVIRONMENTAL TRENDS AND PROBLEMS OF INCREASED USE, RECYCLING, AND COMBUSTION OF FIBER-REINFORCED, PLASTIC AND METAL COMPOSITE MATERIALS

    Science.gov (United States)

    The purpose of the study is to identify and define future environmental concerns related to the projected utilization, recycling, and combustion of composite materials. The study is being conducted for the Office of Strategic Assessment and Special Studies (OSASS) of the U.S. Env...

  19. Production of Indigenous and Enriched Khyber Pakhtunkhwa Coal Briquettes: Combustion and Disintegration Strength Analysis

    International Nuclear Information System (INIS)

    Habib, M.; Khan, A.U.; Habib, U.; Memon, A.R.

    2013-01-01

    Khyber Pakhtun Khwa province of Pakistan has considerable amounts of low ranked coal. However, due to the absence of any centrally administered power generation system there is a need to explore indigenous methods for effectively using this valuable energy resource. In the present study an indigenous coal briquetting technology has been developed and evaluated in terms of combustion characteristics such as moisture content, volatile matter, ash, fixed carbon and calorific value of the resulting coal briquette and disintegration strength using polyvinyl acetate (PVA) in combination with calcium carbonate (sample no 3 with highest disintegration strength value of 2059N). Comparison of test samples with the commercially available coal briquettes revealed improved combustion characteristics for the PVA bonded (sample no 1 and 5) coal briquettes having higher fixed carbon content and calorific value, lower ash contents as well as lower initial ignition time. (author)

  20. Combustion products from various kinds of fibers: toxicological hazards from smoke exposure. [Guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Betol, E.; Mari, F.; Orzalesi, G.; Volpato, I.

    1983-08-15

    The smoke exposure hazards during combustion of carbon and nitrogen-containing fibers were evaluated in guinea pigs intoxicated by gradual exposure to HCN and CO neo-formed from foam rubber, wool and PAN (Polyacrylonitrile). The most prominent result of our study was that the neo-formation of HCN from 1 g of PAN was 1500 ppm, much higher than from foam rubber and wool because of the presence of many -CN groups in the polymer chemical structure. This concentration of HCN is estimated to be lethal. Extrapolating this data, a lethal concentration of HCN could be obtained by burning 2 kg of PAN in an average sized living room. The above-mentioned 1 g of PAN was burned in a 15.6-liter combustion chamber.

  1. Production of Indigenous and Enriched Khyber Pakhtunkhwa Coal Briquettes: Combustion and Disintegration Strength Analysis

    Directory of Open Access Journals (Sweden)

    Unsia Habib

    2013-06-01

    Full Text Available Khyber Pakhtun Khwa province of Pakistan has considerable amounts of low ranked coal. However, due to the absence of any centrally administered power generation system there is a need to explore indigenous methods for effectively using this valuable energy resource. In the present study an indigenous coal briquetting technology has been developed and evaluated in terms of combustion characteristics such as moisture content, volatile matter, ash, fixed carbon and calorific value of the resulting coal briquette and disintegration strength using polyvinyl acetate (PVA in combination with calcium carbonate (sample no 3 with highest disintegration strength value of 2059N. Comparison of test samples with the commercially available coal briquettes revealed improved combustion characteristics for the PVA bonded (sample no 1 and 5 coal briquettes having higher fixed carbon content and calorific value, lower ash contents as well as lower initial ignition time.

  2. Application of CO{sub 2} selective membrane reactors in pre-combustion decarbonisation systems for power production

    Energy Technology Data Exchange (ETDEWEB)

    Steven C.A. Kluiters; Virginie C. Feuillade; Jan Wilco Dijkstra; Daniel Jansen; Wim G. Haije [Energy research Centre of the Netherlands (ECN), Petten (Netherlands)

    2006-07-01

    For pre-combustion decarbonisation of fuels for large-scale power production or H{sub 2} generation both CO{sub 2} and H{sub 2} selective membranes are viable candidates for use in steam reforming and water gas shift membrane reactors. It will be shown that the choice between either option is not a matter of taste, but dictated by the fuel used and, to a lesser extent, the total system layout. Hydrotalcites, clay-like materials, are shown to be promising candidates as membrane material for low temperature, below 400{sup o}C, membrane shift reactors. 7 refs., 6 figs., 1 tab.

  3. Conversion of nitric oxide in the combustion products of a gaseous fuel on exposure to a beam of accelerated electrons

    International Nuclear Information System (INIS)

    Belousova, E.V.; Gavrilov, A.F.; Gol'danskii, V.I.; Dzantiev, B.G.; Pavlova, S.U.; Shvedchikov, A.P.

    1986-01-01

    The results are given of an experimental investigation of the radiation chemical effect of a beam of accelerated electrons on the combustion products of a gaseous fuel (propane). The effects of the initial concentration, temperature, and dose on the relative concentration of nitric oxide [NO]/[NO] 0 in the irradiated mixture were studied and the radiation chemical yields for the consumption of nitric oxide G(-NO) were studied. The quite high values of G(-NO) obtained suggest that the method described may be suitable for removing nitrogen oxides from the exhaust gases from thermoelectric power plants

  4. An Evaluation of h-Index as a Measure of Research Productivity Among Canadian Academic Plastic Surgeons.

    Science.gov (United States)

    Hu, Jiayi; Gholami, Arian; Stone, Nicholas; Bartoszko, Justyna; Thoma, Achilleas

    2018-02-01

    Evaluation of research productivity among plastic surgeons can be complex. The Hirsch index (h-index) was recently introduced to evaluate both the quality and quantity of one's research activity. It has been proposed to be valuable in assessing promotions and grant funding within academic medicine, including plastic surgery. Our objective is to evaluate research productivity among Canadian academic plastic surgeons using the h-index. A list of Canadian academic plastic surgeons was obtained from websites of academic training programs. The h-index was retrieved using the Scopus database. Relevant demographic and academic factors were collected and their effects on the h-index were analyzed using the t test and Wilcoxon Mann-Whitney U test. Nominal and categorical variables were analyzed using χ 2 test and 1-way analysis of variance. Univariate and multivariate models were built a priori. All P values were 2 sided, and P h-index of 7.6. Over 80% of the surgeons were male. Both univariable and multivariable analysis showed that graduate degree ( P h-index. Limitations of the study include that the Scopus database and the websites of training programs were not always up-to-date. The h-index is a novel tool for evaluating research productivity in academic medicine, and this study shows that the h-index can also serve as a useful metric for measuring research productivity in the Canadian plastic surgery community. Plastic surgeons would be wise to familiarize themselves with the h-index concept and should consider using it as an adjunct to existing metrics such as total publication number.

  5. Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline

    Directory of Open Access Journals (Sweden)

    Musaab O. El-Faroug

    2016-11-01

    Full Text Available This paper reviews the serviceability of hydrous ethanol as a clean, cheap and green renewable substitute fuel for spark ignition engines and discusses the comparative chemical and physical properties of hydrous ethanol and gasoline fuels. The significant differences in the properties of hydrous ethanol and gasoline fuels are sufficient to create a significant change during the combustion phase of engine operation and consequently affect the performance of spark-ignition (SI engines. The stability of ethanol-gasoline-water blends is also discussed. Furthermore, the effects of hydrous ethanol, and its blends with gasoline fuel on SI engine combustion characteristics, cycle-to-cycle variations, engine performance parameters, and emission characteristics have been highlighted. Higher water solubility in ethanol‑gasoline blends may be obviously useful and suitable; nevertheless, the continuous ability of water to remain soluble in the blend is significantly affected by temperature. Nearly all published engine experimental results showed a significant improvement in combustion characteristics and enhanced engine performance for the use of hydrous ethanol as fuel. Moreover, carbon monoxide and oxides of nitrogen emissions were also significantly decreased. It is also worth pointing out that unburned hydrocarbon and carbon dioxide emissions were also reduced for the use of hydrous ethanol. However, unregulated emissions such as acetaldehyde and formaldehyde were significantly increased.

  6. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  7. Production methods for decreasing nitrous oxide effluents during solid fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1981-01-01

    The atmosphere can be protected from toxic NO /SUB x/ effluents during fuel combustion in boilers by reducing the amount of NO /SUB x/ during combustion or by cleaning the smoky gases after they leave the boiler. The second method results from the need to process a large amount of smoky gases with a relatively low concentration of nitrous oxide which is chemically resistant and which is not highly soluble in water. The problem is complicated by the SO /SUB x/ , O/sub 2/ and solid particles in the smoky gaes. The method for cleaning smoky gases is complicated and requires mator capital investments and operating expenses. Laboratory tests in the F. E. Dzerzhinskiy Heat Engineering Institute showed that thermal NO /SUB x/ is formed at combustion temperatures above 1550/sup 0/C, and that the concentration of O/sub 2/ has a significant impact on NO /SUB x/ formation, while temperature has much less effect. On the basis of laboratory and industrial tests, the Institute recommended a method to reduce NO /SUB x/ effluents from large boilers: for Kansk-Achinski coals -- low-temperature combustion. The temperature in the combustion nucleus is maintained at 1290/sup 0/C by using a set of measures individual dust systems with direct intection, grinder-blowers, fuel drying and recirculation of about 20% of the smoky gases with the primary air, tangential direct flow burners in several rows along the top). The effectiveness of this system has been checked on a PK-10Sh boiler at the Krasnoyarsk Thermal Power Plant No. 1 and a BK3-210-140 boiler at the Vladivostok Thermal Power Plant No. 2. Further reduction of NO /SUB x/ (by about 20%) requires redistribution of the secondary air along the row of burners. These measures are suggested for use on the P-67 boiler of the 800 MW unit of the Berezovsk State Regional Power Station No. 1. A brief summary of the design and operating measures are provided.

  8. Managing plastic waste in urban Kenya: niche innovations in production and recycling

    OpenAIRE

    Ombis, L.O.

    2012-01-01

    The problems with plastic waste in Kenyan cities are increasing to alarming levels. Especially disposable packaging made of very light plastic materials continues to burden the environment as well as compromise management capacities for waste by city authorities. In light of this, major cities of Kenya have in the last two decades registered participation of formal and informal private actors with strategies to curtail the flow of plastic waste to the environment. This study argues that such...

  9. Thermogravimetric analysis of anthracite and waste plastics by iso-conversional method

    International Nuclear Information System (INIS)

    Ren, Shan; Zhang, Jianliang

    2013-01-01

    Highlights: • Co-combustion kinetic analysis of solid fuels was made by iso-conversional method. • Thermodynamic and kinetic parameters of combustion for blends were determined. • WP can improve the combustion characteristic of high ash anthracite. • Reasonable utilization the energy of WP is important for industrial production. - Abstract: Combustion mechanisms and kinetics of plastics-coal blends with 0, 10, 20, 40 and 100% waste plastics (WP) are studied separately by thermogravimetric analysis (TGA) from ambient temperature to 900 °C in air atmosphere. These blends are combusted at different heating rates. The results indicate that, with the increase of waste plastics content, the combustion processes of blends could be divided into one stage, two stages, three stages and one stage. Meanwhile, the ignition and final temperatures of them both decrease. The maximum weight loss rate of WP is much higher than that of other samples. The iso-conversional method is used for the kinetic analysis of the non-isothermal thermogravimetric data and results indicate that, when the waste plastics content varied from 0% to 40%, the values of activation energy increase from 113.3 kJ mol −1 to 156.0 kJ mol −1 , and the value of activation energy for pure WP is 278.8 kJ mol −1

  10. Smart film actuators using biomass plastic

    International Nuclear Information System (INIS)

    Yoneyama, Satoshi; Tanaka, Nobuo

    2011-01-01

    This paper presents a novel smart film actuator based on the use of a biomass plastic as a piezoelectric film. Conventional polymeric smart sensors and actuators have been based upon synthetic piezoelectric polymer films such as PVDF. Almost all synthetic polymers are made from nearly depleted oil resources. In addition combustion of their materials releases carbon dioxide, thereby contributing to global warming. Thus at least two important sustainability principles are violated when employing synthetic polymers: avoiding depletable resources and avoiding ecosystem destruction. To overcome such problems, industrial plastic products made from synthetic polymers were developed to replace oil-based plastics with biomass plastics. This paper applies a biomass plastic with piezoelectricity such as poly-L-lactic acid (PLLA). As a result, PLLA film becomes a distributed parameter actuator per se, hence an environmentally conscious smart film actuator is developed. Firstly, this paper overviews the fundamental properties of piezoelectric synthetic polymers and biopolymers. The concept of carbon neutrality using biopolymers is mentioned. Then a two-dimensional modal actuator for exciting a specific structural mode is proposed. Furthermore, a biomass plastic-based cantilever beam with the capability of modal actuation is developed, the validity of the proposed smart film actuator based upon a biomass plastic being analytically as well as experimentally verified

  11. A Novel Brominated Triazine-based Flame Retardant (TTBP-TAZ) in Plastic Consumer Products and Indoor Dust

    NARCIS (Netherlands)

    Ballesteros Gomez, A.M.; de Boer, J.; Leonards, P.E.G.

    2014-01-01

    The presence of a novel brominated flame retardant named 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) is reported for the first time in plastic parts of consumer products and indoor dust samples. TTBP-TAZ was identified by untargeted screening and can be a replacement of the banned

  12. Plastic Technology (Production). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    Science.gov (United States)

    Claus, Robert; And Others

    This course guide for a plastic technology course is one of four developed for the production area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--energy/power and graphic communications.) Part 1 provides such introductory information as a definition and…

  13. POTENTIAL PRODUCTION OF OIL FROM WASTE PLASTIC PYROLIYSIS IN GEOSTECH BUILDING

    OpenAIRE

    Kristyawan, I Putu Angga

    2017-01-01

    Office waste is produced from activity that carried in the office area. In Geostech office area, 18.05 % composition of the waste is plastic waste. Plastic waste total in Geostech is 17.1 kg/week. The highest of plastic waste type is PP (Polypropylene). plastic waste. From the waste total is known that that the potential of oil produced through pyrolysis is 11.6 kg/week or 13.7 L/week. Pirolysis oil can be used as substitute for diesel fuel because of the calorific value equal with the calori...

  14. LIMITED RUN PRODUCTION USING ALUMIDE® TOOLING FOR THE PLASTIC INJECTION MOULDING PROCESS#1

    Directory of Open Access Journals (Sweden)

    J. Combrinck

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Existing techniques for the production of conventional steel tooling for plastic injection moulding are expensive and time-consuming. As a result, many new products often do not advance beyond the prototype stage. This paper describes an investigation into the possibility of using laser sintered Alumide® (an aluminium-filled nylon material in a novel alternative process for producing hybrid rapid tooling tools. Initial experiments performed by researchers at the Central University of Technology have shown excellent results. An Alumide® tool can be manufactured in a shorter time and at a significantly lower cost than the same size direct metal laser sintered tool.

    AFRIKAANSE OPSOMMING: Bestaande tegnieke vir die vervaardiging van konvensionele staal gietstukke vir die plastiek spuit-giet proses is duur en tydrowend. Die gevolg hiervan is dat baie nuwe produkte nie verder as die prototipe stadium vorder nie. Hierdie artikel ondersoek die moontlikheid om laser gesinterde Alumide® (aluminium gevulde nylon materiaal in ’n nuwe benadering as ’n alternatiewe proses vir die vervaardiging van snel hibried-gietvorms te gebruik. Aanvanklike eksperimente uitgevoer deur navorsers aan die Sentrale Universiteit vir Tegnologie het uitstekende resultate gelewer. ’n Alumide® gietvorm kan vinniger en goedkoper vervaardig word as dieselfde grootte direk metaal gesinterde gietvorm.

  15. Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products.

    Science.gov (United States)

    Turner, Andrew; Filella, Montserrat

    2017-04-15

    Very little systematic information exists on the occurrence and concentrations of antimony (Sb) in consumer products. In this study, a Niton XL3t field-portable-X-ray fluorescence (FP-XRF) spectrometer was deployed in situ and in the laboratory to provide quantitative information on Sb dissipated in plastic items and fixtures (including rubber, textile and foamed materials) from the domestic, school, vehicular and office settings. The metalloid was detected in 18% of over 800 measurements performed, with concentrations ranging from about 60 to 60,000μgg -1 . The highest concentrations were encountered in white, electronic casings and in association with similar concentrations of Br, consistent with the use of antimony oxides (e.g. Sb 2 O 3 ) as synergistic flame retardants. Concentrations above 1000μgg -1 , and with or without Br, were also encountered in paints, piping and hosing, adhesives, whiteboards, Christmas decorations, Lego blocks, document carriers, garden furniture, upholstered products and interior panels of private motor vehicles. Lower concentrations of Sb were encountered in a wide variety of items but its presence (without Br) in food tray packaging, single-use drinks bottles, straws and small toys were of greatest concern from a human health perspective. While the latter observations are consistent with the use of antimony compounds as catalysts in the production of polyethylene terephthalate, co-association of Sb and Br in many products not requiring flame retardancy suggests that electronic casings are widely recycled. Further research is required into the mobility of Sb when dissipated in new, recycled and aged polymeric materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. An overview of the western Maryland coal combustion by-products/acid mine drainage initiative, Part 1 of 3

    International Nuclear Information System (INIS)

    Petzrick, P.; Rafalko, L.G.; Lyons, C.

    1996-01-01

    The western Maryland coal combustion by-products (CCB)/acid mine drainage (AMD) initiative (the Initiative) is a public-private partnership exploring the use of CCBs to eliminate AMD from Maryland's abandoned coal mines. This dynamic partnership will sponsor a series of large scale experiments and demonstrations addressing the engineering problems that characterize the beneficial application of CCBs to prevent acid formation on a scale that is consistent with the large quantity of these materials that will be produced by power plants in or near western Maryland. The initial demonstration is the filling and sealing of a small hand dug mine (the Frazee Mine) under approximately ninety feet of overburden on Winding Ridge near Friendsville, Maryland. A second demonstration is being planned for the Kempton mine complex. Subsequent demonstrations will focus on reducing the cost of materials handling and mine injection and solving the engineering problems characteristic of filling abandoned mines in Maryland. The Initiative is the flagship activity in Maryland's overall Ash Utilization Program, the goal of which is to promote beneficial use of all coal combustion by-products

  17. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  18. Lump wood combustion process

    Science.gov (United States)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  19. Analysis of volatile combustion products and a study of their toxicological effects.

    Science.gov (United States)

    Seader, J. D.; Einhorn, I. N.; Drake, W. O.; Mihlfeith, C. M.

    1972-01-01

    An experimental program was conducted to study the thermochemical, flammability and toxicological characteristics of uncoated and coated polyisocyanurate foams. The coatings used were fluorinated copolymer and an intumescent material. Combustion and pyrolysis gases were analyzed by gas chromatography and mass spectrometry. The LD-50 and LD-100 tests were performed on Sprague-Dawley rats housed in an environmental chamber. The isocyanurate foam, fluorinated-copolymer-coated foam, and the intumescent-coated foam were found to have excellent flammability and insulation characteristics, although smoke development was substantial.

  20. Managing plastic waste in urban Kenya: niche innovations in production and recycling

    NARCIS (Netherlands)

    Ombis, L.O.

    2012-01-01

    The problems with plastic waste in Kenyan cities are increasing to alarming levels. Especially disposable packaging made of very light plastic materials continues to burden the environment as well as compromise management capacities for waste by city authorities. In light of this, major cities

  1. 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources.

    Science.gov (United States)

    Weidemann, Eva; Andersson, Patrik L; Bidleman, Terry; Boman, Christoffer; Carlin, Danielle J; Collina, Elena; Cormier, Stephania A; Gouveia-Figueira, Sandra C; Gullett, Brian K; Johansson, Christer; Lucas, Donald; Lundin, Lisa; Lundstedt, Staffan; Marklund, Stellan; Nording, Malin L; Ortuño, Nuria; Sallam, Asmaa A; Schmidt, Florian M; Jansson, Stina

    2016-04-01

    The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants.

  2. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna.

    Science.gov (United States)

    Lithner, Delilah; Nordensvan, Ildikó; Dave, Göran

    2012-06-01

    The large global production of plastics and their presence everywhere in the society and the environment create a need for assessing chemical hazards and risks associated with plastic products. The aims of this study were to determine and compare the toxicity of leachates from plastic products made of five plastics types and to identify the class of compounds that is causing the toxicity. Selected plastic types were those with the largest global annual production, that is, polypropylene, polyethylene, and polyvinyl chloride (PVC), or those composed of hazardous monomers (e.g., PVC, acrylonitrile-butadiene-styrene [ABS], and epoxy). Altogether 26 plastic products were leached in deionized water (3 days at 50°C), and the water phases were tested for acute toxicity to Daphnia magna. Initial Toxicity Identification Evaluations (C18 filtration and EDTA addition) were performed on six leachates. For eleven leachates (42%) 48-h EC50s (i.e the concentration that causes effect in 50 percent of the test organisms) were below the highest test concentration, 250 g plastic/L. All leachates from plasticized PVC (5/5) and epoxy (5/5) products were toxic (48-h EC50s ranging from 2 to 235 g plastic/L). None of the leachates from polypropylene (5/5), ABS (5/5), and rigid PVC (1/1) products showed toxicity, but one of the five tested HDPE leachates was toxic (48-h EC50 17-24 g plastic/L). Toxicity Identification Evaluations indicated that mainly hydrophobic organics were causing the toxicity and that metals were the main cause for one leachate (metal release was also confirmed by chemical analysis). Toxic chemicals leached even during the short-term leaching in water, mainly from plasticized PVC and epoxy products.

  3. Les méthodes thermiques de production des hydrocarbures. Chapitre 5 : Combustion "in situ". Pricipes et études de laboratoire Thermal Methods of Hydrocarbon Production. Chapter 5 : "In Situ" Combustion. Principles and Laboratory Research

    Directory of Open Access Journals (Sweden)

    Burger J.

    2006-11-01

    Full Text Available II existe plusieurs variantes de la combustion in situ, suivant le sens de déplacement du front de combustion, à co-courant ou à contre-courant, et suivant la nature des fluides injectés, air seul ou injection combinée d'air et d'eau. Les réactions de pyrolyse, d'oxydation et de combustion mises en jeu par ces techniques sont discutées, en particulier la cinétique des principaux mécanismes réactionnels, l'importance du dépôt de coke et l'exothermicité des réactions d'oxydation et de combustion. Les résultats d'essais de déplacement unidirectionnel du front de combustion dans des cellules de laboratoire sont présentés et discutés. Enfin on indique les conditions pratiques d'application des méthodes de combustion in situ sur champ. Possible variations of in situ combustion technique ore as follows : forward or reverse combustion depending on the relative directions of the air flow and the combustion front, dry combustion if air is the only fluid injected into the oil-bearing formation, or fixe/woter flooding if water is injected along with air. The chemical reactions of pyrolysis, oxidation and combustion involved in these processes are described. The kinetics of these reactions is discussed as well as fuel availability in forward combustion and the exothermicity of the oxidation and combustion reactions. The results obtained in the laboratory when a combustion front propagates in unidirectional adiabatic tells are described and discussed. This type of experimentation provides extensive information on the characteristics of the processes. Screening criteria for the practical application of in situ combustion techniques are presented.

  4. Modeling of the solution interaction properties of plastic materials used in pharmaceutical product container systems.

    Science.gov (United States)

    Jenke, Dennis; Couch, Tom; Gillum, Amy; Sadain, Salma

    2009-01-01

    Material/water equilibrium binding constants (Eb) were determined for 14 organic solutes and 17 plastic raw materials that could be used in pharmaceutical product container systems. Correlations between the measured binding constants and the organic solute's octanol/water and hexane/water partition coefficients were obtained. In general, while the materials examined exhibited a wide range of binding characteristics, the tested materials by and large fell within two broad classes: (1) those that were octanol-like in their binding characteristics, and (2) those that were hexane-like. Materials of the same class (e.g., polypropylenes) generally had binding models that were very similar. Rank ordering of the materials in terms of their magnitude of drug binding (least binding to most binding) was as follows: polypropylene < polyethylene < polyamide < styrene-ethylene-butylene-styrene < copolyester ether elastomer approximately equal to amine-terminated poly fatty acid amide polymer. The utilization of the developed models to estimate drug loss via sorption by the container is discussed.

  5. Hygienic effects and gas production of plastic bio-digesters under tropical conditions.

    Science.gov (United States)

    Yen-Phi, Vo Thi; Clemens, Joachim; Rechenburg, Andrea; Vinneras, Björn; Lenssen, Christina; Kistemann, Thomas

    2009-12-01

    Plastic plug-flow bio-digesters have been promoted as a good option for improved treatment of manure and wastewater in developing countries although minimal information has been published on their hygienic status. This bench-scale study replicates bio-digester conditions to evaluate the reduction of pathogen and indicator microorganisms at three different hydraulic retention times (HRT) in the anaerobic treatment of pig manures at 30 degrees C for 50 days. Results showed that physicochemical values differed between HRTs. Gas production efficiency was better for longer HRTS. The accumulated sludge at the reactor's base increased with longer HRT. Phages and bacteria examined were reduced, but none was completely eliminated. Log10 reduction of bacteria ranged from 0.54 to 2.47. Phages ranged from 1.60 to 3.42. The reduction of organisms at HRT = 30 days was about one log10 unit higher than HRT = 15 days and about two log10 units higher than HRT = 3 days. The results indicate that the reduction of tested organisms increases with HRT. However the hygienic quality of the liquid effluent does not meet required quality values for surface and irrigation water. Longer HRTs are recommended to increase gas yield and achieve higher pathogen reduction. More barriers should be applied while handling bio-digester outputs to minimise risks to environmental and human health.

  6. Mass spectrometry analysis of etch products from CR-39 plastic irradiated by heavy ions

    Science.gov (United States)

    Kodaira, S.; Nanjo, D.; Kawashima, H.; Yasuda, N.; Konishi, T.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Naka, S.; Ota, S.; Ideguchi, Y.; Hasebe, N.; Mori, Y.; Yamauchi, T.

    2012-09-01

    As a feasibility study, gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) have been applied to analyze etch products of CR-39 plastic (one of the most frequently used solid states nuclear track detector) for the understanding of track formation and etching mechanisms by heavy ion irradiation. The etch products of irradiated CR-39 dissolved in sodium hydroxide solution (NaOH) contain radiation-induced fragments. For the GC-MS analysis, we found peaks of diethylene glycol (DEG) and a small but a definitive peak of ethylene glycol (EG) in the etch products from CR-39 irradiated by 60 MeV N ion beams. The etch products of unirradiated CR-39 showed a clear peak of DEG, but no other significant peaks were found. DEG is known to be released from the CR-39 molecule as a fragment by alkaline hydrolysis reaction of the polymer. We postulate that EG was formed as a result of the breaking of the ether bond (C-O-C) of the DEG part of the CR-39 polymer by the irradiation. The mass distribution of polyallylalcohol was obtained from the etch products from irradiated and unirradiated CR-39 samples by MALDI-MS analysis. Polyallylalcohol, with the repeating mass interval of m/z = 58 Da (dalton) between m/z = 800 and 3500, was expected to be produced from CR-39 by alkaline hydrolysis. We used IAA as a matrix to assist the ionization of organic analyte in MALDI-MS analysis and found that peaks from IAA covered mass spectrum in the lower m/z region making difficult to identify CR-39 fragment peaks which were also be seen in the same region. The mass spectrometry analysis using GC-MS and MALDI-MS will be powerful tools to investigate the radiation-induced polymeric fragments and helping to understand the track formation mechanism in CR-39 by heavy ions.

  7. Recycling of plastic: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas H

    2009-11-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO(2)-eq. tonne( -1) of plastic waste depending on treatment at the MRF and CO(2) emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60- 1600 kg CO(2)-eq. tonne( -1) of plastic waste depending on substitution ratios and CO(2) emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.

  8. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products.

    Science.gov (United States)

    Zhang, Yeshui; Nahil, Mohamad A; Wu, Chunfei; Williams, Paul T

    2017-11-01

    A stainless-steel mesh loaded with nickel catalyst was produced and used for the pyrolysis-catalysis of waste high-density polyethylene with the aim of producing high-value carbon products, including carbon nanotubes (CNTs). The catalysis temperature and plastic-to-catalyst ratio were investigated to determine the influence on the formation of different types of carbon deposited on the nickel-stainless-steel mesh catalyst. Increasing temperature from 700 to 900°C resulted in an increase in the carbon deposited on the nickel-loaded stainless-steel mesh catalyst from 32.5 to 38.0 wt%. The increase in sample-to-catalyst ratio reduced the amount of carbon deposited on the mesh catalyst in terms of g carbon g -1 plastic. The carbons were found to be largely composed of filamentous carbons, with negligible disordered (amorphous) carbons. Transmission electron microscopy analysis of the filamentous carbons revealed them to be composed of a large proportion (estimated at ∼40%) multi-walled carbon nanotubes (MWCNTs). The optimum process conditions for CNT production, in terms of yield and graphitic nature, determined by Raman spectroscopy, was catalysis temperature of 800°C and plastic-to-catalyst ratio of 1:2, where a mass of 334 mg of filamentous/MWCNTs g -1 plastic was produced.

  9. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China.

    Science.gov (United States)

    Tao, Shu; Li, Xinrong; Yang, Yu; Coveney, Raymond M; Lu, Xiaoxia; Chen, Haitao; Shen, Weiran

    2006-08-01

    A USEPA, procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo[a]pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from approximately 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from approximately 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 +/- 2.87 ng/m3 on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m3, 41% of the entire population lives within this area.

  10. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches.

    Science.gov (United States)

    Parshetti, Ganesh K; Kent Hoekman, S; Balasubramanian, Rajasekhar

    2013-05-01

    A carbon-rich solid product, denoted as hydrochar, was synthesized by hydrothermal carbonization (HTC) of palm oil empty fruit bunch (EFB), at different pre-treatment temperatures of 150, 250 and 350 °C. The conversion of the raw biomass to its hydrochar occurred via dehydration and decarboxylation processes. The hydrochar produced at 350 °C had the maximum energy-density (>27 MJ kg(-1)) with 68.52% of raw EFB energy retained in the char. To gain a detailed insight into the chemical and structural properties, carbonaceous hydrochar materials were characterized by FE-SEM, FT-IR, XRD and Brunauer-Emmett-Teller (BET) analyses. This work also investigated the influence of hydrothermally treated hydrochars on the co-combustion characteristics of low rank Indonesian coal. Conventional thermal gravimetric analysis (TGA) parameters, kinetics and activation energy of different hydrochar and coal blends were estimated. Our results show that solid hydrochars improve the combustion of low rank coals for energy generation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Fertilisers production from ashes after sewage sludge combustion - A strategy towards sustainable development.

    Science.gov (United States)

    Gorazda, Katarzyna; Tarko, Barbara; Wzorek, Zbigniew; Kominko, Halyna; Nowak, Anna K; Kulczycka, Joanna; Henclik, Anna; Smol, Marzena

    2017-04-01

    Sustainable development and circular economy rules force the global fertilizer industry to develop new phosphorous recovery methods from alternative sources. In this paper a phosphorus recovery technology from Polish industrial Sewage Sludge Ashes was investigated (PolFerAsh - Polish Fertilizers form Ash). A wet method with the use of mineral acid and neutralization was proposed. Detailed characteristic of SSA from largest mono-combustion plans were given and compared to raw materials used on the market. The technological factors associated with such materials were discussed. The composition of the extracts was compared to typical industrial phosphoric acid and standard values characterizing suspension fertilizers. The most favorable conditions for selective precipitation of phosphorus compounds were revealed. The fertilizers obtained also meet EU regulations in the case of the newly discussed Cd content. The process was scaled up and a flow mass diagram was defined. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Thermodynamic and transport properties of air and its products of combustion with ASTMA-A-1 fuel and natural gas at 20, 30, and 40 atmospheres

    Science.gov (United States)

    Poferl, D. J.; Svehla, R. A.

    1973-01-01

    The isentropic exponent, molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, Prandtl number, and enthalpy were calculated for air, the combustion products of ASTM-A-1 jet fuel and air, and the combustion products of natural gas and air. The properties were calculated over a temperature range from 300 to 2800 K in 100 K increments and for pressures of 20, 30 and 40 atmospheres. The data for natural gas and ASTM-A-1 were calculated for fuel-air ratios from zero to stoichiometric in 0.01 increments.

  13. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  14. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups ...

  15. Application of β plastic film thickness gauge in automatic production of agricultural film

    International Nuclear Information System (INIS)

    Liu Longzhi; Guo Juhao

    1996-01-01

    The author briefly explains the importance of agricultural film at home, and mainly explains the measuring principles of plastic film thickness, the design of β detector, the temperature compensation technology and the design of automatic control device

  16. How do consumers perceive differences in risk across nicotine products? A review of relative risk perceptions across smokeless tobacco, e-cigarettes, nicotine replacement therapy and combustible cigarettes.

    Science.gov (United States)

    Czoli, Christine D; Fong, Geoffrey T; Mays, Darren; Hammond, David

    2017-03-01

    To systematically review the literature regarding relative risk perceptions (RRPs) across non-combustible nicotine products. MEDLINE and PsycINFO databases were searched for articles published up to October 2014. Of the 5266 records identified, articles not published in English that did not quantitatively assess RRPs across categories of non-combustible nicotine products were excluded, yielding 55 records. One reviewer extracted measures and findings of RRPs for product comparisons of smokeless tobacco (SLT), e-cigarettes (ECs) and nicotine replacement therapy (NRT) to one another, and to combustible cigarettes (CCs). A total of 157 samples from 54 studies were included in the analyses. The accuracy of RRPs differed based on the products being compared: although the accuracy of RRPs was variable across studies, substantial proportions of respondents reported inaccurate beliefs about the relative harmfulness of SLT versus CCs, as well as of ECs versus NRT. In addition, in most studies, respondents did not know the relative harmfulness of SLT versus NRT. In contrast, respondents in many studies correctly perceived NRT and ECs as less harmful than CCs. Cigarette smokers and users of non-combustible nicotine products tended to correctly perceive the relative harmfulness of products more often than non-users. Measures used to assess RRPs varied across studies, with different approaches characterised by certain strengths and limitations. The highly variable and context-specific nature of non-combustible nicotine product RRPs have direct implications for researchers and present several challenges for policymakers working with modified risk products, including issues of measurement, health risk communication and behaviour change. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Thermo-economic analysis of integrated membrane-SMR ITM-oxy-combustion hydrogen and power production plant

    International Nuclear Information System (INIS)

    Sanusi, Yinka S.; Mokheimer, Esmail M.A.; Habib, Mohamed A.

    2017-01-01

    Highlights: •A methane reforming reactor integrated to an oxy-combustion plant is proposed. •Co-production of power and hydrogen was investigated and presented. •Optimal thermo-economic operating conditions of the system were identified and presented. •The ion transport membrane oxygen separation unit has the highest capital cost. •The combustor has the highest exergy destruction. -- Abstract: The demand for hydrogen has greatly increased in the last decade due to the stringent regulations enacted to address environmental pollution concerns. Natural gas reforming is currently the most mature technology for large-scale hydrogen production. However, it is usually associated with greenhouse gas emissions. As part of the strategies to reduce greenhouse gas emissions, new designs need to be developed to integrate hydrogen production facilities that are based on natural gas reforming with carbon capture facilities. In this study, we carried out energy, exergy and economic analysis of hydrogen production in a steam methane reforming reactor integrated with an oxy-combustion plant for co-production of power and hydrogen. The results show that the overall system efficiency and hydrogen production efficiency monotonically increase with increasing the combustor exit temperature (CET), increasing the amount of hydrogen extracted and decreasing the auxiliary fuel added to the system. The optimal thermo-economic operating conditions of the system were obtained as reformer pressure of 15 bar, auxiliary fuel factor of 0.8 and hydrogen extraction factor of 0.6. The production cost of hydrogen using the proposed system, under these optimal operating conditions, is within the range suggested by the International Energy Agency (IEA). Further analysis shows that the capital cost of the membrane-air separation unit (ITM) has the major share in the total investment cost of the system and constitutes 37% of the total capital cost of the system at the CET of 1500 K. The exergy

  18. Plastic waste disposal apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kito, S

    1972-05-01

    A test plant plastic incinerator was constructed by the Takuma Boiler Manufacturing Co. for Sekisui Chemical Industries, and the use of a continuous feed spreader was found to be most effective for prevention of black smoke, and the use of a venturi scrubber proved to be effective for elimination of hydrogen chloride gas. The incinerator was designed for combustion of polyvinyl chloride exclusively, but it is also applicable for combustion of other plastics. When burning polyethylene, polypropylene, or polystyrene, (those plastics which do not produce toxic gases), the incinerator requires no scrubber for the combustion gas. The system may or may not have a pretreatment apparatus. For an incinerator with a pretreatment system, the flow chart comprises a pit, a supply crane, a vibration feeder, a metal eliminator, a rotation shredder, a continuous screw feeder with a quantitative supply hopper, a pretreatment chamber (300 C dry distillation), a quantitative supply hopper, and the incinerator. The incinerator is a flat non-grid type combustion chamber with an oil burner and many air nozzles. From the incinerator, ashes are sent by an ash conveyor to an ash bunker. The combustion gas goes to the boiler, and the water supplied the boiler water pump creates steam. The heat from the gas is sent back to the pretreatment system through a heat exchanger. The gas then goes to a venturi scrubber and goes out from a stack.

  19. Identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products.

    Science.gov (United States)

    García Ibarra, Verónica; Rodríguez Bernaldo de Quirós, Ana; Paseiro Losada, Perfecto; Sendón, Raquel

    2018-05-07

    Plastic materials are widely used in food packaging applications; however, there is increased concern because of the possible release of undesirable components into foodstuffs. Migration of plastic constituents not only has the potential to affect product quality but also constitutes a risk to consumer health. In order to check the safety of food contact materials, analytical methodologies to identify potential migrants are required. In the first part of this work, a GC/MS screening method was developed for the identification of components from plastic packaging materials including intentionally and "non-intentionally added substances" (NIAS) as potential migrants. In the second part of this study, the presence of seven compounds (bis (2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), butylated hydroxytoluene (BHT), acetyl tributyl citrate (ATBC), benzophenone (BP)) previously identified in packaging materials were investigated in food products (corn and potatoes snacks, cookies, and cakes). For this purpose, a suitable extraction method was developed and quantification was performed using GC-MS. The developed method was validated in terms of linearity, recovery, repeatability, and limits of detection and quantification. The spiked recoveries varied between 82.7 and 116.1%, and relative standard deviation (RSD) was in the range of 2.22-15.9%. The plasticizer ATBC was the most detected compound (94% samples), followed by DEP (65%), DEHP (47%), BP (44%), DBP (35%), DIBP (21%), and BHT (12%). Regarding phthalates, DEP and DEHP were the most frequently detected compounds in concentrations up to 1.44 μg g -1 . In some samples, only DBP exceeded the European SML of 0.3 mg kg -1 established in Regulation 10/2011. Graphical abstract Chemical migration from plastic packaging into food.

  20. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips.

    Science.gov (United States)

    Hu, Chong; Lin, Sheng; Li, Wanbo; Sun, Han; Chen, Yangfan; Chan, Chiu-Wing; Leung, Chung-Hang; Ma, Dik-Lung; Wu, Hongkai; Ren, Kangning

    2016-10-05

    An ultra-fast, extremely cost-effective, and environmentally friendly method was developed for fabricating flexible microfluidic chips with plastic membranes. With this method, we could fabricate plastic microfluidic chips rapidly (within 12 seconds per piece) at an extremely low cost (less than $0.02 per piece). We used a heated perfluoropolymer perfluoroalkoxy (often called Teflon PFA) solid stamp to press a pile of two pieces of plastic membranes, low density polyethylene (LDPE) and polyethylene terephthalate (PET) coated with an ethylene-vinyl acetate copolymer (EVA). During the short period of contact with the heated PFA stamp, the pressed area of the membranes permanently bonded, while the LDPE membrane spontaneously rose up at the area not pressed, forming microchannels automatically. These two regions were clearly distinguishable even at the micrometer scale so we were able to fabricate microchannels with widths down to 50 microns. This method combines the two steps in the conventional strategy for microchannel fabrication, generating microchannels and sealing channels, into a single step. The production is a green process without using any solvent or generating any waste. Also, the chips showed good resistance against the absorption of Rhodamine 6G, oligonucleotides, and green fluorescent protein (GFP). We demonstrated some typical microfluidic manipulations with the flexible plastic membrane chips, including droplet formation, on-chip capillary electrophoresis, and peristaltic pumping for quantitative injection of samples and reagents. In addition, we demonstrated convenient on-chip detection of lead ions in water samples by a peristaltic-pumping design, as an example of the application of the plastic membrane chips in a resource-limited environment. Due to the high speed and low cost of the fabrication process, this single-step method will facilitate the mass production of microfluidic chips and commercialization of microfluidic technologies.

  1. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis

    International Nuclear Information System (INIS)

    Chattopadhyay, Jayeeta; Pathak, T.S.; Srivastava, R.; Singh, A.C.

    2016-01-01

    Catalytic co-pyrolysis of biomass and plastics (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) has been performed in a fixed-bed reactor in presence of cobalt based alumina, ceria and ceria-alumina catalysts to analyze the product distribution and selectivity. Catalysts are synthesized using co-precipitation method and characterized by BET (Brunauer–Emmett–Teller) surface area and XRD analysis. The effect of catalytic co-pyrolysis at different temperature with product distribution has been evaluated. The results have clearly shown the synergistic effect between biomass and plastics, the liquid products gradually increases forming with rise in the plastic content in the blend. Gaseous products have yielded most during pyrolysis of blend having biomass/plastics ratio of 5:1 with the presence of 40% Co/30% CeO_2/30% Al_2O_3 catalyst with hydrogen gas production touched its peak of 47 vol%. Catalytic performance enhanced with increase with the cobalt loading, with best performance attributing to 40% Co/30% CeO_2/30% Al_2O_3 catalyst. - Highlights: • Catalytic co-pyrolysis of biomass and plastics (HDPE, PP & PET) blends in fixed-bed reactor. • Strong synergistic effect evident between biomass and plastics. • Solid residue diminished with application of catalysts. • Aromatics and olefins production increases with higher plastic content. • More hydrogen production with application of catalysts with higher cobalt content.

  2. Characterization and Conditions of the Internationalization Process of Companies in the Plastic Products Manufacturing Subsector in Bogota

    Directory of Open Access Journals (Sweden)

    Jackson Paul Pereira Silva

    2016-04-01

    Full Text Available This paper proposes a qualitative research by conducting surveys in 30 companies from the plastic products manufacturing subsector, based on theories of internationalization. It aims to find the main determinants of internationalization of these companies, while characterizing and analyzing evidence by contrasting practice and theory, in order to explain how the dynamics in the sector and its current state are and to propose recommendations for greater competitiveness and efficiency in foreign trade.

  3. Fabrication and evaluation of polymeric early-warning fire-alarm devices. [combustion products

    Science.gov (United States)

    Senturia, S. D.

    1975-01-01

    The electrical resistivities were investigated of some polymers known to be enhanced by the presence of certain gases. This was done to make a device capable of providing early warning to fire through its response with the gases produced in the early phases of combustion. Eight polymers were investigated: poly(phenyl acetylene), poly(p-aminophenyl acetylene), poly(p-nitrophenyl acetylene), poly(p-formamidophenyl acetylene), poly(ethynyl ferrocene), poly(ethynyl carborane), poly(ethynyl pyridine), and the polymer made from 1,2,3,6 tetramethyl pyridazine. A total of 40 usable thin-film sandwich devices and a total of 70 usable interdigitated-electrode lock-and-key devices were fabricated. The sandwich devices were used for measurements of contact linearity, polymer conductivity, and polymer dielectric constant. The lock-and-key devices were used to determine the response of the polymers to a spectrum of gases that included ammonia, carbon nonoxide, carbon dioxide, sulfur dioxide, ethylene, acrolein, water vapor, and normal laboratory air. Strongest responses were to water vapor, ammonia, and acrolein, and depending on the polymer, weaker responses to carbon dioxide, sulfur dioxide, and carbon monoxide were observed. A quantitative theory of device operation, capable of accounting for observed device leakage current and sensitivity, was developed. A prototype detection/alarm system was designed and built for use in demonstrating sensor performance.

  4. Production, purification and utilization of biogas as fuel for internal combustion engine

    Science.gov (United States)

    Hernandez, Noel M.; Villanueva, Eliseo P.

    2018-03-01

    This study attempts to modify a 4-cylinder gasoline engine to run with a purified compressed biogas as substitute for fossil fuels. Water scrubbing method was used as the easiest purification technique to remove CO2 and iron filing for H2S. The pressurized raw biogas was fed in a low cost made portable floating type gas holder with volume capacity of 0.74 m3. The purified biogas was compressed using a reciprocating compressor through a two stage series of enrichment and moisture removal process using activated alumina into the steel cylinder to improve the quality of the methane content. The enriched biogas was filled in the LPG tank for 20 minutes at 10 bars at an average of 73.67% CH4 with no traces of H2S as storage for engine utilization. The modification involved the installation and mounting of LPG conversion kit. A comparative analysis of the performance and combustion characteristics of the engine was evaluated separately with gasoline and purified compressed biogas using electro-dynamometer as variable loads. The findings show that power output deterioration in compressed biogas was mainly due to high percentage of CO2 and other gases impurities. It also shows that because of the calorific value of biogas, the thermal efficiency is lesser than that of gasoline. It implies that the overall engine performance can be improved by removing undesirable gases in the mixture.

  5. Biodiesel Production from Selected Microalgae Strains and Determination of its Properties and Combustion Specific Characteristics

    Directory of Open Access Journals (Sweden)

    N. Kokkinos

    2015-11-01

    Full Text Available Biofuels are gaining importance as significant substitutes for the depleting fossil fuels. Recent focus is on microalgae as the third generation feedstock. In the present research work, two indigenous fresh water and two marine Chlorophyte strains have been cultivated successfully under laboratory conditions using commercial fertilizer (Nutrileaf 30-10-10, initial concentration=70 g/m3 as nutrient source. Gas chromatographic analysis data showed that microalgae biodiesel obtained from Chlorophyte strains biomass were composed of fatty acid methyl esters. The produced microalgae biodiesel achieved a range of 2.2 - 10.6 % total lipid content and an unsaturated FAME content between 49 mol% and 59 mol%. The iodine value, the cetane number, the cold filter plugging point, the oxidative stability as well as combustion specific characteristics of the final biodiesels were determined based on the compositions of the four microalgae strains. The calculated biodiesel properties compared then with the corresponding properties of biodiesel from known vegetable oils, from other algae strains and with the specifications in the EU (EN 14214 and US (ASTM D6751 standards. The derived biodiesels from indigenous Chlorophyte algae were significantly comparable in quality with other biodiesels.

  6. Plasticity in Major Ampullate Silk Production in Relation to Spider Phylogeny and Ecology

    Science.gov (United States)

    Boutry, Cecilia; Řezáč, Milan; Blackledge, Todd Alan

    2011-01-01

    Spider major ampullate silk is a high-performance biomaterial that has received much attention. However, most studies ignore plasticity in silk properties. A better understanding of silk plasticity could clarify the relative importance of chemical composition versus processing of silk dope for silk properties. It could also provide insight into how control of silk properties relates to spider ecology and silk uses. We compared silk plasticity (defined as variation in the properties of silk spun by a spider under different conditions) between three spider clades in relation to their anatomy and silk biochemistry. We found that silk plasticity exists in RTA clade and orbicularian spiders, two clades that differ in their silk biochemistry. Orbiculariae seem less dependent on external spinning conditions. They probably use a valve in their spinning duct to control friction forces and speed during spinning. Our results suggest that plasticity results from different processing of the silk dope in the spinning duct. Orbicularian spiders seem to display better control of silk properties, perhaps in relation to their more complex spinning duct valve. PMID:21818328

  7. Plasticity in major ampullate silk production in relation to spider phylogeny and ecology.

    Directory of Open Access Journals (Sweden)

    Cecilia Boutry

    Full Text Available Spider major ampullate silk is a high-performance biomaterial that has received much attention. However, most studies ignore plasticity in silk properties. A better understanding of silk plasticity could clarify the relative importance of chemical composition versus processing of silk dope for silk properties. It could also provide insight into how control of silk properties relates to spider ecology and silk uses. We compared silk plasticity (defined as variation in the properties of silk spun by a spider under different conditions between three spider clades in relation to their anatomy and silk biochemistry. We found that silk plasticity exists in RTA clade and orbicularian spiders, two clades that differ in their silk biochemistry. Orbiculariae seem less dependent on external spinning conditions. They probably use a valve in their spinning duct to control friction forces and speed during spinning. Our results suggest that plasticity results from different processing of the silk dope in the spinning duct. Orbicularian spiders seem to display better control of silk properties, perhaps in relation to their more complex spinning duct valve.

  8. Production of high-calorie energy briquettes from bark waste, plastic and oil

    Science.gov (United States)

    Suwinarti, W.; Amirta, R.; Yuliansyah

    2018-04-01

    Bark is the waste generated from the utilization of plantation timber, while plastics and oil waste are produced from daily human activity. These waste has the potential to be used as energy briquettes raw materials, especially for fuel in power plants. It would be worth very strategic for the environment and the welfare of society, considering that at this time we are not yet fully capable of well managing all three waste types. On the other hands most of the power plants that operate today still use diesel and coal as fuel. Therefore, the best composition of mixing bark, plastic and oil will be studied as well as its influence on the physical and chemical quality of the briquettes produced. The results show that the addition of the oil waste (70%) and used plastic (30%) as additive give effect to the performance of the briquette formation with the highest calorific value of 33.56 MJ/kg.

  9. The Energy Efficiency of Hot Water Production by Gas Water Heaters with a Combustion Chamber Sealed with Respect to the Room

    Directory of Open Access Journals (Sweden)

    Grzegorz Czerski

    2014-08-01

    Full Text Available This paper presents investigative results of the energy efficiency of hot water production for sanitary uses by means of gas-fired water heaters with the combustion chamber sealed with respect to the room in single-family houses and multi-story buildings. Additionally, calculations were made of the influence of pre-heating the air for combustion in the chimney and air supply system on the energy efficiency of hot water production. CFD (Computational Fluid Dynamics software was used for calculation of the heat exchange in this kind of system. The studies and calculations have shown that the use of gas water heaters with a combustion chamber sealed with respect to the room significantly increases the efficiency of hot water production when compared to traditional heaters. It has also been proven that the pre-heating of combustion air in concentric chimney and air supply ducts essentially improves the energy efficiency of gas appliances for hot water production.

  10. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  11. Hydrogen-rich gas production from waste plastics by pyrolysis and low-temperature steam reforming over a ruthenium catalyst

    International Nuclear Information System (INIS)

    Namioka, Tomoaki; Saito, Atsushi; Inoue, Yukiharu; Park, Yeongsu; Min, Tai-jin; Roh, Seon-ah; Yoshikawa, Kunio

    2011-01-01

    Operating conditions for low-temperature pyrolysis and steam reforming of plastics over a ruthenium catalyst were investigated. In the range studied, the highest gas and lowest coke fractions for polystyrene (PS) with a 60 g h -1 scale, continuous-feed, two-stage gasifier were obtained with a pyrolyzer temperature of 673 K, steam reforming temperature of 903 K, and weight hourly space velocity (WHSV) of 0.10 g-sample g-catalyst -1 h -1 . These operating conditions are consistent with optimum conditions reported previously for polypropylene. Our results indicate that at around 903 K, the activity of the ruthenium catalyst was high enough to minimize the difference between the rates of the steam reforming reactions of the pyrolysates from polystyrene and polypropylene. The proposed system thus has the flexibility to compensate for differences in chemical structures of municipal waste plastics. In addition, the steam reforming temperature was about 200 K lower than the temperature used in a conventional Ni-catalyzed process for the production of hydrogen. Low-temperature steam reforming allows for lower thermal input to the steam reformer, which results in an increase in thermal efficiency in the proposed process employing a Ru catalyst. Because low-temperature steam reforming can be also expected to reduce thermal degradation rates of the catalyst, the pyrolysis-steam reforming process with a Ru catalyst has the potential for use in small-scale production of hydrogen-rich gas from waste plastics that can be used for power generation.

  12. Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Celllulose Avicel PH101 Using Sorbitol as Plasticizer

    International Nuclear Information System (INIS)

    Maulida; Siagian, M; Tarigan, P

    2016-01-01

    The production of starch based bioplastics from cassava peel reeinforced with microcrystalline cellulose using sorbitol as plasticizer were investigated. Physical properties of bioplastics were determined by density, water uptake, tensile strength and Fourier Transform Infrared Spectroscopy. Bioplastics were prepared from cassava peel starch plasticized using sorbitol with variation of 20; 25; 30% (wt/v of sorbitol to starch) reinforced with microcrystalline celllulose (MCC) Avicel PH101 fillers with range of 0 to 6% (wt/wt of MCC to starch). The results showed improvement in tensile strength with higher MCC content up to 9, 12 mpa compared to non-reinforced bioplastics. This could be mainly attributed to the strong hydrogen bonds between MCC and starch. On the contrary, the addition of MCC decreased the elongation at break, density and water uptake. Fourier Transform Infrared Spectroscopy showed the functional groups of bioplastics, which the majority of O-H groups were found at the bioplastics with reinforcing filler MCC that represented substantial hydrogen bonds. The highest tensile strength value was obtained for bioplastic with MCC content 6% and sorbitol content 20%. With good adhesion between MCC and starch the production of bioplastics could be widely used as a substitute for conventional plastics with more benefits to the environment. (paper)

  13. Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Celllulose Avicel PH101 Using Sorbitol as Plasticizer

    Science.gov (United States)

    Maulida; Siagian, M.; Tarigan, P.

    2016-04-01

    The production of starch based bioplastics from cassava peel reeinforced with microcrystalline cellulose using sorbitol as plasticizer were investigated. Physical properties of bioplastics were determined by density, water uptake, tensile strength and Fourier Transform Infrared Spectroscopy. Bioplastics were prepared from cassava peel starch plasticized using sorbitol with variation of 20; 25; 30% (wt/v of sorbitol to starch) reinforced with microcrystalline celllulose (MCC) Avicel PH101 fillers with range of 0 to 6% (wt/wt of MCC to starch). The results showed improvement in tensile strength with higher MCC content up to 9, 12 mpa compared to non-reinforced bioplastics. This could be mainly attributed to the strong hydrogen bonds between MCC and starch. On the contrary, the addition of MCC decreased the elongation at break, density and water uptake. Fourier Transform Infrared Spectroscopy showed the functional groups of bioplastics, which the majority of O-H groups were found at the bioplastics with reinforcing filler MCC that represented substantial hydrogen bonds. The highest tensile strength value was obtained for bioplastic with MCC content 6% and sorbitol content 20%. With good adhesion between MCC and starch the production of bioplastics could be widely used as a substitute for conventional plastics with more benefits to the environment.

  14. Research Advances: Paper Batteries, Phototriggered Microcapsules, and Oil-Free Plastic Production

    Science.gov (United States)

    King, Angela G.

    2010-01-01

    Chemists continue to work at the forefront of materials science research. Recent advances include application of bioengineering to produce plastics from renewable biomass instead of petroleum, generation of paper-based batteries, and development of phototriggerable microcapsules for chemical delivery. In this article, the author provides summaries…

  15. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    NARCIS (Netherlands)

    Shen, L.|info:eu-repo/dai/nl/310872022

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable

  16. A Research Needs Assessment for waste plastics recycling: Volume 1, Executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This first volume provides a summary of the entire project. The study utilized the talents of a large number of participants, including a significant number of peer reviewers from industrial companies, government agencies, and research institutes. in addition, an extensive analysis of relevant literature was carried out. In considering the attractiveness of recycling technologies that are alternatives to waste-to-energy combustion units, a systems approach was utilized. Collection of waste streams containing plastics, sortation, and reclamation of plastics and plastic mixtures, reprocessing or chemical conversion of the reclaimed polymers, and the applicability of the products to specific market segments have been analyzed in the study.

  17. Toxic Combustion Product Yields as a Function of Equivalence Ratio and Flame Retardants in Under-Ventilated Fires: Bench-Large-Scale Comparisons

    Directory of Open Access Journals (Sweden)

    David A. Purser

    2016-09-01

    Full Text Available In large-scale compartment fires; combustion product yields vary with combustion conditions mainly in relation to the fuel:air equivalence ratio (Φ and the effects of gas-phase flame retardants. Yields of products of inefficient combustion; including the major toxic products CO; HCN and organic irritants; increase considerably as combustion changes from well-ventilated (Φ < 1 to under-ventilated (Φ = 1–3. It is therefore essential that bench-scale toxicity tests reproduce this behaviour across the Φ range. Yield data from repeat compartment fire tests for any specific fuel show some variation on either side of a best-fit curve for CO yield as a function of Φ. In order to quantify the extent to which data from the steady state tube furnace (SSTF [1]; ISO TS19700 [2] represents compartment fire yields; the range and average deviations of SSTF data for CO yields from the compartment fire best-fit curve were compared to those for direct compartment fire measurements for six different polymeric fuels with textile and non-textile applications and for generic post-flashover fire CO yield data. The average yields; range and standard deviations of the SSTF data around the best-fit compartment fire curves were found to be close to those for the compartment fire data. It is concluded that SSTF data are as good a predictor of compartment fire yields as are repeat compartment fire test data.

  18. Hydrogen or Fossil Combustion Nuclear Combined Cycle Systems for Baseload and Peak Load Electricity Production. Annex X

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    A combined cycle power plant is described that uses: (i) heat from a high temperature nuclear reactor to meet baseload electrical demands; and (ii) heat from the same high temperature reactor and burning natural gas, jet fuel or hydrogen to meet peak load electrical demands. For baseload electricity production, fresh air is compressed, then flows through a heat exchanger, where it is heated to between 700 and 900{sup o}C by using heat provided by a high temperature nuclear reactor via an intermediate heat transport loop, and finally exits through a high temperature gas turbine to produce electricity. The hot exhaust from the Brayton cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high temperature reactor. Natural gas, jet fuel or hydrogen is then injected into the hot air in a combustion chamber, combusts and heats the air to 1300{sup o}C - the operating conditions for a standard natural gas fired combined cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until required. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electrical grid can vary from zero (i.e. when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. As nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil fired turbines) to meet spinning reserve requirements and stabilize the electrical grid. This combined

  19. Management methods ash from combustion of biomass. Review of productions and associated methods. Extended abstract

    International Nuclear Information System (INIS)

    Boulday, D.; Marcovecchio, F.

    2016-02-01

    The study deals with the management of biomass ashes from industrial and collective facilities (wood log excluded) and provides a state of the art, in France and in Europe, flows, methods of recovery and post-treatment, physico-chemical characteristics and programs for new opportunities. Currently, flows of biomass ash are estimated at 110 kt-330 kt in France and 1 500 kt - 4 500 kt in Europe and should amount respectively 330 kt-1000 kt and 3100 kt-8000 kt in 2020. The physical and chemical composition of biomass ash is influenced by many factors: fuel, pretreatment, post-treatment, additives, fly and bottom ash, power installation, type of combustion equipment, extraction mode...However, these ashes have characteristics which are commonly accepted: liming / neutralizing power, fertilizer, pozzolanic behavior generally almost zero. In France and Europe, a distinction is made between fly and bottom ashes, usually less polluted. However, this separation does not always make sense according to the valuation mode, the type of equipment (including fluidized bed or grid) or mixtures of ash made in the plant (e.g. mix of bottom and coarse ash). Currently, the main outlet is ash landfill, followed by agricultural and forestry recycling. The other identified opportunities concern a few countries and marginal flows: brick-works, road engineering... The development of biomass energy, coupled with a reduction in landfill options, has given rise to many research and demonstration programs in recent years, particularly in France, with some promising solutions. Many limiting factors, which can be different according to opportunities, have been identified. More or less advanced solutions aimed at reducing the harmful effects of these factors (slaking lime, sorting, grinding...).However to date, the most robust and massive solution for ash recycling material remains undoubtedly the agricultural recycling. According to the study, it's necessary to consolidate the agricultural

  20. Electron Microscopic Analysis of Surface Inorganic Substances on Oral and Combustible Tobacco Products.

    Science.gov (United States)

    Halstead, Mary M; Watson, Clifford H; Pappas, R Steven

    2015-01-01

    Although quantitative trace toxic metal analyses have been performed on tobacco products, little has been published on inorganic particulate constituents on and inside the products. We analyzed these constituents using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The nature of SEM-EDS instrumentation makes it an ideal choice for inorganic particulate analyses and yields relevant information to potential exposures during consumption of oral tobacco products, and possibly as a consequence of smoking. Aluminum silicates, silica and calcium compounds were common inorganic particulate constituents of tobacco products. Aluminum silicates and silica from soil were found on external leaf surfaces. Phytolithic silica, found in the lumen of the plant leaf, is of biogenic origin. Calcium oxalate was also apparently of biogenic origin. Small mineral deposits on tobacco could have health implications. Minerals found on the surfaces of smokeless tobacco products could possibly abrade the oral mucosa and contribute to the oral inflammatory responses observed with smokeless tobacco product use. If micron and sub-micron size calcium particles on cigarette filler were transported in mainstream smoke, they could potentially induce a pulmonary irritant inflammation when inhaled. The transport of aluminum silicate and silica in smoke could potentially also contribute to chronic inflammatory disease. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. Influence of Advanced Injection Timing and Fuel Additive on Combustion, Performance, and Emission Characteristics of a DI Diesel Engine Running on Plastic Pyrolysis Oil

    Directory of Open Access Journals (Sweden)

    Ioannis Kalargaris

    2017-01-01

    Full Text Available This paper presents the investigation of engine optimisation when plastic pyrolysis oil (PPO is used as the primary fuel of a direct injection diesel engine. Our previous investigation revealed that PPO is a promising fuel; however the results suggested that control parameters should be optimised in order to obtain a better engine performance. In the present work, the injection timing was advanced, and fuel additives were utilised to overcome the issues experienced in the previous work. In addition, spray characteristics of PPO were investigated in comparison with diesel to provide in-depth understanding of the engine behaviour. The experimental results on advanced injection timing (AIT showed reduced brake thermal efficiency and increased carbon monoxide, unburned hydrocarbons, and nitrogen oxides emissions in comparison to standard injection timing. On the other hand, the addition of fuel additive resulted in higher engine efficiency and lower exhaust emissions. Finally, the spray tests revealed that the spray tip penetration for PPO is faster than diesel. The results suggested that AIT is not a preferable option while fuel additive is a promising solution for long-term use of PPO in diesel engines.

  2. The Other Combustible Products: Prevalence and Correlates of Little Cigar/Cigarillo Use Among Cigarette Smokers.

    Science.gov (United States)

    Cohn, Amy; Cobb, Caroline O; Niaura, Raymond S; Richardson, Amanda

    2015-12-01

    Despite the increasing consumption of little cigars and cigarillos (LCCs), few studies have examined unique predictors and correlates of LCC use among adult cigarette smokers. This study explored differences between cigarette smokers with and without a history of LCC use on harm perceptions, use of other tobacco products (chewing tobacco, snus, e-cigarettes, and dissolvables), cigarette smoking/cessation-related behaviors/cognitions, and mental health and substance use disorder symptoms. A geographically diverse sample of current cigarette smokers were included in analyses (n = 1270). Frequencies of LCC use, awareness, purchase, and harm perceptions were examined and logistic regression models investigated differences between LCC ever and never users on a variety of factors, controlling for demographics. Bivariate analyses showed that LCC users were more likely to be male, younger, have lower income, have tried other tobacco products, perceive LCCs as less harmful than cigarettes, and endorse lifetime substance disorder symptoms. Menthol and other tobacco product use were the only significant correlates of LCC use in logistic regression models. Post-hoc analyses showed that other tobacco product use partially mediated an association between substance use disorder symptoms and LCC use. A third of the sample had tried LCCs, and LCC users were more likely to have experimented with other tobacco products and used menthol. The high degree of co-use of cigarette smoking and LCCs with other tobacco products and the association of LCC use to substance use suggests that these users have unique risk factors and deserve specific targeting in public health campaigns. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    International Nuclear Information System (INIS)

    George Rizeq; Ravi Kumar; Janice West; Vitali Lissianski; Neil Widmer; Vladimir Zamansky

    2001-01-01

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE-EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H(sub 2) and sequestration-ready CO(sub 2) from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE-EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE-EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO(sub 2), and (3) high temperature/pressure oxygen depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H(sub 2) energy outputs relative to the higher heating value of coal. The three-year R and D program will determine the operating conditions that maximize separation of CO(sub 2) and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the 1st quarterly progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program

  4. Sustainable Production of Bio-Combustibles from Pyrolysis of Agro-Industrial Wastes

    Directory of Open Access Journals (Sweden)

    Maurizio Volpe

    2014-11-01

    Full Text Available Evaluation of the sustainability of biomass pyrolysis requires a thorough assessment of the product yields and energy densities. With this purpose, a laboratory scale fixed bed reactor (FBR was adapted from the standard Gray-King (GK assay test on coal to conduct fixed bed pyrolysis experiments on agricultural and agro-industrial by-products. The present study provides results on the pyrolysis of two types of biomass: chipped olive tree trimmings (OT and olive pomace (OP. Solid (char and liquid (tar product yields are reported. Mass yields are determined and compared with values obtained in similar works. Results indicate that char yield decreases from 49% (OT-db and 50% (OP-db at 325 °C to 26% (OT db and 30% (OP-db at 650 °C. Tar yield is almost constant (42% at different reaction temperatures for OT, while it decreases slightly from 42% to 35% for OP. Energy density of the products at different peak temperatures is almost constant for OT (1.2, but slightly increases for OP (from a value of 1.3 to a value of 1.4.

  5. Converting Biomass and Waste Plastic to Solid Fuel Briquettes

    Directory of Open Access Journals (Sweden)

    F. Zannikos

    2013-01-01

    Full Text Available This work examines the production of briquettes for household use from biomass in combination with plastic materials from different sources. Additionally, the combustion characteristics of the briquettes in a common open fireplace were studied. It is clear that the geometry of the briquettes has no influence on the smoke emissions. When the briquettes have a small amount of polyethylene terephthalate (PET, the behavior in the combustion is steadier because of the increase of oxygen supply. The smoke levels are between the 3rd and 4th grades of the smoke number scale. Measuring the carbon monoxide emission, it was observed that the burning of the plastic in the mixture with biomass increases the carbon monoxide emissions from 10% to 30% as compared to carbon monoxide emission from sawdust biomass emissions which was used as a reference.

  6. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    Science.gov (United States)

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  7. Optical coupling study of plastic scintillation detectors: evaluation of different silicon products

    International Nuclear Information System (INIS)

    Hamada, M.M.; Madi Filho, T.; Mesquita, C.H. de

    1990-01-01

    Properties of different optical oils and greases in the range of 320-560 nm were studied. Several parameters as the transmitance, index of refraction, plastic scintillator fluorescence emission and its influence in the resolution and pulse height of the detection system were described. This paper shows a design to analyse the optical quality or adequacy of the silicon oils and greases in the coupling between the detector and the photocathode of the photomultiplier. (author) [pt

  8. Production of heterologous cutinases by E. coli and improved enzyme formulation for application on plastic degradation

    OpenAIRE

    Gomes,Daniela S; Matamá,Teresa; Cavaco-Paulo,Artur; Campos-Takaki,Galba M; Salgueiro,Alexandra A

    2013-01-01

    Background: The hydrolytic action of cutinases has been applied to the degradation of plastics. Polyethylene terephthalate (PET) have long half-life which constitutes a major problem for their treatment as urban solid residues. The aim of this work was to characterize and to improve stable the enzyme to optimize the process of degradation using enzymatic hydrolysis of PET by recombinant cutinases. Results: The wild type form of cutinase from Fusarium solani pisi and its C-terminal fusion to c...

  9. Helium production technology based on natural gas combustion and beneficial use of thermal energy

    Directory of Open Access Journals (Sweden)

    Nakoryakov Vladimir E.

    2016-01-01

    Full Text Available Helium is widely used in all industries, including power plant engineering. In recent years, helium is used in plants operating by the Brayton cycle, for example, in the nuclear industry. Using helium-xenon mixture in nuclear reactors has a number of advantages, and this area is rapidly developing. The hydrodynamics and mass transfer processes in single tubes with various cross-sections as well as in inter-channel space of heating tube bundle were studied at the Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences. Currently, there is a strongest shortage in helium production. The main helium production method consists in the liquefaction of the natural gas and subsequent separation of helium from remaining gas with its further purification using membranes.

  10. CO2 emissions from the production and combustion of fuel ethanol from corn

    International Nuclear Information System (INIS)

    Marland, G.; Turhollow, A.F.

    1991-01-01

    This paper deals with the carbon dioxide fluxes associated with the use of one biomass fuel, ethanol derived from corn. In a sustainable agricultural system, there is no net CO 2 flux to the atmosphere from the corn itself but there is a net CO 2 flux due to the fossil-fuel supplements currently used to produce and process corn. A comparison between ethanol from corn and gasoline from crude oil becomes very complex because of the variability of corn yield, the lack of available data on corn processing, and the complexity of treating the multiple products from corn processing. When the comparison is made on an energy content basis only, with no consideration of how the products are to be used, and at the margin of the current U.S. energy system, it appears that there is a net CO 2 saving associated with ethanol from corn. This net saving in CO 2 emissions may be as large as 40% or as small as 20%, depending on how one chooses to evaluate the by-product credits. This analysis also demonstrates that the frequently posed question, whether the energy inputs to ethanol exceed the energy outputs, would not be an over-riding consideration even if it were true, because most of the inputs are as coal and natural gas, whereas the output is as a high-quality liquid fuel. (author)

  11. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  12. Identification of volatile organic compounds (VOCs in plastic products using gas chromatography and mass spectrometry (GC/MS

    Directory of Open Access Journals (Sweden)

    Nerlis Pajaro-Castro

    2014-10-01

    Full Text Available Plastic materials are widely used in daily life. They contain a wide range of compounds with low molecular mass, including monomeric and oligomeric residues of polymerization, solvent-related chemicals residues, and various additives. Plastic products made of expanded polystyrene (EPS are currently employed as food containers. This study therefore sought to identify volatile organic compounds released by EPS from food packages and utensils used in Cartagena, Colombia. EPS-based plates, food and soup containers were subjected to various temperatures and released chemicals captured by solid phase microextraction, followed by on-column thermal desorption and gas chromatography/mass spectrometry analysis. The results revealed the presence of at least 30 different compounds in the EPS-based products examined; the most frequently found were benzaldehyde, styrene, ethylbenzene and tetradecane. The release of these molecules was temperature-dependent. It is therefore advisable to regulate the use of EPS products which may be subjected to heating in order to protect human health by decreasing the exposure to these chemicals.

  13. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  14. The Evaluation of Solid Wastes Reduction with Combustion System in the Combustion Chamber

    International Nuclear Information System (INIS)

    Prayitno; Sukosrono

    2007-01-01

    The evaluation of solid wastes reduction with combustion system is used for weight reduction factor. The evaluation was done design system of combustion chamber furnace and the experiment was done by burning a certain weight of paper, cloth, plastic and rubber in the combustion chamber. The evaluation of paper wastes, the ratio of wastes (paper, cloth, plastic and rubber) against the factor of weight reduction (%) were investigated. The condition was dimension of combustion chamber furnace = 0.6 X 0.9 X 1.20 X 1 m with combustion chamber and gas chamber and reached at the wastes = 2.500 gram, oxygen pressure 0.5 Bar, wastes ratio : paper : cloth : plastic : rubber = 55 : 10 : 30 : 5, the reduction factor = 6.36 %. (author)

  15. Gamma radiation effects in packaging for sterilization of health products and their constituents paper and plastic film

    Science.gov (United States)

    B. G. Porto, Karina Meschini; Napolitano, Celia Marina; Borrely, Sueli Ivone

    2018-01-01

    The integrity of materials containing packaging (natural or synthetic polymers) is essential to keep the aseptic condition of commercialized products (health care products, food and pharmaceuticals). The objective of this paper was to study gamma radiation effects (25 kGy, 40 kGy and 50 kGy) on the main properties of paper and multilayer films (polyester and polyethylene). Paper and multilayer films are components of packaging (pouches) for radiation sterilization containing medical equipment or products. Paper was the more radiation sensitive among the studied materials and radiation effects were more pronounced at brightness, pH, tearing resistance, bursting strength and tensile strength. Concerning plastic film, no pinholes were induced by radiation and the effects on the tensile strength were not significant. Although the seal strength packaging (pouches) decreased according to increasing dose, the sealing integrity was preserved.

  16. Microstructures and mechanical responses of powder metallurgy non-combustive magnesium extruded alloy by rapid solidification process in mass production

    International Nuclear Information System (INIS)

    Kondoh, Katsuyoshi; Hamada, EL-Sayed Ayman; Imai, Hisashi; Umeda, Junko; Jones, Tyrone

    2010-01-01

    Spinning Water Atomization Process (SWAP), which was one of the rapid solidification processes, promised to produce coarse non-combustible magnesium alloy powder with 1-4 mm length, having fine α-Mg grains and Al 2 Ca intermetallic compounds. It had economical and safe benefits in producing coarse Mg alloy powders with very fine microstructures in the mass production process due to its extreme high solidification rate compared to the conventional atomization process. AMX602 (Mg-6%Al-0.5%Mn-2%Ca) powders were compacted at room temperature. Their green compacts with a relative density of about 85% were heated at 573-673 K for 300 s in Ar gas atmosphere, and immediately consolidated by hot extrusion. Microstructure observation and evaluation of mechanical properties of the extruded AMX602 alloys were carried out. The uniform and fine microstructures with grains less than 0.45-0.8 μm via dynamic recrystallization during hot extrusion were observed, and were much small compared to the extruded AMX602 alloy fabricated by using cast ingot. The extremely fine intermetallic compounds 200-500 nm diameter were uniformly distributed in the matrix of powder metallurgy (P/M) extruded alloys. These microstructures caused excellent mechanical properties of the wrought alloys. For example, in the case of AMX602 alloys extruded at 573 K, the tensile strength (TS) of 447 MPa, yield stress (YS) of 425 MPa and 9.6% elongation were obtained.

  17. Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating. [coal combustion product environments

    Science.gov (United States)

    Morris, J. F.

    1980-01-01

    Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.

  18. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    OpenAIRE

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Garland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng

    2015-01-01

    This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nature14677 Nearly three-quarters of the growth in global carbon emission from burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 varied by 0.3 GtC, or 15 per cent. The primary sources of this uncertainty are c...

  19. Determination of thermal characteristics of combustion products of fire-tube heat generator with flow turbulator

    OpenAIRE

    Lukjanov Alexander V.; Ostapenko Dmitry V.; Basist Dmitry V.

    2014-01-01

    Boiler construction is one of the major industries of any state. The aim is to determine the effect of the turbulator on the intensity of heat transfer in the convective part of the fire-tube heat generator of domestic production. The improvement of convective heating surfaces is one of the ways to increase the energy efficiency of the fire-tube heat generator. Since model of the process of heat transfer of gas flow in the convective tubes is multifactorial and does not have clear analytical ...

  20. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    Energy Technology Data Exchange (ETDEWEB)

    George Rizeq; Janice West; Arnaldo Frydman; Vladimir Zamansky; Linda Denton; Hana Loreth; Tomasz Wiltowski

    2001-07-01

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program

  1. Combustible gas production (methane) and biodegradation of solid and liquid mixtures of meat industry wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, A.; Al-Kassir, A.; Cuadros, F.; Lopez-Rodriguez, F. [School of Engineering, University of Extremadura, Avda. De Elva, s/n, 06071, Badajoz (Spain); Mohamad, A.A. [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta (Canada)

    2010-05-15

    This work is devoted to determine the optimal operational conditions on the methane production as well as on the biodegradation obtained from the anaerobic codigestion of solid (fat, intestines, rumen, bowels, whiskers, etc.) and liquid (blood, washing water, manure, etc.) wastes of meat industry, particularly the ones rising from the municipal slaughterhouse of Badajoz (Spain). The experiments were performed using a 2 l capacity discontinuous digester at 38 C. The loading rate were 0.5, 1, 2, 3, and 4.5 g COD for wastewater (washing water and blood; Mixture 1), and 0.5, 1, 2, 3, and 4 g COD for the co-digestion of a mixture of 97% liquid effluent and 3% solid wastes v/v (Mixture 2) which represents the annual mean composition of the waste generated by the slaughterhouse. The maximal biodegradation rates obtained were: Mixture 1, 56.9% for a COD load of 1 g; and Mixture 2, 19.1% for a COD load of 2 g. For both mixtures, the greatest methane production was for the maximum COD load (4.5 g for Mixture 1, and 4 g for Mixture 2), at which values the amounts of methane obtained during and at the end of the co-digestion were practically indistinguishable between the two mixtures. The results will be used to design, construct, and establish the optimal operating conditions of a continuous complete-mixture biodigester. (author)

  2. Shale oil combustion

    International Nuclear Information System (INIS)

    Al-dabbas, M.A.

    1992-05-01

    A 'coutant' carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs

  3. Shale oil combustion

    Energy Technology Data Exchange (ETDEWEB)

    Al-dabbas, M A

    1992-05-01

    A `coutant` carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs.

  4. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    Science.gov (United States)

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  5. COST-EFFECTIVE PRODUCTION OF THE BIO-PLASTIC POLY-β-HYDROXYBUTYRATE USING ACINETOBACTER BAUMANNII ISOLATE P39

    Directory of Open Access Journals (Sweden)

    Noha Salah Elsayed

    2016-06-01

    Full Text Available Being biodegradable and biocompatible natural polymer, poly-β-hydroxybutyrate (PHB drew the attention of scientists to substitute synthetic plastics in our daily lives. However, its industrial production is hampered by its high cost. In this study, an extensive screening program was done to isolate bacteria with high PHB productivity from agricultural fields and develop a cost-effective PHB production. A promising bacterial isolate Acinetobacter baumannii P39 was recovered and identified using 16S ribosomal gene sequencing. It produced 24% PHB per dry weight after 48 h. Several experiments were conducted to optimize the composition of the culture medium and environmental factors for the selected isolate. Results revealed that 60% aeration, 28°C incubation temperature and initial pH 7.5 showed the highest productivity. Besides, 0.7% corn oil and 0.1 g/L peptone were the best carbon and nitrogen sources, respectively. Substituting glucose with corn oil led to a 23% reduction in total input cost and an estimate price for 1kg PHB is 20.5 L.E. Strain improvement by UV mutation succeeded in improving PHB production by two fold in the selected mutant P39M2. Finally, this study valorizes usage of Acinetobacter isolate in PHB production in addition to solving the critical problem of high cost of production.

  6. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW).

    Science.gov (United States)

    Al-Salem, S M; Antelava, A; Constantinou, A; Manos, G; Dutta, A

    2017-07-15

    Plastic plays an important role in our daily lives due to its versatility, light weight and low production cost. Plastics became essential in many sectors such as construction, medical, engineering applications, automotive, aerospace, etc. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. Hence, a sustainable and an efficient plastic waste treatment is essential to avoid such issues. Pyrolysis is a thermo-chemical plastic waste treatment technique which can solve such pollution problems, as well as, recover valuable energy and products such as oil and gas. Pyrolysis of plastic solid waste (PSW) has gained importance due to having better advantages towards environmental pollution and reduction of carbon footprint of plastic products by minimizing the emissions of carbon monoxide and carbon dioxide compared to combustion and gasification. This paper presents the existing techniques of pyrolysis, the parameters which affect the products yield and selectivity and identify major research gaps in this technology. The influence of different catalysts on the process as well as review and comparative assessment of pyrolysis with other thermal and catalytic plastic treatment methods, is also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Determination of thermal characteristics of combustion products of fire-tube heat generator with flow turbulator

    Directory of Open Access Journals (Sweden)

    Lukjanov Alexander V.

    2014-12-01

    Full Text Available Boiler construction is one of the major industries of any state. The aim is to determine the effect of the turbulator on the intensity of heat transfer in the convective part of the fire-tube heat generator of domestic production. The improvement of convective heating surfaces is one of the ways to increase the energy efficiency of the fire-tube heat generator. Since model of the process of heat transfer of gas flow in the convective tubes is multifactorial and does not have clear analytical solution at present, the study of process above is carried out using the experimental method. The results of applying the flow turbulator as a broken tape in the fire-tube heat generator of KV-GM type are presented. On their basis it can be concluded about increasing of heat transfer in convective part of the unit. The use of efficient, reliable, easy to manufacture, relatively inexpensive turbulator in domestic fire-tube heat generators will allow to increase their energy conversion efficiency and reduce fuel consumption, which will have a positive economic effect.

  8. The Impact of National Institutes of Health Funding on Scholarly Productivity in Academic Plastic Surgery.

    Science.gov (United States)

    Silvestre, Jason; Abbatematteo, Joseph M; Chang, Benjamin; Serletti, Joseph M; Taylor, Jesse A

    2016-02-01

    The h-index is an objective measure of an investigator's scholarly impact. The purpose of this investigation was to determine the association between scholarly impact, as measured by the h-index, and the procurement of National Institutes of Health (NIH) grant funding among academic plastic surgeons. This was a case-control study of NIH-funded plastic surgery faculty identified on the RePORTER database. Non-NIH-funded faculty from the top 10 NIH-funded programs served as a control group. The mean h-index was calculated from Scopus (Elsevier, London, United Kingdom) and compared by funding status, academic rank, and terminal degree(s). The relationship between h-index and career NIH funding was elucidated via Spearman's correlation coefficient. NIH-funded faculty had higher h-indices than nonNIH-funded faculty (23.9 versus 9.9, p 0.05), but investigators with a master's degree exhibited a trend toward greater NIH funding. Higher h-indices correlated with greater NIH funding (r = 0.481, p < 0.001). A strong relationship exists between scholarly impact and the procurement of NIH funding. Faculty with greater funding had greater scholarly impact, as measured by the h-index, which suggests that this tool may have utility during the NIH grant application process.

  9. Starch/polyester films: simultaneous optimisation of the properties for the production of biodegradable plastic bags

    Directory of Open Access Journals (Sweden)

    J. B. Olivato

    2013-01-01

    Full Text Available Blends of starch/polyester have been of great interest in the development of biodegradable packaging. A method based on multiple responses optimisation (Desirability was used to evaluate the properties of tensile strength, perforation force, elongation and seal strength of cassava starch/poly(butylene adipate-co-terephthalate (PBAT blown films produced via a one-step reactive extrusion using tartaric acid (TA as a compatibiliser. Maximum results for all the properties were set as more desirable, with an optimal formulation being obtained which contained (55:45 starch/PBAT (88.2 wt. (%, glycerol (11.0 wt. (% and TA (0.8 wt. (%. Biodegradable plastic bags were produced using the film with this formulation, and analysed according to the standard method of the Associação Brasileira de Normas Técnicas (ABNT. The bags exhibited a 45% failure rate in free-falling dart impact tests, a 10% of failure rate in dynamic load tests and no failure in static load tests. These results meet the specifications set by the standard. Thus, the biodegradable plastic bags fabricated with an optimised formulation could be useful as an alternative to those made from non-biodegradable materials if the nominal capacity declared for this material is considered.

  10. Supporting the development process for building products by the use of research portfolio analysis: A case study for wood plastics composite materials

    OpenAIRE

    Friedrich, Daniel; Luible, Andreas

    2016-01-01

    Today’s plastics are increasingly compounded using renewable fibres. Such composites raised the interest of the massively bulk-plastics consuming building industry. However, “green” products are still rare and their development constitutes a challenge particularly for small companies. Our study evaluated European scientific projects in composites from which we derived a Research Portfolio serving as future matrix for ideation. It was found that research databanks can serve as basis for str...

  11. Method for storing radioactive combustible waste

    Science.gov (United States)

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  12. ECOLOGICAL AND ECONOMIC SUBSTANTIATION OF SELECTION OF THE METHOD FOR PLASTIC WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    T. P. Shanina

    2015-11-01

    Full Text Available Analysis of the classifications of plastic waste from production and consumption is made by various criteria. Distinctive features of the specifi ed waste behavior under various treatment methods (deposition at landfill, incineration and recycling are discussed. Clustering of the polymeric waste by hazard categories of the combustion products is performed. The polyvinyl-chlorides and polycarbonates which generate the most hazardous products under  the combustion are singled out in a particular cluster. The qualitative and quantitative descrip- The qualitative and quantitative description of the plastic waste generated in Ukraine from 2011 to 2013 is provided. Grossemissions of the polyvinylchloride and polystyrene waste incineration products are calculated. Evaluation of the environmental damage resulting from implementation of various methods for plastic waste management is based on an environmental tax rate having a compensatory nature. Potential profit from selling the secondary raw materials, produced from plastic waste, is analysed. Ranking of the potential methods for plastic waste management is presented in the context of ecological and economic substantiation: the most preferable method is production of secondary raw materials (recycled resources; the least preferable one is incineration of the specified wastes.

  13. Development and Justification of a Risk Evaluation Matrix To Guide Chemical Testing Necessary To Select and Qualify Plastic Components Used in Production Systems for Pharmaceutical Products.

    Science.gov (United States)

    Jenke, Dennis

    2015-01-01

    An accelerating trend in the pharmaceutical industry is the use of plastic components in systems used to produce an active pharmaceutical ingredient or a finished drug product. If the active pharmaceutical ingredient, the finished drug product, or any solution used to generate them (for example, a process stream such as media, buffers, eluents, and the like) is contacted by a plastic component at any time during the production process, substances leached from the component may accumulate in the active pharmaceutical ingredient or finished drug product, affecting its safety and/or efficacy. In this article the author develops and justifies a semi-quantitative risk evaluation matrix that is used to determine the amount and rigor of component testing necessary and appropriate to establish that the component is chemically suitable for its intended use. By considering key properties of the component, the contact medium, the contact conditions, and the active pharmaceutical ingredient's or finished drug product's clinical conditions of use, use of the risk evaluation matrix produces a risk score whose magnitude reflects the accumulated risk that the component will interact with the contact solution to such an extent that component-related extractables will accumulate in the active pharmaceutical ingredient or finished drug product as leachables at levels sufficiently high to adversely affect user safety. The magnitude of the risk score establishes the amount and rigor of the testing that is required to select and qualify the component, and such testing is broadly grouped into three categories: baseline assessment, general testing, and full testing (extractables profiling). Production suites used to generate pharmaceuticals can include plastic components. It is possible that substances in the components could leach into manufacturing solutions and accumulate in the pharmaceutical product. In this article the author develops and justifies a semi-quantitative risk

  14. Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances

    International Nuclear Information System (INIS)

    Johansson, Daniella; Franck, Per-Åke; Pettersson, Karin; Berntsson, Thore

    2013-01-01

    The impact on CO 2 emissions of integrating new technologies (a biomass-to-Fischer–Tropsch fuel plant and a post-combustion CO 2 capture plant) with a complex refinery has previously been investigated separately by the authors. In the present study these designs are integrated with a refinery and evaluated from the point-of-view of economics and GHG (greenhouse gas emissions) emissions and are compared to a reference refinery. Stand-alone Fischer–Tropsch fuel production is included for comparison. To account for uncertainties in the future energy market, the assessment has been conducted for different future energy market conditions. For the post-combustion CO 2 capture process to be profitable, the present study stresses the importance of a high charge for CO 2 emission. A policy support for biofuels is essential for the biomass-to-Fischer–Tropsch fuel production to be profitable. The level of the support, however, differs depending on scenario. In general, a high charge for CO 2 economically favours Fischer–Tropsch fuel production, while a low charge for CO 2 economically favours Fischer–Tropsch fuel production. Integrated Fischer–Tropsch fuel production is most profitable in scenarios with a low wood fuel price. The stand-alone alternative shows no profitability in any of the studied scenarios. Moreover, the high investment costs make all the studied cases sensitive to variations in capital costs. - Highlights: • Comparison of Fischer–Tropsch (FT) fuel production and CO 2 capture at a refinery. • Subsidies for renewable fuels are essential for FT fuel production to be profitable. • A high charge for CO 2 is essential for post-combustion CO 2 capture to be profitable. • A low charge for CO 2 economically favours FT fuel production. • Of the studied cases, CO 2 capture shows the greatest reduction in GHG emissions

  15. Assessment of the synthesis conditions for nano-Bi_4Ti_3O_1_2 production by the combustion route

    International Nuclear Information System (INIS)

    Dias, Jeferson A.; Nascimento, Cassia C.; Oliveira, Jessica A.; Morelli, Marcio R.

    2016-01-01

    The bismuth titanate has interesting optoelectronic properties. Its production in nanometric scale is important due to the demand of miniaturized electronic devices and greater synthesization facility. This study aims at the evaluation of synthesis parameters for nano-Bi_4Ti_3O_1_2 production by the combustion route. For that, the materials were synthesized and calcined at 600°C, 700°C and 800°C. The materials were posteriorly characterized by X-Ray diffraction, SEM, DSC-TGA, FTIR; DRS and impedance spectroscopy. The results have demonstrated that the combustion method was effective for nanocrystalline powders production, which also showed high levels of purity. Particles size growth was observed for high treatment temperatures. Low level of residual organic matter was determined and the high electrical resistivity was observed. The temperature of 600°C was enough to produce particles with optimal properties. Therefore, the results have confirmed the efficacy of combustion route to produce nanometric Bi_4Ti_3O_1_2. (author)

  16. High-voltage leak detection of a parenteral proteinaceous solution product packaged in form-fill-seal plastic laminate bags. Part 2. Method performance as a function of heat seal defects, product-package refrigeration, and package plastic laminate lot.

    Science.gov (United States)

    Rasmussen, Mats; Damgaard, Rasmus; Buus, Peter; Mulhall, Brian; Guazzo, Dana Morton

    2013-01-01

    Part 1 of this three-part research series detailed the development and validation of a high-voltage leak detection test (HVLD, also known as an electrical conductivity and capacitance test) for verifying the container-closure integrity of a small-volume laminate plastic bag containing an aqueous solution formulation of the rapid-acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®) by Novo Nordisk A/S, Bagsværd, Denmark. Leak detection capability was verified using positive controls each with a single laser-drilled hole in the bag film face. In this Part 2, HVLD leak detection capability was further explored in four separate studies. Study 1 investigated the ability of HVLD to detect weaknesses and/or gaps in the bag heat seal. Study 2 checked the HVLD detection of bag holes in packages stored 4 days at ambient conditions followed by 17 days at refrigeration. Study 3 examined HVLD test results for packages tested when cold. Study 4 compared HVLD test results as a function of bag plastic film lots. The final Part 3 of this series will report the impact of HVLD exposure on product visual appearance and chemical stability. In Part 1 of this three-part series, a leak test method based on electrical conductivity and capacitance, also called high-voltage leak detection (HVLD), was used to find leaks in small plastic bags filled with a solution for injection of the rapid-acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®) by Novo Nordisk A/S, Bagsværd, Denmark. In this Part 2, HVLD leak detection capability was further explored in four separate studies. Study 1 investigated the ability of HVLD to detect bag heat seal leaks. Study 2 checked HVLD's ability to detect bag holes after a total of 21 days at ambient plus refrigerated temperatures. Study 3 looked to see if HVLD results changed for packages tested when still cold. Study 4 compared HVLD results for multiple bag plastic film lots. The final Part 3 of this series will report any evidence of

  17. Collaborative Studies for Mercury Characterization in Coal and Coal Combustion Products, Republic of South Africa

    Science.gov (United States)

    Kolker, Allan; Senior, Constance L.; van Alphen, Chris

    2014-12-15

    Mercury (Hg) analyses were obtained for 42 samples of feed coal provided by Eskom, the national electric utility of South Africa, representing all 13 coal-fired power stations operated by Eskom in South Africa. This sampling includes results for three older power stations returned to service starting in the late 2000s. These stations were not sampled in the most recent previous study. Mercury concentrations determined in the present study are similar to or slightly lower than those previously reported, and input Hg for the three stations returned to service is comparable to that for the other 10 power stations. Determination of halogen contents of the 42 feed coals confirms that chlorine contents are generally low, and as such, the extent of Hg self-capture by particulate control devices (PCDs) is rather limited. Eight density separates of a South African Highveld (#4) coal were also provided by Eskom, and these show a strong mineralogical association of Hg (and arsenic) with pyrite. The density separates were used to predict Hg and ash contents of coal products used in South Africa or exported. A suite of 48 paired samples of pulverization-mill feed coal and fly ash collected in a previous (2010) United Nations Environment Programme-sponsored study of emissions from the Duvha and Kendal power stations was obtained for further investigation in the present study. These samples show that in each station, Hg capture varies by boiler unit and confirms that units equipped with fabric filters for air pollution control are much more effective in capturing Hg than those equipped with electrostatic precipitators. Apart from tracking the performance of PCDs individually, changes resulting in improved mercury capture of the Eskom fleet are discussed. These include Hg reduction through coal selection and washing, as well as through optimization of equipment and operational parameters. Operational changes leading to increased mercury capture include increasing mercury

  18. Influence of forest biomass grown in fertilised soils on combustion and gasification processes as well as on the environment with integrated bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Jaanu, K; Orjala, M [VTT Energy, Jyvaeskylae (Finland). Fuel Production

    1997-12-01

    This presentation describes research carried out by VTT Energy and METLA during 1996, as part of the collaborative EU project involving Finland, Portugal and Spain. The main objectives of this project are to carry out experimental studies of both combustion and gasification under atmospheric (Portugal and Spain) and pressurised conditions (Finland) using biomass from different countries, namely Finland, Portugal and Spain. This was to determine the influence of biomass fertilising conditions on the process itself and the impact on the integrated energy production facilities, such as gas turbines. The aim of the research was carried out during 1996: (1) To complete the biomass collection, analyses and selection of the samples for combustion and gasification tests. This task has been carried out in co-operation with VTT and METLA, (2) To start the combustion and gasification tests under pressurised and atmospheric conditions. The combustion research in Finland is being performed in pressurised entrained flow reactor at VTT in Jyvaeskylae and the gasification research is being conducted at VTT in Espoo. The collection of biomass samples has been completed. The analyses of the samples show that for instance potassium and phosphorus content will be increased by about 30-50 % due to fertilisation. In the ash fusion tests, the ash from fertilised bark and branches and needles may start to soften already at 900 deg C under reducing conditions depending on the composition of the ash. In oxidising atmospheres the ash softening seems to occur at higher temperatures. Preliminary results indicate that the fertilisation may have an influence on the combustion process

  19. Study of ignition, combustion, and production of harmful substances upon burning solid organic fuel at a test bench with a vortex chamber

    Science.gov (United States)

    Burdukov, A. P.; Chernetskiy, M. Yu.; Dekterev, A. A.; Anufriev, I. S.; Strizhak, P. A.; Greben'kov, P. Yu.

    2016-01-01

    Results of investigation of furnace processes upon burning of pulverized fuel at a test bench with a power of 5 MW are presented. The test bench consists of two stages with tangential air and pulverized coal feed, and it is equipped by a vibrocentrifugal mill and a disintegrator. Such milling devices have an intensive mechanical impact on solid organic fuel, which, in a number of cases, increases the reactivity of ground material. The processes of ignition and stable combustion of a mixture of gas coal and sludge (wastes of concentration plant), as well as Ekibastus coal, ground in the disintegrator, were studied at the test bench. The results of experimental burning demonstrated that preliminary fuel grinding in the disintegrator provides autothermal combustion mode even for hardly inflammable organic fuels. Experimental combustion of biomass, wheat straw with different lignin content (18, 30, 60%) after grinding in the disintegrator, was performed at the test bench in order to determine the possibility of supporting stable autothermal burning. Stable biofuel combustion mode without lighting by highly reactive fuel was achieved in the experiments. The influence of the additive GTS-Powder (L.O.M. Leaders Co., Ltd., Republic of Korea) in the solid and liquid state on reducing sulfur oxide production upon burning Mugun coal was studied. The results of experimental combustion testify that, for an additive concentration from 1 to 15% of the total mass of the burned mixture, the maximum SO2 concentration reduction in ejected gases was not more than 18% with respect to the amount for the case of burning pure coal.

  20. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  1. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  2. Production of wood plastic properties using gamma radiation as a polymerization agent

    Energy Technology Data Exchange (ETDEWEB)

    Bull, C; Rosende, R [Chile Univ., Santiago. Dept. de Tecnologia de la Madera; Espinoza B, J; Figueroa C, C [Comision Chilena de Energia Nuclear, Santiago. Dept. de Aplicaciones de los Isotopos y Radiaciones

    1984-04-01

    The properties of wood plastic composites (WPC) based on Pinus Radiata D. Don impregnated with methylmethacrylate and subsequently polymerized with gamma radiation were studied. Different systems of impregnation were utilized, in order to obtain partial and shell loads. The minimum irradiation dose uses was 16 kGy. The following tests were made to the material: static bending, compression strenght parallel to grain, hardness, sheer strength, toughness, water absorption, dimensional stability and flame propagation index. To evaluate the testing, the results of the samples were separated according final density in the ranges: R/sub 1/ = 429-483 kg/m3 (without treatment); R/sub 2/ = 500-650 kg/m3 and R3 = 651-850 kg/m3. In general, the best results were obtained for samples of high density. The most important results were achieved for dimensional stability, water absorption and hardness.

  3. Production of wood plastic properties using gamma radiation as a polimerization agent

    International Nuclear Information System (INIS)

    Bull, C.; Rosende, R.; Espinoza B, J.; Figueroa C, C.

    1984-01-01

    The properties of wood plastic composites (WPC) based on Pinus Radiata D. Don impregnated with methylmethacrylate and subsequently polymerized with gamma radiation were studied. Different systems of impregnation were utilized, in order to obtain partial and shell loads. The minimum irradiation dose uses was 16 kGy. The following tests were made to the material: static bending, compression strenght parallel to grain, hardness, sheer strength, toughness, water absorption, dimensional stability and flame propagation index. To evaluate the testing, the results of the samples were separated according final density in the ranges: R 1 = 429-483 kg/m3 (without treatment); R 2 = 500-650 kg/m3 and R3 = 651-850 kg/m3. In general, the best results were obtained for samples of high density. The most important results were achieved for dimensional stability, water absorption and hardness. (Author)

  4. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, Bachu Narain

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly...... observed in PITs. An increase in the pre-yield dose results in an increase in the level of hardening over the whole test periods and a decrease in the uniform elongation suggesting that the materials “remember” the impact of the pre-yield damage level. These features are modelled in terms of the decoration...... and deformation, moving dislocations are decorated by the sweeping of matrix loops. The interaction of dislocations with loops and between loops is discussed as a function of the relevant parameters. On this basis, the kinetics of decoration is treated in terms of fluxes of loops to and reactions with each other...

  5. Preliminary results of lab-scale investigations of products of incomplete combustion during incineration of primary and mixed digested sludge.

    Science.gov (United States)

    Braguglia, C M; Bagnuolo, G; Gianico, A; Mininni, G; Pastore, C; Mascolo, G

    2016-03-01

    Separation between primary and secondary sludge treatment could be a valuable solution for sludge management. According to this approach, secondary sludge can be conveniently used in agriculture while primary sludge could be easily dried and incinerated. It follows that some concern may arise from incinerating primary sludge with respect to the current practice to incinerate mixed digested sludge. Incineration of primary and mixed digested municipal sludge was investigated with a lab-scale equipment in terms of emissions of products of incomplete combustion (PICs) during incineration failure modes. PICs can be grouped in three sub-categories, namely aliphatic hydrocarbons (alkanes and alkenes), compounds with a single aromatic ring, and polycyclic aromatic hydrocarbons (PAHs). After-burning temperature was the most important parameter to be controlled in order to minimize emissions of alkanes and alkenes. As for mono-aromatic compounds, benzene and toluene are the most thermally resistant compounds, and in some cases, an after-burning temperature of 1100 °C was not enough to get the complete destruction of benzene leading to a residual emission of 18 mg/kgsludge. PAHs showed an opposite trend with respect to aliphatic and mono-aromatic hydrocarbons being the thermal failure mode the main responsible of PIC emissions. A proper oxygen concentration is more important than elevated temperature thus reflecting the high thermal stability of PAHs. Overall, obtained results, even though obtained under flameless conditions that are different from those of the industrial plants, demonstrated that separation of primary and secondary sludge does not pose any drawbacks or concern regarding primary sludge being disposed of by incineration even though it is more contaminated than mixed digested sludge in terms of organic pollutants.

  6. Plastic Surgery

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Plastic Surgery KidsHealth / For Teens / Plastic Surgery What's in ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  7. The Evaluation Of Waste Plastic Burned With Lignite And Biomass

    OpenAIRE

    DURANAY, Neslihan; YILGIN, Melek

    2016-01-01

    In this work, the combustion behavior of pellets prepared from binary and triple blends of waste plastic, biomass and lignite was investigated in an experimental fixed bed combustion system. Market bags as plastic waste and the furniture factory waste powder as a source of biomass and Bingöl Karlıova coal as a lignite were used. The effect of process temperature and the plastic mixing ratio on the combustion behavior of pellets was studied. Combustion data obtained from varied bed temperature...

  8. Test and research on the production of useful matter with carbon-dioxide-fixed microorganisms. Production of biodegradation plastics with photosynthesized microorganisms. Tansan gas kotei biseibutsu wo mochiita yuyo busshitsu seisan shiken kenkyu. Kogosei biseibutsu ni yoru seibunkaisei plastic seisan

    Energy Technology Data Exchange (ETDEWEB)

    Miyasaka, H. (The Kansai Electric Power Co. Inc., Osaka (Japan))

    1994-07-10

    The present report introduces the basic research on the production of PHB (one of the biodegradation plastics) by utilizing the photosynthesized microorganisms. The indigo algae are conveniently used for the genetic operation, because they are genetically inferior and have plasmid (extranuclear ringed DNA). Therefore, a certain type of oceanic indigo algae was used for the present research. As a vector to introduce the PHB-producing gene into the indigo alga cell, hybrid plasmid was prepared by combining the indigo alga plasmid pAQ1 with colon bacillus plasmid vectors pUC19. The thus prepared vectors had an introduction efficiency into about 1000 cells per one vector. A RuBisCO gene of indigo alga cell was selected as a promoter to heighten the activity of PHB-producing gene in that cell. The gene is being further studied in promotion efficiency by combining it with the above vector and PHB-producing gene. 4 figs.

  9. Production of wood pellets. Influence of additives on production, quality, storage, combustion and life cycle analysis of wood pellets; Herstellung von Holzpellets. Einfluss von Presshilfsmitteln auf Produktion, Qualitaet, Lagerung, Verbrennung sowie Energie- und Oekobilanz von Holzpellets

    Energy Technology Data Exchange (ETDEWEB)

    Hasler, P.; Nussbaumer, T. [Verenum, Zuerich (Switzerland); Buerli, J. [Buerli Pellets, Willisau (Switzerland)

    2001-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study concerning the influence of additives on the various factors related to the manufacture of wood pellets and their use. Results of tests concerning the production, storage and combustion of wood pellets with and without additives are presented. Process modifications are discussed. The report shows that for all investigated additives neither energy consumption nor pellet throughput was improved. The influence of additives on the mechanical strength of the pellets is discussed, as are the combustion characteristics of the pellets, which emit significantly lower levels of NO{sub x} and particulate matter than typical wood chips. The authors recommend the application of advanced control technology to ensure optimum combustion conditions. A life-cycle analysis is presented which shows that pellets are ecologically more favourable than wood chips. The ecological potential for improvement in the manufacturing process is discussed, including emission reductions and heat recovery.

  10. Synthesizing Graphene Production with Polymeric Injection Molding for Enhancing EMI Shielding Effectiveness of Plastics

    Science.gov (United States)

    2017-09-01

    Ulrich, Karl T., and Steven D. Eppinger. 2012. Product Design and Development, 5th ed. New York: McGraw-Hill Irwin. Warner, Jamie H., Franziska Schaffel...of tasks that an organization or business generally follows to transform a thought or idea of a product to a manufactured good. In the early stages...established product design and development processes. Karl Ulrich and Steven Eppinger (2012) state that one of the initial steps in the opportunity

  11. Our plastic age.

    Science.gov (United States)

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  12. Our plastic age

    Science.gov (United States)

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  13. Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor.

    Science.gov (United States)

    Cheng, Kuan-Chen; Demirci, Ali; Catchmark, Jeffrey M

    2010-04-01

    Pullulan is a linear homopolysaccharide which is composed of glucose units and often described as alpha-1, 6-linked maltotriose. The applications of pullulan range from usage as blood plasma substitutes to environmental pollution control agents. In this study, a biofilm reactor with plastic composite support (PCS) was evaluated for pullulan production using Aureobasidium pullulans. In test tube fermentations, PCS with soybean hulls, defatted soy bean flour, yeast extract, dried bovine red blood cells, and mineral salts was selected for biofilm reactor fermentation (due to its high nitrogen content, moderate nitrogen leaching rate, and high biomass attachment). Three pH profiles were later applied to evaluate their effects on pullulan production in a PCS biofilm reactor. The results demonstrated that when a constant pH at 5.0 was applied, the time course of pullulan production was advanced and the concentration of pullulan reached 32.9 g/L after 7-day cultivation, which is 1.8-fold higher than its respective suspension culture. The quality analysis demonstrated that the purity of produced pullulan was 95.8% and its viscosity was 2.4 centipoise. Fourier transform infrared spectroscopy spectra also supported the supposition that the produced exopolysaccharide was mostly pullulan. Overall, this study demonstrated that a biofilm reactor can be successfully implemented to enhance pullulan production and maintain its high purity.

  14. Analysis of Usability in Furniture Production of Wood Plastic Laminated Board

    Directory of Open Access Journals (Sweden)

    Abdullah Cemil Ilçe

    2015-05-01

    Full Text Available The objective of this study was to manufacture a lightweight and easily producible wood plastic laminate (WPL board that could be used in the furniture sector. Eastern beech (Fagus orientalis L. veneer papels (A and hollow polycarbonate boards (B, both with a thickness of 4 mm, were laminated in different combinations using polyurethane (PUR and polychloroprene (PCR adhesives. The physical and mechanical properties of the WPL boards obtained were determined according to the principles specified in the EN 326-1, EN 317, EN 310, ASTM D1037, and ASTM D1761 standards. Subsequently, the specimens were compared with particle boards (PB, medium density fiberboards (MDF, and okoume plywoods (PW. According to the results, the AABAA, ABABA, and ABBBA combinations of the WPL materials had better physical properties, such as weight, water absorption, and swelling thickness, compared to the other composites. Furthermore, because the WPL materials had a high bending resistance, modulus of elasticity, and nail and screw withdrawal strength, they could be used instead of PB and MDF. The WPL material obtained within the scope of this study are suitable for furniture making.

  15. Use of recycled plastic in concrete: a review.

    Science.gov (United States)

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.

  16. Use of recycled plastic in concrete: A review

    International Nuclear Information System (INIS)

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper

  17. Plastic scintillators in coincidence for the study of multi-particle production of sea level cosmic rays in dense medium

    Science.gov (United States)

    Chuang, L. S.; Chan, K. W.; Wada, M.

    1985-01-01

    Cosmic ray particles at sea level penetrate a thick layer of dense medium without appreciable interaction. These penetrating particles are identified with muons. The only appreciable interaction of muons are by knock on processes. A muon may have single, double or any number of knock on with atoms of the material so that one, two, three or more particles will come out from the medium in which the knock on processes occur. The probability of multiparticle production is expected to decrease with the increase of multiplicity. Measurements of the single, double, and triple particles generated in a dense medium (Fe and Al) by sea level cosmic rays at 22.42 N. Lat. and 114.20 E. Long. (Hong Kong) are presented using a detector composed of two plastic scintillators connected in coincidence.

  18. ENVIRONMENTAL ISSUE-PLASTIC

    OpenAIRE

    Sunita Shakle

    2017-01-01

    Polythene is the most common plastic, the annual global production is approximately 60 million tones, and its primary use is in packing. Plastic bags pollute soil and waters and kill thousands of marine generalize plastic bags are not biodegradable they clog water ways, spoil the land scape and end up in landfills. Where they may take 1000 year or more to break down into ever smaller particals that continue to pollution the soil and water.

  19. Our plastic age

    OpenAIRE

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste pl...

  20. The rates of production of CO and CO2 from the combustion of pulverized coal particles in a shock tube

    NARCIS (Netherlands)

    Commissaris, F.A.C.M.; Banine, V.Y.; Roekaerts, D.J.E.M.; Veefkind, A.

    1998-01-01

    This work presents some results of experiments on coal combustion in a shock tube, as well as a time-dependent model of the boundary layer of a single, burning char particle under similar conditions. The partial pressure of O2 in a shock tube was varied between 0 and 10 bar, with gas temperatures

  1. Ultra-low pollutant emission combustion method and apparatus

    International Nuclear Information System (INIS)

    Khinkis, M.J.

    1992-01-01

    This patent describes a method for ultra-low pollutant emission combustion of fossil fuel. It comprises: introducing into a primary combustion chamber a first fuel portion of about 1 percent to about 20 percent of a total fuel to be combusted; introducing primary combustion air into the primary combustion chamber; introducing a first portion of water into the primary combustion chamber, having a first water heat capacity equivalent to a primary combustion air heat capacity of one of a primary combustion air amount of about 10 percent to about 60 percent of the first stoichiometirc requirement for complete combustion of the first fuel portion and an excess primary combustion air amount of about 20 percent to about 150 percent of the first stoichiometric requirement for complete combustion of the first fuel portion; burning the first fuel portion with the primary combustion air in the primary combustion chamber at a temperature abut 2000 degrees F to about 2700 degrees F producing initial combustion products; passing the initial combustion products into a secondary combustion chamber; introducing into the secondary combustion chamber a second fuel portion of about 80 percent to about 99 percent of the total fuel to be combusted; introducing secondary combustion air into the secondary combustion chamber in an amount of about 105 percent to about 130 percent of a second stoichiometric requirement for complete combustion of the second fuel portion; introducing a second portion of water into the secondary combustion chamber; burning the second fuel portion and any remaining fuel in the initial combustion products; passing the final combustion products into a dilution chamber; introducing dilution air into the dilution chamber; discharging the ultra-low pollutant emission vitiated air form the dilution chamber

  2. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  3. Diagnostic and proposal for use of safety inventory into finished products for a plastics company

    Directory of Open Access Journals (Sweden)

    Elpidio Oscar Benitez Nara

    2013-02-01

    Full Text Available The stock is essential for companies. Thinking about it, it is increasingly necessary to develop techniques that seek to reduce inventory levels making them suitable to the company structure and satisfactorily meet the needs of increasingly demanding customers while maintaining the service level. The safety stock is derived from various uncertainties such as shortage of raw materials and difficulties in producing variations in sales projections thus scaling of this safety stock is a most difficult task to perform. In this sense, the present study aims to demonstrate the Inventory Management structure acceptable to a company that seeks to reduce capital invested in stocks as well as a for continuous review reorder point. The research was developed through an analysis of the current policy Inventories of the company, where we sought the most representative products of the product line. For these products it was necessary future sales forecasts for the annual period where it was possible to scale according to company politic Inventories of the average stocks of these products in order to compare with the stocks of securities calculated using specific equations. Then, using the equations it was also defined the point of application of all the studied products was defined, as a model for continuous revision product line studied. Finally the proposed method for use of safety stock techniques showed good results as a reduction of approximately 43% of capital invested in safety stock if compared to current Inventories policy of the company.

  4. Model for Environmental Assessment of Industrial Production Systems: A Case Study in a Plastic Manufacturing Firm

    Directory of Open Access Journals (Sweden)

    Francine Comunello

    2017-05-01

    Full Text Available The environmental issue has been discussed sharply in the organizational environment, as consumers, and society in general, have been increasingly concerned about the environment. In this sense, the companies, especially the factories, seek to minimize the environmental impact caused by its production processes through actions that combine the organization's economic interests with environmental concerns. Thus, this article aims to analyze how environmental management of the productive sector is being carried out at Industria Beta Chapecó/SC. Therefore, we developed a qualitative and descriptive research in order to apply the Model for Environmental Assessment of Industrial Production Systems (MAASPI in the production of Industria Beta sector. The results showed the main environmental interventions caused by the production process of the organization, particularly the interventions for the consumption of electricity, plant location and chip storage. As main proposals to minimize negative environmental impacts, we have the installation of translucent tiles in the production environment, a study on energy efficiency, construction of water and soil testing, construction of waste storage terminals and implementation of the pre-selection of the raw material. The realization of the suggested adjustments enables Industria Beta to foresee the legal environmental requirements, to aim for enviromental certifications and seals and to strengthen its image as environment-friendly with collaborators and society in general.

  5. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  6. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste”

    PhD Candidate: Xiaoyun Bing

    Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower

  7. Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci.

    Science.gov (United States)

    Cheng, Xingqun; Redanz, Sylvio; Cullin, Nyssa; Zhou, Xuedong; Xu, Xin; Joshi, Vrushali; Koley, Dipankar; Merritt, Justin; Kreth, Jens

    2018-01-15

    Commensal Streptococcus sanguinis and Streptococcus gordonii are pioneer oral biofilm colonizers. Characteristic for both is the SpxB-dependent production of H 2 O 2 , which is crucial for inhibiting competing biofilm members, especially the cariogenic species Streptococcus mutans H 2 O 2 production is strongly affected by environmental conditions, but few mechanisms are known. Dental plaque pH is one of the key parameters dictating dental plaque ecology and ultimately oral health status. Therefore, the objective of the current study was to characterize the effects of environmental pH on H 2 O 2 production by S. sanguinis and S. gordonii S. sanguinis H 2 O 2 production was not found to be affected by moderate changes in environmental pH, whereas S. gordonii H 2 O 2 production declined markedly in response to lower pH. Further investigation into the pyruvate node, the central metabolic switch modulating H 2 O 2 or lactic acid production, revealed increased lactic acid levels for S. gordonii at pH 6. The bias for lactic acid production at pH 6 resulted in concomitant improvement in the survival of S. gordonii at low pH and seems to constitute part of the acid tolerance response of S. gordonii Differential responses to pH similarly affect other oral streptococcal species, suggesting that the observed results are part of a larger phenomenon linking environmental pH, central metabolism, and the capacity to produce antagonistic amounts of H 2 O 2 IMPORTANCE Oral biofilms are subject to frequent and dramatic changes in pH. S. sanguinis and S. gordonii can compete with caries- and periodontitis-associated pathogens by generating H 2 O 2 Therefore, it is crucial to understand how S. sanguinis and S. gordonii adapt to low pH and maintain their competitiveness under acid stress. The present study provides evidence that certain oral bacteria respond to environmental pH changes by tuning their metabolic output in favor of lactic acid production, to increase their acid survival

  8. A practical approach to estimate emission rates of indoor air pollutants due to the use of personal combustible products based on small-chamber studies.

    Science.gov (United States)

    Szulejko, Jan E; Kim, Ki-Hyun

    2016-02-01

    As emission rates of airborne pollutants are commonly measured from combusting substances placed inside small chambers, those values need to be re-evaluated for the possible significance under practical conditions. Here, a simple numerical procedure is investigated to extrapolate the chamber-based emission rates of formaldehyde that can be released from various combustible sources including e-cigarettes, conventional cigarettes, or scented candles to their concentration levels in a small room with relatively poor ventilation. This simple procedure relies on a mass balance approach by considering the masses of pollutants emitted from source and lost through ventilation under the assumption that mixing occurs instantaneously in the room without chemical reactions or surface sorption. The results of our study provide valuable insights into re-evaluation procedure of chamber data to allow comparison between extrapolated and recommended values to judge the safe use of various combustible products in confined spaces. If two scented candles with a formaldehyde emission rate of 310 µg h(-1) each were lit for 4 h in a small 20 m(3) room with an air change rate of 0.5 h(-1), then the 4-h (candle lit) and 8-h (up to 8 h after candle lighting) TWA [FA] were determined to be 28.5 and 23.5 ppb, respectively. This is clearly above the 8-h NIOSH recommended exposure limit (REL) time weighted average of 16 ppb. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  10. Exhaust systems for combustion products: solutions and innovations; Les systemes d'evacuation des produits de combustion: solutions et innovations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    This document summarizes the content of a conference-debate organized by Cegibat, the information service of Gaz de France (GdF) for building engineering professionals, about the exhaust systems for gas boilers: 1 - overview of airtight systems: horizontal suction-grip duct, vertical suction-grip duct, collective ducts for tight boilers, separate ducts; 2 - example of products: separate ducts; reuse of an individual smoke duct; 3 - overview of non-airtight exhaust systems: individual smoke ducts, collective smoke ducts, ventilation-gas systems; 4 - examples of non-airtight systems: diagnosis and rehabilitation of smoke ducts, low pressure mechanical exhaust system; 5 - works in progress and perspectives of evolution. (J.S.)

  11. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Trinkaus, H. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich (Germany); Singh, B.N. [Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Materials Research Dept., Roskilde (Denmark)

    2008-04-15

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly observed in PITs. An increase in the pre-yield dose results in an increase in the level of hardening over the whole test periods and a decrease in the uniform elongation suggesting that the materials 'remember' the impact of the pre-yield damage level. These features are modelled in terms of the decoration of dislocations with glissile dislocation loops. During pre-yield irradiation, dislocation decoration is due to the one-dimensional (1D) diffusion of cascade induced self-interstitial (SIA) clusters and their trapping in the stress field of the static grown-in dislocations. During post-yield irradiation and deformation, moving dislocations are decorated by the sweeping of matrix loops. The interaction of dislocations with loops and between loops is discussed as a function of the relevant parameters. On this basis, the kinetics of decoration is treated in terms of fluxes of loops to and reactions with each other in a conceived 2D space of decoration. In this space, loop coalescence, alignment and mutual blocking reactions are characterised by appropriate reaction cross sections. In the kinetic equations for 'dynamic decoration' under deformation, the evolution of the dislocation density is taken into account. Simple solutions of the kinetic equations are discussed. The apparent memory of the system for the pre-yield dose is identified as the result of simultaneous and closely parallel transient evolutions of the cascade damage and the dislocations up to the end of the IRTs. The contributions of dislocation decoration to yield and flow stresses are attributed to the interaction of dislocations with aligned loops temporarily or permanently immobilized

  12. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    International Nuclear Information System (INIS)

    Trinkaus, H.; Singh, B.N.

    2008-04-01

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly observed in PITs. An increase in the pre-yield dose results in an increase in the level of hardening over the whole test periods and a decrease in the uniform elongation suggesting that the materials 'remember' the impact of the pre-yield damage level. These features are modelled in terms of the decoration of dislocations with glissile dislocation loops. During pre-yield irradiation, dislocation decoration is due to the one-dimensional (1D) diffusion of cascade induced self-interstitial (SIA) clusters and their trapping in the stress field of the static grown-in dislocations. During post-yield irradiation and deformation, moving dislocations are decorated by the sweeping of matrix loops. The interaction of dislocations with loops and between loops is discussed as a function of the relevant parameters. On this basis, the kinetics of decoration is treated in terms of fluxes of loops to and reactions with each other in a conceived 2D space of decoration. In this space, loop coalescence, alignment and mutual blocking reactions are characterised by appropriate reaction cross sections. In the kinetic equations for 'dynamic decoration' under deformation, the evolution of the dislocation density is taken into account. Simple solutions of the kinetic equations are discussed. The apparent memory of the system for the pre-yield dose is identified as the result of simultaneous and closely parallel transient evolutions of the cascade damage and the dislocations up to the end of the IRTs. The contributions of dislocation decoration to yield and flow stresses are attributed to the interaction of dislocations with aligned loops temporarily or permanently immobilized by other loops or

  13. Hot water extracted wood fiber for production of wood plastic composites (WPCs)

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Thomas E. Amidon; Timothy L. Chaffee

    2013-01-01

    Undebarked ponderosa pine chips were treated by hot water extraction to modify the chemical composition. In the treated pine (TP) , the mass was reduced by approximately 20%, and the extract was composed mainly of degradation products of hemicelluloses. Wood flour produced from TP and unextracted chips (untreated pine, UP) was blended with high-density polyethylene (...

  14. Overcoming the plasticity of plant specialized metabolism for selective diterpene production in yeast

    DEFF Research Database (Denmark)

    Ignea, Codruta; Athanasakoglou, Anastasia; Andreadelli, Aggeliki

    2017-01-01

    of the enzymes involved. The pathway of carnosic acid-related diterpenes in rosemary and sage involves promiscuous cytochrome P450s whose combined activity results in a multitude of structurally related compounds. Some of these minor products, such as pisiferic acid and salviol, have established bioactivity...

  15. 75 FR 3881 - Combustible Dust

    Science.gov (United States)

    2010-01-25

    ..., rubber, drugs, dried blood, dyes, certain textiles, and metals (such as aluminum and magnesium..., furniture manufacturing, metal processing, fabricated metal products and machinery manufacturing, pesticide... standard that will comprehensively address the fire and explosion hazards of combustible dust. The Agency...

  16. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  17. Toxicological and chemical characterization of the process stream materials and gas combustion products of an experimental low-btu coal gasifier.

    Science.gov (United States)

    Benson, J M; Hanson, R L; Royer, R E; Clark, C R; Henderson, R F

    1984-04-01

    The process gas stream of an experimental pressurized McDowell-Wellman stirred-bed low-Btu coal gasifier, and combustion products of the clean gas were characterized as to their mutagenic properties and chemical composition. Samples of aerosol droplets condensed from the gas were obtained at selected positions along the process stream using a condenser train. Mutagenicity was assessed using the Ames Salmonella mammalian microsome mutagenicity assay (TA98, with and without rat liver S9). All materials required metabolic activation to be mutagenic. Droplets condensed from gas had a specific mutagenicity of 6.7 revertants/microgram (50,000 revertants/liter of raw gas). Methylnaphthalene, phenanthrene, chrysene, and nitrogen-containing compounds were positively identified in a highly mutagenic fraction of raw gas condensate. While gas cleanup by the humidifier-tar trap system and Venturi scrubber led to only a small reduction in specific mutagenicity of the cooled process stream material (4.1 revertants/microgram), a significant overall reduction in mutagenicity was achieved (to 2200 revertants/liter) due to a substantial reduction in the concentration of material in the gas. By the end of gas cleanup, gas condensates had no detectable mutagenic activity. Condensates of combustion product gas, which contained several polycyclic aromatic compounds, had a specific mutagenicity of 1.1 revertants/microgram (4.0 revertants/liter). Results indicate that the process stream material is potentially toxic and that care should be taken to limit exposure of workers to the condensed tars during gasifier maintenance and repair and to the aerosolized tars emitted in fugitive emissions. Health risks to the general population resulting from exposure to gas combustion products are expected to be minimal.

  18. Modeling and simulating combustion and generation of NOx

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe

    2007-01-01

    This paper deals with the modeling and simulation of combustion processes and generation of NO x in a combustion chamber and boiler, with supplementary combustion in a gas turbine installation. The fuel burned in the combustion chamber was rich gas with a chemical composition more complex than natural gas. Pitcoal was used in the regenerative boiler. From the resulting combustion products, 17 compounds were retained, including nitrogen and sulphur compounds. Using the developed model, the simulation resulted in excess air for a temperature imposed at the combustion chamber exhaust. These simulations made it possible to determine the concentrations of combustion compounds with a variation in excess combustion. (author)

  19. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    This report is a presentation of work carried out on Phase II of the HIPPS program under DOE contract DE-AC22-95PC95144 from June 1995 to March 2001. The objective of this report is to emphasize the results and achievements of the program and not to archive every detail of the past six years of effort. These details are already available in the twenty-two quarterly reports previously submitted to DOE and in the final report from Phase I. The report is divided into three major foci, indicative of the three operational groupings of the program as it evolved, was restructured, or overtaken by events. In each of these areas, the results exceeded DOE goals and expectations. HIPPS Systems and Cycles (including thermodynamic cycles, power cycle alternatives, baseline plant costs and new opportunities) HITAF Components and Designs (including design of heat exchangers, materials, ash management and combustor design) Testing Program for Radiative and Convective Air Heaters (including the design and construction of the test furnace and the results of the tests) There are several topics that were part of the original program but whose importance was diminished when the contract was significantly modified. The elimination of the subsystem testing and the Phase III demonstration lessened the relevance of subtasks related to these efforts. For example, the cross flow mixing study, the CFD modeling of the convective air heater and the power island analysis are important to a commercial plant design but not to the R&D product contained in this report. These topics are of course, discussed in the quarterly reports under this contract. The DOE goal for the High Performance Power Plant System ( HIPPS ) is high thermodynamic efficiency and significantly reduced emissions. Specifically, the goal is a 300 MWe plant with > 47% (HHV) overall efficiency and {le} 0.1 NSPS emissions. This plant must fire at least 65% coal with the balance being made up by a premium fuel such as natural gas

  20. Calorimetry of fluorinated products. I. Combustion of ClF3 and ClF5 in hydrogen

    International Nuclear Information System (INIS)

    Caton, J.; Barberi, P.

    1975-01-01

    The thermal effects due to combustion of chlorine trifluoride and pentafluoride in hydrogen were measured by means of a suitable bomb calorimeter. The enthalpies of formation of these halides can be determined from this measurement. That of ClF 3 , already fairly well known, was used to set the apparatus fpr the measurement concerning ClF 5 , for which no direct data are available [fr

  1. Incorporating lean thinking and life cycle assessment to reduce environmental impacts of plastic injection moulded products

    OpenAIRE

    Cheung, Wai Ming; Leong, Jun; Vichare, Parag

    2017-01-01

    In the last decades, environmental footprint of the product manufacture has emerged as an important public concern, causing manufacturers to re-assess their product’s environmental impacts. Responding to global outcry on global warming, world leaders have agreed to limit global temperature rise to less than 2°C above the temperature in pre-industrial times. As a result, governments and industrial leaders around the world have proposed a roadmap for 80% emissions reduction by 2050. The aim of ...

  2. Industrial Production of Food Plastic Packaging and the Use of Irradiation for Modifying Some Film Properties. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A. V.; Moura, E. A.B., [Nuclear and Energy Research Institute - IPEN - São Paulo (Brazil); Nuclear and Energy National Commission – CNEN, Rio de Janeiro (Brazil)

    2014-07-15

    The four main industrial processes needed to produce a plastic packaging structure are: cast extrusion, blown extrusion, injection moulding, and blown moulding. Since one polymer may not offer all the protection and marketing properties required for a specific food product, multilayer films can be produced. Each layer will be composed of a different polymer and additives to meet all the requirements. Ionizing radiation plays an important role in the packaging industry, especially in the heat shrinkable barrier film production process. In this process, irradiating the film structure is aimed mostly at the crosslinking of the polyolefin. Cross-linked polyolefin-based films can withstand higher stretching rates, be better stabilized, and will both have a high degree of shrinkage and higher shrinking forces. This leads to very thin structures with very well balanced cost-benefit ratios and better final packaging presentation. The use of ionizing radiation for cross-linking polymers is one of the most successful cases of irradiation used by the industry. Besides cross-linking, scission may also occur in the polymeric structure, and it may liberate toxic or unwanted substances that can be transferred to the food. Therefore, irradiated food packaging materials should be thoroughly assessed according to active legislation to guarantee that it will not harm the consumer’s health either in the short or the long term. (author)

  3. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M; Fink, J K [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  4. The Regulation of Behavioral Plasticity by Performance-Based Feedback and an Experimental Test with Avian Egg Production.

    Science.gov (United States)

    Sockman, Keith W

    2016-05-01

    Optimizing plasticity in behavioral performances requires the abilities to regulate physiological effort and to estimate the effects of the environment. To describe how performance-based feedback could play a role in regulating recursive or continuous behavioral performances, I developed two models, one (environmental feedback) that assumes an initial ability to regulate effort but not to predict the effects of the environment and the other (effort feedback) that assumes an initial ability to predict the effects of the environment but not to regulate effort. I tested them by manipulating feedback on egg production, using an egg-substitution experiment in wild, free-ranging Lincoln's sparrows (Melospiza lincolnii). I discovered that females adjusted the size of their clutches' third laid eggs in response to the size of an experimentally substituted first laid egg, such that the size of the third laid egg increased with the size of the substitute. Results were largely consistent with the environmental feedback model, though small portions of the response surface were consistent with the effort feedback model or with neither. Regardless, such feedback-based regulation predicted by either model may help females maximize net benefits of egg production and may be a basis for mechanisms regulating a wide range of other behavioral performances, as well.

  5. Reusability enhancement of combustion synthesized MgO/MgAl_2O_4 nanocatalyst in biodiesel production by glow discharge plasma treatment

    International Nuclear Information System (INIS)

    Rahmani Vahid, Behgam; Haghighi, Mohammad; Alaei, Shervin; Toghiani, Javad

    2017-01-01

    Graphical abstract: MgO/MgAl_2O_4 nanocatalyst synthesized by impregnation/combustion methods and treated by plasma. FESEM, XRD, EDX, BET-BJH, TG and FTIR analyses were used to investigate the physicochemical characteristics of the nanocatalysts. The nanocatalysts were used in biodiesel production to evaluate and compare their activity. The obtained results from reactor test showed almost similar conversion (higher than 95%) for both treated and untreated nanocatalysts. However, in reusability performance, the plasma treated sample indicated better stability. - Highlights: • Efficient dispersion of MgO on combustion synthesized MgAl_2O_4 spinel nanocatalyst. • Enhanced effect of plasma treatment on nanocatalyst synthesis and its structure. • Successful production of biodiesel using nanocatalyst that treated with plasma. • Increasing the nanocatalyst reusability in biodiesel production by plasma treatment. - Abstract: In this study, plasma technology was used to prepare the catalysts for biodiesel production. The base of MgO/MgAl_2O_4 particles was prepared by combustion synthesis method to attain suitable porosity for large molecules of triglyceride and then active phase of MgO was dispersed on the samples by impregnation method. The nanocatalysts were characterized by XRD, FESEM, EDX, BET-BJH, FTIR, TGA and Particle size distribution analyses. In order to evaluation the catalytic activity of the samples in biodiesel production, the transesterification reaction was performed under these conditions: reaction temperature = 110 °C, methanol-to-oil molar ratio = 12, catalyst concentration = 3 wt.% and reaction time = 3 h. XRD and FTIR results confirm successful synthesis of MgO/MgAl_2O_4. Meanwhile, XRD and EDX analyses indicated that MgO in modified sample by plasma has suitable size distribution. FESEM and BET-BJH analyses reveal proper morphology in both samples and showed higher surface area and pore size in plasma treated sample. TG analysis showed that

  6. Designing Resilient and Productive Grasses with Plasticity to Extreme Weather Events

    Science.gov (United States)

    Loka, D.; Humphreys, M.; Gwyn Jones, D.; Scullion, J.; Doonan, J.; Gasior, D.; Harper, J.; Farrell, M.; Kingston-Smith, A.; Dodd, R.; Chadwick, D.; Hill, P.; Robinson, D.; Jones, D.

    2016-12-01

    Grasslands occupy more than 70% of the world's agricultural land and are major providers of healthy feed for livestock and for ecosystem services. Global warming is projected to increase the intensity and frequency of extreme weather events such as drought and flooding and will reduce persistency of currently productive but stress sensitive forage grass varieties, thereby challenging global food security and compromising on their existing ecosystem functionality. New perennial grass varieties, tolerant to the onsets of more than one abiotic stresses, are required in order to achieve sustainable grassland production and function over years under adverse environmental conditions. Identifying and selecting reliable morphological and physiological traits associated with increased resistance to multiple stress conditions is a prerequisite to ensure future grasslands resilience. The objectives of our study were to select from diverse and novel Festulolium (ryegrass spp. x fescue spp. hybrids) grass populations capable of providing optimal combinations of good forage production together with resilience to multiple stresses and to monitor morphological and physiological responses under multiple stress conditions. The grasses were: Festulolium variety Prior (L. perenne x F. pratensis), shown to alter soil structure and hydrology to mitigate run-off and flooding; two advanced breeding populations of diploid L. perenne with genes for drought tolerance derived from the Mediterranean fescue species F. arundinacea and F. glaucescens; two tetraploid hybrid populations involving L. perenne in combination with F. glaucescens and F. mairei (from North Africa), respectively. As controls, Festulolium variety AberNiche and L. perenne variety AberWolf varieties, were used. Treatments consisted of: A) Control; plants maintained at optimum conditions, B) Flood; plants were flooded for 6 weeks followed by a 4-week recovery, C) Drought; plants received limited quantity of water for 12 weeks

  7. 40 CFR 62.15020 - Can my small municipal waste combustion unit be exempt from this subpart?

    Science.gov (United States)

    2010-07-01

    ...) Municipal waste combustion units that combust only tires. Your unit is exempt from this subpart if three requirements are met: (1) Your municipal waste combustion unit combusts a single-item waste stream of tires and...) Plastics/rubber recycling units. Your unit is exempt from this subpart if four requirements are met: (1...

  8. Elephant grass genotypes for bioenergy production by direct biomass combustion Genótipos de capim-elefante para produção de bioenergia por combustão direta da biomassa

    Directory of Open Access Journals (Sweden)

    Rafael Fiusa de Morais

    2009-02-01

    Full Text Available The objective of this work was to evaluate elephant grass (Pennisetum purpureum Schum. genotypes for bioenergy production by direct biomass combustion. Five elephant grass genotypes grown in two different soil types, both of low fertility, were evaluated. The experiment was carried out at Embrapa Agrobiologia field station in Seropédica, RJ, Brazil. The design was in randomized complete blocks, with split plots and four replicates. The genotypes studied were Cameroon, Bag 02, Gramafante, Roxo and CNPGL F06-3. Evaluations were made for biomass production, total biomass nitrogen, biomass nitrogen from biological fixation, carbon/nitrogen and stem/leaf ratios, and contents of fiber, lignin, cellulose and ash. The dry matter yields ranged from 45 to 67 Mg ha-1. Genotype Roxo had the lowest yield and genotypes Bag 02 and Cameroon had the highest ones. The biomass nitrogen accumulation varied from 240 to 343 kg ha-1. The plant nitrogen from biological fixation was 51% in average. The carbon/nitrogen and stem/leaf ratios and the contents of fiber, lignin, cellulose and ash did not vary among the genotypes. The five genotypes are suitable for energy production through combustion.O objetivo deste trabalho foi avaliar genótipos de capim-elefante (Pennisetum purpureum Schum. quanto ao potencial para a produção de bioenergia por combustão direta da biomassa. Avaliaram-se cinco genótipos de capim-elefante, em dois solos com baixa fertilidade. Os experimentos foram conduzidos na estação experimental da Embrapa Agrobiologia, em Seropédica, RJ. O delineamento experimental foi o de blocos ao acaso, em parcelas subdivididas, com quatro repetições. Os genótipos estudados foram Cameroon, Bag 02, Gramafante, Roxo e CNPGL F06-3. Determinaram-se a produção de biomassa, o acúmulo de nitrogênio na biomassa, o nitrogênio da biomassa proveniente da fixação biológica, as relações carbono/nitrogênio e talo/folha, e os teores de fibra, lignina

  9. Combustion chamber for solid and liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Vcelak, L.; Kocica, J.; Trnobransky, K.; Hrubes, J. (VSCHT, Prague (Czechoslovakia))

    1989-04-01

    Describes combustion chamber incorporated in a new boiler manufactured by Elitex of Kdyne to burn waste products and occasionally liquid and solid waste from neighboring industries. It can handle all kinds of solids (paper, plastics, textiles, rubber, household waste) and liquids (volatile and non-volatile, zinc, chromium, etc.) and uses coal as a fuel additive. Its heat output is 3 MW, it can burn 1220 kg/h of coal (without waste, calorific value 11.76 MJ/kg) or 500 kg/h of coal (as fuel additive, calorific value 11.76 MJ/kg) or 285 kg/h of solid waste (calorific value 20.8 MJ/kg). Efficiency is 75%, capacity is 103 m{sup 3} and flame temperature is 1,310 C. Individual components are designed for manufacture in small engineering workshops with basic equipment. A disk absorber with alkaline filling is fitted for removal of harmful substances arising when PVC or tires are combusted.

  10. Production of polymer composites by radiation and chemical treatments from recycled plastic wastes and their applications

    International Nuclear Information System (INIS)

    Khaffaga, M.R.A.

    2009-01-01

    Different applied methods have been proposed for the recycling of poly (ethylene terephthalate)(PET) and its blends with other polymers to obtain useful products. These methods are based on blending with different polymers or compounding with radiation synthesized copolymers based on maleic anhydride with methyl methacrylate, styrene and vinyl acetate. On the other hand, the methods proposed to improve the miscibility of mixed polymers are based on different methods of gamma and electron beam irradiation at various doses (30-50 kGy). Also , the addition of compatibilizers based on LDPE graft copolymer with comonomer composed of ethylene glycol (EG) and acrylic acid (AAc) as well as radiation synthesized copolymer based on acrylic acid and styrene (Sty) monomers during mixing. The modified properties were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), mechanical testing and studying the affinity for acid, based and disperse dyes. Based on the results obtained throughout this work, few conclusions may made:(1) The composites of PET with copolymers is effective than the blending with other polymers. (2) The pre method of gamma or electron beam irradiation is effectively improved the miscibility of PET/LDPE or PET/PS blends than the direct method of irradiation.(3) The addition of EG/AAc or AAc/Sty copolymers during mixing improved the miscibility than the use of graft copolymer.

  11. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    International Nuclear Information System (INIS)

    George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Tomasz Wiltowski; Tom Miles; Bruce Springsteen

    2002-01-01

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applications and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished

  12. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru

    2014-01-01

    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  13. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  14. Physical stability of 20% lipid injectable emulsions via simulated syringe infusion: effects of glass vs plastic product packaging.

    Science.gov (United States)

    Driscoll, David F; Ling, Pei-Ra; Bistrian, Bruce R

    2007-01-01

    The United States Pharmacopeia (USP) has proposed large-globule-size limits to ensure the physical stability of lipid injectable emulsions, expressed as the percent fat >5 microm, or PFAT(5), not exceeding 0.05%. Visibly obvious phase separation as free oil has been shown to occur in some samples if PFAT(5) is >0.4%. We recently found that lipids, newly packaged in plastic (P), exceed the proposed USP limits and seem to produce less stable total nutrient admixtures compared with those made from conventional glass (G), which do meet proposed USP standards. We tested the possible stability differences between 20% lipid injectable emulsions in either P or G in a simulated neonatal syringe infusion study. Eighteen individual syringes were prepared from each 20% lipid injectable emulsion product (n = 36) and attached to a syringe pump set at an infusion rate of 0.5 mL/hour. The starting PFAT(5) levels were measured at time 0 and after 24 hours of infusion, using a laser-based light obscuration technique as described by the USP Chapter . The data were assessed by a 2-way analysis of variance (ANOVA) with Container (G vs P) and Time as the independent variables and PFAT as the dependent variable. At time 0, the starting PFAT(5) level for lipids packaged in G was 0.006% +/- 0.001% vs 0.162% +/- 0.026% for P, whereas at the end of the infusion they were 0.013% +/- 0.003% and 0.328% +/- 0.046%, respectively. Significant differences were noted overall between groups for Container, Time, and Container-Time interaction (all p emulsions packaged in newly introduced plastic containers exceed the proposed USP PFAT(5) limits and subsequently become significantly less stable during a simulated syringe-based infusion. Although modest growth (p = NS) in large-diameter fat globules was observed for the glass-based lipids, they remained within proposed USP globule size limits throughout the study. Glass-based lipids seem to be a more stable dosage form and potentially a safer way to

  15. Metallic elements in fossil fuel combustion products: amounts and form of emissions and evaluation of carcinogenicity and mutagenicity.

    Science.gov (United States)

    Vouk, V B; Piver, W T

    1983-01-01

    Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined.

  16. The source apportionment of carbonaceous combustion products by micro-radiocarbon measurements for the integrated air cancer project (IACP)

    International Nuclear Information System (INIS)

    Klouda, G.A.; Currie, L.A.; Sheffield, A.E.; Wise, S.A.; Benner, B.A.; Stevens, R.K.; Merrill, R.G.

    1987-01-01

    Atmospheric particle samples were collected during the winter of 1984-1985 in Albuquerque, NM and Raleigh, NC by the EPA for the Integrated Air Cancer Project (IACP). Selected chemical fractions were analyzed for /sup 14/C to apportion mobile (motor vehicles) and stationary (residential wood combustion) sources. In addition, these results were used to validate the EPA Single Tracer Regression Model (STRM), also a technique for the source apportionment of aerosols. Preliminary /sup 14/C results for the Albuquerque residential site at night showed 79% Contemporary Carbon (CC) compared to 95% CC for Raleight at night for the total carbon; 88% and 94% of the total-C was organic, respectively. The Albuquerque traffic site during the day showed 1.4 to 3.9 times less CC compared to the daytime residential site for total-C. The elemental carbon fraction in all cases showed a lower percentage of contemporary carbon than the total carbon, which indicates that this chemical fraction may be an excellent tracer of mobile sources. These results are consistent with a daytime mobile source at the traffic site and a nighttime Residential Wood Combustion (RWC) source at the residential site. Also, the results from the EPA STRM technique for this study were in good agreement with those obtained by the /sup 14/C Direct Tracer (/sup 14/C-DT) technique for source apportionment of these aerosols

  17. The effects of changing municipal solid waste characteristics on combustion fuel quality

    International Nuclear Information System (INIS)

    Artz, N.S.; Franklin, M.A.

    1991-01-01

    This paper discusses the quality of municipal solid waste (MSW) as a combustion fuel based on two aspects: heat of combustion and heavy metal content. Characterization of MSW by the material flows methodology now provides a historical data series on the composition of MSW for nearly 30 years (1960-1988). Over this period, there have been marked changes in MSW composition, with paper and plastics increasing in percentage while glass and metals have declined. This paper will illustrate the effects of this changing composition on heat of combustion. Using a computer model and standard heat of combustion values for the components of MSW, heating values of MSW (in Btu per pound) are calculated for the 30-year time period. Changes in heating values are highlighted and projections are made to year 2010. Recognizing the increasing importance of the recovery of materials from MSW for recycling, the paper illustrates the effects of removing varying quantities of recyclable materials (e.g., newspapers, corrugated boxes, plastic bottles, glass bottles, metals, yard wastes) on the heating value of the remaining MSW. The paper's final section summarizes recent studies performed for EPA and others on the presence of heavy metals (lead, cadmium, and mercury) in the products discarded in MSW. Again, time trends are used to demonstrate the changing presence of these metals

  18. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  19. USE OF SINGLE-MINUTE EXCHANGE OF DIE – SMED – AS A STRATEGY TO INCREASE PRODUCTIVITY IN A PLASTIC BOTTLE LABELER

    Directory of Open Access Journals (Sweden)

    Teonas Bartz

    2012-12-01

    Full Text Available The increase in the production and sale of food products stored in plastic containers, which serve different markets, caused the company researched departed in search of new concepts to increase the productivity of production equipment. With the increase of productivity, there is greater flexibility in planning and scheduling of production and exchange of tools. The implementation of the methodology of Single-Minute Exchange of Die – SMED reduces the setup time of equipment, maximizing the period of machine operation. With this the company more flexible production process and can reduce production batches, increasing operating rates, productivity and competitiveness of organizations. In this paper, we present the steps necessary for the implementation of the SMED in a labeling machine for plastic bottles. To this end, there were activities analysis, suggestions for improvements in machinery and procedures, timing of the steps before and after the improvements implemented and analyzes of the times obtained. After that, we obtained a significant reduction in setup time machine studied.

  20. Elimination of Plastic Polymers in Natural Environments

    OpenAIRE

    Ramirez-Ekner, Sofia; Bidstrup, Marie Juliane Svea; Brusen, Nicklas Hald; Rugaard-Morgan, Zsa-Zsa Sophie Oona Ophelia

    2017-01-01

    Plastic production and consumption continues to rise and subsequently plastic waste continues to accumulates in natural environments, causing harm to ecosystems.The aim of this paper was to come up with a way to utilize organisms, that have been identified to produce plastic degrading enzymes, as a waste disposal technology. This review includes accounts of plastic production rates, the occurrence of plastic in natural environments and the current waste management systems to create an underst...

  1. Bio-plastic (poly-hydroxy-alkanoate) production from municipal sewage sludge in the Netherlands: a technology push or a demand driven process?

    Science.gov (United States)

    Bluemink, E D; van Nieuwenhuijzen, A F; Wypkema, E; Uijterlinde, C A

    Valorisation of components from municipal 'waste' water and sewage sludge gets more and more attention in order to come to a circular economy by developing an efficient 'waste' to value concept. On behalf of the transition team 'Grondstoffenfabriek' ('Resource factory') a preliminary research was performed for all the Dutch water boards to assess the technical and economical feasibility of poly-hydroxy-alkanoate (PHA)-production from sewage sludge, a valuable product to produce bio-plastics. This study reveals that the production of bio-plastics from sewage sludge is feasible based on technical aspects, but not yet economically interesting, even though the selling price is relatively close to the actual PHA market price. (Selling price is in this particular case the indicative cost effective selling price. The cost effective selling price covers only the total production costs of the product.) Future process optimization (maximizing the volatile fatty acids production, PHA storage capacity, etc.) and market developments are needed and will result in cost reductions of the various sub-processes. PHA-production from sewage sludge at this stage is just a technology; every further research is needed to incorporate the backward integration approach, taking into account the market demand including associated product quality aspects.

  2. Prevention of trace and major element leaching from coal combustion products by hydrothermally-treated coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Adnadjevic, B.; Popovic, A.; Mikasinovic, B. [University of Belgrade, Belgrade (Serbia). Dept. of Chemistry

    2009-07-01

    The most important structural components of coal ash obtained by coal combustion in 'Nikola Tesla A' power plant located near Belgrade (Serbia) are amorphous alumosilicate, alpha-quartz, and mullite. The phase composition of coal ash can be altered to obtain zeolite type NaA that crystallizes in a narrow crystallization field (SiO{sub 2}/Al{sub 2}O{sub 3}; Na{sub 2}O/SiO{sub 2}; H{sub 2}O/Na{sub 2}O ratios). Basic properties (crystallization degree, chemical composition, the energy of activation) of obtained zeolites were established. Coal ash extracts treated with obtained ion-exchange material showed that zeolites obtained from coal ash were able to reduce the amounts of iron, chromium, nickel, zinc, copper, lead, and manganese in ash extracts, thus proving its potential in preventing pollution from dump effluent waters.

  3. Development, testing, and evaluation of MHD materials and component designs, Volume 3: Electrical properties of coal combustion product

    Science.gov (United States)

    Young, W. E.; Lempert, J.

    1980-11-01

    Laboratory apparatus was assembled to produce a plasma identical in composition and properties to that resulting in an MHD system when coal and air are burned. This was accomplished with a combustion chamber in which benzene, char, sulfur, and seed mixtures were burned with electrically preheated air. The plasma entered a measuring section where temperatures were measured with iridium versus iridium-rhodium thermocouples, with pyrometers, and by means of line reversal. Measurements of electrical conductivity were made with current and voltage probes. Many difficulties were experienced in the operation and calibration of the equipment, however, some readings were obtained in the 19000 C to 20000 C range, averaging 10 to 20 mhos/meter - much higher than predicted theoretically, probably due to electrical leakage. Electrical measurements were made on the Waltz Mill passage during operation. Readings less than 1.0 mhos/meter were obtained which was not unexpected because the plasma temperature approximated 21000 C.

  4. Distribution of Clay Minerals in Light Coal Fractions and the Thermal Reaction Products of These Clay Minerals during Combustion in a Drop Tube Furnace

    Directory of Open Access Journals (Sweden)

    Sida Tian

    2016-06-01

    Full Text Available To estimate the contribution of clay minerals in light coal fractions to ash deposition in furnaces, we investigated their distribution and thermal reaction products. The light fractions of two Chinese coals were prepared using a 1.5 g·cm−3 ZnCl2 solution as a density separation medium and were burned in a drop-tube furnace (DTF. The mineral matter in each of the light coal fractions was compared to that of the relevant raw coal. The DTF ash from light coal fractions was analysed using hydrochloric acid separation. The acid-soluble aluminium fractions of DTF ash samples were used to determine changes in the amorphous aluminosilicate products with increasing combustion temperature. The results show that the clay mineral contents in the mineral matter of both light coal fractions were higher than those in the respective raw coals. For the coal with a high ash melting point, clay minerals in the light coal fraction thermally transformed more dehydroxylation products compared with those in the raw coal, possibly contributing to solid-state reactions of ash particles. For the coal with a low ash melting point, clay minerals in the light coal fraction produced more easily-slagging material compared with those in the raw coal, playing an important role in the occurrence of slagging. Additionally, ferrous oxide often produces low-melting substances in coal ash. Due to the similarities of zinc oxide and ferrous oxide in silicate reactions, we also investigated the interactions of clay minerals in light coal fractions with zinc oxide introduced by a zinc chloride solution. The extraneous zinc oxide could react, to a small extent, with clay minerals in the coal during DTF combustion.

  5. Plastic, Fantastic? What We Make. Science and Technology Education in Philippine Society.

    Science.gov (United States)

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    This module provides information about plastics, focusing on the uses of plastic bags in particular. Topic areas considered include: (1) making plastic bags; (2) transparency of plastic bags; (3) plastic bags and food odors; (4) food containers (before and since plastics); and (5) disposing of plastic bags and other plastic products. The text is…

  6. Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) of the liquid products

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar, Thallada; Kaneko, Jun; Muto, Akinori; Sakata, Yusaku [Department of Applied Chemistry, Faculty of Engineering, Okayama University, 3-1-1 Tsushima Naka, 700-8530 Okayama (Japan); Jakab, Emma [Research Laboratory of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest (Hungary); Matsui, Toshiki [Toda Kogyo Co. Ltd., Hiroshima 739-0652 (Japan); Uddin, Md. Azhar [Process Safety and Environment Protection Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2004-08-01

    Pyrolysis of polypropylene (PP)/polyethylene (PE)/polystyrene (PS)/poly(vinyl chloride) (PVC)/high impact polystyrene with brominated flame retardant (HIPS-Br) plastics mixed with poly(ethylene terephthalate) (PET) was performed at 430C under atmospheric pressure using a semi-batch operation. The presence of PET in the pyrolysis mixture of PP/PE/PS/PVC/HIPS-Br affected significantly the formation of decomposition products and the decomposition behavior of the plastic mixture. We observed the following effects of PET on the pyrolysis of PP/PE/PS/PVC/HIPS-Br mixed plastics: (1) the yield of liquid product decreased and the formation of gaseous products increased; (2) a waxy residue was formed in addition to the solid carbon residue; (3) the formation of SbBr{sub 3} was not detected in liquid products; (4) the yield of chlorinated branched alkanes increased as well as vinyl bromide and ethyl bromide were formed. The use of calcium carbonate carbon composite (Ca-C) completely removed the chlorine and bromine content from the liquid products during PP/PE/PS/PVC/HIPS-Br pyrolysis, however in the presence of PET, the catalytic experiment (Ca-C, 8g) yielded liquid products containing 310ppm of Br and 20ppm of Cl. In addition, the Ca-C increased the yield of liquid products about 3-6wt.%, as well as enhanced the gaseous product evolution and decreased the yield of residue. The halogen free liquid hydrocarbons can be used as a feedstock in a refinery or as a fuel.

  7. Molten salt combustion of radioactive wastes

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.; Richards, W.L.; Oldenkamp, R.D.

    1976-01-01

    The Atomics International Molten Salt Combustion Process reduces the weight and volume of combustible β-γ contaminated transuranic waste by utilizing air in a molten salt medium to combust organic materials, to trap particulates, and to react chemically with any acidic gases produced during combustion. Typically, incomplete combustion products such as hydrocarbons and carbon monoxide are below detection limits (i.e., 3 ) is directly related to the sodium chloride vapor pressure of the melt; >80% of the particulate is sodium chloride. Essentially all metal oxides (combustion ash) are retained in the melt, e.g., >99.9% of the plutonium, >99.6% of the europium, and >99.9% of the ruthenium are retained in the melt. Both bench-scale radioactive and pilot scale (50 kg/hr) nonradioactive combustion tests have been completed with essentially the same results. Design of three combustors for industrial applications are underway

  8. Method of burning petrochemical products

    Energy Technology Data Exchange (ETDEWEB)

    Sado, I

    1973-01-12

    This invention concerns a method of burning wastes such as polyvinyl chloride or other synthetic resin products and rubbers, in which wastes are burned in a nearly smokeless and odorless state. The method is characterized by a process by which petrochemical waste products are subjected to a spontaneous combustion in a casserole state in a closed combustion room in such a way that no air is supplied whatever, and subsequently the gas so generated is sent successively in an adequate amount into a separately installed second combustion room where it is reburnt at a high temperature of more than 1000 C by a jet flame from the oil burners mounted inside the combustion room. Usually, petrochemical products emanate black smoke of Ringelmann concentration of more than five and a strong odor, but in this method, particularly in the case of polyvinyl chloride the exhaust smoke has a Ringelmann smoke concentration of less than one and is almost odorless because the plastic is completely gasified by the spontaneous combustion and completely burned at 1300 to 1400/sup 0/C with oil and air in the second combustion room. When the exhaust smoke is passed through a neutralization tank to remove the chloride compounds in the smoke, the damaging contribution of the exhaust gas or smoke to the secondary pollution can be completely eliminated.

  9. A Perspective on the Prowaste Concept: Efficient Utilization of Plastic Waste through Product Design and Process Innovation.

    Science.gov (United States)

    Greco, Antonio; Frigione, Mariaenrica; Maffezzoli, Alfonso; Marseglia, Alessandro; Passaro, Alessandra

    2014-07-23

    This work is aimed to present an innovative technology for the reinforcement of beams for urban furniture, produced by in-mold extrusion of plastics from solid urban waste. This material, which is usually referred to as "recycled plastic lumber", is characterized by very poor mechanical properties, which results in high deflections under flexural loads, particularly under creep conditions. The Prowaste project, founded by the EACI (European Agency for Competitiveness and Innovation) in the framework of the Eco-Innovation measure, was finalized to develop an innovative technology for selective reinforcement of recycled plastic lumber. Selective reinforcement was carried out by the addition of pultruded glass rods in specific positions with respect to the cross section of the beam, which allowed optimizing the reinforcing efficiency. The reinforcement of the plastic lumber beams with pultruded rods was tested at industrial scale plant, at Solteco SL (Alfaro, Spain). The beams obtained, characterized by low cost and weight, were commercialized by the Spanish company. The present paper presents the most relevant results of the Prowaste project. Initially, an evaluation of the different materials candidates for the reinforcement of recycled plastic lumber is presented. Plastic lumber beams produced in the industrial plant were characterized in terms of flexural properties. The results obtained are interpreted by means of beam theory, which allows for extrapolation of the characteristic features of beams produced by different reinforcing elements. Finally, a theoretical comparison with other approaches which can be used for the reinforcement of plastic lumber is presented, highlighting that, among others, the Prowaste concept maximizes the stiffening efficiency, allowing to significantly reduce the weight of the components.

  10. Recycling of plastic wastes with poly (ethylene-co-methacrylic acid) copolymer as compatibilizer and their conversion into high-end product.

    Science.gov (United States)

    Rajasekaran, Divya; Maji, Pradip K

    2018-04-01

    This paper deals with the utilization of plastic wastes to a useful product. The major plastic pollutants that are considered to be in maximum use i.e. PET bottle and PE bags have been taken for consideration for recycling. As these two plastic wastes are not compatible, poly (ethylene-co-methacrylic acid) copolymer has been used as compatibilizer to process these two plastic wastes. Effect of dose of poly (ethylene-co-methacrylic acid) copolymer as compatibilizer has been studied here. It has been shown that only 3 wt% of poly (ethylene-co-methacrylic acid) copolymer is sufficient to make 3:1 mass ratio of PET bottle and polyethylene bags compatible. Compatibility has been examined through mechanical testing, thermal and morphological analysis. After analysing the property of recyclates, better mechanical and thermal property has been observed. Almost 500% of tensile property has been improved by addition of 3 wt% of poly (ethylene-co-methacrylic acid) copolymer in 3:1 mass ratio blend of PET bottle and PE bags than that of pristine blend. Morphological analysis by FESEM and AFM has also confirmed the compatibility of the blend. Experimental data showed better performance than available recycling process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: influence of lapse time of reaction.

    Science.gov (United States)

    Lee, Kyong-Hwan; Shin, Dae-Hyun

    2007-01-01

    Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 degrees C) and high (400 degrees C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 degrees C was firstly aromatic products and then olefin products, while at 400 degrees C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 degrees C) and 83 min (at 400 degrees C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was

  12. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: Influence of lapse time of reaction

    International Nuclear Information System (INIS)

    Lee, Kyong-Hwan; Shin, Dae-Hyun

    2007-01-01

    Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 deg. C) and high (400 deg. C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 deg. C was firstly aromatic products and then olefin products, while at 400 deg. C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 deg. C) and 83 min (at 400 deg. C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was concluded that the

  13. Craqueamento catalítico de polietileno em condições de refinaria: produção de frações combustíveis Catalytic cracking of polyethylene under refinery conditions: production of combustible fractions

    Directory of Open Access Journals (Sweden)

    Alessandra M. Ribeiro

    2006-12-01

    Full Text Available Este trabalho foi realizado em uma unidade de teste de microatividade para estudar o processo de craqueamento catalítico das cargas combinadas de polietileno de baixa densidade e polietileno de alta densidade com vaselina, frente a catalisadores comerciais de FCC (alta e baixa atividades, para avaliar a produção das frações combustíveis (gasolina, diesel e resíduo. As cargas combinadas de PEBD e PEAD/vaselina foram processadas em condições de refinaria. Para as cargas de PEBD/vaselina, a 2, 6 e 10% p/p, a produção da fração gasolina foi favorecida pelo catalisador de alta atividade, enquanto que a carga de PEAD/vaselina a 2% p/p, para produção da mesma fração, o catalisador de baixa atividade apresentou melhor eficiência. Todas as cargas combinadas, nas diversas concentrações, mostraram que o material inerte (caulim apresenta maior atuação, na produção da fração resíduo, indicando a ocorrência preferencial de craqueamento térmico.This work was carried out in an unit of microactivity test, to study the process of combined feeds of low density and high density polyethylenes with vaseline and commercial FCC catalysts (of low and of high activities, to evaluate the production of fuel fractions (gasoline, diesel and residue. The combined feeds of PEBD and PEAD/vaseline, at different concentrations, were processed under refinery conditions. For feeds of PEBD/vaseline at 2, 6 and 10% w/w, production of the gasoline fraction was favored with the high-activity catalyst, while for the PEAD/vaseline feed at 2%, in the production of the same fraction, the low-activity catalyst presented better performance. For all the combined feeds, in all concentrations, the inert material showed better performance for the production of residue fraction, indicating the preferential occurrence of thermal cracking.

  14. Scientific Committee of the Institute for the Study of Combustible Minerals discusses 'New processes in the coking by-product industry'

    Energy Technology Data Exchange (ETDEWEB)

    Lisitskaya, R.K.

    1982-05-01

    This paper summarizes reports presented at the Moscow Institute for the Study of Combustible Minerals on Nov. 18, 1981. Introduction of high power unit aggregates in metallurgy is one characteristic of the new trend. Dinas refractory materials were used for brickwork because of their assumed higher thermal conductivity; comparative evaluations, however, proved that oven wall thermal conductivity for Dinas and other brick is approximately the same. Further Dinas research is planned. Considering coke battery operating conditions the expediency of increasing average coke oven size to 450-460 mm in width is discussed. This is expectd to increase efficiency and overall productivity. Partial and complete briquetting with and without binder was discussed including its positive effects and drawbacks when used on an industrial scale in the USSR. Lack of domestic, highly efficient presses and scarcity of binders, mixers and loaders present particular hindrances. Preference is given to partial briquetting without binder due to shortages or lack of domestic equipment.

  15. Dosage of fission products in irradiated fuel treatment effluents (radio-chemical method); Dosage des produits de fission dans les effluents du traitement des combustibles irradies (methode radiochimique)

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, J [Commissariat a l' Energie Atomique, Marcoule (France). Centre d' Etudes Nucleaires

    1966-07-01

    The dosage methods presented here are applicable to relatively long-lived fission products present in the effluents resulting from irradiated fuel treatment processes (Sr - Cs - Ce - Zr - Nb - Ru - I). The methods are based on the same principle: - addition of a carrying-over agent - chemical separation over several purification stages, - determination of the chemical yield by calorimetry - counting of an aliquot liquid portion. (author) [French] Les methodes de dosage presentees concernent les produits de fission a vie relativement longue presents dans les effluents de traitement des combustibles irradies (Sr - Cs - Ce - Zr - Nb - Ru - I). Elles sont toutes basees sur le meme principe: - addition d'entraineur, - separation chimique en plusieurs stades de purification, - determination du rendement chimique par calorimetrie, - comptage d'une aliquote liquide. (auteur)

  16. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film.

    Science.gov (United States)

    Wang, Jun; Luo, Yongming; Teng, Ying; Ma, Wenting; Christie, Peter; Li, Zhengao

    2013-09-01

    The concentrations of six priority phthalic acid esters (PAEs) in intensively managed suburban vegetable soils in Nanjing, east China, were analyzed using gas chromatography-mass spectrometry (GC-MS). The total PAE concentrations in the soils ranged widely from 0.15 to 9.68 mg kg(-1) with a median value of 1.70 mg kg(-1), and di-n-butyl phthalate (DnBP), bis-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) were the most abundant phthalate esters. Soil PAE concentrations depended on the mode of use of plastic film in which PAEs were incorporated as plasticizing agents and both the plastic film and poultry manure appeared to be important sources of soil PAEs. Vegetables in rotation with flooded rice led to lower concentrations of PAEs in soil. The results indicate that agricultural plastic film can be an important source of soil PAE contamination and further research is required to fully elucidate the mechanisms of PAE contamination of intensive agricultural soils with different use modes of use of plastic film. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. High-calcium coal combustion by-products: Engineering properties, ettringite formation, and potential application in solidification and stabilization of selenium and boron

    Energy Technology Data Exchange (ETDEWEB)

    Solem-Tishmack, J.K.; McCarthy, G.J. [North Dakota State Univ., Fargo, ND (United States). Dept. of Chemistry; Docktor, B.; Eylands, K.E.; Thompson, J.S.; Hassett, D.J. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center

    1995-04-01

    Four high-calcium coal combustion by-products (two pulverized coal fly ashes (PCFA), a flue gas desulfurization (FGD) residue, and an atmospheric fluidized bed combustion (AFBC) fly ash), were tested for engineering properties and ability to immobilize boron and selenium. These data are needed to explore high-volume utilization in engineered structure or in solidification/stabilization (S/S) technology. Strengths of cured pastes (91 days), varied from as much as 27 MPa (3,900 psi) for one of the PCFA specimens to 4.6 MPa (670 psi) for the FGD specimen. All of the coal by-product pastes developed more than the 0.34 MPa (50 psi) required for S/S applications. Ettringite formation is important to engineering properties and S/S mechanisms. XRD on plain specimens cured for 91 days indicated that the two PCFA pastes formed 5--6% ettringite, the FGD paste formed 22%, and the AFBC paste formed 32%. The hydrating PCFA pastes showed little expansion, the FGD paste contracted slightly, and the AFBC paste expanded by 2.9% over 91 days. Se and B were spiked into the mixing water as sodium selenite, selenate and borate, and for most pastes this had little effect on strength, workability, and expansion. Leaching of ground specimens (cured for 91 days) showed a generally positive correlation between the amount of ettringite formed and resistance to Se and B leaching. Se spiked as selenate was more readily leached than Se spiked as selenite. B showed a high level of fixation.

  18. EMISIONES AL AIRE DE LA COMBUSTION DE LLANTAS USADAS (SPANISH VERSION)

    Science.gov (United States)

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  19. Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency

    Science.gov (United States)

    Bertrand, Amelie; Stefenelli, Giulia; Bruns, Emily A.; Pieber, Simone M.; Temime-Roussel, Brice; Slowik, Jay G.; Prévôt, André S. H.; Wortham, Henri; El Haddad, Imad; Marchand, Nicolas

    2017-11-01

    To reduce the influence of biomass burning on air quality, consumers are encouraged to replace their old woodstove with new and cleaner appliances. While their primary emissions have been extensively investigated, the impact of atmospheric aging on these emissions, including secondary organic aerosol (SOA) formation, remains unknown. Here, using an atmospheric smog chamber, we aim at understanding the chemical nature and quantify the emission factors of the primary organic aerosols (POA) from three types of appliances for residential heating, and to assess the influence of aging thereon. Two, old and modern, logwood stoves and one pellet burner were operated under typical conditions. Emissions from an entire burning cycle (past the start-up operation) were injected, including the smoldering and flaming phases, resulting in highly variable emission factors. The stoves emitted a significant fraction of POA (up to 80%) and black carbon. After ageing, the total mass concentration of organic aerosol (OA) increased on average by a factor of 5. For the pellet stove, flaming conditions were maintained throughout the combustion. The aerosol was dominated by black carbon (over 90% of the primary emission) and amounted to the same quantity of primary aerosol emitted by the old logwood stove. However, after ageing, the OA mass was increased by a factor of 1.7 only, thus rendering OA emissions by the pellet stove almost negligible compared to the other two stoves tested. Therefore, the pellet stove was the most reliable and least polluting appliance out of the three stoves tested. The spectral signatures of the POA and aged emissions by a High Resolution - Time of Flight - Aerosol Mass Spectrometer (Electron Ionization (EI) at 70 eV) were also investigated. The m/z 44 (CO2+) and high molecular weight fragments (m/z 115 (C9H7+), 137 (C8H9O2+), 167 (C9H11O3+) and 181 (C9H9O4+, C14H13+)) correlate with the modified combustion efficiency (MCE) allowing us to discriminate further

  20. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  1. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  2. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  3. Prediction of dioxin/furan incinerator emissions using low-molecular-weight volatile products of incomplete combustion.

    Science.gov (United States)

    Lemieux, P M; Lee, C W; Ryan, J V

    2000-12-01

    Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) from incinerators and other stationary combustion sources are of environmental concern because of the toxicity of certain PCDD/F congeners. Measurement of trace levels of PCDDs/Fs in combustor emissions is not a trivial matter. Development of one or more simple, easy-to-measure, reliable indicators of stack PCDD/F concentrations not only would enable incinerator operators to economically optimize system performance with respect to PCDD/F emissions, but could also provide a potential technique for demonstrating compliance status on a more frequent basis. This paper focuses on one approach to empirically estimate PCDD/F emissions using easy-to-measure volatile organic C2 chlorinated alkene precursors coupled with flue gas cleaning parameters. Three data sets from pilot-scale incineration experiments were examined for correlations between C2 chlorinated alkenes and PCDDs/Fs. Each data set contained one or more C2 chloroalkenes that were able to account for a statistically significant fraction of the variance in PCDD/F emissions. Variations in the vinyl chloride concentrations were able to account for the variations in the PCDD/F concentrations strongly in two of the three data sets and weakly in one of the data sets.

  4. Improved PFB operations: 400-hour turbine test results. [coal combustion products and hot corrosion in gas turbines

    Science.gov (United States)

    Rollbuhler, R. J.; Benford, S. M.; Zellars, G. R.

    1980-01-01

    A pressurized fluidized bed (PFB) coal-burning reactor was used to provide hot effluent gases for operation of a small gas turbine. Preliminary tests determined the optimum operating conditions that would result in minimum bed particle carryover in the combustion gases. Solids were removed from the gases before they could be transported into the test turbine by use of a modified two stage cyclone separator. Design changes and refined operation procedures resulted in a significant decrease in particle carryover, from 2800 to 93 ppm (1.5 to 0.05 grains/std cu ft), with minimal drop in gas temperature and pressure. The achievement of stable burn conditions and low solids loadings made possible a 400 hr test of small superalloy rotor, 15 cm (6 in.) in diameter, operating in the effluent. Blades removed and examined metallographically after 200 hr exhibited accelerated oxidation over most of the blade surface, with subsurface alumina penetration to 20 micron m. After 400 hours, average erosion loss was about 25 micron m (1 mil). Sulfide particles, indicating hot corrosion, were present in depletion zones, and their presence corresponded in general to the areas of adherent solids deposit. Sulfidation appears to be a materials problem equal in importance to erosion.

  5. 16 CFR 1209.7 - Test procedures for smoldering combustion.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for smoldering combustion. 1209.7 Section 1209.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY... for smoldering combustion. This section provides the test method for determining smoldering combustion...

  6. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  7. Urea-nitrate combustion synthesis of MgO/MgAl2O4 nanocatalyst used in biodiesel production from sunflower oil: Influence of fuel ratio on catalytic properties and performance

    International Nuclear Information System (INIS)

    Rahmani Vahid, Behgam; Haghighi, Mohammad

    2016-01-01

    Graphical abstract: As a base catalyst for biodiesel production, MgAl 2 O 4 spinel was successfully synthesized by combustion method with MgO, as the active phase, dispersed on the catalyst surface. The nanocatalysts were characterized by XRD, FESEM, EDX, BET-BJH, TGA and FTIR analyses, so as to optimize the concentration of urea (as fuel) in the combustion synthesis. Analyzing the effect of fuel ratio on the combustion synthesized MgAl 2 O 4 , it was revealed that the synthesized base catalyst with a fuel ratio of 1.5 was of the best specifications for biodiesel production process. Future researches may investigate the catalyst reusability and mild reaction conditions, so as to achieve more economical production of biodiesel. - Highlights: • Efficient synthesis of MgAl 2 O 4 spinel by solution combustion method. • Improvement of catalytic activity and stability by optimum ratio fuel. • Enhanced dispersion of MgO over MgAl 2 O 4 spinel. • Production of biodiesel over MgO/MgAl 2 O 4 at relatively mild reaction conditions. - Abstract: MgO/MgAl 2 O 4 nanocatalyst was synthesized by a simple, cost-effective and rapid method and used in biodiesel production from sunflower oil. MgAl 2 O 4 was synthesized by combustion method at different fuel ratios and then active phase of MgO was dispersed on the samples by impregnation method. The nanocatalysts were characterized by XRD, FESEM, EDX, BET-BJH, TGA and FTIR analyses, so as to optimize the concentration of urea (as fuel) in the combustion synthesis. The physicochemical properties of the nanocatalyst confirmed the sample synthesized with fuel ratio of 1.5 has high surface area, effective morphology and texture properties. Finally, in order to evaluate catalytic activity of the samples in biodiesel production, the transesterification reaction was performed. The results indicated the catalyst prepared by combustion synthesis with a fuel ratio of 1.5 was optimum specifications for biodiesel production. Using this

  8. A randomized controlled trial of skin care protocols for facial resurfacing: lessons learned from the Plastic Surgery Educational Foundation's Skin Products Assessment Research study.

    Science.gov (United States)

    Pannucci, Christopher J; Reavey, Patrick L; Kaweski, Susan; Hamill, Jennifer B; Hume, Keith M; Wilkins, Edwin G; Pusic, Andrea L

    2011-03-01

    The Skin Products Assessment Research Committee was created by the Plastic Surgery Educational Foundation in 2006. The Skin Products Assessment Research study aims were to (1) develop an infrastructure for Plastic Surgery Educational Foundation-conducted, industry-sponsored research in facial aesthetic surgery and (2) test the research process by comparing outcomes of the Obagi Nu-Derm System versus conventional therapy as treatment adjuncts for facial resurfacing procedures. The Skin Products Assessment Research study was designed as a multicenter, double-blind, randomized, controlled trial. The study was conducted in women with Fitzpatrick type I to IV skin, moderate to severe facial photodamage, and periocular and/or perioral fine wrinkles. Patients underwent chemical peel or laser facial resurfacing and were randomized to the Obagi Nu-Derm System or a standard care regimen. The study endpoints were time to reepithelialization, erythema, and pigmentation changes. Fifty-six women were enrolled and 82 percent were followed beyond reepithelialization. There were no significant differences in mean time to reepithelialization between Obagi Nu-Derm System and control groups. The Obagi Nu-Derm System group had a significantly higher median erythema score on the day of surgery (after 4 weeks of product use) that did not persist after surgery. Test-retest photographic evaluations demonstrated that both interrater and intrarater reliability were adequate for primary study outcomes. The authors demonstrated no significant difference in time to reepithelialization between patients who used the Obagi Nu-Derm System or a standard care regimen as an adjunct to facial resurfacing procedures. The Skin Products Assessment Research team has also provided a discussion of future challenges for Plastic Surgery Educational Foundation-sponsored clinical research for readers of this article.

  9. Plastics in the Marine Environment.

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  10. Plastics in the Marine Environment

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-01

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence—albeit limited—of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  11. Hydrogen assisted diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilik, Gregory K.; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Hedan; Haworth, Daniel C. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Herreros, Jose Martin [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla La-Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-05-15

    Hydrogen assisted diesel combustion was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with a focus on exhaust emissions. Hydrogen was substituted for diesel fuel on an energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15% by aspiration of hydrogen into the engine's intake air. Four speed and load conditions were investigated (1800 rpm at 25% and 75% of maximum output and 3600 rpm at 25% and 75% of maximum output). A significant retarding of injection timing by the engine's electronic control unit (ECU) was observed during the increased aspiration of hydrogen. The retarding of injection timing resulted in significant NO{sub X} emission reductions, however, the same emission reductions were achieved without aspirated hydrogen by manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion was examined, with the pilot and main injection timings locked, to study the effects caused directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest increase of NO{sub X} emissions and a shift in NO/NO{sub 2} ratio in which NO emissions decreased and NO{sub 2} emissions increased, with NO{sub 2} becoming the dominant NO{sub X} component in some combustion modes. Computational fluid dynamics analysis (CFD) of the hydrogen assisted diesel combustion process captured this trend and reproduced the experimentally observed trends of hydrogen's effect on the composition of NO{sub X} for some operating conditions. A model that explicitly accounts for turbulence-chemistry interactions using a transported probability density function (PDF) method was better able to reproduce the experimental trends, compared to a model that ignores the influence of turbulent fluctuations on mean chemical production rates, although the importance of the fluctuations is not as strong as has been reported in some other recent modeling studies. The CFD results confirm

  12. Production of a biodegradable plastic-degrading enzyme from cheese whey by the phyllosphere yeast Pseudozyma antarctica GB-4(1)W.

    Science.gov (United States)

    Watanabe, Takashi; Shinozaki, Yukiko; Suzuki, Ken; Koitabashi, Motoo; Yoshida, Shigenobu; Sameshima-Yamashita, Yuka; Kuze Kitamoto, Hiroko

    2014-08-01

    Cheese whey is a by-product of cheese production and has high concentrations of lactose (about 5%) and other nutrients. Pseudozyma antarctica produces a unique cutinase-like enzyme, named PaE, that efficiently degrades biodegradable plastics. A previous study showed that a combination of 1% oil and 0.5% lactose increased cutinase-like enzyme production by another species of yeast. In this study, to produce PaE from cheese whey, we investigated the effects of soybean oil on PaE production (expressed as biodegradable plastic-degrading activity) by P. antarctica growing on lactose or cheese whey. In flask cultures, the final PaE activity was only 0.03 U/ml when soybean oil was used as the sole carbon source, but increased to 1.79 U/ml when a limited amount of soybean oil (under 0.5%) was combined with a relatively high concentration of lactose (6%). Using a 5-L jar fermentor with lactose fed-batch cultivation and periodic soybean oil addition, about 14.6 U/ml of PaE was obtained after 5 days of cultivation. When the lactose was replaced with cheese whey, PaE production was 10.8 U/ml after 3 days of cultivation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70(degree)C)

    DEFF Research Database (Denmark)

    Zheng, H.; Zeng, Raymond Jianxiong; Angelidaki, Irini

    2008-01-01

    Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70°C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extremethermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed...

  14. Characterizations of self-combustion reactions (SCR) for the production of nanomaterials used as advanced cathodes in Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Haik, Ortal; Martha, Surendra K.; Sclar, Hadar; Samuk-Fromovich, Zvi; Zinigrad, Ella; Markovsky, Boris [Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel); Kovacheva, Daniela; Saliyski, Nikolay [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Aurbach, Doron, E-mail: aurbach@mail.biu.ac.il [Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2009-09-10

    In this work, self-combustion reactions (SCR) for the preparation of important cathode materials for rechargeable Li-ion batteries were investigated by thermal analytical tools (DSC, ARC, TGA), electron microscopy, XRD, various spectroscopies (MS, Raman, FTIR) and elemental analysis by ICP. The systems studied include solutions containing metal nitrates at the right stoichiometry and sucrose as a fuel, for the preparation of LiMn{sub 0.5}Ni{sub 0.5}O{sub 2} (layered), LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} (spinel), LiMn{sub 0.33}Ni{sub 0.33}Co{sub 0.33}O{sub 2} (layered), and LiMn{sub 0.4}Ni{sub 0.4}Co{sub 0.2}O{sub 2} (layered). Similar products, which do not depend on the atmosphere of the processes (air or inert) were obtained by spontaneous SCR and the gradual heating of the same solutions by DSC, ARC, and TGA. The reactions involve the partial caramelization of sucrose, complicated by red-ox reactions with the nitrates that form solid products, whose organic part is finally decomposed around 400 {sup o}C. The presence of cobalt ions has a stabilizing effect, which is expressed by the low dissolution rates of Li ions from the solid products thus formed, into aqueous solutions. The reaction mechanisms are discussed herein.

  15. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.

    Science.gov (United States)

    Ramesha, D K; Kumara, G Prema; Lalsaheb; Mohammed, Aamir V T; Mohammad, Haseeb A; Kasma, Mufteeb Ain

    2016-05-01

    Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250-300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste.

  16. Plastics and environment

    International Nuclear Information System (INIS)

    Avenas, P.

    1996-01-01

    Synthetic organic polymers, such as plastics, PVC, polyamides etc are considered less ecological than natural materials such as wood. Other artificial materials such as metals, glass or biodegradable plastics have also a better image than petroleum products. This short paper demonstrates that the manufacturing or the transport of every material uses energy and that the complete energy balance sheet of a plastic bottle, for instance, is more favourable than the one of a glass bottle. Plastic materials are also easily valorized and recycled and part of the energy spent during manufacturing can be recovered during incineration for district heating. During the life-cycle of such a synthetic material, the same petroleum quantity can be used twice which leads to less negative effects on the environment. Finally, the paper focusses on the problem of biodegradable materials which are not degradable when buried under several meters of wastes and which are a nuisance to recycling. (J.S.)

  17. Recycling of plastics

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, W; Menzel, J; Sinn, H

    1976-01-01

    Considering the shortage of raw materials and environmental pollution, the recycling of plastic waste is a very important topic. Pilot plants for research in Funabashi Japan, Franklin (Ohio) U.S.A., and the R 80-process of Krauss Maffei, W. Germany, have demonstrated the possibility of reclaiming plastics from refuse. Old tires and waste from the plastic producing and manufacturing industries are readily available. The pyrolysis of plastic yields gaseous and liquid products, and the exploitation of this cracking reaction has been demonstrated by pilot plants in Japan and Great Britain. Further laboratory scale experiments are taking place in W. Germany. In continuous fluidized beds and in molten salts, polyethylene, polypropylene, polyvinylchloride, polystyrene and rubber are pyrolysed and better than 98 percent conversion is obtained. Up to 40 percent of the feed can be obtained as aromatic compounds, and a pilot plant is under construction. As a first step PVC-containing material can be almost quantitatively dehydrochlorinated.

  18. Theory of a new elastic-plastic-viscous model and its application to the nuclear fuel mechanical analysis; Teoria y aplicacion a los combustibles nucleares de un nuevo modelo de respuesta de un solido elasto-visco-plastico

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, A

    1977-07-01

    In this work a new elastic-plastic-viscous model is described. The model is one of the multiple integral type, and has been included in a numerical code to predict the behaviour of a nuclear fuel of cylindrical form. Some features of this code are also described. (Author) 91 refs.

  19. Plastic waste as a resource. Strategies for reduction and utilization of plastic waste

    OpenAIRE

    Pasqual i Camprubí, Gemma

    2010-01-01

    Plastic materials have experienced a spectacular rate of growth in recent decades, consequently, production of plastics, and likewise their consumption, has increased markedly since 1950. Moreover, they are lightweight and durable, as well as can be moulded into a variety of products that can be manufactured in many different types of plastic and in a wide range of applications. Inevitably, continually increasing amounts of used plastic are originating daily, resulting in a plastic waste prob...

  20. Characteristics of a New Plastic Explosive Named EPX-1

    Directory of Open Access Journals (Sweden)

    Ahmed Elbeih

    2015-01-01

    Full Text Available EPX-1 is a new plastic explosive (in the research stage which has been prepared for military and civilian applications. EPX-1 explosive contains pentaerythritol tetranitrate (PETN with different particle size as explosive filler bonded by nonenergetic thermoplastic binder plasticized by dibutyl phthalate (DBP. In this paper, the production method of EPX-1 was described. The crystal morphology was studied by scanning electron microscope (SEM. Heat of combustion was determined experimentally. The compatibility of PETN with the polymeric matrix was studied by vacuum stability test. Sensitivities to impact and friction were measured. The detonation velocity was measured experimentally and the detonation characteristics were calculated by EXPLO5 thermodynamic code. For comparison, Semtex 1A, Semtex 10, Formex P1, and Sprängdeg m/46 were studied. It was concluded that PEX-1 has compatible ingredients, it has the highest detonation velocity of all the studied plastic explosives, and its sensitivity is in the same level of the studied plastic explosives except Semtex 1A.

  1. Rotary combustion device

    NARCIS (Netherlands)

    2008-01-01

    Rotary combustion device (1) with rotary combustion chamber (4). Specific measures are taken to provide ignition of a combustible mixture. It is proposed that a hollow tube be provided coaxially with the axis of rotation (6), so that a small part of the mixture is guided into the combustion chamber.

  2. A study of thermal decomposition and combustion products of disposable polyethylene terephthalate (PET) plastic using high resolution fourier transform infrared spectroscopy selected ion flow tube mass spectrometry...

    Czech Academy of Sciences Publication Activity Database

    Sovová, Kristýna; Ferus, Martin; Matulková, Irena; Španěl, Patrik; Dryahina, Kseniya; Dvořák, O.; Civiš, Svatopluk

    2009-01-01

    Roč. 106, 9-10 (2009), s. 1205-1214 ISSN 0026-8976 R&D Projects: GA AV ČR IAA400400705; GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : polyethylene terephthalate (PET) * coimbustion * high resolution FTIR spectroscopy * SIFT-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.634, year: 2009

  3. Joining by plastic deformation

    DEFF Research Database (Denmark)

    Mori, Ken-ichiro; Bay, Niels; Fratini, Livan

    2013-01-01

    As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportuni......As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating...

  4. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  5. PLASTIC SURGERY

    African Journals Online (AJOL)

    Department of Plastic and Reconstructive Surgery Sefako Makgatho Health Science University, ... We report on a pilot study on the use of a circumareolar excision and the use of .... and 1 gynecomastia patient) requested reduction in NAC size.

  6. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  7. System analyse cellulose ethanol in combines - Combustion characterisation of lignin from cellulose based ethanol production; Systemanalys foer cellulosabaserad etanol i kombinat - Foerbraenningskarakterisering av lignin fraan cellulosabaserad etanolproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Lindstedt, Jan; Wingren, Anders; Magnusson, Staffan; Wiinikka, Henrik; Westbom, Urban; Lidman, Marcus; Groenberg, Carola

    2012-02-15

    In this work 3 different hydrolysed lignin fractions produced from Sugarcane Bagasse, Spruce and Wheat Straw were burned in a 150 kW horizontal furnace equipped with a powder burner to assess the combustion behaviour of hydrolysed lignin fuels. The combustion experiments showed that the feeding properties of all three lignin fractions were better compared to ordinary wood powder

  8. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  9. Consumer Exposure to Bisphenol A from Plastic Bottles

    Science.gov (United States)

    Bidabadi, Fatemeh

    2013-01-01

    Bisphenol A (BPA) is a plastic monomer and plasticizer and is a chemical that has one of the highest volume production worldwide, with more than six billion pounds each year. Its primary use is the production of polycarbonate plastics, epoxy resins used to line metal cans in a host of plastic consumer products such as toys, water pipes, drinking…

  10. Effects of stepwise gas combustion on NOx generation

    International Nuclear Information System (INIS)

    Woperane Seredi, A.; Szepesi, E.

    1999-01-01

    To decrease NO x emission from gas boilers, the combustion process of gas has been modified from continuous combustion to step-wise combustion. In this process the combustion temperature, the temperature peaks in the flame, the residence time of combustion products in the high-temperature zone and the oxygen partial pressure are changed advantageously. Experiments were performed using multistage burners, and the NO x emission was recorded. It was found that the air factor of the primary combustion space has a determining effect on the NO x reduction. (R.P.)

  11. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  12. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  13. High-voltage leak detection of a parenteral proteinaceous solution product packaged in form-fill-seal plastic laminate bags. Part 1. Method development and validation.

    Science.gov (United States)

    Damgaard, Rasmus; Rasmussen, Mats; Buus, Peter; Mulhall, Brian; Guazzo, Dana Morton

    2013-01-01

    In Part 1 of this three-part research series, a leak test performed using high-voltage leak detection (HVLD) technology, also referred to as an electrical conductivity and capacitance leak test, was developed and validated for container-closure integrity verification of a small-volume laminate plastic bag containing an aqueous solution for injection. The sterile parenteral product is the rapid-acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®, by Novo Nordisk A/S, Bagsværd, Denmark). The aseptically filled and sealed package is designed to preserve product sterility through expiry. Method development and validation work incorporated positive control packages with a single hole laser-drilled through the laminate film of each bag. A unique HVLD method characterized by specific high-voltage and potentiometer set points was established for testing bags positioned in each of three possible orientations as they are conveyed through the instrument's test zone in each of two possible directions-resulting in a total of six different test method options. Validation study results successfully demonstrated the ability of all six methods to accurately and reliably detect those packages with laser-drilled holes from 2.5-11.2 μm in nominal diameter. Part 2 of this series will further explore HVLD test results as a function of package seal and product storage variables. The final Part 3 will report the impact of HVLD exposure on product physico-chemical stability. In this Part 1 of a three-part research series, a leak test method based on electrical conductivity and capacitance, called high voltage leak detection (HVLD), was used to find leaks in small plastic bags filled with an insulin pharmaceutical solution for human injection by Novo Nordisk A/S (Bagsværd, Denmark). To perform the test, the package is electrically grounded while being conveyed past an electrode linked to a high-voltage, low-amperage transformer. The instrument measures the current that passes

  14. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  15. Gradual combustion - method for nitrogen oxide suppression during brown coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.P.; Verzakov, V.N.; Lobov, T.V.

    1990-10-01

    Discusses combustion of brown coal in BKZ-500-140-1 boilers and factors that influence emission of nitrogen oxides. Temperature distribution in the furnace was evaluated. Effects of burner position, burner number and burner type as well as air excess ratio on chemical reactions during brown coal combustion, formation of nitrogen oxides and their emission were comparatively evaluated. Analyses showed that by optimum arrangement of burners and selecting the optimum air excess ratio a part of nitrogen oxides formed during the initial phase of combustion was reduced to molecular nitrogen in the second phase. On the basis of evaluations the following recommendations for furnace design are made: use of straight-flow burners characterized by a reduced mixing ratio with secondary air, parallel arrangement of burners which guarantees mixing of the combustion products from the burners with stable and unstable combustion (products of incomplete coal combustion), reducing the air excess ratio to below 1.0. 5 refs.

  16. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    The method proposed involves the decomposition of water into highly combustible hydroxyl gas via electrolysis, which is used in internal combustion engines of electrical generators for electricity generation. The by-product obtained from combustion of this gas is water vapour and oxygen to replenish the atmosphere.

  17. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  18. Electrophoresis of biomass decomposition products and position sensitive detection of the separated C-14 labelled substrates by plastic scintillator measurements

    International Nuclear Information System (INIS)

    Gruenwald, M.

    1985-12-01

    The subject of this work is separation and analysis of hydrothermally decomposed biomass solution by zone electrophoresis of charged hydrocarbon-borate complexes. The first half is dedicated to the electrophoresis. The second half describes a new evaluation method for chromatographs and electropherograms by position sensitive detection of C-14 β radiation in a 1 mm thick plastic scintillator. This method is applied to hydrothermally decomposed (U-C-14)-D glucose solutions and the results are compared to conventional chromatography. Performance numbers of the method are given. Extension to isoelectrically focused gels is also considered. (G.Q.)

  19. Plastics recycling: challenges and opportunities

    OpenAIRE

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to pro...

  20. Thermodynamic analysis of a nuclear-hydrogen power system using H2/O2 direct combustion product as a working substance in the bottom cycle

    International Nuclear Information System (INIS)

    Chen, D.Z.; Yu, C.P.

    1990-01-01

    A combined thermodynamic cycle using nuclear and hydrogen energy as heat sources was investigated in this paper. The cycle is composed of top cycle using HTGR as energy source and helium as working medium and a bottom cycle with H 2 /O 2 direct combustion product as working substance. hydrogen and oxygen are thermochemically by splitting of water produced through a part of nuclear heat recovered from the top cycle. They may be delivered to the O 2 /H 2 users or used as fuels for the high temperature bottom Rankine steam cycle. The combined cycle not only uses the new energy sources instead of conventional fossil fuels but it possess the advantages of both helium and steam cycle. It has a high thermal efficiency, large unit capacity, many-sided usage and less pollution. It may represent a new type of combined cycles for future energy conversion and power generation. Using computer diagram, a variety of schemes were calculated and analyzed. The influence of some main parameters upon the cycle performance were also studied

  1. Fission product determination in irradiated fuel processing waste (electrophoresis); Dosage des produits de fission dans les effluents de traitement des combustibles irradies (electrophorese)

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, J M; Tret, J [Commissariat a l' Energie Atomique, Centre de Marcoule, 30 - Bagnols-sur-Ceze (France). Centre de Production de Plutonium de Marcoule. Services d' Extraction du Plutonium

    1966-07-01

    This dosage method concerns fission products present in the waste produced from the processing of cooled irradiated fuels. - Sr, Cs, Ce, Y, Ru by quantitative analysis; - Zr, Nb by qualitative analysis. It includes electrophoresis on paper strips one meter long which is then analysed between two window-less Geiger counters. For an activity of 10{sup -2} {mu}Ci of any cation in a 10 {mu}l spot, the standard error {sigma} if 3 to 4 per cent. complete analysis lasts about 5 hours. (authors) [French] Cette methode de dosage concerne les produits de fission presents dans les effluents de traitement des combustibles irradies refroidis: - Sr, Cs, Ce, Y, Ru en analyse quantitative; - Zr, Nb en analyse qualitative. Elle comporte une electrophorese sur bande de papier de un metre de longueur suivie d'un depouillement entre deux compteurs Geiger sans fenetre. Pour une activite de 10{sup -2} {mu}Ci d'un cation quelconque dans une tache de 10 {mu}l l'erreur standard {sigma} est de 3 a 4 pour cent. L'analyse complete demande environ 5 heures. (auteurs)

  2. Numerical investigation of biogas flameless combustion

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Bagheri, Ghobad; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Fuel consumption decreases from 3.24 g/s in biogas conventional combustion to 1.07 g/s in flameless mode. • The differences between reactants and products temperature intensifies irreversibility in traditional combustion. • The temperature inside the chamber is uniform in biogas flameless mode and exergy loss decreases in this technique. • Low O 2 concentration in the flameless mode confirms a complete and quick combustion process in flameless regime. - Abstract: The purpose of this investigation is to analyze combustion characteristics of biogas flameless mode based on clean technology development strategies. A three dimensional (3D) computational fluid dynamic (CFD) study has been performed to illustrate various priorities of biogas flameless combustion compared to the conventional mode. The effects of preheated temperature and wall temperature, reaction zone and pollutant formation are observed and the impacts of combustion and turbulence models on numerical results are discussed. Although preheated conventional combustion could be effective in terms of fuel consumption reduction, NO x formation increases. It has been found that biogas is not eligible to be applied in furnace heat up due to its low calorific value (LCV) and it is necessary to utilize a high calorific value fuel to preheat the furnace. The required enthalpy for biogas auto-ignition temperature is supplied by enthalpy of preheated oxidizer. In biogas flameless combustion, the mean temperature of the furnace is lower than traditional combustion throughout the chamber. Compared to the biogas flameless combustion with uniform temperature, very high and fluctuated temperatures are recorded in conventional combustion. Since high entropy generation intensifies irreversibility, exergy loss is higher in biogas conventional combustion compared to the biogas flameless regime. Entropy generation minimization in flameless mode is attributed to the uniform temperature inside the chamber

  3. Biofuel Combustion Fly Ash Influence on the Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Aurelijus Daugėla

    2016-02-01

    Full Text Available Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.

  4. Combustion of large solid fuels in cement rotary kilns

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma

    (MBM), waste wood, sewage sludge, paper and plastics. The alternative fuel share of the total energy varies significantly from region to region, but the general trend is towards increased alternative fuel utilization. Solid alternative fuels typically have physical and chemical properties that differ...... from traditional solid fossil fuels. This creates a need for new combustion equipment or modification of existing kiln systems, because alternative fuels may influence process stability and product quality. Process stability is mainly influenced by exposing the raw material bed in the rotary kiln...... oxidation is a slow process which may greatly reduce the amounts of solid fuels to be utilized in the material inlet end of rotary kilns due to the limited residence time. Several parameters control the rate of char oxidation: a) bulk oxygen concentration, b) mass transfer rate of oxygen to char particles...

  5. Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production

    International Nuclear Information System (INIS)

    Hahn, D. W.; Hencken, K. R.; Johnsen, H. A.; Ross, J. R.; Walsh, P. M.

    1998-01-01

    Particulate matter emissions and some components of the particles were measured in the exhaust from combustion equipment used in oil and gas production operations near Bakersfield, California. The combustion sources included a 22.5 MW (electric) turbine generator, a 342-Bhp rich-burn spark ignition engine, and a 50 million Btu/h steam generator, all fired using natural gas. The particle components and measurement techniques were as follows: (1) Calcium, magnesium, sodium, silicon, and iron were measured using laser-induced breakdown spectroscopy (LIBS), (2) particle-bound polycyclic aromatic hydrocarbons (PAH) were detected using the charge produced by photoionization, (3) particles having sizes between 0.1 and 7.5 (micro)m were counted using an instrument based on light scattering, and (4) total particulate matter was measured according to US EPA Method 5. Not all of the methods were applied to all of the sources. Measurements were also made in the ambient air near the combustion air inlets to the units, for comparison with the concentrations in the exhaust, but the inlet and outlet measurements were not done simultaneously. Calcium, sodium, and silicon were found in the exhaust from the steam generator at concentrations similar to those in the ambient air near the inlet to the burner. Sodium and silicon were observed in the engine exhaust at levels a factor of four higher than their concentrations in the air. The principal metal observed in the engine exhaust was calcium, a component of the lubricating oil, at a concentration of 11.6 (micro)g/m 3 . The air entering the gas turbine is filtered, so the average concentrations of metals in the turbine exhaust under steady operating conditions were even lower than in the air. During start-up following a shut-down to wash the turbine, silicon and iron were the major species in the stack, at concentrations of 6.4 and 16.2 (micro)g/m 3 , respectively. A possible source of silicon is the water injected into the turbine

  6. Process for remediation of plastic waste

    Science.gov (United States)

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  7. Characterisation of wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto

    The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...... for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition...

  8. Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production

    International Nuclear Information System (INIS)

    Chein, Reiyu; Chen, Yen-Cho; Chung, J.N.

    2013-01-01

    Highlights: ► Performance of mini-scale integrated annulus reactors for hydrogen production. ► Flow rates fed to combustor and reformer control the reactor performance. ► Optimum performance is found from balance of flow rates to combustor and reformer. ► Better performance can be found when shell side is designed as combustor. -- Abstract: This study presents the numerical simulation on the performance of mini-scale reactors for hydrogen production coupled with liquid methanol/water vaporizer, methanol/steam reformer, and methanol/air catalytic combustor. These reactors are designed similar to tube-and-shell heat exchangers. The combustor for heat supply is arranged as the tube or shell side. Based on the obtained results, the methanol/air flow rate through the combustor (in terms of gas hourly space velocity of combustor, GHSV-C) and the methanol/water feed rate to the reformer (in terms of gas hourly space velocity of reformer, GHSV-R) control the reactor performance. With higher GHSV-C and lower GHSV-R, higher methanol conversion can be achieved because of higher reaction temperature. However, hydrogen yield is reduced and the carbon monoxide concentration is increased due to the reversed water gas shift reaction. Optimum reactor performance is found using the balance between GHSV-C and GHSV-R. Because of more effective heat transfer characteristics in the vaporizer, it is found that the reactor with combustor arranged as the shell side has better performance compared with the reactor design having the combustor as the tube side under the same operating conditions.

  9. Material recycling of post-consumer polyolefin bulk plastics: Influences on waste sorting and treatment processes in consideration of product qualities achievable.

    Science.gov (United States)

    Pfeisinger, Christian

    2017-02-01

    Material recycling of post-consumer bulk plastics made up of polyolefins is well developed. In this article, it is examined which effects on waste sorting and treatment processes influence the qualities of polyolefin-recyclats. It is shown that the properties and their changes during the product life-cycle of a polyolefin are defined by its way of polymerisation, its nature as a thermoplast, additives, other compound and composite materials, but also by the mechanical treatments during the production, its use where contact to foreign materials is possible and the waste sorting and treatment processes. Because of the sum of the effects influencing the quality of polyolefin-recyclats, conclusions are drawn for the material recycling of polyolefins to reach high qualities of their recyclats. Also, legal requirements like the EU regulation 1907/2006 concerning the registration, evaluation, authorisation and restrictions on chemicals are considered.

  10. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  11. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  12. Magical Engineering Plastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwang Ung

    1988-01-15

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  13. Magical Engineering Plastic

    International Nuclear Information System (INIS)

    Kim, Gwang Ung

    1988-01-01

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  14. The fuel element of the first charge for EL 4; presentation, main problems arising in the research, production problems; L'element combustible du 1. jeu de EL 4; presentation, problemes essentiels poses par l'etude, problemes de fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Ringot, C; Bailly, H; Bujas, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The fuel element making up the first charge for EL-4 is made of slightly enriched uranium oxide canned in stainless steel. This fuel element makes it possible to operate the reactor in the safest conditions awaiting the development of the fuel which will be finally adopted; this will have a low absorption can: beryllium, or a zirconium copper alloy. The 500 mm assembly is made up of 19 small rods placed on 3 rings, inside a graphite jacket. The solution adopted was a solution using completely independent small rods. This report deals with possible problems resulting from their study and production. (authors) [French] L'element combustible du 1er jeu EL-4 est un element combustible a oxyde d'uranium legerement enrichi gaine d'acier inoxydable. C'est un element combustible permettant de faire fonctionner le reacteur EL 4 dans des conditions aussi sures que possible avant de mettre au point le combustible definitif qui sera a gaine peu absorbante: beryllium, ou alliage zirconium-cuivre. L'assemblage de longueur 500 mm est constitue de 19 crayons places sur 3 couronnes, a l'interieur d'une chemise de graphite. La solution adoptee a ete une solution a crayons independants les uns des autres. Ce rapport traite des problemes eventuels poses par leur etude et leur fabrication. (auteurs)

  15. Fly ashes from co-combustion as a filler material in concrete production; Anvaendning av energiaskor som fillermaterial vid betongtillverkning

    Energy Technology Data Exchange (ETDEWEB)

    Sundblom, Hillevi

    2004-01-01

    The Swedish concrete producers have decided to work towards a common goal to limit the production of concrete with naturally rounded aggregate. A consequence is when use of a substitute, crushed aggregate, the demand of filler material increases. During the last years ashes form the CFB boiler in Perstorp has been utilised as a filler material, with success, in concrete production at Sydsten, Malmoe, Sweden. To examine the potential of using Swedish fly ashes as a filler material in concrete production, have different Swedish fly ashes above been studied to see if they fit the requirements for a filler material. The fly ashes studied in the project can be divided into four different groups, considering fuel mix and boiler type; 1. Bio and sludge fired CFB/BFB boiler from the paper industry, 2. Bio and peat fired CFB/BFB boiler, 3. Pulverized peat/coal firing furnace, 4.Bio and peat fired grate-fired boiler. From Sydsten experiences of using Swedish fly ashes two demands have emerged concerning the chemical composition of the ashes. The total amount of chloride in the concrete should not be higher than 0,1% and the LOI, (Loss Of Ignition) must be less than 10 %. The different ash analyses showed that the fluidised bed boilers and pulverized firing furnaces, in this study, passed all the chemical requirements but the grate fire boilers had difficulties to fulfil the requirement of LOI. The ashes chosen to be studied in further rheological investigations in different fresh concrete mixtures were, Category 1 (Hallstavik's and Hyltebruk's papermill), Category 2 (Vaesteraas Vaermeverk och Vaertaverket) and from Category 3 (Vattenfall Vaerme Uppsala). The results presented an increased water consumption of ashes from paper mills comparing with the other ashes, a probable reason could be the shape of the ash grains. The experiments also showed that all ashes contributed to the final strength of the hardened concrete, the paper mill ashes also contributed to the

  16. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large...... recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...

  17. Cholinergic Potentiation and Audiovisual Repetition-Imitation Therapy Improve Speech Production and Communication Deficits in a Person with Crossed Aphasia by Inducing Structural Plasticity in White Matter Tracts.

    Science.gov (United States)

    Berthier, Marcelo L; De-Torres, Irene; Paredes-Pacheco, José; Roé-Vellvé, Núria; Thurnhofer-Hemsi, Karl; Torres-Prioris, María J; Alfaro, Francisco; Moreno-Torres, Ignacio; López-Barroso, Diana; Dávila, Guadalupe

    2017-01-01

    Donepezil (DP), a cognitive-enhancing drug targeting the cholinergic system, combined with massed sentence repetition training augmented and speeded up recovery of speech production deficits in patients with chronic conduction aphasia and extensive left hemisphere infarctions (Berthier et al., 2014). Nevertheless, a still unsettled question is whether such improvements correlate with restorative structural changes in gray matter and white matter pathways mediating speech production. In the present study, we used pharmacological magnetic resonance imaging to study treatment-induced brain changes in gray matter and white matter tracts in a right-handed male with chronic conduction aphasia and a right subcortical lesion (crossed aphasia). A single-patient, open-label multiple-baseline design incorporating two different treatments and two post-treatment evaluations was used. The patient received an initial dose of DP (5 mg/day) which was maintained during 4 weeks and then titrated up to 10 mg/day and administered alone (without aphasia therapy) during 8 weeks (Endpoint 1). Thereafter, the drug was combined with an audiovisual repetition-imitation therapy (Look-Listen-Repeat, LLR) during 3 months (Endpoint 2). Language evaluations, diffusion weighted imaging (DWI), and voxel-based morphometry (VBM) were performed at baseline and at both endpoints in JAM and once in 21 healthy control males. Treatment with DP alone and combined with LLR therapy induced marked improvement in aphasia and communication deficits as well as in selected measures of connected speech production, and phrase repetition. The obtained gains in speech production remained well-above baseline scores even 4 months after ending combined therapy. Longitudinal DWI showed structural plasticity in the right frontal aslant tract and direct segment of the arcuate fasciculus with both interventions. VBM revealed no structural changes in other white matter tracts nor in cortical areas linked by these tracts. In

  18. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.

    Science.gov (United States)

    Eliche-Quesada, D; Leite-Costa, J

    2016-02-01

    Olive pomace bottom ash was used to replace different amounts (10-50wt%) of clay in brick manufacturing. The aim of this study is both studying bricks properties and showing a new way of olive pomace bottom ash recycling. Properties of waste bricks were compared to conventional products following standard procedures in order to determine the maximum waste percentage. The amount of olive pomace bottom ash is limited to 20wt%, obtaining bricks with superior engineering properties when 10wt% of waste is added. Adding higher amount of waste (30-50wt%) resulted in bricks with water absorption and compressive strength values on the edge of meeting those established by standards. Therefore, the addition of 10 and 20wt% of olive pomace bottom ash produced bricks with a bulk density of 1635 and 1527kg/m(3) and a compressive strength of 33.9MPa and 14.2MPa, respectively. Fired bricks fulfil standards requirements for clay masonry units, offering, at the same time, better thermal insulation of buildings due to a reduction in thermal conductivity of 14.4% and 16.8% respectively, compared to control bricks (only clay). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Maximal combustion temperature estimation

    International Nuclear Information System (INIS)

    Golodova, E; Shchepakina, E

    2006-01-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

  20. Pervasive plastic

    Science.gov (United States)

    2018-05-01

    Human manipulation of hydrocarbons — as fuel and raw materials for modern society — has changed our world and the indelible imprint we will leave in the rock record. Plastics alone have permeated our lives and every corner of our planet.

  1. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  2. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  3. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  4. Production and characterization of bio plastics from potato starch, poly-hydroxybutyrate and poly-hydroxybutyrate-co-valerate

    International Nuclear Information System (INIS)

    Mendes, Fernanda M.; Curvelo, Antonio A.S.

    2009-01-01

    This work describes the study of thermoplastic starch (TPS) blends obtained from potato starch (plasticised with glycerol) with biodegradable polymers poly-hydroxybutyrate (PHB) and poly-hydroxybutyrate-co-valerate (PHB V). For this purpose it were developed several formulations with TPS/PHB, TPS/PHB V and TPS/PHB/PHB V prepared by physical mixing and water and glycerol as plasticizers. The amount of glycerol was 30% based on starch (dry basis). The starting materials (starch, PHB and PHB V) were characterized by scanning electron microscopy and X-ray diffraction. Then, it was determined the optimal processing conditions for the samples, performed by using an intensive mixer. The materials were hot pressed to produce the standardized samples employed in the characterizations: mechanical testing (tensile strength), dynamic-mechanical thermal analysis (DMTA), scanning electron microscopy and X-ray diffractometry. (author)

  5. Production of bio-oil with flash pyrolysis and the combustion of it; Biooeljyn tuotanto flashpyrolyysillae ja sen poltto

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T [Vapo Oy, Jyvaeskylae (Finland)

    1996-12-31

    The target of the research is to study the production of bio-oils using flash-pyrolysis and utilization of the bio-oil in oil-fueled boilers. The PDU-device was ordered in December 1994. The device was tested in Canada in the beginning of March 1996. The device will be mounted in Otaniemi in the research unit of VTT Energy. The device will by equipped, if possible, with a hot-filtering device in order to improve the purity and the quality of the oil. The capacity of the PDU-device is 20 kg/h of dry biomass of about 10 wt-% DS-content, with particle size less than 6 mm. The actual tests will be made in autumn 1996. The investment costs of the PDU are about 2.5 million FIM. The Canadian funding of the project is about 50 %. It has been planned that within the research project of Vapo oy, about 50 - 100 tons of bio-oil will be acquired from Canada for the engine tests carried out by Wartsilae Diesel, and the project will be responsible for planning and operation of the PDU and the demonstration plants. About 50 tons of wood-oil was received from Canada in January 1996 for the engine tests, the results of which will be reported separately by Wartsilae Diesel. The present costs of the tasks are about 1.2 million FIM, but the main part of the costs will be formed in 1996-1997

  6. Production of bio-oil with flash pyrolysis and the combustion of it; Biooeljyn tuotanto flashpyrolyysillae ja sen poltto

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T. [Vapo Oy, Jyvaeskylae (Finland)

    1995-12-31

    The target of the research is to study the production of bio-oils using flash-pyrolysis and utilization of the bio-oil in oil-fueled boilers. The PDU-device was ordered in December 1994. The device was tested in Canada in the beginning of March 1996. The device will be mounted in Otaniemi in the research unit of VTT Energy. The device will by equipped, if possible, with a hot-filtering device in order to improve the purity and the quality of the oil. The capacity of the PDU-device is 20 kg/h of dry biomass of about 10 wt-% DS-content, with particle size less than 6 mm. The actual tests will be made in autumn 1996. The investment costs of the PDU are about 2.5 million FIM. The Canadian funding of the project is about 50 %. It has been planned that within the research project of Vapo oy, about 50 - 100 tons of bio-oil will be acquired from Canada for the engine tests carried out by Wartsilae Diesel, and the project will be responsible for planning and operation of the PDU and the demonstration plants. About 50 tons of wood-oil was received from Canada in January 1996 for the engine tests, the results of which will be reported separately by Wartsilae Diesel. The present costs of the tasks are about 1.2 million FIM, but the main part of the costs will be formed in 1996-1997

  7. WEATHERABILITY OF ENHANCED DEGRADABLE PLASTICS

    Science.gov (United States)

    The main objective of this study was to assess the performance and the asociated variability of several selected enhanced degradable plastic materials under a variety of different exposure conditions. Other objectives were to identify the major products formed during degradation ...

  8. DIAGNOSIS OF FAILURE OF COMBUSTION IN THE COMBUSTION CHAMBER WITH A THERMOVISION EQUIPMENT

    Directory of Open Access Journals (Sweden)

    S. V. Vorobiev

    2014-01-01

    Full Text Available The use of thermovision technology to diagnose failure of the combustion flame test tube of the main combustion chamber gas turbine engine is deal with in the article. Join the thermal radiation of the jet of combustion products and the internal elements was carried out using short-wave thermovision system AGA-782 with spectral spectral filters in several ranges from 3.2 to 5.6 microns. Thermovision is mounted on the axis of the flame tube. The output signal was recorded and processed on a computer in real time, allowing monitor the combustion process and the thermal state of the object during the experiment.

  9. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  10. Barriers to the increased utilization of coal combustion/desulfurization by-products by government and commercial sectors - Update 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pflughoeft-Hassett, D.F.; Sondreal, E.A.; Steadman, E.N.; Eylands, K.E.; Dockter, B.A.

    1999-07-01

    ;'Federal Acquisition, Recycling and Waste Prevention,'' in October 1993 was a positive step toward getting CCBs accepted in the marketplace. Industry needs to continue to work with EPA to develop additional procurement guidelines for products containing CCBs--and to take advantage of existing guidelines to encourage the use of CCBs in high-profile projects. (6) Accelerated progress toward increased utilization of CCBs can be made only if there is an increased financial commitment and technical effort by industry and government. The framework for this has been set by the successful cooperation of industry and government under DOE leadership. Cooperation should continue, with DOE fulfilling its lead role established in the RTC. It is clear that the RTC recommendations continue to have validity with respect to increasing CCB utilization and continue to provide guidance to industry and government agencies.

  11. Torrefaction of empty fruit bunches under biomass combustion gas atmosphere.

    Science.gov (United States)

    Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro

    2017-11-01

    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  13. Production of bioplastic from jackfruit seed starch (Artocarpus heterophyllus) reinforced with microcrystalline cellulose from cocoa pod husk (Theobroma cacao L.) using glycerol as plasticizer

    Science.gov (United States)

    Lubis, M.; Gana, A.; Maysarah, S.; Ginting, M. H. S.; Harahap, M. B.

    2018-02-01

    The production of bioplastic from jackfruit seed starch reinforced with microcrystalline cellulose (MCC) cocoa pod husk using glycerol as plasticizer was investigated to determine the most optimum mass and volume of MCC and glycerol in producing bioplastics. To produce MCC, Cocoa pod husk was subjected to alkali treatment, bleaching, and hydrochloric acid hydrolysis. The degree of crystallinity of MCC, were determined by XRD, functional group by FT-IR and morphologycal analysis by SEM. Analysis of bioplastic mechanical properties includes tensile strength and elongation at break based on ASTM D882 standard. Bioplastics were produced by casting method from jackfruit seed starch and reinforced with MCC from cocoa pod husk at starch mass to MCC ratio of 6:4, 7:3, 8:2, and 9:1, using glycerol as plasticizer at 20%, 25%, 30% (wt/v of glycerol to starch). From the result, the isolated MCC from cocoa pod husk were in a form of rod-like shape of length 5-10 µm with diameter 11.635 nm and 74% crystallinity. The highest tensile strength of bioplastics was obtained at starch to MCC mass ratio of 8:2, addition of 20% glycerol with measured tensile strength of 0.637 MPa and elongation at break of 7.04%. Transform infrared spectroscopy showed the functional groups of bioplastics, which the majority of O-H groups were found at the bioplastics with reinforcing filler MCC that represented substantial hydrogen bonds.

  14. An applied investigation of corn-based distillers dried grains with solubles in the production of natural fiber-plastic composites

    Science.gov (United States)

    Castillo, Hugo Eudosio

    The main objective of this research was to examine uses for distillers dried grains with solubles (DDGS), a coproduct of ethanol production plant, in the fiber-reinforced plastic composites industry. Initially the effort intended to take advantage of the DDGS components, using chemical reactions, to produce coupling agents to improve the physical properties of the composite. Four different chemicals plus water were used to convert proteins into soluble amino acids. The results were not as expected, and appeared to show an early pyrolysis of DDGS components. This may be due to regeneration of proteins when pH of solutions is neutralized. Procedures were then investigated to utilize DDGS for different markets. Considering that oils and proteins of DDGS can thermally decompose, it seemed important to separate the major components and work with DDGS fiber alone. A procedure to extract oil from DDGS using ethanol and then to hydrolyze proteins with ethanol diluted with water, acid and sodium sulfite, was developed. The resulting DDGS fiber or residual material, with a low content of oil and proteins, was used as filler in a propylene matrix with a lubricant and coupling agent to make natural fiber plastic composites (NFPC). Composites containing wood flour (WPC) were prepared simultaneously with those of DDGS fiber to compare tensile properties and fracture surfaces of the specimens by scanning electron microscope (SEM). This study demonstrates that DDGS fiber can replace wood fiber as a filler in NFPC.

  15. Multi-stage combustion using nitrogen-enriched air

    Science.gov (United States)

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  16. Uncertainties in hydrogen combustion

    International Nuclear Information System (INIS)

    Stamps, D.W.; Wong, C.C.; Nelson, L.S.

    1988-01-01

    Three important areas of hydrogen combustion with uncertainties are identified: high-temperature combustion, flame acceleration and deflagration-to-detonation transition, and aerosol resuspension during hydrogen combustion. The uncertainties associated with high-temperature combustion may affect at least three different accident scenarios: the in-cavity oxidation of combustible gases produced by core-concrete interactions, the direct containment heating hydrogen problem, and the possibility of local detonations. How these uncertainties may affect the sequence of various accident scenarios is discussed and recommendations are made to reduce these uncertainties. 40 references

  17. Recycling plastic bottles in a creative way

    OpenAIRE

    Pavlin, Suzana

    2016-01-01

    Beside other plastic products, plastic bottles represent a true environmental disaster in the last few years. We assume that hardly anyone asks what happens after they drink that last drop of water out of it. Just like most municipal waste, a plastic bottle can be reused, recycled, burned or deposited into landfill. When the Environment Protection Act is not respected, plastic bottle ends up in the nature, very often in the sea, where it decomposes very slowly and has negative influence on th...

  18. Removal and distribution of iron, manganese, cobalt and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.H.; Whiting, S.N.; Lin, Z.-Q.; Lytle, C.M.; Qian, J.H.; Terry, N. [University of California, Berkeley, CA (USA). Dept. of Plant and Microbial Biology

    2001-08-01

    A flow-through wetland treatment system was constructed to treat coal combustion by-product leachate from an electrical power station at Springdale, Pennsylvania. In a nine-compartment treatment system, four cattail (Typha latifolia L.) wetland cells (designated Cells 1 through 4) successfully removed iron (Fe) and manganese (Mn) from the inlet water; Fe and Mn concentrations were decreased by an average of 91% in the first year and by 94 and 98% in the second year respectively. Cobalt (Co) and nickel (Ni) were decreased by an average of 39 and 47% in the first and 98 and 63% in the second year respectively. Most of the metal removed by the wetland cells was accumulated in sediments, which constituted the largest sink. Except for Fe, metal concentrations in the sediments tended to be greater in the top 5 cm of sediment than in the 5 to 10 or 10 to 15 cm layers and in Cell 1 than in Cells 2, 3 and 4. Plants constituted a much smaller sink for metals; only 0.91, 4.18, 0.19, and 0.38% of the Fe, Mn, Co and Ni were accumulated annually in the aboveground tissues of cattail, respectively. A greater proportion of each metal (except Mn) was accumulated in cattail fallen litter and submerged Chara (a macroalga) tissues, that is 2.81, 2.75 and 1.05% for Fe, Co and Ni, respectively. Considerably higher concentrations of metals were associated with cattail root than shoots, although Mn was a notable exception. 48 refs., 6 figs., 4 tabs.

  19. Role of Oxidative Stress in the Suppression of Immune Responses in Peripheral Blood Mononuclear Cells Exposed to Combustible Tobacco Product Preparation.

    Science.gov (United States)

    Arimilli, Subhashini; Schmidt, Eckhardt; Damratoski, Brad E; Prasad, G L

    2017-10-01

    Cigarette smoking is a major risk factor for several human diseases. Chronic inflammation, resulting from increased oxidative stress, has been suggested as a mechanism that contributes to the increased susceptibility of smokers to cancer and microbial infections. We have previously shown that whole-smoke conditioned medium (WS-CM) and total particulate matter (TPM) prepared from Kentucky 3R4F reference cigarettes [collectively called as combustible tobacco product preparations (TPPs)] potently suppressed agonist-stimulated cytokine secretion and target cell killing in peripheral blood mononuclear cells (PBMCs). Here we have investigated the role of oxidative stress from TPPs, which alters inflammatory responses in vitro. Particularly, we investigated the mechanisms of WS-CM-induced suppression of select cytokine secretions in Toll-like receptor (TLR) agonist-stimulated cells and target cell killing by effector cells in PBMCs. Pretreatment with N-acetyl cysteine (NAC), a precursor of reduced glutathione and an established anti-oxidant, protected against DNA damage and cytotoxicity caused by exposure to WS-CM. Similarly, secretion of tumor necrosis factor (TNF), interleukin (IL)-6, and IL-8 in response to TLR-4 stimulation was restored by pretreatment with NAC. Target cell killing, a functional measure of cytolytic cells in PBMCs, is suppressed by WS-CM. Pretreatment with NAC restored the target cell killing in WS-CM treated PBMCs. This was accompanied by higher perforin levels in the effector cell populations. Collectively, these data suggest that reducing oxidative stress caused by cigarette smoke components restores select immune responses in this ex vivo model.

  20. 76 FR 60530 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Plastic Aerosol...

    Science.gov (United States)

    2011-09-29

    ..., studies, assays, analyses, compilations, and other information regarding the transportation, manufacturing..., and food and beverage products. PARG may work with a standard setting organization that may develop a...