WorldWideScience

Sample records for plasmonic structures capable

  1. Terahertz Plasmonic Structure With Enhanced Sensing Capabilities

    DEFF Research Database (Denmark)

    Yahiaoui, Riad; Strikwerda, Andrew C.; Jepsen, Peter Uhd

    2016-01-01

    We have designed, fabricated, and experimentally verified a highly sensitive plasmonic sensing device in the terahertz frequency range. For a proof of concept of the sensing phenomenon, we have chosen the so-called fishnet structure based on circular hole array insensitive to the polarization...... of the incident wave. We employ the localized resonance associated with the cutoff frequency (electric plasma frequency) of the hole array to investigate its sensing capability. A thin-film overlayer deposited on the surface of the metallic apertures causes an amplitude modulation and a shift in the resonant...... frequency of the terahertz transmission. The frequency shift and the amplitude modulation were investigated as a function of the refractive index and the thickness of the overlayer for determining the sensing potential of the proposed structure. Measurements carried out using terahertz time...

  2. Plasmonics in buried structures

    OpenAIRE

    Romero, I. T.; García de Abajo, Francisco Javier

    2009-01-01

    We describe plasmon propagation in silica-filled coupled nanovoids fully buried in gold. Propagation bands and band gaps are shown to be tunable through the degree of overlap and plasmon hybridization between contiguous voids. The effect of disorder and fabrication imperfections is thoroughly investigated. Our work explores a novel paradigm for plasmon photonics relying on plasmon modes in metal-buried structures, which can benefit from long propagation distances, cancelation of radiative los...

  3. Plasmonics in buried structures.

    Science.gov (United States)

    Romero, I; García de Abajo, F J

    2009-10-12

    We describe plasmon propagation in silica-filled coupled nanovoids fully buried in gold. Propagation bands and band gaps are shown to be tunable through the degree of overlap and plasmon hybridization between contiguous voids. The effect of disorder and fabrication imperfections is thoroughly investigated. Our work explores a novel paradigm for plasmon photonics relying on plasmon modes in metal-buried structures, which can benefit from long propagation distances, cancelation of radiative losses, minimum crosstalk between neighboring waveguides, and maximum optical integration in three-dimensional arrangements.

  4. Plasmonic Force Propulsion Revolutionizes Nano/PicoSatellite Capability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The full potential of small spacecraft remains untapped because they lack maneuverability. Plasmonic force propulsion provides attitude control capability for small...

  5. Photothermal modification of plasmonic structures

    DEFF Research Database (Denmark)

    2016-01-01

    There is presented a method for geometrically modifying plasmonic structures on a support structure, such as for printing or recording, said method comprising changing a geometry specifically of plasmonic structures, wherein said changing the geometry is carried out by photothermally melting...

  6. Controlling noise in plasmonic structures with gain

    Science.gov (United States)

    Vyshnevyy, A. A.; Fedyanin, D. Yu.

    2017-09-01

    Loss compensation by gain medium gives the possibility to exploit subwavelength confinement of light in plasmonic nanostructures and construct nanoscale plasmonic circuits. However, due to fundamentally unavoidable spontaneous emission from the gain medium, lossless waveguides suffer from strong photonic noise, which limits their practical applications. Here we demonstrate the possibility of significant decrease of the noise level while preserving physical dimensions of lossless plasmonic waveguides with gain. Our findings are aimed at extending the communication capabilities of on-chip plasmonic networks.

  7. Tunable Omnidirectional Surface Plasmon Resonance in Cylindrical Plasmonic Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; WANG Bing; ZHOU Zhi-Ping

    2008-01-01

    @@ The tunable omnidirectional surface plasmon resonance in the optical range is theoretically demonstrated in a cylindrical plasmonic crystal by using rigorous coupled-wave analysis.The cylindrical plasmonic crystal consists of an infinite chain of two-dimensional cylindrical metal-dielectric-dielectric-metal structures.The dispersion relation of the cylindrical plasmonic crystal is obtained by calculating the absorptance as a function of a TM-polarized incident plane wave and its in-plane wave vector.The omnidirectional surface plasmon resonance can be tuned from UV region to visible region by adjusting the thickness of the cylindrical dielectric layers.The absorption spectrum of the infinite chain of nanocylinders is also investigated for comparison.

  8. Studies on metal-dielectric plasmonic structures.

    Energy Technology Data Exchange (ETDEWEB)

    Chettiar, Uday K. (Purdue University, West Lafayette, IN); Liu, Zhengtong (Purdue University, West Lafayette, IN); Thoreson, Mark D. (Purdue University, West Lafayette, IN); Shalaev, Vladimir M. (Purdue University, West Lafayette, IN); Drachev, Vladimir P. (Purdue University, West Lafayette, IN); Pack, Michael Vern; Kildishev, Alexander V. (Purdue University, West Lafayette, IN); Nyga, Piotr (Purdue University, West Lafayette, IN)

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  9. Structural Capability of an Organization toward Innovation Capability

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Momeni, Mostafa

    2016-01-01

    competitive advantage in the organizations is the innovation capability. The innovation capability is associated with other organizational capabilities, and many organizations have focused on the need to identify innovation capabilities.This research focuses on recognition of the structural aspect...... of innovation capability and proposes a conceptual framework based on a Qualitative Meta Synthesis of academic literature on organizations innovation capability. This is proposed for the development of the concept of innovation capability in the organizations and this paper includes an expert based validation...... Capability and Structural Capability. Also, it offers the most important components and indices which directly influence and are related to the structural capability of innovation capability....

  10. Aluminum plasmonic metamaterials for structural color printing.

    Science.gov (United States)

    Cheng, Fei; Gao, Jie; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Yang, Xiaodong

    2015-06-01

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  11. Plasmonic Structures for Sensing and Emitting Devices

    Science.gov (United States)

    Floris, Francesco; Fornasari, Lucia; Patrini, Maddalena; Figus, Cristiana; Mura, Andrea; Bongiovanni, Giovanni; Quochi, Francesco; Pellacani, Paola; Valsesia, Andrea; Marabelli, Franco

    2014-12-01

    We report on the study of a plasmonic nanostructure that could be adopted as platform for emitting and sensing applications. Several devices have been prepared and characterized by atomic force microscopy (AFM) and Fourier transform micro-reflectance (FT- pR) techniques. In addition, a modelling via finite-difference time-domain (FDTD) simulations have been developed in order to interpret the morphological shape and the optical response of the considered structures. Until now, remarkable performances as surface plasmon resonance (SPR) based optical sensor have been founded. Moreover, we are performing preliminary trials in order to establish a coupling between photoluminescence (PL) features of suitable emitters with respect to the plasmonic resonances.

  12. Structural colors: from plasmonic to carbon nanostructures.

    Science.gov (United States)

    Xu, Ting; Shi, Haofei; Wu, Yi-Kuei; Kaplan, Alex F; Ok, Jong G; Guo, L Jay

    2011-11-18

    In addition to colorant-based pigmentation, structure is a major contributor to a material's color. In nature, structural color is often caused by the interaction of light with dielectric structures whose dimensions are on the order of visible-light wavelengths. Different optical interactions including multilayer interference, light scattering, the photonic crystal effect, and combinations thereof give rise to selective transmission or reflection of particular light wavelengths, which leads to the generation of structural color. Recent developments in nanofabrication of plasmonic and carbon nanostructures have opened another efficient way to control light properties at the subwavelength scale, including visible-light wavelength selection, which can produce structural color. In this Concept, the most relevant and representative achievements demonstrated over the last several years are presented and analyzed. These plasmonic and carbon nanostructures are believed to offer great potential for high-resolution color displays and spectral filtering applications.

  13. Plasmonic Structural Colors for Plastic Consumer Products

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Mortensen, N. Asger; Kristensen, Anders

    2014-01-01

    Today colorants, such as pigments or dyes, are used to color plastic-based consumer products, either as base for solid colored bulk polymer or in inks for surface decoration. After usage, the products must be mechanically sorted by color before recycling, limiting any large-scale efficient...... recycling effort. As an alternative to chemistry-based coloring, nano-scale structural coloring has been proposed to reduce the number of materials needed and to increase pattern resolution. Here colors are created by structural based light-matter interactions in the surface. Thereby, the sorting by color...... can be avoided in the recycling state. Plasmon color technology based on aluminum has recently been firmly established as a route towards structural coloring of polymeric materials. We report on the fabrication of colors by localized surface plasmon resonances (LSPR) using roll-to-roll printing...

  14. Surface plasmon polariton amplification in metal-semiconductor structures.

    Science.gov (United States)

    Fedyanin, Dmitry Yu; Arsenin, Aleksey V

    2011-06-20

    We propose a novel scheme of surface plasmon polariton (SPP) amplification that is based on a minority carrier injection in a Schottky diode. This scheme uses compact electrical pumping instead of bulky optical pumping. Compact size and a planar structure of the proposed amplifier allow one to utilize it in integrated plasmonic circuits and couple it easily to passive plasmonic devices. Moreover, this technique can be used to obtain surface plasmon lasing.

  15. Challenges of fabricating plasmonic and photonic structures with Neon ion beam milling

    DEFF Research Database (Denmark)

    Leißner, Till; Fiutowski, Jacek; Bozhevolnyi, Sergey I.

    properties. We are currently studying the capabilities of focussed Helium and Neon ion beam milling for the fabricating of plasmonic and photonic devices. We found that Neon ion beam milling enables us to prepare plasmonic structures, such as trenches (see Fig. 1) and V-grooves without doping and alloying...... effects specific to Galium FIB. Neon FIB milling is superior to Helium FIB milling in terms of the processing speed and smaller levels of implanted ions. From our perspective it is the most promising technique for the fabrication of individual plasmonic devices with a few nanometers precision. The main...... presentation we show the current progress in Neon FIB milling of plasmonic structures. We compare different materials, in particular poly- and mono-crystalline gold as well as thin films of Titanium Nitride, which are commonly used for plasmonic applications....

  16. Structured light for focusing surface plasmon polaritons.

    Science.gov (United States)

    Hu, Z J; Tan, P S; Zhu, S W; Yuan, X-C

    2010-05-10

    We propose a structureless method for focusing surface plasmon polaritons (SPPs) on a flat metal film under illumination of radially polarized cogwheel-like structured light beams. Without metal structures, the locally induced SPPs can further be propagated following the predefined patterns to form symmetric focal spots with dimensions beyond diffraction limit. Benefiting from the radial polarization, this method can be employed to pattern various center-symmetric evanescent distributions for generating SPPs reconfigurably. The SPPs will be propagating and focusing in radial directions.

  17. Temperature Imaging around Plasmonic Structures

    OpenAIRE

    Donner, Jon Sean

    2010-01-01

    Tesina realitzada en col.laboració amb IFCO i Cellex In the course of this work a novel microscope was constructed that is able to obtain a temperature map on the micro and nanoscale. The principle is demonstrated by presenting thermal maps of heated gold micro and nano structures. The temperature measurement is based on a uorescence polarization anisotropy measurement, and can produce a thermal image at a fast frame rate, which allows to obtain a thermal video. Being an...

  18. Long Range Surface Plasmons in Multilayer Structures

    CERN Document Server

    Delfan, Aida

    2013-01-01

    We present a new strategy, based on a Fresnel coefficient pole analysis, for designing an asymmetric multilayer structure that supports long range surface plasmons (LRSP). We find that the electric field intensity in the metal layer of a multilayer LRSP structure can be even slightly smaller than in the metal layer of the corresponding symmetric LRSP structure, minimizing absorption losses and resulting in LRSP propagation lengths up to 2mm. With a view towards biosensing applications, we also present semi-analytic expressions for a standard surface sensing parameter in arbitrary planar resonant structures, and in particular show that for an asymmetric structure consisting of a gold film deposited on a multilayer of SiO2 and TiO2 a surface sensing parameter G = 1.28(1/nm) can be achieved.

  19. Coupling of Quantum Emitters in Nanodiamonds to Plasmonic Structures

    DEFF Research Database (Denmark)

    Kumar, Shailesh

    applications such as sensing of the magnetic field. In this work, NV-centers in nanodiamond crystals smaller than 100 nm were used. For enhancing and channeling emission from the NV-centers, metallic waveguides are used in this work. In such waveguides, electromagnetic waves are guided at the interface between...... structure used for the coupling is two nanowires placed in parallel, which supports plasmonic modes in the gap between nanowires. The distribution of electromagnetic field in the plasmonic mode depends on the structure of the waveguide. The coupling between an emitter and the plasmonic mode, in turn...... a plasmonic waveguide and a dielectric waveguide made of silicon nitride suggest that the two waveguides can be coupled with a coupling loss of around 30 percent. Evanescent coupling between two plasmonic waveguides is also studied which can be useful for all integrated quantum plasmonic circuits....

  20. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  1. Surface Plasmon Coupling and Control Using Spherical Cap Structures

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; Zhang, Xin; El-Khoury, Patrick Z.; Hess, Wayne P.

    2017-06-05

    Propagating surface plasmons (PSPs) launched from a protruded silver spherical cap structure are investigated using photoemission electron microscopy (PEEM) and finite difference time domain (FDTD) calculations. Our combined experimental and theoretical findings reveal that PSP coupling efficiency is comparable to conventional etched-in plasmonic coupling structures. Additionally, plasmon propagation direction can be varied by a linear rotation of the driving laser polarization. A simple geometric model is proposed in which the plasmon direction selectivity is proportional to the projection of the linear laser polarization on the surface normal. An application for the spherical cap coupler as a gate device is proposed. Overall, our results indicate that protruded cap structures hold great promise as elements in emerging surface plasmon applications.

  2. Structural and plasmonic properties of gold nanocrystals

    Science.gov (United States)

    Sivapalan, Sean T.

    the nanoparticles. The nanoparticles were then tilted such that were oriented so that the electron beam was parallel to a major zone axis and the diffraction pattern recorded. We observed streaks at each Bragg reflection that changed depending on the shape of the nanoparticle. This is in contrast to the spots for the Bragg reflections observed for normal small area diffraction patterns of gold nanoparticles. The angles between the streaks were compared using vector analysis to theoretical simulated three dimensional models and showed good correlation. These studies indicate such a platform can be used to elucidate the structure of high-index gold nanoparticle shapes such as trisoctahedra. The as-synthesized gold nanoparticles had surface plasmon resonances that incrementally spanned the spectral region of 500-900 nm. The reporter molecules used all have an absorption maximum far from the excitation wavelength. This ensures that chemical resonant based effects are minimized and plasmonic electromagnetic effects dominate the observed signal enhancement. For gold nanorods, the highest SERS signal from six different aspect ratios was observed with absorption maxima blue-shifted from the laser excitation wavelength. This finding is in contrast to substrate measurements where the maximum observed signal is red-shifted from the laser excitation wavelength. A similar platform was used to compare the effects of changing the nanoparticle shape on the observed SERS enhancement. We synthesized trisoctahedral, cubic and spherical geometries with electronic absorption maxima that overlapped within 3 nm. The relative SERS enhancement with 785 nm excitation was compared to theoretical simulations using finite element analysis. The observed signal intensities correlated well to the theory, suggesting the electromagnetic fields focused towards sharp edges and corners dominated the spectral response. The final chapters of this thesis are tailored towards understanding the distance

  3. Morphology dependent two photon absorption in plasmonic structures and plasmonic-organic hybrids

    Science.gov (United States)

    Gambhir, Kaweri; Ray, Bhumika; Mehrotra, Ranjana; Sharma, Parag

    2017-05-01

    Two photon absorption coefficients of two distinct plasmonic structures, namely, gold nanoflowers (GNF) and gold nanopebbles (GNP) have been investigated and compared with conventional gold nanospheres (GNS). All three different nanoshapes were synthesized by changing the reaction solvent under the same experimental procedure. Further, hybrids of these plasmonic structures were prepared with an organic dye Eosin yellow (EY), to investigate the morphology effect of plasmonic structures on plasmonic-organic hybrids in terms of their linear extinction spectra and two photon absorption coefficients. The NLO investigations were conducted using 20 ps laser pulses of wavelength 532 nm as an excitation source in single beam Z-scan setup. UV/visible spectroscopy was employed for monitoring plasmon resonances and changes in linear extinction spectra. The experimental outcomes revealed two photon absorption coefficients of EY increased 120%, 32% and 39%, while 69%, 60% and 53% enhancement in the peaks of linear extinction maxima of EY has been observed, when hybridized with GNF, GNS and GNP, respectively. This boost in the optical coefficients may be attributed to dimerization of EY molecules on the surface of nanoparticles. Keeping the toxicity of EY in view, we propose that the two photon absorption coefficients of this dye and control thereof, by the addition of plasmonic structures would be helpful not only in understanding the interactions between plasmons and fluorophore, but also pave an efficient way, to reduce the operative concentration of this hazardous dye in a wide range of applications and thereby, mitigating the environmental degradation caused by its highly concentrated effluents.

  4. Optical Manipulation with Plasmonic Beam Shaping Antenna Structures

    OpenAIRE

    Young Chul Jun; Igal Brener

    2012-01-01

    Near-field optical trapping of objects using plasmonic antenna structures has recently attracted great attention. However, metal nanostructures also provide a compact platform for general wavefront engineering of intermediate and far-field beams. Here, we analyze optical forces generated by plasmonic beam shaping antenna structures and show that they can be used for general optical manipulation such as guiding of a dielectric particle along a linear or curved trajectory. This removes the need...

  5. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  6. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging

    Science.gov (United States)

    Zhang, Chonglei; Min, Changjun; Du, Luping; Yuan, X.-C.

    2016-05-01

    We propose an all-optical technique for plasmonic structured illumination microscopy (PSIM) with perfect optical vortex (POV). POV can improve the efficiency of the excitation of surface plasma and reduce the background noise of the excited fluorescence. The plasmonic standing wave patterns are excited by POV with fractional topological charges for accurate phase shift of {-2π/3, 0, and 2π/3}. The imaging resolution of less than 200 nm was produced. This PSIM technique is expected to be used as a wide field, super resolution imaging technique in dynamic biological imaging.

  7. Optimization of extraordinary optical absorption in plasmonic and dielectric structures

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole

    2013-01-01

    Extraordinary optical absorption (EOA) can be obtained by plasmonic surface structuring. However, studies that compare the performance of these plasmonic devices with similar structured dielectric devices are rarely found in the literature. In this work we show different methods to enhance the EOA...... silicon layer for certain optical wavelengths compared to metal strips. It is then demonstrated that by topology optimization it is possible to generate nonintuitive surface designs that perform even better than the simple strip designs for both silicon and metals. These results indicate that in general...... by optimizing the geometry of the surface structuring for both plasmonic and dielectric devices, and the optimized performances are compared. Two different problem types with periodic structures are considered. The first case shows that strips of silicon on a surface can increase the absorption in an underlying...

  8. Spoof Plasmon Hybridization

    CERN Document Server

    Zhang, Jingjing; Luo, Yu; Shen, Xiaopeng; Maier, Stefan A; Cui, Tie Jun

    2016-01-01

    Plasmon hybridization between closely spaced nanoparticles yields new hybrid modes not found in individual constituents, allowing for the engineering of resonance properties and field enhancement capabilities of metallic nanostructure. Experimental verifications of plasmon hybridization have been thus far mostly limited to optical frequencies, as metals cannot support surface plasmons at longer wavelengths. Here, we introduce the concept of 'spoof plasmon hybridization' in highly conductive metal structures and investigate experimentally the interaction of localized surface plasmon resonances (LSPR) in adjacent metal disks corrugated with subwavelength spiral patterns. We show that the hybridization results in the splitting of spoof plasmon modes into bonding and antibonding resonances analogous to molecular orbital rule and plasmonic hybridization in optical spectrum. These hybrid modes can be manipulated to produce enormous field enhancements (larger than 5000) by tuning the separation between disks or alte...

  9. Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures

    Science.gov (United States)

    Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Vabbina, Phani Kiran; Karabiyik, Mustafa; Pala, Nezih

    2017-08-01

    There have been extensive researches on terahertz (THz) plasmonic structures supporting resonant modes to demonstrate nano and microscale devices with high efficiency and responsivity as well as frequency selectivity. Here, using antisymmetric plasmonic fractal Y-shaped (FYS) structures as building blocks, we introduce a highly tunable four-member fractal assembly to support charge transfer plasmons (CTPs) and classical dipolar resonant modes with significant absorption cross section in the THz domain. We first present that the unique geometrical nature of the FYS system and corresponding spectral response allow for supporting intensified dipolar plasmonic modes under polarised light exposure in a standalone structure. In addition to classical dipolar mode, for the very first time, we demonstrated CTPs in the THz domain due to the direct shuttling of the charges across the metallic fractal microantenna which led to sharp resonant absorption peaks. Using both numerical and experimental studies, we have investigated and confirmed the excitation of the CTP modes and highly tunable spectral response of the proposed plasmonic fractal structure. This understanding opens new and promising horizons for tightly integrated THz devices with high efficiency and functionality.

  10. Spectrometer sensor using patterned nano-structure plasmon resonance grating (Conference Presentation)

    Science.gov (United States)

    Guo, Hong; Tian, Xueli; Guo, Junpeng

    2016-03-01

    Localized surface plasmon resonance has been extensively investigated for biochemical sensor applications. In traditional localized surface plasmon resonance biosensors, resonance spectra were measured in the reflection or transmission from the nanostructure devices. In this work, we demonstrate a new surface plasmon resonance sensor platform with which the localized surface plasmon resonance and shift were measured by using a CCD imager instead of using an optical spectrometer. In additional to the metal nanostructures which support localized plasmon resonance, we pattern the nanostructures into diffraction gratings with super-wavelength grating periods. The nanostructure diffraction gratings support localized plasmon resonance and also diffract localized plasmon resonance radiations into non-zeroth order diffractions. Plasmon resonance spectrum and shift are measured with a CCD imager in one of the diffraction orders. The new plasmon resonance spectrometer sensor combines the functions of sensing and spectral analysis into one apparatus and is capable of real-time visualization of the biochemical bonding process with an imager.

  11. Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Østergaard, John Erland

    2001-01-01

    PBG-based components within a few hundred micrometers, we realized that other two-dimensional waves, e.g., surface plasmon polaritons (SPPs), might be employed for the same purpose. The SPP band gap (SPPBG) has been observed for the textured silver surfaces by performing angular measurements...... of the surface reflectivity. Here we report the results of our experimental and theoretical investigations of waveguiding in the SPPBG structures....

  12. Surface-plasmons lasing in double-graphene-layer structures

    Energy Technology Data Exchange (ETDEWEB)

    Dubinov, A. A. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute for Physics of Microstructures of Russian Academy of Sciences, and Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Aleshkin, V. Ya. [Institute for Physics of Microstructures of Russian Academy of Sciences, and Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Ryzhii, V. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation); Shur, M. S. [Department of Electrical, Electronics, and System Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Otsuji, T. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan)

    2014-01-28

    We consider the concept of injection terahertz lasers based on double-graphene-layer (double-GL) structures with metal surface-plasmon waveguide and study the conditions of their operation. The laser under consideration exploits the resonant radiative transitions between GLs. This enables the double-GL laser room temperature operation and the possibility of voltage tuning of the emission spectrum. We compare the characteristics of the double-GL lasers with the metal surface-plasmon waveguides with those of such laser with the metal-metal waveguides.

  13. Investigation of nanogap localized field enhancement in gold plasmonic structures

    Science.gov (United States)

    Debu, Desalegn Tadesse; Bauman, Stephen; Saylor, Cameron; Novak, Eric; French, David; Herzog, Joseph

    2015-03-01

    Nanogaps between plasmonic structures allow confining the localized electric field with moreenhancements. Based on previously implemented two-step lithography process, we introducea nano-masking technique to fabricate nanostructrues and nanogaps for various geometrical patterns. This new method can fabricate gold nanostructures as well as nanogaps that are less than 10nm, below the limiting scale of lithography. Simulation from finite element method (FEM) shows strong gap dependence of optical properties and peak enhancement of these devices. The fabricated plasmonic nanostructure provides wide range of potential future application including highly sensitive optical antenna, surface enhanced Raman spectroscopy and biosensing.

  14. Grid sensitivity capability for large scale structures

    Science.gov (United States)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  15. Fundamental Properteries and Capabilities of Plasmonic Antennas for Efficient Interaction with Nanoeletronics

    Science.gov (United States)

    2015-08-20

    that notwithstanding any other provision of law , no person shall be subject to any oenalty for failing to comply with a collection of information if it...2014 13. M. Jarrahi, “Game-Changing Terahertz Sensor Technologies for Large-Scale Consumer Market,” Trillion Sensors Summit, San Diego, CA...Plasmonic Photoconductive Detectors,” Proc. 4th International Conference on Metamaterials, Photonic Crystals and Plasmonics, Sharjah, UAE , 18-22 March

  16. Coherent phenomena in terahertz 2D plasmonic structures: strong coupling, plasmonic crystals, and induced transparency by coupling of localized modes

    Science.gov (United States)

    Dyer, Gregory C.; Aizin, Gregory R.; Allen, S. James; Grine, Albert D.; Bethke, Don; Reno, John L.; Shaner, Eric A.

    2014-05-01

    The device applications of plasmonic systems such as graphene and two dimensional electron gases (2DEGs) in III-V heterostructures include terahertz detectors, mixers, oscillators and modulators. These two dimensional (2D) plasmonic systems are not only well-suited for device integration, but also enable the broad tunability of underdamped plasma excitations via an applied electric field. We present demonstrations of the coherent coupling of multiple voltage tuned GaAs/AlGaAs 2D plasmonic resonators under terahertz irradiation. By utilizing a plasmonic homodyne mixing mechanism to downconvert the near field of plasma waves to a DC signal, we directly detect the spectrum of coupled plasmonic micro-resonator structures at cryogenic temperatures. The 2DEG in the studied devices can be interpreted as a plasmonic waveguide where multiple gate terminals control the 2DEG kinetic inductance. When the gate tuning of the 2DEG is spatially periodic, a one-dimensional finite plasmonic crystal forms. This results in a subwavelength structure, much like a metamaterial element, that nonetheless Bragg scatters plasma waves from a repeated crystal unit cell. A 50% in situ tuning of the plasmonic crystal band edges is observed. By introducing gate-controlled defects or simply terminating the lattice, localized states arise in the plasmonic crystal. Inherent asymmetries at the finite crystal boundaries produce an induced transparency-like phenomenon due to the coupling of defect modes and crystal surface states known as Tamm states. The demonstrated active control of coupled plasmonic resonators opens previously unexplored avenues for sensitive direct and heterodyne THz detection, planar metamaterials, and slow-light devices.

  17. Tunable plasmon lensing in graphene-based structure exhibiting negative refraction

    OpenAIRE

    Zhong, Shifeng; Lu, Yanxin; Li, Chao; Xu, Haixia; Shi, Fenghua; Chen, Yihang

    2017-01-01

    We propose a novel method to achieve tunable plasmon focusing in graphene/photonic-crystal hybrid structure exhibiting all-angle negative refraction at terahertz frequencies. A two-dimensional photonic crystal composed of a square lattice of dielectric rods is constructed on the substrate of a graphene sheet to provide the hyperbolic dispersion relations of the graphene plasmon, giving rise to the all-angle plasmonic negative refraction. Plasmon lensing induced from the negative refraction is...

  18. Demonstrating the capability of the high-performance plasmonic gallium-graphene couple.

    Science.gov (United States)

    Losurdo, Maria; Yi, Congwen; Suvorova, Alexandra; Rubanov, Sergey; Kim, Tong-Ho; Giangregorio, Maria M; Jiao, Wenyuan; Bergmair, Iris; Bruno, Giovanni; Brown, April S

    2014-03-25

    Metal nanoparticle (NP)-graphene multifunctional platforms are of great interest for exploring strong light-graphene interactions enhanced by plasmons and for improving performance of numerous applications, such as sensing and catalysis. These platforms can also be used to carry out fundamental studies on charge transfer, and the findings can lead to new strategies for doping graphene. There have been a large number of studies on noble metal Au-graphene and Ag-graphene platforms that have shown their potential for a number of applications. These studies have also highlighted some drawbacks that must be overcome to realize high performance. Here we demonstrate the promise of plasmonic gallium (Ga) nanoparticle (NP)-graphene hybrids as a means of modulating the graphene Fermi level, creating tunable localized surface plasmon resonances and, consequently, creating high-performance surface-enhanced Raman scattering (SERS) platforms. Four prominent peculiarities of Ga, differentiating it from the commonly used noble (gold and silver) metals are (1) the ability to create tunable (from the UV to the visible) plasmonic platforms, (2) its chemical stability leading to long-lifetime plasmonic platforms, (3) its ability to n-type dope graphene, and (4) its weak chemical interaction with graphene, which preserves the integrity of the graphene lattice. As a result of these factors, a Ga NP-enhanced graphene Raman intensity effect has been observed. To further elucidate the roles of the electromagnetic enhancement (or plasmonic) mechanism in relation to electron transfer, we compare graphene-on-Ga NP and Ga NP-on-graphene SERS platforms using the cationic dye rhodamine B, a drug model biomolecule, as the analyte.

  19. Coherent phenomena in terahertz 2D plasmonic structures: strong coupling, plasmonic crystals, and induced transparency by coupling of localized modes

    CERN Document Server

    Dyer, Gregory C; Allen, S James; Grine, Albert D; Bethke, Don; Reno, John L; Shaner, Eric A

    2016-01-01

    The device applications of plasmonic systems such as graphene and two dimensional electron gases (2DEGs) in III-V heterostructures include terahertz detectors, mixers, oscillators and modulators. These two dimensional (2D) plasmonic systems are not only well-suited for device integration, but also enable the broad tunability of underdamped plasma excitations via an applied electric field. We present demonstrations of the coherent coupling of multiple voltage tuned GaAs/AlGaAs 2D plasmonic resonators under terahertz irradiation. By utilizing a plasmonic homodyne mixing mechanism to downconvert the near field of plasma waves to a DC signal, we directly detect the spectrum of coupled plasmonic micro-resonator structures at cryogenic temperatures. The 2DEG in the studied devices can be interpreted as a plasmonic waveguide where multiple gate terminals control the 2DEG kinetic inductance. When the gate tuning of the 2DEG is spatially periodic, a one-dimensional finite plasmonic crystal forms. This results in a sub...

  20. Study on Dielectric Function Models for Surface Plasmon Resonance Structure

    Directory of Open Access Journals (Sweden)

    Peyman Jahanshahi

    2014-01-01

    Full Text Available The most common permittivity function models are compared and identifying the best model for further studies is desired. For this study, simulations using several different models and an analytical analysis on a practical surface Plasmon structure were done with an accuracy of ∼94.4% with respect to experimental data. Finite element method, combined with dielectric properties extracted from the Brendel-Bormann function model, was utilized, the latter being chosen from a comparative study on four available models.

  1. Guiding of Plasmons and Phonons in Complex Three Dimensional Structures

    Science.gov (United States)

    2013-01-01

    photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Solar Energy Materials and Solar Cells 37...Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices (vol 9, pg 205, 2010). Nat Mater 9, 865-865 (2010). 59 Tegart, W. J., The...108 The corresponding porosity of the inverse opal structure is 1-86%*(1-0.74)=78% 109 King, J. S., Graugnard, E. & Summers, C. J. TiO2 Inverse

  2. Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Dadoenkova, Yuliya S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Novgorod State University, Veliky Novgorod (Russian Federation); Donetsk Institute for Physics and Technology, Donetsk (Ukraine); Moiseev, Sergey G. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Ulyanovsk (Russian Federation); Abramov, Aleksei S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kadochkin, Aleksei S.; Zolotovskii, Igor O. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Institute of Nanotechnologies of Microelectronics of the Russian Academy of Sciences, 32A Leninskiy Prosp., 119991, Moscow (Russian Federation); Fotiadi, Andrei A. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Universite de Mons (Belgium)

    2017-05-15

    A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far-infrared surface wave propagating along a semiconductor-dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing-down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Simple Method for Large-Scale Fabrication of Plasmonic Structures

    CERN Document Server

    Makarov, Sergey V; Mukhin, Ivan S; Shishkin, Ivan I; Mozharov, Alexey M; Krasnok, Alexander E; Belov, Pavel A

    2015-01-01

    A novel method for single-step, lithography-free, and large-scale laser writing of nanoparticle-based plasmonic structures has been developed. Changing energy of femtosecond laser pulses and thickness of irradiated gold film it is possible to vary diameter of the gold nanoparticles, while the distance between them can be varied by laser scanning parameters. This method has an advantage over the most previously demonstrated methods in its simplicity and versatility, while the quality of the structures is good enough for many applications. In particular, resonant light absorbtion/scattering and surface-enhanced Raman scattering have been demonstrated on the fabricated nanostructures.

  4. Broadband enhancement of spontaneous emission in a photonic-plasmonic structure

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xie, Fengxian; Shi, Lei

    2012-01-01

    We demonstrate that a broadband enhancement of spontaneous emission can be achieved within a photonic-plasmonic structure. The structure can strongly modify the spontaneous emission by exciting plasmonic modes. Because of the excited plasmonic modes, an enhancement up to 30 times is observed, lea......, leading to a 4 times broader emission spectrum. The reflectance measurement and the finite-difference time-domain simulation are carried out to support these results....

  5. Realization of Desired Plasmonic Structures via a Direct Laser Writing Technique

    Science.gov (United States)

    Tong, Quang Cong; Luong, Mai Hoang; Tran, Thi Mo; Remmel, Jacqueline; Do, Minh Thanh; Kieu, Duy Manh; Ghasemi, Rasta; Nguyen, Duc Tho; Lai, Ngoc Diep

    2016-11-01

    We present a recent investigation of fabrication of desired plasmonic structures. First, the polymeric templates were realized by a simple and low-cost fabrication technique based on direct laser writing with a continuous-wave laser source. The plasmonic structures have been then realized by two methods, namely, a combination of gold evaporation and lift-off techniques, and a combination of gold sputtering and thermal annealing techniques. Each method presents its own advantages. Numerous metallic submicro- and nano-structures have been realized, which should be very interesting for different applications, such as high-transmission bandpass filters, plasmonic data storage, and plasmonic photonic devices.

  6. Waveguiding in surface plasmon polariton band gap structures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Østergaard, John Erland; Leosson, Kristjan

    2001-01-01

    Using near-held optical microscopy, we investigate propagation and scattering of surface plasmon polaritons (SPP's) excited in the wavelength range of 780-820 nm at nanostructured gold-film surfaces with areas of 200-nm-wide scatterers arranged in a 400-nm-period triangular lattice containing line...... defects. We observe the SPP reflection by such an area and SPP guiding along line defects at 782 nm, as well as significant deterioration of these effects is 815 nm, thereby directly demonstrating the SPP band gap effect and showing first examples of SPP channel waveguides in surface band gap structures....

  7. Optical properties of a nanomatch-like plasmonic structure.

    Science.gov (United States)

    Cui, Xudong; Zhang, Weihua; Erni, Daniel; Dong, Lixin

    2010-08-01

    The optical properties of a match-like plasmonic nanostructure are numerically investigated using full-wave finite-difference time-domain analysis in conjunction with dispersive material models. This work is mainly motivated by the developed technique enabling reproducible fabrication of nanomatch structures as well as the growing applications that utilize the localized field enhancement in plasmonic nanostructures. Our research revealed that due to the pronounced field enhancement and larger resonance tunabilities, some nanomatch topologies show potentials for various applications in the field of, e.g., sensing as well as a novel scheme for highly reproducible tips in scanning near field optical microscopy, among others. Despite the additional degrees of freedom that are offered by the composite nature of the proposed nanomatch topology, the paper also reflects on a fundamental complication intrinsic to the material interfaces especially in the nanoscale: stoichiometric mixing. We conclude that the specificity in material modeling will become a significant issue in future research on functionalized composite nanostructures.

  8. Controlling Surface-plasmon-polariton Launching with Hot Spot Cylindrical Waves in a Metallic Slit Structure

    CERN Document Server

    Yao, Wenjie; Chen, Jianjun; Gong, Qihuang

    2015-01-01

    Plasmonic nanostructures, which are used to generate surface plasmon polaritions (SPPs), always involve sharp corners where the charges can accumulate. This can result in strong localized electromagnetic fields at the metallic corners, forming hot spots. The influence of the hot spots on the propagating SPPs are investigated theoretically and experimentally in a metallic slit structure. It is found that the electromagnetic fields radiated from the hot spots, termed as the hot spot cylindrical wave (HSCW), can greatly manipulate the SPP launching in the slit structure. The physical mechanism behind the manipulation of the SPP launching with the HSCW is explicated by a semi-analytic model. By using the HSCW, unidirectional SPP launching is experimentally realized in an ultra-small metallic step-slit structure. The HSCW bridges the localized surface plasmons and the propagating surface plasmons in an integrated platform and thus may pave a new route to the design of plasmonic devices and circuits.

  9. Application of Generalized Mie Theory to EELS Calculations as a Tool for Optimization of Plasmonic Structures

    DEFF Research Database (Denmark)

    Thomas, Stefan; Matyssek, Christian; Hergert, Wolfram

    2015-01-01

    Technical applications of plasmonic nanostructures require a careful structural optimization with respect to the desired functionality. The success of such optimizations strongly depends on the applied method. We extend the generalized multiparticle Mie (GMM) computational electromagnetic method ...... by the application of genetic algorithms combined with a simplex algorithm. The scheme is applied to the design of plasmonic filters....

  10. Tapered dielectric structure in metal as a wavelength-selective surface plasmon polariton focuser

    Institute of Scientific and Technical Information of China (English)

    Zhang Yang; Zhao Qing; Liao Zhi-Min; Yu Da-Peng

    2009-01-01

    Symmetric tapered dielectric structures in metal have demonstrated applications such as the nanofocusing of surface plasmon polaxitons, as well as the waveguiding of V-channel polaxitons. Yet the fabrication of smooth-surfaced tapered structure remains an obstacle to most researchers. We have successfully developed a handy method to fabricate metal-sandwiched tapered nanostructures simply with electron beam lithography. Though these structures are slightly different from conventional symmetric V-shaped structures, systematic simulations show that similar functionality of surface plasmon polaxiton nanofocusing can still be achieved, When parameters are properly selected, wavelengthselective nanofocusing of surface plasmon polaritons can be obtained.

  11. Surface Plasmon Polaritons of Two-Dimensional Three-Order Dendritic Structures

    Institute of Scientific and Technical Information of China (English)

    王敏凤; 周鲁卫

    2011-01-01

    We study surface plasmon polaritons excited on two-dimensional three-order dendritic structures. Previous studies show that split ring resonators (SRRs) can be used to obtain magnetic resonance, thus sustairdng surface waves behaving like surface plasmon polaritons (SPPs). In this paper, we obtain detailed results on surface plasmon polaritons of several different grating structures and theoretically prove that this kind of structures can sustain SPPs. Besides, since dendritic structures can be fabricated by double template-assisted electrochemical deposition, it is worth noting that fabrication of SPP-based materials might be much easier.

  12. The electronic structure of free aluminum clusters: metallicity and plasmons.

    Science.gov (United States)

    Andersson, Tomas; Zhang, Chaofan; Tchaplyguine, Maxim; Svensson, Svante; Mårtensson, Nils; Björneholm, Olle

    2012-05-28

    The electronic structure of free aluminum clusters with ∼3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

  13. The electronic structure of free aluminum clusters: Metallicity and plasmons

    Science.gov (United States)

    Andersson, Tomas; Zhang, Chaofan; Tchaplyguine, Maxim; Svensson, Svante; Mârtensson, Nils; Björneholm, Olle

    2012-05-01

    The electronic structure of free aluminum clusters with ˜3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

  14. Probing topological protection using a designer surface plasmon structure

    Science.gov (United States)

    Gao, Fei; Gao, Zhen; Shi, Xihang; Yang, Zhaoju; Lin, Xiao; Xu, Hongyi; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Lu, Ling; Chong, Yidong; Zhang, Baile

    2016-01-01

    Topological photonic states, inspired by robust chiral edge states in topological insulators, have recently been demonstrated in a few photonic systems, including an array of coupled on-chip ring resonators at communication wavelengths. However, the intrinsic difference between electrons and photons determines that the ‘topological protection' in time-reversal-invariant photonic systems does not share the same robustness as its counterpart in electronic topological insulators. Here in a designer surface plasmon platform consisting of tunable metallic sub-wavelength structures, we construct photonic topological edge states and probe their robustness against a variety of defect classes, including some common time-reversal-invariant photonic defects that can break the topological protection, but do not exist in electronic topological insulators. This is also an experimental realization of anomalous Floquet topological edge states, whose topological phase cannot be predicted by the usual Chern number topological invariants. PMID:27197877

  15. Femtosecond Snapshots of quantum mechanics at work in plasmonic nano-structures

    Science.gov (United States)

    Carbone, Fabrizio

    Ultrafast Transmission Electron Microscopy enabled a new technique (Photon-Induced Near Field Electron Microscopy, PINEM), capable of controlling electromagnetic fields confined on the surface of nanostructures and image their properties with nm-resolution in direct space and fs resolution in time. In this presentation, we will show some recent results where the standing wave formed by the plasmonic field confined on the surface of one silver nano-wire was imaged together with its energy exchange with the imaging electrons. In these results, both the interference and the quantization of the plasmonic near field could be imaged simultaneously, revealing both a quantum and a classical aspect of the electromagnetic field in one snapshot. The implications of these results will be discussed, and we will also present new ideas and methodologies to go beyond such an experiment and image the interaction between single electrons and single plasmons. We will also show that shaping the electron density in a thin film via light pulses is possible by taking advantage of the plasmon-plasmon interference and the ability of light polarization to control the excitation of different plasmonic field geometries in ad hoc designed nanostructures. Movies of the propagation of plasmons will also be presented, providing insights into their speed, propagation losses and the effect of confinment. This work was supported by an ERC Grant USED.

  16. Plasmonic structure integrated single-photon detector configurations to improve absorptance and polarization contrast

    CERN Document Server

    Csete, Maria; Szenes, Andras; Szalai, Aniko; Szabo, Gabor

    2014-01-01

    Configurations capable of maximizing both absorptance and polarization contrast were determined for 1550 nm polarized light illumination of different plasmonic structure integrated superconducting nanowire single-photon detectors (SNSPDs) consisting of p=264 nm and P=792 nm periodic niobium-nitride (NbN) patterns on silica substrate. Global NbN absorptance maxima appear in case of p/s-polarized light illumination in S/P-orientation (gamma=90 azimuthal angle) and the highest polarization contrast is attained in S-orientation of all devices. Common nanophotonical origin of absorptance enhancement is collective resonance on nano-cavity-gratings with different profiles, which is promoted by coupling between localized modes in quarter wavelength MIM nano-cavities and laterally synchronized Brewster-Zenneck-type surface waves in integrated SNSPDs possessing a three-quarter-wavelength-scaled periodicity. The spectral sensitivity and dispersion characteristics reveal that device design specific optimal configurations...

  17. Plasmonic colour generation

    DEFF Research Database (Denmark)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.

    2016-01-01

    Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic...

  18. Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Byoungho Lee

    2011-01-01

    Full Text Available The performance of bio-chemical sensing devices has been greatly improved by the development of surface plasmon resonance (SPR based sensors. Advancements in micro- and nano-fabrication technologies have led to a variety of structures in SPR sensing systems being proposed. In this review, SPR sensors (from typical Kretschmann prism configurations to fiber sensor schemes with micro- or nano-structures for local light field enhancement, extraordinary optical transmission, interference of surface plasmon waves, plasmonic cavities, etc. are discussed. We summarize and compare their performances and present guidelines for the design of SPR sensors.

  19. Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Wagner, Jakob Birkedal; Kneipp, Harald;

    2013-01-01

    Large metal nanostructures with subnanometer interparticle separations (gaps) can provide extremely high local fields and are of particular interest in surface enhanced spectroscopy, as well as for basic understanding of plasmonics. In this experimental electron energy loss study, we monitor the ...

  20. Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure

    Science.gov (United States)

    Lumdee, Chatdanai; Kik, Pieter G.

    2016-06-01

    The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.

  1. Enhancement of electron hot spot relaxation in photoexcited plasmonic structures by thermal diffusion

    CERN Document Server

    Spitzer, F; Belotelov, V I; Vondran, J; Akimov, I A; Kasture, S; Achanta, V G; Yakovlev, D R; Bayer, M

    2016-01-01

    We demonstrate that in confined plasmonic metal structures subject to ultra-fast laser excitation electron thermal diffusion can provide relaxation faster than the energy transfer to the lattice. This relaxation occurs due to excitation of nanometer-sized hot spots in the confined structure and the sensitivity of its optical parameters to the perturbation in these regions. Both factors become essential when the plasmonic resonance condition is met for both excitation and detection. A pump-probe experiment on plasmonic gold lattices shows sub-picosecond relaxation with the characteristic times well-described by a two-temperature model. The results suggest that dynamical optical response in plasmonic structures can be tuned by selection of the structural geometry as well as the choice of wavelength and polarization of the excitation and detection light.

  2. Counterintuitive dispersion effect near surface plasmon resonances in Otto structures

    Science.gov (United States)

    Wang, Lin; Wang, Li-Gang; Ye, Lin-Hua; Al-Amri, M.; Zhu, Shi-Yao; Zubairy, M. Suhail

    2016-07-01

    In this paper, we investigate the counterintuitive dispersion effect associated with the poles and zeros of reflection and transmission functions in an Otto configuration when a surface plasmon resonance is excited. We show that the zeros and/or poles in the reflection and transmission functions may move into the upper-half complex-frequency plane (CFP), and these locations of the zeros and poles determine the dispersion properties of the whole structures (i.e., the frequency-dependent change of both reflected and transmitted phases). Meanwhile, we demonstrate various dispersion effects (both normal and abnormal) related to the changes of the poles and zeros in both reflection and transmission functions when considering the properties of metal substrates. For a realistic metal substrate in an Otto structure, there are the optimal thickness and incident angle, which correspond to the transitions of the zeros in the reflection function from the upper-half to lower-half CFP. These properties may be helpful to manipulate light propagation in optical devices.

  3. Plasmonic Structures for CMOS Photonics and Control of Spontaneous Emission

    Science.gov (United States)

    2013-04-01

    Red, Green, Blue, Yellow, Magenta, Cyan) averaged CIE Delta-E 2000 = 16.6-19.3 after a white balance and color matrix correction is applied to the...insertion loss and also metal-insulator-metal waveguides; iii) developed a full format CMOS image sensor with plasmonic color filters; iv) explored... color filters and demonstration of imaging. v. Design of a plasMOStor plasmonic switching device, with low insertion loss, implemented in CMOS Si

  4. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.

    Science.gov (United States)

    Das, Ritwick; Srivastava, Triranjita; Jha, Rajan

    2014-02-15

    The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900  nm/RIU with high detection accuracy (≥30  μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.

  5. Fabrication of two-dimensional visible wavelength nanoscale plasmonic structures using hydrogen silsesquioxane based resist

    Science.gov (United States)

    Smith, Kyle Z.; Gadde, Akshitha; Kadiyala, Anand; Dawson, Jeremy M.

    2016-03-01

    In recent years, the global market for biosensors has continued to increase in combination with their expanding use in areas such as biodefense/detection, home diagnostics, biometric identification, etc. A constant necessity for inexpensive, portable bio-sensing methods, while still remaining simple to understand and operate, is the motivation behind novel concepts and designs. Labeled visible spectrum bio-sensing systems provide instant feedback that is both simple and easy to work with, but are limited by the light intensity thresholds required by the imaging systems. In comparison, label-free bio-sensing systems and other detection modalities like electrochemical, frequency resonance, thermal change, etc., can require additional technical processing steps to convey the final result, increasing the system's complexity and possibly the time required for analysis. Further decrease in the detection limit can be achieved through the addition of plasmonic structures into labeled bio-sensing systems. Nano-structures that operate in the visible spectrum have feature sizes typically in the order of the operating wavelength, calling for high aspect ratio nanoscale fabrication capabilities. In order to achieve these dimensions, electron beam lithography (EBL) is used due to its accurate feature production. Hydrogen silsesquioxane (HSQ) based electron beam resist is chosen for one of its benefits, which is after exposure to oxygen plasma, the patterned resist cures into silicon dioxide (SiO2). These cured features in conjunction with nanoscale gold particles help in producing a high electric field through dipole generation. In this work, a detailed process flow of the fabrication of square lattice of plasmonic structures comprising of gold coated silicon dioxide pillars designed to operate at 560 nm wavelength and produce an intensity increase of roughly 100 percent will be presented.

  6. Tunable plasmon lensing in graphene-based structure exhibiting negative refraction

    Science.gov (United States)

    Zhong, Shifeng; Lu, Yanxin; Li, Chao; Xu, Haixia; Shi, Fenghua; Chen, Yihang

    2017-02-01

    We propose a novel method to achieve tunable plasmon focusing in graphene/photonic-crystal hybrid structure exhibiting all-angle negative refraction at terahertz frequencies. A two-dimensional photonic crystal composed of a square lattice of dielectric rods is constructed on the substrate of a graphene sheet to provide the hyperbolic dispersion relations of the graphene plasmon, giving rise to the all-angle plasmonic negative refraction. Plasmon lensing induced from the negative refraction is observed. We show that the ultracompact graphene-based system can produce sub-diffraction-limited images with the resolution significant smaller than the wavelength of the incident terahertz wave. Moreover, by adjusting the Fermi energy of the graphene, the imaging performance of the proposed system can remain almost invariant for different frequencies. Our results may find applications in diverse fields such as subwavelength spatial light manipulation, biological imaging, and so forth.

  7. Tunable plasmon lensing in graphene-based structure exhibiting negative refraction

    Science.gov (United States)

    Zhong, Shifeng; Lu, Yanxin; Li, Chao; Xu, Haixia; Shi, Fenghua; Chen, Yihang

    2017-01-01

    We propose a novel method to achieve tunable plasmon focusing in graphene/photonic-crystal hybrid structure exhibiting all-angle negative refraction at terahertz frequencies. A two-dimensional photonic crystal composed of a square lattice of dielectric rods is constructed on the substrate of a graphene sheet to provide the hyperbolic dispersion relations of the graphene plasmon, giving rise to the all-angle plasmonic negative refraction. Plasmon lensing induced from the negative refraction is observed. We show that the ultracompact graphene-based system can produce sub-diffraction-limited images with the resolution significant smaller than the wavelength of the incident terahertz wave. Moreover, by adjusting the Fermi energy of the graphene, the imaging performance of the proposed system can remain almost invariant for different frequencies. Our results may find applications in diverse fields such as subwavelength spatial light manipulation, biological imaging, and so forth. PMID:28150750

  8. Modern plasmonics

    CERN Document Server

    Maradudin, Alexei A; Barnes, William L

    2014-01-01

    Plasmonics is entering the curriculum of many universities, either as a stand alone subject, or as part of some course or courses. Nanotechnology institutes have been, and are being, established in universities, in which plasmonics is a significant topic of research. Modern Plasmonics book offers a comprehensive presentation of the properties of surface plasmon polaritons, in systems of different structures and various natures, e.g. active, nonlinear, graded, theoretical/computational and experimental techniques for studying them, and their use in a variety of applications. Contains materia

  9. Photonic and plasmonic structures for enhancing efficiency of thin film silicon solar cells

    Science.gov (United States)

    Pattnaik, Sambit

    Crystalline silicon solar cells use high cost processing techniques as well as thick materials that are ˜ 200µm thick to convert solar energy into electricity. From a cost viewpoint, it is highly advantageous to use thin film solar cells which are generally made in the range of 0.1-3µm in thickness. Due to this low thickness, the quantity of material is greatly reduced and so is the number and complexity of steps involved to complete a device, thereby allowing a continuous processing capability improving the throughput and hence greatly decreasing the cost. This also leads to faster payback time for the end user of the photovoltaic panel. In addition, due to the low thickness and the possibility of deposition on flexible foils, the photovoltaic (PV) modules can be flexible. Such flexible PV modules are well suited for building-integrated applications and for portable, foldable, PV power products. For economical applications of solar cells, high efficiency is an important consideration. Since Si is an indirect bandgap material, a thin film of Si needs efficient light trapping to achieve high optical absorption. The previous work in this field has been mostly based on randomly textured back reflectors. In this work, we have used a novel approach, a periodic photonic and plasmonic structure, to optimize current density of the devices by absorbing longer wavelengths without hampering other properties. The two dimensional diffraction effect generated by a periodic structure with the plasmonic light concentration achieved by silver cones to efficiently propagate light in the plane at the back surface of a solar cell, achieves a significant increase in optical absorption. Using such structures, we achieved a 50%+ increase in short circuit current in a nano-crystalline (nc-Si) solar cell relative to stainless steel. In addition to nc-Si solar cells on stainless steel, we have also used the periodic photonic structure to enhance optical absorption in amorphous cells and

  10. 3D plasmonic nanostar structures for recyclable SERS applications

    DEFF Research Database (Denmark)

    Chirumamilla, Manohar; Gopalakrishnan, Anisha; Toma, Andrea;

    2015-01-01

    Nanofabrication of metallic nanostructures/nanoparticles enables the detection of analyte molecules at ultra-low concentrations with the aid of plasmon induced hot-spots. The high fabrication cost and large fabrication time of nanostructures limit their usage in practical applications. Here we pr...

  11. Bend loss in surface plasmon polariton band-gap structures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Leosson, Kristjan

    2001-01-01

    Using near-field optical microscopy, we investigate propagation of surface plasmon polaritons (SPPs) excited in the wavelength range of 720-830 nm at a corrugated gold-film surface with areas of 200-nm-wide and 45-nm-high scatterers arranged in a 410-nm-period triangular lattice containing line...

  12. Collective phenomena in photonic, plasmonic and hybrid structures.

    Science.gov (United States)

    Boriskina, Svetlana V; Povinelli, Michelle; Astratov, Vasily N; Zayats, Anatoly V; Podolskiy, Viktor A

    2011-10-24

    Preface to a focus issue of invited articles that review recent progress in studying the fundamental physics of collective phenomena associated with coupling of confined photonic, plasmonic, electronic and phononic states and in exploiting these phenomena to engineer novel devices for light generation, optical sensing, and information processing. © 2011 Optical Society of America

  13. A method for reduction of propagation loss of surface plasmons. Experimental demonstration of the loss reduction for Fe/MgO/AlGaAs plasmonic structure integrated with AlGaAs/GaAs optical waveguide

    CERN Document Server

    Zayets, V; Ando, K; Yuasa, S

    2015-01-01

    A method for the substantial reduction of propagation loss of surface plasmons was proposed and experimentally demonstrated. The method is based on the fact that the propagation loss of the surface plasmons depends significantly on the optical confinement of the plasmon. A plasmonic structure, which contains a metal and two dielectric layers of different refractive indexes, is proposed in order to optimize optical confinement and to reduce propagation loss of the surface plasmons. A low propagation loss of 0.17 dB/um for a surface plasmon in a Fe/MgO/AlGaAs plasmonic structure was achieved. A good coupling efficiency of 2.2 dB/facet between a surface plasmon in Fe/MgO/AlGaAs and a waveguide mode in AlGaAs/GaAs optical waveguide was demonstrated.

  14. Analysis of surface plasmon waves in metaldielectric- metal structures and the criterion for negative refractive index.

    Science.gov (United States)

    Yang, Tian; Crozier, Kenneth B

    2009-01-19

    Surface plasmon waves in metal-dielectric-metal structures have been theoretically examined. Because of the existence of evanescent waves that can have comparable or smaller decay rates than the propagating waves, the sign of dispersion does not necessarily indicate the sign of effective refractive index for these structures. By using the direction of energy decay to distinguish the sign of index, we have obtained different results and insights from previous reports. We also propose an approach to increase the bandwidth and decrease the loss of negative index surface Plasmon propagation in the MDM structure, by simply changing the properties of its dielectric layer.

  15. Effects of intermediate plasmonic structures on the performance of ultra-thin-film tandem solar cells

    Science.gov (United States)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2017-02-01

    Although solar cells can meet the increasing demand for energy of modern world, their usage is not as widespread as expected because of their high production cost and low efficiency. Thin-film and ultra-thin-film solar cells with single and multiple active layers are being investigated to reduce cost. Additionally, multiple active layers of different energy bandgaps are used in tandem in order to absorb the solar spectra more efficiently. However, the efficiency of ultra-thin-film tandem solar cells may suffer significantly mainly because of low photon absorption and current mismatch between active layers. In this work, we study the effects of intermediate plasmonic structures on the performance of ultra-thin-film tandem solar cells. We consider three structures| each with a top amorphous silicon layer and a bottom micro-crystalline silicon layer, and an intermediate plasmonic layer between them. The intermediate layer is either a metal layer with periodic holes or periodic metal strips or periodic metal nano-clusters. Using a finite difference time domain technique for incident AM 1.5 solar spectra, we show that these intermediate layers help to excite different plasmonic and photonic modes for different light polarizations, and thereby, increase the absorption of light significantly. We find that the short-circuit current density increases by 12%, 6%, and 9% when the intermediate plasmonic structure is a metal hole-array, strips, and nano-clusters, respectively, from that of a structure that does not have the intermediate plasmonic layer.

  16. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    Science.gov (United States)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev

  17. Octave-wide photonic band gap in three-dimensional plasmonic Bragg structures and limitations of radiative coupling.

    Science.gov (United States)

    Taubert, Richard; Dregely, Daniel; Stroucken, Tineke; Christ, Andre; Giessen, Harald

    2012-02-21

    Radiative coupling between oscillators is one of the most fundamental subjects of research in optics, where particularly a Bragg-type arrangement is of interest and has already been applied to atoms and excitons in quantum wells. Here we explore this arrangement in a plasmonic structure. We observe the emergence of an octave-wide photonic band gap in the optical regime. Compared with atomic or excitonic systems, the coupling efficiency of the particle plasmons utilized here is several orders of magnitude larger and widely tunable by changing the size and geometry of the plasmonic nanowires. We are thus able to explore the regime where the coupling distance is even limited by the large radiative decay rate of the oscillators. This Bragg-stacked coupling scheme will open a new route for future plasmonic applications such as far-field coupling to quantum emitters without quenching, plasmonic cavity structures and plasmonic distributed gain schemes for spasers.

  18. Laser Induced Periodic Surface Structures induced by surface plasmons coupled via roughness

    Science.gov (United States)

    Gurevich, E. L.; Gurevich, S. V.

    2014-05-01

    In this paper the formation mechanisms of the femtosecond laser-induced periodic surface structures (LIPSS) are discussed. One of the most frequently used theories explains the structures by interference between the incident laser beam and surface plasmon-polariton waves. The latter is most commonly attributed to the coupling of the incident laser light to the surface roughness. We demonstrate that this excitation of surface plasmons contradicts the results of laser-ablation experiments. As an alternative approach to the excitation of LIPSS we analyse development of hydrodynamic instabilities in the melt layer.

  19. Laser Induced Periodic Surface Structures induced by surface plasmons coupled via roughness

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, E.L., E-mail: gurevich@lat.rub.de [Chair of Applied Laser Technology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum (Germany); Gurevich, S.V., E-mail: gurevics@uni-muenster.de [Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Straße 9, 48149 Münster (Germany)

    2014-05-01

    In this paper the formation mechanisms of the femtosecond laser-induced periodic surface structures (LIPSS) are discussed. One of the most frequently used theories explains the structures by interference between the incident laser beam and surface plasmon-polariton waves. The latter is most commonly attributed to the coupling of the incident laser light to the surface roughness. We demonstrate that this excitation of surface plasmons contradicts the results of laser-ablation experiments. As an alternative approach to the excitation of LIPSS we analyse development of hydrodynamic instabilities in the melt layer.

  20. Polarization independent and tunable plasmonic structure for mimicking electromagnetically induced transparency in the reflectance spectrum

    Science.gov (United States)

    Guo, B. S.; Loo, Y. L.; Ong, C. K.

    2017-10-01

    This paper proposes a plasmonic metamaterial that is able to mimic electromagnetically induced transparency in the reflectance spectrum within the GHz frequency range. Each meta-atom consists of a cross-slot structure as the bright resonator positioned on one side of the FR-4 substrate, and four spiral structures as the dark resonator located on the opposite side. Free space experimental results demonstrate that at normal incidence of plane wave, the metamaterial possesses the properties of tunability and polarization independence. In addition, based on simulation results the metamaterial also possesses slow wave property, with group refractive index of 56; and refractive-index-based sensing capability, with figure of merit of 6.1. In the strong coupling configuration, the plasma frequency and coupling constant of the metamaterial were calculated to be approximately 5.4 × 1010 rad s-1 and 9.8 × 109 rad s-1 respectively. While the respective damping constants of the bright resonator and dark resonator were calculated to be approximately 4.6 × 1010 rad s-1 and 1.9 × 1010 rad s-1.

  1. Extension of standard transfer-matrix method for three-wave mixing for plasmonic structures

    Science.gov (United States)

    Loot, A.; Hizhnyakov, V.

    2017-03-01

    Fast and accurate modeling of three-wave mixing processes in arbitrary stratified medium has significant practical and scientific importance. Several attempts to generalize transfer-matrix method (TMM) for nonlinear interactions have been made; however, none suits for easy-to-use modeling of plasmonic structures which requires oblique angle of incidence, p-polarization and minimal approximations. In this work, an easy-to-use extension to standard TMM is proposed. The proposed method is used to study the strength of unconventional plasmonic enhancement of second harmonic generation.

  2. Plasmonic Structure Integrated Single-Photon Detector Configurations to Improve Absorptance and Polarization Contrast

    Directory of Open Access Journals (Sweden)

    Mária Csete

    2015-02-01

    Full Text Available Configurations capable of maximizing both the absorption component of system detection efficiency and the achievable polarization contrast were determined for 1550 nm polarized light illumination of different plasmonic structure integrated superconducting nanowire single-photon detectors (SNSPDs consisting of p = 264 nm and P = 792 nm periodic niobium nitride (NbN patterns on silica substrate. Global effective NbN absorptance maxima appear in case of p/s-polarized light illumination in S/P-orientation (γ = 90°/0° azimuthal angle and the highest polarization contrast is attained in S-orientation of all devices. Common nanophotonical origin of absorptance enhancement is collective resonance on nanocavity gratings with different profiles, which is promoted by coupling between localized modes in quarter-wavelength metal-insulator-metal nanocavities and laterally synchronized Brewster-Zenneck-type surface waves in integrated SNSPDs possessing a three-quarter-wavelength-scaled periodicity. The spectral sensitivity and dispersion characteristics reveal that device design specific optimal configurations exist.

  3. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance.

    Science.gov (United States)

    Liu, C H; Hong, M H; Cheung, H W; Zhang, F; Huang, Z Q; Tan, L S; Hor, T S A

    2008-07-07

    Tuning of surface plasmon resonance by gold and silver bimetallic thin film and bimetallic dot array is investigated. Laser interference lithography is applied to fabricate the nanostructures. A bimetallic dot structure is obtained by a lift-off procedure after gold and silver thin film deposition by an electron beam evaporator. Surface plasmon behaviors of these films and nanostructures are studied using UV-Vis spectroscopy. It is observed that for gold thin film on quartz substrate, the optical spectral peak is blue shifted when a silver thin film is coated over it. Compared to the plasmon band in single metal gold dot array, the bimetallic nanodot array shows a similar blue shift in its spectral peak. These shifts are both attributed to the interaction between gold and silver atoms. Electromagnetic interaction between gold and silver nanostructures is discussed using a simplified spring model.

  4. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Daniel R.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390 (United States)

    2015-12-07

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.

  5. Hierarchical structural control of visual properties in self-assembled photonic-plasmonic pigments

    CERN Document Server

    Koay, Natalie; Kay, Theresa M; Nerger, Bryan A; Miles-Rossouw, Malaika; Shirman, Tanya; Vu, Thy L; England, Grant; Phillips, Katherine R; Utech, Stefanie; Vogel, Nicolas; Kolle, Mathias; Aizenberg, Joanna

    2014-01-01

    We present a simple one-pot co-assembly method for the synthesis of hierarchically structured pigment particles consisting of silica inverse-opal bricks that are doped with plasmonic absorbers. We study the interplay between the plasmonic and photonic resonances and their effect on the visual appearance of macroscopic collections of photonic bricks that are distributed in randomized orientations. Manipulating the pore geometry tunes the wavelength- and angle-dependence of the scattering profile, which can be engineered to produce angle-dependent Bragg resonances that can either enhance or contrast with the color produced by the plasmonic absorber. By controlling the overall dimensions of the photonic bricks and their aspect ratios, their preferential alignment can either be encouraged or suppressed. This causes the Bragg resonance to appear either as uniform color travel in the former case or as sparse iridescent sparkle in the later case. By manipulating the surface chemistry of these photonic bricks, which ...

  6. A comprehensive study for the plasmonic thin-film solar cell with periodic structure.

    Science.gov (United States)

    Sha, Wei E I; Choy, Wallace C H; Chew, Weng Cho

    2010-03-15

    A comprehensive study of the plasmonic thin-film solar cell with the periodic strip structure is presented in this paper. The finite-difference frequency-domain method is employed to discretize the inhomogeneous wave function for modeling the solar cell. In particular, the hybrid absorbing boundary condition and the one-sided difference scheme are adopted. The parameter extraction methods for the zeroth-order reflectance and the absorbed power density are also discussed, which is important for testing and optimizing the solar cell design. For the numerical results, the physics of the absorption peaks of the amorphous silicon thin-film solar cell are explained by electromagnetic theory; these peaks correspond to the waveguide mode, Floquet mode, surface plasmon resonance, and the constructively interference between adjacent metal strips. The work is therefore important for the theoretical study and optimized design of the plasmonic thin-film solar cell.

  7. Resonant terahertz absorption by plasmons in grating-gate GaN HEMT structures

    Science.gov (United States)

    Muravjov, A. V.; Veksler, D. B.; Hu, X.; Gaska, R.; Pala, N.; Saxena, H.; Peale, R. E.; Shur, M. S.

    2009-05-01

    Pronounced resonant absorption and frequency dispersion associated with an excitation of collective 2D plasmons have been observed in terahertz (0.5-4THz) transmission spectra of grating-gate 2D electron gas AlGaN/GaN HEMT (high electron mobility transistor) structures at cryogenic temperatures. The resonance frequencies correspond to plasmons with wavevectors equal to the reciprocal-lattice vectors of the metal grating, which serves both as a gate electrode for the HEMT and a coupler between plasmons and incident terahertz radiation. The resonances are tunable by changing the applied gate voltage, which controls 2D electron gas concentration in the channel. The effect can be used for resonant detection of terahertz radiation and for "on-chip" terahertz spectroscopy.

  8. Frequency-dependent optical steering from subwavelength plasmonic structures.

    Science.gov (United States)

    Djalalian-Assl, A; Gómez, D E; Roberts, A; Davis, T J

    2012-10-15

    We show theoretically and with numerical simulations that the direction of the in-plane scattering from a subwavelength optical antenna system can be controlled by the frequency of the incident light. This optical steering effect does not rely on propagation phase shifts or diffraction but arises from phase shifts in the localized surface plasmon modes of the antenna. An analytical model is developed to optimize the parameters for the configuration, showing good agreement with a rigorous numerical simulation. The simulation predicts a 25° angular shift in the direction of the light scattered from two gold nanorods for a wavelength change of 12 nm.

  9. Plasmon-mediated synthesis of silver cubes with unusual twinning structures using short wavelength excitation.

    Science.gov (United States)

    Personick, Michelle L; Langille, Mark R; Zhang, Jian; Wu, Jinsong; Li, Shuyou; Mirkin, Chad A

    2013-06-10

    The plasmon-mediated synthesis of silver nanoparticles is a versatile synthetic method which leverages the localized surface plasmon resonance (LSPR) of nanoscale silver to generate particles with non-spherical shapes and control over dimensions. Herein, a method is reported for controlling the twinning structure of silver nanoparticles, and consequently their shape, via the plasmon-mediated synthesis, solely by varying the excitation wavelength between 400, 450, and 500 nm, which modulates the rate of Ag⁺ reduction. Shorter, higher energy excitation wavelengths lead to faster rates of reaction, which in turn yield structures containing a greater number of twin boundaries. With this method, silver cubes can be synthesized using 450 nm excitation, which represents the first time this shape has been realized by a plasmon-mediated synthetic approach. In addition, these cubes contain an unusual twinning structure composed of two intersecting twin boundaries or multiple parallel twin boundaries. With respect to their twinning structure, these cubes fall between planar-twinned and multiply twinned nanoparticles, which are synthesized using 500 and 400 nm excitation, respectively.

  10. Engineered/tailored nanoporous gold structures for infrared plasmonics

    Science.gov (United States)

    Garoli, Denis; Calandrini, Eugenio; Cattarin, Sandro; Barison, Simona; Zilio, Pierfrancesco; Bozzola, Angelo; Toma, Andrea; De Angelis, Francesco

    2015-08-01

    Nanoporous gold is a very promising and novel material platform for mid-infrared and THz plasmonics. Nanoporous gold can be formed by dealloying of Au-Ag alloys, previously grown by means of Ag-Au co-sputtering. The optical response is completely determined by the nanostructural film features, that depends on the initial alloy composition and on the preparation procedure. The behavior of the material in mid-infrared and its peculiar morphology with a very high surface/volume ratio can be applied for nanostructure fabrication, such for example nanoantennas. Here we report the design and fabrication of nanoporous antennas engineered to support resonances in the 1500-1700 cm-1 range where them can be exploited, for example, in the detection of protein conformational states. This novel paradigm points toward the development of a new class of efficient and high-selective biosensors.

  11. Nonlocal extensions of the electromagnetic response of plasmonic and metamaterial structures

    Science.gov (United States)

    Shvonski, Alexander J.; Kong, Jiantao; Kempa, Krzysztof

    2017-01-01

    Nonlocal effects, requiring wave-vector- (q -) dependent dielectric response functions, are becoming increasingly important in studies of plasmonic and metamaterial structures. The phenomenological hydrodynamic approximation is the simplest and most often used model but with limited applicability to problems involving surface plasmons. We show here that the d -function formalism, exact to first order in q , is a powerful and simple-to-use alternative, which allows for exact nonlocal extensions of local calculation schemes, e.g., finite-difference time-domain methods, without code changes. It is also extendable to order q2, and we demonstrate this by comparing with various earlier ab initio calculations and experiments as well as by performing our own random-phase-approximation calculations (valid for all q ) of the surface-plasmon dispersions for simple metals with various electron-gas densities. Finally we show that this hydrodynamic-extended d -function formalism can also be applied to arbitrary plasmonic/metamaterial structures as long as the nonflat interfaces can be modeled as effective media films.

  12. An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry

    Energy Technology Data Exchange (ETDEWEB)

    Awal, M. A.; Ahmed, Zabir [Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205 (Bangladesh); Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd [Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205 (Bangladesh); Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 (United States)

    2015-02-14

    We show that a silicon thin-film photovoltaic structure with silicon strips on the top and grooves on the silver back contact layer can absorb incident solar energy over a broad spectral range. The silicon strips on the top scatter the incident light and significantly help couple to the photonic modes in the smaller wavelength range. The grooves on the silver back contact layer both scatter the incident light and help couple to the photonic modes and resonant surface plasmon polaritons. We find an increase of ∼46% in total integrated solar absorption in the proposed strip-loaded structure compared to that in a planar thin film structure of same dimensions. The proposed structure offers simpler fabrication compared to similar plasmonic-inspired designs.

  13. An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry

    Science.gov (United States)

    Awal, M. A.; Ahmed, Zabir; Talukder, Muhammad Anisuzzaman

    2015-02-01

    We show that a silicon thin-film photovoltaic structure with silicon strips on the top and grooves on the silver back contact layer can absorb incident solar energy over a broad spectral range. The silicon strips on the top scatter the incident light and significantly help couple to the photonic modes in the smaller wavelength range. The grooves on the silver back contact layer both scatter the incident light and help couple to the photonic modes and resonant surface plasmon polaritons. We find an increase of ˜46% in total integrated solar absorption in the proposed strip-loaded structure compared to that in a planar thin film structure of same dimensions. The proposed structure offers simpler fabrication compared to similar plasmonic-inspired designs.

  14. Plasmonic optical nanotweezers

    Science.gov (United States)

    Kotb, Rehab; El Maklizi, Mahmoud; Ismail, Yehea; Swillam, Mohamed A.

    2017-02-01

    Plasmonic grating structures can be used in many applications such as nanolithography and optical trapping. In this paper, we used plasmonic grating as optical tweezers to trap and manipulate dielectric nano-particles. Different plasmonic grating structures with single, double, and triple slits have been investigated and analyzed. The three configurations are optimized and compared to find the best candidate to trap and manipulate nanoparticles. The three optimized structures results in capability to super focusing and beaming the light effectively beyond the diffraction limit. A high transverse gradient optical force is obtained using the triple slit configuration that managed to significantly enhance the field and its gradient. Therefore, it has been chosen as an efficient optical tweezers. This structure managed to trap sub10nm particles efficiently. The resultant 50KT potential well traps the nano particles stably. The proposed structure is used also to manipulate the nano-particles by simply changing the angle of the incident light. We managed to control the movement of nano particle over an area of (5μm x 5μm) precisely. The proposed structure has the advantage of trapping and manipulating the particles outside the structure (not inside the structure such as the most proposed optical tweezers). As a result, it can be used in many applications such as drug delivery and biomedical analysis.

  15. Polarization dependence of the metamagnetic resonance of cut-wire-pair structure by using plasmon hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Dung, Nguyen Van; Yoo, Young Joon; Lee, Young Pak [Hanyang University, Seoul (Korea, Republic of); Tung, Nguyen Thanh [KU Leuven, Leuven (Belgium); Tung, Bui Son; Lam, Vu Dinh [Vietnam Academy of Science and Technology, Hanoi (Viet Nam)

    2014-07-15

    The influence of lattice constants on the electromagnetic behavior of a cut-wire-pair (CWP) structure has been elucidated. In this report, we performed both simulations and experiments to determine the influence of polarization on the metamagnetic resonance of the CWP structure. The key finding is the result of an investigation on the plasmon hybridization between the two CWs, which showed that the polarization of the incident wave was affected. Good agreement between numerical simulation and measurement is achieved.

  16. Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Østergaard, John Erland;

    2001-01-01

    Conventional photonic band gap (PBG) structures are composed of regions with periodic modulation of refractive index that do not allow the propagation of electromagnetic waves in a certain interval of wavelengths, i.e., that exhibit the PBG effect. The PBG effect is essentially an interference ph...

  17. A study of angle dependent surface plasmon polaritons in nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2016-07-21

    We report that the light-matter interaction in metallic nano-hole array structures possess a subwavelength hole radius and periodicity. The transmission coefficient for nano-hole array structures was measured for different angles of incidence of light. Each measured transmission spectrum had several peaks due to surface plasmon polaritons. A theory of the transmission coefficient was developed based on the quantum density matrix method. It was found that the location of the surface plasmon polariton and the heights of the spectral peaks were dependent on the angle of incidence of light. Good agreement was observed between the experimental and theoretical results. This property of these structures has opened up new possibilities for sensing applications.

  18. Semiconductor plasmonic nanolasers: current status and perspectives

    Science.gov (United States)

    Gwo, Shangjr; Shih, Chih-Kang

    2016-08-01

    Scaling down semiconductor lasers in all three dimensions holds the key to the development of compact, low-threshold, and ultrafast coherent light sources, as well as integrated optoelectronic and plasmonic circuits. However, the minimum size of conventional semiconductor lasers utilizing dielectric cavity resonators (photonic cavities) is limited by the diffraction limit. To date, surface plasmon amplification by stimulated emission of radiation (spaser)-based plasmonic nanolaser is the only photon and plasmon-emitting device capable of this remarkable feat. Specifically, it has been experimentally demonstrated that the use of plasmonic cavities based on metal-insulator-semiconductor (MIS) nanostructures can indeed break the diffraction limit in all three dimensions. In this review, we present an updated overview of the current status for plasmonic nanolasers using the MIS configuration and other related metal-cladded semiconductor microlasers. In particular, by using composition-varied indium gallium nitride/gallium nitride core-shell nanorods, it is possible to realize all-color, single-mode nanolasers in the full visible wavelength range with ultralow continuous-wave (CW) lasing thresholds. The lasing action in these subdiffraction plasmonic cavities is achieved via a unique auto-tuning mechanism based on the property of weak size dependence inherent in plasmonic nanolasers. As for the choice of metals in the plasmonic structures, epitaxial silver films and giant colloidal silver crystals have been shown to be the superior constituent materials for plasmonic cavities due to their low plasmonic losses in the visible and near-infrared (NIR) spectral regions. In this review, we also provide some perspectives on the challenges and opportunities in this exciting new research frontier.

  19. Plasmon-gating photoluminescence in graphene/GeSi quantum dots hybrid structures

    Science.gov (United States)

    Chen, Yulu; Wu, Qiong; Ma, Yingjie; Liu, Tao; Fan, Yongliang; Yang, Xinju; Zhong, Zhenyang; Xu, Fei; Lu, Jianping; Jiang, Zuimin

    2015-01-01

    The ability to control light-matter interaction is central to several potential applications in lasing, sensing, and communication. Graphene plasmons provide a way of strongly enhancing the interaction and realizing ultrathin optoelectronic devices. Here, we find that photoluminescence (PL) intensities of the graphene/GeSi quantum dots hybrid structures are saturated and quenched under positive and negative voltages at the excitation of 325 nm, respectively. A mechanism called plasmon-gating effect is proposed to reveal the PL dependence of the hybrid structures on the external electric field. On the contrary, the PL intensities at the excitation of 405 and 795 nm of the hybrid structures are quenched due to the charge transfer by tuning the Fermi level of graphene or the blocking of the excitons recombination by excitons separation effect. The results also provide an evidence for the charge transfer mechanism. The plasmon gating effect on the PL provides a new way to control the optical properties of graphene/QD hybrid structures. PMID:26631498

  20. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    Science.gov (United States)

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-06-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.

  1. Structure and Plasmonic Properties of Thin PMMA Layers with Ion-Synthesized Ag Nanoparticles

    DEFF Research Database (Denmark)

    Popok, Vladimir; Hanif, Muhammad; Mackova, Anna;

    2015-01-01

    Silver nanoparticles are synthesized in polymethylmethacrylate (PMMA) by 30 keV Ag+ ion implantation with high fluences. The implantation is accompanied by structural and compositional evolution of the polymer as well as sputtering. The latter causes towering of the shallow nucleated Ag nanoparti......Silver nanoparticles are synthesized in polymethylmethacrylate (PMMA) by 30 keV Ag+ ion implantation with high fluences. The implantation is accompanied by structural and compositional evolution of the polymer as well as sputtering. The latter causes towering of the shallow nucleated Ag...... nanoparticles above the surface. The synthesized nanoparticles can be split into two groups: (i) located at the surface and (ii) fully embedded in the shallow layer. These two groups provide corresponding spectral bands related to localized surface plasmon resonance. The bands demonstrate considerable intensity...... making the synthesized composites promising for plasmonic applications....

  2. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures.

    Science.gov (United States)

    Filter, Robert; Bösel, Christoph; Toscano, Giuseppe; Lederer, Falk; Rockstuhl, Carsten

    2014-11-01

    The spontaneous emission rate of dipole emitters close to plasmonic dimers are theoretically studied within a nonlocal hydrodynamic model. A nonlocal model has to be used since quantum emitters in the immediate environment of a metallic nanoparticle probe its electronic structure. Compared to local calculations, the emission rate is significantly reduced. The influence is mostly pronounced if the emitter is located close to sharp edges. We suggest to use quantum emitters to test nonlocal effects in experimentally feasible configurations.

  3. Sensing characteristics of plasmonic structure based on transferring process of polystyrene nano-beads

    Science.gov (United States)

    Kim, Doo Gun; Hwang, Jeongwoo; Kim, Seon Hoon; Ki, Hyun Chul; Kim, Tae Un; Shin, Jae Cheol; Jeong, Dae-Cheol; Jeon, Seungwon; Kim, Hong-Seung; Choi, Young-Wan

    2016-04-01

    We analyzed and demonstrated the double layered metallic nano-structures using polystyrene lift-off process on the conventional surface plasmon resonance (SPR) sensor to enhance the sensitivity of an SPR surface. The double layered plasmonic structures are optimized using the three-dimensional finite-difference time-domain method for the width, thickness, and period of the polystyrene beads. The thickness of the metal film and the metallic nano-hole is 20 and 20 nm in the 305 nm wide nano-hole size, respectively. The double layered metallic nano-structures are fabricated with monolayer polystyrene beads of chloromethyl latex 4% w/v 0.4 μm. The sensitivities of the conventional SPR sensor and the double layered plasmonic sensor are obtained to 42.2 and 60 degree/RIU, respectively. The SPR devices are also applied to the lead ion sensor. The resonance shifts of SPR sensors with and without a poly(vinyl chloride) membrane are 1328 RU and 788 RU from 10-5 M to 10-2 M concentration, respectively.

  4. Localized surface plasmon resonance induced structure-property relationships of metal nanostructures

    Science.gov (United States)

    Vilayurganapathy, Subramanian

    The confluence of nanotechnology and plasmonics has led to new and interesting phenomena. The industrial need for fast, efficient and miniature devices which constantly push the boundaries on device performance tap into the happy marriage between these diverse fields. Designing devices for real life application that give superior performance when compared with existing ones are enabled by a better understanding of their structure-property relationships. Among all the design constraints, without doubt, the shape and size of the nanostructure along with the dielectric medium surrounding it has the maximum influence on the response and thereby the performance of the device. Hence a careful study of the above mentioned parameters is of utmost importance in designing efficient devices. In this dissertation, we synthesize and study the optical properties of nanostructures of different shapes and size. In particular, we estimated the plasmonic near field enhancement via surface-enhanced Raman scattering (SERS) and 2-photon Photoemission electron microscopy (2P-PEEM). We synthesized the nanostructures using four different techniques. One synthesis technique, the thermal growth method was employed to grow interesting Ag and Au nanostructures on Si. The absence of toxic chemicals during nanostructure synthesis via the thermal growth technique opens up myriad possibilities for applications in the fields of biomedical science, bioengineering, drug delivery among others along with the huge advantage of being environment friendly. The other three synthesis techniques (ion implantation, Electrodeposition and FIB lithography) were chosen with the specific goal of designing novel plasmonic metal, metal hybrid nanostructures as photocathode materials in next generation light sources. The synthesis techniques for these novel nanostructures were dictated by the requirement of high quantum efficiency, robustness under constant irradiation and coherent unidirectional electron emission

  5. Tunable plasmon resonance in the nanobars and split ring resonator(SRR) composite structure

    Science.gov (United States)

    Xu, Haiqing; Li, Hongjian; Xiao, Gang; Chen, Qiao

    2016-10-01

    We have proposed a multi-band metamaterials composed of bars and planer SRR. There are three sharp peaks in the transmission spectra in the visible and near-infrared region, we find that the transmission spectra are highly tunable as the coupling and geometric parameters modifying, especially the third peak in the near-infrared region. When the gap distance between the two nanobar g1<14 nm, the original first peak will split, a new dip and peak will exist, which is results from the high-order plasmon resonance. When introducing asymmetry to the planer SRR, a new sharp peak accompany with a new sharp dip exists in the original second peak, which is originated from the strong electric field resonance. We also find that the proposed structures with sensing sensitivity of ~467 nm/RIU, which can be used for plasmonic sensor.

  6. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Pingping Qiu

    2016-09-01

    Full Text Available In this paper, one-dimensional (1D and two-dimensional (2D graphene-based plasmonic photonic crystals (PhCs are proposed. The band structures and density of states (DOS have been numerically investigated. Photonic band gaps (PBGs are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.

  7. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals

    Science.gov (United States)

    Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Tang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2016-01-01

    In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.

  8. Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures.

    Science.gov (United States)

    Wang, Peng; Huang, Baibiao; Lou, Zaizhu; Zhang, Xiaoyang; Qin, Xiaoyan; Dai, Ying; Zheng, Zhaoke; Wang, Xiaoning

    2010-01-11

    By means of a simple ion-exchange process (using different precursors) and a light-induced chemical reduction reaction, highly efficient Ag@AgCl plasmonic photocatalysts with various self-assembled structures-including microrods, irregular balls, and hollow spheres-have been fabricated. All the obtained Ag@AgCl catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and UV-visible diffuse reflectance spectroscopy. The effect of the different morphologies on the properties of the photocatalysts was studied. The average content of elemental Ag in Ag@AgCl was found to be about 3.2 mol %. All the catalysts show strong absorption in the visible-light region. The obtained Ag@AgCl samples exhibit enhanced photocatalytic activity for the degradation of organic contaminants under visible-light irradiation. The stability of the plasmonic photocatalysts was also investigated in detail.

  9. High-order spoof localized surface plasmons supported on a complementary metallic spiral structure

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We experimentally demonstrate that multiple high-order spoof localized surface plasmons (spoof-LSPs) modes can be supported on a complementary metallic spiral structure, which were absent in the previously reported spoof-LSPs modes. Through exact numerical simulations and near-field imaging experiments, we directly observe these high-order spoof-LSPs modes at microwave frequencies. We also show that these higher-order spoof-LSPs modes exhibit larger frequency shifts caused by the local environmental refractive index change than the previously reported low-order spoof-LSPs modes. Hence the complementary MSS may find potential applications as plasmonic sensor in the microwave and terahertz frequencies. PMID:27079658

  10. Transverse Magneto-Optical Kerr Effect in Active Magneto-Plasmonic Structures

    CERN Document Server

    Borovkova, Olga; Belotelov, Vladimir

    2016-01-01

    We propose a novel method to enhance the transverse magneto-optical Kerr effect (TMOKE) in the magneto-plasmonic (MP) nanostructures by means of the active dielectric layer. We report the theoretical analysis of the magnetoplasmonic structure with a ferromagnetic dielectric doped with rear-earth ions (Nd3+) as the example of a gain layer. The enhancement takes place near the surface plasmon polariton (SPP) resonances of the nanostructures. The stimulated emission of the dopants in the field of SPP wave partially compensates its losses. It is shown that due to a decrease of SPP damping a Q-factor of the MP resonance increases and the TMOKE is increased in comparison with the passive nanostructure.

  11. Controlling multipolar surface plasmon excitation through the azimuthal phase structure of electron vortex beams

    Science.gov (United States)

    Ugarte, Daniel; Ducati, Caterina

    2016-05-01

    We have theoretically studied how the azimuthal phase structure of an electron vortex beam excites surface plasmons on metal particles of different geometries as observed in electron energy loss spectroscopy (EELS). We have developed a semiclassical approximation combining a ring-shaped beam and the dielectric formalism. Our results indicate that for the case of total orbital angular momentum transfer, we can manipulate surface plasmon multipole excitation and even attain an enhancement factor of several orders of magnitude. Since electron vortex beams interact with particles mostly through effects due to azimuthal symmetry, i.e., in the plane perpendicular to the electron beam, anisotropy information (longitudinal and transversal) of the sample may be derived in EELS studies by comparing nonvortex and vortex beam measurements.

  12. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap.

    Science.gov (United States)

    Oh, Jeong-Wook; Lim, Dong-Kwon; Kim, Gyeong-Hwan; Suh, Yung Doug; Nam, Jwa-Min

    2014-10-08

    The design, synthesis and control of plasmonic nanostructures, especially with ultrasmall plasmonically coupled nanogap (∼1 nm or smaller), are of significant interest and importance in chemistry, nanoscience, materials science, optics and nanobiotechnology. Here, we studied and established the thiolated DNA-based synthetic principles and methods in forming and controlling Au core-nanogap-Au shell structures [Au-nanobridged nanogap particles (Au-NNPs)] with various interior nanogap and Au shell structures. We found that differences in the binding affinities and modes among four different bases to Au core, DNA sequence, DNA grafting density and chemical reagents alter Au shell growth mechanism and interior nanogap-forming process on thiolated DNA-modified Au core. Importantly, poly A or poly C sequence creates a wider interior nanogap with a smoother Au shell, while poly T sequence results in a narrower interstitial interior gap with rougher Au shell, and on the basis of the electromagnetic field calculation and experimental results, we unraveled the relationships between the width of the interior plasmonic nanogap, Au shell structure, electromagnetic field and surface-enhanced Raman scattering. These principles and findings shown in this paper offer the fundamental basis for the thiolated DNA-based chemistry in forming and controlling metal nanostructures with ∼1 nm plasmonic gap and insight in the optical properties of the plasmonic NNPs, and these plasmonic nanogap structures are useful as strong and controllable optical signal-generating nanoprobes.

  13. Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna

    Science.gov (United States)

    Mao, Lei; Ren, Yuan; Lu, Yonghua; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Wang, Yong; Cui, Chenjing; Wen, Xiaolei; Wang, Pei

    2016-03-01

    Manipulation of a vector micro-beam with an optical antenna has significant potentials for nano-optical technology applications including bio-optics, optical fabrication, and quantum information processing. We have designed and demonstrated a central aperture antenna within an Archimedean spiral that extracts the bonding plasmonic field from a surface to produce a new vector focal spot in far-field. The properties of this vector focal field are revealed by confocal microscopy and theoretical simulations. The pattern, polarization and phase of the focal field are determined by the incident light and by the chirality of the Archimedean spiral. For incident light with right-handed circular polarization, the left-handed spiral (one-order chirality) outputs a micro-radially polarized focal field. Our results reveal the relationship between the near-field and far-field distributions of the plasmonic spiral structure, and the structure has the potential to lead to advances in diverse applications such as plasmonic lenses, near-field angular momentum detection, and optical tweezers.

  14. Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna

    Science.gov (United States)

    Mao, Lei; Ren, Yuan; Lu, Yonghua; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Wang, Yong; Cui, Chenjing; Wen, Xiaolei; Wang, Pei

    2016-01-01

    Manipulation of a vector micro-beam with an optical antenna has significant potentials for nano-optical technology applications including bio-optics, optical fabrication, and quantum information processing. We have designed and demonstrated a central aperture antenna within an Archimedean spiral that extracts the bonding plasmonic field from a surface to produce a new vector focal spot in far-field. The properties of this vector focal field are revealed by confocal microscopy and theoretical simulations. The pattern, polarization and phase of the focal field are determined by the incident light and by the chirality of the Archimedean spiral. For incident light with right-handed circular polarization, the left-handed spiral (one-order chirality) outputs a micro-radially polarized focal field. Our results reveal the relationship between the near-field and far-field distributions of the plasmonic spiral structure, and the structure has the potential to lead to advances in diverse applications such as plasmonic lenses, near-field angular momentum detection, and optical tweezers. PMID:27009383

  15. High-Resolution Plasmonic Refractive-Index Sensor Based on a Metal-Insulator-Metal Structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Jia-Hu; HUANG Xu-Guang; MEI Xian

    2011-01-01

    @@ A high-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure consisting of a straight bus waveguide and a resonator waveguide is proposed and numerically simulated by using the finite difference time domain method under a perfectly matched layer absorbing boundary condition.Both analytic and simulated results show that the resonant wavelengths of the sensor have a linear relationship with the refractive index of material under sensing.Based on the relationship,the refractive index of the material can be obtained from the detection of one of the resonant wavelengths.The resolution of refractive index of the nanometeric plasmonic sensor can reach as high as 10-6,giving the wavelength resolution of 0.01 nm.It could be applied to highly-resolution biological sensing.%A high-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure consisting of a straight bus waveguide and a resonator waveguide is proposed and numerically simulated by using the finite difference time domain method under a perfectly matcted layer absorbing boundary conditition. Both analytic and simulated results show that the resonant wavelengths of the sensor have a linear relationship with the refractive index of material under sensing. Based on the relationship, the refractive index of the material can be obtained from the detection of one of the resonant wavelengths. The resolutio of refractive index of the nanometeric plasmonic sensor can reach as high as 1O-6, giving the wavelength resolution of 0.01 nm. It could be applied to highly- resolution biological sensing.

  16. Generation of quantum entangled states in nonlinear plasmonic structures and metamaterials (Presentation Recording)

    Science.gov (United States)

    Poddubny, Alexander N.; Sukhorukov, Andrey A.

    2015-09-01

    The practical development of quantum plasmonic circuits incorporating non-classical interference [1] and sources of entangled states calls for a versatile quantum theoretical framework which can fully describe the generation and detection of entangled photons and plasmons. However, majority of the presently used theoretical approaches are typically limited to the toy models assuming loss-less and nondispersive elements or including just a few resonant modes. Here, we present a rigorous Green function approach describing entangled photon-plasmon state generation through spontaneous wave mixing in realistic metal-dielectric nanostructures. Our approach is based on the local Huttner-Barnett quantization scheme [2], which enables problem formulation in terms of a Hermitian Hamiltonian where the losses and dispersion are fully encoded in the electromagnetic Green functions. Hence, the problem can be addressed by the standard quantum mechanical perturbation theory, overcoming mathematical difficulties associated with other quantization schemes. We derive explicit expressions with clear physical meaning for the spatially dependent two-photon detection probability, single-photon detection probability and single-photon density matrix. In the limiting case of low-loss nondispersive waveguides our approach reproduces the previous results [3,4]. Importantly, our technique is far more general and can quantitatively describe generation and detection of spatially-entangled photons in arbitrary metal-dielectric structures taking into account actual losses and dispersion. This is essential to perform the design and optimization of plasmonic structures for generation and control of quantum entangled states. [1] J.S. Fakonas, H. Lee, Y.A. Kelaita and H.A. Atwater, Nature Photonics 8, 317(2014) [2] W. Vogel and D.-G. Welsch, Quantum Optics, Wiley (2006). [3] D.A. Antonosyan, A.S. Solntsev and A.A. Sukhorukov, Phys. Rev. A 90 043845 (2014) [4] L.-G. Helt, J.E. Sipe and M.J. Steel, ar

  17. Direct temperature mapping of nanoscale plasmonic devices.

    Science.gov (United States)

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2014-02-12

    Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography.

  18. Engineering the Propagation of High-k Bulk Plasmonic Waves in Multilayer Hyperbolic Metamaterials by Multiscale Structuring

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei; Sipe, John E.

    and feature exotic physical effects such as broadband singularity in the photonic density of states. It was shown that these photonic states are mainly populated by propagating high-k bulk plasmons, stemming from hybridization of short-range surface plasmon polaritons (SRSPPs) supported by individual metallic...... enhancement of spontaneous emission or blackbody radiation. In addition, the proposed structures can be employed to investigate other aspects of light-matter interaction in unusual environments....

  19. Basics of quantum plasmonics

    Science.gov (United States)

    Hieu Nguyen, Van; Nguyen, Bich Ha

    2015-01-01

    The present work is a topical review of the theoretical research on the quantum theory of plasmons and plasmon-photon interaction. The plasmons are defined as the quanta of the quantized plasmonic field. The corresponding classical plasmonic field was constructed on the basis of the study of collective oscillations of the electron gas in the solid. The electron-electron Coulomb interaction is taken into account. The explicit forms of the plasmon-photon interaction Lagrangian in canonical quantum mechanics and the plasmon-photon interaction action functional in the functional integral approach are derived. They all show that the interaction processes are nonlocal ones. The physical origin of the nonlocality is the complex structure of plasmons as composite quasiparticles: they cannot be considered as point particles, as was assumed in all phenomenological theories.

  20. Plasmon resonance optical tuning based on photosensitive composite structures

    DEFF Research Database (Denmark)

    Gilardi, Giovanni; Xiao, Sanshui; Mortensen, N. Asger

    2014-01-01

    This paper reports a numerical investigation of a periodic metallic structure sandwiched between two quartz plates. The volume comprised between the quartz plates and the metallic structure is infiltrated by a mixture of azo-dye-doped liquid crystal. The exposure to a low power visible light beam...... modifies the azo dye molecular configuration, thus allowing the wavelength shift of the resonance of the system. The wavelength shift depends on the geometry of the periodic structure and it also depends on the intensity of the visible light beam....

  1. Core-Shell Structured Dielectric-Metal Circular Nanodisk Antenna: Gap Plasmon Assisted Magnetic Toroid-like Cavity Modes

    CERN Document Server

    Zhang, Qiang; Zhang, Xiao Ming; Han, Dezhuan; Gao, Lei

    2014-01-01

    Plasmonic nanoantennas, the properties of which are essentially determined by their resonance modes, are of interest both fundamentally and for various applications. Antennas with various shapes, geometries and compositions have been demonstrated, each possessing unique properties and potential applications. Here, we propose the use of a sidewall coating as an additional degree of freedom to manipulate plasmonic gap cavity modes in strongly coupled metallic nanodisks. It is demonstrated that for a dielectric middle layer with a thickness of a few tens of nanometers and a sidewall plasmonic coating of more than ten nanometers, the usual optical magnetic resonance modes are eliminated, and only magnetic toroid-like modes are sustainable in the infrared and visible regime. All of these deep-subwavelength modes can be interpreted as an interference effect from the gap surface plasmon polaritons. Our results will be useful in nanoantenna design, high-Q cavity sensing, structured light-beam generation, and photon e...

  2. Crack monitoring capability of plastic optical fibers for concrete structures

    Science.gov (United States)

    Zhao, Jinlei; Bao, Tengfei; Chen, Rui

    2015-08-01

    Optical fibers have been widely used in structural health monitoring. Traditional silica fibers are easy to break in field applications due to their brittleness. Thus, silica fibers are proposed to be replaced by plastic optical fibers (POFs) in crack monitoring in this study. Moreover, considering the uncertainty of crack propagation direction in composite materials, the influence of the angles between fibers and cracks on the monitoring capability of plastic optical fibers is studied. A POF sensing device was designed and the relationship between light intensity loss and crack width under different fiber/crack angles was first measured through the device. Then, three-point bend tests were conducted on concrete beams. POFs were glued to the bottom surfaces of the beams and light intensity loss with crack width was measured. Experimental results showed that light intensity loss in plastic optical fibers increased with crack width increase. Therefore, application of plastic optical fibers in crack monitoring is feasible. Moreover, the results also showed that the sensitivity of the POF crack sensor decreased with the increase of angles between fibers and cracks.

  3. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy L.; Ni, Xingjie

    2012-01-01

    The search for alternative plasmonic materials with improved optical properties, easier fabrication and integration capabilities over those of the traditional materials such as silver and gold could ultimately lead to real-life applications for plasmonics and metamaterials. In this work, we show...... that titanium nitride could perform as an alternative plasmonic material in the visible and near-infrared regions. We demonstrate the excitation of surface-plasmon-polaritons on titanium nitride thin films and discuss the performance of various plasmonic and metamaterial structures with titanium nitride...... as the plasmonic component. We also show that titanium nitride could provide performance that is comparable to that of gold for plasmonic applications and can significantly outperform gold and silver for transformation-optics and some metamaterial applications in the visible and near-infrared regions....

  4. Plasmonic tooth-multilayer structure with high enhancement field for surface enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Li-Chung; Wang, Zhiyu; Clark, J. Kenji; Ho, Ya-Lun; Delaunay, Jean-Jacques

    2017-03-01

    The significant enhancement seen in surface-enhanced Raman scattering (SERS) heavily relies on the ability of plasmonic structures to strongly confine light. Current techniques used to fabricate plasmonic nanostructures have been limited in their reproducibility for bottom-up techniques or their feature size for top-down techniques. Here, we propose a tooth multilayer structure that can be fabricated by using physical vapor deposition and selective wet etching, achieving extremely small feature sizes and high reproducibility. A multilayer structure composed of two alternating materials whose thicknesses can be controlled accurately in the nanometer range is deposited on a flat substrate using ion-beam sputtering. Subsequent selective wet etching is used to form nanogaps in one of the materials constituting the multilayer, with the depth of the nanogaps being controlled by the wet etching time. Combining both techniques can allow the nanogap dimensions to be controlled at sub 10 nm length scale, thus achieving a tooth multilayer structure with high enhancement and tunability of the resonance mode over a broad range, ideal for SERS applications.

  5. Replication of patterned thin-film structures for use in plasmonics and metamaterials

    Science.gov (United States)

    Norris, David J; Han, Sang Eon; Bhan, Aditya; Nagpal, Prashant; Lindquist, Nathan Charles; Oh, Sang-Hyun

    2015-02-03

    The present invention provides templating methods for replicating patterned metal films from a template substrate such as for use in plasmonic devices and metamaterials. Advantageously, the template substrate is reusable and can provide plural copies of the structure of the template substrate. Because high-quality substrates that are inherently smooth and flat are available, patterned metal films in accordance with the present invention can advantageously provide surfaces that replicate the surface characteristics of the template substrate both in the patterned regions and in the unpatterned regions.

  6. Reverse design of a bull's eye structure based on the plasmonic far-field pattern.

    Science.gov (United States)

    Yamada, Akira; Terakawa, Mitsuhiro

    2013-09-09

    We present a novel concept on designing a bull's eye structure for a single-wavelength optical source. The plasmonic far-field around a subwavelength aperture on a thin gold film is calculated by finite-difference time-domain method. Based on the annular field intensity distribution on the film surface, we present a method for determining a fairly optimal first groove radius and a periodicity of the grooves that show enhanced transmission. By additionally fine-tuning groove width and groove depth, we have achieved a transmission factor of 9.74. Our novel method has high potential in applications such as silicon infrared sensors.

  7. Propagation of long-range surface plasmon polaritons in photonic band gap structures

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, Thomas

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold fil embedded...... in polymer. Radiation is delivered to and from the PC structures with the help of LR-SPP guides that consist of 8 mm wide and 15 nm thick gold stripes attached to wide film sections (of the same thickness) covered with bumps (diameter ~300 nm, height up to 150 nm on each side of the film). We investigate...... structures. Using a self-consistent description based on the Green's function formalism, we simulate numerically the LR-SPP transmission through and reflection from finite-size PC structures consisting of finite-size scatterers, as well as the LR-SPP guiding along line defects in these structures...

  8. Plasmonic emission and plasma lattice structures induced by pulsed laser in Purcell cavity on silicon

    Institute of Scientific and Technical Information of China (English)

    黄伟其; 黄忠梅; 苗信建; 刘世荣; 秦朝建

    2015-01-01

    The lattice structure image of a plasma standing wave in a Purcell cavity of silicon is observed. The plasma wave produced by the pulsed laser could be used to fabricate the micro-nanostructure of silicon. The plasma lattice structures induced by the nanosecond pulsed laser in the cavity may be similar to the Wigner crystal structure. It is interesting that the beautiful diffraction pattern could be observed in the plasma lattice structure. The radiation lifetime could be shortened to the nanosecond range throughout the entire spectral range and the relaxation time could be lengthened for higher emission efficiency in the Purcell cavity, which results in the fact that the plasmonic emission is stronger and its threshold is lower.

  9. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures

    Science.gov (United States)

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-11-01

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than ‑10 dB within the ‑3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.

  10. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures

    Science.gov (United States)

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-01-01

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than −10 dB within the −3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems. PMID:27883028

  11. Backside configured surface plasmonic enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Guiru; Lu, Xuejun, E-mail: xuejun-lu@uml.edu [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854 (United States); Vaillancourt, Jarrod [Applied NanoFemto Technologies, LLC, 181 Stedman St. 2, Lowell, MA 01851 (United States)

    2014-03-31

    In this work, we fabricated, measured and compared the quantum dots infrared photodetector enhancement by the top- and backside- configured plasmonic structures. The backside configured plasmonic structure can provide much higher device performance enhancement. Furthermore, the excitation of the surface plasmonic waves by the top- and backside- configured plasmonic structures was analyzed. Detailed simulation results of the electric field at different wavelength from top illumination and backside illumination were provided. The stronger electric field from the backside illumination attributed to the higher enhancement.

  12. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)

    2012-06-15

    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Maritime Prepositioning Force (Future) Capability Assessment: Planned and Alternative Structures

    Science.gov (United States)

    2010-01-01

    could interface more closely with the LCACs, either by directly offloading onto the hovercraft themselves or by transload- ing supplies from T-AKE to MLP... hovercraft that can load personnel, supplies, and equipment at the sea base and deliver them to the beach) are launched at a distance of 25 NM from the...aboard the MPF(F) be capable of moving ashore in one period of darkness. To a large extent, that requirement drives the need for the 18 hovercraft

  14. Graphene plasmonics: physics and potential applications

    Directory of Open Access Journals (Sweden)

    Huang Shenyang

    2016-10-01

    Full Text Available Plasmon in graphene possesses many unique properties. It originates from the collective motion of massless Dirac fermions, and the carrier density dependence is distinctively different from conventional plasmons. In addition, graphene plasmon is highly tunable and shows strong energy confinement capability. Most intriguingly, as an atom-thin layer, graphene and its plasmon are very sensitive to the immediate environment. Graphene plasmons strongly couple to polar phonons of the substrate, molecular vibrations of the adsorbates, and lattice vibrations of other atomically thin layers. In this review, we present the most important advances in graphene plasmonics field. The topics include terahertz plasmons, mid-infrared plasmons, plasmon-phonon interactions, and potential applications. Graphene plasmonics opens an avenue for reconfigurable metamaterials and metasurfaces; it is an exciting and promising new subject in the nanophotonics and plasmonics research field.

  15. Surface-plasmon resonances of arbitrarily shaped nanometallic structures in the small-Fermi-wavelength limit

    CERN Document Server

    Schnitzer, Ory; Maier, Stefan A; Craster, Richard V

    2016-01-01

    Surface-plasmon resonances of metallic nanostructures blueshift owing to the nonlocal response of the metal's electron gas. The Fermi wavelength, characterising the nonlocal effect, is often small relative to the overall dimensions of the metallic structure, which enables us to derive a coarse-grained nonlocal description using matched asymptotic expansions; a perturbation theory for the blueshifts of arbitrary shaped nanometallic structures is then developed. The effect of nonlocality is not always a perturbation and we present a detailed analysis of the "bonding" modes of a dimer of nearly touching nanowires where the leading-order eigenfrequencies and eigenmode distributions are shown to be a renormalisation of those predicted assuming a local metal permittivity.

  16. Avoided Crossing Patterns and Spectral Gaps of Surface Plasmon Modes in Gold Nano-Structures

    CERN Document Server

    Kolomenskii, Alexandre; Hembd, Jeshurun; Kolomenski, Andrei; Noel, John; Teizer, Winfried; Schuessler, Hans

    2010-01-01

    The transmission of ultrashort (7 fs) broadband laser pulses through periodic gold nano-structures is studied. The distribution of the transmitted light intensity over wavelength and angle shows an efficient coupling of the incident p-polarized light to two counter-propagating surface plasmon (SP) modes. As a result of the mode interaction, the avoided crossing patterns exhibit energy and momentum gaps, which depend on the configuration of the nano-structure and the wavelength. Variations of the widths of the SP resonances and an abrupt change of the mode interaction in the vicinity of the avoided crossing region are observed. These features are explained by the model of two coupled modes and a coupling change due to switching from the high frequency dark mode to the low frequency bright mode for increasing wavelength of the excitation light. PACS numbers: 73.20.Mf, 42.70.Qs, 42.25.-p,

  17. Altered cytoskeletal structures in transformed cells exhibiting obviously metastatic capabilities

    Institute of Scientific and Technical Information of China (English)

    LINZHONGXIANG; WUBINGQUAN; 等

    1990-01-01

    Cytoskeletal changes in transformed cells (LM-51) eshibiting obviously metastatic capabilities were investigated by utilization of double-fluorescent labelling through combinations of:(1) tubulin indirect immunofluorescence plus Rhodamine-phalloidin staining of F-actins;(2) indirect immunofluorescent staining with α-actinin polyclonal-and vinculin monoclonal antibodies.The LM-51 cells which showed metastatic index of >50% were derived from lung metastasis in nude mice after subcutaneous inoculation of human highly metastatic tumor DNA transfected NIH3T3 cell transformants.The parent NIH3T3 cells exhibited well-organized microtubules,prominent stress fibers and adhesion plaques while their transformants showed remarkable cytoskeletal alterations:(1)reduced microtubules but increased MTOC fluorescence;(2)disrupted stress fibers and fewer adhesion plaques with their protein components redistributed in the cytoplasm;(3)Factin-and α-actinin/vinculin aggregates appeared in the cytoplasm.These aggregates were dot-like,varied in size(0.1-0.4μm) and number,located near the ventral surface of the cells.TPA-induced actin/vinculin bodies were studied too.Indications that actin and α-actinin/vinculin redistribution might be important alterations involved in the expression of metastatic capabilities of LM-51 transformed cells were discussed.

  18. Fabricating plasmonic components for nanophotonics

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nielsen, Rasmus Bundgaard; Jeppesen, Claus

    2009-01-01

    We report on experimental realization of different metal-dielectric structures that are used as surface plasmon polariton waveguides and as plasmonic metamaterials. Fabrication approaches based on different lithographic and deposition techniques are discussed.......We report on experimental realization of different metal-dielectric structures that are used as surface plasmon polariton waveguides and as plasmonic metamaterials. Fabrication approaches based on different lithographic and deposition techniques are discussed....

  19. Carrier density dependence of plasmon-enhanced nonradiative energy transfer in a hybrid quantum well-quantum dot structure.

    Science.gov (United States)

    Higgins, L J; Karanikolas, V D; Marocico, C A; Bell, A P; Sadler, T C; Parbrook, P J; Bradley, A L

    2015-01-26

    An array of Ag nanoboxes fabricated by helium-ion lithography is used to demonstrate plasmon-enhanced nonradiative energy transfer in a hybrid quantum well-quantum dot structure. The nonradiative energy transfer, from an InGaN/GaN quantum well to CdSe/ZnS nanocrystal quantum dots embedded in an ~80 nm layer of PMMA, is investigated over a range of carrier densities within the quantum well. The plasmon-enhanced energy transfer efficiency is found to be independent of the carrier density, with an efficiency of 25% reported. The dependence on carrier density is observed to be the same as for conventional nonradiative energy transfer. The plasmon-coupled energy transfer enhances the QD emission by 58%. However, due to photoluminescence quenching effects an overall increase in the QD emission of 16% is observed.

  20. Engineering the propagation of high-k bulk plasmonic waves in multilayer hyperbolic metamaterials by multiscale structuring

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei; Sipe, J. E.

    2013-01-01

    Propagation of large-wavevector bulk plasmonic waves in multilayer hyperbolic metamaterials (HMMs) with two levels of structuring is theoretically studied. It is shown that when the parameters of a subwavelength metal-dielectric multilayer (substructure) are modulated (superstructured) on a large...

  1. Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip

    DEFF Research Database (Denmark)

    Giannoulis, G.; Kalavrouziotis, D.; Apostolopoulos, D.;

    2012-01-01

    We demonstrate experimental evidence of the data capture and the low-energy thermo-optic tuning credentials of dielectric-loaded plasmonic structures integrated on a silicon chip. We show 7-nm thermo-optical tuning of a plasmonic racetrack-resonator with less than 3.3 mW required electrical power...

  2. Multifunctional Structure for Exploration Rovers Integrating Power and Storage Capabilities

    Science.gov (United States)

    Atxaga, G.; Arrizabalaga, I.; Alonso, R.; Segura, M.; Mendizabal, M.; Marcos, J.; Cook, A.; Walker, S.; Foster, J.; Kireitseu, M.; Fontana, Q.

    2014-06-01

    A need for light-weight structures with a performance comparable to current solutions and which satisfies future scientific needs is identified to be important for future planetary surface exploration missions. Improvements are necessary on the reduction of the mass of the systems that constitute the Rover. Multifunctional structures are envisioned as possible breakthroughs in the recent advances to reduce space systems mass and volume.One of the activities of ROV-E project has dealt with the development of an external panel integrating solar cells in the external skin and using a battery as core of the structure. The integration of the battery in the structure provides mass and volume savings and therefore an increase the overall efficiency of the system.This paper summarizes the main findings obtained in this activity.

  3. Industrial Utilization of Lignin Based on its Structure and Capability

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Chemical modification and industrial utilization of lignin based on its structure were reviewed in this paper. And its economic value and significance for the society and environmental protection were also evaluated.

  4. Probing plasmonic nanostructures by photons and electrons

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Harald; Kneipp, Janina

    2015-01-01

    We discuss recent developments for studying plasmonic metal nanostructures. Exploiting photons and electrons opens up new capabilities to probe the complete plasmon spectrum including bright and dark modes and related local optical fields at subnanometer spatial resolution. This comprehensive...

  5. Low-loss waveguiding and detecting structure for surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, M., E-mail: fukuhara@photon.ee.tut.ac.jp; Aihara, T. [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Aichi 441-8580 (Japan); JSPS Research Fellow, Japan Society for the Promotion of Science, 8 Ichiban-cho, Chiyoda, Tokyo 102-8472 (Japan); Ota, M.; Sakai, H.; Ishii, Y.; Fukuda, M. [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Aichi 441-8580 (Japan)

    2014-02-24

    A simple and low-loss metal/semiconductor surface plasmon polariton (SPP) device consisting of a SPP waveguide and a detector is studied theoretically and experimentally. We demonstrate a simple diffraction structure (a metal grating) where the SPP couples from the waveguide to the detector. The SPP can propagate without large losses at the air/Au interface, and this interface was used for SPP waveguiding. To convert the SPP into an electric signal using internal photoemission, the propagating SPP is coupled into the Au/Si interface by the diffraction structure. The propagation direction of the coupled SPP at the Au/Si interface depends on the slit pitch of the diffraction structure, and the direction can be controlled by adjusting the pitch. The slit pitch is also modeled using a diffraction grating equation, and the results show good agreement with those of simulations using the finite-difference time-domain method. When diffraction structures consisting of a multi-slit structure and a disk array are placed at the end of the waveguide, SPP coupling into the Au/Si interface is also observed. The photocurrents detected at the Au/Si interface are much larger when compared with that detected for the device without the diffraction structure (26 times for the multi-slit structure and 10 times for the disk array). From the polarization angle dependence of the detected photocurrent, we also confirmed that the photocurrent was caused by the SPP propagating at the air/Au interface.

  6. Probing the limits of topological protection in a designer surface plasmon structure

    CERN Document Server

    Gao, Fei; Shi, Xihang; Yang, Zhaoju; Lin, Xiao; Joannopoulos, John D; Soljacic, Marin; Chen, Hongsheng; Lu, Ling; Chong, Yidong; Zhang, Baile

    2015-01-01

    Topological photonic states are a novel class of electromagnetic modes that are immune to scattering from imperfections. This phenomenon has been demonstrated experimentally, including recently in an array of coupled on-chip ring resonators at communication wavelengths. However, the topological protection in such time-reversal-invariant photonic systems is not absolute, but applies only to certain classes of defects, and these limits have not been probed. Here, we report on the realization of similar topological states in a designer surface plasmon platform consisting of metallic sub-wavelength structures. Using this tunable platform, we are able to characterize in detail the field distributions of the topological edge states, and their level of robustness against a variety of defect classes, including those that can break the topological protection. This is also the first experimental realization of anomalous Floquet topological edge states, which cannot be predicted by the usual Chern number topological inv...

  7. Surface Plasmon Resonance from Bimetallic Interface in Au–Ag Core–Shell Structure Nanowires

    Directory of Open Access Journals (Sweden)

    Zhu Jian

    2009-01-01

    Full Text Available Abstract Transverse surface plasmon resonances (SPR in Au–Ag and Ag–Au core–shell structure nanowires have been investigated by means of quasi-static theory. There are two kinds of SPR bands resulting from the outer surface of wall metal and the interface between core and wall metals, respectively. The SPR corresponding to the interface, which is similar to that of alloy particle, decreases and shifts obviously with increasing the wall thickness. However, the SPR corresponding to the outer surface, which is similar to that of pure metal particle, increases and shifts slightly with increasing the wall thickness. A mechanism based on oscillatory surface electrons under coulombic attraction is developed to illuminate the shift fashion of SPR from bimetallic core–shell interface. The net charges and extra coulombic force in metallic wall affect the SPR energy and the shift fashion.

  8. Theoretical realization of dynamically tunable double plasmonically induced transparency in a graphene-based waveguide structure

    Science.gov (United States)

    Zhang, Zhengren; Fan, Yuancheng; Long, Yang; Yin, Pengfei

    2017-10-01

    A graphene-based waveguide coupled with radiative and subradiant graphene ribbon resonators is proposed to represent the four-level energy diagram in conventional atomic systems and demonstrate a new realization of dynamically tunable double plasmonically induced transparency (DPIT). The radiative resonator is achieved with the help of direct coupling from the graphene waveguide while indirect coupling is relied for the subradiant resonator. By combining the numerical simulation results and the dressed theory, the physical mechanism behind the DPIT is presented in detail. The DPIT phenomenon is derived from the mode splitting caused by the phase-coupled effects. By controlling the Fermi energy level of graphene ribbon, the double transparency windows can be dynamically tuned. The proposed structure may find its application in optical communication or other novel terahertz integrated optical circuits and devices.

  9. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    Science.gov (United States)

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  10. Si/ZnO nanorods/Ag/AZO structures as promising photovoltaic plasmonic cells

    Energy Technology Data Exchange (ETDEWEB)

    Placzek-Popko, E., E-mail: ewa.popko@pwr.edu.pl; Gwozdz, K.; Gumienny, Z.; Zielony, E.; Jacak, W. [Faculty of Fundamental Problems of Technology, Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Pietruszka, R.; Witkowski, B. S.; Wachnicki, Ł.; Gieraltowska, S. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw (Poland); Department of Mathematics and Natural Sciences College of Science, Cardinal Stefan Wyszynski University, Dewajtis 5, 01-815 Warsaw (Poland); Chang, Liann-Be [Department of Electronic Engineering and Green Technology Research Center, Chang-Gung University, Taoyuan, Taiwan (China)

    2015-05-21

    The test structures for photovoltaic (PV) applications based on zinc oxide nanorods (NRs) that were grown using a low-temperature hydrothermal method on p-type silicon substrates (100) covered with Ag nanoparticles (NPs) were studied. The NPs of three different diameters, i.e., 5–10 nm, 20-30 nm, and 50–60 nm, were deposited using a sputtering method. The morphology and crystallinity of the structures were confirmed by scanning electron microscopy and Raman spectroscopy. It was found that the nanorods have a hexagonal wurtzite structure. An analysis of the Raman and photoluminescence spectra permitted the identification of the surface modes at 476 cm{sup −1} and 561 cm{sup −1}. The presence of these modes is evidence of nanorods oriented along the wurtzite c-axis. The NRs with Ag NPs were covered with a ZnO:Al (AZO) layer that was grown using the low-temperature atomic layer deposition technique. The AZO layer served as a transparent ohmic contact to the ZnO nanorods. The applicability of the AZO layer for this purpose and the influence of the Ag nanoparticles on the effectiveness of light acquisition by such prepared PV cells were checked by reflectance and transmittance measurements of the AZO/glass and AZO/NPs/glass reference structures. Based on these studies, the high-energy transmittance edge was assigned to the ZnO energy gap, although it is blueshifted with respect to the bulk ZnO energy gap because of Al doping. It was also shown that the most optimal PV performance is obtained from a structure containing Ag nanoparticles with a diameter of 20–30 nm. This result is confirmed by the current-voltage measurements performed with 1-sun illumination. The structures show a plasmonic effect within the short wavelength range: the PV response for the structure with Ag nanoparticles is twice that of the structure without the nanoparticles. However, the influence of the Ag nanoparticle diameters on the plasmonic effect is ambiguous.

  11. Properties, structure and machnining capabilities sintered corundum abrasives

    Directory of Open Access Journals (Sweden)

    Cz.J. Niżankowski

    2010-07-01

    Full Text Available The diversity of sintered corundum abrasives used in both bonded and in the embankment of abrasive tools currently poses substantialproblems for their choice of technology to specific tasks. Therefore performed a comparative study of ownership structures and capacitiesof elected representatives machnining sintered corundum abrasives of different generations, and this is normal sintered alumina,submicrocrystalline alumina sintered and nanocrystalline alumina sintered. Were studied some properties of a set of abrasive particles,physicochemical properties and structural and mechanical and technological properties. The studies used the method of microscopicmeasurement to determine the shape of abrasive particles, the pycnometer to determine the density of abrasive, a spectrometer todetermine the chemical composition of the magnetic analyzer for determining the magnetic fraction, scanning electron microscope toanalysis of abrasive grains and a special position to designate the machining capacity abrasive grains. The results showed a significantincrease in machining capacity sintered corundum abrasives with increasing degree of fragmentation of the crystallites sintered corundum abrasives and distinctive bands in the emerging microchip. The originality of the development provides a comparative summary ofproperties of sintered corundum abrasives of different generations and functions obtained by the author making the change in value indexof machininhcapacity grit from cutting speeds for different generations of sintered corundum.

  12. Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures

    CERN Document Server

    Csete, M; Szalai, A; Najafi, F; Berggren, K K

    2012-01-01

    The absorptance of p-polarized light in superconducting-nanowire single-photon detectors (SNSPDs) was improved by integrating (1) ~quarter-wavelength nano-optical cavity closed by a gold reflector (OC-SNSPD), (2) nano-cavity-array closed by vertical and horizontal gold segments (NCAI-SNSPD), and (3) nano-cavity-deflector-array consisting of longer vertical gold segments (NCDAI-SNSPD) into short- (p-) and long- (3p-) periodic niobium-nitride (NbN) stripe-patterns. In OC-SNSPDs the highest absorptance is observable at perpendicular incidence onto NbN stripes in P-orientation due to E-field concentration at the bottom of nano-optical cavities. In short-periodic NCAI-SNSPDs off-axis illumination results in almost polar-angle-independent perfect absorptance due to collective resonances on plasmonic MIM nano-cavity-arrays in S-orientation. In long-periodic NCAI-SNSPDs the surface wave-excitation phenomena promoting EM-field transportation to the NbN stripes in S-orientation are capable of resulting in local absorpt...

  13. Submicron omega-shaped plasmonic polarization rotator

    Science.gov (United States)

    Andrawis, Robert R.; Swillam, Mohamed A.; Soliman, Ezzeldin A.

    2014-10-01

    In this paper, a novel compact plasmonic polarization converter is proposed. This rotator is based on conversion between even and odd modes of the coupled nanostrip plasmonic transmission line. The even and odd modes of that line have vertical and horizontal polarization, respectively. The proposed structure is capable of transferring the optical field from the substrate to the surface of the chip. This energy transfer between the surface and the substrate can be utilized for multilevel optical routing in plasmonic circuits. The device is optimized using a genetic algorithm for optimal performance at the optical telecommunication range of 1.55 μm. The cross-coupling is minimized over a wide wavelength range. The results are confirmed using full-wave electromagnetic simulation. The study includes a sensitivity analysis of the device’s response to perturbation in its main parameters. This novel device is appropriate for various applications in telecommunications and biomedical sensing.

  14. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials

    CERN Document Server

    Seren, Huseyin R; Keiser, George R; Maddox, Scott J; Zhao, Xiaoguang; Fan, Kebin; Bank, Seth R; Zhang, Xin; Averitt, Richard D

    2015-01-01

    The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector, and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field induced intervalley scattering resulting in a reduced carrier mobility thereby damping the plasmonic response. We demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide f...

  15. 2D-ordered dielectric sub-micron bowls on a metal surface: a useful hybrid plasmonic-photonic structure

    Science.gov (United States)

    Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao

    2016-07-01

    Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed.Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub

  16. Tunable localized surface plasmon resonances in one-dimensional h-BN/graphene/h-BN quantum-well structure

    Science.gov (United States)

    Kaibiao, Zhang; Hong, Zhang; Xinlu, Cheng

    2016-03-01

    The graphene/hexagonal boron-nitride (h-BN) hybrid structure has emerged to extend the performance of graphene-based devices. Here, we investigate the tunable plasmon in one-dimensional h-BN/graphene/h-BN quantum-well structures. The analysis of optical response and field enhancement demonstrates that these systems exhibit a distinct quantum confinement effect for the collective oscillations. The intensity and frequency of the plasmon can be controlled by the barrier width and electrical doping. Moreover, the electron doping and the hole doping lead to very different results due to the asymmetric energy band. This graphene/h-BN hybrid structure may pave the way for future optoelectronic devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474207 and 11374217) and the Scientific Research Fund of Sichuan University of Science and Engineering, China (Grant No. 2014PY07).

  17. Graphene on plasmonic metamaterials for infrared detection

    Science.gov (United States)

    Ogawa, Shinpei; Fujisawa, Daisuke; Shimatani, Masaaki; Matsumoto, Kazuhiko

    2016-05-01

    Graphene consists of a single layer of carbon atoms with a two-dimensional hexagonal lattice structure. Recently, it has been the subject of increasing interest due to its excellent optoelectronic properties and interesting physics. Graphene is considered to be a promising material for use in optoelectronic devices due to its fast response and broadband capabilities. However, graphene absorbs only 2.3% of incident white light, which limits the performance of photodetectors based on it. One promising approach to enhance the optical absorption of graphene is the use of plasmonic resonance. The field of plasmonics has been receiving considerable attention from the viewpoint of both fundamental physics and practical applications, and graphene plasmonics has become one of the most interesting topics in optoelectronics. In the present study, we investigated the optical properties of graphene on a plasmonic metamaterial absorber (PMA). The PMA was based on a metal-insulator-metal structure, in which surface plasmon resonance was induced. The graphene was synthesized by chemical vapor deposition and transferred onto the PMA, and the reflectance of the PMA in the infrared (IR) region, with and without graphene, was compared. The presence of the graphene layer was found to lead to significantly enhanced absorption only at the main plasmon resonance wavelength. The localized plasmonic resonance induced by the PMA enhanced the absorption of graphene, which was attributed to the enhancement of the total absorption of the PMA with graphene. The results obtained in the present study are expected to lead to improvements in the performance of graphene-based IR detectors.

  18. Coherent Terahertz Radiation from Multiple Electron Beams Excitation within a Plasmonic Crystal-like structure

    Science.gov (United States)

    Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang

    2017-01-01

    Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation.

  19. 2D-ordered dielectric sub-micron bowls on a metal surface: a useful hybrid plasmonic-photonic structure.

    Science.gov (United States)

    Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao

    2016-07-21

    Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed.

  20. Design and fabrication of structural color by local surface plasmonic meta-molecules

    Science.gov (United States)

    Ma, Ya-Qi; Shao, Jin-Hai; Zhang, Ya-Feng; Lu, Bing-Rui; Zhang, Si-Chao; Sun, Yan; Qu, Xin-Ping; Chen, Yi-Fang

    2015-08-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. Project partially supported by the National Natural Science Foundation of China (Grant No. 61205148).

  1. Molecular Plasmonics

    Science.gov (United States)

    Wilson, Andrew J.; Willets, Katherine A.

    2016-06-01

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics.

  2. Broadband near-field enhancement in the macro-periodic and micro-random structure with a hybridized excitation of propagating Bloch-plasmonic and localized surface-plasmonic modes.

    Science.gov (United States)

    Lu, Haifei; Ren, Xingang; Sha, Wei E I; Ho, Ho-Pui; Choy, Wallace C H

    2015-10-28

    We demonstrate that the silver nanoplate-based macroscopically periodic (macro-periodic) and microscopically random (micro-random) structure has a broadband near-field enhancement as compared to conventional silver gratings. The specific field enhancement in a wide spectral range (from UV to near-infrared) originates from the abundance of localized surface-plasmonic (LSP) modes in the microscopically random distributed silver nanoplates and propagating Bloch-plasmonic (PBP) modes from the macroscopically periodic pattern. The characterization of polarization dependent spectral absorption, surface-enhanced Raman spectroscopy (SERS), as well as theoretical simulation was conducted to comprehensively understand the features of the broadband spectrum and highly concentrated near-field. The reported macro-periodic and micro-random structure may offer a new route for the design of plasmonic systems for photonic and optoelectronic applications.

  3. Tension induced surface plasmon-polaritons at graphene-based structure

    Science.gov (United States)

    Khalandi, G.; Namdar, A.; Entezar, S. Roshan

    2017-02-01

    Dispersion properties and field distributions of TM (or p-polarized) surface plasmon-polaritons have been investigated in the system that a strained graphene sheet cladded by two dielectrics. The outcomes show that graphene TM surface plasmon-polaritons are bound confined modes, and the field components penetrate into the dielectric layers in the rang that is very smaller than the wavelength in the free space. At low photon energies, when the tension is along the zigzag (armchair) direction and parallel (perpendicular) to the tangential electric field, the wavelength, propagation length and penetration depth of TM surface plasmon-polaritons increase (decrease) with increasing the strain. Changing the angle between the tension direction and tangential electric field at cases with the constant strain, cause to existence of TM surface plasmon-polaritons in the wider range of frequency.

  4. Optical Isolator Utilizing Surface Plasmons

    Directory of Open Access Journals (Sweden)

    Shinji Yuasa

    2012-05-01

    Full Text Available Feasibility of usage of surface plasmons in a new design of an integrated optical isolator has been studied. In the case of surface plasmons propagating at a boundary between a transition metal and a double-layer dielectric, there is a significant difference of optical loss for surface plasmons propagating in opposite directions. Utilizing this structure, it is feasible to fabricate a competitive plasmonic isolator, which benefits from a broad wavelength operational bandwidth and a good technological compatibility for integration into the Photonic Integrated Circuits (PIC. The linear dispersion relation was derived for plasmons propagating in a multilayer magneto-optical slab.

  5. Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method.

    Science.gov (United States)

    Liu, Gui-qiang; Hu, Ying; Liu, Zheng-qi; Chen, Yuan-hao; Cai, Zheng-jie; Zhang, Xiang-nan; Huang, Kuan

    2014-03-07

    We propose a robust multispectral transparent plasmonic structure and calculate its transparency response by using the three-dimensional finite-difference time-domain (FDTD) method. The proposed structure is composed of a continuous ultrathin metal film sandwiched by double two-dimensional (2D) hexagonal non-close-packed metal-dielectric multilayer core-shell nanoparticle arrays. The top and bottom plasmonic arrays in such a structure, respectively, act as the light input and output couplers to carry out the efficient trapping and release of light. Near-perfect multispectral optical transparency in the visible and near-infrared regions is achieved theoretically. The calculated electric field distribution patterns show that the near-perfect multispectral optical transparency mainly originates from the excitation and hybridization of shell and core plasmon modes, strong near-field coupling of dipole plasmon modes between adjacent nanoparticles as well as the excitation of surface plasmon waves of the metal film. The robust transparency bands can be efficiently tuned in a large range by varying the structural parameters and the surrounding dielectric environment. The proposed structure also shows additional merits such as a deep sub-wavelength size and fully retained electrical and mechanical properties of the natural metal. These features might provide promising applications in highly integrated optoelectronic devices including plasmonic filters, nanoscale multiplexers, and non-linear optics.

  6. Identification and comparison of structural factors of innovation capability in ESCO with desirable status

    Directory of Open Access Journals (Sweden)

    Fatemeh Jalali

    2014-12-01

    Full Text Available The present study describes the identification and comparison of structural factors of innovation capability in Esfahan Steel Company (ESCO. Innovation is a crucial factor in growth, success, and survival of organizations. Since the innovation for organizations is not possible without the level of innovation capabilities and the need for steel products and imports of goods from developed countries has greatly increased, this study intends to investigate the factors affecting the subject that may be able to increase the production and reduce the need to import it. Evaluation of the innovation capability factors of ESCO compared with its desired status in industry can help companies develop innovative strategies and also achieve organizational goals. Statistical analysis methods and mean comparison test by examining the structure of the innovation capability in the form of a standard questionnaire was employed. The findings suggest that the innovation capability in the existing situation of ESCO in comparison with the desired situation is significantly different.

  7. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  8. High-throughput ultrasensitive characterization of chemical, structural and plasmonic properties of EBL-fabricated single silver nanoparticles.

    Science.gov (United States)

    Huang, Tao; Cao, Wei; Elsayed-Ali, Hani E; Xu, Xiao-Hong Nancy

    2012-01-21

    Electron beam lithography (EBL) has become a popular means to prepare a wide variety of nano-arrays for numerous studies and applications, including photonics and sensors. Their fabrications and characterizations are costly and time consuming, underscoring the importance of developing effective tools to rapidly study their physicochemical stabilities and properties over time. In this study, we characterized EBL-fabricated single silver nanoparticle (Ag NP) arrays over their 12-week exposure to ambient conditions using SEM/EDS, AFM and dark-field optical microscopy and spectroscopy (DFOMS). We found that chemical compositions, structural morphologies and plasmonic optical properties of single NPs altered drastically over the exposure. Single cuboid and triangular-prism Ag NPs degraded at rates of (0.74 ± 0.02) and (0.66 ± 0.02) per week, and their localized surface plasmon resonance (LSPR) spectra showed striking blue-shifts (171 ± 25 and 203 ± 35 nm) over the 12-week exposure, respectively. Plasmonic colors of single NPs changed distinctively from red to green over the 12-week exposure. The LSPR spectra of individual NPs in each array were acquired simultaneously and correlated specifically with their SEM and AFM images, demonstrating that DFOMS can serve as high-throughput, ultrasensitive and non-invasive means to characterize chemical, structural and optical properties of nano-arrays in situ in real time at single-NP resolution.

  9. Plasmonic Biosensors

    OpenAIRE

    Hill, Ryan T.

    2014-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and ...

  10. Terahertz Nonlinearity in Graphene Plasmons

    CERN Document Server

    Jadidi, Mohammad M; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin

    2015-01-01

    Sub-wavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, sub-wavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a THz pump-THz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by two orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results.

  11. Plasmonic 3D-structures based on silver decorated nanotips for biological sensing

    KAUST Repository

    Coluccio, M. L.

    2015-05-01

    Recent progresses in nanotechnology fabrication gives the opportunity to build highly functional nano-devices. 3D structures based on noble metals or covered by them can be realized down to the nano-scales, obtaining different devices with the functionalities of plasmonic nano-lenses or nano-probes. Here, nano-cones decorated with silver nano-grains were fabricated using advanced nano-fabrication techniques. In fabricating the cones, the angle of the apex was varied over a significant range and, in doing so, different geometries were realized. In depositing the silver nano-particles, the concentration of solution was varied, whereby different growth conditions were realized. The combined effect of tip geometry and growth conditions influences the size and distribution of the silver nano grains. The tips have the ability to guide or control the growth of the grains, in the sense that the nano-particles would preferentially distribute along the cone, and especially at the apex of the cone, with no o minor concentration effects on the substrate. The arrangement of metallic nano-particles into three-dimensional (3D) structures results in a Surface Enhanced Raman Spectroscopy (SERS) device with improved interface with analytes compared to bi-dimensional arrays of metallic nanoparticles. In the future, similar devices may find application in microfluidic devices, and in general in flow chambers, where the system can be inserted as to mimic a a nano-bait, for the recognition of specific biomarkers, or the manipulation and chemical investigation of single cells directly in native environments with good sensitivity, repeatability and selectivity. © 2015 Elsevier Ltd.

  12. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures

    Science.gov (United States)

    Wang, Zhuo; Dong, Zhaogang; Gu, Yinghong; Chang, Yung-Huang; Zhang, Lei; Li, Lain-Jong; Zhao, Weijie; Eda, Goki; Zhang, Wenjing; Grinblat, Gustavo; Maier, Stefan A.; Yang, Joel K. W.; Qiu, Cheng-Wei; Wee, Andrew T. S.

    2016-05-01

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ~20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

  13. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures

    KAUST Repository

    Wang, Zhuo

    2016-05-06

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ~20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

  14. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures.

    Science.gov (United States)

    Wang, Zhuo; Dong, Zhaogang; Gu, Yinghong; Chang, Yung-Huang; Zhang, Lei; Li, Lain-Jong; Zhao, Weijie; Eda, Goki; Zhang, Wenjing; Grinblat, Gustavo; Maier, Stefan A; Yang, Joel K W; Qiu, Cheng-Wei; Wee, Andrew T S

    2016-05-06

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ∼20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

  15. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures

    Science.gov (United States)

    Wang, Zhuo; Dong, Zhaogang; Gu, Yinghong; Chang, Yung-Huang; Zhang, Lei; Li, Lain-Jong; Zhao, Weijie; Eda, Goki; Zhang, Wenjing; Grinblat, Gustavo; Maier, Stefan A.; Yang, Joel K. W.; Qiu, Cheng-Wei; Wee, Andrew T. S.

    2016-01-01

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ∼20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters. PMID:27150276

  16. Composite Elements for Biomimetic Aerospace Structures with Progressive Shape Variation Capabilities

    Directory of Open Access Journals (Sweden)

    Alessandro Airoldi

    2016-07-01

    Full Text Available The paper presents some engineering solutions for the development of innovative aerodynamic surfaces with the capability of progressive shape variation. A brief introduction of the most significant issues related to the design of such morphing structures is provided. Thereafter, two types of structural solutions are presented for the design of internal compliant structures and flexible external skins. The proposed solutions exploit the properties and the manufacturing techniques of long fibre reinforced plastic in order to fulfil the severe and contradictory requirements related to the trade-off between morphing performance and load carrying capabilities.

  17. Influence of the interlayer on coupling of surface plasmons in a sandwiched structure with periodic array of nanoapertures.

    Science.gov (United States)

    Sun, Liu-Yang; Qin, Ling; Zhu, Li-Hao; Fan, Ren-Hao; Li, De; Peng, Ru-Wen

    2013-02-01

    In this work, we investigate the optical properties of a multilayer structure, where a SiO2 film is sandwiched by silver films with periodic array of sub-wavelength apertures. Due to the coupling of surface plasmons (SPs) between different layers, electric and magnetic resonances have been observed. By varying the thickness of the interlayer SiO2, we can modify relative phase of the SPs resonance and control the shifts of transmission peaks. Experimentally the multilayers are fabricated by magnetron sputtering and the array of apertures is milled by focused-ion-beam facility. The measured optical transmission spectra reasonably agree with our numerical calculation, which bases on three-dimensional finite-difference time-domain method. To understand the shifts of the peaks, we present a phenomenological explanation, considering the transmission peaks as energy levels, and the coupling of localized surface plasmons as perturbation. These results may have potential applications in designing plasmonic devices and tuning electromagnetic wave in nanophotonics.

  18. Plasmonic atoms and plasmonic molecules

    CERN Document Server

    Klimov, V V

    2007-01-01

    The proposed paradigm of plasmonic atoms and plasmonic molecules allows one to describe and predict the strongly localized plasmonic oscillations in the clusters of nanoparticles and some other nanostructures in uniform way. Strongly localized plasmonic molecules near the contacting surfaces might become the fundamental elements (by analogy with Lego bricks) for a construction of fully integrated opto-electronic nanodevices of any complexity and scale of integration.

  19. Plasmonic atoms and plasmonic molecules

    Science.gov (United States)

    Klimov, V. V.; Guzatov, D. V.

    2007-11-01

    The proposed paradigm of plasmonic atoms and plasmonic molecules allows one to describe and predict the strongly localized plasmonic oscillations in the clusters of nanoparticles and some other nanostructures in uniform way. Strongly localized plasmonic molecules near the contacting surfaces might become the fundamental elements (by analogy with Lego bricks) for the construction of fully integrated opto-electronic nanodevices of any complexity and scale of integration.

  20. Coexistence Theory of Slag Structure and Its Application to Calculation of Oxidizing Capability of Slag Melts

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coexistence theory of slag structure and it's application to calculation of the oxidizing capabilities of slag melts is described. It is shown that the law of mass action can be widely applied to the calculation of oxidizing capabilities of slag melts in combination with the coexistence theory of slag structure.For slag melts containing basic oxides FeO and MnO, their oxidizing capabilities can be expressed by NFetO=NFeO+6NFe2O3, while for slag melts containing basic oxides CaO, MgO, etc., in addition to FeO and MnO, their oxidizing capabilities can be given as NFetO=NFeO+6NFe2O3+8NFe3O4.

  1. Gold nanoisland structures integrated in a lab-on-a-chip for plasmonic detection of bovine growth hormone

    Science.gov (United States)

    Ozhikandathil, Jayan; Badilescu, Simona; Packirisamy, Muthukumaran

    2012-07-01

    Three-dimensional gold nanostructures fabricated through a novel convective assembly method are treated thermally to obtain a nanoisland morphology. The new structure is proved to be adequate for the detection of bovine growth hormone, by using an immunoassay method based on the localized surface plasmon resonance band of gold. The nanoisland structures are integrated into a microfluidic device and the spectral measurements are carried out by introducing the device directly in the light beam of a ultraviolet-visible spectrophotometer. The principal motivation for this work is the need for a simple and rapid method of detection of hormone levels in milk and milk products.

  2. Plasmonic-Electronic Transduction

    Science.gov (United States)

    2012-01-31

    resonances in two dimensional electron gases. Tunable plasmon absorption resonances were observed and studied in InP-based and GaN -based HEMTs . The...Resonant terahertz absorption by plasmons in grating-gate GaN HEMT structures,” A. V. Muravjov, D. B. Veksler, X. Hu, R. Gaska, N. Pala, H. Saxena...Nov. 2009, Singapore. 4. “Terahertz Plasmons in Grating-Gate AlGaN/ GaN HEMTs ,” A.V. Muravjov, D.B. Veksler, V.V. Popov, M.S. Shur, N. Pala, X. Hu, R

  3. Structure of plasmonic aerogel and the breakdown of the effective medium approximation.

    Science.gov (United States)

    Grogan, Michael D W; Heck, Susannah C; Hood, Katie M; Maier, Stefan A; Birks, Tim A

    2011-02-01

    A method for making aerogel doped with gold nanoparticles (GNPs) produces a composite material with a well-defined localized surface plasmon resonance peak at 520 nm. The width of the extinction feature indicates the GNPs are well dispersed in the aerogel, making it suited to optical study. A simple effective medium approximation cannot explain the peak extinction wavelengths. The plasmonic field extends on a scale where aerogel cannot be considered isotropic, so a new model is required: a 5 nm glass coating on the GNPs models the extinction spectrum of the composite material, with air (aerogel), methanol (alcogel), or toluene filling the pores.

  4. Spin orbit interaction of light mediated by scattering from plasmonic nano-structures

    CERN Document Server

    Soni, Jalpa; Mansha, Shampy; Gupta, S Dutta; Banerjee, Ayan; Ghosh, Nirmalya

    2012-01-01

    The spin orbit interactions (SOI) of light mediated by single scattering from plasmon resonant metal nanoparticles (nanorods and nanospheres) are investigated using explicit theory based on Jones and Stokes-Mueller polarimetry formalism. The individual SOI effects are analyzed and interpreted via the Mueller matrix-derived, polarimetry characteristics, namely, diattenuation d and retardance {\\delta}. The results demonstrate that each of the contributing SOI effects can be controllably enhanced by exploiting the interference of two neighboring modes in plasmonic nanostructures (orthogonal electric dipolar modes in rods or electric dipolar and quadrupolar modes in spheres).

  5. A proposal and a theoretical analysis of an enhanced surface plasmon coupled emission structure for single molecule detection

    Science.gov (United States)

    Uddin, Shiekh Zia; Tanvir, Mukhlasur Rahman; Talukder, Muhammad Anisuzzaman

    2016-05-01

    We propose a structure that can be used for enhanced single molecule detection using surface plasmon coupled emission (SPCE). In the proposed structure, instead of a single metal layer on the glass prism of a typical SPCE structure for fluorescence microscopy, a metal-dielectric-metal structure is used. We theoretically show that the proposed structure significantly decreases the excitation volume of the fluorescently labeled sample, and simultaneously increases the peak SPCE intensity and SPCE power. Therefore, the signal-to-noise ratio and sensitivity of an SPCE based fluorescence microscopy system can be significantly increased using the proposed structure, which will be helpful for enhanced single molecule detection, especially, in a less pure biological sample.

  6. Optical antennas and plasmonics

    OpenAIRE

    Park, Q-Han

    2009-01-01

    Optical antenna is a nanoscale miniaturization of radio or microwave antennas that is also governed by the rule of plasmonics. We introduce various types of optical antenna and make an overview of recent developments in optical antenna research. The role of local and surface plasmons in optical antenna is explained through antenna resonance and resonance conditions for specific metal structures are explicitly obtained. Strong electric field is shown to exist within a highly localized region o...

  7. Plasmonic Nanostructures: Tailoring Light-matter Interaction

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2012-01-01

    The flow of light can be molded by plasmonic structures within the nanoscale. In this talk, plasmonic nanostructures for suppressing light transmission, improving light absorption and enhancing photoemissions are to be presented....

  8. Structures and Infrastructures of International R&D Networks: A Capability Maturity Perspective

    DEFF Research Database (Denmark)

    Niang, Mohamed; Wæhrens, Brian Vejrum

    Purpose: This paper explores the process towards globally distributing R&D activities with an emphasis on organizational maturity. It discusses emerging configurations by asking how the structure and infrastructure of international R&D networks evolve along with the move from a strong R&D center...... present a capability maturity model. Furthermore, understanding the interaction between new structures and infrastructures of the dispersed networks is viewed as a key requirement for developing organizational capabilities and formulating adequate strategies that leverage dispersed R&D. Organizational...

  9. Decoupling capabilities of split-loop resonator structure for 7 Tesla MRI surface array coils

    Science.gov (United States)

    Hurshkainen, A.; Kurdjumov, S.; Simovski, C.; Glybovski, S.; Melchakova, I.; van den Berg, C. A. T.; Raaijmakers, A.; Belov, P.

    2017-09-01

    In this work we studied electromagnetic properties of one-dimentional periodic structures composed of split-loop res-onators (SLRs) and investigated their capabilities in decoupling of two dipole antennas for full-body magnetic resonance imaging (MRI). Two different finite structures comprising a single-SLR and a double-SLR constitutive elements were studied. Numerical simulations of the structures were performed to evaluate their decoupling capabilities. As it was demonstrated two dipole antennas equipped with either a single or a double-SLR structure exhibit high isolation even for an electrically short distance between the dipoles. Double-SLR structure while dramatically improving isolation of the dipoles keeps the field created by each of the decoupled dipoles comparable with one of a single dipole inside the target area.

  10. (Plasmonic Metal Core)/(Semiconductor Shell) Nanostructures

    Science.gov (United States)

    Fang, Caihong

    Over the past several years, integration of metal nanocrystals that can support localized surface plasmon has been demonstrated as one of the most promising methods to the improvement of the light-harvesting efficiency of semiconductors. Ag and Au nanocrystals have been extensively hybridized with semiconductors by either deposition or anchoring. However, metal nanocrystals tend to aggregate, reshape, detach, or grow into large nanocrystals, leading to a loss of the unique properties seen in the original nanocrystals. Fortunately, core/shell nanostructures, circumventing the aforementioned problems, have been demonstrated to exhibit superior photoactivities. To further improve the light-harvesting applications of (plasmonic metal core)/(semiconductor shell) nanostructures, it is vital to understand the plasmonic and structural evolutions during the preparation processes, design novel hybrid nanostructures, and improve their light-harvesting performances. In this thesis, I therefore studied the plasmonic and structural evolutions during the formation of (Ag core)/(Ag2S shell) nanostructures. Moreover, I also prepared (noble metal core)/(TiO2 shell) nanostructures and investigated their plasmonic properties and photon-harvesting applications. Clear understanding of the sulfidation process can enable fine control of the plasmonic properties as well as the structural composition of Ag/Ag 2S nanomaterials. Therefore, I investigated the plasmonic and structural variations during the sulfidation process of Ag nanocubes both experimentally and numerically. The sulfidation reactions were carried out at both the ensemble and single-particle levels. Electrodynamic simulations were also employed to study the variations of the plasmonic properties and plasmon modes. Both experiment and simulation results revealed that sulfidation initiates at the vertices of Ag nanocubes. Ag nanocubes are then gradually truncated and each nanocube becomes a nanosphere eventually. The cubic

  11. The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Liu Bing-Can; Yu Li; Lu Zhi-Xin

    2011-01-01

    The analytic surface plasmon polaritons (SPPs) dispersion relation is studied in a system consisting of a thin metallic film bounded by two sides media of nonlinear dielectric of arbitrary nonlinearity is studied by applying a generalised first integral approach. We consider both asymmetric and symmetric structures. Especially, in the symmetric system, two possible modes can exist: the odd mode and the even mode. The dispersion relations of the two modes are obtained. Due to the nonlinear dielectric, the magnitude of the electric field at the interface appears and alters the dispersion relations. The changes in SPPs dispersion relations depending on film thicknesses and nonlinearity are studied.

  12. Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Iida, Daisuke; Chen, Yuntian

    2014-01-01

    for InGaN/GaN quantum-well structures. By using a thin SiN dielectric layer between Ag and GaN we manage to modify and improve surface plasmon coupling effects, and we attribute this to the improved scattering of the nanoparticles at the quantum-well emission wavelength. The results are interpreted using...... numerical simulations, where absorption and scattering cross-sections are studied for different sized particles on GaN and GaN/SiN substrates....

  13. Ultrafast Surface Plasmonic Switch in Non-Plasmonic Metals

    CERN Document Server

    Bévillon, E; Recoules, V; Zhang, H; Li, C; Stoian, R

    2015-01-01

    We demonstrate that ultrafast carrier excitation can drastically affect electronic structures and induce brief surface plasmonic response in non-plasmonic metals, potentially creating a plasmonic switch. Using first-principles molecular dynamics and Kubo-Greenwood formalism for laser-excited tungsten we show that carrier heating mobilizes d electrons into collective inter and intraband transitions leading to a sign flip in the imaginary optical conductivity, activating plasmonic properties for the initial non-plasmonic phase. The drive for the optical evolution can be visualized as an increasingly damped quasi-resonance at visible frequencies for pumping carriers across a chemical potential located in a d-band pseudo-gap with energy-dependent degree of occupation. The subsequent evolution of optical indices for the excited material is confirmed by time-resolved ultrafast ellipsometry. The large optical tunability extends the existence spectral domain of surface plasmons in ranges typically claimed in laser se...

  14. Fabricating plasmonic components for nano-and meta-photonics

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nielsen, Rasmus Bundgaard; Jeppesen, Claus;

    2009-01-01

    Different fabrication approaches for realization of metal-dielectric structures supporting propagating and localized surface plasmons are described including fabrication of nanophotonic waveguides and plasmonic nanoantennae.......Different fabrication approaches for realization of metal-dielectric structures supporting propagating and localized surface plasmons are described including fabrication of nanophotonic waveguides and plasmonic nanoantennae....

  15. STANDARDIZATION AND STRUCTURAL ANNOTATION OF PUBLIC TOXICITY DATABASES: IMPROVING SAR CAPABILITIES AND LINKAGE TO 'OMICS DATA

    Science.gov (United States)

    Standardization and structural annotation of public toxicity databases: Improving SAR capabilities and linkage to 'omics data Ann M. Richard', ClarLynda Williams', Jamie Burch2'Nat Health & Environ Res Lab, US EPA, RTP, NC 27711; 2EPA/NC Central Univ Student COOP Trainee<...

  16. Numerical solution of nonlocal hydrodynamic Drude model for arbitrary shaped nano-plasmonic structures using finite elements method

    CERN Document Server

    Hiremath, Kirankumar R; Schmidt, Frank

    2012-01-01

    Nonlocal material response distinctively changes the optical properties of nano-plasmonic scatterers and waveguides. It is described by the nonlocal hydrodynamic Drude model, which -- in frequency domain -- is given by a coupled system of equations for the electric field and an additional polarization current of the electron gas modeled analogous to a hydrodynamic flow. Recent works encountered difficulties in dealing with the grad-div operator appearing in the governing equation of the hydrodynamic current. Therefore, in these studies the model has been simplified with the curl-free hydrodynamic current approximation; but this causes spurious resonances. In this paper we present a rigorous weak formulation in the Sobolev spaces $H(\\mathrm{curl})$ for the electric field and $H(\\mathrm{div})$ for the hydrodynamic current, which directly leads to a consistent discretization based on N\\'ed\\'elec's finite element spaces. Comparisons with the Mie theory results agree well. We also demonstrate the capability of the...

  17. Excitation of plasmons in Ag/Fe/W structure by spin-polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Samarin, Sergey N.; Kostylev, Mikhail; Williams, J. F. [School of Physics, The University of Western Australia, Perth WA 6009 (Australia); Artamonov, Oleg M.; Baraban, Alexander P. [St. Petersburg State University, Faculty of Physics, St. Petersburg 199034 (Russian Federation); Guagliardo, Paul [Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth WA 6009 (Australia)

    2015-09-07

    Using Spin-polarized Electron-Energy Loss Spectroscopy (SPEELS), the plasmon excitations were probed in a few atomic layers thick Ag film deposited on an Fe layer or on a single crystal of W(110). The measurements were performed at two specular geometries with either a 25° or 72° angle of incidence. On a clean Fe layer (10 atomic layers thick), Stoner excitation asymmetry was observed, as expected. Deposition of a silver film on top of the Fe layer dramatically changed the asymmetry of the SPEELS spectra. The spin-effect depends on the kinematics of the scattering: angles of incidence and detection. The spin-dependence of the plasmon excitations in the silver film on the W(110) surface and on the ferromagnetic Fe film is suggested to arise from the spin-active Ag/W or Ag/Fe interfaces.

  18. Surface Plasmon Nanophotonics

    CERN Document Server

    Brongersma, Mark L

    2007-01-01

    The development of advanced dielectric photonic structures has enabled tremendous control over the propagation and manipulation of light. Structures such as waveguides, splitters, mixers, and resonators now play a central role in the telecommunications industry. This book will discuss an exciting new class of photonic devices, known as surface plasmon nanophotonic structures. Surface plasmons are easily accessible excitations in metals and semiconductors and involve a collective motion of the conduction electrons. These excitations can be exploited to manipulate electromagnetic waves at optical frequencies ("light") in new ways that are unthinkable in conventional dielectric structures. The field of plasmon nanophotonics is rapidly developing and impacting a wide range of areas including: electronics, photonics, chemistry, biology, and medicine. The book will highlight several exciting new discoveries that have been made, while providing a clear discussion of the underlying physics, the nanofabrication issues...

  19. Plasmonic nanopatch array for optical integrated circuit applications.

    Science.gov (United States)

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  20. Plasmonic nanopatch array for optical integrated circuit applications

    Science.gov (United States)

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-01-01

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle. PMID:24201454

  1. Digital Plasmonics

    CERN Document Server

    Gjonaj, Bergin; Johnson, Patrick M; Mosk, Allard P; Kuipers, Kobus; Lagendijk, Ad

    2010-01-01

    The field of plasmonics offers a route to control light fields with metallic nanostructures through the excitation of Surface Plasmon Polaritons (SPPs). These surface waves, bound to a metal dielectric interface, tightly confine electromagnetic energy. Active control over SPPs has potential for applications in sensing, photovoltaics, quantum communication, nano circuitry, metamaterials and super-resolution microscopy. We achieve here a new level of control of plasmonic fields using a digital spatial light modulator. Optimizing the plasmonic phases via feedback we focus SPPs at a freely pre-chosen point on the surface of a nanohole array with high resolution. Digital addressing and scanning of SPPs without mechanical motion will enable novel interdisciplinary applications of advanced plasmonic devices in cell microscopy, optical data storage and sensing.

  2. Structures and Infrastructures of International R&D Networks: A Capability Maturity Perspective

    DEFF Research Database (Denmark)

    Niang, Mohamed; Wæhrens, Brian Vejrum

    and strategic implications of the model emphasize increased interrelations and a need for coordination resulting in rising coordination costs. Decentralized control is viewed a mean to combine the advantages of centralization and decentralization. Originality/Value: While the offshoring of production has widely......Purpose: This paper explores the process towards globally distributing R&D activities with an emphasis on organizational maturity. It discusses emerging configurations by asking how the structure and infrastructure of international R&D networks evolve along with the move from a strong R&D center...... present a capability maturity model. Furthermore, understanding the interaction between new structures and infrastructures of the dispersed networks is viewed as a key requirement for developing organizational capabilities and formulating adequate strategies that leverage dispersed R&D. Organizational...

  3. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Science.gov (United States)

    George, David; Li, Li; Jiang, Yan; Lowell, David; Mao, Michelle; Hassan, Safaa; Ding, Jun; Cui, Jingbiao; Zhang, Hualiang; Philipose, Usha; Lin, Yuankun

    2016-07-01

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  4. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    George, David; Lowell, David; Mao, Michelle; Hassan, Safaa; Philipose, Usha [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Li, Li; Jiang, Yan; Cui, Jingbiao [Department of Physics and Materials Science, University of Memphis, Memphis, Tennessee 38152 (United States); Ding, Jun; Zhang, Hualiang [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lin, Yuankun [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  5. Highly ordered Al-doped ZnO nano-pillar and tube structures as hyperbolic metamaterials for mid-infrared plasmonics

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Takayama, Osamu; Panah, Mohammad Esmail Aryaee

    Fabrication of large area metamaterial structures in a reproducible manner is a tremendous challenge. Here, we realize the fabrication of plasmonic metamaterials for the mid-infrared wavelength region composed of Al-doped ZnO (AZO) pillars by a combination of atomic layer deposition and reactive...

  6. Structural capital, innovation capability, and company performance in technology-based colombian firms

    Directory of Open Access Journals (Sweden)

    Nekane Aramburu

    2015-03-01

    Full Text Available In today’s economy, innovation is considered to be one of the main driving forces behind business competitiveness, if not the most relevant one. Traditionally, the study of innovation has been addressed from different perspectives. Recently, literature on knowledge management and intellectual capital has provided new insights. Considering this, the aim of this paper is to analyze the impact of different organizational conditions – i.e. “structural capital” – on innovation capability and innovation performance, from an “intellectual capital” (IC perspective. As regards innovation capability, two dimensions are considered: new idea generation and innovation project management. The population subject to study is made up of technology-based Colombian firms. In order to gather information about the relevant variables involved in the research, a questionnaire was designed and addressed to the CEOs of the companies making up the target population. The sample analyzed is made up of 69 companies and is large enough to carry out a statistical study based on structural equation modelling (partial least squares approach using PLS-Graph software (Chin and Frye, 2003. The results obtained show that structural capital explains to a great extent both the effectiveness of the new idea generation process and of innovation project management. However, the influence of each specific organizational component making up structural capital (organizational design, organizational culture, hiring and professional development policies, innovation strategy, technological capital, and external structure varies. Moreover, successful innovation project management is the only innovation capability dimension that exerts a significant impact on company performance.

  7. Rapid production of structural color images with optical data storage capabilities

    Science.gov (United States)

    Rezaei, Mohamad; Jiang, Hao; Qarehbaghi, Reza; Naghshineh, Mohammad; Kaminska, Bozena

    2015-03-01

    In this paper, we present novel methods to produce structural color image for any given color picture using a pixelated generic stamp named nanosubstrate. The nanosubstrate is composed of prefabricated arrays of red, green and blue subpixels. Each subpixel has nano-gratings and/or sub-wavelength structures which give structural colors through light diffraction. Micro-patterning techniques were implemented to produce the color images from the nanosubstrate by selective activation of subpixels. The nano-grating structures can be nanohole arrays, which after replication are converted to nanopillar arrays or vice versa. It has been demonstrated that visible and invisible data can be easily stored using these fabrication methods and the information can be easily read. Therefore the techniques can be employed to produce personalized and customized color images for applications in optical document security and publicity, and can also be complemented by combined optical data storage capabilities.

  8. Plasmonic Metamaterials

    CERN Document Server

    Yao, Kan

    2013-01-01

    Plasmonics and metamaterials have attracted considerable attention over the past decade, owing to the revolutionary impacts that they bring to both the fundamental physics and practical applications in multiple disciplines. Although the two fields initially advanced along their individual trajectories in parallel, they started to interfere with each other when metamaterials reached the optical regime. The dynamic interplay between plasmonics and metamaterials has generated a number of innovative concepts and approaches, which are impossible with either area alone. This review presents the fundamentals, recent advances and future perspectives in the emerging field of plasmonic metamaterials, aiming to open up new exciting opportunities for nanoscience and nanotechnology.

  9. A Capability Approach to Understanding Sport for Social Inclusion: Agency, Structure and Organisations

    Directory of Open Access Journals (Sweden)

    Naofumi Suzuki

    2017-06-01

    Full Text Available Despite the global diffusion of the term social inclusion, as well as the use of sport to promote it, questions have been raised regarding the extent to which sport is able to contribute to transforming the exclusive nature of the social structure. The lack of analytical clarity of the concept has not helped to address these questions. This article proposes a conceptual framework based on Amartya Sen’s capability approach, considering social exclusion as the denial of social relations that leads to serious deprivation of important capabilities. A person’s capabilities could potentially be improved through micro-, meso-, and macro-level social processes. At the micro level, sport-based social inclusion programmes could offer such social relations to varying degrees, though sport’s values are only relative to other leisure activities. The scale of impact depends primarily on the meso-level processes, in which the size and quality of each programme can be improved through organisational learning, and secondarily on the macro-level processes whereby the organisational population is institutionalised. It is argued that more research needs to be done on the meso and macro levels, as they are concerned with the ultimate potential of sport to facilitate structural transformation towards more socially inclusive society.

  10. Capitals and capabilities: linking structure and agency to reduce health inequalities.

    Science.gov (United States)

    Abel, Thomas; Frohlich, Katherine L

    2012-01-01

    While empirical evidence continues to show that low socio-economic position is associated with less likely chances of being in good health, our understanding of why this is so remains less than clear. In this paper we examine the theoretical foundations for a structure-agency approach to the reduction of social inequalities in health. We use Max Weber's work on lifestyles to provide the explanation for the dualism between life chances (structure) and choice-based life conduct (agency). For explaining how the unequal distribution of material and non-material resources leads to the reproduction of unequal life chances and limitations of choice in contemporary societies, we apply Pierre Bourdieu's theory on capital interaction and habitus. We find, however, that Bourdieu's habitus concept is insufficient with regard to the role of agency for structural change and therefore does not readily provide for a theoretically supported move from sociological explanation to public health action. We therefore suggest Amartya Sen's capability approach as a useful link between capital interaction theory and action to reduce social inequalities in health. This link allows for the consideration of structural conditions as well as an active role for individuals as agents in reducing these inequalities. We suggest that people's capabilities to be active for their health be considered as a key concept in public health practice to reduce health inequalities. Examples provided from an ongoing health promotion project in Germany link our theoretical perspective to a practical experience.

  11. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.

    Science.gov (United States)

    Song, Jibin; Huang, Peng; Duan, Hongwei; Chen, Xiaoyuan

    2015-09-15

    environment to stabilize the vesicular structure. More importantly, we have demonstrated that strong interparticle coupling greatly enhances the optical properties (scattering, photothermal conversion, and SERS) in plasmonic vesicles. In combination with the loading capacity of the vesicles, this technology can provide unique opportunities for integrated diagnosis and therapy, multimodality combination therapy, and imaging-guided therapy. One key property differentiating the plasmonic vesicles from other vesicular structures containing nanocrystals is that we can tailor the interparticle coupling and disintegration of the plasmonic vesicles by altering structural parameters and conformational changes of the covalently bound polymer brushes. This gives us tremendous flexibility to engineer plasmonic vesicles for ultrasensitive detection and targeted therapy. Through bringing together advances in nanochemistry, polymer chemistry, self-assembly, and nanophotonics, we expect to further expand our capability of tailoring optical and structural characteristics of plasmonic vesicles to address challenges in medical settings.

  12. Nonlinear plasmonic amplification via dissipative soliton-plasmon resonances

    Science.gov (United States)

    Ferrando, Albert

    2017-01-01

    In this contribution we introduce a strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasiparticle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a mechanism of quasiresonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling, and gain give rise to a scenario for the excitation of long-range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.

  13. Resonant plasmonic nanoparticles for multicolor second harmonic imaging

    Science.gov (United States)

    Accanto, Nicolò; Piatkowski, Lukasz; Hancu, Ion M.; Renger, Jan; van Hulst, Niek F.

    2016-02-01

    Nanoparticles capable of efficiently generating nonlinear optical signals, like second harmonic generation, are attracting a lot of attention as potential background-free and stable nano-probes for biological imaging. However, second harmonic nanoparticles of different species do not produce readily distinguishable optical signals, as the excitation laser mainly defines their second harmonic spectrum. This is in marked contrast to other fluorescent nano-probes like quantum dots that emit light at different colors depending on their sizes and materials. Here, we present the use of resonant plasmonic nanoparticles, combined with broadband phase-controlled laser pulses, as tunable sources of multicolor second harmonic generation. The resonant plasmonic nanoparticles strongly interact with the electromagnetic field of the incident light, enhancing the efficiency of nonlinear optical processes. Because the plasmon resonance in these structures is spectrally narrower than the laser bandwidth, the plasmonic nanoparticles imprint their fingerprints on the second harmonic spectrum. We show how nanoparticles of different sizes produce different colors in the second harmonic spectra even when excited with the same laser pulse. Using these resonant plasmonic nanoparticles as nano-probes is promising for multicolor second harmonic imaging while keeping all the advantages of nonlinear optical microscopy.

  14. Quantum Plasmonics

    OpenAIRE

    Diego Martin-Cano, Paloma A. Huidobro, Esteban Moreno; Diego Martin-Cano; Huidobro, Paloma A.; Esteban Moreno; Garcia-Vidal, F.J.

    2014-01-01

    Quantum plasmonics is a rapidly growing field of research that involves the study of the quantum properties of light and its interaction with matter at the nanoscale. Here, surface plasmons - electromagnetic excitations coupled to electron charge density waves on metal-dielectric interfaces or localized on metallic nanostructures - enable the confinement of light to scales far below that of conventional optics. In this article we review recent progress in the experimental and theoretical inve...

  15. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    DEFF Research Database (Denmark)

    Sobolewska, Elzbieta; Leißner, Till; Jozefowski, Leszek

    Recent research on hybrid plasmonic systems has shown the existence of a loss channel for energy transfer between organic materials and plasmonic/metallic structured substrates. This work focuses on the exciton-plasmon coupling between para-Hexaphenylene (p-6P) organic nanofibers (ONFs) and surfa...

  16. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    DEFF Research Database (Denmark)

    Sobolewska, Elzbieta; Leißner, Till; Jozefowski, Leszek

    2016-01-01

    Recent research on hybrid plasmonic systems has shown the existence of a loss channel for energy transfer between organic materials and plasmonic/metallic structured substrates. This work focuses on the exciton-plasmon coupling between para-Hexaphenylene (p-6P) organic nanofibers (ONFs) and surfa...

  17. Plasmonic photocatalysis.

    Science.gov (United States)

    Zhang, Xuming; Chen, Yu Lim; Liu, Ru-Shi; Tsai, Din Ping

    2013-04-01

    Plasmonic photocatalysis has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible light irradiation, increasing the prospect of using sunlight for environmental and energy applications such as wastewater treatment, water splitting and carbon dioxide reduction. Plasmonic photocatalysis makes use of noble metal nanoparticles dispersed into semiconductor photocatalysts and possesses two prominent features-a Schottky junction and localized surface plasmonic resonance (LSPR). The former is of benefit to charge separation and transfer whereas the latter contributes to the strong absorption of visible light and the excitation of active charge carriers. This article aims to provide a systematic study of the fundamental physical mechanisms of plasmonic photocatalysis and to rationalize many experimental observations. In particular, we show that LSPR could boost the generation of electrons and holes in semiconductor photocatalysts through two different effects-the LSPR sensitization effect and the LSPR-powered bandgap breaking effect. By classifying the plasmonic photocatalytic systems in terms of their contact form and irradiation state, we show that the enhancement effects on different properties of photocatalysis can be well-explained and systematized. Moreover, we identify popular material systems of plasmonic photocatalysis that have shown excellent performance and elucidate their key features in the context of our proposed mechanisms and classifications.

  18. Rod-like plasmonic nanoparticles as optical building blocks: how differences in particle shape and structural geometry influence optical signal

    Energy Technology Data Exchange (ETDEWEB)

    Stender, Anthony [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Gold nanoparticles, particularly those with an anisotropic shape, have become a popular optical probe for experiments involving work on the nanoscale. However, to carry out such delicate and intricate experiments, it is first necessary to understand the detailed behavior of individual nanoparticles. In this series of experiments, optical and electron microscopy were utilized for the characterization of individual nanoparticles and small assemblies of nanoparticles. In the first experiment, gold nanorods were investigated. Single, isolated nanorods exhibit two maxima of localized surface plasmon resonance (LSPR), which are associated with the two nanorod axes. Upon the physical rotation of a nanorod at one of its LSPR wavelengths under polarized illumination, the optical behavior varies in a sinusoidal fashion. A dimer of nanorods exhibits optical behavior quite similar to a nanorod, except the LSPR maxima are shifted and broader. Under differential interference contrast (DIC) microscopy, a pair of nanorods separated by a distance below the diffraction limit can be distinguished from a single nanorod due to its optical behavior upon rotation. Dark field microscopy is unable to distinguish the two geometries. For the second set of experiments, the optical behavior of single gold nanorods at non-plasmonic wavelengths was investigated. The same nanorod was rotated with respect to a polarized light source under DIC, dark field, and polarized light microscopy. DIC microscopy was found to produce diffraction pattern peaks at non-plasmonic wavelengths, which could be altered by adjusting the setting of the polarizer. In the third set of experiments, the optical behavior of a single gold dumbbell and several simple dumbbell geometries were investigated with microscopy and simulations. The single dumbbell displayed behavior quite similar to that of a nanorod, but dumbbells exhibit a shift in both LSPR wavebands. Moreover, the shape of dumbbell particles allows them to

  19. Photocatalysis: Plasmonic solar desalination

    Science.gov (United States)

    Liu, Tianyu; Li, Yat

    2016-06-01

    The sustainability of many existing desalination technologies is questionable. Plasmon-mediated solar desalination has now been demonstrated for the first time, using an aluminium structure that absorbs photons spanning the 200 nm to 2,500 nm wavelength range, and is both cheap and 'clean'.

  20. Light-Driven Overall Water Splitting Enabled by a Photo-Dember Effect Realized on 3D Plasmonic Structures.

    Science.gov (United States)

    Chen, Min; Gu, Jiajun; Sun, Cheng; Zhao, Yixin; Zhang, Ruoxi; You, Xinyuan; Liu, Qinglei; Zhang, Wang; Su, Yishi; Su, Huilan; Zhang, Di

    2016-07-26

    Photoelectric conversion driven by sunlight has a broad range of energy/environmental applications (e.g., in solar cells and water splitting). However, difficulties are encountered in the separation of photoexcited charges. Here, we realize a long-range (∼1.5 μm period) electric polarization via asymmetric localization of surface plasmons on a three-dimensional silver structure (3D-Ag). This visible-light-responsive effect-the photo-Dember effect, can be analogous to the thermoelectric effect, in which hot carriers are thermally generated instead of being photogenerated. The induced electric field can efficiently separate photogenerated charges, enabling sunlight-driven overall water splitting on a series of dopant-free commercial semiconductor particles (i.e., ZnO, CeO2, TiO2, and WO3) once they are combined with the 3D-Ag substrate. These photocatalytic processes can last over 30 h on 3D-Ag+ZnO, 3D-Ag+CeO2, and 3D-Ag+TiO2, thus demonstrating good catalytic stability for these systems. Using commercial WO3 powder as a reference, the amount of O2 generated with 3D-Ag+CeO2 surpasses even its recently reported counterpart in which sacrificial reagents had to be involved to run half-reactions. This plasmon-mediated charge separation strategy provides an effective way to improve the efficiency of photoelectric energy conversion, which can be useful in photovoltaics and photocatalysis.

  1. Plasmonic ZnO/Ag embedded structures as collecting layers for photogenerating electrons in solar hydrogen generation photoelectrodes.

    Science.gov (United States)

    Chen, Hao Ming; Chen, Chih Kai; Tseng, Ming Lun; Wu, Pin Chieh; Chang, Chia Min; Cheng, Liang-Chien; Huang, Hsin Wei; Chan, Ting Shan; Huang, Ding-Wei; Liu, Ru-Shi; Tsai, Din Ping

    2013-09-09

    A new fabrication strategy in which Ag plasmonics are embedded in the interface between ZnO nanorods and a conducting substrate is experimentally demonstrated using a femtosecond-laser (fs-laser)-induced plasmonic ZnO/Ag photoelectrodes. This fs-laser fabrication technique can be applied to generate patternable plasmonic nanostructures for improving their effectiveness in hydrogen generation. Plasmonic ZnO/Ag nanostructure photoelectrodes show an increase in the photocurrent of a ZnO nanorod photoelectrodes by higher than 85% at 0.5 V. Both localized surface plasmon resonance in metal nanoparticles and plasmon polaritons propagating at the metal/semiconductor interface are available for improving the capture of sunlight and collecting charge carriers. Furthermore, in-situ X-ray absorption spectroscopy is performed to monitor the plasmonic-generating electromagnetic field upon the interface between ZnO/Ag nanostructures. This can reveal induced vacancies on the conduction band of ZnO, which allow effective separation of charge carriers and improves the efficiency of hydrogen generation. Plasmon-induced effects enhance the photoresponse simultaneously, by improving optical absorbance and facilitating the separation of charge carriers.

  2. LOAD CARRYING CAPABILITY OF LIQUID FILLED CYLINDRICAL SHELL STRUCTURES UNDER AXIAL COMPRESSION

    Directory of Open Access Journals (Sweden)

    QASIM H. SHAH

    2011-08-01

    Full Text Available Empty and water filled cylindrical Tin (Sn coated steel cans were loaded under axial compression at varying loading rates to study their resistance to withstand accidental loads. Compared to empty cans the water filled cans exhibit greater resistance to axially applied compression loads before a complete collapse. The time and load or stroke and load plots showed three significant load peaks related to three stages during loading until the cylinder collapse. First peak corresponds to the initial structural buckling of can. Second peak occurs when cylindrical can walls gradually come into full contact with water. The third peak shows the maximum load carrying capability of the structure where pressurized water deforms the can walls into curved shape until can walls fail under peak pressure. The collapse process of water filled cylindrical shell was further studied using Smooth Particle Hydrodynamics (SPH technique in LSDYNA. Load peaks observed in the experimental work were successfully simulated which substantiated the experimental work.

  3. Nano-structure and optical properties (plasmonic) of graded helical square tower-like (terraced) Mn sculptured thin films

    Science.gov (United States)

    Savaloni, Hadi; Fakharpour, Mahsa; Siabi-Garjan, Araz; Placido, Frank; Babaei, Ferydon

    2017-01-01

    Graded helical square tower-like terraced sculptured Mn thin films (GHSTTS) are produced in three stages with different number of arms using oblique angle deposition together with rotation of substrate holder about its surface normal, plus a shadowing block fixed at the centre of the substrate holder. The structural characterization of the produced samples was obtained using field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Results showed a structural gradient with distance from the edge of the shadowing block, which in turn is responsible for the decrease in the volume of void fraction and increase of grain size. Plasmon absorption peaks observed in the optical analysis of these nano-structures showed that their wavelength region and intensity depend on the polarization and the incident angle of light, as well as the distance from the edge of the shadowing block. According to our model and discrete dipole approximation (DDA) calculations, when the number of parallel nano-rods of different lengths and radii are increased the peak in the spectrum shifts to shorter wavelengths (blue shift). Also when the diameters of the nano-rods increases (a situation that occurs with increasing film thickness) the results is again a blue shift in the spectrum. The presence of defects in these sculptured structures caused by the shadowing effect is predicted by the theoretical DDA investigation of their optical spectra. Good agreement is obtained between our theoretical results and the experimental observations in this work.

  4. Water structure-forming capabilities are temperature shifted for different models.

    Science.gov (United States)

    Shevchuk, Roman; Prada-Gracia, Diego; Rao, Francesco

    2012-06-28

    A large number of water models exist for molecular simulations. They differ in the ability to reproduce specific features of real water instead of others, like the correct temperature for the density maximum or the diffusion coefficient. Past analysis mostly concentrated on ensemble quantities, while few data were reported on the different microscopic behavior. Here, we compare seven widely used classical water models (SPC, SPC/E, TIP3P, TIP4P, TIP4P-Ew, TIP4P/2005, and TIP5P) in terms of their local structure-forming capabilities through hydrogen bonds for temperatures ranging from 210 to 350 K by the introduction of a set of order parameters taking into account the configuration of up to the second solvation shell. We found that all models share the same structural pattern up to a temperature shift. When this shift is applied, all models overlap onto a master curve. Interestingly, increased stabilization of fully coordinated structures extending to at least two solvation shells is found for models that are able to reproduce the correct position of the density maximum. Our results provide a self-consistent atomic-level structural comparison protocol, which can be of help in elucidating the influence of different water models on protein structure and dynamics.

  5. Plasmonic response of nanoscale spirals.

    Science.gov (United States)

    Ziegler, Jed I; Haglund, Richard F

    2010-08-11

    The Archimedean spiral geometry presents a platform for exploration of complex plasmonic mechanisms and applications. Here we show both through simulations and experiment that more complex plasmonic modes with unique near-field structure and larger mode volumes can be realized within a single, topologically robust structure. In the spiral, complex polarization response, resonant interactions and symmetry-breaking features are defined by the width and spacing of the spiral tracks and by the winding number of the spiral.

  6. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures

    Science.gov (United States)

    Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei

    2016-04-01

    Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2–3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm‑2 and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs.

  7. Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures

    Institute of Scientific and Technical Information of China (English)

    Thomas Allsop; Raz Arif; Ron Neal; Kyriacos Kalli; Vojtěch Kundrát; Aleksey Rozhin; Phil Culverhouse

    2016-01-01

    We investigate the modification of the optical properties of carbon nanotubes (CNTs) resulting from a chemical reaction triggered by the presence of a specific compound (gaseous carbon dioxide (CO2)) and show this mechanism has important consequences for chemical sensing.CNTs have attracted significant research interest because they can be functionalized for a particular chemical,yielding a specific physical response which suggests many potential applications in the fields of nanotechnology and sensing.So far,however,utilizing their optical properties for this purpose has proven to be challenging.We demonstrate the use of localized surface plasmons generated on a nanostructured thin film,resembling a large array of nano-wires,to detect changes in the optical properties of the CNTs.Chemical selectivity is demonstrated using CO2 in gaseous form at room temperature.The demonstrated methodology results additionally in a new,electrically passive,optical sensing configuration that opens up the possibilities of using CNTs as sensors in hazardous/explosive environments.

  8. Influence of surface properties on the structure of granular silver films and excitation of localized plasmons

    Science.gov (United States)

    Shcherbinin, D. P.; Konshina, E. A.; Polischuk, V. A.

    2016-04-01

    Granular silver films deposited on a thin insulating film of amorphous hydrogenated carbon ( a-C:H) and transparent conducting electrode (polycrystalline indium tin oxide (ITO) layer) have been investigated by spectroscopy and microscopy methods. The extinction spectra of silver films on the surface of these materials are found to be significantly different. An annealing of silver films causes a blue shift of the peak of plasmon resonance band in the spectrum of silver nanoparticles: by 16 nm on the a-C:H surface and by 94 nm on the ITO surface. Silver films on the surface of a-C:H films are characterized by a narrower band in the extinction spectrum, which is peaked at 446 nm. The changes observed in the optical density of Ag films are related to the change in size and area of nanoparticles. The results of spectral studies of Ag films are in agreement with the data on the nanostructure obtained by scanning electron microscopy and statistical image processing. The spectra of granular silver films are shown to correlate well with the nanoparticle distribution function over the film area.

  9. Real-time monitoring of carbonarius DNA structured biochip by surface plasmon resonance imaging

    Science.gov (United States)

    Manera, M. G.; Rella, R.; Spadavecchia, J.; Moreau, J.; Canva, M.

    2008-06-01

    Surface plasmon resonance imaging (SPRI) studies, performed on a specially designed system exploiting the Kretschmann configuration, have been carried out to develop a DNA sensor for the detection of gene mutations accounting for the analysis of a fungin species which can proliferate especially in cereals, producing toxic compounds such as mycotoxins. The SPRI system has been used in order to study the hybridization process of ssDNA carbonarius probes immobilized onto a bio-functionalized Au surface in order to detect in real time the mutations in a DNA fragment. The SPRI system is a good choice for real-time monitoring of hybridization dynamics on an array of immobilized oligonucleotide probes because of the high sensitivity in characterization of ultra-thin films adsorbed onto gold or other noble metal surfaces. Using this technique, local changes in the reflectivity of a thin metal film describe the hybridization process between the molecules tethered to the surface and those sent in solution in the test chamber. The increase in the greyscale levels of the images (representing the functionalized gold traps) during the hybridization process demonstrated the occurrence of the binding event. The process has been proven to be reversible and specific for the investigated probes, since no signal has been detected in the presence of a negative control which is a non-complementary target.

  10. Effects of gene carrier polyethyleneimines on the structure and binding capability of bovine serum albumin

    Science.gov (United States)

    Guo, Zhiyong; Kong, Zhijie; Wei, Yanshan; Li, Hua; Wang, Yajing; Huang, Aimin; Ma, Lin

    2017-02-01

    Polyethyleneimine (PEI), one of the most effective non-viral gene carriers, is also cytotoxic, however the molecular basis is poorly understood. Little is known about the effects of PEI on the structure and functions of the biomacromolecules. In this work, fluorescence, UV-vis absorption, circular dichroism (CD) spectroscopy and zeta-potential measurement were conducted to reveal the interaction between PEIs (average molecular weight 25, 10 and 1.8 kDa) and bovine serum albumin (BSA), and to evaluate the effects on the conformation of BSA as long as its binding capability to the model compounds, 8-anilino-1-naphthalenesulfonic acid (ANS) and quercetin. PEIs were found to complex with BSA and induced a conformational change of the protein by a major reduction of α-helix at PEI concentration protein. The polymer size played an important role in PEI-BSA interaction. PEI of higher molecular weight was more favorable to interact with BSA and more efficient to perturb the conformation and binding capability of the protein.

  11. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    Science.gov (United States)

    Liu, Peter Q.; Luxmoore, Isaac J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.

    2015-11-01

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ~60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  12. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.

    Science.gov (United States)

    Liu, Peter Q; Luxmoore, Isaac J; Mikhailov, Sergey A; Savostianova, Nadja A; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R

    2015-11-20

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ∼60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  13. Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms

    Directory of Open Access Journals (Sweden)

    Bruno Gügi

    2015-09-01

    Full Text Available Diatoms are marine organisms that represent one of the most important sources of biomass in the ocean, accounting for about 40% of marine primary production, and in the biosphere, contributing up to 20% of global CO2 fixation. There has been a recent surge in developing the use of diatoms as a source of bioactive compounds in the food and cosmetic industries. In addition, the potential of diatoms such as Phaeodactylum tricornutum as cell factories for the production of biopharmaceuticals is currently under evaluation. These biotechnological applications require a comprehensive understanding of the sugar biosynthesis pathways that operate in diatoms. Here, we review diatom glycan and polysaccharide structures, thus revealing their sugar biosynthesis capabilities.

  14. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems

    Science.gov (United States)

    Badalyan, S. M.; Shylau, A. A.; Jauho, A. P.

    2017-09-01

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q . Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.

  15. Dispersion engineering of surface plasmons.

    Science.gov (United States)

    Mandel, Isroel M; Bendoym, Igor; Jung, Young U; Golovin, Andrii B; Crouse, David T

    2013-12-30

    In this work, it is shown how the shapes of surface plasmon dispersion curves can be engineered by manipulating the distribution of the electromagnetic fields in multilayer structures, which themselves are controlled by the free electron density in metal-like materials, such as doped semiconductors in the THz spectral range. By having a nonuniform free electron density profile, reduced relative to that in typical bulk metals, the electromagnetic fields of surface plasmons are distributed in different metallic materials that have different complex dielectric permittivities. As the in-plane component of surface plasmon's wave-vector increases, they become more confined to a particular layer of the multilayer structure and have energies that are predictable by considering the permittivity of the layer in which the fields are most concentrated. Unusual and arbitrary shapes of surface plasmon dispersion curves can be designed, including stair steps and dovetails shapes.

  16. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy

    Science.gov (United States)

    Umakoshi, Takayuki; Saito, Yuika; Verma, Prabhat

    2016-03-01

    Near-field scanning optical microscopy (NSOM) combined with plasmon nanofocusing is a powerful nano-analytical tool due to its attractive feature of efficient background suppression as well as light energy compression to the nanoscale. In plasmon nanofocusing-based NSOM, the metallic tip plays an important role in inducing plasmon nanofocusing. It is, however, very challenging to control plasmonic properties of tips for plasmon nanofocusing with existing tip fabrication methods, even though the plasmonic properties need to be adjusted to experimental environments such as the sample or excitation wavelength. In this study, we propose an efficient tip design and fabrication which enable one to actively control plasmonic properties for efficient plasmon nanofocusing. Because our method offers flexibility in the material and structure of tips, one can easily modify the plasmonic properties depending on the requirements. Importantly, through optimization of the plasmonic properties, we achieve almost 100% reproducibility in plasmon nanofocusing in our experiments. This new approach of tip fabrication makes plasmon nanofocusing-based NSOM practical and reliable, and opens doors for many scientists working in related fields.

  17. Single cell targeting using plasmon resonant gold-coated liposomes

    Science.gov (United States)

    Leung, Sarah J.; Romanowski, Marek

    2012-03-01

    We have developed an experimental system with the potential for the delivery and localized release of an encapsulated agent with high spatial and temporal resolution. We previously introduced liposome-supported plasmon resonant gold nanoshells; in this composite structure, the liposome allows for the encapsulation of substances, such as therapeutic agents, neurotransmitters, or growth factors, and the plasmon resonant structure facilitates the rapid release of encapsulated contents upon laser light illumination. More recently, we demonstrated that these gold-coated liposomes are capable of releasing their contents in a spectrally-controlled manner, where plasmon resonant nanoparticles only release content upon illumination with a wavelength of light matching their plasmon resonance band. We now show that this release mechanism can be used in a biological setting to deliver a peptide derivative of cholecystokinin to HEK293 cells overexpressing the CCK2 receptor. Using directed laser light, we may enable localized release from gold-coated liposomes to enable accurate perturbation of cellular functions in response to released compounds; this system may have possible applications in signaling pathways and drug discovery.

  18. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R < 5 nm) that can result in a great incr...

  19. Ultra-compact plasmonic waveguide modulators

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia

    -compatible materials, both passive and active plasmonic waveguide components are important. Among other proposed plasmonic waveguides and modulators, the structures where the dielectric core is sandwiched between metal plates have been shown as one of the most compact and efficient layout. Because of the tight mode...... confinement that can be achieved in metal-insulator-metal structures, they provide a base for extremely fast and efficient ultracompact plasmonic devices, including modulators, photodetectors, lasers and amplifiers. The main result of this thesis is a systematic study of various designs of plasmonic......Metal-dielectric interfaces can support the waves known as surface plasmon polaritons, which are tightly coupled to the interface and allow manipulation of light at the nanoscale. Plasmonics as a subject which studies such waves enables the merge between two major technologies: nanometer...

  20. Tailoring reflection of graphene plasmons by focused ion beams

    CERN Document Server

    Luo, Weiwei; Wu, Wei; Xiang, Yinxiao; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun

    2016-01-01

    Graphene plasmons are of remarkable features that make graphene plasmon elements promising for applications to integrated photonic devices. The fabrication of graphene plasmon components and control over plasmon propagating are of fundamental important. Through near-field plasmon imaging, we demonstrate controllable modifying of the reflection of graphene plasmon at boundaries etched by ion beams. Moreover, by varying ion dose at a proper value, nature like reflection boundary can be obtained. We also investigate the influence of ion beam incident angle on plasmon reflection. To illustrate the application of ion beam etching, a simple graphene wedge-shape plasmon structure is fabricated and performs excellently, proving this technology as a simple and efficient tool for controlling graphene plasmons.

  1. Nanoimprinted Long-range Surface Plasmon Polariton Waveguide Components

    DEFF Research Database (Denmark)

    Johansen, Dan Mario; Boltasseva, A.; Nielsen, Theodor

    2006-01-01

    We report on the fabrication by nanoimprint lithography (NIL) and performance of metal stripe waveguides embedded in a polymer, capable of supporting long-range surface plasmon polariton (LRSPP) propagation.......We report on the fabrication by nanoimprint lithography (NIL) and performance of metal stripe waveguides embedded in a polymer, capable of supporting long-range surface plasmon polariton (LRSPP) propagation....

  2. Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water

    Science.gov (United States)

    Derrien, T. J.-Y.; Koter, R.; Krüger, J.; Höhm, S.; Rosenfeld, A.; Bonse, J.

    2014-08-01

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon by multiple (N = 100) linearly polarized Ti:sapphire femtosecond laser pulses (duration τ = 30 fs, center wavelength λ0 ˜ 790 nm) is studied experimentally in air and water environment. The LIPSS surface morphologies are characterized by scanning electron microscopy and their spatial periods are quantified by two-dimensional Fourier analyses. It is demonstrated that the irradiation environment significantly influences the periodicity of the LIPSS. In air, so-called low-spatial frequency LIPSS (LSFL) were found with periods somewhat smaller than the laser wavelength (ΛLSFL ˜ 0.7 × λ0) and an orientation perpendicular to the laser polarization. In contrast, for laser processing in water a reduced ablation threshold and LIPSS with approximately five times smaller periods ΛLIPSS ˜ 0.15 × λ0 were observed in the same direction as in air. The results are discussed within the frame of recent LIPSS theories and complemented by a thin film based surface plasmon polariton model, which successfully describes the tremendously reduced LIPSS periods in water.

  3. Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, T. J.-Y., E-mail: thibault.derrien@gmail.com; Koter, R.; Krüger, J.; Bonse, J., E-mail: joern.bonse@bam.de [BAM Bundesanstalt für Materialforschung und –prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Höhm, S.; Rosenfeld, A. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Staße 2A, D-12489 Berlin (Germany)

    2014-08-21

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon by multiple (N = 100) linearly polarized Ti:sapphire femtosecond laser pulses (duration τ = 30 fs, center wavelength λ{sub 0} ∼ 790 nm) is studied experimentally in air and water environment. The LIPSS surface morphologies are characterized by scanning electron microscopy and their spatial periods are quantified by two-dimensional Fourier analyses. It is demonstrated that the irradiation environment significantly influences the periodicity of the LIPSS. In air, so-called low-spatial frequency LIPSS (LSFL) were found with periods somewhat smaller than the laser wavelength (Λ{sub LSFL} ∼ 0.7 × λ{sub 0}) and an orientation perpendicular to the laser polarization. In contrast, for laser processing in water a reduced ablation threshold and LIPSS with approximately five times smaller periods Λ{sub LIPSS} ∼ 0.15 × λ{sub 0} were observed in the same direction as in air. The results are discussed within the frame of recent LIPSS theories and complemented by a thin film based surface plasmon polariton model, which successfully describes the tremendously reduced LIPSS periods in water.

  4. Observations of Plasmons in Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S H; Landen, O L; Neumayer, P; Lee, R W; Widmann, K; Pollaine, S W; Wallace, R J; Gregori, G; Holl, A; Bornath, T; Thiele, R; Schwarz, V; Kraeft, W; Redmer, R

    2006-09-05

    We present the first collective x-ray scattering measurements of plasmons in solid-density plasmas. The forward scattering spectra of a laser-produced narrow-band x-ray line from isochorically heated beryllium show that the plasmon frequency is a sensitive measure of the electron density. Dynamic structure calculations that include collisions and detailed balance match the measured plasmon spectrum indicating that this technique will enable new applications to determine the equation of state and compressibility of dense matter.

  5. Efficiency enhancements in Ag nanoparticles-SiO2-TiO2 sandwiched structure via plasmonic effect-enhanced light capturing

    Science.gov (United States)

    2013-01-01

    TiO2-SiO2-Ag composites are fabricated by depositing TiO2 films on silica substrates embedded with Ag nanoparticles. Enhancement of light absorption of the nanostructural composites is observed. The light absorption enhancement of the synthesized structure in comparison to TiO2 originated from the near-field enhancement caused by the plasmonic effect of Ag nanoparticles, which can be demonstrated by the optical absorption spectra, Raman scattering investigation, and the increase of the photocatalytic activity. The embedded Ag nanoparticles are formed by ion implantation, which effectively prevents Ag to be oxidized through direct contact with TiO2. The suggested incorporation of plasmonic nanostructures shows a great potential application in a highly efficient photocatalyst and ultra-thin solar cell. PMID:23402586

  6. Emission enhancement in indium zinc oxide(IZO)/Ag/IZO sandwiched structure due to surface plasmon resonance of thin Ag film

    Science.gov (United States)

    Kiba, Takayuki; Yanome, Kazuki; Kawamura, Midori; Abe, Yoshio; Kim, Kyung Ho; Takayama, Junichi; Murayama, Akihiro

    2016-12-01

    We report on a photoluminescence (PL) enhancement in IZO/Ag/IZO sandwiched structure via surface plasmonic effects of 14 nm-thick Ag film. In the presence of Ag thin film, the 2-8-fold enhancement was observed for the broad PL around 2.34 eV, which can be originated from defect states in amorphous IZO film. The results of time-resolved PL spectra suggested that the increase in radiative recombination rate, and the maximum Purcell factor of 19 was estimated from the analysis of the PL decay profiles. The comparison between the results of static- and dynamic-PL measurement suggests that the non-radiative process after the excitation of the surface plasmon of the silver film also affects the total efficiency of the emission enhancement.

  7. Spontaneous Emission and Fundamental Limitations on the Signal-to-Noise Ratio in Deep-Subwavelength Plasmonic Waveguide Structures with Gain

    Science.gov (United States)

    Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.

    2016-12-01

    Incorporation of gain media in plasmonic nanostructures can give the possibility to compensate for high Ohmic losses in the metal and design truly nanoscale optical components for diverse applications ranging from biosensing to on-chip data communication. However, the process of stimulated emission in the gain medium is inevitably accompanied by spontaneous emission. This spontaneous emission greatly impacts the performance characteristics of deep-subwavelength active plasmonic devices and casts doubt on their practical use. Here we develop a theoretical framework to evaluate the influence of spontaneous emission, which can be applied to waveguide structures of any shape and level of mode confinement. In contrast to the previously developed theories, we take into account that the spectrum of spontaneous emission can be very broad and nonuniform, which is typical for deep-subwavelength structures, where a high optical gain (approximately 1000 cm-1 ) in the active medium is required to compensate for strong absorption in the metal. We also present a detailed study of the spontaneous emission noise in metal-semiconductor active plasmonic nanowaveguides and demonstrate that by using both optical and electrical filtering techniques, it is possible to decrease the noise to a level sufficient for practical applications at telecom and midinfrared wavelengths.

  8. Graphene active plasmonic metamaterials for new types of terahertz lasers

    Science.gov (United States)

    Otsuji, Taiichi; Watanabe, Takayuki; Satou, Akira; Popov, Vyacheslav; Ryzhii, Victor

    2013-05-01

    This paper reviews recent advances in graphene active plasmonic metamaterials for new types of terahertz lasers. We theoretically discovered that when the population of Dirac Fermionic carriers in graphene are inverted by optical or electrical pumping the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned in a micro- or nano-ribbon array by grating gate metallization, the structure acts as an active plasmonic metamaterial, providing a super-radiant plasmonic lasing with giant gain at the plasmon modes in a wide THz frequency range.

  9. Intracellular Assembly of Nuclear-Targeted Gold Nanosphere Enables Selective Plasmonic Photothermal Therapy of Cancer by Shifting Their Absorption Wavelength toward Near-Infrared Region.

    Science.gov (United States)

    Panikkanvalappil, Sajanlal R; Hooshmand, Nasrin; El-Sayed, Mostafa A

    2017-09-07

    Despite the important applications of near-infrared (NIR) absorbing nanomaterials in plasmonic photothermal therapy (PPT), their high yield synthesis and nonspecific heating during the active- and passive-targeted cancer therapeutic strategies remain challenging. In the present work, we systematically demonstrate that in situ aggregation of typical non-NIR absorbing plasmonic nanoparticles at the nuclear region of the cells could translate them into an effective NIR photoabsorber in plasmonic photothermal therapy of cancer due to a significant shift of the plasmonic absorption band to the NIR region. We evaluated the potential of nuclear-targeted AuNSs as photoabsorber at various stages of endocytosis by virtue of their inherent in situ assembling capabilities at the nuclear region of the cells, which has been considered as one of the most thermolabile structures within the cells, to selectively destruct cancer cells with minimal damage to healthy cells. Various plasmonic nanoparticles such as rods and cubes have been exploited to elucidate the role of plasmonic field coupling in assembled nanoparticles and their subsequent killing efficiency. The NIR absorbing capabilities of aggregated AuNSs have been further demonstrated both experimentally and theoretically using discrete dipolar approximation (DDA) techniques, which was in concordance with the observed results in plasmonic photothermal therapeutic studies. While the current work was able to demonstrate the utility of non-NIR absorbing plasmonic nanoparticles as a potential alternative for plasmonic photothermal therapy by inducing localized plasmonic heating at the nuclear region of the cells, these findings could potentially open up new possibilities in developing more efficient nanoparticles for efficient cancer treatment modalities.

  10. Infrared Topological Plasmons in Graphene

    Science.gov (United States)

    Jin, Dafei; Christensen, Thomas; Soljačić, Marin; Fang, Nicholas X.; Lu, Ling; Zhang, Xiang

    2017-06-01

    We propose a two-dimensional plasmonic platform—periodically patterned monolayer graphene—which hosts topological one-way edge states operable up to infrared frequencies. We classify the band topology of this plasmonic system under time-reversal-symmetry breaking induced by a static magnetic field. At finite doping, the system supports topologically nontrivial band gaps with mid-gap frequencies up to tens of terahertz. By the bulk-edge correspondence, these band gaps host topologically protected one-way edge plasmons, which are immune to backscattering from structural defects and subject only to intrinsic material and radiation loss. Our findings reveal a promising approach to engineer topologically robust chiral plasmonic devices and demonstrate a realistic example of high-frequency topological edge states.

  11. Plasmon-phonon coupling in graphene-hyperbolic bilayer heterostructures

    Science.gov (United States)

    Yin, Ge; Yuan, Jun; Jiang, Wei; Zhu, Jianfei; Ma, Yungui

    2016-11-01

    Polar dielectrics are important optical materials enabling the subwavelength manipulation of light in infrared due to their capability to excite phonon polaritons. In practice, it is highly desired to actively modify these hyperbolic phonon polaritons (HPPs) to optimize or tune the response of the device. In this work, we investigate the plasmonic material, a monolayer graphene, and study its hybrid structure with three kinds of hyperbolic thin films grown on SiO2 substrate. The inter-mode hybridization and their tunability have been thoroughly clarified from both the band dispersions and the mode patterns numerically calculated through a transfer matrix method. Our results show that these hybrid multilayer structures are of strong potentials for applications in plasmonic waveguides, modulators and detectors in infrared. Project supported by the National Natural Science Foundation of China (Grant No. 61271085) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR15F050001).

  12. Capabilities of 3-D wavelet transforms to detect plume-like structures from seismic tomography

    Science.gov (United States)

    Bergeron, Stephen Y.; Yuen, David A.; Vincent, Alain P.

    2000-10-01

    The wavelet transform methods have been applied to viewing 3-D seismic tomography by casting the transformed quantities into two proxy distributions, E-max, the maximum of the magnitude of the local spectra about a local point and the associated local wavenumber, k-max. Using a stochastic background noise, we test the capability of this procedure in picking up the coherent structures of upper-mantle plumes. Plumes with a Gaussian shape and a characteristic width up to 2250 km have been tested for various amounts of the signal-to-noise ratios (SNR). We have found that plumes can be picked out for SNR as low as 0.08 db and that the optimal plume width for detection is around 1500 km. For plume width ranging between 700 km and 2000 km, the SNR can be lower than 1 db. This length-scale falls within the range for plume-detection based on the signal-to-noise levels associated with the current global tomographical models.

  13. Localized Surface Plasmons in Vibrating Graphene Nanodisks

    CERN Document Server

    Wang, Weihua; Mortensen, N Asger; Christensen, Johan

    2015-01-01

    Localized surface plasmons are confined collective oscillations of electrons in metallic nanoparticles. When driven by light, the optical response is dictated by geometrical parameters and the dielectric environment and plasmons are therefore extremely important for sensing applications. Plasmons in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters, such as molecules, for future nanophotonic devices.

  14. Surface magneto plasmons and their applications in the infrared frequencies

    Directory of Open Access Journals (Sweden)

    Hu Bin

    2015-11-01

    Full Text Available Due to their promising properties, surface magneto plasmons have attracted great interests in the field of plasmonics recently. Apart from flexible modulation of the plasmonic properties by an external magnetic field, surface magneto plasmons also promise nonreciprocal effect and multi-bands of propagation, which can be applied into the design of integrated plasmonic devices for biosensing and telecommunication applications. In the visible frequencies, because it demands extremely strong magnetic fields for the manipulation of metallic plasmonic materials, nano-devices consisting of metals and magnetic materials based on surface magneto plasmon are difficult to be realized due to the challenges in device fabrication and high losses. In the infrared frequencies, highly-doped semiconductors can replace metals, owning to the lower incident wave frequencies and lower plasma frequencies. The required magnetic field is also low, which makes the tunable devices based on surface magneto plasmons more practically to be realized. Furthermore, a promising 2D material-graphene shows great potential in infrared magnetic plasmonics. In this paper, we review the magneto plasmonics in the infrared frequencies with a focus on device designs and applications. We investigate surface magneto plasmons propagating in different structures, including plane surface structures and slot waveguides. Based on the fundamental investigation and theoretical studies, we illustrate various magneto plasmonic micro/nano devices in the infrared, such as tunable waveguides, filters, and beam-splitters. Novel plasmonic devices such as one-way waveguides and broad-band waveguides are also introduced.

  15. Dielectric coating and surface plasmon enhancement of multi-color quantum-well structures

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Iida, Daisuke; Ou, Yiyu

    We fabricate a multi-colored quantum-well structure as a prototype towards monolithic white light-emitting diodes, and modify the emission intensities of different colors by introducing dielectric and Ag nanoparticle coating.......We fabricate a multi-colored quantum-well structure as a prototype towards monolithic white light-emitting diodes, and modify the emission intensities of different colors by introducing dielectric and Ag nanoparticle coating....

  16. Free-standing chiral plasmonics

    Science.gov (United States)

    Leong, Eunice Sok Ping; Deng, Jie; Wu, Siji; Khoo, Eng Huat; Liu, Yan Jun

    2014-11-01

    Chiral plasmonic nanostructures offer the ability to achieve strong optical circular dichroism (CD) activity over a broad spectral range, which has been challenging for chiral molecules. Chiral plasmonic nanostructures have been extensively studied based on top-down and bottom-up fabrication techniques. Particularly, in the top-down electron-beam lithography, 3D plasmonic nanostructure fabrication involves layer-by-layer patterning and complex alignment, which is time-consuming and causes many defects in the structures. Here, we present a free-standing 3D chiral plamonic nanostructures using the electron-beam lithography technique with much simplified fabrication processes. The 3D chiral plasmonic nanostructures consist of a free-standing ultrathin silicon nitride membrane with well-aligned L-shape metal nanostructures on one side and disk-shape ones on the other side. The free-standing membrane provides an ultra-smooth metal/dielectric interface and uniformly defines the gap between the upper and lower layers in an array of chiral nanostructures. Such free-standing chiral plasmonic nanostructures exhibit strong CD at optical frequencies, which can be engineered by simply changing the disk size on one side of the membrane. Experimental results are in good agreement with the finite-difference time-domain simulations. Such free-standing chiral plasmonics holds great potential for chirality analysis of biomolecules, drugs, and chemicals.

  17. Physics and design possibilities of plasmonic-based fishnet metamaterial structures

    Science.gov (United States)

    Fiala, Jan; Kwiecien, Pavel; Richter, Ivan

    2012-01-01

    Metamaterials (MM) represent a class of artificially-made structures, exhibiting, if properly designed, negative values of effective permittivity and permeability in specific spectral regions simultaneously. Recently, such structures have indeed attracted much attention due to their unique optical behavior not found in nature. These structures offer, e.g. a possibility of practical realization of perfect lenses, possessing a spatial resolution below the wavelength limit. In this contribution, we have focused on theoretical rigorous study on one specific class of MM structures, called fishnets, consisting of a combination of metal and dielectric layers with periodically arranged sub-wavelength holes. Our attempt was to reveal the physics and optimize the fishnet structure by tailoring the geometrical features in order to achieve optimized response in terms of negative refraction indices in particular spectral regions. For that purpose, our in-house 2D rigorous coupled wave analysis (RCWA) software was used for rigorous computing, the results of which were afterwards post-processed in order to retrieve the effective parameters. Using this tool, with the help of our approximate model, enabling more physical insight of wave-coupling processes, numerical simulations of plane-wave excitation of the multilayered nanofishnets have thus been performed. The reflection and transmission coefficients have been calculated and the effective material parameters have consequently been extracted from the obtained data, via the homogenization procedure.

  18. Essays on knowledge sourcing and technological capability : A knowledge structure perspective

    NARCIS (Netherlands)

    Li, Zhengyu

    2016-01-01

    In today’s increasingly competitive and rapidly changing markets that depend heavily on innovation, firms are increasingly opt to use external knowledge sourcing strategies to complement their internal efforts in developing technological capabilities. While external knowledge sourcing strategy can

  19. Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Garnaes, J.

    The present study investigates the capabilities of the two employed processes, injection molding (IM) and injection compression molding (ICM) on replicating different channel cross sections. Statistical design of experiment was adopted to optimize replication quality of produced polymer parts wit...

  20. Resonant Plasmonic Enhancement of InGaN/GaN LED using Periodically Structured Ag Nanodisks

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Iida, Daisuke; Zhu, Xiaolong

    2013-01-01

    Ag nanodisks are fabricated on GaN-based LED to enhance emission efficiency. Nanosphere lithography is used to obtain a periodic nano-structure, and a photoluminescence enhancement of 2.7 is reported with Ag nanodisk diameter of 330 nm.......Ag nanodisks are fabricated on GaN-based LED to enhance emission efficiency. Nanosphere lithography is used to obtain a periodic nano-structure, and a photoluminescence enhancement of 2.7 is reported with Ag nanodisk diameter of 330 nm....

  1. Self-Complementary Plasmonic Structures for High Efficiency Broadband Absorber in the Visible Range

    Science.gov (United States)

    Sun, Tianyi; Wang, Yang; Ren, Zhifeng; Kempa, Krzysztof

    2013-03-01

    We demonstrate, by simulation, that a planar 3-layer structure on a metal substrate can highly absorb electromagnetic radiation in the entire visible range, which can become a potential platform for high-efficiency broadband absorber. Such a structure consists of an ultrathin semiconducting layer topped with a solid nanoscopically perforated metallic film and then a dielectric interference layer. It is shown that the perforated metallic film and the ultrathin absorber form an effective metamaterial film, which negatively refracts light in this broad frequency range. Our quantitative simulation confirms that the absorption bandwidth is maximized at the self-complementary pattern of the percolation threshold. If amorphous silicon (a-Si) is selected as the ultrathin semiconducting material, the absorbance of the structure with a checkerboard-patterned perforated metallic film is about 90% in the visible range (from 400 nm to 700 nm), where 80% goes into the a-Si layer and the other 10% being absorbed by other layers. Further simulation shows that for a single p-i-n a-Si junction, the energy conversion efficiency of an optimized structure can exceed 12%.

  2. Plasmonic Light Trapping in an Ultrathin Photovoltaic Layer with Film-Coupled Metamaterial Structures

    CERN Document Server

    Wang, Hao

    2014-01-01

    A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above the bandgap, but also practically serve as electrical contacts for photon-generated charge collection. The energy absorbed by the active layer is greatly enhanced in the film-coupled metamaterial structure, resulting in significant enhancement on the short-circuit current density by three times over a free-standing GaAs layer at the same thickness. The results would facilitate the development of next-generation ultrathin solar cells with lower cost and higher efficiency.

  3. Plasmonic laser printing for ink-free color decoration

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil

    2016-01-01

    -wavelength resolution and the production of bright and non-fading colors. This technology creates a laser printer capable of producing images with a resolution of 127,000 DPI. It will be possible to save data invisible to the naked eye. This includes serial numbers or bar codes of products and other information. It can......Here we show a method of color printing on nanoimprinted plasmonic metasurfaces [1] using laser post-writing. Laser pulses induce transient local heat generation that leads to melting and reshaping of the imprinted nanostructures [2]. This leads to melting and reshaping of the imprinted 20nm Al...... structures embedded in plastics. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different color appearances can be created. Color printing by this technology has several advantages over dye technology: ink/toner-free, sub...

  4. Long Wavelength Plasmonic Absorption Enhancement in Silicon Using Optical Lithography Compatible Core-Shell-Type Nanowires

    Directory of Open Access Journals (Sweden)

    Mohammed Shahriar Sabuktagin

    2014-01-01

    Full Text Available Plasmonic properties of rectangular core-shell type nanowires embedded in thin film silicon solar cell structure were characterized using FDTD simulations. Plasmon resonance of these nanowires showed tunability from  nm. However this absorption was significantly smaller than the Ohmic loss in the silver shell due to very low near-bandgap absorption properties of silicon. Prospect of improving enhanced absorption in silicon to Ohmic loss ratio by utilizing dual capability of these nanowires in boosting impurity photovoltaic effect and efficient extraction of the photogenerated carriers was discussed. Our results indicate that high volume fabrication capacity of optical lithography techniques can be utilized for plasmonic absorption enhancement in thin film silicon solar cells over the entire long wavelength range of solar radiation.

  5. Aluminum plasmonic multicolor meta-hologram.

    Science.gov (United States)

    Huang, Yao-Wei; Chen, Wei Ting; Tsai, Wei-Yi; Wu, Pin Chieh; Wang, Chih-Ming; Sun, Greg; Tsai, Din Ping

    2015-05-13

    We report a phase-modulated multicolor meta-hologram (MCMH) that is polarization-dependent and capable of producing images in three primary colors. The MCMH structure is made of aluminum nanorods that are arranged in a two-dimensional array of pixels with surface plasmon resonances in red, green, and blue. The aluminum nanorod array is patterned on a 30 nm thick SiO2 spacer layer sputtered on top of a 130 nm thick aluminum mirror. With proper design of the structure, we obtain resonances of narrow bandwidths to allow for implementation of the multicolor scheme. Taking into account of the wavelength dependence of the diffraction angle, we can project images to specific locations with predetermined size and order. With tuning of aluminum nanorod size, we demonstrate that the image color can be continuously varied across the visible spectrum.

  6. Plasmonic materials for energy: From physics to applications

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2013-10-01

    Full Text Available Physical mechanisms unique to plasmonic materials, which can be exploited for the existing and emerging applications of plasmonics for renewable energy technologies, are reviewed. The hybrid nature of surface plasmon (SP modes – propagating surface plasmon polaritons (SPPs and localized surface plasmons (LSPs – as collective photon–electron oscillations makes them attractive candidates for energy applications. A high density of optical states in the vicinity of plasmonic structures enhances light absorption and emission, enables localized heating, and drives near-field heat exchange between hot and cold surfaces. SP modes channel the energy of absorbed photons directly to the free electrons, and the generated hot electrons can be utilized in thermoelectric, photovoltaic and photo-catalytic platforms. The advantages and disadvantages of using plasmonics over conventional technologies for solar energy and waste heat harvesting are discussed, and areas where plasmonics is expected to lead to performance improvements not achievable by other methods are identified.

  7. Plasmons in nanoscale and atomic-scale systems

    Directory of Open Access Journals (Sweden)

    Tadaaki Nagao, Gui Han, ChungVu Hoang, Jung-Sub Wi, Annemarie Pucci, Daniel Weber, Frank Neubrech, Vyacheslav M Silkin, Dominik Enders, Osamu Saito and Masud Rana

    2010-01-01

    Full Text Available Plasmons in metallic nanomaterials exhibit very strong size and shape effects, and thus have recently gained considerable attention in nanotechnology, information technology, and life science. In this review, we overview the fundamental properties of plasmons in materials with various dimensionalities and discuss the optical functional properties of localized plasmon polaritons in nanometer-scale to atomic-scale objects. First, the pioneering works on plasmons by electron energy loss spectroscopy are briefly surveyed. Then, we discuss the effects of atomistic charge dynamics on the dispersion relation of propagating plasmon modes, such as those for planar crystal surface, atomic sheets and straight atomic wires. Finally, standing-wave plasmons, or antenna resonances of plasmon polariton, of some widely used nanometer-scale structures and atomic-scale wires (the smallest possible plasmonic building blocks are exemplified along with their applications.

  8. Plasmonic materials for energy: from physics to applications

    CERN Document Server

    Boriskina, Svetlana V; Chen, Gang

    2013-01-01

    Physical mechanisms unique to plasmonic materials, which can be exploited for the existing and emerging applications of plasmonics for renewable energy technologies, are reviewed. The hybrid nature of surface plasmon (SP) modes - propagating surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) - as collective photon-electron oscillations makes them attractive candidates for energy applications. High density of optical states in the vicinity of plasmonic structures enhances light absorption and emission, enables localized heating, and drives near-field heat exchange between hot and cold surfaces. SP modes channel the energy of absorbed photons directly to the free electrons, and the generated hot electrons can be utilized in thermoelectric, photovoltaic and photo-catalytic platforms. Advantages and disadvantages of using plasmonics over conventional technologies for solar energy and waste heat harvesting are discussed, and areas where plasmonics is expected to lead to performance improvement...

  9. Molecular plasmonics

    CERN Document Server

    Fritzsche, Wolfgang

    2014-01-01

    Adopting a novel approach, this book provides a unique ""molecular perspective"" on plasmonics, concisely presenting the fundamentals and applications in a way suitable for beginners entering this hot field as well as for experienced researchers and practitioners. It begins by introducing readers to the optical effects that occur at the nanoscale and particularly their modification in the presence of biomolecules, followed by a concise yet thorough overview of the different methods for the actual fabrication of nanooptical materials. Further chapters address the relevant nanooptics, as well as

  10. Complementary magnetic localized surface plasmons

    CERN Document Server

    Gao, Zhen; Zhang, Youming; Zhang, Baile

    2015-01-01

    Magnetic localized surface plasmons (LSPs) supported on metallic structures corrugated by very long and curved grooves have been recently proposed and demonstrated on an extremely thin metallic spiral structure (MSS) in the microwave regime. However, the mode profile for the magnetic LSPs was demonstrated by measuring only the electric field, not the magnetic field.

  11. Plasmonics based VLSI processes

    Directory of Open Access Journals (Sweden)

    Shreya Bhattacharya

    2013-04-01

    Full Text Available In continuum to my previous paper titled‘Implementation of plasmonics in VLSI’, this paperattempts to explore further, the actual physicalrealization of an all-plasmonic chip. In this paper,various methods of plasmon-basedphotolithography have been discussed and anobservation is made w.r.t the cost effectiveness andease of adaptability. Also, plasmonics based activeelement has been discussed which would helpunravel further arenas ofapproaches and methodstowards the realization of an all-plasmonic chip.

  12. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber.

    Science.gov (United States)

    Tagliabue, Giulia; Eghlidi, Hadi; Poulikakos, Dimos

    2014-11-24

    Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform.

  13. The synthesis of single layers of Ag nanocrystals by ultra-low-energy ion implantation for large-scale plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Carles, R; Farcau, C; Bonafos, C; Benassayag, G; Pecassou, B; Zwick, A, E-mail: robert.carles@cemes.f [Groupe Nanomat-CEMES-CNRS-Universite de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France)

    2009-09-02

    Single layers of silver (Ag) nanoparticles embedded in silica (SiO{sub 2}) have been fabricated by ultra-low-energy ion implantation. The distance between the Ag particles and the free SiO{sub 2} surface is controlled with nanometer precision. Raman scattering and reflectivity measurements strongly correlate to transmission electron microscopy analyses, allowing the use of these non-invasive techniques to monitor structural and dynamical properties. These results open up new opportunities to manipulate electromagnetic near-field interactions on wafer-scale plasmonic devices.

  14. An optical device capable of providing a structural color, and a corresponding method of manufacturing such a device

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an optical device having a nano-structured surface capable of providing a structural color to a normal human viewer, the device made being manufactured in one single material. A plurality of nano- structured protrusions (5) is further arranged with a first......) with respect to the average surface positions. The position, size, and randomness of the protrusions are arranged so as to provide, at least up to a maximum angle of incidence (A_in) with respect to a normal to the surface, an angle-independent substantially homogeneous structural color perception for a normal...

  15. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa

    2014-05-01

    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  16. Plasmonic effects in metal-semiconductor nanostructures

    CERN Document Server

    Toropov, Alexey A

    2015-01-01

    Metal-semiconductor nanostructures represent an important new class of materials employed in designing advanced optoelectronic and nanophotonic devices, such as plasmonic nanolasers, plasmon-enhanced light-emitting diodes and solar cells, plasmonic emitters of single photons, and quantum devices operating in infrared and terahertz domains. The combination of surface plasmon resonances in conducting structures, providing strong concentration of an electromagnetic optical field nearby, with sharp optical resonances in semiconductors, which are highly sensitive to external electromagnetic fields, creates a platform to control light on the nanoscale. The design of the composite metal-semiconductor system imposes the consideration of both the plasmonic resonances in metal and the optical transitions in semiconductors - a key issue being their resonant interaction providing a coupling regime. In this book the reader will find descriptions of electrodynamics of conducting structures, quantum physics of semiconducto...

  17. Plasmonic solutions for coupling and modulation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Babicheva, Viktoriia; Malureanu, Radu;

    We present our design results for efficient coupling and modulation in plasmonic structures. Fiber coupling to a plasmonic slot waveguide is significantly increased by a metallic nanoantenna with additional reflectors or by the configuration of several connected antennas. We also show that the pl......We present our design results for efficient coupling and modulation in plasmonic structures. Fiber coupling to a plasmonic slot waveguide is significantly increased by a metallic nanoantenna with additional reflectors or by the configuration of several connected antennas. We also show...... that the plasmonic four-layer waveguide with patterned ITO layer can modulate light with higher transmission and the same modulation depth as a waveguide with a uniform ITO layer....

  18. Hidden progress: broadband plasmonic invisibility

    CERN Document Server

    Renger, Jan; Dupont, Guillaume; Aćimović, Srdjan S; Guenneau, Sébastien; Quidant, Romain; Enoch, Stefan

    2010-01-01

    The key challenge in current research into electromagnetic cloaking is to achieve invisibility over an extended bandwidth. There has been significant progress towards this using the idea of cloaking by sweeping under the carpet of Li and Pendry, with dielectric structures superposed on a mirror. Here, we show that we can harness surface plasmon polaritons at a metal surface structured with a dielectric material to obtain a unique control of their propagation. We exploit this to control plasmonic coupling and demonstrate both theoretically and experimentally cloaking over an unprecedented bandwidth (650-900 nm). Our non-resonant plasmonic metamaterial allows a curved reflector to mimic a flat mirror. Our theoretical predictions are validated by experiments mapping the surface light intensity at the wavelength 800 nm.

  19. Ultrafast direct fabrication of flexible substrate-supported designer plasmonic nanoarrays

    Science.gov (United States)

    Hu, Yaowu; Kumar, Prashant; Xu, Rong; Zhao, Kejie; Cheng, Gary J.

    2015-12-01

    Fabrication of plasmonic nanostructures has been an important topic for their potential applications in photonic and optoelectronic devices. Among plasmonic materials, gold is one of the most promising materials due to its low ohmic loss at optical frequencies and high oxidation resistance. However, there are two major bottlenecks for its industrial applications: (1) the need for large-scale fabrication technology for high-precision plasmonic nanostructures; and (2) the need to integrate the plasmonic nanostructures on various substrates. While conventional top-down approaches involve high cost and give low throughput, bottom-up approaches suffer from irreproducibility and low precision. Herein, we report laser shock induced direct imprinting of large-area plasmonic nanostructures from physical vapor deposited (PVD) gold thin film on a flexible commercial free-standing aluminum foil. Among the important characteristics of the laser-shock direct imprinting is their unique capabilities to reproducibly deliver designer plasmonic nanostructures with extreme precision and in an ultrafast manner. Excellent size tunability (from several μm down to 15 nm) has been achieved by varying mold dimensions and laser parameters. The physical mechanism of the hybrid film imprinting is elaborated by finite element modeling. A mechanical robustness test of the hybrid film validates a significantly improved interfacial contact between gold arrays and the underlying substrate. The strong optical field enhancement was realized in the large-area fabricated engineered gold nanostructures. Low concentration molecular sensing was investigated employing the fabricated structures as surface-enhanced Raman scattering (SERS) substrates. The ability to ultrafast direct imprint plasmonic nanoarrays on a flexible substrate at multiscale is a critical step towards roll-to-roll manufacturing of multi-functional devices which is poised to inspire several emerging applications.Fabrication of

  20. Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping

    Science.gov (United States)

    Balci, Sinan; Kocabas, Coskun; Ates, Simge; Karademir, Ertugrul; Salihoglu, Omer; Aydinli, Atilla

    2012-12-01

    In this paper, we report experimental and theoretical investigations on tuning of the surface plasmon-exciton coupling by controlling the plasmonic mode damping, which is defined by the plasmonic layer thickness. The results reveal the formation of plasmon-exciton hybrid state characterized by a tunable Rabi splitting with energies ranging from 0 to 150 meV. Polarization-dependent spectroscopic reflection measurements were employed to probe the dispersion of the coupled system. The transfer matrix method and analytical calculations were used to model the self-assembled J-aggregate/metal multilayer structures in excellent agreement with experimental observations.

  1. The financial and structural capabilities of key infrastructure sectors in Serbia

    Directory of Open Access Journals (Sweden)

    Malinić Dejan

    2012-01-01

    Full Text Available Experts and economic policy creators debate various economic growth rates without a direct insight into the capabilities of the different economic sectors motivated us to devote this paper to the research of key infrastructure sector capabilities, both in terms of the economic prosperity of the Serbian national economy and as a support for the development of other sectors. This paper examines the energy, transportation, and telecommunications sectors’ exposure to short-term and long-term risks, and assesses their financial strength, investment possibilities, and long-term profitability. We believe that the following results will be a valuable information input for making better strategic decisions and more expedient planning of economic sustainable growth.

  2. Facile synthesis of Au-ZnO plasmonic nanohybrids for highly efficient photocatalytic degradation of methylene blue

    Science.gov (United States)

    Kuriakose, Sini; Sahu, Kavita; Khan, Saif A.; Tripathi, A.; Avasthi, D. K.; Mohapatra, Satyabrata

    2017-02-01

    Au-ZnO plasmonic nanohybrids were synthesized by a facile two step process. In the first step, nanostructured ZnO thin films were prepared by carbothermal evaporation followed by thermal annealing in oxygen atmosphere. Deposition of ultrathin Au films onto the nanostructured ZnO thin films by sputtering combined with thermal annealing resulted in the formation of Au-ZnO plasmonic nanohybrid thin films. The structural, optical, plasmonic and photocatalytic properties of the Au-ZnO nanohybrid thin films were studied. XRD studies on the Au-ZnO hybrid thin films revealed the presence of Au and ZnO nanostructures. UV-visible absorption studies showed two peaks corresponding to the excitonic absorption of ZnO nanostructures in the UV region and the surface plasmon resonance (SPR) absorption of Au nanoparticles in the visible region. The Au-ZnO nanohybrid thin films annealed at 400 °C showed enhanced photocatalytic activity as compared to nanostructrured ZnO thin films towards sun light driven photocatalytic degradation of methylene blue (MB) dye in water. The observed enhanced photocatalytic activity of Au-ZnO plasmonic nanohybrids is attributed to the efficient suppression of the recombination of photogenerated charge carriers in ZnO due to the strong electron scavenging action of Au nanoparticles combined with the improved sun light utilization capability of Au-ZnO nanohybrids coming from the plasmonic response of Au nanoparticles decorating ZnO nanostructures.

  3. Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams.

    Science.gov (United States)

    Normatov, Alexander; Spektor, Boris; Leviatan, Yehuda; Shamir, Joseph

    2011-04-25

    Nanostructured materials, designed for enhanced light absorption, are receiving increased scientific and technological interest. In this paper we propose a physical criterion for designing the cross-sectional shape of plasmonic nanowires for improved absorption of a given tightly focused illumination. The idea is to design a shape which increases the matching between the nanowire plasmon resonance field and the incident field. As examples, we design nanowire shapes for two illumination cases: a tightly focused plane wave and a tightly focused beam containing a line singularity. We show that properly shaped and positioned silver nanowires that occupy a relatively small portion of the beam-waist area can absorb up to 65% of the total power of the incident beam.

  4. Plasmonic nanograting enhanced quantum dots excitation for cellular imaging on-chip

    Science.gov (United States)

    Bhave, Gauri; Lee, Youngkyu; Chen, Peng; Zhang, John X. J.

    2015-09-01

    We present the design and integration of a two-dimensional (2D) plasmonic nanogratings structure on the electrode of colloidal quantum dot-based light-emitting diodes (QDLEDs) as a compact light source towards arrayed on-chip imaging of tumor cells. Colloidal quantum dots (QDs) were used as the emission layer due to their unique capabilities, including multicolor emission, narrow bandwidth, tunable emission wavelengths, and compatibility with silicon fabrication. The nanograting, based on a metal-dielectric-metal plasmonic waveguide, aims to enhance the light intensity through the resonant reflection of surface plasmon (SP) waves. The key parameters of plasmonic nanogratings, including periodicity, slit width, and thicknesses of the metal and dielectric layers, were designed to tailor the frequency bandgap such that it matches the wavelength of operation. We fabricated QDLEDs with the integrated nanogratings and demonstrated an increase in electroluminescence intensity, measured along the direction perpendicular to the metal electrode. We found an increase of 34.72% in QDLED electroluminescence intensity from the area of the pattern and an increase of 32.63% from the photoluminescence of QDs deposited on a metal surface. We performed ex vivo transmission-mode microscopy to evaluate the nucleus-cytoplasm ratios of MDA-MB 231 cultured breast cancer cells using QDLEDs as the light source. We showed wavelength dependent imaging of different cell components and imaging of cells at higher magnification using enhanced emission from QDLEDs with integrated plasmonic nanogratings.

  5. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    Science.gov (United States)

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences.

  6. Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties.

    Science.gov (United States)

    Höller, Roland P M; Dulle, Martin; Thomä, Sabrina; Mayer, Martin; Steiner, Anja Maria; Förster, Stephan; Fery, Andreas; Kuttner, Christian; Chanana, Munish

    2016-06-28

    We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies.

  7. A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2009-07-01

    Full Text Available Solar cells are a promising renewable, carbon-free electric energy resource to address the fossil fuel shortage and global warming. Energy conversion efficiencies around 40% have been recently achieved in laboratories using III-V semiconductor compounds as photovoltaic materials. This article reviews the efforts and accomplishments made for higher efficiency III-V semiconductor compound solar cells, specifically with multijunction tandem, lower-dimensional, photonic up/down conversion, and plasmonic metallic structures. Technological strategies for further performance improvement from the most efficient (AlInGaP/(InGaAs/Ge triple-junction cells including the search for 1.0 eV bandgap semiconductors are discussed. Lower-dimensional systems such as quantum well and dot structures are being intensively studied to realize multiple exciton generation and multiple photon absorption to break the conventional efficiency limit. Implementation of plasmonic metallic nanostructures manipulating photonic energy flow directions to enhance sunlight absorption in thin photovoltaic semiconductor materials is also emerging.

  8. Nonlinear optics of complex plasmonic structures: linear and third-order optical response of orthogonally coupled metallic nanoantennas

    Science.gov (United States)

    Metzger, Bernd; Hentschel, Mario; Nesterov, Maxim; Schumacher, Thorsten; Lippitz, Markus; Giessen, Harald

    2016-04-01

    We investigate the polarization-resolved linear and third-order optical response of plasmonic nanostructure arrays that consist of orthogonally coupled gold nanoantennas. By rotating the incident light polarization direction, either one of the two eigenmodes of the coupled system or a superposition of the eigenmodes can be excited. We find that when an eigenmode is driven by the external light field, the generated third-harmonic signals exhibit the same polarization direction as the fundamental field. In contrast, when a superposition of the two eigenmodes is excited, third-harmonic can efficiently be radiated at the perpendicular polarization direction. Furthermore, the interference of the coherent third-harmonic signals radiated from both nanorods proves that the phase between the two plasmonic oscillators changes in the third-harmonic signal over 3π when the laser is spectrally tuned over the resonance, rather than over π as in the case of the fundamental field. Finally, almost all details of the linear and the nonlinear spectra can be described by an anharmonic coupled oscillator model, which we discuss in detail and which provides deep insight into the linear and the nonlinear optical response of coupled plasmonic nanoantennas.

  9. Reviews in plasmonics 2010

    CERN Document Server

    Geddes, Chris D

    2011-01-01

    Reviews in Plasmonics 2010, the first volume of the new book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year's progress in surface plasmon phenomena and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential reference material for any lab working in the Plasmonic

  10. Plasmonic coaxial waveguide-cavity devices.

    Science.gov (United States)

    Mahigir, Amirreza; Dastmalchi, Pouya; Shin, Wonseok; Fan, Shanhui; Veronis, Georgios

    2015-08-10

    We theoretically investigate three-dimensional plasmonic waveguide-cavity structures, built by side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length, to a plasmonic coaxial waveguide. The resonators are terminated either in a short or an open circuit. We show that the properties of these waveguide-cavity systems can be accurately described using a single-mode scattering matrix theory. We also show that, with proper choice of their design parameters, three-dimensional plasmonic coaxial waveguide-cavity devices and two-dimensional metal-dielectric-metal devices can have nearly identical transmission spectra. Thus, three-dimensional plasmonic coaxial waveguides offer a platform for practical implementation of two-dimensional metal-dielectric-metal device designs.

  11. Plasmon absorption modulator systems and methods

    Science.gov (United States)

    Kekatpure, Rohan Deodatta; Davids, Paul

    2014-07-15

    Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.

  12. The road towards nonlinear magneto-plasmonics

    Science.gov (United States)

    Zheng, Wei; Liu, Xiao; Lüpke, Günter; Hanbicki, Aubrey T.; Jonker, Berend T.

    2016-10-01

    Nonlinear magneto-plasmonics (NMP) describes systems where nonlinear optics, magnetics and plasmonics are all involved. NMP can be referred to as interdisciplinary studies at the intersection of Nonlinear Plasmonics (NP), Magneto- Plasmonics (MP), and nanoscience. In NMP systems, nanostructures are the bases, Surface Plasmons (SPs) work as catalyst due to strong field enhancement effects, and the nonlinear magneto-optical Kerr effect (nonlinear MOKE) plays an important role as a characterization method. Many new effects were discovered recently, which include enhanced magnetization-induced harmonic generation, controlled and enhanced magnetic contrast, magneto-chiral effect, correlation between giant magnetroresistance (GMR) and nonlinear MOKE, etc. We review the structures, experiments, findings, and the applications of NMP.

  13. Nonlinear plasmonic amplification via dissipative soliplasmons

    CERN Document Server

    Ferrando, Albert

    2016-01-01

    In this contribution we introduce a new strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasi-particle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a new mechanism of quasi-resonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling and gain give rise to a new scenario for the excitation of long- range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.

  14. Implementation of Plasmonics in VLSI

    Directory of Open Access Journals (Sweden)

    Shreya Bhattacharya

    2012-12-01

    Full Text Available This Paper presents the idea of Very Large Scale Integration (VLSI using Plasmonic Waveguides.Current VLSI techniques are facing challenges with respect to clock frequencies which tend to scale up, making it more difficult for the designers to distribute and maintain low clock skew between these high frequency clocks across the entire chip. Surface Plasmons are light waves that occur at a metal/dielectric interface, where a group of electrons is collectively moving back and forth. These waves are trapped near the surface as they interact with the plasma of electrons near the surface of the metal. The decay length of SPs into the metal is two orders of magnitude smaller than the wavelength of the light in air. This feature of SPs provides the possibility of localization and the guiding of light in sub wavelength metallic structures, and it can be used to construct miniaturized optoelectronic circuits with sub wavelength components. In this paper, various methods of doing the same have been discussed some of which include DLSPPW’s, Plasmon waveguides by self-assembly, Silicon-based plasmonic waveguides etc. Hence by using Plasmonic chips, the speed, size and efficiency of microprocessor chips can be revolutionized thus bringing a whole new dimension to VLSI design.

  15. Implementation of Plasmonics in VLSI

    Directory of Open Access Journals (Sweden)

    Shreya Bhattacharya

    2012-12-01

    Full Text Available This Paper presents the idea of Very Large Scale Integration (VLSI using Plasmonic Waveguides. Current VLSI techniques are facing challenges with respect to clock frequencies which tend to scale up, making it more difficult for the designers to distribute and maintain low clock skew between these high frequency clocks across the entire chip. Surface Plasmons are light waves that occur at a metal/dielectric interface, where a group of electrons is collectively moving back and forth. These waves are trapped near the surface as they interact with the plasma of electrons near the surface of the metal. The decay length of SPs into the metal is two orders of magnitude smaller than the wavelength of the light in air. This feature of SPs provides the possibility of localization and the guiding of light in sub wavelength metallic structures, and it can be used to construct miniaturized optoelectronic circuits with sub wavelength components. In this paper, various methods of doing the same have been discussed some of which include DLSPPW’s, Plasmon waveguides by self-assembly, Silicon-based plasmonic waveguides etc. Hence by using Plasmonic chips, the speed, size and efficiency of microprocessor chips can be revolutionized thus bringing a whole new dimension to VLSI design.

  16. Plasmonic behaviour of phenylenediamine functionalised silver nanoparticles

    Science.gov (United States)

    Akmal Che Lah, Nurul; Samykano, Mahendran; Rafie Johan, Mohd; Syahierah Othman, Nuurul; Mawardi Saari, Mohd; Bey Fen, Leo; Zalikha Khalil, Nur

    2017-09-01

    The surface functionalisation of AgNPs has demonstrated improved capability for various applications by modifying their surface chemical conditions. In this study, AgNPs functionalised with p-phenylenediamine (PPD) ligand were prepared, and the plasmonic effects of the nanocomposites were then investigated. The synthesis and functionalisation of Ag nanocomposites were achieved through chemical modification reaction of naphthalene group through hydrothermal synthesis. The influence of the chemical modification reaction on the plasmonic behaviour and size variation were obtained via optical measurement techniques such as UV–visible spectroscopy (UV–Vis) for absorbance characteristic, photoluminescence for emission response and micro-Raman spectroscopy (MRS) for SERS study on the presence of regions containing AgNPs and PPD ligand. It was observed that the one-step process of deprotonation of the amino group on the aromatic rings gives the re-arrangement of the electron cloud towards the π-conjugated system. High-resolution transmission electron microscope (TEM) analysis showed the formation of the nanocomposites and the AgNPs (for ~4 and ~5 nm of diameter sizes) are well-dispersed over the PPD matrix. The nanocomposites are assembled into higher dimensional structures through coordination with functional PPD ligand and also increasing the PPD amount led to the increase in the surface area of the nanoparticles.

  17. Subwavelength Plasmonic Waveguides and Plasmonic Materials

    Directory of Open Access Journals (Sweden)

    Ruoxi Yang

    2012-01-01

    Full Text Available With the fast development of microfabrication technology and advanced computational tools, nanophotonics has been widely studied for high-speed data transmission, sensitive optical detection, manipulation of ultrasmall objects, and visualization of nanoscale patterns. As an important branch of nanophotonics, plasmonics has enabled light-matter interactions at a deep subwavelength length scale. Plasmonics, or surface plasmon based photonics, focus on how to exploit the optical property of metals with abundant free electrons and hence negative permittivity. The oscillation of free electrons, when properly driven by electromagnetic waves, would form plasmon-polaritons in the vicinity of metal surfaces and potentially result in extreme light confinement. The objective of this article is to review the progress of subwavelength or deep subwavelength plasmonic waveguides, and fabrication techniques of plasmonic materials.

  18. The use of plasmon spectroscopy and imaging in a transmission electron microscope to probe physical properties at the nanoscale.

    Science.gov (United States)

    Oleshko, Vladimir P

    2012-11-01

    Valence EELS and energy-filtering TEM appear to be powerful tools to explore diverse nanoscale phenomena. The techniques enable real-time information on the band structure, bonding, dielectric and optical response and phase compositions of nanostructured materials. Furthermore, electron beam-induced excitations in the 0 to 50 eV energy loss range dominated by plasmons are sensitive to valence electron states primarily responsible for intrinsic materials properties. We used universality and scaling in relationships between the volume plasmon energy and cohesive energy, elastic moduli and hardness to derive analytical expressions for quantitative determination of the properties. Based on this approach, cohesive and elastic properties of metastable nanoprecipitates in structural alloys and hardness of diesel engine soot nanoparticles have been evaluated. Spatially-resolved plasmon spectroscopic imaging techniques offer possibilities to determine and image in situ multiple physical properties of nanoscale materials and to monitor their changes during dynamic transformations, thus establishing new capabilities for material research.

  19. Optical field enhancement by strong plasmon interaction in graphene nanostructures.

    Science.gov (United States)

    Thongrattanasiri, Sukosin; García de Abajo, F Javier

    2013-05-01

    The ability of plasmons to enhance the electromagnetic field intensity in the gap between metallic nanoparticles derives from their strong optical confinement relative to the light wavelength. The spatial extension of plasmons in doped graphene has recently been shown to be boldly reduced with respect to conventional plasmonic metals. Here, we show that graphene nanostructures are capable of capitalizing such strong confinement to yield unprecedented levels of field enhancement, well beyond what is found in noble metals of similar dimensions (~ tens of nanometers). We perform realistic, quantum-mechanical calculations of the optical response of graphene dimers formed by nanodisks and nanotriangles, showing a strong sensitivity of the level of enhancement to the type of carbon edges near the gap region, with armchair edges favoring stronger interactions than zigzag edges. Our quantum-mechanical description automatically incorporates nonlocal effects that are absent in classical electromagnetic theory, leading to over an order of magnitude higher enhancement in armchair structures. The classical limit is recovered for large structures. We predict giant levels of light concentration for dimers ~200 nm, leading to infrared-absorption enhancement factors ~10(8). This extreme light enhancement and confinement in nanostructured graphene has great potential for optical sensing and nonlinear devices.

  20. Mushroom plasmonic metamaterial infrared absorbers

    Science.gov (United States)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-01

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  1. Mushroom plasmonic metamaterial infrared absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji [Advanced Technology R and D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661 (Japan); Kimata, Masafumi [College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  2. Ultracompact beam splitters based on plasmonic nanoslits

    Science.gov (United States)

    Zhou, Chuanhong; Kohli, Punit

    2011-01-01

    An ultracompact plasmonic beam splitter is theoretically and numerically investigated. The splitter consists of a V-shaped nanoslit in metal films. Two groups of nanoscale metallic grooves inside the slit (A) and at the small slit opening (B) are investigated. We show that there are two energy channels guiding light out by the splitter: the optical and the plasmonic channels. Groove A is used to couple incident light into the plasmonic channel. Groove B functions as a plasmonic scatter. We demonstrate that the energy transfer through plasmonic path is dominant in the beam splitter. We find that more than four times the energy is transferred by the plasmonic channel using structures A and B. We show that the plasmonic waves scattered by B can be converted into light waves. These light waves redistribute the transmitted energy through interference with the field transmitted from the nanoslit. Therefore, different beam splitting effects are achieved by simply changing the interference conditions between the scattered waves and the transmitted waves. The impact of the width and height of groove B are also investigated. It is found that the plasmonic scattering of B is changed into light scattering with increase of the width and the height of B. These devices have potential applications in optical sampling, signal processing, and integrated optical circuits. PMID:21647248

  3. Membrane dish analysis: A summary of structural and optical analysis capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Steele, C.R.; Balch, C.D.; Jorgensen, G.J.; Wendelin, T.; Lewandowski, A.

    1991-11-01

    Research at SERI within the Department of Energy's Solar Thermal Technology Program has focused on the development of membrane dish concentrators for space and terrestrial power applications. As potentially lightweight, inexpensive, high-performance structures, they are excellent candidates for space-deployable energy sources as well as cost-effective terrestrial energy concepts. A thorough engineering research treatment of these types of structures consists primarily of two parts: (1) structural mechanics of the membrane and ring support and (2) analysis and characterization of the concentrator optical performance. It is important to understand the effects of the membrane's structure and support system on the optical performance of the concentrator. This requires an interface between appropriate structural and optical models. Until recently, such models and the required interface have not existed. This report documents research that has been conducted at SERI in this area. It is a compilation of several papers describing structural models of membrane dish structures and optical models used to predict dish concentrator optical and thermal performance. The structural models were developed under SERI subcontract by Dr. Steele and Dr. Balch of Stanford University. The optical model was developed in-house by SERI staff. In addition, the interface between the models is described. It allows easy and thorough characterization of membrane dish systems from the mechanics to the resulting optical performance. The models described herein have been and continue to be extremely useful to SERI, industry, and universities involved with the modeling and analysis of lightweight membrane concentrators for solar thermal applications.

  4. A Variable Single Photon Plasmonic Beamsplitter

    DEFF Research Database (Denmark)

    Israelsen, Niels Møller; Kumar, Shailesh; Huck, Alexander

    Plasmonic structures can both be exploited for scaling down optical components beyond the diffraction limit and enhancing andcollecting the emission from a single dipole emitter. Here, we experimentally demonstrate adiabatic coupling between two silvernanowires using a nitrogen vacancy center...

  5. Development of Control Structure for Hybrid Wind Generators with Active Power Capability

    Directory of Open Access Journals (Sweden)

    Mehdi Niroomand

    2014-01-01

    Full Text Available A hierarchical control structure is proposed for hybrid energy systems (HES which consist of wind energy system (WES and energy storage system (ESS. The proposed multilevel control structure consists of four blocks: reference generation and mode select, power balancing, control algorithms, and switching control blocks. A high performance power management strategy is used for the system. Also, the proposed system is analyzed as an active power filter (APF with ability to control the voltage, to compensate the harmonics, and to deliver active power. The HES is designed with parallel DC coupled structure. Simulation results are shown for verification of the theoretical analysis.

  6. Plasmonic color tuning

    Science.gov (United States)

    Lee, Byoungho; Yun, Hansik; Lee, Seung-Yeol; Kim, Hwi

    2016-03-01

    In general, color filter is an optical component to permit the transmission of a specific color in cameras, displays, and microscopes. Each filter has its own unchangeable color because it is made by chemical materials such as dyes and pigments. Therefore, in order to express various colorful images in a display, one pixel should have three sub-pixels of red, green, and blue colors. Here, we suggest new plasmonic structure and method to change the color in a single pixel. It is comprised of a cavity and a metal nanoaperture. The optical cavity generally supports standing waves inside it, and various standing waves having different wavelength can be confined together in one cavity. On the other hand, although light cannot transmit sub-wavelength sized aperture, surface plasmons can propagate through the metal nanoaperture with high intensity due to the extraordinary transmission. If we combine the two structures, we can organize the spatial distribution of amplitudes according to wavelength of various standing waves using the cavity, and we can extract a light with specific wavelength and amplitude using the nanoaperture. Therefore, this cavity-aperture structure can simultaneously tune the color and intensity of the transmitted light through the single nanoaperture. We expect that the cavity-apertures have a potential for dynamic color pixels, micro-imaging system, and multiplexed sensors.

  7. Membrane dish analysis: A summary of structural and optical analysis capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Steele, C.R.; Balch, C.D.; Jorgensen, G.J.; Wendelin, T.; Lewandowski, A.

    1991-11-01

    Research at SERI within the Department of Energy`s Solar Thermal Technology Program has focused on the development of membrane dish concentrators for space and terrestrial power applications. As potentially lightweight, inexpensive, high-performance structures, they are excellent candidates for space-deployable energy sources as well as cost-effective terrestrial energy concepts. A thorough engineering research treatment of these types of structures consists primarily of two parts: (1) structural mechanics of the membrane and ring support and (2) analysis and characterization of the concentrator optical performance. It is important to understand the effects of the membrane`s structure and support system on the optical performance of the concentrator. This requires an interface between appropriate structural and optical models. Until recently, such models and the required interface have not existed. This report documents research that has been conducted at SERI in this area. It is a compilation of several papers describing structural models of membrane dish structures and optical models used to predict dish concentrator optical and thermal performance. The structural models were developed under SERI subcontract by Dr. Steele and Dr. Balch of Stanford University. The optical model was developed in-house by SERI staff. In addition, the interface between the models is described. It allows easy and thorough characterization of membrane dish systems from the mechanics to the resulting optical performance. The models described herein have been and continue to be extremely useful to SERI, industry, and universities involved with the modeling and analysis of lightweight membrane concentrators for solar thermal applications.

  8. Planar self-aligned imprint lithography for coplanar plasmonic nanostructures fabrication

    KAUST Repository

    Wan, Weiwei

    2014-03-01

    Nanoimprint lithography (NIL) is a cost-efficient nanopatterning technology because of its promising advantages of high throughput and high resolution. However, accurate multilevel overlay capability of NIL required for integrated circuit manufacturing remains a challenge due to the high cost of achieving mechanical alignment precision. Although self-aligned imprint lithography was developed to avoid the need of alignment for the vertical layered structures, it has limited usage in the manufacture of the coplanar structures, such as integrated plasmonic devices. In this paper, we develop a new process of planar self-alignment imprint lithography (P-SAIL) to fabricate the metallic and dielectric structures on the same plane. P-SAIL transfers the multilevel imprint processes to a single-imprint process which offers higher efficiency and less cost than existing manufacturing methods. Such concept is demonstrated in an example of fabricating planar plasmonic structures consisting of different materials. © 2014 Springer-Verlag Berlin Heidelberg.

  9. Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures

    Science.gov (United States)

    Golmakaniyoon, Sepideh; Hernandez-Martinez, Pedro Ludwig; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism. The overlaps of the surface plasmon modes at the metal-dielectric and dielectric-metal interfaces allow for strong cross-coupling in comparison with the single metal film configuration. The proposed architecture has been demonstrated through the analytical modeling and numerical simulation of an oscillating dipole near the stratified nanostructure of metal-dielectric-metal-acceptor. Consistent with theoretical and numerical results, experimental measurements confirm at least 50% plasmon resonance energy transfer enhancement in the donor-metal-dielectric-metal-acceptor compared to the donor-metal-acceptor structure. Cascaded plasmon-plasmon coupling enables record high efficiency for exciton transfer through metallic structures. PMID:27698422

  10. Plasmonics fundamentals and applications

    CERN Document Server

    Maier, Stefan Alexander

    2007-01-01

    Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.

  11. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a structurally chiral material

    CERN Document Server

    Chiadini, Francesco; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple compound surface plasmon-polariton (SPP) waves can be guided by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP waves are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP waves differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP waves are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP waves depends on the relative permittivity of the HID material, which can be useful for sensing applications.

  12. Mesoscopic quantum emitters coupled to plasmonic nanostructures

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke

    This thesis reports research on quantum dots coupled to dielectric and plasmonic nano-structures by way of nano-structure fabrication, optical measurements, and theoretical modeling. To study light-matter interaction, plasmonic gap waveguides with nanometer dimensions as well as samples for studies...... of quantum dots in proximity to semiconductor/air and semiconductor/metal interfaces, were fabricated. We measured the decay dynamics of quantum dots near plasmonic gap waveguides and observed modied decay rates. The obtainable modications with the fabricated structures are calculated to be too small...... for the spontaneous emission of mesoscopic quantum emitters is developed. The light-matter interaction is in this model modied beyond the dipole expectancy and found to both suppress and enhance the coupling to plasmonic modes in excellent agreement with our measurements. We demonstrate that this mesoscopic effect...

  13. Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures.

    Science.gov (United States)

    Abdellatif, S; Kirah, K; Ghannam, R; Khalil, A S G; Anis, W

    2015-06-10

    A novel structure for thin-film solar cells is simulated with the purpose of maximizing the absorption of light in the active layer and of reducing the parasitic absorption in other layers. In the proposed structure, the active layer is formed from an amorphous silicon thin film sandwiched between silicon nanowires from above and photonic crystal structures from below. The upper electrical contact consists of an indium tin oxide layer, which serves also as an antireflection coating. A metal backreflector works additionally as the other contact. The simulation was done using a new reliable, efficient and generic optoelectronic approach. The suggested multiscale simulation model integrates the finite-difference time-domain algorithm used in solving Maxwell's equation in three dimensions with a commercial simulation platform based on the finite element method for carrier transport modeling. The absorption profile, the external quantum efficient, and the power conversion efficiency of the suggested solar cell are calculated. A noticeable enhancement is found in all the characteristics of the novel structure with an estimated 32% increase in the total conversion efficiency over a cell without any light trapping mechanisms.

  14. Strong population genetic structure and larval dispersal capability of the burrowing ghost shrimp (Neotrypaea californiensis)

    Science.gov (United States)

    The burrowing ghost shrimp, Neotrypaea californiensis, is a vital member of the estuarine benthic community. Dense populations of shrimp are found in the major estuaries of Washington and Oregon. Our study determines the genetic structure of shrimp populations in order to gain ...

  15. Imaging through plasmonic nanoparticles

    Science.gov (United States)

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J.; Cui, Yao; Hogan, Nathaniel J.; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J.

    2016-05-01

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems.

  16. Lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles: Structural, thermal and mechanical characterization and EMI shielding capability

    Energy Technology Data Exchange (ETDEWEB)

    Arranz-Andrés, J., E-mail: jarranz@ictp.csic.es [Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain); Pulido-González, N. [Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain); Fonseca, C. [POLCA, Departamento de Química Industrial y Polímeros, E. T. de Ingenieros Industriales, Universidad Politécnica de Madrid, Ronda de Valencia, 3, 28012 Madrid (Spain); Pérez, E.; Cerrada, M.L. [Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain)

    2013-11-01

    Novel (nano)composites based on PVDF and different content of Al nanoparticles have been prepared in order to learn about their electromagnetic interference shielding capability. Very promising results are obtained, with an excellent balance between shielding and sample weight, so that these materials are potentially good alternatives to replace neat metals for that application. Moreover, a complete structural and morphological characterization, as well as an evaluation of their thermal and mechanical behavior, has been also performed. - Graphical abstract: EMI shielding capability in lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles. - Highlights: • Novel hybrids based on PVDF and different contents of Al nanoparticles have been prepared. • A complete characterization of the nanocomposites has been performed. • Interactions between PVDF matrix and Al nanoparticles are deduced from FTIR. • Attenuation of the electromagnetic radiation increases spectacularly with the Al content.

  17. The Physics and Applications of a 3D Plasmonic Nanostructure

    Science.gov (United States)

    Terranova, Brandon B.

    In this work, the dynamics of electromagnetic field interactions with free electrons in a 3D metallic nanostructure is evaluated theoretically. This dissertation starts by reviewing the relevant fundamentals of plasmonics and modern applications of plasmonic systems. Then, motivated by the need to have a simpler way of understanding the surface charge dynamics on complex plasmonic nanostructures, a new plasmon hybridization tree method is introduced. This method provides the plasmonicist with an intuitive way to determine the response of free electrons to incident light in complex nanostructures within the electrostatic regime. Next, a novel 3D plasmonic nanostructure utilizing reflective plasmonic coupling is designed to perform biosensing and plasmonic tweezing applications. By applying analytical and numerical methods, the effectiveness of this nanostructure at performing these applications is determined from the plasmonic response of the nanostructure to an excitation beam of coherent light. During this analysis, it was discovered that under certain conditions, this 3D nanostructure exhibits a plasmonic Fano resonance resulting from the interference of an in-plane dark mode and an out-of-plane bright mode. In evaluating this nanostructure for sensing changes in the local dielectric environment, a figure of merit of 68 is calculated, which is competitive with current localized surface plasmon resonance refractometric sensors. By evaluating the Maxwell stress tensor on a test particle in the vicinity of the nanostructure, it was found that under the right conditions, this plasmonic nanostructure design is capable of imparting forces greater than 10.5 nN on dielectric objects of nanoscale dimensions. The results obtained in these studies provides new routes to the design and engineering of 3D plasmonic nanostructures and Fano resonances in these systems. In addition, the nanostructure presented in this work and the design principles it utilizes have shown

  18. Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool

    Science.gov (United States)

    Lung, Shun-fat; Pak, Chan-gi

    2008-01-01

    Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization (MDAO) tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.

  19. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities

    OpenAIRE

    Balakireva, Anastasia V.; Zamyatnin, Andrey A.

    2016-01-01

    Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the ...

  20. Imaging standing surface plasmons by photon tunneling

    Science.gov (United States)

    Passian, A.; Lereu, A. L.; Wig, A.; Meriaudeau, F.; Thundat, T.; Ferrell, T. L.

    2005-04-01

    We present a direct method for optically exciting and imaging delocalized standing surface plasmons in thin metal films. We show theoretically that when imaging the field of the plasmons with a photon scanning tunneling microscope, the presence of the dielectric probe has a negligible effect on the surface modes of the metal film. We demonstrate that plasmon interference can be sustained in arbitrarily large regions of the metal film in comparison to the excitation wavelength. This knowledge can be important when seeking the relative distance between two scattering centers such as the presence of micron or submicron structures.

  1. Localized Surface Plasmons in Vibrating Graphene Nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Li, Bo-Hong; Stassen, Erik

    2016-01-01

    in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined...... by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters...

  2. Feasibility study of SWIR light absorption enhancement in PbS and PbSe nano-structure layers using surface plasmon polariton

    Directory of Open Access Journals (Sweden)

    Nimrod Nissim

    2017-03-01

    Full Text Available We present a theoretical feasibility study of the use of reflection grating couplers in order to harness the Surface Plasmon Polariton (SPP to increase the absorption efficiency in the short wavelength infrared (SWIR spectral range of a novel SWIR to visible (VIS direct up-conversion imaging device. This device detects the SWIR spectral band photons using high absorption PbSe/CdSe core-shell, PbS nano-spheres or PbSe nano-columns. In order to further enhance the absorption of the SWIR light within the nano-structure layer we propose to add another light absorption enhancement, known as SPP enhanced absorption. The idea is to cover the absorber layer surface with a structured metal layer that will ignite SPPs on the metal – dielectric interface, by coupling between the incident TM polarized photons and the SPP modes; this results in better field confinement at the interface that will further increase the SWIR absorption of this thin layer. Calculation of the field profile of the surface plasmon (SP in the SWIR range shows perpendicular dominance of the SP’s electrical field direction on the dielectric layer side (the PbS or PbSe/CdSe absorption layer side. Based on this result, it was found that, due to the use of quantum confined and, thus, high oscillator strength nanostructures, there is only a marginal increase in the absorption and, hence, in the quantum efficiency when using the SPP enhancement technique. Nevertheless, we show that one of the proposed configurations of the metal grating coupler, having a lamellar structure with a pitch of 1.38μm, a duty cycle (DC of 0.12μm and a height of 60nm, is predicted to increase the total layer’s absorption by 9.5%, mainly due to efficient light scattering rather than to SPP enhanced absorption.

  3. Tunable plasmonic crystal

    Science.gov (United States)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  4. Plasmonic Demultiplexer and Guiding

    CERN Document Server

    Zhao, Chenglong

    2010-01-01

    Two-dimensional plasmonic demultiplexers for surface plasmon polaritons (SPPs), which consist of concentric grooves on a gold film, are proposed and experimentally demonstrated to realize light-SPP coupling, effective dispersion and multiple-channel SPP guiding. A resolution as high as 10 nm is obtained. The leakage radiation microscopy imaging shows that the SPPs of different wavelengths are focused and routed into different SPP strip waveguides. The plasmonic demultiplexer can thus serve as a wavelength division multiplexing element for integrated plasmonic circuit and also as a plasmonic spectroscopy or filter.

  5. Tunable plasmonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  6. Comparison of structural health assessment capabilities in epoxy – carbon black and epoxy – carbon nanotube nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Inam

    2014-01-01

    Full Text Available A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB and epoxy – 0.2 vol% carbon nanotube (CNT nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by indentation. For comprehensive comparison, fracture toughness and percolation threshold were analysed as well. Because of the systematically induced indentation damage, a sharp decrease of 89% was observed in the electrical conductivity of epoxy – CNT nanocomposite as compared to 25% in the electrical conductivity of epoxy – CB nanocomposite. CNTs impart superior damage sensing capability in brittle nanocomposite structures, in comparison to CB, due to their high aspect ratio (fibrous nature and high electrical conductivity.

  7. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity.

    Science.gov (United States)

    Li, Qian; Li, ZhiFeng; Li, Ning; Chen, XiaoShuang; Chen, PingPing; Shen, XueChu; Lu, Wei

    2014-09-11

    Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-detectors are the trend for infrared polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating detectors are very much critical. Here we demonstrate the high infrared light polarization resolving capabilities of a quantum well (QW) detector in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The detector's extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave infrared photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities.

  8. Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics

    Science.gov (United States)

    Feng, Di; Zhang, Hui; Xu, Siyi; Tian, Limei; Song, Ningfang

    2017-03-01

    Metal nanostructures integrated with soft, elastomeric substrates provide an unusual platform with capabilities in plasmonic frequency tuning of mechanical strain. In this paper, we have prepared a tunable optical device, dense arrays of plasmonic nanodisks on a low-modulus, and high-elongation elastomeric substrate with a three-dimensional (3D) sinusoidal wavy, and their optical characteristics have been measured and analyzed in detail. Since surface plasmon is located and propagates along metal surfaces with sub-wavelength structures, and those dispersive properties are determined by the coupling strength between the individual structures, in this study, a 3D sinusoidal curve elastomeric substrate is used to mechanically control the inter-nanodisk spacing by applying straining and creating a frequency tunable plasmonic device. Here we study the optical resonance peak shifting generated by stretching this type of flexible device, and the role that 3D sinusoidal curve surface configuration plays in determining the tunable properties. Since only the hybrid dipolar mode has been observed in experiments, the coupled dipole approximation (CDA) method is employed to simulate the optical response of these devices, and the experimental and simulation results show that these devices have high tunability to shift optical resonance peaks at near-infrared wavelengths, which will provide strong potential for new soft optical sensors and wearable plasmonic sensors.

  9. Determination of the structural capabilities of thermoformed and blow-molded components

    Science.gov (United States)

    Hummel, Scott Randall

    In the thermoforming processes, a polymer membrane is heated well above the glass transition temperature and forced into a mold. This is accomplished by applying a pressure differential where the pressure on the non-mold side of the membrane is higher than that of the mold side. Upon contact with the mold surface, the polymer is rapidly cooled and subsequently removed from the mold. During the process, stresses are induced into the polymer that must be included in the determination of the load bearing capabilities of the component. Moreover, the stresses are the cause of significant undesirable warpage. In this investigation, the residual stress and warpage of a thermoformed component made from ABS (Acrylonitrile Butadiene Styrene) plastic were investigated. The research was both experimental and theoretical in nature in that the viscoelastic material behavior first had to be measured experimentally, followed by correlation to a finite strain constitutive model. A finite element analysis of the thermoforming process was also performed. To facilitate measuring the viscoelastic behavior of the polymer, a heated tensile testing machine was constructed. This machine was equipped with a high speed digital data acquisition and control system to obtain the stress and strain data during rapid stretching. The data obtained from the testing was correlated to a non-linear finite strain viscoelastic material model. The constitutive model used was time-strain separable and was a viscoelastic generalization of rubber elasticity. Results for both the Moony-Rivlin and the five-term polynomial strain energy functions are presented. Stress relaxation experiments were also carried out and the results are given at a variety of temperatures. Once the constitutive behavior of the polymer was determined, a finite element analysis was performed to model the inflation of the polymer into a simple mold. The final thickness distribution of the formed component and the stresses upon contact

  10. IMAGINE: first neutron protein structure and new capabilities for neutron macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Munshi, Parthapratim [ORNL; Myles, Dean A A [ORNL; Robertson, Lee [ORNL; Stoica, Alexandru Dan [ORNL; Crow, Lowell [ORNL; Kovalevskyi, Andrii Y [ORNL; Koritsanszky, Tibor S [ORNL; Chakoumakos, Bryan C [ORNL; Blessing, Robert [Hauptman-Woodward Medical Research Institute; Meilleur, Flora [ORNL

    2013-01-01

    We report the first high resolution neutron protein structure of perdeuterated rubredoxin from Pyrococcus furiosus (PfRd) determined using the new IMAGINE macromolecular neutron crystallography instrument at the Oak Ridge National Laboratory. Neutron diffraction data extending to 1.65 resolution were collected from a relatively small 0.7 mm3 PfRd crystal using 2.5 days (60 h) of beam time. The refined structure contains 371 out of 391, or 95%, of the deuterium atoms of the protein, and 58 solvent molecules. The IMAGINE instrument is designed to provide neutron data at or near atomic resolutions (1.5 ) from crystals with volume < 1.0 mm3 and with unit cell edges < 100 . Beam line features include elliptical focusing mirrors that deliver 3x107 n s-1 cm-2 into a 3.5 x 2.0 mm2 focal spot at the sample position, and variable short and long wavelength cutoff optics that provide automated exchange between multiple wavelength configurations ( min=2.0 , 2.8 , 3.3 - max =3.0 , 4.0 , 4.5 , ~20 ). Notably, the crystal used to collect this PfRd data is 5-10 times smaller than has been previously reported.

  11. Pin cushion plasmonic device for polarization beam splitting, focusing, and beam position estimation.

    Science.gov (United States)

    Lerman, Gilad M; Levy, Uriel

    2013-03-13

    Great hopes rest on surface plasmon polaritons' (SPPs) potential to bring new functionalities and applications into various branches of optics. In this paper, we demonstrate a pin cushion structure capable of coupling light from free space into SPPs, split them based on the polarization content of the illuminating beam of light, and focus them into small spots. We also show that for a circularly or randomly polarized light, four focal spots will be generated at the center of each quarter circle comprising the pin cushion device. Furthermore, following the relation between the relative intensity of the obtained four focal spots and the relative position of the illuminating beam with respect to the structure, we propose and demonstrate the potential use of our structure as a miniaturized plasmonic version of the well-known four quadrant detector. Additional potential applications may vary from multichannel microscopy and multioptical traps to real time beam tracking systems.

  12. Reviews in plasmonics 2016

    CERN Document Server

    2017-01-01

    Reviews in Plasmonics 2016, the third volume of the new book series from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year’s progress in surface plasmon phenomena and its applications, with authoritative analytical reviews in sufficient detail to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential source of reference material for any lab working in the Plasmonics field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of Plasmonics will find it an invaluable resource.

  13. Reviews in plasmonics 2015

    CERN Document Server

    2016-01-01

    Reviews in Plasmonics 2015, the second volume of the new book series from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year’s progress in surface plasmon phenomena and its applications, with authoritative analytical reviews in sufficient detail to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential source of reference material for any lab working in the Plasmonics field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of Plasmonics will find it an invaluable resource.

  14. Nanometrology using localized surface plasmon resonance spectroscopy

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel N.; Laurberg, Asger V.;

    2013-01-01

    A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed in a tra......A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed...... in a transmission spectrum and it is very sensitive to the constituent materials as well as both lateral and vertical dimensions of the structures. This makes LSPR spectroscopy interesting for a number of applications including nanometrology. Like scatterometry, LSPR spectroscopy requires test structures...

  15. Theory of spoof plasmons in real metals

    Science.gov (United States)

    Rusina, Anastasia; Durach, Maxim; Stockman, Mark I.

    2010-08-01

    In this Letter we develop a theory of spoof plasmons propagating on real metals perforated with planar periodic grooves. Deviation from the spoof plasmons on perfect conductor due to finite skin depth has been analytically described. This allowed us to investigate important propagation characteristics of spoof plasmons such as quality factor and propagation length as the function of the geometrical parameters of the structure. We have also considered THz field confinement by adiabatic increase of the depth of the grooves. It is shown that the finite skin depth limits the propagation length of spoof plasmons as well as a possibility to localize THz field. Geometrical parameters of the structure are found which provide optimal guiding and localization of THz energy.

  16. Effect of the band structure of InGaN/GaN quantum well on the surface plasmon enhanced light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Zhang, Rong, E-mail: rzhang@nju.edu.cn, E-mail: bliu@nju.edu.cn; Liu, Bin, E-mail: rzhang@nju.edu.cn, E-mail: bliu@nju.edu.cn; Xie, Zili; Zhang, Guogang; Tao, Tao; Zhuang, Zhe; Zhi, Ting; Zheng, Youdou [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China)

    2014-07-07

    The spontaneous emission (SE) of InGaN/GaN quantum well (QW) structure with silver(Ag) coated on the n-GaN layer has been investigated by using six-by-six K-P method taking into account the electron-hole band structures, the photon density of states of surface plasmon polariton (SPP), and the evanescent fields of SPP. The SE into SPP mode can be remarkably enhanced due to the increase of electron-hole pairs near the Ag by modulating the InGaN/GaN QW structure or increasing the carrier injection. However, the ratio between the total SE rates into SPP mode and free space will approach to saturation or slightly decrease for the optimized structures with various distances between Ag film and QW layer at a high injection carrier density. Furthermore, the Ga-face QW structure has a higher SE rate than the N-face QW structure due to the overlap region of electron-hole pairs nearer to the Ag film.

  17. Nano-plasmonic phenomena in graphene

    Science.gov (United States)

    Basov, Dimitri

    2014-03-01

    Infrared nano-spectroscopy and nano-imaging experiments have uncovered a rich variety of optical effects associated with the Dirac plasmons of graphene [Fei et al. Nano Lett. 11, 4701 (2011)]. We were able to directly image Dirac plasmons propagating over sub-micron distances [Fei et al. Nature 487, 82 (2012)]. We have succeeded in altering both the amplitude and wavelength of these plasmons by gate voltage in common graphene/SiO2/Si back-gated structures. Scanning plasmon interferometry has allowed us to visualize grain boundaries in CVD graphene. These latter experiments revealed that the grain boundaries tend to form electronic barriers that impede both electrical transport and plasmon propagation. Our results attest to the feasibility of using these electronic barriers to realize tunable plasmon reflectors: a precondition for implementation of various metamaterials concepts [Fei et al. Nature Nano 8, 821 (2013)]. Finally, we have carried out pump-probe experiments interrogating ultra-fast dynamics of plasmons in exfoliated graphene with the nano-scale spatial resolution [Wagner et al. (under review)].

  18. Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals

    Science.gov (United States)

    Petrov, Aleksandr S.; Svintsov, Dmitry; Ryzhii, Victor; Shur, Michael S.

    2017-01-01

    We identify a possible mechanism of the plasmon instabilities in periodically gated two-dimensional electron systems with a modulated electron density (plasmonic crystals) under direct current. The instability occurs due to the amplified reflection of the small density perturbations from the gated/ungated boundaries under the proper phase-matching conditions between the crystal unit cells. Based on the transfer-matrix formalism, we derive the generic dispersion equation for the traveling plasmons in these structures. Its solution in the hydrodynamic limit shows that the threshold drift velocity for the instability can be tuned below the plasmon phase and carrier saturation velocities, and the plasmon growth rate can exceed the collisional damping rate typical of III-V semiconductors and graphene at room temperature.

  19. Plasmon Field Effect Transistor for Plasmon to Electric Conversion and Amplification.

    Science.gov (United States)

    Shokri Kojori, Hossein; Yun, Ju-Hyung; Paik, Younghun; Kim, Joondong; Anderson, Wayne A; Kim, Sung Jin

    2016-01-13

    Direct coupling of electronic excitations of optical energy via plasmon resonances opens the door to improving gain and selectivity in various optoelectronic applications. We report a new device structure and working mechanisms for plasmon resonance energy detection and electric conversion based on a thin film transistor device with a metal nanostructure incorporated in it. This plasmon field effect transistor collects the plasmonically induced hot electrons from the physically isolated metal nanostructures. These hot electrons contribute to the amplification of the drain current. The internal electric field and quantum tunneling effect at the metal-semiconductor junction enable highly efficient hot electron collection and amplification. Combined with the versatility of plasmonic nanostructures in wavelength tunability, this device architecture offers an ultrawide spectral range that can be used in various applications.

  20. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene

    Science.gov (United States)

    Ni, G. X.; Wang, L.; Goldflam, M. D.; Wagner, M.; Fei, Z.; McLeod, A. S.; Liu, M. K.; Keilmann, F.; Özyilmaz, B.; Castro Neto, A. H.; Hone, J.; Fogler, M. M.; Basov, D. N.

    2016-04-01

    The success of metal-based plasmonics for manipulating light at the nanoscale has been empowered by imaginative designs and advanced nano-fabrication. However, the fundamental optical and electronic properties of elemental metals, the prevailing plasmonic media, are difficult to alter using external stimuli. This limitation is particularly restrictive in applications that require modification of the plasmonic response at sub-picosecond timescales. This handicap has prompted the search for alternative plasmonic media, with graphene emerging as one of the most capable candidates for infrared wavelengths. Here we visualize and elucidate the properties of non-equilibrium photo-induced plasmons in a high-mobility graphene monolayer. We activate plasmons with femtosecond optical pulses in a specimen of graphene that otherwise lacks infrared plasmonic response at equilibrium. In combination with static nano-imaging results on plasmon propagation, our infrared pump-probe nano-spectroscopy investigation reveals new aspects of carrier relaxation in heterostructures based on high-purity graphene.

  1. Dielectric function and plasmons in graphene

    OpenAIRE

    Hill, A.; Mikhailov, S. A.; Ziegler, K

    2009-01-01

    The electromagnetic response of graphene, expressed by the dielectric function, and the spectrum of collective excitations are studied as a function of wave vector and frequency. Our calculation is based on the full band structure, calculated within the tight-binding approximation. As a result, we find plasmons whose dispersion is similar to that obtained in the single-valley approximation by Dirac fermions. In contrast to the latter, however, we find a stronger damping of the plasmon modes d...

  2. Chiral Plasmonic Nanostructures on Achiral Nanopillars

    Science.gov (United States)

    2013-10-10

    0704-0188 3. DATES COVERED (From - To) - UU UU UU UU Approved for public release; distribution is unlimited. Chiral Plasmonic Nanostructures on Achiral...Nanopillars Chirality of plasmonic films can be strongly enhanced by threedimensional (3D) out-of-plane geometries. The complexity of lithographic...methods currently used to produce such structures and other methods utilizing chiral templates impose limitations on spectral windows of chiroptical

  3. Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges

    Science.gov (United States)

    Díaz Lantada, Andrés; de Blas Romero, Adrián; Schwentenwein, Martin; Jellinek, Christopher; Homa, Johannes

    2016-05-01

    Auxetic metamaterials are known for having a negative Poisson’s ratio (NPR) and for displaying the unexpected properties of lateral expansion when stretched and densification when compressed. Even though a wide set of micro-manufacturing resources have been used for the development of auxetic metamaterials and related devices, additional precision and an extension to other families of materials is needed for their industrial expansion. In addition, their manufacture using ceramic materials is still challenging. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of lithography-based ceramic manufacturing. The process stands out for its precision and complex three-dimensional geometries attainable, without the need of supporting structures, and for enabling the manufacture of ceramic auxetics with their geometry controlled from the design stage with micrometric precision. To our knowledge it represents the first example of application of this technology to the manufacture of auxetic geometries using ceramic materials. We have used a special three-dimensional auxetic design whose remarkable NPR has been previously highlighted.

  4. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities.

    Science.gov (United States)

    Balakireva, Anastasia V; Zamyatnin, Andrey A

    2016-10-18

    Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders.

  5. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities

    Science.gov (United States)

    Balakireva, Anastasia V.; Zamyatnin, Andrey A.

    2016-01-01

    Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders. PMID:27763541

  6. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities

    Directory of Open Access Journals (Sweden)

    Anastasia V. Balakireva

    2016-10-01

    Full Text Available Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD, allergy to wheat and non-celiac gluten sensitivity (NCGS. Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD, which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders.

  7. Structure and characteristics of landslide input data and consequences on landslide susceptibility assessment and prediction capability

    Science.gov (United States)

    Oliveira, S. C.; Zezere, J. L.; Garcia, R. A. C.; Piedade, A.

    2009-04-01

    For the territorial planning and management it is of crucial importance the knowledge of the landslide susceptibility, in order to minimize the physical damages and economic losses associated to a certain instability scenario. Resultant mitigation measures can only be effective if we were able to predict where future landslides will occur. In order to improve the quality of data driven landslide susceptibility assessment, recent research developed worldwide as been focused on some fundamental questions: What is the quality of landslide inventories? What is the most appropriate terrain-unit to adopt? What is the most reliable statistical model? What are the best tools to validate results? In contrast, little attention has been given in the literature to the consequences on the landslide susceptibility assessment resulting from the structure and characteristics of the landslide database. Under the assumption that the conditions that led to slope instability in the past are more likely to generate new instability in the future, the statistically-based landslide susceptibility evaluation for a specific area is based on the spatial correlation between a set of independent, predisposing landslide geo-environmental factors, and the distribution of past landslides, which are considered the dependent variable. Landslides are usually included in the susceptibility models as a single point or as a polygon representing the entire unstable area. The selection of the way landslide information enter into prediction models (point vs polygon) is frequently conditioned by software constrains, and surprisingly, the effects of this choice in landslide susceptibility results has not been made. The purpose of this study is to evaluate the quality of susceptibility results obtained for rotational slides in a 12 km2 test site located at north of Lisbon, Portugal considering: (i) the structure and characteristics of landslide input data; (ii) the capacity of different landslide inventories

  8. Plasmon-assisted photoresponse in Ge-coated bowtie nanojunctions

    CERN Document Server

    Evans, Kenneth M; Natelson, Douglas

    2016-01-01

    We demonstrate plasmon-enhanced photoconduction in Au bowtie nanojunctions containing nanogaps overlaid with an amorphous Ge film. The role of plasmons in the production of nanogap photocurrent is verified by studying the unusual polarization dependence of the photoresponse. With increasing Ge thickness, the nanogap polarization of the photoresponse rotates 90 degrees, indicating a change in the dominant relevant plasmon mode, from the resonant transverse plasmon at low thicknesses to the nonresonant "lightning rod" mode at higher thicknesses. To understand the plasmon response in the presence of the Ge overlayer and whether the Ge degrades the Au plasmonic properties, we investigate the photothermal response (from the temperature-dependent Au resistivity) in no-gap nanowire structures, as a function of Ge film thickness and nanowire geometry. The film thickness and geometry dependence are modeled using a cross-sectional, finite element simulation. The no-gap structures and the modeling confirm that the strik...

  9. Nonlinear graphene plasmonics (Conference Presentation)

    Science.gov (United States)

    Cox, Joel D.; Marini, Andrea; Garcia de Abajo, Javier F.

    2016-09-01

    The combination of graphene's intrinsically-high nonlinear optical response with its ability to support long-lived, electrically tunable plasmons that couple strongly with light has generated great expectations for application of the atomically-thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Based on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation, we show that finite-size effects produce large contributions that increase the nonlinear response associated with plasmons in nanostructured graphene to significantly higher levels than previously thought, particularly in the case of Kerr-type optical nonlinearities. Motivated by this finding, we discuss and compare saturable absorption in extended and nanostructured graphene, with or without plasmonic enhancement, within the context of passive mode-locking for ultrafast lasers. We also explore the possibility of high-harmonic generation in doped graphene nanoribbons and nanoislands, where illumination by an infrared pulse of moderate intensity, tuned to a plasmon resonance, is predicted to generate light at harmonics of order 13 or higher, extending over the visible and UV regimes. Our atomistic description of graphene's nonlinear optical response reveals its complex nature in both extended and nanostructured systems, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices.

  10. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    KAUST Repository

    Xu, Quan

    2016-11-29

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  11. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    Science.gov (United States)

    Xu, Quan; Zhang, Xueqian; Xu, Yuehong; Li, Quan; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Wentao; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-11-01

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  12. In situ plasma fabrication of ceramic-like structure on polymeric implant with enhanced surface hardness, cytocompatibility and antibacterial capability.

    Science.gov (United States)

    Liu, Jun; Zhang, Wei; Shi, Haigang; Yang, Kun; Wang, Gexia; Wang, Pingli; Ji, Junhui; Chu, Paul K

    2016-05-01

    Polymeric materials are commonly found in orthopedic implants due to their unique mechanical properties and biocompatibility but the poor surface hardness and bacterial infection hamper many biomedical applications. In this study, a ceramic-like surface structure doped with silver is produced by successive plasma implantation of silicon (Si) and silver (Ag) into the polyamine 66 (PA66) substrate. Not only the surface hardness and elastic modulus are greatly enhanced due to the partial surface carbonization and the ceramic-like structure produced by the reaction between energetic Si and the carbon chain of PA66, but also the antibacterial activity is improved because of the combined effects rendered by Ag and SiC structure. Furthermore, the modified materials which exhibit good cytocompatibility upregulate bone-related genes and proteins expressions of the contacted bone mesenchymal stem cells (BMSCs). For the first time, it explores out that BMSCs osteogenesis on the antibacterial ceramic-like structure is mediated via the iNOS and nNOS signal pathways. The results reveal that in situ plasma fabrication of an antibacterial ceramic-like structure can endow PA66 with excellent surface hardness, cytocompatibility, as well as antibacterial capability.

  13. Plasmonic Encoding

    Science.gov (United States)

    2014-10-06

    spherical nucleic acid (SNA)-based probes that are comprised of a densely functionalized oligonucleotide shell and an inorganic nanoparticle core...The oligonucleotide capture sequence attached to the nanoparticle hybridizes with short, fluorophore- labeled DNA molecules, termed “flares”. In...this end we have developed a Nanoflare-like construct, referred to as the StickyFlare, which utilizes antisense flares capable of binding to and

  14. Capability Paternalism

    NARCIS (Netherlands)

    Claassen, R.J.G.

    2014-01-01

    A capability approach prescribes paternalist government actions to the extent that it requires the promotion of specific functionings, instead of the corresponding capabilities. Capability theorists have argued that their theories do not have much of these paternalist implications, since promoting c

  15. Plasmonic metasurfaces for coloration of plastic consumer products.

    Science.gov (United States)

    Clausen, Jeppe S; Højlund-Nielsen, Emil; Christiansen, Alexander B; Yazdi, Sadegh; Grajower, Meir; Taha, Hesham; Levy, Uriel; Kristensen, Anders; Mortensen, N Asger

    2014-08-13

    We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large-area structurally colored plastic surfaces robust to daily life handling. We utilize the hybridization between LSPR modes in aluminum nanodisks and nanoholes to design and fabricate bright angle-insensitive colors that may be tuned across the entire visible spectrum.

  16. Plasmonic Metasurfaces for Coloration of Plastic Consumer Products

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik; Højlund-Nielsen, Emil; Christiansen, Alexander Bruun;

    2014-01-01

    We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large......-area structurally colored plastic surfaces robust to daily life handling. We utilize the hybridization between LSPR modes in aluminum nanodisks and nanoholes to design and fabricate bright angle-insensitive colors that may be tuned across the entire visible spectrum....

  17. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  18. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn;

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  19. Positional control of plasmonic fields and electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Word, R. C.; Fitzgerald, J. P. S.; Könenkamp, R., E-mail: rkoe@pdx.edu [Department of Physics, Portland State University, 1719 SW 10th Avenue, Portland, Oregon 97201 (United States)

    2014-09-15

    We report the positional control of plasmonic fields and electron emission in a continuous gap antenna structure of sub-micron size. We show experimentally that a nanoscale area of plasmon-enhanced electron emission can be motioned by changing the polarization of an exciting optical beam of 800 nm wavelength. Finite-difference calculations are presented to support the experiments and to show that the plasmon-enhanced electric field distribution of the antenna can be motioned precisely and predictively.

  20. Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications

    Science.gov (United States)

    Al-mahmod, Md. Jubayer; Hyder, Rakib; Islam, Md Zahurul

    2017-07-01

    A nanosensor, based on a metal-insulator-metal (MIM) plasmonic ring resonator, is proposed for potential on-chip temperature sensing and its performance is evaluated numerically. The sensor components can be fabricated by using planar processes on a silicon substrate, making its manufacturing compatible to planar electronic fabrication technology. The sensor, constructed using silver as the metal rings and a thermo-optic liquid ethanol film between the metal layers, is capable of sensing temperature with outstanding optical sensitivity, as high as -0.53 nm/°C. The resonance wavelength is found to be highly sensitive to the refractive index of the liquid dielectric film. The resonance peak can be tuned according to the requirement of intended application by changing the radii of the ring resonator geometries in the design phase. The compact size, planar and silicon-based design, and very high resolutions- these characteristics are expected to make this sensor technology a preferred choice for lab-on-a-chip applications, as compared to other contemporary sensors.

  1. Nonlinear scattering in plasmonic nanostructures

    Science.gov (United States)

    Chu, Shi-Wei

    2016-09-01

    Nonlinear phenomena provide novel light manipulation capabilities and innovative applications. Recently, we discovered nonlinear saturation on single-particle scattering of gold nanospheres by continuous-wave laser excitation and innovatively applied to improve microscopic resolution down to λ/8. However, the nonlinearity was limited to the green-orange plasmonic band of gold nanosphere, and the underlying mechanism has not yet been fully understood. In this work, we demonstrated that nonlinear scattering exists for various material/geometry combinations, thus expanding the applicable wavelength range. For near-infrared, gold nanorod is used, while for blue-violet, silver nanospheres are adopted. In terms of mechanism, the nonlinearity may originate from interband/intraband absorption, hot electron, or hot lattice, which are spectrally mixed in the case of gold nanosphere. For gold nanorod and silver nanosphere, nonlinear scattering occurs at plasmonic resonances, which are spectrally far from interband/intraband absorptions, so they are excluded. We found that the nonlinear index is much larger than possible contributions from hot electrons in literature. Therefore, we conclude that hot lattice is the major mechanism. In addition, we propose that similar to z-scan, which is the standard method to characterize nonlinearity of a thin sample, laser scanning microscopy should be adopted as the standard method to characterize nonlinearity from a nanostructure. Our work not only provides the physical mechanism of the nonlinear scattering, but also paves the way toward multi-color superresolution imaging based on non-bleaching plasmonic scattering.

  2. Hot Carrier extraction with plasmonic broadband absorbers

    CERN Document Server

    Ng, Charlene; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gomez, Daniel E

    2016-01-01

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photo-catalysis, photovoltaics and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multi-stack layered configuration to achieve broad-band, near-unit light absorption, which is spatially localised on the nanoparticle layer. We show that this enhanced light absorbance leads to $\\sim$ 40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot-electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where the photons possessing energies higher than the S...

  3. Plasmon cross transmission

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzynski, Leonard; Akjouj, Abdellatif; Li, Changsheng, E-mail: Abdellatif.Akjouj@univ-lille1.fr [Centre National de la Recherche Scientifique, Universite Lille Nord de France, Lille1, Institut d' Electronique, de Microelectronique et de Nanotechnologie, Unite de Physique, Batiment P5, 59655 Villeneuve d' Ascq Cedex (France)

    2011-09-14

    Plasmon cross transmission avoids the frontal collision between two plasmons traveling in opposite directions along a guide. The guide is made out of equidistant identical metal dots. Thanks to two resonator dots, the plasmon frontal impact is avoided by transmission of the two plasmons from the input guide to an output one. The resonator and guide dots are identical in size and metal composition. The dipole-dipole interactions are restricted to first nearest neighbors. A convenient metal doping is assumed to compensate exactly all attenuations. The parameters are the nearest neighbor distances between the dots. These distances are rescaled to the chain nearest neighbor distance d. The system has two symmetry mirror planes. This simple model enables us to obtain two analytic tuning relations for the plasmon cross transmission. The intensities of the transmitted signals versus kd, where k is the plasmon propagation vector, are also given. (paper)

  4. Self-assembled plasmonic metamaterials

    Science.gov (United States)

    Mühlig, Stefan; Cunningham, Alastair; Dintinger, José; Scharf, Toralf; Bürgi, Thomas; Lederer, Falk; Rockstuhl, Carsten

    2013-07-01

    Nowadays for the sake of convenience most plasmonic nanostructures are fabricated by top-down nanofabrication technologies. This offers great degrees of freedom to tailor the geometry with unprecedented precision. However, it often causes disadvantages as well. The structures available are usually planar and periodically arranged. Therefore, bulk plasmonic structures are difficult to fabricate and the periodic arrangement causes undesired effects, e.g., strong spatial dispersion is observed in metamaterials. These limitations can be mitigated by relying on bottom-up nanofabrication technologies. There, self-assembly methods and techniques from the field of colloidal nanochemistry are used to build complex functional unit cells in solution from an ensemble of simple building blocks, i.e., in most cases plasmonic nanoparticles. Achievable structures are characterized by a high degree of nominal order only on a short-range scale. The precise spatial arrangement across larger dimensions is not possible in most cases; leading essentially to amorphous structures. Such self-assembled nanostructures require novel analytical means to describe their properties, innovative designs of functional elements that possess a desired near- and far-field response, and entail genuine nanofabrication and characterization techniques. Eventually, novel applications have to be perceived that are adapted to the specifics of the self-assembled nanostructures. This review shall document recent progress in this field of research. Emphasis is put on bottom-up amorphous metamaterials. We document the state-of-the-art but also critically assess the problems that have to be overcome.

  5. Plasmonic laser printing for functional metasurfaces

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Carstensen, M. S.; Vannahme, Christoph

    2016-01-01

    morphologies that support different plasmonic resonances can be created. This technology creates a laser printer capable of producing color images with a resolution up to 127,000 DPI. With tailored trains of laser pulses, multiple optical states are flatiron onto the metasurface film with a nanoscale......Recently, we show a method of color printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation that leads to melting and reshaping of the imprinted nanostructures [1]. Depending on the laser pulse energy density, different surface...

  6. Hybrid plasmonic-photonic resonators (Conference Presentation)

    Science.gov (United States)

    Koenderink, A. Femius; Doeleman, Hugo M.; Ruesink, Freek; Verhagen, Ewold; Osorio, Clara I.

    2016-09-01

    Hybrid nanophotonic structures are structures that integrate different nanoscale platforms to harness light-matter interaction. We propose that combinations of plasmonic antennas inside modest-Q dielectric cavities can lead to very high Purcell factors, yielding plasmonic mode volumes at essentially cavity quality factors. The underlying physics is subtle: for instance, how plasmon antennas with large cross sections spoil or improve cavities and vice versa, contains physics beyond perturbation theory, depending on interplays of back-action, and interferences. This is evident from the fact that the local density of states of hybrid systems shows the rich physics of Fano interferences. I will discuss recent scattering experiments performed on toroidal microcavities coupled to plasmon particle arrays that probe both cavity resonance shifts and particle polarizability changes illustrating these insights. Furthermore I will present our efforts to probe single plasmon antennas coupled to emitters and complex environments using scatterometry. An integral part of this approach is the recently developed measurement method of `k-space polarimetry', a microscopy technique to completely classify the intensity and polarization state of light radiated by a single nano-object into any emission direction that is based on back focal plane imaging and Stokes polarimetry. I show benchmarks of this technique for the cases of scattering, fluorescence, and cathodoluminescence applied to directional surface plasmon polariton antennas.

  7. Slow plasmons in grating cavities

    Science.gov (United States)

    Aydinli, Atilla; Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun

    2016-03-01

    Recent research on surface plasmon polaritons and their applications have brought forward a wealth of information and continues to be of interest to many. In this report, we concentrate on propagating surface plasmon polaritons (SPPs) and their interaction with matter. Using grating based metallic structures, it is possible to control the electrodynamics of propagating SPPs. Biharmonic gratings loaded with periodic Si stripes allow excitation of SPPs that are localized inside the band gap with grating coupling. The cavity state is formed due to periodic effective index modulation obtained by one harmonic of the grating and loaded Si stripes. More complicated grating structures such as metallic Moiré surfaces have also been shown to form a localized state inside the band gap when excited with Kretschmann configuration.

  8. Technological studies for plasmonic metasurfaces

    Science.gov (United States)

    Tomescu, Roxana; Kusko, Cristian; Dinescu, Adrian; Bita, Bogdan; Popescu, Marian

    2016-12-01

    This work will present the technological processes necessary to experimentally obtain plasmonic metasurfaces for developing flat optical components or diffractive optical elements (DOE) which have reflexion functionalities. This class of metasurfaces offers the possibility to manipulate the beam shape using an array of metallic nanoscale elements patterned on a substrate. The main feature of these structures is that one can manipulate the phase behavior by modifying some of the geometrical parameters of the nano-antennas in order to achieve the required phase shift values for the desired applications. The first important step in experimentally obtaining a plasmonic metasurface structures is the electron beam lithography (EBL) followed by the lift-off method. Due to the small sizes of the gold nano-antennas and tight periodicity of the array a number of impediments can emerge in experimentally obtaining such geometries which can be overcome by the parameter optimization of the employed technologies.

  9. Electron Energy-Loss Spectroscopy Theory and Simulation Applied to Nanoparticle Plasmonics

    Science.gov (United States)

    Bigelow, Nicholas Walker

    In this dissertation, the capacity of electron energy-loss spectroscopy (EELS) to probe plasmons is examined in detail. EELS is shown to be able to detect both electric hot spots and Fano resonances in contrast to the prevailing knowledge prior to this work. The most detailed examination of magnetoplasmonic resonances in multi-ring structures to date and the utility of electron tomography to computational plasmonics is explored, and a new tomographic method for the reconstruction of a target is introduced. Since the observation of single-molecule surface-enhanced Raman scattering (SMSERS) in 1997, questions regarding the nature of the electromagnetic hot spots responsible for such observations still persist. A computational analysis of the electron- and photon-driven surface-plasmon resonances of monomer and dimer metal nanorods is presented to elucidate the differences and similarities between the two excitation mechanisms in a system with well understood optical properties. By correlating the nanostructure's simulated electron energy loss spectrum and loss-probability maps with its induced polarization and scattered electric field we discern how certain plasmon modes are selectively excited and how they funnel energy from the excitation source into the near- and far-field. Using a fully retarded electron-scattering theory capable of describing arbitrary three-dimensional nanoparticle geometries, aggregation schemes, and material compositions, we find that electron energy-loss spectroscopy (EELS) is able to indirectly probe the same electromagnetic hot spots that are generated by an optical excitation source. EELS is then employed in a scanning transmission electron microscope (STEM) to obtain maps of the localized surface plasmon modes of SMSERS-active nanostructures, which are resolved in both space and energy. Single-molecule character is confirmed by the bianalyte approach using two isotopologues of Rhodamine 6G. The origins of this observation are explored

  10. Harmonics radiation of graphene surface plasmon polaritons in terahertz regime

    Energy Technology Data Exchange (ETDEWEB)

    Li, D., E-mail: dazhi_li@hotmail.com [Institute for Laser Technology, Suita, Osaka 565-0871 (Japan); Wang, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Nakajima, M. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Hashida, M. [Advanced Research Center for Beam Science, ICR, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Wei, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205 (Japan)

    2016-06-03

    This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation. - Highlights: • An approach to extract terahertz radiation from graphene surface plasmon polaritons is presented. • A sidewall configuration is proposed to lift the surface plasmon mode. • Harmonics of surface plasmon polaritons are possible to radiate.

  11. Electron energy-loss spectroscopy of branched gap plasmon resonators

    Science.gov (United States)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen; Mortensen, N. Asger; Brongersma, Mark L.; Bozhevolnyi, Sergey I.

    2016-12-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons.

  12. Nonlinear surface magneto-plasmonics in Kretschmann multilayers

    CERN Document Server

    Razdolski, Ilya; Rasing, Theo; Makarov, Denys; Schmidt, Oliver G; Temnov, Vasily V

    2015-01-01

    The nonlinear magneto-plasmonics aims to utilize plasmonic excitations to control the mechanisms and taylor the efficiencies of the non-linear light frequency conversion at the nanoscale. We investigate the mechanisms of magnetic second harmonic generation in hybrid gold-cobalt-silver multilayer structures, which support propagating surface plasmon polaritons at both fundamental and second harmonic frequencies. Using magneto-optical spectroscopy in Kretschmann geometry, we show that the huge magneto-optical modulation of the second harmonic intensity is dominated by the excitation of surface plasmon polaritons at the second harmonic frequency, as shown by tuning the optical wavelength over the spectral region of strong plasmonic dispersion. Our proof-of-principle experiment highlights bright prospects of nonlinear magneto-plasmonics and contributes to the general understanding of the nonlinear optics of magnetic surfaces and interfaces.

  13. Topological collective plasmons in bipartite chains of metallic nanoparticles

    CERN Document Server

    Downing, Charles A

    2016-01-01

    We study a bipartite linear chain constituted by spherical metallic nanoparticles, where each nanoparticle supports a localized surface plasmon. The near-field dipolar interaction between the localized surface plasmons gives rise to collective plasmons, which are extended over the whole nanoparticle array. We derive analytically the spectrum and the eigenstates of the collective plasmonic excitations. At the edge of the Brillouin zone, the spectrum is of a pseudo-relativistic nature similar to that present in the electronic band structure of polyacetylene. We find the effective Dirac Hamiltonian for the collective plasmons and show that the corresponding spinor eigenstates represent one-dimensional Dirac-like massive bosonic excitations. Therefore, the plasmonic lattice exhibits similar effects to those found for electrons in one-dimensional Dirac materials, such as the ability for transmission with highly suppressed backscattering due to Klein tunnelling. We also show that the system is governed by a nontriv...

  14. Enhanced plasmonic coloring of silver and formation of large laser-induced periodic surface structures using multi-burst picosecond pulses

    CERN Document Server

    Guay, J -M; Baxter, J; Charron, M; Côté, G; Ramunno, L; Berini, P; Weck, A

    2016-01-01

    We report on the creation of angle-independent colors on silver using closely time-spaced laser bursts. The use of burst mode, compared to traditional non-burst is shown to increase the Chroma (color saturation) by ~50% and to broaden the lightness range by up to ~60%. Scanning electron microscope analysis of the surfaces created using burst mode, reveal the creation of 3 distinct sets of laser induced periodic surface structures (LIPSS): low spatial frequency LIPSS (LSFL), high spatial frequency LIPSS (HSFL) and large laser-induced periodic surface structures (LLIPSS) that are 10 times the laser wavelength and parallel to the laser polarization. Nanoparticles are responsible for each plasmonic color and their distributions are observed to be similar for both burst and non-burst modes, indicating that the underlying structures (i.e. LIPSSs) are responsible for the increased Chroma and Lightness. Two-temperature model simulations of silver irradiated by laser bursts show significant increase in the electron-ph...

  15. Nonlinear plasmonics with Kerr-like media for sensing

    Science.gov (United States)

    Crutcher, Sihon H.; Ruffin, Paul B.; Edwards, Eugene; Brantley, Christina L.

    2014-04-01

    Sensing technologies are currently needed for better maintainability, reliability, safety, and monitoring small variable changes on microscopic and nanoscale systems. Plasmonic sensor research has contributed to chemical and biological sensing needs by monitoring ultrafast temporal and spatial changes in optoelectronic systems. Nonlinear plasmonic waveguides with subwavelength confinement can further enhance the capabilities of plasmonic devices. Results in this paper highlight the derivation of the full-vector Maxwell Equations for the single metal- dielectric slot waveguide and the metal -dielectric -metal waveguide with the dielectric having a Kerr-like nonlinearity. These waveguides, typically have metallic losses that compete with nonlinearity at certain frequencies that can hinder surface plasmon wave propagation. By considering temporal and spatial beam propagation in these waveguides one expects to observe novel effects that could be used for sensing applications such as femtosecond pulse propagation with plasmon self-focusing, self-trapping, and frequency conversion with reduction in metallic losses.

  16. Plasmonics analysis of nanostructures for bioapplications

    Science.gov (United States)

    Xie, Qian

    Plasmonics, the science and technology of the plasmons, is a rapidly growing field with substantial broader impact in numerous different fields, especially for bio-applications such as bio-sensing, bio-photonics and photothermal therapy. Resonance effects associated with plasmatic behavior i.e. surface Plasmon resonance (SPR) and localize surface Plasmon resonance (LSPR), are of particular interest because of their strong sensitivity to the local environment. In this thesis, plasmonic resonance effects are discussed from the basic theory to applications, especially the application in photothermal therapy, and grating bio-sensing. This thesis focuses on modeling different metallic nanostructures, i.e. nanospheres, nanorods, core-shell nanoparticles, nanotori and hexagonal closed packed nanosphere structures, to determine their LSPR wavelengths for use in various applications. Experiments regarding photothermal therapy using gold nanorods are described and a comparison is presented with results obtained from simulations. Lastly, experiments of grating-based plasmon-enhanced bio-sensing are also discussed. In chapter one, the physics of plasmonics is reviewed, including surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR). In the section on surface plasmon resonance, the physics behind the phenomenon is discussed, and also, the detection methods and applications in bio-sensing are described. In the section on localized surface plasmon resonance (LSPR), the phenomenon is described with respect to sub wavelength metallic nanoparticles. In chapter two, specific plasmonic-based bio-applications are discussed including plasmonic and magneto-plasmonic enhanced photothermal therapy and grating-based SPR bio-sening. In chapter three, which is the most important part in the thesis, optical modeling of different gold nanostructures is presented. The modeling tools used in this thesis are Comsol and custom developed Matlab programs. In Comsol, the

  17. Understanding the Plasmonics of Nanostructured Atomic Force Microscopy Tips

    CERN Document Server

    Sanders, Alan; Zhang, Liwu; Turek, Vladimir; Sigle, Daniel O; Lombardi, Anna; Weller, Lee; Baumberg, Jeremy J

    2016-01-01

    Structured metallic tips are increasingly important for optical spectroscopies such as tip-enhanced Raman spectroscopy (TERS), with plasmonic resonances frequently cited as a mechanism for electric field enhancement. We probe the local optical response of sharp and spherical-tipped atomic force microscopy (AFM) tips using a scanning hyperspectral imaging technique to identify plasmonic behaviour. Localised surface plasmon resonances which radiatively couple with far-field light are found only for spherical AFM tips, with little response for sharp AFM tips, in agreement with numerical simulations of the near-field response. The precise tip geometry is thus crucial for plasmon-enhanced spectroscopies, and the typical sharp cones are not preferred.

  18. Long-range plasmonic waveguides with hyperbolic cladding.

    Science.gov (United States)

    Babicheva, Viktoriia E; Shalaginov, Mikhail Y; Ishii, Satoshi; Boltasseva, Alexandra; Kildishev, Alexander V

    2015-11-30

    We study plasmonic waveguides with dielectric cores and hyperbolic multilayer claddings. The proposed design provides better performance in terms of propagation length and mode confinement in comparison to conventional designs, such as metal-insulator-metal and insulator-metal-insulator plasmonic waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly coupled, and the propagation length can be on the order of a millimeter.

  19. Long-range plasmonic waveguides with hyperbolic cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.; Ishii, Satoshi;

    2015-01-01

    We study plasmonic waveguides with dielectric cores and hyperbolic multilayer claddings. The proposed design provides better performance in terms of propagation length and mode confinement in comparison to conventional designs, such as metal-insulator-metal and insulator-metal-insulator plasmonic...... waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly...

  20. Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices.

    Science.gov (United States)

    Xiong, Yujie; Long, Ran; Liu, Dong; Zhong, Xiaolan; Wang, Chengming; Li, Zhi-Yuan; Xie, Yi

    2012-08-01

    The photothermal effect in localized surface plasmon resonance (LSPR) should be fully utilized when integrating plasmonics into solar technologies for improved light absorption. In this communication, we demonstrate that the photothermal effect of silver nanostructures can provide a heat source for thermoelectric devices for the first time. The plasmonic band of silver nanostructures can be facilely manoeuvred by tailoring their shapes, enabling them to interact with photons in different spectral ranges for the efficient utilization of solar light. It is anticipated that this concept can be extended to design a photovoltaic-thermoelectric tandem cell structure with plasmonics as mediation for light harvesting.

  1. Dynamic Capabilities and Performance

    DEFF Research Database (Denmark)

    Wilden, Ralf; Gudergan, Siegfried P.; Nielsen, Bo Bernhard

    2013-01-01

    Dynamic capabilities are widely considered to incorporate those processes that enable organizations to sustain superior performance over time. In this paper, we argue theoretically and demonstrate empirically that these effects are contingent on organizational structure and the competitive...... are contingent on the competitive intensity faced by firms. Our findings demonstrate the performance effects of internal alignment between organizational structure and dynamic capabilities, as well as the external fit of dynamic capabilities with competitive intensity. We outline the advantages of PLS...

  2. Plasmon field effect transistor: A novel sensing platform for biomedical applications

    Science.gov (United States)

    Shokri Kojori, Hossein

    The interest in plasmons, associated with nanostructured metals, has remarkably increased in the past decade. A Recent improvement in fabrication techniques to create well-controlled nanostructures also contributed to the rapid development of plasmonic applications, such as meta-materials, nonlinear optics, photovoltaic devices, biomedical sensors, medical therapies and spectroscopy. The surface plasmon resonance (SPR) sensor is one of the successful applications, which is widely used in biomedical research. On the other hand, localized surface plasmon resonance (LSPR) is also widely studied in a broad range of applications. The distinct property of LSPR is a tailored and sharp absorption/scattering peaks depending on the shape and sizes of the metal nanostructures. In addition, plasmonics can enable integration of high speed optical circuit by taking the advantages from the current electronics and optics technologies. Thus, plasmonics is considered as a solution for the next generation systems that offers ultra-high speed data processing. In this dissertation, we will introduce a novel plasmon field effect transistor (FET) that enables direct detection and efficient amplification of plasmon energy. This FET has several advantages such as electrical isolation of plasmon absorber nanostructures from a sensing and drug screening. Currently, we have proof of concept for the antigen-antibody bonding using the plasmon field effect transistor. We will develop a multiplexing capable plasmon FET sensing platform by integrating an array of plasmon FETs with microfluidic channels to detect cancer biomarkers.

  3. Direct Photonic-Plasmonic Coupling and Routing in Single Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Rouxue; Pausauskie, Peter; Huang, Jiaxing; Yang, Piedong

    2009-10-20

    Metallic nanoscale structures are capable of supporting surface plasmon polaritons (SPPs), propagating collective electron oscillations with tight spatial confinement at the metal surface. SPPs represent one of the most promising structures to beat the diffraction limit imposed by conventional dielectric optics. Ag nano wires have drawn increasing research attention due to 2D sub-100 nm mode confinement and lower losses as compared with fabricated metal structures. However, rational and versatile integration of Ag nanowires with other active and passive optical components, as well as Ag nanowire based optical routing networks, has yet to be achieved. Here, we demonstrate that SPPs can be excited simply by contacting a silver nanowire with a SnO2 nanoribbon that serves both as an unpolarized light source and a dielectric waveguide. The efficient coupling makes it possible to measure the propagation-distance-dependent waveguide spectra and frequency-dependent propagation length on a single Ag nanowire. Furthermore, we have demonstrated prototypical photonic-plasmonic routing devices, which are essential for incorporating low-loss Ag nanowire waveguides as practical components into high-capacity photonic circuits.

  4. Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned

    Science.gov (United States)

    Li, Huiyu; Fu, Liwei; Frenner, Karsten; Osten, Wolfgang

    2017-06-01

    To learn about the challenges, difficulties and technological steps in fabrication of a metal lens, a cascaded plasmonic superlens was fabricated in this paper and then its subwavelength imaging capability is demonstrated. First, we developed separately the fabrication and characterization procedures for each part in the cascaded superlens structure (composed of a planar plasmonic lens and a double layer meander structure) to show the precise fabricating process and results. Then the two parts of the cascaded structure were stacked together on the top of a double-slit object. First a larger slit width of 400 nm and a slit distance of 800 nm were used for easily obtaining a larger transmittance intensity distribution. The results show a good agreement between the experiment and simulation. Then a double-slit with width of 100 nm and distance of 180 nm were used to further test the resolving power of the superlens. The captured images show that the desired subwavelength resolution in the far field can be realized with the fabricated superlens.

  5. Capability ethics

    NARCIS (Netherlands)

    I.A.M. Robeyns (Ingrid)

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological

  6. Capability ethics

    NARCIS (Netherlands)

    I.A.M. Robeyns (Ingrid)

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological theor

  7. Capability ethics

    NARCIS (Netherlands)

    I.A.M. Robeyns (Ingrid)

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological theor

  8. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.

    Science.gov (United States)

    Lin, Linhan; Peng, Xiaolei; Wang, Mingsong; Scarabelli, Leonardo; Mao, Zhangming; Liz-Marzán, Luis M; Becker, Michael F; Zheng, Yuebing

    2016-09-21

    Reversible assembly of plasmonic nanoparticles can be used to modulate their structural, electrical, and optical properties. Common and versatile tools in nanoparticle manipulation and assembly are optical tweezers, but these require tightly focused and high-power (10-100 mW/μm(2)) laser beams with precise optical alignment, which significantly hinders their applications. Here we present light-directed reversible assembly of plasmonic nanoparticles with a power intensity below 0.1 mW/μm(2). Our experiments and simulations reveal that such a low-power assembly is enabled by thermophoretic migration of nanoparticles due to the plasmon-enhanced photothermal effect and the associated enhanced local electric field over a plasmonic substrate. With software-controlled laser beams, we demonstrate parallel and dynamic manipulation of multiple nanoparticle assemblies. Interestingly, the assemblies formed over plasmonic substrates can be subsequently transported to nonplasmonic substrates. As an example application, we selected surface-enhanced Raman scattering spectroscopy, with tunable sensitivity. The advantages provided by plasmonic assembly of nanoparticles are the following: (1) low-power, reversible nanoparticle assembly, (2) applicability to nanoparticles with arbitrary morphology, and (3) use of simple optics. Our plasmon-enhanced thermophoretic technique will facilitate further development and application of dynamic nanoparticle assemblies, including biomolecular analyses in their native environment and smart drug delivery.

  9. Plasmon-assisted optoelectrofluidics

    DEFF Research Database (Denmark)

    Ndukaife, Justus C.; Kildishev, Alexander V.; Agwu Nnanna, A. G.

    2015-01-01

    By harnessing the photo-induced heating of a single plasmonic nanostructure and AC E-field in our research at the interface between plasmonics and optofluidics we demonstrate on-demand fluid flow control with unparalleled micron per second-scale velocities. © 2015 OSA....

  10. Integrated Plasmonic Metasurfaces for Spectropolarimetry

    CERN Document Server

    Chen, Wei Ting; Foreman, Matthew R; Liao, Chun Yen; Tsai, Wei-Yi; Wu, Pei Ru; Tsai, Din Ping

    2015-01-01

    Plasmonic metasurfaces, i.e. nano-structured thin metallic films, are promising candidates for development of compact nanoscale photonic devices, since they afford simultaneous control over the phase, momentum, amplitude and polarization of incident light. Integration of multiple metasurfaces affords optical functionality unrealisable with conventional planar photonic devices. In this work we demonstrate the principle of an integrated plasmonic metasurface (IPM) device by designing a spectropolarimeter that diffracts light with given polarization states into well-defined spatial domains. By capturing the diffracted light, the polarization state of the incident light can be fully determined using a single IPM avoiding the need for many optical components. The dispersive nature of the device provides simultaneous access to both polarization and spectral information. Our proposed IPM is robust, compact and fully compatible with today's semiconductor manufacturing technology, promising many applications in polari...

  11. Nanoscale 2.5-dimensional surface patterning with plasmonic lithography.

    Science.gov (United States)

    Jung, Howon; Park, Changhoon; Oh, Seonghyeon; Hahn, Jae W

    2017-08-29

    We report an extension of plasmonic lithography to nanoscale 2.5-dimensional (2.5D) surface patterning. To obtain the impulse response of a plasmonic lithography system, we described the field distribution of a point dipole source generated by a metallic ridge aperture with a theoretical model using the concepts of quasi-spherical waves and surface plasmon-polaritons. We performed deconvolution to construct an exposure map of a target shape for patterning. For practical applications, we fabricated several nanoscale and microscale structures, such as a cone, microlens array, nanoneedle, and a multiscale structure using the plasmonic lithography system. We verified the possibility of applying plasmonic lithography to multiscale structuring from a few tens of nanometres to a few micrometres in the lateral dimension. We obtained a root-mean-square error of 4.7 nm between the target shape and the patterned shape, and a surface roughness of 11.5 nm.

  12. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NARCIS (Netherlands)

    Vesseur, P.C.

    2011-01-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide r

  13. Plasmonic Nanostructures for Enhanced Light-Matter Interactions

    DEFF Research Database (Denmark)

    Zhu, Xiaolong

    the spontaneous emission of emitters by exciting plasmonic modes. An enhancement of photoemission up to 30 times is observed, leading to a 4 times broader emission spectrum. Next, we mainly discuss the LMIs in metal-graphene hybrid plasmonic structures. We introduce two novel hybrid systems for studying light...

  14. Dynamic plasmonic colour display

    Science.gov (United States)

    Duan, Xiaoyang; Kamin, Simon; Liu, Na

    2017-02-01

    Plasmonic colour printing based on engineered metasurfaces has revolutionized colour display science due to its unprecedented subwavelength resolution and high-density optical data storage. However, advanced plasmonic displays with novel functionalities including dynamic multicolour printing, animations, and highly secure encryption have remained in their infancy. Here we demonstrate a dynamic plasmonic colour display technique that enables all the aforementioned functionalities using catalytic magnesium metasurfaces. Controlled hydrogenation and dehydrogenation of the constituent magnesium nanoparticles, which serve as dynamic pixels, allow for plasmonic colour printing, tuning, erasing and restoration of colour. Different dynamic pixels feature distinct colour transformation kinetics, enabling plasmonic animations. Through smart material processing, information encoded on selected pixels, which are indiscernible to both optical and scanning electron microscopies, can only be read out using hydrogen as a decoding key, suggesting a new generation of information encryption and anti-counterfeiting applications.

  15. Spin-controlled plasmonics via optical Rashba effect

    Energy Technology Data Exchange (ETDEWEB)

    Shitrit, Nir; Yulevich, Igor; Kleiner, Vladimir; Hasman, Erez, E-mail: mehasman@technion.ac.il [Micro and Nanooptics Laboratory, Faculty of Mechanical Engineering, and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2013-11-18

    Observation of the optical Rashba effect in plasmonics is reported. Polarization helicity degeneracy removal, associated with the inversion symmetry violation, is attributed to the surface symmetry design via anisotropic nanoantennas with space-variant orientations. By utilizing the Rashba-induced momentum in a nanoscale kagome metastructure, we demonstrated a spin-based surface plasmon multidirectional excitation under a normal-incidence illumination. The spin-controlled plasmonics via spinoptical metasurfaces provides a route for spin-based surface-integrated photonic nanodevices and light-matter interaction control, extending the light manipulation capabilities.

  16. Optoelectronic devices, plasmonics, and photonics with topological insulators

    Science.gov (United States)

    Politano, Antonio; Viti, Leonardo; Vitiello, Miriam S.

    2017-03-01

    Topological insulators are innovative materials with semiconducting bulk together with surface states forming a Dirac cone, which ensure metallic conduction in the surface plane. Therefore, topological insulators represent an ideal platform for optoelectronics and photonics. The recent progress of science and technology based on topological insulators enables the exploitation of their huge application capabilities. Here, we review the recent achievements of optoelectronics, photonics, and plasmonics with topological insulators. Plasmonic devices and photodetectors based on topological insulators in a wide energy range, from terahertz to the ultraviolet, promise outstanding impact. Furthermore, the peculiarities, the range of applications, and the challenges of the emerging fields of topological photonics and thermo-plasmonics are discussed.

  17. Surface plasmon resonance in super-periodic metal nanostructures

    Science.gov (United States)

    Leong, Haisheng

    Surface plasmon resonances in periodic metal nanostructures have been investigated over the past decade. The periodic metal nanostructures have served as new technology platforms in fields such as biological and chemical sensing. An existing method to determine the surface plasmon resonance properties of these metal nanostructures is the measurement of the light transmission or reflection from these nanostructures. The measurement of surface plasmon resonances in either the transmission or reflection allows one to resolve the surface plasmon resonance in metal nanostructures. In this dissertation, surface plasmon resonances in a new type of metal nanostructures were investigated. The new nanostructures were created by patterning traditional periodic nanohole and nanoslit arrays into diffraction gratings. The patterned nanohole and 11anoslit arrays have two periods in the structures. The new nanostructures are called "super-periodic" nanostructures. With rigorous finite difference time domain (FDTD) numerical simulations, surface plasmon resonances in super-periodic nanoslit and nanohole arrays were investigated. It was found that by creating a super-period in periodic metal nanostructures, surface plasmon radiations can be observed in the non-zero order diffractions. This discovery presents a new method of characterizing the surface plasmon resonances in metal nanostructures. Super-periodic gold nanoslit and nanohole arrays were fabricated with the electron beam lithography technique. The surface plasmon resonances were measured in the first order diffraction by using a CCD. The experimental results confirm well with the FDTD numerical simulations.

  18. Novel 3D plasmonic nano-electrodes for cellular investigations and neural interfaces

    Science.gov (United States)

    Malerba, Mario; Dipalo, Michele; Messina, Gabriele C.; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Berdondini, Luca; De Angelis, Francesco

    2014-08-01

    We propose the development of an innovative plasmonic-electronic multifunctional platform, capable at the same time of performing chemical analysis and electronic recordings from a cellular interface. The system, based on 3D hollow metallic nanotubes, integrated on customized multi-electrode-arrays, allows the study of neuronal signaling over different lengths, spanning from the molecular, to the cellular, to the network scale. Here we show that the same structures are efficient electric field enhancers, despite the continuous metal layer at the base, which connects them to the electric components of the integrated circuits. The methodology we propose, due to its simplicity and high throughput, has the potential for further improvements both in the field of plasmonics, and in the integration on large areas of commercial active electronic devices.

  19. Leaky wave lenses for spoof plasmon collimation.

    Science.gov (United States)

    Panaretos, Anastasios H; Werner, Douglas H

    2016-06-27

    We theoretically demonstrate the feasibility of collimating radiating spoof plasmons using a leaky wave lens approach. Spoof plasmons are surface waves excited along reactance surfaces realized through metallic corrugations. By employing a periodic perturbation to the geometric profile of this type of reactance surface, it becomes feasible to convert the excited spoof plasmons into free-space radiating leaky wave modes. It is demonstrated that by structurally modifying such a corrugated surface through the introduction of a non-uniform sinusoidally modulated reactance profile, then a tapered wavenumber, with a real part less than that of free space, can be established along the surface. In this way the radiating properties of the structure (amplitude and phase) can be locally controlled thereby creating a radiating effect similar to that of a non-uniform current distribution. By properly engineering the space dependent wavenumber along the corrugated surface, different regions of the structure will emit spoof plasmon energy at different angles with varying intensity. The combined effect is the emission of an electromagnetic wave exhibiting a converging wave-front that eventually collimates spoof plasmon energy at some desired focal point.

  20. Dynamic capabilities

    DEFF Research Database (Denmark)

    Grünbaum, Niels Nolsøe; Stenger, Marianne

    2013-01-01

    it was dominated by a lack of systematism, assessment, monitoring, marketing speculations and feasibility calculation. Furthermore, the sphere was dictated by asymmetric supplier-customer relationships and negotiation power leading, among other possible factors, to meager profitability.......The consequences of dynamic capabilities (i.e. innovation performance and profitability) is an under researched area in the growing body of literature on dynamic capabilities and innovation management. This study aims to examine the relationship between dynamic capabilities, innovation performance...... and profitability of small and medium sized manufacturing enterprises operating in volatile environments. A multi-case study design was adopted as research strategy. The findings reveal a positive relationship between dynamic capabilities and innovation performance in the case companies, as we would expect. It was...

  1. THE INFLUENCE OF PLASMONIC AND DIELECTRIC INCLUSIONS ON ANTIREFLECTIVE PROPERTIES OF HOMOGENEOUS COATINGS FOR SILICON PHOTOVOLTAIC STRUCTURES

    Directory of Open Access Journals (Sweden)

    K. V. Baryshnikova

    2015-09-01

    Full Text Available Subject of Study. Theoretical analysis of the efficiency for the antireflective coatings based on plasmonic silver (Ag and dielectric silicon (Si nanoparticles is presented. We observe the increase of light absorption in the active layer, which is related to the optical resonant properties of considered nanoparticles. Characteristic property of the studied composite layer is its ability to combine the functions of electric contacts and anti-reflective coating. Method. Numerical calculations were performed in CST Microwave Studio with FDFD method (Finite Difference in Frequency Domain. The optical parameters of materials were extracted from the experimentally measured data available in literature. Geometrical parameters of composite layer – size and location of particles – were varied. Comparison of light absorption efficiency for different coatings on top of the active layer is presented: the homogeneous Indium Tin Oxide (ITO layer, ITO layer with the spherical nanoparticle inclusions on the ITO surface, ITO layer with spherical nanoparticle bulk inclusions. Periodical lattices of particles with sizes of range between 15 and 80 nm were considered. Nanoparticles of this size have dominant dipole response. Main Results. Numerical calculations have shown that nanoparticle inclusions cause significant deformation of the absorption spectra with appearing of resonant pecularities in the wavelength range equal to 300-800 nm. It originates from the nanoparticle resonant features, which are similar to the resonant features of isolated nanoparticles. Absorption in the active layer decreases sharply at the resonant wavelength. Resonant response of nanoparticles placed on the ITO surface differs significally from the isolated ones: the resonant frequency and Q-factor decrease. It was shown that absorption in the active layer decreases by 25 % when the size of Ag and Si particles increases. Ag nanoparticles, placed in ITO layer on top of the active layer

  2. Plasmonics based micro/nano manufacturing

    Science.gov (United States)

    Garner, Quincy

    Since the advent of the Information Age, there has been an ever growing demand to continually shrink and reduce the cost of semiconductor products. To meet this demand, a great amount of research has been done to improve our current micro/nano manufacturing processes and develop the next generation of semiconductor fabrication techniques. High throughput, low cost, smaller features, high repeatability, and the simplification of the manufacturing processes are all targets that researchers continually strive for. To this day, there are no perfect systems capable of simultaneously achieving all of these targets. For this reason, much research time is spent improving and developing new techniques in hopes of developing a system that will incorporate all of these targets. While there are numerous techniques being investigated and developed every year, one of the most promising areas of research that may one day be capable of achieving our desired targets is plasmonics. Plasmonics, or the study of the free electron oscillations in metals, is the driving phenomena in the applications reported in this paper. In chapter 2, the formation of ordered gold nanoparticles on a silicon substrate through the use of energetic surface plasmons is reported. Utilizing a gold/alumina nano-hole antenna and 1064 nm Nd:YAG laser system, semi-periodic gold nanoparticles were deposited onto the surface of a silicon substrate. The novel technique is simpler, faster, and safer than any known gold nanoparticle deposition technique reported in literature. The implementation of this technique has potential wide-ranging applications in photovoltaic cells, medical products, and many others. In chapter 3, a low cost lithography technique utilizing surface plasmons is reported. In this technique, a plasmonic photomask is created by coating a pre-made porous alumina membrane with a thin aluminum layer. A coherent, 337 nm UV laser source is used to expose the photomask and excite surface plasmons along

  3. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2016-08-01

    Full Text Available This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs and an indium-tin-oxide (ITO electrode with periodic holes (perforations under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  4. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage.

    Science.gov (United States)

    Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh

    2016-08-10

    This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  5. Structure-dependent localized surface plasmon resonance characteristics and surface enhanced Raman scattering performances of quasi-periodic nanoarrays: Measurements and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong; Zhou, Jun, E-mail: zhoujun@nbu.edu.cn [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Rippa, Massimo; Petti, Lucia [Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR, Via Campi Flegrei 34, 80072 Pozzuoli (Italy)

    2015-10-28

    A set of periodic and quasi-periodic Au nanoarrays with different morphologies have been fabricated by using electron beam lithography technique, and their optical properties have been examined experimentally and analyzed theoretically by scanning near-field optical microscope and finite element method, respectively. Results present that the localized surface plasmon resonance of the as-prepared Au nanoarrays exhibit the structure-depended characteristics. Comparing with the periodic nanoarrays, the quasi-periodic ones demonstrate stronger electric field enhancement, especially for Thue-Morse nanoarray. Meanwhile, the surface enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid molecular labeled nanoarrays show that the quasi-periodic nanoarrays exhibit distinct SERS enhancement, for example, a higher enhancement factor of ∼10{sup 7} is obtained for the Thue-Morse nanoarray consisted of square pillars of 100 nm size. Therefore, it is significant to optimally design and fabricate the chip-scale quasi-periodic nanoarrays with high localized electric field enhancement for SERS applications in biosensing field.

  6. Improved surface plasmon enhanced photodetection at an Au-GaAs Schottky junction using a novel molecular beam epitaxy grown Otto coupling structure

    Energy Technology Data Exchange (ETDEWEB)

    Daboo, C.; Baird, M.J.; Hughes, H.P. (PCS Group, Cavendish Lab., Cambridge (UK)); Apsley, N.; Emeny, M.T. (Royal Signals and Radar Establishment, Great Malvern (UK))

    1991-06-05

    Measurements of reflectivity and photocurrent as a function of angle of incidence and wavelength have been made for a GaAs-AlAs-GaAs-Au Schottky structure based on an Otto coupling geometry which allows incident p-polarized radiation to couple to the surface plasmon (SP) mode at the Au-GaAs interface. At resonance, E fields associated with the SP excitation are concentrated at the GaAs-Au Schottky interface itself, enabling strong enhancement of the internal photoemission photocurrent across the Schottky barrier. Enhancement factors of the order of 20 have been achieved. A direct comparison between the resonant effects of exciting the SP at the GaAs-Au Schottky junction itself and at the outer Au-air interface has been made. A simple model for the photocurrent in the device indicates that the excited photocarriers created in the gold film have a very short scattering length {delta}{approx equal}10 nm, which emphasizes the importance of exciting the SP at the Schottky interface. (orig.).

  7. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    Science.gov (United States)

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  8. A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Vial, A.; Dridi, M.; Cunff, L. le [Universite de Technologie de Troyes, Institut Charles Delaunay, CNRS UMR 6279, Laboratoire de Nanotechnologie et d' Instrumentation Optique, 12, rue Marie Curie, BP-2060, Troyes Cedex (France); Laroche, T. [Universite de Franche-Comte, Institut FEMTO-ST, CNRS UMR 6174, Departement de Physique et de Metrologie des Oscillateurs, Besancon Cedex (France)

    2011-06-15

    We present FDTD simulations results obtained using the Drude critical points model. This model enables spectroscopic studies of metallic structures over wider wavelength ranges than usually used, and it facilitates the study of structures made of several metals. (orig.)

  9. Inducing an Incipient Terahertz Finite Plasmonic Crystal in Coupled Two Dimensional Plasmonic Cavities

    CERN Document Server

    Dyer, Gregory C; Preu, Sascha; Vinh, N Q; Allen, S James; Reno, John L; Shaner, Eric A

    2016-01-01

    We measured a change in the current transport of an antenna-coupled, multi-gate, GaAs/AlGaAs field-effect transistor when terahertz electromagnetic waves irradiated the transistor and attribute the change to bolometric heating of the electrons in the two-dimensional electron channel. The observed terahertz absorption spectrum indicates coherence between plasmons excited under adjacent biased device gates. The experimental results agree quantitatively with a theoretical model we developed that is based on a generalized plasmonic transmission line formalism and describes an evolution of the plasmonic spectrum with increasing electron density modulation from homogeneous to the crystal limit. These results demonstrate an electronically induced and dynamically tunable plasmonic band structure.

  10. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    OpenAIRE

    Liu, Peter Q.; Luxmoore, Isaac. J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.

    2015-01-01

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light–matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-co...

  11. Plasmonics in Topological Insulators

    Directory of Open Access Journals (Sweden)

    Yi-Ping Lai

    2014-04-01

    Full Text Available With strong spin-orbit coupling, topological insulators have an insulating bulk state, characterized by a band gap, and a conducting surface state, characterized by a Dirac cone. Plasmons in topological insulators show high frequency-tunability in the mid-infrared and terahertz spectral regions with transverse spin oscillations, also called “spin-plasmons”. This paper presents a discussion and review of the developments in this field from the fundamental theory of plasmons in bulk, thin-film, and surface-magnetized topological insulators to the techniques of plasmon excitation and future applications.

  12. Engineering optical properties using plasmonic nanostructures

    Science.gov (United States)

    Tamma, Venkata Ananth

    Plasmonic nanostructures can be engineered to take on unusual optical properties not found in natural materials. The optical responses of plasmonic materials are functions of the structural parameters and symmetry of the nanostructures, material parameters of the nanostructure and its surroundings and the incidence angle, frequency and polarization state of light. The scattering and hence the visibility of an object could be reduced by coating it with a plasmonic material. In this thesis, presented is an optical frequency scattering cancelation device composed of a silicon nanorod coated by a plasmonic gold nanostructure. The principle of operation was theoretically analyzed using Mie theory and the device design was verified by extensive numerical simulations. The device was fabricated using a combination of nanofabrication techniques such as electron beam lithography and focused ion beam milling. The optical responses of the scattering cancelation device and a control sample of bare silicon rod were directly visualized using near-field microscopy coupled with heterodyne interferometric detection. The experimental results were analyzed and found to match very well with theoretical prediction from numerical simulations thereby validating the design principles and our implementation. Plasmonic nanostructures could be engineered to exhibit unique optical properties such as Fano resonance characterized by narrow asymmetrical lineshape. We present dynamic tuning and symmetry lowering of Fano resonances in plasmonic nanostructures fabricated on flexible substrates. The tuning of Fano resonance was achieved by application of uniaxial mechanical stress. The design of the nanostructures was facilitated by extensive numerical simulations and the symmetry lowering was analyzed using group theoretical methods. The nanostructures were fabricated using electron beam lithography and optically characterized for various mechanical stress. The experimental results were in good

  13. Dynamic capabilities, Marketing Capability and Organizational Performance

    Directory of Open Access Journals (Sweden)

    Adriana Roseli Wünsch Takahashi

    2017-01-01

    Full Text Available The goal of the study is to investigate the influence of dynamic capabilities on organizational performance and the role of marketing capabilities as a mediator in this relationship in the context of private HEIs in Brazil. As a research method we carried out a survey with 316 IES and data analysis was operationalized with the technique of structural equation modeling. The results indicate that the dynamic capabilities have influence on organizational performance only when mediated by marketing ability. The marketing capability has an important role in the survival, growth and renewal on educational services offerings for HEIs in private sector, and consequently in organizational performance. It is also demonstrated that mediated relationship is more intense for HEI with up to 3,000 students and other organizational profile variables such as amount of courses, the constitution, the type of institution and type of education do not significantly alter the results.

  14. Capability approach

    DEFF Research Database (Denmark)

    Jensen, Niels Rosendal; Kjeldsen, Christian Christrup

    Lærebogen er den første samlede danske præsentation af den af Amartya Sen og Martha Nussbaum udviklede Capability Approach. Bogen indeholder en præsentation og diskussion af Sen og Nussbaums teoretiske platform. I bogen indgår eksempler fra såvel uddannelse/uddannelsespolitik, pædagogik og omsorg....

  15. ENTREPRENEURIAL CAPABILITIES

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Nielsen, Thorkild

    2003-01-01

    The aim of this article is to analyse entrepreneurship from an action research perspective. What is entrepreneurship about? Which are the fundamental capabilities and processes of entrepreneurship? To answer these questions the article includes a case study of a Danish entrepreneur and his networks...

  16. Boosted Supercapacitive Energy with High Rate Capability of aCarbon Framework with Hierarchical Pore Structure in an Ionic Liquid.

    Science.gov (United States)

    Wang, Xuehang; Zhou, Haitao; Lou, Fengliu; Li, Yahao; Buan, Marthe E M; Duan, Xuezhi; Walmsley, John C; Sheridan, Edel; Chen, De

    2016-11-09

    The specific energy of a supercapacitor (SC) with an ionic liquid (IL)-based electrolyte is larger than that using an aqueous electrolyte owing to the wide operating voltage window provided by the IL. However, the wide-scale application of high-energy SCs using ILs is limited owing to a serious reduction of the energy with increasing power. The introduction of macropores to the porous material can mitigate the reduction in the gravimetric capacitance at high rates, but this lowers the volumetric capacitance. Synthetic polymers can be used to obtain macroporous frameworks with high apparent densities, but the preservation of the frameworks during activation is challenging. To simultaneously achieve high gravimetric capacitance, volumetric capacitance, and rate capability, a systematic strategy was used to synthesize a densely knitted carbon framework with a hierarchical pore structure by using a polymer. The energy of the SC using the hierarchically porous carbon was 160 Wh kg(-1) and 85 Wh L(-1) on an active material base at a power of 100 W kg(-1) in an IL electrolyte, and 60 % of the energy was still retained at a power larger than 5000 W kg(-1) . To illustrate, a full-packaged SC with the material could store/release energy comparable to a Ni-metal hydride battery (gravimetrically) and one order of magnitude higher than a commercial carbon-based SC (volumetrically), within one minute. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Molecular imaging and sensing using plasmonic nanoparticles

    Science.gov (United States)

    Crow, Matthew James

    Noble metal nanoparticles exhibit unique optical properties that are beneficial to a variety of applications, including molecular imaging. The large scattering cross sections of nanoparticles provide high contrast necessary for biomarkers. Unlike alternative contrast agents, nanoparticles provide refractive index sensitivity revealing information regarding the local cellular environment. Altering the shape and composition of the nanoparticle shifts the peak resonant wavelength of scattered light, allowing for implementation of multiple spectrally distinct tags. In this project, nanoparticles that scatter in different spectral windows are functionalized with various antibodies recognizing extra-cellular receptors integral to cancer progression. A hyperspectral imaging system is developed, allowing for visualization and spectral characterization of cells labeled with these conjugates. Various molecular imaging and microspectroscopy applications of plasmonic nanoparticles are then investigated. First, anti-EGFR gold nanospheres are shown to quantitatively measure receptor expression with similar performance to fluorescence assays. Second, anti-EGFR gold nanorods and novel anti-IGF-1R silver nanospheres are implemented to indicate local cellular refractive indices. Third, because biosensing capabilities of nanoparticle tags may be limited by plasmonic coupling, polarization mapping is investigated as a method to discern these effects. Fourth, plasmonic coupling is tested to monitor HER-2 dimerization. Experiments reveal the interparticle conformation of proximal HER-2 bound labels, required for plasmonic coupling-enhanced dielectric sensing. Fifth, all three functionalized plasmonic tags are implemented simultaneously to indicate clinically relevant cell immunophenotype information and changes in the cellular dielectric environment. Finally, flow cytometry experiments are conducted utilizing the anti-EGFR nanorod tag to demonstrate profiling of receptor expression

  18. Surface Plasmon Based Spectrometer

    Science.gov (United States)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  19. Flex: RSRE's capability computer

    Science.gov (United States)

    Foster, J. M.

    The Flex capability based computer architecture is described. It supports a multilanguage environment, and compilers for ALGOL 168 and PASCAL exist; an Ada compiler is being completed. The idea of capabilities is used on backing store as well as main store, so that all kinds of structured object which can be held in main store can also be held on any of the packing stores with the same degree of protection. Capabilities are used across a network of Flex computers, so that capabilities for data in one machine may be passed to and held in another. Flex uses true procedure values in the sense of Landin (1964).

  20. Plasmonic Graphene Transparent Conductors

    Science.gov (United States)

    2012-01-01

    www.MaterialsViews.com www.advopticalmat.de FU LL P A P ER Guowei Xu,* Jianwei Liu, Qian Wang , Rongqing Hui, Zhijun Chen, Victor A. Maroni, and Judy Wu Plasmonic...decision, unless so designated by other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. UU...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS surface plasmon, graphene, transparent conductors Guowei Xu, Jianwei Liu, Qian

  1. Experimental demonstration of a novel bio-sensing platform via plasmonic band gap formation in gold nano-patch arrays

    CERN Document Server

    Grande, Marco; Stomeo, Tiziana; Morea, Giuseppe; Marani, Roberto; Marrocco, Valeria; Petruzzelli, Vincenzo; D'Orazio, Antonella; Cingolani, Roberto; De Vittorio, Massimo; de Ceglia, Domenico; Scalora, Michael

    2011-01-01

    We discuss the possibility of implementing a novel bio-sensing platform based on the observation of the shift of the leaky surface plasmon mode that occurs at the edge of the plasmonic band gap of metal gratings when an analyte is deposited on top of the metallic structure. We provide experimental proof of the sensing capabilities of a two-dimensional array of gold nano-patches by observing color variations in the diffracted field when the air overlayer is replaced with a small quantity of Isopropyl Alcohol (IPA). Effects of rounded corners and surface imperfections are also discussed. Finally, we also report proof of changes in color intensities as a function of the air/filling ratio of the structure and discuss their relation with the diffracted spectra.

  2. Characteristics of surface plasmon coupled quantum well infrared photodetectors

    Science.gov (United States)

    Hsu, Wei-Cheng; Ling, Hong-Shi; Wang, Shiang-Yu; Lee, Chien-Ping

    2017-06-01

    Quantum Well Infrared Photodetectors (QWIPs) with different structures were characterized for the study of surface plasmon wave coupling. Detailed comparisons between surface plasmon coupled and etched grating coupled devices were investigated. A bias dependence for the enhancement of the responsivity of surface plasmon coupled devices was found, especially for the samples with non-uniform quantum wells. The non-uniform QWIPs with surface plasmon coupling showed an asymmetric enhancement with respect to the bias directions. Stronger enhancements were shown under the biases when a higher effective electric field region is close to the collector. The change of the photocarrier escape probability due to the narrow coupling bandwidth of the surface plasmon wave is attributed to this unexpected bias dependence.

  3. Magneto-Plasmonic Nanoantennas: Basics and Applications (Review)

    CERN Document Server

    Maksymov, Ivan S

    2016-01-01

    Plasmonic nanoantennas is a hot and rapidly expanding research field. Here we overview basic operating principles and applications of novel magneto-plasmonic nanoantennas, which are made of ferromagnetic metals and driven not only by light, but also by external magnetic fields. We demonstrate that magneto-plasmonic nanoantennas enhance the magneto-optical effects, which introduces additional degrees of freedom in the control of light at the nano-scale. This property is used in conceptually new devices such as magneto-plasmonic rulers, ultra-sensitive biosensors, one-way subwavelength waveguides and extraordinary optical transmission structures, as well as in novel biomedical imaging modalities. We also point out that in certain cases 'non-optical' ferromagnetic nanostructures may operate as magneto-plasmonic nanoantennas. This undesigned extra functionality capitalises on established optical characterisation techniques of magnetic nanomaterials and it may be useful for the integration of nanophotonics and nan...

  4. Ubiquitous electron-plasmon coupling in doped semiconductors

    Science.gov (United States)

    Caruso, Fabio; Giustino, Feliciano

    The interplay between electrons and bosonic excitations [as, e.g., phonons, collective charge-density fluctuations (plasmons), and magnons] is pervasive in matter and underlies an extremely broad spectrum of physical phenomena, as, for instance, current dissipation, superconductivity, hot-carrier thermalisation, and band structure replicas. At variance with phonons, however, questions pertaining the strength of electron-plasmon coupling in solids are still awaiting further investigations. We developed and implemented a first-principles theory of electron-plasmon coupling based on many-body perturbation theory. Our first-principles calculations reveal that electron-plasmon coupling alters ubiquitously the dynamical and optical properties of semiconductors at high doping concentrations. This behaviour stems from the emergence of low-energy extrinsic plasmons which may couple electronic states in the vicinity of the Fermi energy

  5. Trapping and guiding surface plasmons in curved graphene landscapes

    CERN Document Server

    Smirnova, Daria; Wang, Zheng; Kivshar, Yuri S; Khanikaev, Alexander B

    2015-01-01

    We demonstrate that graphene placed on top of structured substrates offers a novel approach for trapping and guiding surface plasmons. A monolayer graphene with a spatially varying curvature exhibits an effective trapping potential for graphene plasmons near curved areas such as bumps, humps and wells. We derive the governing equation for describing such localized channel plasmons guided by curved graphene and validate our theory by the first-principle numerical simulations. The proposed confinement mechanism enables plasmon guiding by the regions of maximal curvature, and it offers a versatile platform for manipulating light in planar landscapes. In addition, isolated deformations of graphene such as bumps are shown to support localized surface modes and resonances suggesting a new way to engineer plasmonic metasurfaces.

  6. Control and mapping ultrafast plasmons with PEEM

    Science.gov (United States)

    Ji, Boyu; Qin, Jiang; Lang, Peng; Koya, Alemayehu Nana; Hao, Zuoqiang; Song, Xiaowei; Lin, Jingquan

    2016-11-01

    We report the direct imaging of plasmon on the tips of nano-prisms in a bowtie structure excited by 7 fs laser pulses and probing of ultrafast plasmon dynamics by combining the pump-probe technology with three-photon photoemission electron microscopy. A series of images of the evolution of local surface plasmon modes on different tips of the bowtie are obtained by the time-resolved three-photon photoemission electron microscopy, and the result discloses that plasmon excitation is dominated by the interference of the pump and probe pulses within the first 13 fs of the delay time, and thereafter the individual plasmon starts to oscillate on its own characteristic resonant frequencies. On the other hand, control of the near-field distribution was realized by variation of the phase delay of two orthogonally polarized 200fs laser pulses. The experimental results of the optical near-field distribution control are well reproduced by finite-difference time-domain simulations and understood by linear combination of electric charge distribution of the bowtie by s- and p- polarized light illumination. In addition, an independent shift of the excitation position or the phase of the near-field can be realized by coherent control of two orthogonally polarized fs laser pulses.

  7. Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics

    Science.gov (United States)

    Rodríguez-Fortuño, Francisco J.; Espinosa-Soria, Alba; Martínez, Alejandro

    2016-12-01

    The interaction of light with subwavelength metallic nano-structures is at the heart of different current scientific hot topics, namely plasmonics, metamaterials and nanoantennas. Research in these disciplines during the last decade has given rise to new, powerful concepts providing an unprecedented degree of control over light manipulation at the nanoscale. However, only recently have these concepts been used to increase the capabilities of light processing in current photonic integrated circuits (PICs), which traditionally rely only on dielectric materials with element sizes larger than the light wavelength. Amongst the different PIC platforms, silicon photonics is expected to become mainstream, since manufacturing using well-established CMOS processes enables the mass production of low-cost PICs. In this review we discuss the benefits of introducing recent concepts arisen from the fields of metamaterials, plasmonics and nanoantennas into a silicon photonics integrated platform. We review existing works in this direction and discuss how this hybrid approach can lead to the improvement of current PICs enabling novel and disruptive applications in photonics.

  8. Plasmonic-photonic crystal coupled nanolaser

    CERN Document Server

    Zhang, Taiping; Jamois, Cecile; Chevalier, Celine; Feng, Di; Belarouci, Ali

    2014-01-01

    We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. In that purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using fully top down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices.

  9. Enhanced Nonlinear Effects in Metamaterials and Plasmonics

    Directory of Open Access Journals (Sweden)

    C. Argyropoulos

    2012-07-01

    Full Text Available In this paper we provide an overview of the anomalous and enhanced nonlinear effects available when optical nonlinear materials are combined inside plasmonic waveguide structures. Broad, bistable and all-optical switching responses are exhibited at the cut-off frequency of these waveguides, characterized by reduced Q-factor resonances. These phenomena are due to the large field enhancement obtained inside specific plasmonic gratings, which ensures a significant boosting of the nonlinear operation. Several exciting applications are proposed, which may potentially lead to new optical components and add to the optical nanocircuit paradigm.

  10. Dynamic capabilities

    DEFF Research Database (Denmark)

    Grünbaum, Niels Nolsøe; Stenger, Marianne

    2013-01-01

    and profitability of small and medium sized manufacturing enterprises operating in volatile environments. A multi-case study design was adopted as research strategy. The findings reveal a positive relationship between dynamic capabilities and innovation performance in the case companies, as we would expect. It was...... it was dominated by a lack of systematism, assessment, monitoring, marketing speculations and feasibility calculation. Furthermore, the sphere was dictated by asymmetric supplier-customer relationships and negotiation power leading, among other possible factors, to meager profitability....

  11. Nanoscale tailored plasmonic material for optimum broadband solar harvesting

    Science.gov (United States)

    Zerulla, Dominic; McClean-Ilten, Éadaoin

    2016-09-01

    Is it possible to design a dedicated nanostructure on which all surface features contribute entirely to energy harvesting within a solar cell? This is an important challenge in the light that the efficiency of the solar cell technology utilised has a direct impact on the required land-use and also on reaching grid parity. Here, we take a unique approach and present an analytically derived optimum solution to the problem: a nanoscale metal topography, capable of significantly improving the efficiency of solid state solar cells via excitation of surface plasmon polaritons (SPPs). The presented structure is designed to achieve broadband excitation of SPPs through the highest possible density of desired k-vectors at the interface. This leads to high weighted absorption enhancements (>130%) and unprecedented improvements (>30%) of solar cell external quantum efficiencies over the entire harvestable range.

  12. Interferometric Plasmonic Lensing with Nanohole Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-12-18

    Nonlinear photoemission electron microscopy (PEEM) of nanohole arrays in gold films maps propagating surface plasmons (PSPs) launched from lithographically patterned structures. Strong near field photoemission patterns are observed in the PEEM images, recorded following low angle of incidence irradiation of nanohole arrays with sub-15 fs laser pulses centered at 780 nm. The recorded photoemission patterns are attributed to constructive and destructive interferences between PSPs launched from the individual nanoholes which comprise the array. By exploiting the wave nature of PSPs, we demonstrate how varying the array geometry (hole diameter, pitch, and number of rows/columns) ultimately yields intense localized photoemission. Through a combination of PEEM and finite-difference time-domain simulations, we identify the optimal array geometry for efficient light coupling and interferometric plasmonic lensing. We show a preliminary application of inteferometric plasmonic lensing by enhancing the photoemission from the vertex of a gold triangle using nanohole array.

  13. Thermo-plasmonics of Irradiated Metallic Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan

    Thermo-plasmonics is an emerging field in photonics which aims at harnessing the kinetic energy of light to generate nanoscopic sources of heat. Localized surface plasmons (LSP) supported by metallic nanostructures greatly enhance the interactions of light with the structure. By engineering...... the size, morphology and composition of metallic nanostructures, the absorption of light can be maximized, resulting in a substantial temperature elevation in a nanoscopic volume. Applications of these nanoscopic sources of heat can be found in various contexts including localized cancer therapy, drug......-plasmonic simulations as well as the ImageJ program “Mosaic”, used for single particle tracking. Chapter 4 presents the experimental details of the lipid bilayer based temperature mapping technique based on a lipid bilayer containing fluorophores with a phase dependent partitioning. This assay allowed quantification...

  14. Plasmon Resonance in Multilayer Graphene Nanoribbons

    CERN Document Server

    Emani, Naresh Kumar; Chung, Ting-Fung; Prokopeva, Ludmila J; Kildishev, Alexander V; Shalaev, Vladimir M; Chen, Yong P; Boltasseva, Alexandra

    2015-01-01

    Plasmon resonance in nanopatterned single layer graphene nanoribbon (SL-GNR), double layer graphene nanoribbon (DL-GNR) and triple layer graphene nanoribbon (TL-GNR) structures is studied both experimentally and by numerical simulations. We use 'realistic' graphene samples in our experiments to identify the key bottle necks in both experiments and theoretical models. The existence of electrical tunable plasmons in such stacked multilayer GNRs was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL-GNR when compared to SL-GNRs. However, we do not find a further such increase in TL-GNRs compared to DL-GNRs. We carried out systematic full wave simulations using finite element technique to validate and fit experimental results, and extract the carrier scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for unpatterned SLG sheet, and a qualitative agreement for patterned graphene sheet. W...

  15. Plasmonic photothermal therapy (PPTT) using gold nanoparticles.

    Science.gov (United States)

    Huang, Xiaohua; Jain, Prashant K; El-Sayed, Ivan H; El-Sayed, Mostafa A

    2008-07-01

    The use of lasers, over the past few decades, has emerged to be highly promising for cancer therapy modalities, most commonly the photothermal therapy method, which employs light absorbing dyes for achieving the photothermal damage of tumors, and the photodynamic therapy, which employs chemical photosensitizers that generate singlet oxygen that is capable of tumor destruction. However, recent advances in the field of nanoscience have seen the emergence of noble metal nanostructures with unique photophysical properties, well suited for applications in cancer phototherapy. Noble metal nanoparticles, on account of the phenomenon of surface plasmon resonance, possess strongly enhanced visible and near-infrared light absorption, several orders of magnitude more intense compared to conventional laser phototherapy agents. The use of plasmonic nanoparticles as highly enhanced photoabsorbing agents has thus introduced a much more selective and efficient cancer therapy strategy, viz. plasmonic photothermal therapy (PPTT). The synthetic tunability of the optothermal properties and the bio-targeting abilities of the plasmonic gold nanostructures make the PPTT method furthermore promising. In this review, we discuss the development of the PPTT method with special emphasis on the recent in vitro and in vivo success using gold nanospheres coupled with visible lasers and gold nanorods and silica-gold nanoshells coupled with near-infrared lasers.

  16. Three types of couplings between asymmetric plasmonic dimers.

    Science.gov (United States)

    Chao, Yen-Chun; Tseng, Hsuan-Chi; Chang, Kao-Der; Chang, Chih-Wei

    2012-01-30

    We report extensive numerical studies on plasmonic dimers of different configurations and find that their coupling effects can be categorized into three types of phenomena. First, like ordinary mechanical systems, the plasmonic dimers can exhibit positive couplings that show anti-crossing behavior. Second, they can also be arranged to exhibit negative couplings that display opposite trends in resonant frequency shifts. Third, when there are surface currents in proximity to each other, the resonance frequencies of the dimers exhibit unusual redshifts that do not have any analogies in conventional systems. Our work suggests that in addition to the well-known electric and magnetic dipolar interactions, contributions from the inductance of displacement currents in the near field cannot be ignored. Overall, asymmetric plasmonic dimers exhibit better sensitivities than the symmetric counterparts and our extensive studies also enable us to identify the plasmonic dimer with the highest sensing capabilities.

  17. Effect of out-of-plane directional intra-layer coupling from graphene monolayer on sp3 type defect with gap-plasmonic structures

    Science.gov (United States)

    Park, Won-Hwa

    2016-09-01

    The author investigates an intra-layer coupling effect through transverse acoustic (TA) phonon modes along the z-direction at Au nanoparticle (NP)-graphene monolayer (GM)-Au thin film (TF) plasmonic junctions in regard with sp3 type defect effect. The oxidation and resulting disorder of GM with breaking of six-fold symmetry have been explored. Because a Raman-forbidden D peak can be activated due to unwanted single-phonon inter-valley and intra-valley scattering processes, the quantitative estimation of the sp3 type defect is being performed by the intensity ratio between G and D peaks. By exploring the difference of the maximum peak position (TA3-TA1) and the intensity ratio, (TA1/TA3) the author can reveal that a lower z-protruded GM accompanied with weak intra-coupling and a weaker RBLM intensity show relatively high D/G. It means that larger surface area of a GM to be functionalized by oxidization can secure more easily than the higher z-protruded. This investigation presents the importance of controlling the degree of z-protrusion of GM surface in terms of not only the presence of high D/G but also its related and detailed nano-structural surface shape, leading to the enhancement of electrical properties such as a carrier mobility and sheet resistance value. The out-of-plane phonon modes will be considered as a key factor in further exploring nano-physical deformation of 2D materials in sync with its electrical performance.

  18. Gratings in plasmonic V-groove waveguides

    DEFF Research Database (Denmark)

    Smith, Cameron; Cuesta, Irene Fernandez; Kristensen, Anders

    2011-01-01

    We introduce visible light optical gratings to surface plasmon V-groove waveguides. Gradient e-beam dosage onto silicon stamp enables structuring V-grooves of varying depth. Nanoimprint lithography maintains a Λ=265 nm corrugation for gold surface devices....

  19. Plasmonic waveguides cladded by hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Ishii, Satoshi; Shalaginov, Mikhail Y.; Babicheva, Viktoriia E.

    2014-01-01

    Strongly anisotropic media with hyperbolic dispersion can be used for claddings of plasmonic waveguides (PWs). In order to analyze the fundamental properties of such waveguides, we analytically study 1D waveguides arranged from a hyperbolic metamaterial (HMM) in a HMM-Insulator-HMM (HIH) structure...

  20. Gratings in plasmonic V-groove waveguides

    DEFF Research Database (Denmark)

    Smith, Cameron; Cuesta, Irene Fernandez; Kristensen, Anders

    2011-01-01

    We introduce visible light optical gratings to surface plasmon V-groove waveguides. Gradient e-beam dosage onto silicon stamp enables structuring V-grooves of varying depth. Nanoimprint lithography maintains a Λ=265 nm corrugation for gold surface devices....

  1. On the optical properties of plasmonic glasses

    Science.gov (United States)

    Antosiewicz, Tomasz J.; Langhammer, Christoph; Apell, S. Peter

    2014-12-01

    We report on the optical properties of plasmonic glasses which are metal-dielectric composites composed of metallic inclusions in a host dielectric medium. The investigated structures are of quasi-random nature, described by the pair correlation function, featuring a minimum center-to-center distance between metallic inclusions and long range randomness. Plasmonic glasses exhibiting short-range order only may be fabricated using bottom-up, self-assembly methods and have been utilized in a number of applications such as plasmonic sensing or plasmon-enhanced solar harvesting, and may be also employed for certain non-linear applications. It is therefore important to quantify their properties. Using theoretical methods we investigate optical of 1D, 2D, and 3D structures composed of amorphous distributions of metallic spheres. It is shown, that the response of the constituent element, i.e. the single sphere localized surface plasmon resonance, is modified by the scattered fields of the other spheres in such a way that its peak position, peak amplitude, and full-width at half-maximum exhibit damped oscillations. The oscillation amplitude is set by the particle density and for the peak position may vary by up to 0.3 eV in the optical regime. Using a modified coupled dipole approach we calculate the effective (average) polarizability of plasmonic glasses and discuss their spectra as a function of the dimensionality, angle of incidence and polarization, and the minimum center-to-center distance. The analytical model is complemented and validated by T-Matrix calculations of the optical cross-sections of amorphous arrays of metallic spheres obtained using a modification of the Random Sequential Adsorption algorithm for lines, surfaces, and volumes.

  2. Plasmonic antennas as design elements for coherent ultrafast nanophotonics.

    Science.gov (United States)

    Brinks, Daan; Castro-Lopez, Marta; Hildner, Richard; van Hulst, Niek F

    2013-11-12

    Broadband excitation of plasmons allows control of light-matter interaction with nanometric precision at femtosecond timescales. Research in the field has spiked in the past decade in an effort to turn ultrafast plasmonics into a diagnostic, microscopy, computational, and engineering tool for this novel nanometric-femtosecond regime. Despite great developments, this goal has yet to materialize. Previous work failed to provide the ability to engineer and control the ultrafast response of a plasmonic system at will, needed to fully realize the potential of ultrafast nanophotonics in physical, biological, and chemical applications. Here, we perform systematic measurements of the coherent response of plasmonic nanoantennas at femtosecond timescales and use them as building blocks in ultrafast plasmonic structures. We determine the coherent response of individual nanoantennas to femtosecond excitation. By mixing localized resonances of characterized antennas, we design coupled plasmonic structures to achieve well-defined ultrafast and phase-stable field dynamics in a predetermined nanoscale hotspot. We present two examples of the application of such structures: control of the spectral amplitude and phase of a pulse in the near field, and ultrafast switching of mutually coherent hotspots. This simple, reproducible and scalable approach transforms ultrafast plasmonics into a straightforward tool for use in fields as diverse as room temperature quantum optics, nanoscale solid-state physics, and quantum biology.

  3. Engineering plasmon dispersion relations : hybrid nanoparticle chain - substrate plasmon polaritons

    NARCIS (Netherlands)

    Compaijen, Paul J.; Malyshev, Victor A.; Knoester, Jasper

    2015-01-01

    We consider the dispersion relations of the optical excitations in a chain of silver nanoparticles situated above a metal substrate and show that they are hybrid plasmon polaritons, composed of localized surface plasmons and surface plasmon polaritons. We demonstrate a strong dependence of the syste

  4. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously...

  5. Plasmonic components fabrication via nanoimprint

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra

    2009-01-01

    A review report on nanoimprinted plasmonic components is given. The fabrication of different metal–dielectric geometries and nanostructured surfaces that support either propagating or localized surface plasmon modes is discussed. The main characteristics and advantages of the nanoimprint technolo...

  6. Tuning and Persistent Switching of Graphene Plasmons on a Ferroelectric Substrate.

    Science.gov (United States)

    Goldflam, Michael D; Ni, Guang-Xin; Post, Kirk W; Fei, Zhe; Yeo, Yuting; Tan, Jun You; Rodin, Aleksandr S; Chapler, Brian C; Özyilmaz, Barbaros; Castro Neto, Antonio H; Fogler, Michael M; Basov, D N

    2015-08-12

    We characterized plasmon propagation in graphene on thin films of the high-κ dielectric PbZr0.3Ti0.7O3 (PZT). Significant modulation (up to ±75%) of the plasmon wavelength was achieved with application of ultrasmall voltages (< ±1 V) across PZT. Analysis of the observed plasmonic fringes at the graphene edge indicates that carriers in graphene on PZT behave as noninteracting Dirac Fermions approximated by a semiclassical Drude response, which may be attributed to strong dielectric screening at the graphene/PZT interface. Additionally, significant plasmon scattering occurs at the grain boundaries of PZT from topographic and/or polarization induced graphene conductivity variation in the interior of graphene, reducing the overall plasmon propagation length. Lastly, through application of 2 V across PZT, we demonstrate the capability to persistently modify the plasmonic response of graphene through transient voltage application.

  7. Ultrafast, broadband, and configurable midinfrared all-optical switching in nonlinear graphene plasmonic waveguides

    Directory of Open Access Journals (Sweden)

    Kelvin J. A. Ooi

    2016-07-01

    Full Text Available Graphene plasmonics provides a unique and excellent platform for nonlinear all-optical switching, owing to its high nonlinear conductivity and tight optical confinement. In this paper, we show that impressive switching performance on graphene plasmonic waveguides could be obtained for both phase and extinction modulations at sub-MW/cm2 optical pump intensities. Additionally, we find that the large surface-induced nonlinearity enhancement that comes from the tight confinement effect can potentially drive the propagating plasmon pump power down to the pW range. The graphene plasmonic waveguides have highly configurable Fermi-levels through electrostatic-gating, allowing for versatility in device design and a broadband optical response. The high capabilities of nonlinear graphene plasmonics would eventually pave the way for the adoption of the graphene plasmonics platform in future all-optical nanocircuitry.

  8. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan;

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  9. Photo-generated THz antennas: All-optical control of plasmonic materials

    CERN Document Server

    Georgiou, Giorgos; Mulder, Peter; Bauhuis, Gerard J; Schermer, John J; Rivas, Jaime Gómez

    2013-01-01

    Localized surface plasmon polaritons in conducting structures give rise to enhancements of electromagnetic local fields and extinction efficiencies. Resonant conducting structures are conventionally fabricated with a fixed geometry that determines their plasmonic response. Here, we challenge this conventional approach by demonstrating the photo-generation of plasmonic materials (THz plasmonic antennas) on a flat semiconductor layer by the structured optical illumination through a spatial light modulator. Free charge carriers are photo-excited only on selected areas, which enables the definition of different plasmonic antennas on the same sample by simply changing the illumination pattern, thus without the need of physically structuring the sample. These results open a wide range of possibilities for an all-optical spatial and temporal control of resonances on plasmonic surfaces and the concomitant control of THz extinction and local field enhancements.

  10. Large-area nanogap plasmon resonator arrays for plasmonics applications

    Science.gov (United States)

    Jin, Mingliang; van Wolferen, Henk; Wormeester, Herbert; van den Berg, Albert; Carlen, Edwin T.

    2012-07-01

    Large-area (~8000 mm2) Au nanogap plasmon resonator array substrates manufactured using maskless laser interference lithography (LIL) with high uniformity are presented. The periodically spaced subwavelength nanogap arrays are formed between adjacent nanopyramid (NPy) structures with precisely defined pitch and high length density (~1 km cm-2), and are ideally suited as scattering sites for surface enhanced Raman scattering (SERS), as well as refractive index sensing. The two-dimensional grid arrangement of NPy structures renders the excitation of the plasmon resonators minimally dependent on the incident polarization. The SERS average enhancement factor (AEF) has been characterized using over 30 000 individual measurements of benzenethiol (BT) chemisorbed on the Au NPy surfaces. From the 1(a1), βCCC + νCS ring mode (1074 cm-1) of BT on surfaces with pitch λg = 200 nm, AEF = 0.8 × 106 and for surfaces with λg = 500 nm, AEF = 0.3 × 107 from over 99% of the imaged spots. Maximum AEFs > 108 have been measured in both cases.

  11. Controlling plasmon-enhanced luminescence

    NARCIS (Netherlands)

    Mertens, H.

    2007-01-01

    Plasmons are collective oscillations of the free electrons in a metal or an ionized gas. Plasmons dominate the optical properties of noble-metal nanoparticles, which enables a variety of applications. This thesis focuses on plasmon-enhanced luminescence of silicon quantum dots (Si QDs) and optically

  12. Energy and Charge Transfer in Open Plasmonic Systems

    Science.gov (United States)

    Thakkar, Niket

    Coherent and collective charge oscillations in metal nanoparticles (MNPs), known as localized surface plasmons, offer unprecedented control and enhancement of optical processes on the nanoscale. Since their discovery in the 1950's, plasmons have played an important role in understanding fundamental properties of solid state matter and have been used for a variety of applications, from single molecule spectroscopy to directed radiation therapy for cancer treatment. More recently, experiments have demonstrated quantum interference between optically excited plasmonic materials, opening the door for plasmonic applications in quantum information and making the study of the basic quantum mechanical properties of plasmonic structures an important research topic. This text describes a quantitatively accurate, versatile model of MNP optics that incorporates MNP geometry, local environment, and effects due to the quantum properties of conduction electrons and radiation. We build the theory from first principles, starting with a silver sphere in isolation and working our way up to complex, interacting plasmonic systems with multiple MNPs and other optical resonators. We use mathematical methods from statistical physics and quantum optics in collaboration with experimentalists to reconcile long-standing discrepancies amongst experiments probing plasmons in the quantum size regime, to develop and model a novel single-particle absorption spectroscopy, to predict radiative interference effects in entangled plasmonic aggregates, and to demonstrate the existence of plasmons in photo-doped semiconductor nanocrystals. These examples show more broadly that the theory presented is easily integrated with numerical simulations of electromagnetic scattering and that plasmonics is an interesting test-bed for approximate methods associated with multiscale systems.

  13. Coupling of Surface Plasmons and Semiconductor Nanocrystals for Nanophotonics Applications

    Science.gov (United States)

    Jayanti, Sriharsha V.

    The goal of this thesis is to engineer the interaction between surface plasmons and semiconductor nanocrystals for nanophotonic applications. Plasmonic metals support surface plasmon polaritons, hybrid photon and electron waves that propagate along a metal-dielectric interface. Unlike photons, surface plasmons can be confined in sub-diffraction geometries. This has two important consequences: 1) optical devices can be designed at the nanoscale, and 2) the high density of electromagnetic fields allows study of enhanced light-matter interactions. Surface plasmons have been exploited to demonstrate components of optoelectronic circuits, optical antennas, surface enhanced spectroscopy, enhanced fluorescence from fluorophores, and nanolasers. Despite the advances, surface plasmon losses limit their propagation lengths to tens of micrometers in the visible wavelengths, hindering many applications. Recently, the template-stripping approach was shown to fabricate metal films that exhibit larger grains and smoother surface, reducing the grain boundary and roughness scattering. To further improve the plasmonic properties, we investigate the importance of deposition conditions in the template-stripping approach. We provide insight and recipes to enhance the plasmonic performance of the most commonly used metals in the ultraviolet, visible, and near-infrared. We also explore the potential of low temperatures to improve the performance of metal films, where the electron-electron and electron-phonon scattering should be reduced. This sets a limit on the minimum loss metals can exhibit. Using this knowledge, we study the optical properties of quantum-confined semiconductor nanocrystals near metal structures. Semiconductor nanocrystals have many attractive characteristics that make them suitable for solid-state lighting and solar cells among others. Specifically, CdSe nanocrystals have been heavily studied for their large absorption and emission cross-sections, size dependent

  14. Color changing plasmonic surfaces utilizing liquid crystal (Conference Presentation)

    Science.gov (United States)

    Franklin, Daniel; Wu, Shin-Tson; Chanda, Debashis

    2016-09-01

    Plasmonic structural color has recently garnered significant interest as an alternative to the organic dyes standard in print media and liquid crystal displays. These nanostructured metallic systems can produce diffraction limited images, be made polarization dependent, and exhibit resistance to color bleaching. Perhaps even more advantageous, their optical characteristics can also be tuned, post-fabrication, by altering the surrounding media's refractive index parallel to the local plasmonic fields. A common material with which to achieve this is liquid crystal. By reorienting the liquid crystal molecules through external electric fields, the optical resonances of the plasmonic filters can be dynamically controlled. Demonstrations of this phenomenon, however, have been limited to modest shifts in plasmon resonance. Here, we report a liquid crystal-plasmonic system with an enhanced tuning range through the use of a shallow array of nano-wells and high birefringent liquid crystal. The continuous metallic nanostructure maximizes the overlap between plasmonic fields and liquid crystal while also allowing full reorientation of the liquid crystal upon an applied electric field. Sweeping over structural dimensions and voltages results in a color palette for these dynamic reflective pixels that can further be exploited to create color tunable images. These advances make plasmonic-liquid crystal systems more attractive candidates for filter, display, and other tunable optical technologies.

  15. Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode.

    Science.gov (United States)

    Chen, Xi; Yang, Fan; Zhang, Cheng; Zhou, Jing; Guo, L Jay

    2016-04-26

    Plasmonic lithography, which utilizes subwavelength confinement of surface plasmon polartion (SPP) waves, has the capability of breaking the diffraction limit and delivering high resolution. However, all previously reported results suffer from critical issues, such as shallow pattern depth and pattern nonuniformity even over small exposure areas, which limit the application of the technology. In this work, periodic patterns with high aspect ratios and a half-pitch of about 1/6 of the wavelength were achieved with pattern uniformity in square centimeter areas. This was accomplished by designing a special mask and photoresist (PR) system to select a single high spatial frequency mode and incorporating the PR into a waveguide configuration to ensure uniform light exposure over the entire depth of the photoresist layer. In addition to the experimental progress toward large-scale applications of plasmonic interference lithography, the general criteria of designing such an exposure system is also discussed, which can be used for nanoscale fabrication in this fashion for various applications with different requirements for wavelength, pitch, aspect ratio, and structure.

  16. Single Atom Plasmonic Switch

    CERN Document Server

    Emboras, Alexandros; Ma, Ping; Haffner, Christian; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2015-01-01

    The atom sets an ultimate scaling limit to Moores law in the electronics industry. And while electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling-similar to electronics-is only limited by the atom. More precisely, we introduce an electrically controlled single atom plasmonic switch. The switch allows for fast and reproducible switching by means of the relocation of an individual or at most - a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ration of 10 dB and operation at room temperature with femtojoule (fJ) power consumption for a single switch operation. This demonstration of a CMOS compatible, integrated quantum device allowing to control photons at the single-atom level opens intriguing perspectives for a fully i...

  17. Nonlinear organic plasmonics

    CERN Document Server

    Fainberg, B D

    2015-01-01

    Purely organic materials with negative and near-zero dielectric permittivity can be easily fabricated. Here we develop a theory of nonlinear non-steady-state organic plasmonics with strong laser pulses. The bistability response of the electron-vibrational model of organic materials in the condensed phase has been demonstrated. Non-steady-state organic plasmonics enable us to obtain near-zero dielectric permittivity during a short time. We have proposed to use non-steady-state organic plasmonics for the enhancement of intersite dipolar energy-transfer interaction in the quantum dot wire that influences on electron transport through nanojunctions. Such interactions can compensate Coulomb repulsions for particular conditions. We propose the exciton control of Coulomb blocking in the quantum dot wire based on the non-steady-state near-zero dielectric permittivity of the organic host medium.

  18. Single Nanoparticle Plasmonic Sensors

    Directory of Open Access Journals (Sweden)

    Manish Sriram

    2015-10-01

    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  19. Topographical coloured plasmonic coins

    CERN Document Server

    Guay, Jean-Michel; Côté, Guillaume; Charron, Martin; Ramunno, Lora; Berini, Pierre; Weck, Arnaud

    2016-01-01

    The use of metal nanostructures for colourization has attracted a great deal of interest with the recent developments in plasmonics. However, the current top-down colourization methods based on plasmonic concepts are tedious and time consuming, and thus unviable for large-scale industrial applications. Here we show a bottom-up approach where, upon picosecond laser exposure, a full colour palette independent of viewing angle can be created on noble metals. We show that colours are related to a single laser processing parameter, the total accumulated fluence, which makes this process suitable for high throughput industrial applications. Statistical image analyses of the laser irradiated surfaces reveal various distributions of nanoparticle sizes which control colour. Quantitative comparisons between experiments and large-scale finite-difference time-domain computations, demonstrate that colours are produced by selective absorption phenomena in heterogeneous nanoclusters. Plasmonic cluster resonances are thus fo...

  20. Electron polarization function and plasmons in metallic armchair graphene nanoribbons

    DEFF Research Database (Denmark)

    Shylau, A. A.; Badalyan, S. M.; Peeters, F. M.

    2015-01-01

    Plasmon excitations in metallic armchair graphene nanoribbons are investigated using the random phase approximation. An exact analytical expression for the polarization function of Dirac fermions is obtained, valid for arbitrary temperature and doping. We find that at finite temperatures, due...... mode whose energy dispersion is determined by the graphene's fine structure constant. In the case of two Coulomb-coupled nanoribbons, this plasmon splits into in-phase and out-of-phase plasmon modes with splitting energy determined by the inter-ribbon spacing....

  1. Surface plasmon polariton waveguiding in random surface nanostructures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Leosson, K.

    2003-01-01

    In this study, guiding of surface plasmon polaritons excited at a gold film surface along corrugation-free channels in regions that are covered with randomly located surface scatterers, is considered using near-field microscopy for imaging of surface plasmon polariton intensity distributions at t...... demonstrate well-defined surface plasmon polariton guiding along corrugation-free 2 micro-m wide channels in random structures and, in the wavelength range 738-774 nm, low-loss guiding around 20degrees bends having a bend radius of approx. 15 micro-m....

  2. Metal nanoparticles with sharp corners: Universal properties of plasmon resonances

    CERN Document Server

    Sturman, B; Gorkunov, M

    2012-01-01

    We predict the simultaneous occurrence of two fundamental phenomena for metal nanoparticles possessing sharp corners: First, the main plasmonic dipolar mode experiences strong red shift with decreasing corner curvature radius; its resonant frequency is controlled by the apex angle of the corner and the normalized (to the particle size) corner curvature. Second, the split-off plasmonic mode experiences strong localization at the corners. Altogether, this paves the way for tailoring of metal nano-structures providing wavelength-selective excitation of localized plasmons and a strong near-field enhancement of linear and nonlinear optical phenomena.

  3. Dual-functional sensor based on switchable plasmonic structure of VO2 nano-crystal films and Ag nanoparticles.

    Science.gov (United States)

    Yi, Mingfang; Lu, Changgui; Gong, Yan; Qi, Zhengqing; Cui, Yiping

    2014-12-01

    Utilizing the insulator-metal phase transition of vanadium dioxide (VO2) crystal films, we develop a dual-functional sensor based on the coupling between VO2 nano-crystal films and Ag nanoparticles, which can probe fluorescence or Raman signals on the same substrate and it is switchable by changing temperature. At room temperature, the VO2 crystal films is insulator phase and the fluorescence signals of probe molecules (R6G) is detectable (Raman is in "off"). At high temperature (such as 85 °C), the VO2 crystal films become metallic phase. Ag nanoparticles interact with the metal phase of VO2 crystal films to produce stronger localized electric field. The stronger electric field can excite the Raman signals of probe molecules (R6G) and the coupled structure can also emit the Raman signals out efficiently (Raman is in "on"). The switchable probe of fluorescence and Raman signals would have potential applications in active photoelectric components, such as intelligent switch and multifunctional active sensor etc.

  4. Laser implantation of plasmonic nanostructures into glass

    Science.gov (United States)

    Henley, Simon J.; Beliatis, Michail J.; Stolojan, Vlad; Silva, S. Ravi. P.

    2013-01-01

    A laser direct-writing method producing high-resolution patterns of gold, silver and alloy plasmonic nanoparticles implanted into the surface of glass substrates is demonstrated, by scanning a pulsed UV laser beam across selected areas of ultra-thin metal films. The nanoparticles are incorporated beneath the surface of the glass and hence the patterns are scratch-resistant. The physical mechanisms controlling the process are investigated and we demonstrate that this technique can be used to fabricate a wide range of plasmonic optical structures such as wavelength selected diffraction gratings and high-density substrates for lab-on-chip surface-enhanced Raman spectroscopy.A laser direct-writing method producing high-resolution patterns of gold, silver and alloy plasmonic nanoparticles implanted into the surface of glass substrates is demonstrated, by scanning a pulsed UV laser beam across selected areas of ultra-thin metal films. The nanoparticles are incorporated beneath the surface of the glass and hence the patterns are scratch-resistant. The physical mechanisms controlling the process are investigated and we demonstrate that this technique can be used to fabricate a wide range of plasmonic optical structures such as wavelength selected diffraction gratings and high-density substrates for lab-on-chip surface-enhanced Raman spectroscopy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33629d

  5. Terahertz superconducting plasmonic hole array

    CERN Document Server

    Tian, Zhen; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Zhang, Weili

    2010-01-01

    We demonstrate thermally tunable superconductor hole array with active control over their resonant transmission induced by surface plasmon polaritons . The array was lithographically fabricated on high temperature YBCO superconductor and characterized by terahertz-time domain spectroscopy. We observe a clear transition from the virtual excitation of the surface plasmon mode to the real surface plasmon mode. The highly tunable superconducting plasmonic hole arrays may have promising applications in the design of low-loss, large dynamic range amplitude modulation, and surface plasmon based terahertz devices.

  6. Hybridized plasmon resonant modes in molecular metallodielectric quad-triangles nanoantenna

    Science.gov (United States)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2015-11-01

    In this study, we examined the plasmon response for both metallic and metallodielectric nanoantennas composed of four gold (Au) triangles in a quadrumer orientation. Tailoring an artificial metallic quad-triangles nanoantenna, it is shown that the structure is able to support pronounced plasmon and Fano resonances in the visible spectrum. Using plasmon transmutation effect, we showed that the plasmonic response of the proposed cluster can be enhanced with the placement of carbon nanoparticles in the offset gaps between the proximal triangles. It is verified that this structural modification gives rise to formation of new collective magnetic antibonding (dark) plasmon modes. Excitation of these subradiant dark modes leads to formation of narrower and deeper Fano resonances in the spectral response of the metallodielectric nanoantenna. To investigate the practical applications of the metallodielectric structure, we immersed the nano-assembly in various liquids with different refractive indices to define its sensitivity to the environmental perturbation as a plasmonic biological sensor.

  7. Handbook of molecular plasmonics

    CERN Document Server

    Sala, Fabio Della

    2013-01-01

    While several reviews and books on surface nanophotonics and fluorescence spectroscopy are available, an updated focus on molecular plasmonics, including both theoretical methods and experimental aspects, is still lacking. This handbook is a comprehensive overview on the physics of the plasmon-emitter interaction, ranging from electromagnetism to quantum mechanics, from metal-enhanced fluorescence to surface-enhanced Raman scattering, from optical microscopy to synthesis of metal nanoparticles, filling the gap in the literature of this merging field. It allows experimentalists to have a solid

  8. Plasmonic Nanoguides and Circuits

    CERN Document Server

    Bozhevolnyi, Sergey

    2008-01-01

    Modern communication systems dealing with huge amounts of data at ever increasing speed try to utilize the best aspects of electronic and optical circuits. Electronic circuits are tiny but their operation speed is limited, whereas optical circuits are extremely fast but their sizes are limited by diffraction. Waveguide components utilizing surface plasmon (SP) modes were found to combine the huge optical bandwidth and compactness of electronics, and plasmonics thereby began to be considered as the next chip-scale technology. In this book, the authors concentrate on the SP waveguide configurati

  9. Plasmons in QED vacuum

    Science.gov (United States)

    Petrov, E. Yu.; Kudrin, A. V.

    2016-09-01

    The problem of longitudinal oscillations of an electric field and a charge polarization density in a quantum electrodynamics (QED) vacuum is considered. Within the framework of semiclassical analysis, we calculate time-periodic solutions of bosonized (1 +1 )-dimensional QED (massive Schwinger model). Applying the Bohr-Sommerfeld quantization condition, we determine the mass spectrum of charge-zero bound states (plasmons) which correspond in quantum theory to the found classical solutions. We show that the existence of such plasmons does not contradict any fundamental physical laws and study qualitatively their excitation in a (3 +1 )-dimensional real world.

  10. Plasmonic colour laser printing

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil

    2016-01-01

    -beam lithography (EBL) or focused ion beam (FIB), both expensive and not scalable processes that are not suitable for post-processing customization. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation...... that leads to melting and reshaping of the imprinted nanostructures. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different colour appearances can be created. Using this technique we can print all primary colours...

  11. Plasmonic transparent conductors

    Science.gov (United States)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-09-01

    Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.

  12. Nanobump assembly for plasmonic organic solar cells

    Science.gov (United States)

    Song, Hyung-Jun; Jung, Kinam; Lee, Gunhee; Ko, Youngjun; Lee, Jong-Kwon; Choi, Mansoo; Lee, Changhee

    2014-10-01

    We demonstrate novel plasmonic organic solar cells (OSCs) by embedding an easy processible nanobump assembly (NBA) for harnessing more light. The NBA is consisted of precisely size-controlled Ag nanoparticles (NPs) generated by an aerosol process at atmospheric pressure and thermally deposited molybdenum oxide (MoO3) layer which follows the underlying nano structure of NPs. The active layer, spin-casted polymer blend solution, has an undulated structure conformably covering the NBA structure. To find the optimal condition of the NBA structure for enhancing light harvest as well as carrier transfer, we systematically investigate the effect of the size of Ag NPs and the MoO3 coverage on the device performance. It is observed that the photocurrent of device increases as the size of Ag NP increases owing to enhanced plasmonic and scattering effect. In addition, the increased light absorption is effectively transferred to the photocurrent with small carrier losses, when the Ag NPs are fully covered by the MoO3 layer. As a result, the NBA structure consisted of 40 nm Ag NPs enclosed by 20 nm MoO3 layer leads to 18% improvement in the power conversion efficiency compared to the device without the NBA structure. Therefore, the NBA plasmonic structure provides a reliable and efficient light harvesting in a broad range of wavelength, which consequently enhances the performance of organic solar cells.

  13. Arbitrary bending plasmonic light waves.

    Science.gov (United States)

    Epstein, Itai; Arie, Ady

    2014-01-17

    We demonstrate the generation of self-accelerating surface plasmon beams along arbitrary caustic curvatures. These plasmonic beams are excited by free-space beams through a two-dimensional binary plasmonic phase mask, which provides the missing momentum between the two beams in the direction of propagation and sets the required phase for the plasmonic beam in the transverse direction. We examine the cases of paraxial and nonparaxial curvatures and show that this highly versatile scheme can be designed to produce arbitrary plasmonic self-accelerating beams. Several different plasmonic beams, which accelerate along polynomial and exponential trajectories, are demonstrated both numerically and experimentally, with a direct measurement of the plasmonic light intensity using a near-field scanning optical microscope.

  14. Arbitrary Bending Plasmonic Light Waves

    CERN Document Server

    Epstein, Itai

    2013-01-01

    We demonstrate the generation of self-accelerating surface plasmon beams along arbitrary caustic curvatures. These plasmonic beams are excited by free-space beams through a two-dimensional binary plasmonic phase mask, which provides the missing momentum between the two beams in the direction of propagation, and sets the required phase for the plasmonic beam in the transverse direction. We examine the cases of paraxial and non-paraxial curvatures and show that this highly versatile scheme can be designed to produce arbitrary plasmonic self-accelerating beams. Several different plasmonic beams, which accelerate along polynomial and exponential trajectories, are demonstrated both numerically and experimentally, with a direct measurement of the plasmonic light intensity using a near-field-scanning-optical-microscope.

  15. A symmetric terahertz graphene-based hybrid plasmonic waveguide

    Science.gov (United States)

    Chen, Ming; Sheng, Pengchi; Sun, Wei; Cai, Jianjin

    2016-10-01

    A graphene-based hybrid plasmonic waveguide (GHPW) structure, which works on the terahertz frequency and includes two identical cylinder robs symmetrically put on each side of graphene sheet with gaps g, has been proposed and investigated. The present waveguide not only significantly improves the propagation length but also maintains a compact mode area, which is due to the coupling between the dielectric waveguide mode and plasmonic mode. The graphene plasmons particularly differ from plasmons in noble metals of which propagation loss can be tuned by adjusting the Fermi energy level or carrier mobility. With a very good Fermi energy level and carrier mobility, a typical propagation length of 26.7 mm, and mode area of optical field of approximately 4 μm2 at 10 THz are achieved. This waveguide structure shows great promise for designing kinds of functional elements in actively tunable integrated optical devices.

  16. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    CERN Document Server

    Kuchmizhak, Aleksandr; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2015-01-01

    Simple high-performance two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique a thin noble metal film on a dielectric substrate is irradiated by a tightly focused single nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depends on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. The plasmon...

  17. Surface plasmon polariton waveguiding in random surface nanostructures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Leosson, K.

    2003-01-01

    In this study, guiding of surface plasmon polaritons excited at a gold film surface along corrugation-free channels in regions that are covered with randomly located surface scatterers, is considered using near-field microscopy for imaging of surface plasmon polariton intensity distributions...... at the surface. In the wavelength range 713-815 nm, we observed complete inhibition of the surface plasmon polariton propagation inside the random structures composed of individual (approx. 70 nm high) gold bumps (and their clusters) placed on a 55 nm thick gold film with a bump density of 75 micro-m-2. We...... demonstrate well-defined surface plasmon polariton guiding along corrugation-free 2 micro-m wide channels in random structures and, in the wavelength range 738-774 nm, low-loss guiding around 20degrees bends having a bend radius of approx. 15 micro-m....

  18. Active Control of Nitride Plasmonic Dispersion in the Far Infrared.

    Energy Technology Data Exchange (ETDEWEB)

    Shaner, Eric A.; Dyer, Gregory Conrad; Seng, William Francis; Bethke, Donald Thomas; Grine, Albert Dario,; Baca, Albert G.; Allerman, Andrew A.

    2014-11-01

    We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

  19. Wavefront Engineering of Quantum Cascade Lasers Using Plasmonics

    Science.gov (United States)

    Yu, Nanfang; Capasso, Federico

    2012-12-01

    We review recent work on beam shaping of mid-infrared and far-infrared (terahertz) quantum cascade lasers using plasmonics. Essentials of quantum cascade lasers (QCLs) are discussed; these include the operating principle based on bandstructure engineering, and beam quality problems associated with laser waveguide design. We explain how metal and semiconductor microstructures can effectively tailor the dispersion properties of mid- and far-infrared surface plasmon polaritons, and therefore can be used as important building blocks for optical devices in these frequencies. The physical principles of three structures are discussed: plasmonic Bragg gratings, designer (spoof) surface plasmon polariton structures, and channel polariton structures. We demonstrate the effectiveness of these structures by realizing various functionalities in QCLs, ranging from beam collimation, polarization control, to multibeam emission, and spatial wavelength demultiplexing. Plasmonics offers a monolithic, compact, and low-loss solution to the problem of poor beam quality of QCLs and may have a large impact on applications such as sensing, light detection and ranging (LIDAR), free-space optical communication, and heterodyne detection of chemicals. The plasmonic designs are scalable and applicable to near-infrared active or passive optical devices.

  20. The morphological structure of leaves and the dust-retaining capability of afforested plants in urban Guangzhou, South China.

    Science.gov (United States)

    Liu, Lu; Guan, Dongsheng; Peart, M R

    2012-09-01

    Air pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. The mass artificial plantation is very helpful to absorb dust and reduce pollution for conservation of the urban environment. The foliar surface of plants is an important receptor of atmospheric pollutants. Therefore, selection of suitable plant species for urban environment is very important. The dust-retaining capability of urban trees in Guangzhou was determined at four different types of urban area, and the morphological traits of their leaves such as wax, cuticle, stomata, and trichomes were observed under a scanning electron microscope. It was determined that the dust-retaining capability of any given tree species is significantly different in the same place. Of the four studied tree species in the industrial area (IA) and commercial/traffic areas (CTA) type urban areas, the highest amounts of dust removed by Mangifera indica Linn was 12.723 and 1.482 g/m(2), respectively. However, in contrast, the equivalent maxima for Bauhinia blakeana is only 2.682 g/m(2) and 0.720 g/m(2), respectively. Different plant species have different leaf morphology. The leaf of M. indica has deep grooves and high stomata density which are in favor of dust-retained, and thus, their dust-retained capability is stronger, while B. blakeana has the cells and epicuticular wax with its stomata arranging regularly, resulting in poor dust catching capability. Leaf size was also shown to be related to dust capture for the four studied tree species. The dust removal capacity of individual tree species should be taken into account in the management of greening plantation in and around an urban area. It was also shown that temporal variation in dust accumulation occurred over the 28-day observation period and this was discussed. Furthermore, spatial contrasts in dust accumulation were evidenced by the data. This reflected the differing pollution

  1. Plasmons driven by single electrons in graphene nanoislands

    Science.gov (United States)

    Manjavacas, Alejandro; Thongrattanasiri, Sukosin; de Abajo, F. Javier García

    2013-04-01

    Plasmons produce large confinement and enhancement of light that enable applications as varied as cancer therapy and catalysis. Adding to these appealing properties, graphene has emerged as a robust, electrically tunable material exhibiting plasmons that strongly depend on the density of doping charges. Here we show that adding a single electron to a graphene nanoisland consisting of hundreds or thousands of atoms switches on infrared plasmons that were previously absent from the uncharged structure. Remarkably, the addition of each further electron produces a dramatic frequency shift. Plasmons in these islands are shown to be tunable down to near infrared wavelengths. These phenomena are highly sensitive to carbon edges. Specifically, armchair nanotriangles display sharp plasmons that are associated with intense near-field enhancement, as well as absorption cross-sections exceeding the geometrical area occupied by the graphene. In contrast, zigzag triangles do not support these plasmons. Our conclusions rely on realistic quantum-mechanical calculations, which are in ostensible disagreement with classical electromagnetic simulations, thus revealing the quantum nature of the plasmons. This study shows a high sensitivity of graphene nanoislands to elementary charges, therefore emphasizing their great potential for novel nano-optoelectronics applications.

  2. Ultraviolet surface plasmon-mediated low temperature hydrazine decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Siying; Sheldon, Matthew T.; Atwater, Harry A. [Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125 (United States); Liu, Wei-Guang; Jaramillo-Botero, Andres; Goddard, William Andrew [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-01-12

    Conventional methods require elevated temperatures in order to dissociate high-energy nitrogen bonds in precursor molecules such as ammonia or hydrazine used for nitride film growth. We report enhanced photodissociation of surface-absorbed hydrazine (N{sub 2}H{sub 4}) molecules at low temperature by using ultraviolet surface plasmons to concentrate the exciting radiation. Plasmonic nanostructured aluminum substrates were designed to provide resonant near field concentration at λ = 248 nm (5 eV), corresponding to the maximum optical cross section for hydrogen abstraction from N{sub 2}H{sub 4}. We employed nanoimprint lithography to fabricate 1 mm × 1 mm arrays of the resonant plasmonic structures, and ultraviolet reflectance spectroscopy confirmed resonant extinction at 248 nm. Hydrazine was cryogenically adsorbed to the plasmonic substrate in a low-pressure ambient, and 5 eV surface plasmons were resonantly excited using a pulsed KrF laser. Mass spectrometry was used to characterize the photodissociation products and indicated a 6.2× overall enhancement in photodissociation yield for hydrazine adsorbed on plasmonic substrates compared with control substrates. The ultraviolet surface plasmon enhanced photodissociation demonstrated here may provide a valuable method to generate reactive precursors for deposition of nitride thin film materials at low temperatures.

  3. Topological collective plasmons in bipartite chains of metallic nanoparticles

    Science.gov (United States)

    Downing, Charles A.; Weick, Guillaume

    2017-03-01

    We study a bipartite linear chain constituted by spherical metallic nanoparticles, where each nanoparticle supports a localized surface plasmon. The near-field dipolar interaction between the localized surface plasmons gives rise to collective plasmons, which are extended over the whole nanoparticle array. We derive analytically the spectrum and the eigenstates of the collective plasmonic excitations. At the edge of the Brillouin zone, the spectrum is of a pseudorelativistic nature similar to that present in the electronic band structure of polyacetylene. We find the effective Dirac Hamiltonian for the collective plasmons and show that the corresponding spinor eigenstates represent one-dimensional Dirac-like massive bosonic excitations. Therefore, the plasmonic lattice exhibits similar effects to those found for electrons in one-dimensional Dirac materials, such as the ability for transmission with highly suppressed backscattering due to Klein tunneling. We also show that the system is governed by a nontrivial Zak phase, which predicts the manifestation of edge states in the chain. When two dimerized chains with different topological phases are connected, we find the appearance of the bosonic version of a Jackiw-Rebbi midgap state. We further investigate the radiative and nonradiative lifetimes of the collective plasmonic excitations and comment on the challenges for experimental realization of the topological effects found theoretically.

  4. BIM Software Capability and Interoperability Analysis : An analytical approach toward structural usage of BIM software (S-BIM)

    OpenAIRE

    A. Taher, Ali

    2016-01-01

    This study focused on the structuralanalysis of BIM models. Different commercial software (Autodesk products and Rhinoceros)are presented through modelling and analysis of different structures with varying complexity,section properties, geometry, and material. Beside the commercial software, differentarchitectural and different tools for structural analysis are evaluated (dynamo, grasshopper,add-on tool, direct link, indirect link via IFC). BIM and Structural BIM (S-BIM)

  5. 3D hollow nanostructures as building blocks for multifunctional plasmonics

    KAUST Repository

    De Angelis, Francesco De

    2013-08-14

    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications. © 2013 American Chemical Society.

  6. Plasmonic enhancement of amorphous silicon solar photovoltaic cells with hexagonal silver arrays made with nanosphere lithography

    Science.gov (United States)

    Zhang, C.; Guney, D. O.; Pearce, J. M.

    2016-10-01

    Nanosphere lithography (NSL) provides an opportunity for a low-cost and scalable method to optically engineer solar photovoltaic (PV) cells. For PV applications, NSL is widely used in rear contact scenarios to excite surface plasmon polariton and/or high order diffractions, however, the top contact scenarios using NSL are rare. In this paper a systematic simulation study is conducted to determine the capability of achieving efficiency enhancement in hydrogenated amorphous silicon (a-Si:H) solar cells using NSL as a top contact plasmonic optical enhancer. The study focuses on triangular prism and sphere arrays as they are the most commonly and easily acquired through direct deposition or low-temperature annealing, respectively. For optical enhancement, a characteristic absorption profile is generated and analyzed to determine the effects of size, shape and spacing of plasmonic structures compared to an un-enhanced reference cell. The factors affecting NSL-enhanced PV performance include absorption, shielding effects, diffraction, and scattering. In the triangular prism array, parasitic absorption of the silver particles proves to be problematic, and although it can be alleviated by increasing the particle spacing, no useful enhancement was observed in the triangular prism arrays that were simulated. Sphere arrays, on the other hand, have broad scattering cross-sections that create useful scattering fields at several sizes and spacing intervals. For the simulated sphere arrays the highest enhancement found was 7.4%, which was fabricated with a 250 nm radius nanosphere and a 50 nm silver thickness, followed by annealing in inert gas. These results are promising and provide a path towards the commercialization of plasmonic a-Si:H solar cells using NSL fabrication techniques.

  7. Plasmonics light modulators

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Malureanu, Radu; Lavrinenko, Andrei

    Surface plasmon polaritons (SPPs) are waves propagating at the interface between a metal and a dielectric and, due to their tight confinement, may be used for nanoscale control of the light propagation. Thus, photonic integrated circuits can benefit from devices using SPPs because of their highly...

  8. Aluminum for Plasmonics

    Science.gov (United States)

    2014-01-01

    in plasmon-enhanced light harvesting,14 photocatalysis ,511 surface- enhanced spectroscopies,1216 optics-based sensing,1722 nonlinear optics,2326...optical response of Al nanoparticles has appeared inconsistent relative to calculated spectra, even forwell-characterized geometries. Some studies have...model- ing their optical response. These results pro- vide a method for estimating the metallic purity of aluminum nanoparticles directly from their

  9. Electrochemically Programmable Plasmonic Antennas.

    Science.gov (United States)

    Dong, Shi; Zhang, Kai; Yu, Zhiping; Fan, Jonathan A

    2016-07-26

    Plasmonic antennas are building blocks in advanced nano-optical systems due to their ability to tailor optical response based on their geometry. We propose an electrochemical approach to program the optical properties of dipole antennas in a scalable, fast, and energy-efficient manner. These antennas comprise two arms, one serving as an anode and the other a cathode, separated by a solid electrolyte. As a voltage is applied between the antenna arms, a conductive filament either grows or dissolves within the electrolyte, modifying the antenna load. We probe the dynamics of stochastic filament formation and their effects on plasmonic mode programming using a combination of three-dimensional optical and electronic simulations. In particular, we identify device operation regimes in which the charge-transfer plasmon mode can be programmed to be "on" or "off." We also identify, unexpectedly, a strong correlation between DC filament resistance and charge-transfer plasmon mode frequency that is insensitive to the detailed filament morphology. We envision that the scalability of our electrochemical platform can generalize to large-area reconfigurable metamaterials and metasurfaces for on-chip and free-space applications.

  10. Cathodoluminescence plasmon microscopy

    NARCIS (Netherlands)

    Kuttge, M.

    2009-01-01

    Surface plasmon polaritons (SPPs) are electromagnetic waves that are strongly coupled to the collective oscillation of free electrons at an interface between a dielectric and a metal. Strong confinement of the electromagnetic field and tunability of SPP dispersion allow two-dimensional optics. This

  11. Plasmonic colour laser printing

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil

    2016-01-01

    -beam lithography (EBL) or focused ion beam (FIB), both expensive and not scalable processes that are not suitable for post-processing customization. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation...

  12. Transverse spin with coupled plasmons

    CERN Document Server

    Mukherjee, Samyobrata

    2016-01-01

    We study theoretically the transverse spin associated with the eigenmodes of a thin metal film embedded in a dielectric. We show that the transverse spin has a direct dependence on the nature and strength of the coupling leading to two distinct branches for the long- and short- range modes. We show that the short-range mode exhibits larger extraordinary spin because of its more 'structured' nature due to higher decay in propagation. In contrast to some of the earlier studies, calculations are performed retaining the full lossy character of the metal. In the limit of vanishing losses we present analytical results for the extraordinary spin for both the coupled modes. The results can have direct implications for enhancing the elusive transverse spin exploiting the coupled plasmon structures.

  13. Revealing Nanostructures through Plasmon Polarimetry.

    Science.gov (United States)

    Kleemann, Marie-Elena; Mertens, Jan; Zheng, Xuezhi; Cormier, Sean; Turek, Vladimir; Benz, Felix; Chikkaraddy, Rohit; Deacon, William; Lombardi, Anna; Moshchalkov, Victor V; Vandenbosch, Guy A E; Baumberg, Jeremy J

    2017-01-24

    Polarized optical dark-field spectroscopy is shown to be a versatile noninvasive probe of plasmonic structures that trap light to the nanoscale. Clear spectral polarization splittings are found to be directly related to the asymmetric morphology of nanocavities formed between faceted gold nanoparticles and an underlying gold substrate. Both experiment and simulation show the influence of geometry on the coupled system, with spectral shifts Δλ = 3 nm from single atoms. Analytical models allow us to identify the split resonances as transverse cavity modes, tightly confined to the nanogap. The direct correlation of resonance splitting with atomistic morphology allows mapping of subnanometre structures, which is crucial for progress in extreme nano-optics involving chemistry, nanophotonics, and quantum devices.

  14. Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides

    Science.gov (United States)

    Lu, Jiahui; Wang, Guanghui

    2016-11-01

    We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton (SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding. With Maxwell’s equations and Maxwell stress tensor, we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides. The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters. Importantly, an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation. These special optical properties will open the door for potential optomechanical applications, such as optical tweezers and actuators. Project supported by the National Natural Science Foundation of China (Grant No. 11474106) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313439).

  15. Bloch oscillations in plasmonic waveguide arrays.

    Science.gov (United States)

    Block, A; Etrich, C; Limboeck, T; Bleckmann, F; Soergel, E; Rockstuhl, C; Linden, S

    2014-05-12

    The combination of modern nanofabrication techniques and advanced computational tools has opened unprecedented opportunities to mold the flow of light. In particular, discrete photonic structures can be designed such that the resulting light dynamics mimics quantum mechanical condensed matter phenomena. By mapping the time-dependent probability distribution of an electronic wave packet to the spatial light intensity distribution in the corresponding photonic structure, the quantum mechanical evolution can be visualized directly in a coherent, yet classical wave environment. On the basis of this approach, several groups have recently observed discrete diffraction, Bloch oscillations and Zener tunnelling in different dielectric structures. Here we report the experimental observation of discrete diffraction and Bloch oscillations of surface plasmon polaritons in evanescently coupled plasmonic waveguide arrays. The effective external potential is tailored by introducing an appropriate transverse index gradient during nanofabrication of the arrays. Our experimental results are in excellent agreement with numerical calculations.

  16. A study of plasmonic enhanced transmission effects in nano-optics

    Energy Technology Data Exchange (ETDEWEB)

    Gbur, Greg

    2012-01-24

    This project was a numerical study of the behavior of surface plasmons in nano-systems, focusing on the interaction between plasmons, light, and nano-scale structures such as nano-scale metallic wires and quantum wires/dots. The primary results of the project included: a) the demonstration of the use of surface plasmons to modify the spatial coherence of a light wave, b) the demonstration of a feasible plasmonic superresolved readout system, and c) the demonstration of a Plasmonic Zeno effect, in which the attenuation of a light wave in metal is suppressed by breaking up the metal into a collection of structured layers. The integration of quantum wire/dot effects with the plasmonic simulations proved to be harder than expected, in large part due to the lack of accurate and simple quantum dot models.

  17. Replacing Noble Metals with Alternative Materials in Plasmonics and Metamaterials: how good an idea?

    CERN Document Server

    Khurgin, Jacob B

    2016-01-01

    Noble metals that currently dominate the fields of plasmonics and metamaterials suffer from large ohmic losses. New plasmonic materials, such as doped oxides and nitrides, have smaller material loss, and, using them in place of metals carries promise of reduced-loss plasmonic and metamaterial structures, with sharper resonances and higher field concentration. This promise is put to a rigorous analytical test in this work which reveals that having low material loss is not sufficient to have a reduced modal loss in plasmonic structures. To reduce the modal loss it is absolutely necessary for the plasma frequency to be significantly higher than the operational frequency. Using examples of nanoparticle plasmons and gap plasmons one comes to the conclusion that even in the mid-infrared spectrum metals continue to hold advantage over the alternative media. The new materials may still find application niche where the high absorption loss is beneficial, e.g. in medicine and thermal photovoltaics.

  18. Engineered Self-Assembly of Plasmonic Nanomaterials

    Science.gov (United States)

    Tao, Andrea

    2013-03-01

    A critical need in nanotechnology is the development of new tools and methods to organize, connect, and integrate solid-state nanocomponents. Self-assembly - where components spontaneously organize themselves - can be carried out on a massively parallel scale to construct large-scale architectures using solid-state nanocrystal building blocks. I will present our recent work on the synthesis and self-assembly of nanocrystals for plasmonics, where light is propagated, manipulated, and confined by solid-state components that are smaller than the wavelength of light itself. We show the organization of polymer-grafted metal nanocrystals into hierarchical nanojunction arrays that possess intense ``hot spots'' due to electromagnetic field localization. We also show that doped semiconductor nanocrystals can serve as a new class of plasmonic building blocks, where shape and carrier density can be actively tuned to engineer plasmon resonances. These examples demonstrate that nanocrystals possess unique electromagnetic properties that rival top-down structures, and the potential of self-assembly for fabricating designer plasmonic materials.

  19. Plasmon reflections by topological electronic boundaries in bilayer graphene.

    Science.gov (United States)

    Jiang, Bor-Yuan; Ni, Guangxin; Addison, Zachariah; Shi, Jing K; Liu, Xiaomeng; Zhao, Shu-Yang; Kim, Philip; Mele, Eugene J; Basov, Dimitri N; Fogler, Michael M

    2017-10-02

    Domain walls separating regions of AB and BA interlayer stacking in bilayer graphene have attracted attention as novel examples of structural solitons, topological electronic boundaries, and nanoscale plasmonic scatterers. We show that strong coupling of domain walls to surface plasmons observed in infrared nanoimaging experiments is due to topological chiral modes confined to the walls. The optical transitions among these chiral modes and the band continua enhance the local conductivity, which leads to plasmon reflection by the domain walls. The imaging reveals two kinds of plasmonic standing-wave interference patterns, which we attribute to shear and tensile domain walls. We compute the electronic structure of both wall varieties and show that the tensile wall contains additional confined bands which produce a structure-specific contrast of the local conductivity, in agreement with the experiment. The coupling between the confined modes and the surface plasmon scattering unveiled in this work is expected to be common to other topological electronic boundaries found in van der Waals materials. This coupling provides a qualitatively new pathway toward controlling plasmons in nanostructures.

  20. Long-term fertilization modifies the structures of soil fulvic acids and their binding capability with Al.

    Science.gov (United States)

    Wu, Jun; Wu, Minjie; Li, Chunping; Yu, Guanghui

    2014-01-01

    The binding characteristics of organic ligands and minerals in fulvic acids (FAs) with Al are essential for understanding soil C sequestration, remain poorly understood. In this study, Fourier transform infrared (FTIR) spectroscopy combined with two-dimensional correlation spectroscopy (2DCOS) analysis was applied for the first time to explore the binding of Al with organic ligands and minerals in soil FAs. For these analyses, two contrasting treatments were selected from a long-term (i.e., 22-year) fertilization experiment: chemical (NPK) fertilization and swine manure (SM) fertilization. The results showed that the long-term application of organic and inorganic fertilizers to soils had little effect on the compositions of the fluorescent substances and organic ligands in the soil FAs. However, long-term SM fertilization increased the weathered Al and Si concentrations in the soil FAs compared with long-term chemical fertilization. Furthermore, organic ligands in the soil FAs were mainly bound with Al in the NPK treatment, whereas both organic ligands and minerals (Al-O-Si, Si-O) were bound with Al under the M fertilization conditions. Both transmission electron microscopy (TEM) images and X-ray diffraction spectra demonstrated that amorphous and short-range-ordered nanominerals were abundant in the soil FAs from the SM plot in contrast to the soil FAs from the NPK plot. This result illustrates the role nanominerals play in the preservation of soil FAs by during long-term organic fertilization. In summary, the combination of FTIR and 2D correlation spectroscopy is a promising approach for the characterization of the binding capability between soil FAs and Al, and a better understanding FA-Al binding capability will greatly contribute to global C cycling.