WorldWideScience

Sample records for plasmonic structures capable

  1. Nature Inspired Plasmonic Structures: Influence of Structural Characteristics on Sensing Capability

    KAUST Repository

    Perozziello, Gerardo; Candeloro, Patrizio; Coluccio, Maria; Das, Godind; Rocca, Loredana; Pullano, Salvatore; Fiorillo, Antonino; De Stefano, Mario; Di Fabrizio, Enzo M.

    2018-01-01

    Surface enhanced Raman scattering (SERS) is a powerful analytical technique that allows the enhancement of a Raman signal in a molecule or molecular assemblies placed in the proximity of nanostructured metallic surfaces, due to plasmonic effects. However, laboratory methods to obtain of these prototypes are time-consuming, expensive and they do not always lead to the desired result. In this work, we analyse structures existing in nature that show, on a nanoscale, characteristic conformations of photonic crystals. We demonstrate that these structures, if covered with gold, change into plasmonic nanostructures and are able to sustain the SERS effect. We study three different structures with this property: opal, a hydrated amorphous form of silica (SiO·nHO); diatoms, a kind of unicellular alga; and peacock tail feather. Rhodamine 6G (down to 10 M) is used to evaluate their capability to increase the Raman signal. These results allow us to define an alternative way to obtain a high sensitivity in Raman spectroscopy, currently achieved by a long and expensive technique, and to fabricate inexpensive nanoplasmonic structures which could be integrated into optical sensors.

  2. Nature Inspired Plasmonic Structures: Influence of Structural Characteristics on Sensing Capability

    Directory of Open Access Journals (Sweden)

    Gerardo Perozziello

    2018-04-01

    Full Text Available Surface enhanced Raman scattering (SERS is a powerful analytical technique that allows the enhancement of a Raman signal in a molecule or molecular assemblies placed in the proximity of nanostructured metallic surfaces, due to plasmonic effects. However, laboratory methods to obtain of these prototypes are time-consuming, expensive and they do not always lead to the desired result. In this work, we analyse structures existing in nature that show, on a nanoscale, characteristic conformations of photonic crystals. We demonstrate that these structures, if covered with gold, change into plasmonic nanostructures and are able to sustain the SERS effect. We study three different structures with this property: opal, a hydrated amorphous form of silica (SiO2·nH2O; diatoms, a kind of unicellular alga; and peacock tail feather. Rhodamine 6G (down to 10−12 M is used to evaluate their capability to increase the Raman signal. These results allow us to define an alternative way to obtain a high sensitivity in Raman spectroscopy, currently achieved by a long and expensive technique, and to fabricate inexpensive nanoplasmonic structures which could be integrated into optical sensors.

  3. Nature Inspired Plasmonic Structures: Influence of Structural Characteristics on Sensing Capability

    KAUST Repository

    Perozziello, Gerardo

    2018-04-26

    Surface enhanced Raman scattering (SERS) is a powerful analytical technique that allows the enhancement of a Raman signal in a molecule or molecular assemblies placed in the proximity of nanostructured metallic surfaces, due to plasmonic effects. However, laboratory methods to obtain of these prototypes are time-consuming, expensive and they do not always lead to the desired result. In this work, we analyse structures existing in nature that show, on a nanoscale, characteristic conformations of photonic crystals. We demonstrate that these structures, if covered with gold, change into plasmonic nanostructures and are able to sustain the SERS effect. We study three different structures with this property: opal, a hydrated amorphous form of silica (SiO·nHO); diatoms, a kind of unicellular alga; and peacock tail feather. Rhodamine 6G (down to 10 M) is used to evaluate their capability to increase the Raman signal. These results allow us to define an alternative way to obtain a high sensitivity in Raman spectroscopy, currently achieved by a long and expensive technique, and to fabricate inexpensive nanoplasmonic structures which could be integrated into optical sensors.

  4. Photothermal modification of plasmonic structures

    DEFF Research Database (Denmark)

    2016-01-01

    There is presented a method for geometrically modifying plasmonic structures on a support structure, such as for printing or recording, said method comprising changing a geometry specifically of plasmonic structures, wherein said changing the geometry is carried out by photothermally melting...... at least a portion of each of the plasmonic structures within the second plurality of plasmonic structures by irradiating, the plasmonic structures with incident electromagnetic radiation having an incident intensity in a plane of the second plurality of plasmonic structures, wherein said incident...... intensity is less than an incident intensity required to melt a film of a corresponding material and a corresponding thickness as the plasmonic structures within the second plurality of plasmonic structures....

  5. Active Plasmonics: Principles, Structures, and Applications.

    Science.gov (United States)

    Jiang, Nina; Zhuo, Xiaolu; Wang, Jianfang

    2018-03-28

    Active plasmonics is a burgeoning and challenging subfield of plasmonics. It exploits the active control of surface plasmon resonance. In this review, a first-ever in-depth description of the theoretical relationship between surface plasmon resonance and its affecting factors, which forms the basis for active plasmon control, will be presented. Three categories of active plasmonic structures, consisting of plasmonic structures in tunable dielectric surroundings, plasmonic structures with tunable gap distances, and self-tunable plasmonic structures, will be proposed in terms of the modulation mechanism. The recent advances and current challenges for these three categories of active plasmonic structures will be discussed in detail. The flourishing development of active plasmonic structures opens access to new application fields. A significant part of this review will be devoted to the applications of active plasmonic structures in plasmonic sensing, tunable surface-enhanced Raman scattering, active plasmonic components, and electrochromic smart windows. This review will be concluded with a section on the future challenges and prospects for active plasmonics.

  6. Active resonance tuning of stretchable plasmonic structures

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xiao, Sanshui; Mortensen, N. Asger

    2012-01-01

    Active resonance tuning is highly desired for the applications of plasmonic structures, such as optical switches and surface enhanced Raman substrates. In this paper, we demonstrate the active tunable plasmonic structures, which composed of monolayer arrays of metallic semishells with dielectric...... cores on stretchable elastic substrates. These composite structures support Bragg-type surface plasmon resonances whose frequencies are sensitive to the arrangement of the metallic semishells. Under uniaxial stretching, the lattice symmetry of these plasmonic structures can be reconfigured from...... applications of the stretch-tunable plasmonic structures in sensing, switching, and filtering....

  7. Plasmonic Force Propulsion Revolutionizes Nano/PicoSatellite Capability

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to assess the ability of plasmonic force propulsion to advance the state-of-the-art. We propose to numerically simulate plasmonic force fields with...

  8. Studies on metal-dielectric plasmonic structures.

    Energy Technology Data Exchange (ETDEWEB)

    Chettiar, Uday K. (Purdue University, West Lafayette, IN); Liu, Zhengtong (Purdue University, West Lafayette, IN); Thoreson, Mark D. (Purdue University, West Lafayette, IN); Shalaev, Vladimir M. (Purdue University, West Lafayette, IN); Drachev, Vladimir P. (Purdue University, West Lafayette, IN); Pack, Michael Vern; Kildishev, Alexander V. (Purdue University, West Lafayette, IN); Nyga, Piotr (Purdue University, West Lafayette, IN)

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  9. Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance

    Science.gov (United States)

    Sadeghi, S.; Hamidi, S. M.

    2018-04-01

    Enhanced Faraday rotation in a new type of magneto-plasmonic structure with the capability of Fano resonance, has been reported theoretically. A magneto-plasmonic structure composed of a gold corrugated layer deposited on a magneto-optically active layer was studied by means of Lumerical software based on finite-difference time-domain. In our proposed structure, plasmonic Fano resonance and localized surface plasmon have induced enhancement in magneto-optical Faraday rotation. It is shown that the influence of geometrical parameters in gold layer offers a desirable platform for engineering spectral position of Fano resonance and enhancement of Faraday rotation.

  10. Plasmonics

    DEFF Research Database (Denmark)

    Berini, P.; Bozhevolnyi, Sergey I.; Kim, D. S.

    2016-01-01

    referred to as “extraordinary optical transmission.” Surface plasmons are intimately involved in the response of “metamaterials” and “metasurfaces” constructed from deep subwavelength metallic features, producing esoteric macroscopic properties such as a negative refractive index, or a permittivity...... or localized at metal nanostructures. Light suitable for exciting surface plasmons is typically within or near the visible but may extend into the infrared and ultraviolet regions. Metallic structures that support surface plasmons are highly varied, including planar arrangements of metal films, stripes...

  11. Plasmonic Structural Colors for Plastic Consumer Products

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Mortensen, N. Asger; Kristensen, Anders

    2014-01-01

    Today colorants, such as pigments or dyes, are used to color plastic-based consumer products, either as base for solid colored bulk polymer or in inks for surface decoration. After usage, the products must be mechanically sorted by color before recycling, limiting any large-scale efficient...... can be avoided in the recycling state. Plasmon color technology based on aluminum has recently been firmly established as a route towards structural coloring of polymeric materials. We report on the fabrication of colors by localized surface plasmon resonances (LSPR) using roll-to-roll printing...

  12. Challenges of fabricating plasmonic and photonic structures with Neon ion beam milling

    DEFF Research Database (Denmark)

    Leißner, Till; Fiutowski, Jacek; Bozhevolnyi, Sergey I.

    -established electron beam lithography and focussed ion beam milling (FIB) using Gallium ions. These techniques, however, are to some extend limited in their resolution, and in addition Gallium and Carbon are implanted and deposited into the plasmonic structures during FIB process, potentially changing plasmonic...... properties. We are currently studying the capabilities of focussed Helium and Neon ion beam milling for the fabricating of plasmonic and photonic devices. We found that Neon ion beam milling enables us to prepare plasmonic structures, such as trenches (see Fig. 1) and V-grooves without doping and alloying...... effects specific to Galium FIB. Neon FIB milling is superior to Helium FIB milling in terms of the processing speed and smaller levels of implanted ions. From our perspective it is the most promising technique for the fabrication of individual plasmonic devices with a few nanometers precision. The main...

  13. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  14. Complementary structure for designer localized surface plasmons

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Zhang, Youming; Zhang, Baile

    2015-11-01

    Magnetic localized surface plasmons (LSPs) supported on metallic structures corrugated by very long and curved grooves have been recently proposed and demonstrated on an extremely thin metallic spiral structure (MSS) in the microwave regime. However, the mode profile for the magnetic LSPs was demonstrated by measuring only the electric field, not the magnetic field. Here, based on Babinet's principle, we propose a Babinet-inverted, or complementary MSS whose electric/magnetic mode profiles match the magnetic/electric mode profiles of MSS. This complementarity of mode profiles allows mapping the magnetic field distribution of magnetic LSP mode profile on MSS by measuring the electric field distribution of the corresponding mode on complementary MSS. Experiment at microwave frequencies also demonstrate the use of complementary MSS in sensing refractive-index change in the environment.

  15. Correlated structure-optical properties studies of plasmonic nanoparticles

    International Nuclear Information System (INIS)

    Ringe, Emilie; Duyne, Richard P Van; Marks, Laurence D

    2014-01-01

    Interest in nanotechnology is driven by unprecedented means to tailor the physical behaviour via structure and composition. Unlike bulk materials, minute changes in size and shape can affect the optical properties of nanoparticles. Characterization, understanding, and prediction of such structure-function relationships is crucial to the development of novel applications such as plasmonic sensors, devices, and drug delivery systems. Such knowledge has been recently vastly expanded through systematic, high throughput correlated measurements, where the localized surface plasmon resonance (LSPR) is probed optically and the particle shape investigated with electron microscopy. This paper will address some of the recent experimental advances in single particle studies that provide new insight not only on the effects of size, composition, and shape on plasmonic properties but also their interrelation. Plasmon resonance frequency and decay, substrate effects, size, shape, and composition will be explored for a variety of plasmonic systems

  16. Optimization of extraordinary optical absorption in plasmonic and dielectric structures

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole

    2013-01-01

    Extraordinary optical absorption (EOA) can be obtained by plasmonic surface structuring. However, studies that compare the performance of these plasmonic devices with similar structured dielectric devices are rarely found in the literature. In this work we show different methods to enhance the EOA...... by optimizing the geometry of the surface structuring for both plasmonic and dielectric devices, and the optimized performances are compared. Two different problem types with periodic structures are considered. The first case shows that strips of silicon on a surface can increase the absorption in an underlying...... it is important to compare the absorption performance of plasmonic devices with similarly structured dielectric devices in order to find the best possible solution....

  17. Quantum mechanical effects in plasmonic structures with subnanometre gaps.

    Science.gov (United States)

    Zhu, Wenqi; Esteban, Ruben; Borisov, Andrei G; Baumberg, Jeremy J; Nordlander, Peter; Lezec, Henri J; Aizpurua, Javier; Crozier, Kenneth B

    2016-06-03

    Metallic structures with nanogap features have proven highly effective as building blocks for plasmonic systems, as they can provide a wide tuning range of operating frequencies and large near-field enhancements. Recent work has shown that quantum mechanical effects such as electron tunnelling and nonlocal screening become important as the gap distances approach the subnanometre length-scale. Such quantum effects challenge the classical picture of nanogap plasmons and have stimulated a number of theoretical and experimental studies. This review outlines the findings of many groups into quantum mechanical effects in nanogap plasmons, and discusses outstanding challenges and future directions.

  18. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  19. Structural Capability of an Organization toward Innovation Capability

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Momeni, Mostafa

    2016-01-01

    The scholars in the field of strategic management have developed two major approaches for attainment of competitive advantage: an approach based on environmental opportunities, and another one based on internal capabilities of an organization. Some investigations in the last two decades have...... indicated that the advantages relying on the internal capabilities of organizations may determine the competitive position of organizations better than environmental opportunities do. Characteristics of firms shows that one of the most internal capabilities that lead the organizations to the strongest...... competitive advantage in the organizations is the innovation capability. The innovation capability is associated with other organizational capabilities, and many organizations have focused on the need to identify innovation capabilities.This research focuses on recognition of the structural aspect...

  20. Spontaneous Self-Formation of 3D Plasmonic Optical Structures.

    Science.gov (United States)

    Choi, Inhee; Shin, Yonghee; Song, Jihwan; Hong, SoonGweon; Park, Younggeun; Kim, Dongchoul; Kang, Taewook; Lee, Luke P

    2016-08-23

    Self-formation of colloidal oil droplets in water or water droplets in oil not only has been regarded as fascinating fundamental science but also has been utilized in an enormous number of applications in everyday life. However, the creation of three-dimensional (3D) architectures by a liquid droplet and an immiscible liquid interface has been less investigated than other applications. Here, we report interfacial energy-driven spontaneous self-formation of a 3D plasmonic optical structure at room temperature without an external force. Based on the densities and interfacial energies of two liquids, we simulated the spontaneous formation of a plasmonic optical structure when a water droplet containing metal ions meets an immiscible liquid polydimethylsiloxane (PDMS) interface. At the interface, the metal ions in the droplet are automatically reduced to form an interfacial plasmonic layer as the liquid PDMS cures. The self-formation of both an optical cavity and integrated plasmonic nanostructure significantly enhances the fluorescence by a magnitude of 1000. Our findings will have a huge impact on the development of various photonic and plasmonic materials as well as metamaterials and devices.

  1. Quantum Dot Detectors with Plasmonic Structures

    Science.gov (United States)

    2015-05-15

    configuration of polarization and propagation is depicted (E, H , and k denote electric field, magnetic field, and wave vector, respectively) are available in...4. G. T. Liu, A. Stintz, H . Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition...A. Barve, J. Montoya , W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic

  2. Current Capability of Atomic Structure Theory

    International Nuclear Information System (INIS)

    Kim, Yong Ki

    1993-01-01

    Current capability of atomic structure theory is reviewed, and advantages, disadvantages and major features of popular atomic structure codes described. Comparisons between theoretical and experimental data on transition energies and lifetimes of excited levels are presented to illustrate the current capability of atomic structure codes.

  3. Hybridized plasmon in an asymmetric cut-wire-pair structure

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Nguyen Thanh [Vietnamese Military Academy of Science and Technology, Hanoi (Viet Nam); Hanyang University, Seoul (Korea, Republic of); Rhee, Joo Yull [Sungkyunkwan University, Suwon (Korea, Republic of); Park, Jin Woo; Lee, Young Pak [Hanyang University, Seoul (Korea, Republic of)

    2010-12-15

    In this report, we discuss an electromagnetic analog of the molecular-orbital theory for metamaterial structures. We show that the electromagnetic responses of a metamagnetic structure consisting of paired cut-wires can be well understood by using the plasmon-hybridization mechanism. The simulated transmission spectra of the asymmetric cut-wire-pair structure, which were obtained utilizing the transfer-matrix method, strongly support our suggestion.

  4. Structural reliability assessment capability in NESSUS

    Science.gov (United States)

    Millwater, H.; Wu, Y.-T.

    1992-07-01

    The principal capabilities of NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), an advanced computer code developed for probabilistic structural response analysis, are reviewed, and its structural reliability assessed. The code combines flexible structural modeling tools with advanced probabilistic algorithms in order to compute probabilistic structural response and resistance, component reliability and risk, and system reliability and risk. An illustrative numerical example is presented.

  5. Quantized fluctuational electrodynamics for three-dimensional plasmonic structures

    DEFF Research Database (Denmark)

    Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka

    2017-01-01

    We recently introduced a quantized fluctuational electrodynamics (QFED) formalism that provides a physically insightful definition of an effective position-dependent photon-number operator and the associated ladder operators. However, this far the formalism has been applicable only for the normal...... formalism, we apply it to study the local steady-state photon numbers and field temperatures in a light-emitting near-surface InGaN quantum-well structure with a metallic coating supporting surface plasmons....

  6. Fundamental Properteries and Capabilities of Plasmonic Antennas for Efficient Interaction with Nanoeletronics

    Science.gov (United States)

    2015-08-20

    Emitters,” Proc. International Microwave and Optoelectronic Conference, Rio de Janeiro , Brazil, August 4-7, 2013 4 6. C. W. Berry, M. R. Hashemi...Optoelectronic Conference, Rio de Janeiro , Brazil, August 4- 7, 2013 (plenary lecture) 7. M. Jarrahi, “Plasmonics-Enhanced Terahertz Imaging and Sensing Systems...Conference, Rio de Janeiro , Brazil, August 4-7, 2013 16. C. W. Berry, M. R. Hashemi, M. Jarrahi, "Plasmonic Photoconductors for High-Efficiency

  7. Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Dadoenkova, Yuliya S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Novgorod State University, Veliky Novgorod (Russian Federation); Donetsk Institute for Physics and Technology, Donetsk (Ukraine); Moiseev, Sergey G. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Ulyanovsk (Russian Federation); Abramov, Aleksei S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kadochkin, Aleksei S.; Zolotovskii, Igor O. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Institute of Nanotechnologies of Microelectronics of the Russian Academy of Sciences, 32A Leninskiy Prosp., 119991, Moscow (Russian Federation); Fotiadi, Andrei A. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Universite de Mons (Belgium)

    2017-05-15

    A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far-infrared surface wave propagating along a semiconductor-dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing-down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. A stretch-tunable plasmonic structure with a polarization-dependent response

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xiao, Sanshui; Shi, Lei

    2012-01-01

    Bragg-type surface plasmon resonances whose frequencies are sensitive to the arrangement of the metallic semishells. Under uniaxial stretching, the lattice symmetry of this plasmonic structure can be reconfigured from hexagonal to monoclinic, leading to resonance frequency shifts from 200 THz to 191 THz......-dependent response at the standard telecommunication band, and such tunable plasmonic structure might be exploited in realizing photonic devices such as sensors, switches and filters....

  9. Broadband enhancement of spontaneous emission in a photonic-plasmonic structure

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xie, Fengxian; Shi, Lei

    2012-01-01

    We demonstrate that a broadband enhancement of spontaneous emission can be achieved within a photonic-plasmonic structure. The structure can strongly modify the spontaneous emission by exciting plasmonic modes. Because of the excited plasmonic modes, an enhancement up to 30 times is observed, lea......, leading to a 4 times broader emission spectrum. The reflectance measurement and the finite-difference time-domain simulation are carried out to support these results....

  10. Grid sensitivity capability for large scale structures

    Science.gov (United States)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  11. High aspect ratio titanium nitride trench structures as plasmonic biosensor

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Repän, Taavi; Takayama, Osamu

    2017-01-01

    High aspect ratio titanium nitride (TiN) grating structures are fabricated by the combination of deep reactive ion etching (DRIE) and atomic layer deposition (ALD) techniques. TiN is deposited at 500 ◦C on a silicon trench template. Silicon between vertical TiN layers is selectively etched...... to fabricate the high aspect ratio TiN trenches with the pitch of 400 nm and height of around 2.7 µm. Dielectric functions of TiN films with different thicknesses of 18 - 105 nm and post-annealing temperatures of 700 - 900 ◦C are characterized by an ellipsometer. We found that the highest annealing temperature...... of 900 ◦C gives the most pronounced plasmonic behavior with the highest plasma frequency, ωp = 2.53 eV (λp = 490 nm). Such high aspect ratio trench structures function as a plasmonic grating sensor that supports the Rayleigh-Woods anomalies (RWAs), enabling the measurement of changes in the refractive...

  12. How to measure the cooper pair mass using plasmons in low-dimensional superconductor structures

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-06-01

    The creation of the Cooper pair mass-spectroscopy is suggested. The plasmons in low-dimensional superconductor structures (layers or wires in dielectric background) are theoretically considered to that purpose. The Cooper pair mass m * can be determined by measurements of the Doppler shift of the plasmon frequency when a direct current is applied through the superconductor. The plasmons with frequency ω lower than the superconducting gap 2 Δ can be detected by the same fare-infrared (FIR) absorption technique and grating couplings used previously for investigation of two-dimension (2D) plasmons in semiconductor microstructures. (author). 17 refs, 2 figs

  13. π -Plasmon model for carbon nano structures: Application to porphyrin

    International Nuclear Information System (INIS)

    Ha, Dao Thu; Anh, Chu Thuy; Nga, Do Thi; Thanh, Le Minh; Van, Tran Thi Thanh; Viet, Nguyen Ai

    2016-01-01

    In traditional concept, the optical properties of semiconductors and semimetals near their fundamental optical band gaps are attributed to single excitations (such electron-hole pairs, excitons...). In our earlier article, we proposed the collective mechanism of π -plasmons for optical properties of low dimensional carbon nano structures. A simple way to calculate the peak positions of UV-vis absorption spectra was pointed out and gave a good agreement with experimental data. In this work we analyze different schemas to calculate the UV-vis absorption peaks. A new parameter k which characterizes the dependence of schema on geometry and number of carbon sites is defined. As an example, the case of porphyrin was investigated. (paper)

  14. Study of Chemistry and Structure-Property Relationship on Tunable Plasmonic Nanostructures

    Science.gov (United States)

    Jing, Hao

    -resolved plasmon-enhanced spectroscopic measurements, such as surface-enhanced Raman scattering (SERS). Last but not least, I have demonstrated that the capability of geometry control over Ag-Pd bimetallic hollow nanostructures through nanoscale galvanic replacement can be greatly enhanced by the use of appropriate mild reducing agents, such as ascorbic acid and formaldehyde. With the aid of mild reducing agents, we have been able to fine-tailor the compositions, interior architectures, and surface morphologies of Ag-Pd bimetallic hollow nanoparticles with increased structural complexity through surface ligand-free galvanic replacement processes at room temperature. This reducing agent-mediated galvanic replacement provides a unique way of achieving both enhanced optical tunability and optimized catalytic activities through deliberate control over the geometries of complex Ag-Pd bimetallic nanoparticles.

  15. Femtosecond Snapshots of quantum mechanics at work in plasmonic nano-structures

    Science.gov (United States)

    Carbone, Fabrizio

    Ultrafast Transmission Electron Microscopy enabled a new technique (Photon-Induced Near Field Electron Microscopy, PINEM), capable of controlling electromagnetic fields confined on the surface of nanostructures and image their properties with nm-resolution in direct space and fs resolution in time. In this presentation, we will show some recent results where the standing wave formed by the plasmonic field confined on the surface of one silver nano-wire was imaged together with its energy exchange with the imaging electrons. In these results, both the interference and the quantization of the plasmonic near field could be imaged simultaneously, revealing both a quantum and a classical aspect of the electromagnetic field in one snapshot. The implications of these results will be discussed, and we will also present new ideas and methodologies to go beyond such an experiment and image the interaction between single electrons and single plasmons. We will also show that shaping the electron density in a thin film via light pulses is possible by taking advantage of the plasmon-plasmon interference and the ability of light polarization to control the excitation of different plasmonic field geometries in ad hoc designed nanostructures. Movies of the propagation of plasmons will also be presented, providing insights into their speed, propagation losses and the effect of confinment. This work was supported by an ERC Grant USED.

  16. Plasmon Geometric Phase and Plasmon Hall Shift

    Science.gov (United States)

    Shi, Li-kun; Song, Justin C. W.

    2018-04-01

    The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.

  17. Application of Generalized Mie Theory to EELS Calculations as a Tool for Optimization of Plasmonic Structures

    DEFF Research Database (Denmark)

    Thomas, Stefan; Matyssek, Christian; Hergert, Wolfram

    2015-01-01

    Technical applications of plasmonic nanostructures require a careful structural optimization with respect to the desired functionality. The success of such optimizations strongly depends on the applied method. We extend the generalized multiparticle Mie (GMM) computational electromagnetic method ...... by the application of genetic algorithms combined with a simplex algorithm. The scheme is applied to the design of plasmonic filters.......Technical applications of plasmonic nanostructures require a careful structural optimization with respect to the desired functionality. The success of such optimizations strongly depends on the applied method. We extend the generalized multiparticle Mie (GMM) computational electromagnetic method...

  18. Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure

    Directory of Open Access Journals (Sweden)

    Chatdanai Lumdee

    2016-06-01

    Full Text Available The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.

  19. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.

    Science.gov (United States)

    Das, Ritwick; Srivastava, Triranjita; Jha, Rajan

    2014-02-15

    The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900  nm/RIU with high detection accuracy (≥30  μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.

  20. Terahertz plasmonic Bessel beamformer

    International Nuclear Information System (INIS)

    Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David; Koch, Martin; Withayachumnankul, Withawat

    2015-01-01

    We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integrated with solid-state terahertz sources

  1. FACTOR STRUCTURE OF FUNCTIONAL CAPABILITIES OF BODYBUILDERS

    Directory of Open Access Journals (Sweden)

    Predrag Milenović

    2007-05-01

    Full Text Available It is evident that researches in the fi eld of kineziology and sports sciences on the topic of body-building here are very rare mainly and probably because of its place in the system of hyerarchy of sports. Lack of interest in body-building and its insuffi cient popularization springs probably, among other things, from its different interpretation and, according to some people, from its ultimate goals which are not justifi ed by many. Others, experts from the fi eld of body-building, starting from the basic principles of its exercising point out its numerous positive characteristics and sides. Undoubtedly, characteristics of functional capabilities of sportspeople are specifi c for each sport or discipline. In body-building the functional sphere is bordered and defi ned by the nature of the sport’s activity itself, as well as by genetics and internal and external factors in a very complex training process of a bodu-builder. The goal of this research was determining the structure of the functional sphere of a body-builder. It was performed on the sample of 30 selected sportsmen, body-builders, of chronological age between 17 and 19 ( 6 months, members of the Sports' Club Strength ''Leskovac'', the Weight Lifters' Club '' Dubočica'' and the Body-building Club '' Dubočica'' from Leskovac. All the examiees have been submitted to training processes during a period longer than a year. For the purpose of determining the structure of the morphological sphere the Factor Analysis has been applied. Based on the data from the matrix of the Factor Structure the isolated factors can be interpreted in the following manner: The fi rst isolated factor in the sphere of applied functional variables is best defi ned by the variable of pulse under stress (FPUOP and the variable of maximum Oxygen consumption in liters per minute (FOLM. This isolated factor can be defi ned as a dimension of the transportation system of Oxygen. The second isolated factor in the

  2. Fabrication of two-dimensional visible wavelength nanoscale plasmonic structures using hydrogen silsesquioxane based resist

    Science.gov (United States)

    Smith, Kyle Z.; Gadde, Akshitha; Kadiyala, Anand; Dawson, Jeremy M.

    2016-03-01

    In recent years, the global market for biosensors has continued to increase in combination with their expanding use in areas such as biodefense/detection, home diagnostics, biometric identification, etc. A constant necessity for inexpensive, portable bio-sensing methods, while still remaining simple to understand and operate, is the motivation behind novel concepts and designs. Labeled visible spectrum bio-sensing systems provide instant feedback that is both simple and easy to work with, but are limited by the light intensity thresholds required by the imaging systems. In comparison, label-free bio-sensing systems and other detection modalities like electrochemical, frequency resonance, thermal change, etc., can require additional technical processing steps to convey the final result, increasing the system's complexity and possibly the time required for analysis. Further decrease in the detection limit can be achieved through the addition of plasmonic structures into labeled bio-sensing systems. Nano-structures that operate in the visible spectrum have feature sizes typically in the order of the operating wavelength, calling for high aspect ratio nanoscale fabrication capabilities. In order to achieve these dimensions, electron beam lithography (EBL) is used due to its accurate feature production. Hydrogen silsesquioxane (HSQ) based electron beam resist is chosen for one of its benefits, which is after exposure to oxygen plasma, the patterned resist cures into silicon dioxide (SiO2). These cured features in conjunction with nanoscale gold particles help in producing a high electric field through dipole generation. In this work, a detailed process flow of the fabrication of square lattice of plasmonic structures comprising of gold coated silicon dioxide pillars designed to operate at 560 nm wavelength and produce an intensity increase of roughly 100 percent will be presented.

  3. Modern plasmonics

    CERN Document Server

    Maradudin, Alexei A; Barnes, William L

    2014-01-01

    Plasmonics is entering the curriculum of many universities, either as a stand alone subject, or as part of some course or courses. Nanotechnology institutes have been, and are being, established in universities, in which plasmonics is a significant topic of research. Modern Plasmonics book offers a comprehensive presentation of the properties of surface plasmon polaritons, in systems of different structures and various natures, e.g. active, nonlinear, graded, theoretical/computational and experimental techniques for studying them, and their use in a variety of applications. Contains materia

  4. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.

    Science.gov (United States)

    Chou, Yu-Hsun; Hong, Kuo-Bin; Chang, Chun-Tse; Chang, Tsu-Chi; Huang, Zhen-Ting; Cheng, Pi-Ju; Yang, Jhen-Hong; Lin, Meng-Hsien; Lin, Tzy-Rong; Chen, Kuo-Ping; Gwo, Shangjr; Lu, Tien-Chang

    2018-02-14

    Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits.

  5. 3D plasmonic nanostar structures for recyclable SERS applications

    DEFF Research Database (Denmark)

    Chirumamilla, Manohar; Gopalakrishnan, Anisha; Toma, Andrea

    2015-01-01

    Nanofabrication of metallic nanostructures/nanoparticles enables the detection of analyte molecules at ultra-low concentrations with the aid of plasmon induced hot-spots. The high fabrication cost and large fabrication time of nanostructures limit their usage in practical applications. Here we pr...

  6. Collective phenomena in photonic, plasmonic and hybrid structures.

    Science.gov (United States)

    Boriskina, Svetlana V; Povinelli, Michelle; Astratov, Vasily N; Zayats, Anatoly V; Podolskiy, Viktor A

    2011-10-24

    Preface to a focus issue of invited articles that review recent progress in studying the fundamental physics of collective phenomena associated with coupling of confined photonic, plasmonic, electronic and phononic states and in exploiting these phenomena to engineer novel devices for light generation, optical sensing, and information processing. © 2011 Optical Society of America

  7. Plasmon mediated inverse Faraday effect in a graphene-dielectric-metal structure.

    Science.gov (United States)

    Bychkov, Igor V; Kuzmin, Dmitry A; Tolkachev, Valentine A; Plaksin, Pavel S; Shavrov, Vladimir G

    2018-01-01

    This Letter shows the features of inverse Faraday effect (IFE) in a graphene-dielectric-metal (GDM) structure. The constants of propagation and attenuation of the surface plasmon-polariton modes are calculated. The effective magnetic field induced by surface plasmon modes in the dielectric due to the IFE is estimated to reach above 1 tesla. The possibility to control the distribution of the magnetic field by chemical potential of graphene is shown. The concept of strain-driven control of the IFE in the structure has been proposed and investigated.

  8. Photonic bandgap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm......-size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of -20 nm centered at 1550 nm. The possibilities...

  9. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Daniel R.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390 (United States)

    2015-12-07

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.

  10. Plasmon-modulated photoluminescence from gold nanostructures and its dependence on plasmon resonance, excitation energy, and band structure

    NARCIS (Netherlands)

    Le Thi Ngoc, Loan; Wiedemair, Justyna; van den Berg, Albert; Carlen, Edwin

    2015-01-01

    Two distinct single-photon plasmon-modulated photoluminescence processes are generated from nanostructured gold surfaces by tuning the spectral overlap of the incident laser source, localized surface plasmon resonance band, and the interband transitions between the d and sp bands, near the X-and

  11. Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Østergaard, John Erland

    2001-01-01

    phenomenon related to strong multiple scattering of light in periodic media. The interest to the PBG structures has dramatically risen since the possibility of efficient waveguiding around a sharp corner of a line defect in the PBG structure has been pointed out. Given the perspective of integrating various...

  12. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure

    OpenAIRE

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Ob...

  13. Tailored plasmon-induced transparency in attenuated total reflection response in a metal-insulator-metal structure.

    Science.gov (United States)

    Matsunaga, Kouki; Hirai, Yusuke; Neo, Yoichiro; Matsumoto, Takahiro; Tomita, Makoto

    2017-12-19

    We demonstrated tailored plasmon-induced transparency (PIT) in a metal (Au)-insulator (SiO 2 )-metal (Ag) (MIM) structure, where the Fano interference between the MIM waveguide mode and the surface plasmon polariton (SPP) resonance mode induced a transparency window in an otherwise opaque wavenumber (k) region. A series of structures with different thicknesses of the Ag layer were prepared and the attenuated total reflection (ATR) response was examined. The height and width of the transparency window, as well as the relevant k-domain dispersion, were controlled by adjusting the Ag layer thickness. To confirm the dependency of PIT on Ag layer thickness, we performed numerical calculations to determine the electric field amplitude inside the layers. The steep k-domain dispersion in the transparency window is capable of creating a lateral beam shift known as the Goos-Hänchen shift, for optical device and sensor applications. We also discuss the Fano interference profiles in a ω - k two-dimensional domain on the basis of Akaike information criteria.

  14. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications

    Science.gov (United States)

    Lee, Taejun; Jang, Jaehyuck; Jeong, Heonyeong; Rho, Junsuk

    2018-01-01

    Structural coloring is production of color by surfaces that have microstructure fine enough to interfere with visible light; this phenomenon provides a novel paradigm for color printing. Plasmonic color is an emergent property of the interaction between light and metallic surfaces. This phenomenon can surpass the diffraction limit and achieve near unlimited lifetime. We categorize plasmonic color filters according to their designs (hole, rod, metal-insulator-metal, grating), and also describe structures supported by Mie resonance. We discuss the principles, and the merits and demerits of each color filter. We also discuss a new concept of color filters with tunability and reconfigurability, which enable printing of structural color to yield dynamic coloring at will. Approaches for dynamic coloring are classified as liquid crystal, chemical transition and mechanical deformation. At the end of review, we highlight a scale-up of fabrication methods, including nanoimprinting, self-assembly and laser-induced process that may enable real-world application of structural coloring.

  15. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  16. Polarization dependence of the metamagnetic resonance of cut-wire-pair structure by using plasmon hybridization

    International Nuclear Information System (INIS)

    Dung, Nguyen Van; Yoo, Young Joon; Lee, Young Pak; Tung, Nguyen Thanh; Tung, Bui Son; Lam, Vu Dinh

    2014-01-01

    The influence of lattice constants on the electromagnetic behavior of a cut-wire-pair (CWP) structure has been elucidated. In this report, we performed both simulations and experiments to determine the influence of polarization on the metamagnetic resonance of the CWP structure. The key finding is the result of an investigation on the plasmon hybridization between the two CWs, which showed that the polarization of the incident wave was affected. Good agreement between numerical simulation and measurement is achieved.

  17. A study of angle dependent surface plasmon polaritons in nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2016-07-21

    We report that the light-matter interaction in metallic nano-hole array structures possess a subwavelength hole radius and periodicity. The transmission coefficient for nano-hole array structures was measured for different angles of incidence of light. Each measured transmission spectrum had several peaks due to surface plasmon polaritons. A theory of the transmission coefficient was developed based on the quantum density matrix method. It was found that the location of the surface plasmon polariton and the heights of the spectral peaks were dependent on the angle of incidence of light. Good agreement was observed between the experimental and theoretical results. This property of these structures has opened up new possibilities for sensing applications.

  18. Plasmonic Nanostructures for Biosensor Applications

    Science.gov (United States)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  19. Localized surface plasmon enhanced cellular imaging using random metallic structures

    Science.gov (United States)

    Son, Taehwang; Lee, Wonju; Kim, Donghyun

    2017-02-01

    We have studied fluorescence cellular imaging with randomly distributed localized near-field induced by silver nano-islands. For the fabrication of nano-islands, a 10-nm silver thin film evaporated on a BK7 glass substrate with an adhesion layer of 2-nm thick chromium. Micrometer sized silver square pattern was defined using e-beam lithography and then the film was annealed at 200°C. Raw images were restored using electric field distribution produced on the surface of random nano-islands. Nano-islands were modeled from SEM images. 488-nm p-polarized light source was set to be incident at 60°. Simulation results show that localized electric fields were created among nano-islands and that their average size was found to be 135 nm. The feasibility was tested using conventional total internal reflection fluorescence microscopy while the angle of incidence was adjusted to maximize field enhancement. Mouse microphage cells were cultured on nano-islands, and actin filaments were selectively stained with FITC-conjugated phalloidin. Acquired images were deconvolved based on linear imaging theory, in which molecular distribution was sampled by randomly distributed localized near-field and blurred by point spread function of far-field optics. The optimum fluorophore distribution was probabilistically estimated by repetitively matching a raw image. The deconvolved images are estimated to have a resolution in the range of 100-150 nm largely determined by the size of localized near-fields. We also discuss and compare the results with images acquired with periodic nano-aperture arrays in various optical configurations to excite localized plasmonic fields and to produce super-resolved molecular images.

  20. Large area fabrication of plasmonic nanoparticle grating structure by conventional scanning electron microscope

    International Nuclear Information System (INIS)

    Sudheer,; Tiwari, P.; Rai, V. N.; Srivastava, A. K.; Mukharjee, C.

    2015-01-01

    Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique

  1. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals.

    Science.gov (United States)

    Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Tang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2016-09-09

    In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.

  2. Plasmonic colour generation

    DEFF Research Database (Denmark)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.

    2016-01-01

    Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic...... colours and recent nanofabrication developments, comparing technology-performance indicators for traditional and nanophotonic colour technologies. The structures of interest include diffraction gratings, nanoaperture arrays, thin films, and multilayers and structures that support Mie resonances...... and whispering-gallery modes. We discuss plasmonic colour nanotechnology based on localized surface plasmon resonances, such as gap plasmons and hybridized disk–hole plasmons, which allow for colour printing with sub-diffraction resolution. We also address a range of fabrication approaches that enable large...

  3. Plasmonic nanopillar structures for surface-enhanced raman scattering applications

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Schmidt, Michael Stenbæk; Wu, Kaiyu

    2016-01-01

    have been utilized in surfaceenhanced Raman spectroscopy (SERS) for biological and chemical sensing. We present Au nanopillar (NP) SERS structures that are excellent for molecular detection. The NP structures can be fabricated using a simple two-step process. We analyze NP optical properties...

  4. Plasmon resonance optical tuning based on photosensitive composite structures

    DEFF Research Database (Denmark)

    Gilardi, Giovanni; Xiao, Sanshui; Mortensen, N. Asger

    2014-01-01

    This paper reports a numerical investigation of a periodic metallic structure sandwiched between two quartz plates. The volume comprised between the quartz plates and the metallic structure is infiltrated by a mixture of azo-dye-doped liquid crystal. The exposure to a low power visible light beam...

  5. Strategies for Structural Youth Unemployment: a Capability Approach for Guidance

    OpenAIRE

    Massimiliano Costa; Daniele Morselli; John Polesel; Suzanne Rice

    2015-01-01

    The aim of this article is to present an innovative approach for guidance. The article starts by introducing the structural reason of unemployment in Italy. It presents the Australian model of guidance and the new reforms on guidance which are being introduced in Italy. It then describes a Change Laboratory intervention carried in a vocational setting in Australia in 2012, which is proposed as model of guidance based on the capability approach.The different stakeholders actively participate i...

  6. Replication of patterned thin-film structures for use in plasmonics and metamaterials

    Science.gov (United States)

    Norris, David J; Han, Sang Eon; Bhan, Aditya; Nagpal, Prashant; Lindquist, Nathan Charles; Oh, Sang-Hyun

    2015-02-03

    The present invention provides templating methods for replicating patterned metal films from a template substrate such as for use in plasmonic devices and metamaterials. Advantageously, the template substrate is reusable and can provide plural copies of the structure of the template substrate. Because high-quality substrates that are inherently smooth and flat are available, patterned metal films in accordance with the present invention can advantageously provide surfaces that replicate the surface characteristics of the template substrate both in the patterned regions and in the unpatterned regions.

  7. Analysis of Plasmonics Based Fiber Optic Sensing Structures

    Science.gov (United States)

    Moayyed, Hamed

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical

  8. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure.

    Science.gov (United States)

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Obvious changes in the Commission Internationale d'Eclairage (CIE) coordinates and the corresponding emission colors of Au-Alq3-Au samples clearly varied with the Alq3 thickness (90, 130, and 156 nm).

  9. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Alan X. Wang

    2015-05-01

    Full Text Available Surface-enhanced Raman scattering (SERS has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs. Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  10. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)

    2012-06-15

    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Fabricating plasmonic components for nanophotonics

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nielsen, Rasmus Bundgaard; Jeppesen, Claus

    2009-01-01

    We report on experimental realization of different metal-dielectric structures that are used as surface plasmon polariton waveguides and as plasmonic metamaterials. Fabrication approaches based on different lithographic and deposition techniques are discussed....

  12. Graphene plasmonics: physics and potential applications

    Directory of Open Access Journals (Sweden)

    Huang Shenyang

    2016-10-01

    Full Text Available Plasmon in graphene possesses many unique properties. It originates from the collective motion of massless Dirac fermions, and the carrier density dependence is distinctively different from conventional plasmons. In addition, graphene plasmon is highly tunable and shows strong energy confinement capability. Most intriguingly, as an atom-thin layer, graphene and its plasmon are very sensitive to the immediate environment. Graphene plasmons strongly couple to polar phonons of the substrate, molecular vibrations of the adsorbates, and lattice vibrations of other atomically thin layers. In this review, we present the most important advances in graphene plasmonics field. The topics include terahertz plasmons, mid-infrared plasmons, plasmon-phonon interactions, and potential applications. Graphene plasmonics opens an avenue for reconfigurable metamaterials and metasurfaces; it is an exciting and promising new subject in the nanophotonics and plasmonics research field.

  13. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    Science.gov (United States)

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chiral Molecule-Enhanced Extinction Ratios of Quantum Dots Coupled to Random Plasmonic Structures.

    Science.gov (United States)

    Bezen, Lior; Yochelis, Shira; Jayarathna, Dilhara; Bhunia, Dinesh; Achim, Catalina; Paltiel, Yossi

    2018-03-06

    Devices based on self-assembled hybrid colloidal quantum dots (CQDs) coupled with specific organic linker molecules are a promising way to simply realize room-temperature, spectrally tunable light detectors. Nevertheless, this type of devices usually has low quantum efficiency. Plasmonics has been shown as an efficient tool in guiding and confining light at nanoscale dimensions. As plasmonic modes exhibit highly confined fields, they locally increase light-matter interactions and consequently enhance the performance of CQD-based photodetectors. Recent publications presented experimental results of large extinction enhancement from a monolayer of CQDs coupled to random gold nanoislands using a monolayer of organic alkyl linkers. We report here that a twofold larger extinction enhancement in the visible spectrum is observed when a monolayer of helical chiral molecules connects the CQDs to the gold structure instead of a monolayer of achiral linkers. We also show that this effect provides insight into the chirality of the molecules within the monolayer. In future work, we plan to evaluate the potential of these results to be used in the construction of a more efficient and sensitive photon detector based on surface QDs, as well as to supply a simple way to map the chirality of a single chiral monolayer.

  15. Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection

    International Nuclear Information System (INIS)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Leiman, V. G.; Fedorov, G.; Goltzman, G. N.; Titova, N.; Gayduchenko, I. A.; Coquillat, D.; But, D.; Knap, W.; Mitin, V.; Shur, M. S.

    2016-01-01

    We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”) and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.

  16. Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhii, V. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow 117105 (Russian Federation); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 111005 (Russian Federation); Otsuji, T. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Leiman, V. G. [Department of General Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 147100 (Russian Federation); Fedorov, G. [Department of General Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 147100 (Russian Federation); Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Goltzman, G. N.; Titova, N. [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Gayduchenko, I. A. [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); National Research Center “Kurchatov Institute,” Moscow 123182 (Russian Federation); Coquillat, D.; But, D.; Knap, W. [Laboratoire Charles Coulomb UMR 5221, Universite Montpellier 2 and CNRS, F-34095, Montpellier (France); Mitin, V. [Department of Electrical Engineering, University at Buffalo, Buffalo, New York 1460-1920 (United States); Shur, M. S. [Departments of Electrical, Computer, and Systems Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2016-07-28

    We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”) and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.

  17. Design and fabrication of structural color by local surface plasmonic meta-molecules

    International Nuclear Information System (INIS)

    Ma Ya-Qi; Shao Jin-Hai; Lu Bing-Rui; Zhang Si-Chao; Chen Yi-Fang; Zhang Ya-Feng; Sun Yan; Qu Xin-Ping

    2015-01-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. (paper)

  18. Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip

    DEFF Research Database (Denmark)

    Giannoulis, G.; Kalavrouziotis, D.; Apostolopoulos, D.

    2012-01-01

    We demonstrate experimental evidence of the data capture and the low-energy thermo-optic tuning credentials of dielectric-loaded plasmonic structures integrated on a silicon chip. We show 7-nm thermo-optical tuning of a plasmonic racetrack-resonator with less than 3.3 mW required electrical power...

  19. High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Repän, Taavi; Panah, Mohammad Esmail Aryaee

    2018-01-01

    . Here, we demonstrate the enhancement of infrared absorption in plasmonic trench structures that function as hyperbolic metamaterials. The metamaterial is composed of plasmonic trenches made of aluminum-doped zinc oxide. We use a 5 nm thick silica layer as a model analyte conformally coated around...

  20. Enhanced Sensitivity of Anti-Symmetrically Structured Surface Plasmon Resonance Sensors with Zinc Oxide Intermediate Layers

    Directory of Open Access Journals (Sweden)

    Nan-Fu Chiu

    2013-12-01

    Full Text Available We report a novel design wherein high-refractive-index zinc oxide (ZnO intermediary layers are used in anti-symmetrically structured surface plasmon resonance (SPR devices to enhance signal quality and improve the full width at half maximum (FWHM of the SPR reflectivity curve. The surface plasmon (SP modes of the ZnO intermediary layer were excited by irradiating both sides of the Au film, thus inducing a high electric field at the Au/ZnO interface. We demonstrated that an improvement in the ZnO (002 crystal orientation led to a decrease in the FWHM of the SPR reflectivity curves. We optimized the design of ZnO thin films using different parameters and performed analytical comparisons of the ZnO with conventional chromium (Cr and indium tin oxide (ITO intermediary layers. The present study is based on application of the Fresnel equation, which provides an explanation and verification for the observed narrow SPR reflectivity curve and optical transmittance spectra exhibited by (ZnO/Au, (Cr/Au, and (ITO/Au devices. On exposure to ethanol, the anti-symmetrically structured showed a huge electric field at the Au/ZnO interface and a 2-fold decrease in the FWHM value and a 1.3-fold larger shift in angle interrogation and a 4.5-fold high-sensitivity shift in intensity interrogation. The anti-symmetrically structured of ZnO intermediate layers exhibited a wider linearity range and much higher sensitivity. It also exhibited a good linear relationship between the incident angle and ethanol concentration in the tested range. Thus, we demonstrated a novel and simple method for fabricating high-sensitivity, high-resolution SPR biosensors that provide high accuracy and precision over relevant ranges of analyte measurement.

  1. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor.

    Science.gov (United States)

    Tan, Zhixin; Hao, Xin; Shao, Yonghong; Chen, Yuzhi; Li, Xuejin; Fan, Ping

    2014-06-16

    We numerically investigate a D-shaped fiber surface plasmon resonance sensor based on all-solid photonic crystal fiber (PCF) with finite element method. In the side-polished PCF sensor, field leakage is guided to penetrate through the gap between the rods, causing a pronounced phase modulation in the deep polishing case. Taking advantage of these amplified phase shifts, a high-performance fiber sensor design is proposed. The significant enhancements arising from this new sensor design should lift the performance of the fiber SPR sensor into the range capable of detecting a wide range of biochemical interactions, which makes it especially attractive for many in vivo and in situ bioanalysis applications. Several parameters which influence the field leakage, such as the polishing position, the pitch of the PCF, and the rod diameter, are inspected to evaluate their impacts. Furthermore, we develop a mathematical model to describe the effects of varying the structural parameters of a D-shaped PCF sensor on the evanescent field and the sensor performance.

  2. Microwave-Driven Multifunctional Capability of Membrane Structures

    Science.gov (United States)

    Choi, Sang H.; Chu, Sang-Hyong; Song, Kyo D.; King, Glen C.

    2002-01-01

    A large, ultra lightweight space structure, such as solar sails and Gossamer spacecrafts, requires a distributed power source to alleviate wire networks, unlike the localized on-board power infrastructures typically found in most small spacecrafts. The concept of microwave-driven multifunctional capability for membrane structures is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry and on-board power infrastructures. A rectenna array based on a patch configuration for high voltage output was developed to drive membrane actuators, sensors, probes, or other devices. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The use of patch rectennas adds a significant amount of rigidity to membrane flexibility and they are relatively heavy. A dipole rectenna array (DRA) appears to be ideal for thin-film membrane structures, since DRA is flexible and light. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time.

  3. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures

    International Nuclear Information System (INIS)

    Ye Jian; Van Dorpe, Pol; Lagae, Liesbet; Borghs, Gustaaf; Maes, Guido

    2009-01-01

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  4. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jian; Van Dorpe, Pol; Lagae, Liesbet; Borghs, Gustaaf [Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven (Belgium); Maes, Guido, E-mail: Jian.Ye@imec.b [Chemistry Department, Katholieke Universiteit Leuven, Celestijnenlaan 200 F, B-3001 Leuven (Belgium)

    2009-11-18

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  5. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures

    Science.gov (United States)

    Ye, Jian; Van Dorpe, Pol; Lagae, Liesbet; Maes, Guido; Borghs, Gustaaf

    2009-11-01

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  6. Propagation of long-range surface plasmon polaritons in photonic band gap structures

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, Thomas

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold fil embedded...... in polymer. Radiation is delivered to and from the PC structures with the help of LR-SPP guides that consist of 8 mm wide and 15 nm thick gold stripes attached to wide film sections (of the same thickness) covered with bumps (diameter ~300 nm, height up to 150 nm on each side of the film). We investigate......, is rather weak, so that the photonic bandgap effect might be expected to take place only for some particular propagation directions. Preliminary experiments on LR-SPP bending and splitting at large angles are reported, and further research directions are discussed....

  7. Probing plasmonic nanostructures by photons and electrons

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Harald; Kneipp, Janina

    2015-01-01

    We discuss recent developments for studying plasmonic metal nanostructures. Exploiting photons and electrons opens up new capabilities to probe the complete plasmon spectrum including bright and dark modes and related local optical fields at subnanometer spatial resolution. This comprehensive cha...

  8. Near-field light design with colloidal quantum dots for photonics and plasmonics.

    Science.gov (United States)

    Kress, Stephan J P; Richner, Patrizia; Jayanti, Sriharsha V; Galliker, Patrick; Kim, David K; Poulikakos, Dimos; Norris, David J

    2014-10-08

    Colloidal quantum-dots are bright, tunable emitters that are ideal for studying near-field quantum-optical interactions. However, their colloidal nature has hindered their facile and precise placement at desired near-field positions, particularly on the structured substrates prevalent in plasmonics. Here, we use high-resolution electro-hydrodynamic printing (quantum dots on both flat and structured substrates with a few nanometer precision. We also demonstrate that the autofocusing capability of the printing method enables placement of quantum dots preferentially at plasmonic hot spots. We exploit this control and design diffraction-limited photonic and plasmonic sources with arbitrary wavelength, shape, and intensity. We show that simple far-field illumination can excite these near-field sources and generate fundamental plasmonic wave-patterns (plane and spherical waves). The ability to tailor subdiffraction sources of plasmons with quantum dots provides a complementary technique to traditional scattering approaches, offering new capabilities for nanophotonics.

  9. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    Science.gov (United States)

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  10. Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications.

    Science.gov (United States)

    Min, Qiao; Chen, Chengkun; Berini, Pierre; Gordon, Reuven

    2010-08-30

    We show that long-range surface plasmons (LRSPs) are supported in a physically asymmetric thin film structure, consisting of a low refractive index medium on a metal slab, supported by a high refractive index dielectric layer (membrane) over air, as a suspended waveguide. For design purposes, an analytic formulation is derived in 1D yielding a transcendental equation that ensures symmetry of the transverse fields of the LRSP within the metal slab by constraining its thicknesses and that of the membrane. Results from the formulation are in quantitative agreement with transfer matrix calculations for a candidate slab waveguide consisting of an H(2)O-Au-SiO(2)-air structure. Biosensor-relevant figures of merit are compared for the asymmetric and symmetric structures, and it is found that the asymmetric structure actually improves performance, despite higher losses. The finite difference method is also used to analyse metal stripes providing 2D confinement on the structure, and additional constraints for non-radiative LRSP guiding thereon are discussed. These results are promising for sensors that operate with an aqueous solution that would otherwise require a low refractive index-matched substrate for the LRSP.

  11. Tailored Surfaces/Assemblies for Molecular Plasmonics and Plasmonic Molecular Electronics.

    Science.gov (United States)

    Lacroix, Jean-Christophe; Martin, Pascal; Lacaze, Pierre-Camille

    2017-06-12

    Molecular plasmonics uses and explores molecule-plasmon interactions on metal nanostructures for spectroscopic, nanophotonic, and nanoelectronic devices. This review focuses on tailored surfaces/assemblies for molecular plasmonics and describes active molecular plasmonic devices in which functional molecules and polymers change their structural, electrical, and/or optical properties in response to external stimuli and that can dynamically tune the plasmonic properties. We also explore an emerging research field combining molecular plasmonics and molecular electronics.

  12. Coupling effects in 3D plasmonic structures templated by Morpho butterfly wings.

    Science.gov (United States)

    He, Jiaqing; Shen, Qingchen; Yang, Shuai; He, Gufeng; Tao, Peng; Song, Chengyi; Wu, Jianbo; Deng, Tao; Shang, Wen

    2018-01-03

    This paper presents the study of the coupling effects of three dimensional (3D) plasmonic nanostructures templated by Morpho butterfly wings. Different from the random deposition of metallic nanoparticles (NPs) or conformal coating of metallic layers on butterfly wings reported previously, the 3D plasmonic nanostructures studied in this work consist of gold (Au) nanostrips quasi-periodically arranged in 3D, which allows us to investigate the plasmonic coupling effects. Through refractive index (RI) matching, the plasmonic coupling can be differentiated from the optical contribution of butterfly wings. By tuning the deposition thickness of Au from 30 to 90 nm, the plasmonic coupling effects between the 3D Au nanostrips are gradually enhanced. In particular, the near-field coupling results in two resonant modes and enhances the surface-enhanced Raman scattering (SERS) signals.

  13. Topologically-protected one-way leaky waves in nonreciprocal plasmonic structures

    Science.gov (United States)

    Hassani Gangaraj, S. Ali; Monticone, Francesco

    2018-03-01

    We investigate topologically-protected unidirectional leaky waves on magnetized plasmonic structures acting as homogeneous photonic topological insulators. Our theoretical analyses and numerical experiments aim at unveiling the general properties of these exotic surface waves, and their nonreciprocal and topological nature. In particular, we study the behavior of topological leaky modes in stratified structures composed of a magnetized plasma at the interface with isotropic conventional media, and we show how to engineer their propagation and radiation properties, leading to topologically-protected backscattering-immune wave propagation, and highly directive and tunable radiation. Taking advantage of the non-trivial topological properties of these leaky modes, we also theoretically demonstrate advanced functionalities, including arbitrary re-routing of leaky waves on the surface of bodies with complex shapes, as well as the realization of topological leaky-wave (nano)antennas with isolated channels of radiation that are completely independent and separately tunable. Our findings help shedding light on the behavior of topologically-protected modes in open wave-guiding structures, and may open intriguing directions for future antenna generations based on topological structures, at microwaves and optical frequencies.

  14. Tunable localized surface plasmon resonances in one-dimensional h-BN/graphene/h-BN quantum-well structure

    Science.gov (United States)

    Kaibiao, Zhang; Hong, Zhang; Xinlu, Cheng

    2016-03-01

    The graphene/hexagonal boron-nitride (h-BN) hybrid structure has emerged to extend the performance of graphene-based devices. Here, we investigate the tunable plasmon in one-dimensional h-BN/graphene/h-BN quantum-well structures. The analysis of optical response and field enhancement demonstrates that these systems exhibit a distinct quantum confinement effect for the collective oscillations. The intensity and frequency of the plasmon can be controlled by the barrier width and electrical doping. Moreover, the electron doping and the hole doping lead to very different results due to the asymmetric energy band. This graphene/h-BN hybrid structure may pave the way for future optoelectronic devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474207 and 11374217) and the Scientific Research Fund of Sichuan University of Science and Engineering, China (Grant No. 2014PY07).

  15. An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure

    Science.gov (United States)

    Sun, Chengwei; Rong, Kexiu; Gan, Fengyuan; Chu, Saisai; Gong, Qihuang; Chen, Jianjun

    2017-09-01

    Polarization beam splitters (PBSs) are one of the key components in the integrated photonic circuits. To increase the integration density, various complex hybrid plasmonic structures have been numerically designed to shrink the footprints of the PBSs. Here, to decrease the complexity of the small hybrid structures and the difficulty of the hybrid micro-nano fabrications, the radiation losses are utilized to experimentally demonstrate an ultra-small, broadband, and efficient PBS in a simple bending hybrid plasmonic waveguide structure. The hybrid plasmonic waveguide comprising a dielectric strip on the metal surface supports both the transverse-magnetic (TM) and transverse-electric (TE) waveguide modes. Because of the different field confinements, the TE waveguide mode has larger radiation loss than the TM waveguide mode in the bending hybrid strip waveguide. Based on the different radiation losses, the two incident waveguide modes of orthogonal polarization states are efficiently split in the proposed structure with a footprint of only about 2.2 × 2.2 μm2 on chips. Since there is no resonance or interference in the splitting process, the operation bandwidth is as broad as Δλ = 70 nm. Moreover, the utilization of the strongly confined waveguide modes instead of the bulk free-space light (with the spot size of at least a few wavelengths) as the incident source considerably increases the coupling efficiency, resulting in a low insertion loss of <3 dB.

  16. ITO/Au/ITO sandwich structure for near-infrared plasmonics.

    Science.gov (United States)

    Fang, Xu; Mak, Chee Leung; Dai, Jiyan; Li, Kan; Ye, Hui; Leung, Chi Wah

    2014-09-24

    ITO/Au/ITO trilayers with varying gold spacer layer thicknesses were deposited on glass substrates by pulsed laser deposition. Transmission electron microscopy measurements demonstrated the continuous nature of the Au layer down to 2.4 nm. XRD patterns clearly showed an enhanced crystallinity of the ITO films promoted by the insertion of the gold layer. Compared with a single layer of ITO with a carrier concentration of 7.12 × 10(20) cm(-3), the ITO/Au/ITO structure achieved an effective carrier concentration as high as 3.26 × 10(22) cm(-3). Transmittance and ellipsometry measurements showed that the optical properties of ITO/Au/ITO films were greatly influenced by the thickness of the inserted gold layer. The cross-point wavelength of the trilayer samples was reduced with increasing gold layer thickness. Importantly, the trilayer structure exhibited a reduced loss (compared with plain Au) in the near-infrared region, suggesting its potential for plasmonic applications in the near-infrared range.

  17. Design and fabrication of structural color by local surface plasmonic meta-molecules

    Science.gov (United States)

    Ma, Ya-Qi; Shao, Jin-Hai; Zhang, Ya-Feng; Lu, Bing-Rui; Zhang, Si-Chao; Sun, Yan; Qu, Xin-Ping; Chen, Yi-Fang

    2015-08-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. Project partially supported by the National Natural Science Foundation of China (Grant No. 61205148).

  18. Structural and plasmonic properties of noble metal doped ZnO nanomaterials

    Science.gov (United States)

    Pathak, Trilok K.; Swart, H. C.; Kroon, R. E.

    2018-04-01

    Noble metal doped ZnO has been synthesized by the combustion method and the effect of different metals (Ag, Au, Pd) on the structural, morphological, optical, photoluminescence and localized surface plasmon resonance (LSPR) properties has been investigated. X-ray diffraction analysis revealed that the ZnO had a hexagonal wurtzite structure and the crystallite sizes were affected by the doping. The formation of noble metal nanoparticles (NPs) was investigated using transmission electron microscopy and diffuse reflectance spectra. The LSPR of the metallic NPs was predicted using Mie theory calculations. The absorption spectra were calculated using the Kubelka-Munk function and the optical bandgap varied from 3.06 to 3.18 eV for the different doping materials. The experimental results suggest that the origin of enhanced emission was due to direct interaction between the laser photons and the noble material NPs which in turn leads to photoemission transfer of electrons from the noble metals NPs to the conduction band of ZnO.

  19. Plasmonic Encoding

    Science.gov (United States)

    2014-10-06

    Mangelson, B. F.; Schatz, G. C.; and Mirkin, C. A. “ Silver -based Nanodisk Codes,” ACS Nano, 2010, 9, 5446-5452. 6. Zhang, J.; Langille, M. R...Wei, W. D.; Zhang, H.; Schatz, G.; Boey, F.; Mirkin, C. A. “Free Standing Bimetallic Nanorings and Nanoring Arrays Made by On-Wire Lithography (OWL...Mirkin, C. A.; Marks, L. D.; Van Duyne, R. P. “Correlating the Structure and Localized Surface Plasmon Resonance of Single Silver Right Bipyramids

  20. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    Science.gov (United States)

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  1. Plasmonic biosensors.

    Science.gov (United States)

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  2. Crystal Structure of Faradaurate-279: Au279(SPh-tBu)84 Plasmonic Nanocrystal Molecules.

    Science.gov (United States)

    Sakthivel, Naga Arjun; Theivendran, Shevanuja; Ganeshraj, Vigneshraja; Oliver, Allen G; Dass, Amala

    2017-11-01

    We report the discovery of an unprecedentedly large, 2.2 nm diameter, thiolate protected gold nanocrystal characterized by single crystal X-ray crystallography (sc-XRD), Au 279 (SPh-tBu) 84 named Faradaurate-279 (F-279) in honor of Michael Faraday's (1857) pioneering work on nanoparticles. F-279 nanocrystal has a core-shell structure containing a truncated octahedral core with bulk face-centered cubic-like arrangement, yet a nanomolecule with a precise number of metal atoms and thiolate ligands. The Au 279 S 84 geometry was established from a low-temperature 120 K sc-XRD study at 0.90 Å resolution. The atom counts in core-shell structure of Au 279 follows the mathematical formula for magic number shells: Au@Au 12 @Au 42 @Au 92 @Au 54 , which is further protected by a final shell of Au 48 . Au 249 core is protected by three types of staple motifs, namely: 30 bridging, 18 monomeric, and 6 dimeric staple motifs. Despite the presence of such diverse staple motifs, Au 279 S 84 structure has a chiral pseudo-D 3 symmetry. The core-shell structure can be viewed as nested, concentric polyhedra, containing a total of five forms of Archimedean solids. A comparison between the Au 279 and Au 309 cuboctahedral superatom model in shell-wise growth is illustrated. F-279 can be synthesized and isolated in high purity in milligram quantities using size exclusion chromatography, as evidenced by mass spectrometry. Electrospray ionization-mass spectrometry independently verifies the X-ray diffraction study based heavy atoms formula, Au 279 S 84 , and establishes the molecular formula with the complete ligands, namely, Au 279 (SPh-tBu) 84 . It is also the smallest gold nanocrystal to exhibit metallic behavior, with a surface plasmon resonance band around 510 nm.

  3. Fabricating plasmonic components for nano-and meta-photonics

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nielsen, Rasmus Bundgaard; Jeppesen, Claus

    2009-01-01

    Different fabrication approaches for realization of metal-dielectric structures supporting propagating and localized surface plasmons are described including fabrication of nanophotonic waveguides and plasmonic nanoantennae....

  4. Thickness-dependent surface plasmon resonance of ITO nanoparticles for ITO/In-Sn bilayer structure.

    Science.gov (United States)

    Wei, Wenzuo; Hong, Ruijin; Jing, Ming; Shao, Wen; Tao, Chunxian; Zhang, Dawei

    2018-01-05

    Tuning the localized surface plasmon resonance (LSPR) in doped semiconductor nanoparticles (NPs), which represents an important characteristic in LSPR sensor applications, still remains a challenge. Here, indium tin oxide/indium tin alloy (ITO/In-Sn) bilayer films were deposited by electron beam evaporation and the properties, such as the LSPR and surface morphology, were investigated by UV-VIS-NIR double beam spectrophotometer and atomic force microscopy (AFM), respectively. By simply engineering the thickness of ITO/In-Sn NPs without any microstructure fabrications, the LSPR wavelength of ITO NPs can be tuned by a large amount from 858 to 1758 nm. AFM images show that the strong LSPR of ITO NPs is closely related to the enhanced coupling between ITO and In-Sn NPs. Blue shifts of ITO LSPR from 1256 to 1104 nm are also observed in the as-annealed samples due to the higher free carrier concentration. Meanwhile, we also demonstrated that the ITO LSPR in ITO/In-Sn NPs structures has good sensitivity to the surrounding media and stability after 30 d exposure in air, enabling its application prospects in many biosensing devices.

  5. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  6. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.

    Science.gov (United States)

    Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei

    2012-01-02

    The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.

  7. Multiple Fano-Like MIM Plasmonic Structure Based on Triangular Resonator for Refractive Index Sensing

    OpenAIRE

    Jankovic, Nikolina; Cselyuszka, Norbert

    2018-01-01

    In this paper, we present a Fano metal-insulator-metal (MIM) structure based on an isosceles triangular cavity resonator for refractive index sensing applications. Due to the specific feeding scheme and asymmetry introduced in the triangular cavity, the resonator exhibits four sharp Fano-like resonances. The behavior of the structure is analyzed in detail and its sensing capabilities demonstrated through the responses for various refractive indices. The results show that the sensor has very g...

  8. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures

    KAUST Repository

    Wang, Zhuo

    2016-05-06

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ~20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

  9. Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots.

    Science.gov (United States)

    Liu, Keng-Ku; Tadepalli, Sirimuvva; Wang, Zheyu; Jiang, Qisheng; Singamaneni, Srikanth

    2017-11-20

    Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes. We found that the SERS efficacy of the nanorattles is governed by the plasmon extinction intensity, localized surface plasmon resonance (LSPR) wavelength of the nanostructures with respect to the excitation source and intensity of the electromagnetic field at the hotspot, with the latter playing a determining role. Finite-difference time-domain (FDTD) simulations showed excellent agreement with the experimental findings that an optimal degree of galvanic replacement is critical for maximum SERS enhancement. The rational design and synthesis of the plasmonic nanorattles based on these findings can make these nanostructures highly attractive for SERS-based chemical and biological sensing and bioimaging.

  10. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures

    KAUST Repository

    Wang, Zhuo; Dong, Zhaogang; Gu, Yinghong; Chang, Yung-Huang; Zhang, Lei; Li, Lain-Jong; Zhao, Weijie; Eda, Goki; Zhang, Wenjing; Grinblat, Gustavo; Maier, Stefan A.; Yang, Joel K. W.; Qiu, Cheng-Wei; Wee, Andrew T. S.

    2016-01-01

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ~20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

  11. Plasmonic 3D-structures based on silver decorated nanotips for biological sensing

    Science.gov (United States)

    Coluccio, M. L.; Francardi, M.; Gentile, F.; Candeloro, P.; Ferrara, L.; Perozziello, G.; Di Fabrizio, E.

    2016-01-01

    Recent progresses in nanotechnology fabrication gives the opportunity to build highly functional nano-devices. 3D structures based on noble metals or covered by them can be realized down to the nano-scales, obtaining different devices with the functionalities of plasmonic nano-lenses or nano-probes. Here, nano-cones decorated with silver nano-grains were fabricated using advanced nano-fabrication techniques. In fabricating the cones, the angle of the apex was varied over a significant range and, in doing so, different geometries were realized. In depositing the silver nano-particles, the concentration of solution was varied, whereby different growth conditions were realized. The combined effect of tip geometry and growth conditions influences the size and distribution of the silver nano grains. The tips have the ability to guide or control the growth of the grains, in the sense that the nano-particles would preferentially distribute along the cone, and especially at the apex of the cone, with no o minor concentration effects on the substrate. The arrangement of metallic nano-particles into three-dimensional (3D) structures results in a Surface Enhanced Raman Spectroscopy (SERS) device with improved interface with analytes compared to bi-dimensional arrays of metallic nanoparticles. In the future, similar devices may find application in microfluidic devices, and in general in flow chambers, where the system can be inserted as to mimic a a nano-bait, for the recognition of specific biomarkers, or the manipulation and chemical investigation of single cells directly in native environments with good sensitivity, repeatability and selectivity.

  12. Plasmonic 3D-structures based on silver decorated nanotips for biological sensing

    KAUST Repository

    Coluccio, M. L.

    2015-05-01

    Recent progresses in nanotechnology fabrication gives the opportunity to build highly functional nano-devices. 3D structures based on noble metals or covered by them can be realized down to the nano-scales, obtaining different devices with the functionalities of plasmonic nano-lenses or nano-probes. Here, nano-cones decorated with silver nano-grains were fabricated using advanced nano-fabrication techniques. In fabricating the cones, the angle of the apex was varied over a significant range and, in doing so, different geometries were realized. In depositing the silver nano-particles, the concentration of solution was varied, whereby different growth conditions were realized. The combined effect of tip geometry and growth conditions influences the size and distribution of the silver nano grains. The tips have the ability to guide or control the growth of the grains, in the sense that the nano-particles would preferentially distribute along the cone, and especially at the apex of the cone, with no o minor concentration effects on the substrate. The arrangement of metallic nano-particles into three-dimensional (3D) structures results in a Surface Enhanced Raman Spectroscopy (SERS) device with improved interface with analytes compared to bi-dimensional arrays of metallic nanoparticles. In the future, similar devices may find application in microfluidic devices, and in general in flow chambers, where the system can be inserted as to mimic a a nano-bait, for the recognition of specific biomarkers, or the manipulation and chemical investigation of single cells directly in native environments with good sensitivity, repeatability and selectivity. © 2015 Elsevier Ltd.

  13. Structure and Plasmonic Properties of Thin PMMA Layers with Ion-Synthesized Ag Nanoparticles

    DEFF Research Database (Denmark)

    Popok, Vladimir; Hanif, Muhammad; Mackova, Anna

    2015-01-01

    nanoparticles above the surface. The synthesized nanoparticles can be split into two groups: (i) located at the surface and (ii) fully embedded in the shallow layer. These two groups provide corresponding spectral bands related to localized surface plasmon resonance. The bands demonstrate considerable intensity...

  14. Structure life prediction at high temperature: present and future capabilities

    International Nuclear Information System (INIS)

    Chaboche, J.L.

    1987-01-01

    The life prediction techniques for high temperature conditions include several aspects which are considered successively in this article. Crack initiation criteria themselves, defined for the isolated volume element (the tension-compression specimen for example), including parametric relationships and continuous damage approaches and calculation of local stress and strain fields in the structure and their evolution under cyclic plasticity, which poses several difficult problems to obtain stabilized cyclic solutions are examined. The use of crack initiation criteria or damage rules from the result of the cyclic inelastic analysis and the prediction of crack growth in the structure are considered. Different levels are considered for the predictive tools: the classical approach, future methods presently under development and intermediate rules, which are already in use. Several examples are given on materials and components used either in the nuclear industry or in gas turbine engines. (author)

  15. Design and optimization of the plasmonic graphene/InP thin-film solar-cell structure

    Science.gov (United States)

    Nematpour, Abedin; Nikoufard, Mahmoud; Mehragha, Rouholla

    2018-06-01

    In this paper, a graphene/InP thin-film Schottky-junction solar cell with a periodic array of plasmonic back-reflector is proposed. In this structure, a single-layer graphene sheet is deposited on the surface of the InP to form a Schottky junction. Then, the layer stack of the proposed solar-cell is optimized to have a maximum optical absorption of 〈A W〉  =  0.985 (98.5%) and short-circuit current density of J sc  =  33.01 mA cm‑2.

  16. Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Iida, Daisuke; Chen, Yuntian

    2014-01-01

    for InGaN/GaN quantum-well structures. By using a thin SiN dielectric layer between Ag and GaN we manage to modify and improve surface plasmon coupling effects, and we attribute this to the improved scattering of the nanoparticles at the quantum-well emission wavelength. The results are interpreted using...... numerical simulations, where absorption and scattering cross-sections are studied for different sized particles on GaN and GaN/SiN substrates....

  17. Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries

    DEFF Research Database (Denmark)

    Beliatis, Michail

    2018-01-01

    Incorporating plasmonic nanoparticles in organic photovoltaic (OPV) devices can increase the optical thickness of the organic absorber layer while keeping its physical thickness small. However, trade-offs between various structure parameters have caused contradictions regarding the effectiveness...... of plasmonics in the literature, that have somewhat stunted the progressing of a unified theoretical understanding for practical applications. We examine the optical enhancement mechanisms of practical PCDTBT:PC70BM OPV cells incorporating metal nanoparticles. The plasmonic near- and far-field contributions...... show that an already optimized PCDTBT:PC70BM cell can be further optically enhanced by plasmonic effects by at least 20% with the incorporation of Ag nanoparticles....

  18. Direct laser writing of auxetic structures: present capabilities and challenges

    International Nuclear Information System (INIS)

    Hengsbach, Stefan; Lantada, Andrés Díaz

    2014-01-01

    Auxetic materials (or metamaterials) are those with a negative Poisson ratio (NPR) and that display the unexpected property of lateral expansion when stretched, as well as an equal and opposing densification when compressed. Such geometries are being progressively employed in the development of novel products, especially in the fields of intelligent expandable actuators, shape morphing structures and minimally invasive implantable devices. Although several micromanufacturing technologies have already been applied to the development of auxetic geometries and devices, additional precision is needed to take full advantage of their special mechanical properties. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of direct laser writing. The process stands out for its precision and complex three-dimensional (3D) geometries attainable without the need of supporting structures. To our knowledge it represents one of the first examples of the application of this technology to the manufacture of auxetic geometries and mechanical metamaterials, with details even more remarkable than those shown in very recent studies, almost reaching the current limit of this additive manufacturing technology. We have used some special 3D auxetic designs whose remarkable NPR has been previously highlighted. (paper)

  19. Properties, structure and machnining capabilities sintered corundum abrasives

    Directory of Open Access Journals (Sweden)

    Cz.J. Niżankowski

    2010-07-01

    Full Text Available The diversity of sintered corundum abrasives used in both bonded and in the embankment of abrasive tools currently poses substantialproblems for their choice of technology to specific tasks. Therefore performed a comparative study of ownership structures and capacitiesof elected representatives machnining sintered corundum abrasives of different generations, and this is normal sintered alumina,submicrocrystalline alumina sintered and nanocrystalline alumina sintered. Were studied some properties of a set of abrasive particles,physicochemical properties and structural and mechanical and technological properties. The studies used the method of microscopicmeasurement to determine the shape of abrasive particles, the pycnometer to determine the density of abrasive, a spectrometer todetermine the chemical composition of the magnetic analyzer for determining the magnetic fraction, scanning electron microscope toanalysis of abrasive grains and a special position to designate the machining capacity abrasive grains. The results showed a significantincrease in machining capacity sintered corundum abrasives with increasing degree of fragmentation of the crystallites sintered corundum abrasives and distinctive bands in the emerging microchip. The originality of the development provides a comparative summary ofproperties of sintered corundum abrasives of different generations and functions obtained by the author making the change in value indexof machininhcapacity grit from cutting speeds for different generations of sintered corundum.

  20. Excitation of plasmonic waves in metal-dielectric structures by a laser beam using holography principles

    Science.gov (United States)

    Ignatov, A. I.; Merzlikin, A. M.

    2018-03-01

    A method for development of gratings for effective excitation of surface plasmonic waves using holography principles has been proposed and theoretically analyzed. For the case of a plasmonic wave in a dielectric layer on metal, the proposed volume hologram is 1.7 times more effective than the simple grating of slits in the dielectric layer with the optimized period and slits' width. The advantage of the hologram over the optimized grating is in the refractive index distribution that accounts phase relationships between an exciting and an excited waves more correctly. The proposed holographic method is universal. As expected, this can be extended for effective excitation of different types of optical surface waves and modes of optical waveguides.

  1. Surface Plasmon Nanophotonics

    CERN Document Server

    Brongersma, Mark L

    2007-01-01

    The development of advanced dielectric photonic structures has enabled tremendous control over the propagation and manipulation of light. Structures such as waveguides, splitters, mixers, and resonators now play a central role in the telecommunications industry. This book will discuss an exciting new class of photonic devices, known as surface plasmon nanophotonic structures. Surface plasmons are easily accessible excitations in metals and semiconductors and involve a collective motion of the conduction electrons. These excitations can be exploited to manipulate electromagnetic waves at optical frequencies ("light") in new ways that are unthinkable in conventional dielectric structures. The field of plasmon nanophotonics is rapidly developing and impacting a wide range of areas including: electronics, photonics, chemistry, biology, and medicine. The book will highlight several exciting new discoveries that have been made, while providing a clear discussion of the underlying physics, the nanofabrication issues...

  2. Structure and Plasmonic Properties of Thin PMMA Layers with Ion-Synthesized Ag Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Popok, V. N.; Hanif, M.; Macková, Anna; Mikšová, Romana

    2015-01-01

    Roč. 53, č. 9 (2015), s. 664-672 ISSN 0887-6266 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : atomic force microscopy (AFM) * carbonization of polymers * ion implantation * localized surface plasmon resonance * nanocomposites * nanoparticles * optics * sputtering of polymers Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.318, year: 2015

  3. Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit.

    Science.gov (United States)

    Ma, Y G; Lan, L; Zhong, S M; Ong, C K

    2011-10-24

    In optical frequency, surface plasmons of metal provide us a prominent way to build compact photonic devices or circuits with non-diffraction limit. It is attributed by their extraordinary electromagnetic confining effect. But in the counterpart of lower frequencies, plasmonics behavior of metal is screened by eddy current induced in a certain skin depth. To amend this, spoof plasmons engineered by artificial structures have been introduced to mimic surface plasmons in these frequencies. But it is less useful for practical application due to their weak field confinement as manifested by large field decaying length in the upper dielectric space. Recently, a new type of engineered plasmons, domino plasmon was theoretically proposed to produce unusual field confinement and waveguiding capabilities that make them very attractive for ultra-compact device applications [Opt. Exp. 18, 754-764 (2010)]. In this work, we implemented these ideas and built three waveguiding devices based on domino plasmons. Their strong capabilities to produce versatile and ultra-compact devices with multiple electromagnetic functions have been experimentally verified in microwaves. And that can be extended to THz regime to pave the way for a new class of integrated wave circuits. © 2011 Optical Society of America

  4. Associations between structural capabilities of primary care practices and performance on selected quality measures.

    Science.gov (United States)

    Friedberg, Mark W; Coltin, Kathryn L; Safran, Dana Gelb; Dresser, Marguerite; Zaslavsky, Alan M; Schneider, Eric C

    2009-10-06

    Recent proposals to reform primary care have encouraged physician practices to adopt such structural capabilities as performance feedback and electronic health records. Whether practices with these capabilities have higher performance on measures of primary care quality is unknown. To measure associations between structural capabilities of primary care practices and performance on commonly used quality measures. Cross-sectional analysis. Massachusetts. 412 primary care practices. During 2007, 1 physician from each participating primary care practice (median size, 4 physicians) was surveyed about structural capabilities of the practice (responses representing 308 practices were obtained). Data on practice structural capabilities were linked to multipayer performance data on 13 Healthcare Effectiveness Data and Information Set (HEDIS) process measures in 4 clinical areas: screening, diabetes, depression, and overuse. Frequently used multifunctional electronic health records were associated with higher performance on 5 HEDIS measures (3 in screening and 2 in diabetes), with statistically significant differences in performance ranging from 3.1 to 7.6 percentage points. Frequent meetings to discuss quality were associated with higher performance on 3 measures of diabetes care (differences ranging from 2.3 to 3.1 percentage points). Physician awareness of patient experience ratings was associated with higher performance on screening for breast cancer and cervical cancer (1.9 and 2.2 percentage points, respectively). No other structural capabilities were associated with performance on more than 1 measure. No capabilities were associated with performance on depression care or overuse. Structural capabilities of primary care practices were assessed by physician survey. Among the investigated structural capabilities of primary care practices, electronic health records were associated with higher performance across multiple HEDIS measures. Overall, the modest magnitude and

  5. Multiple Fano-Like MIM Plasmonic Structure Based on Triangular Resonator for Refractive Index Sensing.

    Science.gov (United States)

    Jankovic, Nikolina; Cselyuszka, Norbert

    2018-01-19

    In this paper, we present a Fano metal-insulator-metal (MIM) structure based on an isosceles triangular cavity resonator for refractive index sensing applications. Due to the specific feeding scheme and asymmetry introduced in the triangular cavity, the resonator exhibits four sharp Fano-like resonances. The behavior of the structure is analyzed in detail and its sensing capabilities demonstrated through the responses for various refractive indices. The results show that the sensor has very good sensitivity and maximal figure of merit (FOM) value of 3.2 × 10⁵. In comparison to other similar sensors, the proposed one has comparable sensitivity and significantly higher FOM, which clearly demonstrates its high sensing potential.

  6. Plasmonic nanopatch array for optical integrated circuit applications.

    Science.gov (United States)

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  7. Three-dimensional TiO2/Au nanoparticles for plasmon enhanced photocatalysis

    Science.gov (United States)

    Yu, Jianyu; Zhou, Lin; Wang, Yang; Tan, Yingling; Wang, Zhenlin; Zhu, Shining; Zhu, Jia

    2018-03-01

    The mechanisms of plasmonic nanostructures assisted photocatalytic processes are fundamental and of great importance and interest for decades. Therefore, we adopt a unique porous structure of three-dimensional TiO2/Au nanoparticles to experimentally explore the potential mechanisms of rhodamine B (RhB) based photocatalytic degradation. The highly efficient absorbance measured across the entire ultraviolet and infrared regions shows the broadband light harvesting capability and photocatalytic activity, in which the direct bandgap transition, plasmon sensitization as well as the plasmonic photothermal effect can be beneficial for the photocatalytic reaction. The RhB photocatalytic degradation experiments were conducted systematically under solar irradiance with finely chosen optical filters. Apart from the ultraviolet-driven degradation of TiO2, the plasmon assisted photocatalytic rate of our TiO2/Au structure can be enhanced by >30% as compared to the referenced TiO2 structure (equivalent to 2-4 times promotion with respect to the same quantity of the active material TiO2). Detailed wavelength-dependent analyses have revealed that the visible-driven degradation rate can be enhanced by 10 times because of the plasmon sensitization effect; while infrared-driven degradation rate is enhanced by 4 times as well for the plasmonic photothermal effect, respectively. Our experimental results may provide a clear understanding for the wavelength-dependent plasmon enhanced photocatalytic processes.

  8. Nano-structure and optical properties (plasmonic) of graded helical square tower-like (terraced) Mn sculptured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Fakharpour, Mahsa [Department of Physics, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Siabi-Garjan, Araz [Department of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Ardabil (Iran, Islamic Republic of); Department of Materials Engineering and Nanotechnology, Sabalan University of Advanced Technologies (SUAT), Namin (Iran, Islamic Republic of); Placido, Frank [SUPA and Institute of Thin Films, Sensors and Imaging, University of The West of Scotland, High Street, Paisley (United Kingdom); Babaei, Ferydon [Department of Physics, University of Qom, Qom (Iran, Islamic Republic of)

    2017-01-30

    Highlights: • Graded helical square tower-like terraced sculptured Mn thin films are produced with different number of arms. • XRD, AFM, FESEM and optical analyses as well as theoretical calculations are carried out. • Intensity of Plasmon peaks depend on the polarization, the incident angle, and the distance from the shadowing block. • The presence of defects in these sculptured structures can be predicted by theoretical investigation. • Experimental and theoretical investigations show consistent results. - Abstract: Graded helical square tower-like terraced sculptured Mn thin films (GHSTTS) are produced in three stages with different number of arms using oblique angle deposition together with rotation of substrate holder about its surface normal, plus a shadowing block fixed at the centre of the substrate holder. The structural characterization of the produced samples was obtained using field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Results showed a structural gradient with distance from the edge of the shadowing block, which in turn is responsible for the decrease in the volume of void fraction and increase of grain size. Plasmon absorption peaks observed in the optical analysis of these nano-structures showed that their wavelength region and intensity depend on the polarization and the incident angle of light, as well as the distance from the edge of the shadowing block. According to our model and discrete dipole approximation (DDA) calculations, when the number of parallel nano-rods of different lengths and radii are increased the peak in the spectrum shifts to shorter wavelengths (blue shift). Also when the diameters of the nano-rods increases (a situation that occurs with increasing film thickness) the results is again a blue shift in the spectrum. The presence of defects in these sculptured structures caused by the shadowing effect is predicted by the theoretical DDA investigation of their optical spectra

  9. Photonic band gap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm......-size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of ~20 nm centered at 1550 nm. The possibilities...

  10. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    George, David; Lowell, David; Mao, Michelle; Hassan, Safaa; Philipose, Usha [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Li, Li; Jiang, Yan; Cui, Jingbiao [Department of Physics and Materials Science, University of Memphis, Memphis, Tennessee 38152 (United States); Ding, Jun; Zhang, Hualiang [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lin, Yuankun [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  11. Iraqi Navy: Capability Requirements and Force Structure Recommendations for 2015 and Beyond

    National Research Council Canada - National Science Library

    Lawlor, Alison C; Thompson, Eric V

    2008-01-01

    .... The goal of this study is two-fold: to provide Iraqi and Coalition personnel with a common assessment of capability requirements and force structure recommendations for the Iraqi Navy, and to provide the Iraqi Navy leadership...

  12. Identification and comparison of structural factors of innovation capability in ESCO with desirable status

    Directory of Open Access Journals (Sweden)

    Fatemeh Jalali

    2014-12-01

    Full Text Available The present study describes the identification and comparison of structural factors of innovation capability in Esfahan Steel Company (ESCO. Innovation is a crucial factor in growth, success, and survival of organizations. Since the innovation for organizations is not possible without the level of innovation capabilities and the need for steel products and imports of goods from developed countries has greatly increased, this study intends to investigate the factors affecting the subject that may be able to increase the production and reduce the need to import it. Evaluation of the innovation capability factors of ESCO compared with its desired status in industry can help companies develop innovative strategies and also achieve organizational goals. Statistical analysis methods and mean comparison test by examining the structure of the innovation capability in the form of a standard questionnaire was employed. The findings suggest that the innovation capability in the existing situation of ESCO in comparison with the desired situation is significantly different.

  13. Nonlinear graphene plasmonics

    Science.gov (United States)

    Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2017-10-01

    The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.

  14. Quantum interference in plasmonic circuits.

    Science.gov (United States)

    Heeres, Reinier W; Kouwenhoven, Leo P; Zwiller, Valery

    2013-10-01

    Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

  15. Composite Elements for Biomimetic Aerospace Structures with Progressive Shape Variation Capabilities

    Directory of Open Access Journals (Sweden)

    Alessandro Airoldi

    2016-07-01

    Full Text Available The paper presents some engineering solutions for the development of innovative aerodynamic surfaces with the capability of progressive shape variation. A brief introduction of the most significant issues related to the design of such morphing structures is provided. Thereafter, two types of structural solutions are presented for the design of internal compliant structures and flexible external skins. The proposed solutions exploit the properties and the manufacturing techniques of long fibre reinforced plastic in order to fulfil the severe and contradictory requirements related to the trade-off between morphing performance and load carrying capabilities.

  16. Rod-like plasmonic nanoparticles as optical building blocks: how differences in particle shape and structural geometry influence optical signal

    Energy Technology Data Exchange (ETDEWEB)

    Stender, Anthony [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Gold nanoparticles, particularly those with an anisotropic shape, have become a popular optical probe for experiments involving work on the nanoscale. However, to carry out such delicate and intricate experiments, it is first necessary to understand the detailed behavior of individual nanoparticles. In this series of experiments, optical and electron microscopy were utilized for the characterization of individual nanoparticles and small assemblies of nanoparticles. In the first experiment, gold nanorods were investigated. Single, isolated nanorods exhibit two maxima of localized surface plasmon resonance (LSPR), which are associated with the two nanorod axes. Upon the physical rotation of a nanorod at one of its LSPR wavelengths under polarized illumination, the optical behavior varies in a sinusoidal fashion. A dimer of nanorods exhibits optical behavior quite similar to a nanorod, except the LSPR maxima are shifted and broader. Under differential interference contrast (DIC) microscopy, a pair of nanorods separated by a distance below the diffraction limit can be distinguished from a single nanorod due to its optical behavior upon rotation. Dark field microscopy is unable to distinguish the two geometries. For the second set of experiments, the optical behavior of single gold nanorods at non-plasmonic wavelengths was investigated. The same nanorod was rotated with respect to a polarized light source under DIC, dark field, and polarized light microscopy. DIC microscopy was found to produce diffraction pattern peaks at non-plasmonic wavelengths, which could be altered by adjusting the setting of the polarizer. In the third set of experiments, the optical behavior of a single gold dumbbell and several simple dumbbell geometries were investigated with microscopy and simulations. The single dumbbell displayed behavior quite similar to that of a nanorod, but dumbbells exhibit a shift in both LSPR wavebands. Moreover, the shape of dumbbell particles allows them to

  17. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm

    Science.gov (United States)

    Zhao, Yifan; Du, Jing; Zhang, Jinrun; Shen, Li; Wang, Jian

    2018-04-01

    Mid-infrared (2-20 μm) light has been attracting great attention in many areas of science and technology. Beyond the extended wavelength range from visible and near-infrared to mid-infrared, shaping spatial structures may add opportunities to grooming applications of mid-infrared photonics. Here, we design and fabricate a reflection-enhanced plasmonic metasurface and demonstrate efficient generation of structured light with the phase helix and intensity helix at 2 μm. This work includes two distinct aspects. First, structured light (phase helix, intensity helix) generation at 2 μm, which is far beyond the ability of conventional spatial light modulators, is enabled by the metasurface with sub-wavelength engineered structures. Second, the self-referenced intensity helix against environmental noise is generated without using a spatially separated light. The demonstrations may open up advanced perspectives to structured light applications at 2 μm, such as phase helix for communications and non-communications (imaging, sensing) and intensity helix for enhanced microscopy and advanced metrology.

  18. Readiness for the Patient-Centered Medical Home: structural capabilities of Massachusetts primary care practices.

    Science.gov (United States)

    Friedberg, Mark W; Safran, Dana G; Coltin, Kathryn L; Dresser, Marguerite; Schneider, Eric C

    2009-02-01

    The Patient-Centered Medical Home (PCMH), a popular model for primary care reorganization, includes several structural capabilities intended to enhance quality of care. The extent to which different types of primary care practices have adopted these capabilities has not been previously studied. To measure the prevalence of recommended structural capabilities among primary care practices and to determine whether prevalence varies among practices of different size (number of physicians) and administrative affiliation with networks of practices. Cross-sectional analysis. One physician chosen at random from each of 412 primary care practices in Massachusetts was surveyed about practice capabilities during 2007. Practice size and network affiliation were obtained from an existing database. Presence of 13 structural capabilities representing 4 domains relevant to quality: patient assistance and reminders, culture of quality, enhanced access, and electronic health records (EHRs). Three hundred eight (75%) physicians responded, representing practices with a median size of 4 physicians (range 2-74). Among these practices, 64% were affiliated with 1 of 9 networks. The prevalence of surveyed capabilities ranged from 24% to 88%. Larger practice size was associated with higher prevalence for 9 of the 13 capabilities spanning all 4 domains (P < 0.05). Network affiliation was associated with higher prevalence of 5 capabilities (P < 0.05) in 3 domains. Associations were not substantively altered by statistical adjustment for other practice characteristics. Larger and network-affiliated primary care practices are more likely than smaller, non-affiliated practices to have adopted several recommended capabilities. In order to achieve PCMH designation, smaller non-affiliated practices may require the greatest investments.

  19. A plasmonic spanner for metal particle manipulation

    NARCIS (Netherlands)

    Zhang, Y.; Shi, W.; Shen, Z.; Man, Z.; Min, C.; Shen, J.; Zhu, S.; Urbach, H.P.; Yuan, X.

    2015-01-01

    Typically, metal particles are difficult to manipulate with conventional optical vortex (OV) tweezers, because of their strong absorption and scattering. However, it has been shown that the vortex field of surface plasmonic polaritons, called plasmonic vortex (PV), is capable of stable trapping and

  20. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R ... in the plasmon band. This is demonstrated by using the strong nucleophiles, cyanide and cysteamine, as ligands. The “dissolution paths” in terms of peak wavelength and amplitude shifts differ significantly between different types of analytes, which are suggested as a means to obtain selectivity of the detection...... that cannot be obtained by traditional refractive index sensing, without the use of bioprobes. A simple modified Drude model is used to account for shifts in the plasmon band position due to electrical charging. Here, a screening parameter is introduced in the expression for the free electron density...

  1. Automatic capability to store and retrieve component data and to calculate structural integrity of these components

    International Nuclear Information System (INIS)

    McKinnis, C.J.; Toor, P.M.

    1985-01-01

    In structural analysis, assimilation of material, geometry, and service history input parameters is very cumbersome. Quite often with changing service history and revised material properties and geometry, an analysis has to be repeated. To overcome the above mentioned difficulties, a computer program was developed to provide the capability to establish a computerized library of all material, geometry, and service history parameters for components. The program also has the capability to calculate the structural integrity based on the Arrhenius type equations, including the probability calculations. This unique combination of computerized input information storage and automated analysis procedure assures consistency, efficiency, and accuracy when the hardware integrity has to be reassessed

  2. Decoupling capabilities of split-loop resonator structure for 7 Tesla MRI surface array coils

    Science.gov (United States)

    Hurshkainen, A.; Kurdjumov, S.; Simovski, C.; Glybovski, S.; Melchakova, I.; van den Berg, C. A. T.; Raaijmakers, A.; Belov, P.

    2017-09-01

    In this work we studied electromagnetic properties of one-dimentional periodic structures composed of split-loop res-onators (SLRs) and investigated their capabilities in decoupling of two dipole antennas for full-body magnetic resonance imaging (MRI). Two different finite structures comprising a single-SLR and a double-SLR constitutive elements were studied. Numerical simulations of the structures were performed to evaluate their decoupling capabilities. As it was demonstrated two dipole antennas equipped with either a single or a double-SLR structure exhibit high isolation even for an electrically short distance between the dipoles. Double-SLR structure while dramatically improving isolation of the dipoles keeps the field created by each of the decoupled dipoles comparable with one of a single dipole inside the target area.

  3. Fabrication of large area plasmonic nanoparticle grating structure on silver halide based transmission electron microscope film and its application as a surface enhanced Raman spectroscopy substrate

    International Nuclear Information System (INIS)

    Sudheer,; Tiwari, P.; Singh, M. N.; Sinha, A. K.; Rai, V. N.; Srivastava, A. K.; Bhartiya, S.; Mukherjee, C.

    2015-01-01

    The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating. The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure

  4. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems.

    Science.gov (United States)

    Badalyan, S M; Shylau, A A; Jauho, A P

    2017-09-22

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q. Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.

  5. Growth, Structural Change and Technological Capabilities. Latin America in a Comparative Perspective

    OpenAIRE

    Mario Cimoli; Marcio Holland; Gabriel Porcile; Annalisa Primi; Sebastiàn Vergara

    2006-01-01

    Countries differ in terms of technological capabilities and complexity of production structures. According to that, countries may follow different development strategies: one based on extracting rents from abundant endowments, such as labor or natural resources, and the other focused on creating rents through intangibles, basically innovation and knowledge accumulation. The present article studies international convergence and divergence, linking structural change with trade and growth thr...

  6. Mesoscopic quantum emitters coupled to plasmonic nanostructures

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke

    for the spontaneous emission of mesoscopic quantum emitters is developed. The light-matter interaction is in this model modied beyond the dipole expectancy and found to both suppress and enhance the coupling to plasmonic modes in excellent agreement with our measurements. We demonstrate that this mesoscopic effect......This thesis reports research on quantum dots coupled to dielectric and plasmonic nano-structures by way of nano-structure fabrication, optical measurements, and theoretical modeling. To study light-matter interaction, plasmonic gap waveguides with nanometer dimensions as well as samples for studies...... to allow for e- cient plasmon-based single-photon sources. Theoretical studies of coupling and propagation properties of plasmonic waveguides reveal that a high-refractive index of the medium surrounding the emitter, e.g. nGaAs = 3.5, limits the realizability of ecient plasmon-based single-photon sources...

  7. Coupled plasmon modes and their localization in graded plasmonic chains

    International Nuclear Information System (INIS)

    Xiao, J.J.; Yakubo, K.; Yu, K.W.

    2007-01-01

    Plasmonic waves occur in the subwavelength scale with transverse confinement below the diffraction limit. In this work, we report results of longitudinal localization-delocalization transitions of coupled plasmon modes in graded chains of metallic nanodots. Two graded models are studied: graded index of refraction in the host medium and incremental spacing between the nanoparticles. The coupled plasmon modes in these graded systems exhibit strong localization, showing a tunable passband in finite size systems. These localized modes survive in presence of weak loss in the nanodots. To understand the localization mechanism, we construct equivalent systems of one-dimensional coupled harmonic oscillators, whose coupling strength or masses are gradually varied from one end to the other, with additional on-site potentials. Confining and transmitting electromagnetic energy in these structures may pave new way for many fruitful applications in plasmonics

  8. Mathematical Model Taking into Account Nonlocal Effects of Plasmonic Structures on the Basis of the Discrete Source Method

    Science.gov (United States)

    Eremin, Yu. A.; Sveshnikov, A. G.

    2018-04-01

    The discrete source method is used to develop and implement a mathematical model for solving the problem of scattering electromagnetic waves by a three-dimensional plasmonic scatterer with nonlocal effects taken into account. Numerical results are presented whereby the features of the scattering properties of plasmonic particles with allowance for nonlocal effects are demonstrated depending on the direction and polarization of the incident wave.

  9. Coupled-resonator-induced plasmonic bandgaps.

    Science.gov (United States)

    Wang, Yujia; Sun, Chengwei; Gong, Qihuang; Chen, Jianjun

    2017-10-15

    By drawing an analogy with the conventional photonic crystals, the plasmonic bandgaps have mainly employed the periodic metallic structures, named as plasmonic crystals. However, the sizes of the plasmonic crystals are much larger than the wavelengths, and the large sizes considerably decrease the density of the photonic integration circuits. Here, based on the coupled-resonator effect, the plasmonic bandgaps are experimentally realized in the subwavelength waveguide-resonator structure, which considerably decreases the structure size to subwavelength scales. An analytic model and the phase analysis are established to explain this phenomenon. Both the experiment and simulation show that the plasmonic bandgap structure has large fabrication tolerances (>20%). Instead of the periodic metallic structures in the bulky plasmonic crystals, the utilization of the subwavelength plasmonic waveguide-resonator structure not only significantly shrinks the bandgap structure to be about λ 2 /13, but also expands the physics of the plasmonic bandgaps. The subwavelength dimension, together with the waveguide configuration and robust realization, makes the bandgap structure easy to be highly integrated on chips.

  10. Plasmonically enhanced hot electron based photovoltaic device.

    Science.gov (United States)

    Atar, Fatih B; Battal, Enes; Aygun, Levent E; Daglar, Bihter; Bayindir, Mehmet; Okyay, Ali K

    2013-03-25

    Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths.

  11. Nano-Gap Embedded Plasmonic Gratings for Surface Plasmon Enhanced Fluorescence

    Science.gov (United States)

    Bhatnagar, Kunal; Bok, Sangho; Korampally, Venumadhav; Gangopadhyay, Shubhra

    2012-02-01

    Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal/dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures on the sub wavelength scale have been shown to provide very efficient and extreme light concentration at the nano-scale. The enhanced electric field produced within a few hundred nanometers of these structures can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences. Improving the qualities and capabilities of fluorescence based detectors and imaging equipment has been a big challenge to the industry manufacturers. We report the novel fabrication of nano-gap embedded periodic grating substrates on the nanoscale using micro-contact printing and polymethylsilsesquioxane (PMSSQ) polymer. Fluorescence enhancement of up to 118 times was observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for low-level fluorescence detection and single molecule imaging.

  12. Flexible and disposable plasmonic refractive index sensor using nanoimprint lithography

    Science.gov (United States)

    Mohapatra, Saswat; Moirangthem, Rakesh S.

    2018-03-01

    Nanostructure based plasmonic sensors are highly demanding in various areas due to their label-free and real-time detection capability. In this work, we developed an inexpensive flexible plasmonic sensor using optical disc nanograting via soft UV-nanoimprint lithography (UV-NIL). The polydimethylsiloxane (PDMS) stamp was used to transfer the nanograting structure from digital versatile discs (DVDs) to flexible and transparent polyethylene terephthalate (PET) substrate. Further, the plasmonic sensing substrate was obtained after coating a gold thin film on the top of the imprinted sample. The surface plasmon resonance (SPR) modes excited on gold coated nanograting structure appeared as a dip in the reflectance spectra measured at normal incident of white light in ambient air medium. Electromagnetic simulation based on finite element method (FEM) was used to understand and analyze the excited SPR modes and it is a very close agreement with the experimental results. The bulk refractive index (RI) sensing was performed by the sensor chip using water-glycerol mixture with different concentrations. Experimentally, the bulk RI sensitivity was found to be 797+/-17 nm/RIU.

  13. Single cell targeting using plasmon resonant gold-coated liposomes

    Science.gov (United States)

    Leung, Sarah J.; Romanowski, Marek

    2012-03-01

    We have developed an experimental system with the potential for the delivery and localized release of an encapsulated agent with high spatial and temporal resolution. We previously introduced liposome-supported plasmon resonant gold nanoshells; in this composite structure, the liposome allows for the encapsulation of substances, such as therapeutic agents, neurotransmitters, or growth factors, and the plasmon resonant structure facilitates the rapid release of encapsulated contents upon laser light illumination. More recently, we demonstrated that these gold-coated liposomes are capable of releasing their contents in a spectrally-controlled manner, where plasmon resonant nanoparticles only release content upon illumination with a wavelength of light matching their plasmon resonance band. We now show that this release mechanism can be used in a biological setting to deliver a peptide derivative of cholecystokinin to HEK293 cells overexpressing the CCK2 receptor. Using directed laser light, we may enable localized release from gold-coated liposomes to enable accurate perturbation of cellular functions in response to released compounds; this system may have possible applications in signaling pathways and drug discovery.

  14. The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability

    Science.gov (United States)

    Huang, Ying; Zha, Guangyu; Luo, Qiaojie; Zhang, Jianxiang; Zhang, Feng; Li, Xiaohui; Zhao, Shifang; Zhu, Weipu; Li, Xiaodong

    2014-01-01

    The deficient osseointegration and implant-associated infections are pivotal issues for the long-term clinical success of endosteal Ti implants, while development of functional surfaces that can simultaneously overcome these problems remains highly challenging. This study aimed to fabricate sophisticated Ti implant surface with both osteogenic inducing activity and inherent antibacterial ability simply via tailoring surface topographical features. Micro/submciro/nano-scale structure was constructed on Ti by three cumulative subtractive methods, including sequentially conducted sandblasting as well as primary and secondary acid etching treatment. Topographical features of this hierarchical structure can be well tuned by the time of the secondary acid treatment. Ti substrate with mere micro/submicro-scale structure (MS0-Ti) served as a control to examine the influence of hierarchical structures on surface properties and biological activities. Surface analysis indicated that all hierarchically structured surfaces possessed exactly the same surface chemistry as that of MS0-Ti, and all of them showed super-amphiphilicity, high surface free energy, and high protein adsorption capability. Biological evaluations revealed surprisingly antibacterial ability and excellent osteogenic activity for samples with optimized hierarchical structure (MS30-Ti) when compared with MS0-Ti. Consequently, for the first time, a hierarchically structured Ti surface with topography-induced inherent antibacterial capability and excellent osteogenic activity was constructed. PMID:25146099

  15. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  16. Structures and Infrastructures of International R&D Networks: A Capability Maturity Perspective

    DEFF Research Database (Denmark)

    Niang, Mohamed; Wæhrens, Brian Vejrum

    Purpose: This paper explores the process towards globally distributing R&D activities with an emphasis on organizational maturity. It discusses emerging configurations by asking how the structure and infrastructure of international R&D networks evolve along with the move from a strong R&D center...... to dispersed development. Design/Methodology/Approach: This is a qualitative study of the process of distributing R&D. By comparing selected firms, the researchers identify a pattern of dispersion of R&D activities in three Danish firms. Findings and Discussion: Drawing from the case studies, the researchers...... present a capability maturity model. Furthermore, understanding the interaction between new structures and infrastructures of the dispersed networks is viewed as a key requirement for developing organizational capabilities and formulating adequate strategies that leverage dispersed R&D. Organizational...

  17. A Capability Approach to Understanding Sport for Social Inclusion: Agency, Structure and Organisations

    OpenAIRE

    Naofumi Suzuki

    2017-01-01

    Despite the global diffusion of the term social inclusion, as well as the use of sport to promote it, questions have been raised regarding the extent to which sport is able to contribute to transforming the exclusive nature of the social structure. The lack of analytical clarity of the concept has not helped to address these questions. This article proposes a conceptual framework based on Amartya Sen's capability approach, considering social exclusion as the denial of social relations that le...

  18. Relationships between structural social capital, knowledge identification capability and external knowledge acquisition

    Directory of Open Access Journals (Sweden)

    Beatriz Ortiz

    2017-07-01

    Full Text Available Purpose - The purpose of this paper is to analyze the mediating effect of the identification of valuable external knowledge on the relationship between the development of inter-organizational ties (structural social capital and the acquisition of external knowledge. Design/methodology/approach - Using a sample of 87 firms from Spanish biotechnology and pharmaceutics industries, the authors have tested the proposed mediation hypothesis by applying the partial least squares technique to a structural equations model. Findings - The study results show that those firms with stronger, more frequent and closer inter-relationships are able to increase the amount of intentionally acquired knowledge, partly due to the greater level of development of their knowledge identification capability. Thus, firms with a higher capability to recognize the value of the knowledge embedded in their inter-organizational networks will be more likely to design better strategies to acquire and integrate such knowledge into their current knowledge bases for either present or future use. Originality/value - This research contributes to knowledge management and social capital literature by means of the study of two key determinants of knowledge acquisition – structural social capital and knowledge identification capability – and the explanation of their relationships of mutual influence. The paper thus tries to fill this literature gap and connects the relational perspective of social capital with the knowledge-based view from a strategic point of view.

  19. Plasmonic 3D-structures based on silver decorated nanotips for biological sensing

    KAUST Repository

    Coluccio, M. L.; Francardi, Marco; Gentile, F.; Candeloro, P.; Ferrara, L.; Perozziello, G.; Di Fabrizio, Enzo M.

    2015-01-01

    Recent progresses in nanotechnology fabrication gives the opportunity to build highly functional nano-devices. 3D structures based on noble metals or covered by them can be realized down to the nano-scales, obtaining different devices

  20. A Capability Approach to Understanding Sport for Social Inclusion: Agency, Structure and Organisations

    Directory of Open Access Journals (Sweden)

    Naofumi Suzuki

    2017-06-01

    Full Text Available Despite the global diffusion of the term social inclusion, as well as the use of sport to promote it, questions have been raised regarding the extent to which sport is able to contribute to transforming the exclusive nature of the social structure. The lack of analytical clarity of the concept has not helped to address these questions. This article proposes a conceptual framework based on Amartya Sen’s capability approach, considering social exclusion as the denial of social relations that leads to serious deprivation of important capabilities. A person’s capabilities could potentially be improved through micro-, meso-, and macro-level social processes. At the micro level, sport-based social inclusion programmes could offer such social relations to varying degrees, though sport’s values are only relative to other leisure activities. The scale of impact depends primarily on the meso-level processes, in which the size and quality of each programme can be improved through organisational learning, and secondarily on the macro-level processes whereby the organisational population is institutionalised. It is argued that more research needs to be done on the meso and macro levels, as they are concerned with the ultimate potential of sport to facilitate structural transformation towards more socially inclusive society.

  1. Engineering the propagation of high-k bulk plasmonic waves in multilayer hyperbolic metamaterials by multiscale structuring

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei; Sipe, J. E.

    2013-01-01

    , wavelength scale, the propagation of bulk plasmon polaritons in the resulting multiscale HMM is subject to photonic band gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. As an example, Bragg reflection and Fabry-Pérot resonances...... are demonstrated in multiscale HMMs with periodic superstructures. More complicated, aperiodically ordered superstructures are also considered, with fractal Cantor-like multiscale HMMs exhibiting characteristic self-similar spectral signatures in the high-k band. The multiscale HMM concept is shown...

  2. Molecular plasmonics

    CERN Document Server

    Fritzsche, Wolfgang

    2014-01-01

    Adopting a novel approach, this book provides a unique ""molecular perspective"" on plasmonics, concisely presenting the fundamentals and applications in a way suitable for beginners entering this hot field as well as for experienced researchers and practitioners. It begins by introducing readers to the optical effects that occur at the nanoscale and particularly their modification in the presence of biomolecules, followed by a concise yet thorough overview of the different methods for the actual fabrication of nanooptical materials. Further chapters address the relevant nanooptics, as well as

  3. Roadmap on plasmonics

    Science.gov (United States)

    Stockman, Mark I.; Kneipp, Katrin; Bozhevolnyi, Sergey I.; Saha, Soham; Dutta, Aveek; Ndukaife, Justus; Kinsey, Nathaniel; Reddy, Harsha; Guler, Urcan; Shalaev, Vladimir M.; Boltasseva, Alexandra; Gholipour, Behrad; Krishnamoorthy, Harish N. S.; MacDonald, Kevin F.; Soci, Cesare; Zheludev, Nikolay I.; Savinov, Vassili; Singh, Ranjan; Groß, Petra; Lienau, Christoph; Vadai, Michal; Solomon, Michelle L.; Barton, David R., III; Lawrence, Mark; Dionne, Jennifer A.; Boriskina, Svetlana V.; Esteban, Ruben; Aizpurua, Javier; Zhang, Xiang; Yang, Sui; Wang, Danqing; Wang, Weijia; Odom, Teri W.; Accanto, Nicolò; de Roque, Pablo M.; Hancu, Ion M.; Piatkowski, Lukasz; van Hulst, Niek F.; Kling, Matthias F.

    2018-04-01

    Plasmonics is a rapidly developing field at the boundary of physical optics and condensed matter physics. It studies phenomena induced by and associated with surface plasmons—elementary polar excitations bound to surfaces and interfaces of good nanostructured metals. This Roadmap is written collectively by prominent researchers in the field of plasmonics. It encompasses selected aspects of nanoplasmonics. Among them are fundamental aspects, such as quantum plasmonics based on the quantum-mechanical properties of both the underlying materials and the plasmons themselves (such as their quantum generator, spaser), plasmonics in novel materials, ultrafast (attosecond) nanoplasmonics, etc. Selected applications of nanoplasmonics are also reflected in this Roadmap, in particular, plasmonic waveguiding, practical applications of plasmonics enabled by novel materials, thermo-plasmonics, plasmonic-induced photochemistry and photo-catalysis. This Roadmap is a concise but authoritative overview of modern plasmonics. It will be of interest to a wide audience of both fundamental physicists and chemists, as well as applied scientists and engineers.

  4. Resonant Plasmonic Enhancement of InGaN/GaN LED using Periodically Structured Ag Nanodisks

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Iida, Daisuke; Zhu, Xiaolong

    2013-01-01

    Ag nanodisks are fabricated on GaN-based LED to enhance emission efficiency. Nanosphere lithography is used to obtain a periodic nano-structure, and a photoluminescence enhancement of 2.7 is reported with Ag nanodisk diameter of 330 nm.......Ag nanodisks are fabricated on GaN-based LED to enhance emission efficiency. Nanosphere lithography is used to obtain a periodic nano-structure, and a photoluminescence enhancement of 2.7 is reported with Ag nanodisk diameter of 330 nm....

  5. Volume integral method for investigation of plasmonic nanowaveguide structures and photonic crystals

    Czech Academy of Sciences Publication Activity Database

    Lerer, A.M.; Donets, I.V.; Kalinchenko, Galina; Makhno, P.V.

    2014-01-01

    Roč. 2, č. 1 (2014), s. 31-37 ISSN 2327-9125 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : mathematical methods * subwavelength structures * nanostuctures Subject RIV: BH - Optics, Masers, Lasers

  6. European TBM for ITER: Structural material assessment and breeding capability - Comparative analysis

    International Nuclear Information System (INIS)

    Herreras, Y.; Perlado, J.M.; Ibarra, A.

    2007-01-01

    Full text of publication follows: The ITER European Party is currently developing for DEMO reactor specifications two breeding blanket concepts: the Helium-Cooled Lithium-Lead blanket (HCLL), using a liquid breeder; and the Helium-Cooled Pebble-Bed blanket (HCPB), using a lithiated solid breeder. These two research lines are expected to be tested in ITER as Test Blanket Modules (TBM), in order to demonstrate their safety, economical and environmental suitability. In this sense, structural material activation and breeding blanket capability represent two major challenges. This paper presents new calculations regarding neutronic irradiation inside the ITER Vacuum Vessel. In particular, results are focused on the irradiation affecting the equatorial ports, where the TBM will be located for testing. The methodology employed mainly consists in calculating the neutronic irradiation levels at the required locations with the transport code MCNP, where the input geometry has been previously designed with the program CATIA V5. The main structural materials proposed for the European Test blanket Modules are selected in order to carry out a comparative analysis in safety terms: material activation and basic parameters for damage analysis are evaluated with the code ACAB, based on the neutronic irradiation results mentioned above. Finally, the breeding blanket capability is assessed for both breeding blanket concepts; the results are compared considering the choice of the structural material. (authors)

  7. Plasmonic Manipulation of Light for Sensing and Photovoltaic Applications

    Science.gov (United States)

    Sobhani Khakestar, Heidar

    Plasmonics is a successful new field of science and technology that exploits the exclusive optical properties of metallic nanostructures to manipulate and concentrate light at nano-meter length scales. When light hits the surface of gold or silver nanoparticles it can excite collective oscillations of the conduction electrons called surface plasmons. This surface plasmon undergoes two damping processes; it can decay into photon and reemit the plasmon energy as scattered energy or decay into electron-hole pair with the excitation energy equal to the energy of the plasmon resonance, known as absorption. This high energy electron subsequently undergoes into the carrier multiplication and eventually scatters into the electrons with lower energy. We used Finite-Difference Time-Domain (FDTD) and Finite-Element Method (Comsol) to design nanoscale structures to act as nanoantenna for light harvesting and consequently manipulating radiative and absorption properties of them for Sensing and Photovoltaic applications. To manipulate near and far field we designed our structures in a way that the bright and dark plasmon modes overlap and couple to each other. This process is called Fano resonance and introduces a transparency window in the far-field spectra. At the same time it increases the near-field enhancement. We applied the changes in near-field and far-field to SERS (Surface Enhanced Raman Spectroscopy) and LSPR (Localized Surface plasmon Resonance) shift for sensing purposes. We modeled Fano resonances with classical harmonic oscillator and reproduced the same feature with a simple equation of motion. We used this model to replicate scattering spectra from different geometries and explain the cathodoluminescence results obtained from nanoscale gold clusters structure. All of these nanoantenna optical properties and applications are due to the reemission ability of the plasmon energy to the vacuum and confining optical field, but the plasmon energy can decay into a high

  8. Plasmon hybridization in silver nanoislands as semishell arrays coupled to a thin metallic film

    DEFF Research Database (Denmark)

    Maaroof, Abbas; Nygaard, Jens Vinge; Sutherland, Duncan S

    2011-01-01

    We obtained experimentally strong plasmon interactions between localized surface plasmon with delocalized surface plasmon polaritons in a new nanosystem of silver semishells island film arrays arranged as a closed-packing structure coupled to an adjacent thin silver film. We show that plasmon int...

  9. Plasmonic Structure Enhanced Exciton Generation at the Interface between the Perovskite Absorber and Copper Nanoparticles

    Science.gov (United States)

    Lin, Kuen-Feng; Chiang, Chien-Hung; Wu, Chun-Guey

    2014-01-01

    The refractive index and extinction coefficient of a triiodide perovskite absorber (TPA) were obtained by fitting the transmittance spectra of TPA/PEDOT:PSS/ITO/glass using the transfer matrix method. Cu nanoplasmonic structures were designed to enhance the exciton generation in the TPA and to simultaneously reduce the film thickness of the TPA. Excitons were effectively generated at the interface between TPA and Cu nanoparticles, as observed through the 3D finite-difference time-domain method. The exciton distribution is advantageous for the exciton dissociation and carrier transport. PMID:25295290

  10. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa

    2014-05-01

    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  11. Plasmonic solutions for coupling and modulation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Babicheva, Viktoriia; Malureanu, Radu

    We present our design results for efficient coupling and modulation in plasmonic structures. Fiber coupling to a plasmonic slot waveguide is significantly increased by a metallic nanoantenna with additional reflectors or by the configuration of several connected antennas. We also show that the pl......We present our design results for efficient coupling and modulation in plasmonic structures. Fiber coupling to a plasmonic slot waveguide is significantly increased by a metallic nanoantenna with additional reflectors or by the configuration of several connected antennas. We also show...... that the plasmonic four-layer waveguide with patterned ITO layer can modulate light with higher transmission and the same modulation depth as a waveguide with a uniform ITO layer....

  12. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures.

    Science.gov (United States)

    Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco

    2017-11-07

    Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  13. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Luca Gallucci

    2017-11-01

    Full Text Available Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  14. Computer code structure for evaluation of fire protection measures and fighting capability at nuclear plants

    International Nuclear Information System (INIS)

    Anton, V.

    1997-01-01

    In this work a computer code structure for Fire Protection Measures (FPM) and Fire Fighting Capability (FFC) at Nuclear Power Plants (NPP) is presented. It allows to evaluate the category (satisfactory (s), needs for further evaluation (n), unsatisfactory (u)) to which belongs the given NPP for a self-control in view of an IAEA inspection. This possibility of a self assessment resulted from IAEA documents. Our approach is based on international experience gained in this field and stated in IAEA recommendations. As an illustration we used the FORTRAN programming language statement to make clear the structure of the computer code for the problem taken into account. This computer programme can be conceived so that some literal message in English and Romanian languages be displayed beside the percentage assessments. (author)

  15. Long-range hybrid ridge and trench plasmonic waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yusheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-06-23

    We report a class of long-range hybrid plasmon polariton waveguides capable of simultaneously achieving low propagation loss and tight field localization at telecommunication wavelength. The symmetric (quasi-symmetric) hybrid configurations featuring high-refractive-index-contrast near the non-uniform metallic nanostructures enable significantly improved optical performance over conventional hybrid waveguides, exhibiting considerably longer propagation distances and dramatically enhanced figure of merits for similar degrees of confinement. Compared to their traditional long-range plasmonic counterparts, the proposed hybrid waveguides put much less stringent requirements on index-matching conditions, demonstrating nice performance under a wide range of physical dimensions and robust characteristics against certain fabrication imperfections. Studies concerning crosstalk between adjacent identical waveguides further reveal their potential for photonic integrations. In addition, alternative configurations with comparable guiding properties to the structures in our case studies are also proposed, which can potentially serve as attractive prototypes for numerous high-performance nanophotonic components.

  16. Molecule database framework: a framework for creating database applications with chemical structure search capability.

    Science.gov (United States)

    Kiener, Joos

    2013-12-11

    Research in organic chemistry generates samples of novel chemicals together with their properties and other related data. The involved scientists must be able to store this data and search it by chemical structure. There are commercial solutions for common needs like chemical registration systems or electronic lab notebooks. However for specific requirements of in-house databases and processes no such solutions exist. Another issue is that commercial solutions have the risk of vendor lock-in and may require an expensive license of a proprietary relational database management system. To speed up and simplify the development for applications that require chemical structure search capabilities, I have developed Molecule Database Framework. The framework abstracts the storing and searching of chemical structures into method calls. Therefore software developers do not require extensive knowledge about chemistry and the underlying database cartridge. This decreases application development time. Molecule Database Framework is written in Java and I created it by integrating existing free and open-source tools and frameworks. The core functionality includes:•Support for multi-component compounds (mixtures)•Import and export of SD-files•Optional security (authorization)For chemical structure searching Molecule Database Framework leverages the capabilities of the Bingo Cartridge for PostgreSQL and provides type-safe searching, caching, transactions and optional method level security. Molecule Database Framework supports multi-component chemical compounds (mixtures).Furthermore the design of entity classes and the reasoning behind it are explained. By means of a simple web application I describe how the framework could be used. I then benchmarked this example application to create some basic performance expectations for chemical structure searches and import and export of SD-files. By using a simple web application it was shown that Molecule Database Framework

  17. Extracting and focusing of surface plasmon polaritons inside finite asymmetric metal/insulator/metal structure at apex of optical fiber by subwavelength holes

    Science.gov (United States)

    Oshikane, Yasushi; Murai, Kensuke; Nakano, Motohiro

    2013-09-01

    We have been studied a finite asymmetric metal-insulator-metal (MIM) structure on glass plate for near-future visible light communication (VLC) system with white LED illuminations in the living space (DOI: 10.1117/12.929201). The metal layers are vacuum-evaporated thin silver (Ag) films (around 50 nm and 200 nm, respectively), and the insulator layer (around 150 nm) is composed of magnesium fluoride (MgF2). A characteristic narrow band filtering of the MIM structure at visible region might cause a confinement of intense surface plasmon polaritons (SPPs) at specific monochromatic frequency inside a subwavelength insulator layer of the MIM structure. Central wavelength and depth of such absorption dip in flat spectral reflectance curve is controlled by changing thicknesses of both insulator and thinner metal layers. On the other hand, we have proposed a twin-hole pass-through wave guide for SPPs in thick Ag film (DOI: 10.1117/12.863587). At that time, the twin-hole converted a incoming plane light wave into a pair of channel plasmon polaritons (CPPs), and united them at rear surface of the Ag film. This research is having an eye to extract, guide, and focus the SPPs through a thicker metal layer of the MIM with FIBed subwavelength pass-through holes. The expected outcome is a creation of noble, monochromatic, and tunable fiber probe for scanning near-field optical microscopes (SNOMs) with intense white light sources. Basic experimental and FEM simulation results will be presented.

  18. Reviews in plasmonics 2010

    CERN Document Server

    Geddes, Chris D

    2011-01-01

    Reviews in Plasmonics 2010, the first volume of the new book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year's progress in surface plasmon phenomena and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential reference material for any lab working in the Plasmonic

  19. High efficiency all-optical plasmonic diode based on a nonlinear side-coupled waveguide-cavity structure with broken symmetry

    Science.gov (United States)

    Liang, Hong-Qin; Liu, Bin; Hu, Jin-Feng; He, Xing-Dao

    2018-05-01

    An all-optical plasmonic diode, comprising a metal-insulator-metal waveguide coupled with a stub cavity, is proposed based on a nonlinear Fano structure. The key technique used is to break structural spatial symmetry by a simple reflector layer in the waveguide. The spatial asymmetry of the structure gives rise to the nonreciprocity of coupling efficiencies between the Fano cavity and waveguides on both sides of the reflector layer, leading to a nonreciprocal nonlinear response. Transmission properties and dynamic responses are numerically simulated and investigated by the nonlinear finite-difference time-domain method. In the proposed structure, high-efficiency nonreciprocal transmission can be achieved with a low power threshold and an ultrafast response time (subpicosecond level). A high maximum transmittance of 89.3% and an ultra-high transmission contrast ratio of 99.6% can also be obtained. The device can be flexibly adjusted for working wavebands by altering the stub cavity length.

  20. Simulation and analysis of Au-MgF2 structure in plasmonic sensor in near infrared spectral region

    Science.gov (United States)

    Sharma, Anuj K.

    2018-05-01

    Plasmonic sensor based on metal-dielectric combination of gold and MgF2 layers is studied in near infrared (NIR) spectral region. An emphasis is given on the effect of variable thickness of MgF2 layer in combination with operating wavelength and gold layer thickness on the sensor's performance in NIR. It is established that the variation in MgF2 thickness in connection with plasmon penetration depth leads to significant variation in sensor's performance. The analysis leads to a conclusion that taking smaller values of MgF2 layer thickness and operating at longer NIR wavelength leads to enhanced sensing performance. Also, fluoride glass can provide better sensing performance than chalcogenide glass and silicon substrate.

  1. Advanced Plasmonic Materials for Dynamic Color Display.

    Science.gov (United States)

    Shao, Lei; Zhuo, Xiaolu; Wang, Jianfang

    2018-04-01

    Plasmonic structures exhibit promising applications in high-resolution and durable color generation. Research on advanced hybrid plasmonic materials that allow dynamically reconfigurable color control has developed rapidly in recent years. Some of these results may give rise to practically applicable reflective displays in living colors with high performance and low power consumption. They will attract broad interest from display markets, compared with static plasmonic color printing, for example, in applications such as digital signage, full-color electronic paper, and electronic device screens. In this progress report, the most promising recent examples of utilizing advanced plasmonic materials for the realization of dynamic color display are highlighted and put into perspective. The performances, advantages, and disadvantages of different technologies are discussed, with emphasis placed on both the potential and possible limitations of various hybrid materials for dynamic plasmonic color display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermo-plasmonics of Irradiated Metallic Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan

    Thermo-plasmonics is an emerging field in photonics which aims at harnessing the kinetic energy of light to generate nanoscopic sources of heat. Localized surface plasmons (LSP) supported by metallic nanostructures greatly enhance the interactions of light with the structure. By engineering...... delivery, nano-surgeries and thermo-transportations. Apart from generating well-controlled temperature increase in functional thermo-plasmonic devices, thermo-plasmonics can also be used in understanding complex phenomena in thermodynamics by creating drastic temperature gradients which are not accessible...... using conventional techniques. In this thesis, we present novel experimental and numerical tools to characterize thermo-plasmonic devices in a biologically relevant environment, and explore the thermodiffusion properties and measure thermophoretic forces for particles in temperature gradients ranging...

  3. Magneto-plasmonic nanoantennas: Basics and applications

    Directory of Open Access Journals (Sweden)

    Ivan S. Maksymov

    2016-11-01

    Full Text Available Plasmonic nanoantennas are a hot and rapidly expanding research field. Here we overview basic operating principles and applications of novel magneto-plasmonic nanoantennas, which are made of ferromagnetic metals and driven not only by light, but also by external magnetic fields. We demonstrate that magneto-plasmonic nanoantennas enhance the magneto-optical effects, which introduces additional degrees of freedom in the control of light at the nano-scale. This property is used in conceptually new devices such as magneto-plasmonic rulers, ultra-sensitive biosensors, one-way subwavelength waveguides and extraordinary optical transmission structures, as well as in novel biomedical imaging modalities. We also point out that in certain cases ‘non-optical’ ferromagnetic nanostructures may operate as magneto-plasmonic nanoantennas. This undesigned extra functionality capitalises on established optical characterisation techniques of magnetic nanomaterials and it may be useful for the integration of nanophotonics and nanomagnetism on a single chip.

  4. Electrically Excited Plasmonic Nanoruler for Biomolecule Detection.

    Science.gov (United States)

    Dathe, André; Ziegler, Mario; Hübner, Uwe; Fritzsche, Wolfgang; Stranik, Ondrej

    2016-09-14

    Plasmon-based sensors are excellent tools for a label-free detection of small biomolecules. An interesting group of such sensors are plasmonic nanorulers that rely on the plasmon hybridization upon modification of their morphology to sense nanoscale distances. Sensor geometries based on the interaction of plasmons in a flat metallic layer together with metal nanoparticles inherit unique advantages but need a special optical excitation configuration that is not easy to miniaturize. Herein, we introduce the concept of nanoruler excitation by direct, electrically induced generation of surface plasmons based on the quantum shot noise of tunneling currents. An electron tunneling junction consisting of a metal-dielectric-semiconductor heterostructure is directly incorporated into the nanoruler basic geometry. With the application of voltage on this modified nanoruler, the plasmon modes are directly excited without any additional optical component as a light source. We demonstrate via several experiments that this electrically driven nanoruler possesses similar properties as an optically exited one and confirm its sensing capabilities by the detection of the binding of small biomolecules such as antibodies. This new sensing principle could open the way to a new platform of highly miniaturized, integrated plasmonic sensors compatible with monolithic integrated circuits.

  5. Plasmonic Switches and Sensors Based on PANI-Coated Gold Nanostructures

    Science.gov (United States)

    Jiang, Nina

    shift. Based on this principle, I have fabricated (gold nanosphere core)/(oxidized PANI shell) plasmonic sensors. The sensors have great potential for sensing chemical and biological molecules with reducibility. By using ascorbic acid (AA) as a target analyte, the plasmonic sensor presents high sensing capability. The limit of detection is 0.5 muM, and the linear response range is from 0.5 muM to 10 muM. The limit of detection for my plasmonic sensor is lower than the lowest limit for AA sensors based on liquid chromatography, electrophoresis, and electrochemical method. The sensing performance of my plasmonic sensors is expected to be further improved by optimizing the amount of (gold nanosphere core)/(oxidized PANI shell) structures, or employing other gold nanostructures with higher refractive index sensitivities. I believe that the colloidal (metal core)/(PANI shell) nanostructures pave the way for the fabrication of high-performance, low-cost plasmonic switches as well as for the preparation of advanced, programmable chromic materials for a wide variety of applications, such as smart windows, military anti-counterfeiting and camouflage, environmental sensors and indicators. (Abstract shortened by UMI.).

  6. Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms

    Directory of Open Access Journals (Sweden)

    Bruno Gügi

    2015-09-01

    Full Text Available Diatoms are marine organisms that represent one of the most important sources of biomass in the ocean, accounting for about 40% of marine primary production, and in the biosphere, contributing up to 20% of global CO2 fixation. There has been a recent surge in developing the use of diatoms as a source of bioactive compounds in the food and cosmetic industries. In addition, the potential of diatoms such as Phaeodactylum tricornutum as cell factories for the production of biopharmaceuticals is currently under evaluation. These biotechnological applications require a comprehensive understanding of the sugar biosynthesis pathways that operate in diatoms. Here, we review diatom glycan and polysaccharide structures, thus revealing their sugar biosynthesis capabilities.

  7. A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2009-07-01

    Full Text Available Solar cells are a promising renewable, carbon-free electric energy resource to address the fossil fuel shortage and global warming. Energy conversion efficiencies around 40% have been recently achieved in laboratories using III-V semiconductor compounds as photovoltaic materials. This article reviews the efforts and accomplishments made for higher efficiency III-V semiconductor compound solar cells, specifically with multijunction tandem, lower-dimensional, photonic up/down conversion, and plasmonic metallic structures. Technological strategies for further performance improvement from the most efficient (AlInGaP/(InGaAs/Ge triple-junction cells including the search for 1.0 eV bandgap semiconductors are discussed. Lower-dimensional systems such as quantum well and dot structures are being intensively studied to realize multiple exciton generation and multiple photon absorption to break the conventional efficiency limit. Implementation of plasmonic metallic nanostructures manipulating photonic energy flow directions to enhance sunlight absorption in thin photovoltaic semiconductor materials is also emerging.

  8. Plasmon hybridization in complex metallic nanostructures

    Science.gov (United States)

    Hao, Feng

    With Plasmon Hybridization (PH) and Finite-Difference Time-Domain (FDTD) method, we theoretically investigated the optical properties of some complex metallic nanostructures (coupled nanoparticle/wire, nanostars, nanorings and combined ring/disk nanocavity systems). We applied the analytical formulism of PH studying the plasmonic coupling of a spherical metallic nanoparticle and an infinite long cylindrical nanowire. The plasmon resonance of the coupled system is shown shifted in frequency, which highly depends on the polarization of incident light relative to the geometry of the structure. We also showed the nanoparticle serves as an efficient antenna coupling the electromagnetic radiation into the low-energy propagating wire plasmons. We performed an experimental and theoretical analysis of the optical properties of gold nanorings with different sizes and cross sections. For light polarized parallel to the ring, the optical spectrum sensitively depends on the incident angle. When light incidence is normal to the ring, two dipolar resonance is observed. As the incident light is titled, some previously dark mulipolar plasmon resonances will be excited as a consequence of the retardation. The concept of plasmon hybridization is combined with the power of brute-force numerical methods to understand the plasmonic properties of some very complicated nanostructures. We showed the plasmons of a gold nanostar are a result of hybridization of the plasmons of the core and the tips of the particle. The core serves as a nanoantenna, dramatically enhanced the optical spectrum and the field enhancement of the nanostar. We also applied this method analyzing the plasmonic modes of a nanocavity structure composed of a nanodisk with a surrounding minoring. For the concentric combination, we showed the nature of the plasmon modes can be understood as the plasmon hybrization of an individual ring and disk. The interation results in a blueshifted and broadened superradiant antibonding

  9. A Variable Single Photon Plasmonic Beamsplitter

    DEFF Research Database (Denmark)

    Israelsen, Niels Møller; Kumar, Shailesh; Huck, Alexander

    Plasmonic structures can both be exploited for scaling down optical components beyond the diffraction limit and enhancing andcollecting the emission from a single dipole emitter. Here, we experimentally demonstrate adiabatic coupling between two silvernanowires using a nitrogen vacancy center as ...

  10. Terahertz plasmon and surface-plasmon modes in cylindrical metallic nanowires

    International Nuclear Information System (INIS)

    Wu Ping; Xu Wen; Li Long-Long; Lu Tie-Cheng; Wu Wei-Dong

    2014-01-01

    We present a theoretical study on collective excitation modes associated with plasmon and surface-plasmon oscillations in cylindrical metallic nanowires. Based on a two-subband model, the dynamical dielectric function matrix is derived under the random-phase approximation. An optic-like branch and an acoustic-like branch, which are free of Landau damping, are observed for both plasmon and surface-plasmon modes. Interestingly, for surface-plasmon modes, we find that two branches of the dispersion relation curves converge at a wavevector q z = q max beyond which no surface-plasmon mode exists. Moreover, we examine the dependence of these excitation modes on sample parameters such as the radius of the nanowires. It is found that in metallic nanowires realized by state-of-the-art nanotechnology the intra- and inter-subband plasmon and surface-plasmon frequencies are in the terahertz bandwidth. The frequency of the optic-like modes decreases with increasing radius of the nanowires, whereas that of the acoustic-like modes is not sensitive to the variation of the radius. This study is pertinent to the application of metallic nanowires as frequency-tunable terahertz plasmonic devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Plasmonic behaviour of phenylenediamine functionalised silver nanoparticles

    Science.gov (United States)

    Akmal Che Lah, Nurul; Samykano, Mahendran; Rafie Johan, Mohd; Syahierah Othman, Nuurul; Mawardi Saari, Mohd; Bey Fen, Leo; Zalikha Khalil, Nur

    2017-09-01

    The surface functionalisation of AgNPs has demonstrated improved capability for various applications by modifying their surface chemical conditions. In this study, AgNPs functionalised with p-phenylenediamine (PPD) ligand were prepared, and the plasmonic effects of the nanocomposites were then investigated. The synthesis and functionalisation of Ag nanocomposites were achieved through chemical modification reaction of naphthalene group through hydrothermal synthesis. The influence of the chemical modification reaction on the plasmonic behaviour and size variation were obtained via optical measurement techniques such as UV-visible spectroscopy (UV-Vis) for absorbance characteristic, photoluminescence for emission response and micro-Raman spectroscopy (MRS) for SERS study on the presence of regions containing AgNPs and PPD ligand. It was observed that the one-step process of deprotonation of the amino group on the aromatic rings gives the re-arrangement of the electron cloud towards the π-conjugated system. High-resolution transmission electron microscope (TEM) analysis showed the formation of the nanocomposites and the AgNPs (for ~4 and ~5 nm of diameter sizes) are well-dispersed over the PPD matrix. The nanocomposites are assembled into higher dimensional structures through coordination with functional PPD ligand and also increasing the PPD amount led to the increase in the surface area of the nanoparticles.

  12. Plasmonic nanoparticle scattering for color holograms.

    Science.gov (United States)

    Montelongo, Yunuen; Tenorio-Pearl, Jaime Oscar; Williams, Calum; Zhang, Shuang; Milne, William Ireland; Wilkinson, Timothy David

    2014-09-02

    This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field.

  13. Experimental Verification of Plasmonic Cloaking at Microwave Frequencies with Metamaterials

    International Nuclear Information System (INIS)

    Edwards, Brian; Engheta, Nader; Alu, Andrea; Silveirinha, Mario G.

    2009-01-01

    Plasmonic cloaking is a scattering-cancellation technique based on the local negative polarizability of metamaterials. Here we report its first experimental realization and measurement at microwave frequencies. An array of metallic fins embedded in a high-permittivity fluid has been used to create a metamaterial plasmonic shell capable of cloaking a dielectric cylinder, yielding over 75% reduction of total scattering width.

  14. Piezoelectric paints as one approach to smart structural materials with health-monitoring capabilities

    Science.gov (United States)

    Egusa, Shigenori; Iwasawa, Naozumi

    1998-08-01

    Piezoelectric paints have a potential to change a conventional structural material into an intelligent material system with health-monitoring capabilities such as vibration sensing and damage detection. Such paints were prepared using lead zirconate titanate (PZT) ceramic powder as a pigment and epoxy resin as a binder. The obtained paints were coated on aluminum test specimens, and were cured at room temperature or at 150 0964-1726/7/4/002/img5, thus forming the paint films having different thicknesses of 25-300 0964-1726/7/4/002/img6. These films were then poled at room temperature, and were evaluated with regard to the sensitivities as vibration and acoustic emission sensors in the frequency ranges of 0-250 Hz and 0-1.0 MHz, respectively. This paper mainly describes the effects of the film thickness and the cure temperature on the poling behavior of the PZT/epoxy paint film. This paper describes also the application of the paint film as a vibration modal sensor integrated into a structural material.

  15. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers

    Science.gov (United States)

    Xiang, Quan; Li, Zhiqin; Zheng, Mengjie; Liu, Qing; Chen, Yiqin; Yang, Lan; Jiang, Tian; Duan, Huigao

    2018-03-01

    Elevated metallic nanostructures with nanogaps (film deposition. By controlling the initial size of nanogaps in resist structures and the following deposited film thickness, metallic nanogaps could be tuned at the sub-10 nm scale with single-digit nanometer precision. Both experimental and simulated results revealed that gold dimer on mushroom-shaped pillars have the capability to achieve higher SERS enhancement factor comparing to those plasmonic dimers on cylindrical pillars or on a common SiO2/Si substrate, implying that the nanometer-gapped elevated dimer is an ideal platform to achieve the highest possible field enhancement for various plasmonic applications.

  16. Localized Surface Plasmons in Vibrating Graphene Nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Li, Bo-Hong; Stassen, Erik

    2016-01-01

    in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined...... by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters...

  17. Investigation of ion diffusion towards plasmonic surfaces

    International Nuclear Information System (INIS)

    Gmucova, K.; Nadazdy, V.; Vojtko, A.; Majkova, E.; Kotlar, M.

    2013-01-01

    Plasmonic sensors have recently attracted much attention. The past few decades have seen a massive and continued interest in studying electrochemical processes at artificially structured electrodes. Such electrochemical sensors provide sensitive, selective, and easy to use approaches to the detection of many chemical species, e.g. environmental pollutants, biomolecules, drugs etc. The issue raised in this paper is to study the kinetic of the diffusion towards plasmonic surfaces in dark and under illumination with white LED diode. The possibility to use anomalous charge transfer towards plasmonic surfaces in electrochemical sensorics will be discussed, too. (authors)

  18. Reviews in plasmonics 2016

    CERN Document Server

    2017-01-01

    Reviews in Plasmonics 2016, the third volume of the new book series from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year’s progress in surface plasmon phenomena and its applications, with authoritative analytical reviews in sufficient detail to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential source of reference material for any lab working in the Plasmonics field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of Plasmonics will find it an invaluable resource.

  19. Reviews in plasmonics 2015

    CERN Document Server

    2016-01-01

    Reviews in Plasmonics 2015, the second volume of the new book series from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year’s progress in surface plasmon phenomena and its applications, with authoritative analytical reviews in sufficient detail to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential source of reference material for any lab working in the Plasmonics field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of Plasmonics will find it an invaluable resource.

  20. Deep reactive ion etching of auxetic structures: present capabilities and challenges

    International Nuclear Information System (INIS)

    Muslija, Alban; Díaz Lantada, Andrés

    2014-01-01

    Auxetic materials (or metamaterials) have negative Poisson ratios (NPR) and display the unexpected properties of lateral expansion when stretched, and equal and opposing densification when compressed. Such auxetic materials are being used more frequently in the development of novel products, especially in the fields of intelligent expandable actuators, shape-morphing structures and minimally invasive implantable devices. Although several micromanufacturing technologies have already been applied to the development of auxetic materials and devices, additional precision is needed to take full advantage of their special mechanical properties. In this study, we present a very promising approach for the development of auxetic materials and devices based on the use of deep reactive ion etching (DRIE). The process stands out for its precision and its potential applications to mass production. To our knowledge, it represents the first time this technology has been applied to the manufacture of auxetic materials with nanometric details. We take into account the present capabilities and challenges linked to the use of DRIE in the development of auxetic materials and auxetic-based devices. (technical note)

  1. Effect of pore structure on the activated carbon's capability to sorb airborne methylradioiodine

    International Nuclear Information System (INIS)

    Juhola, A.J.; Friel, J.V.

    1979-01-01

    A study was conducted to determine the effect pore structure of activated carbons has on their capabiity to sorp airborne methylradioiodine. Six de-ashed carbons of very diverse pore structure were selected for study. Batches of each were impregnated with (1) 4.3% I 2 , (2) 5.6% KI, (3) 2% KI, (4) 3% KI to 2% I 2 , (5) 2% I 2 , and (6) 3.4% KIO 3 . Some carbon was reserved for testing without impregnant. Standard procedures at ambient temperature and pressure were followed in the methyliodide testing, with some changes only made to meet the requirements of the specialized study. The surface area of the open-pore volume, for KI impregnated carbons, determined the sorptive efficiency. This relationship is expressed by the equation ln p = ln a - ks, where p is the fraction of methyliodide penetrating the bed and s the surface area. The quantity (a) is associated with the macropore properties, and deterines the capability of the carbon to sorb at very high humidites (> 95% RH). Constant k is to a large degree dependent on the mean diameter of the micropores. Elemental iodine impregnated carbons were considerably less effective than those impregnated with KI, and their sorptive of methyliodide did not follow the above equation. Their activity could be increased by a second impregnation with KOH. KI impregnated carbons lost their activity when treated with HCl on converting the Ki to I 2 . The conversion of KI to I 2 by acid gases in nuclear power plants offers an explanation for the cause of carbon aging

  2. The Physics and Applications of a 3D Plasmonic Nanostructure

    Science.gov (United States)

    Terranova, Brandon B.

    In this work, the dynamics of electromagnetic field interactions with free electrons in a 3D metallic nanostructure is evaluated theoretically. This dissertation starts by reviewing the relevant fundamentals of plasmonics and modern applications of plasmonic systems. Then, motivated by the need to have a simpler way of understanding the surface charge dynamics on complex plasmonic nanostructures, a new plasmon hybridization tree method is introduced. This method provides the plasmonicist with an intuitive way to determine the response of free electrons to incident light in complex nanostructures within the electrostatic regime. Next, a novel 3D plasmonic nanostructure utilizing reflective plasmonic coupling is designed to perform biosensing and plasmonic tweezing applications. By applying analytical and numerical methods, the effectiveness of this nanostructure at performing these applications is determined from the plasmonic response of the nanostructure to an excitation beam of coherent light. During this analysis, it was discovered that under certain conditions, this 3D nanostructure exhibits a plasmonic Fano resonance resulting from the interference of an in-plane dark mode and an out-of-plane bright mode. In evaluating this nanostructure for sensing changes in the local dielectric environment, a figure of merit of 68 is calculated, which is competitive with current localized surface plasmon resonance refractometric sensors. By evaluating the Maxwell stress tensor on a test particle in the vicinity of the nanostructure, it was found that under the right conditions, this plasmonic nanostructure design is capable of imparting forces greater than 10.5 nN on dielectric objects of nanoscale dimensions. The results obtained in these studies provides new routes to the design and engineering of 3D plasmonic nanostructures and Fano resonances in these systems. In addition, the nanostructure presented in this work and the design principles it utilizes have shown

  3. Planar self-aligned imprint lithography for coplanar plasmonic nanostructures fabrication

    KAUST Repository

    Wan, Weiwei

    2014-03-01

    Nanoimprint lithography (NIL) is a cost-efficient nanopatterning technology because of its promising advantages of high throughput and high resolution. However, accurate multilevel overlay capability of NIL required for integrated circuit manufacturing remains a challenge due to the high cost of achieving mechanical alignment precision. Although self-aligned imprint lithography was developed to avoid the need of alignment for the vertical layered structures, it has limited usage in the manufacture of the coplanar structures, such as integrated plasmonic devices. In this paper, we develop a new process of planar self-alignment imprint lithography (P-SAIL) to fabricate the metallic and dielectric structures on the same plane. P-SAIL transfers the multilevel imprint processes to a single-imprint process which offers higher efficiency and less cost than existing manufacturing methods. Such concept is demonstrated in an example of fabricating planar plasmonic structures consisting of different materials. © 2014 Springer-Verlag Berlin Heidelberg.

  4. Scalable, full-colour and controllable chromotropic plasmonic printing

    Science.gov (United States)

    Xue, Jiancai; Zhou, Zhang-Kai; Wei, Zhiqiang; Su, Rongbin; Lai, Juan; Li, Juntao; Li, Chao; Zhang, Tengwei; Wang, Xue-Hua

    2015-01-01

    Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber. More importantly, our approach also demonstrates controllable chromotropic capability, that is, the ability of reversible colour transformations. This chromotropic capability affords enormous potentials in building functionalized prints for anticounterfeiting, special label, and high-density data encryption storage. With such excellent performances in functional colour applications, this colour-printing approach could pave the way for plasmonic colour printing in real-world commercial utilization. PMID:26567803

  5. Fast optoelectric printing of plasmonic nanoparticles into tailored circuits

    Science.gov (United States)

    Rodrigo, José A.

    2017-04-01

    Plasmonic nanoparticles are able to control light at nanometre-scale by coupling electromagnetic fields to the oscillations of free electrons in metals. Deposition of such nanoparticles onto substrates with tailored patterns is essential, for example, in fabricating plasmonic structures for enhanced sensing. This work presents an innovative micro-patterning technique, based on optoelectic printing, for fast and straightforward fabrication of curve-shaped circuits of plasmonic nanoparticles deposited onto a transparent electrode often used in optoelectronics, liquid crystal displays, touch screens, etc. We experimentally demonstrate that this kind of plasmonic structure, printed by using silver nanoparticles of 40 nm, works as a plasmonic enhanced optical device allowing for polarized-color-tunable light scattering in the visible. These findings have potential applications in biosensing and fabrication of future optoelectronic devices combining the benefits of plasmonic sensing and the functionality of transparent electrodes.

  6. Novel plasmon nano-lasers

    NARCIS (Netherlands)

    Hill, M.T.; Marell, M.J.H.

    2010-01-01

    We will discuss some of the latest developments in metallic and plasmonic nano-lasers. Furthermore we will present our latest results on further miniaturization of electrically pumped plasmonic nano-lasers and also DFB Plasmon mode devices.

  7. Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Garnaes, J.

    The present study investigates the capabilities of the two employed processes, injection molding (IM) and injection compression molding (ICM) on replicating different channel cross sections. Statistical design of experiment was adopted to optimize replication quality of produced polymer parts wit...

  8. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    KAUST Repository

    Xu, Quan

    2016-11-29

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  9. Nanogap embedded silver gratings for surface plasmon enhanced fluorescence

    Science.gov (United States)

    Bhatnagar, Kunal

    Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal and dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures have shown to provide very efficient and extreme light concentration at the nano-scale in recent years. The enhanced electric field produced within a few hundred nanometers of these surfaces can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences and improving the qualities and capabilities of fluorescence based detectors and imaging equipment remains a big challenge for industry manufacturers. We report a novel fabrication technique for producing nano-gap embedded periodic grating substrates on the nanoscale using a store bought HD-DVD and conventional soft lithography procedures. Polymethylsilsesquioxane (PMSSQ) polymer is used as the ink for the micro-contact printing process with PDMS stamps obtained from the inexpensive HD-DVDs as master molds. Fluorescence enhancement factors of up to 118 times were observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for a robust and inexpensive optical system with applications such as low-level fluorescence based analyte detection, single molecule imaging, and surface enhanced Raman studies. Preliminary results in single molecule experiments have also been obtained by imaging individual 3 nm and 20 nm dye-doped nanoparticles attached to the silver plasmonic gratings using epi-fluorescence microscopy.

  10. Pin cushion plasmonic device for polarization beam splitting, focusing, and beam position estimation.

    Science.gov (United States)

    Lerman, Gilad M; Levy, Uriel

    2013-03-13

    Great hopes rest on surface plasmon polaritons' (SPPs) potential to bring new functionalities and applications into various branches of optics. In this paper, we demonstrate a pin cushion structure capable of coupling light from free space into SPPs, split them based on the polarization content of the illuminating beam of light, and focus them into small spots. We also show that for a circularly or randomly polarized light, four focal spots will be generated at the center of each quarter circle comprising the pin cushion device. Furthermore, following the relation between the relative intensity of the obtained four focal spots and the relative position of the illuminating beam with respect to the structure, we propose and demonstrate the potential use of our structure as a miniaturized plasmonic version of the well-known four quadrant detector. Additional potential applications may vary from multichannel microscopy and multioptical traps to real time beam tracking systems.

  11. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  12. Ultrasmooth Patterned Metals for Plasmonics and Metamaterials

    Science.gov (United States)

    Nagpal, Prashant; Lindquist, Nathan C.; Oh, Sang-Hyun; Norris, David J.

    2009-07-01

    Surface plasmons are electromagnetic waves that can exist at metal interfaces because of coupling between light and free electrons. Restricted to travel along the interface, these waves can be channeled, concentrated, or otherwise manipulated by surface patterning. However, because surface roughness and other inhomogeneities have so far limited surface-plasmon propagation in real plasmonic devices, simple high-throughput methods are needed to fabricate high-quality patterned metals. We combined template stripping with precisely patterned silicon substrates to obtain ultrasmooth pure metal films with grooves, bumps, pyramids, ridges, and holes. Measured surface-plasmon-propagation lengths on the resulting surfaces approach theoretical values for perfectly flat films. With the use of our method, we demonstrated structures that exhibit Raman scattering enhancements above 107 for sensing applications and multilayer films for optical metamaterials.

  13. Graphene-based hybrid plasmonic modulator

    International Nuclear Information System (INIS)

    Shin, Jin-Soo; Kim, Jin-Soo; Tae Kim, Jin

    2015-01-01

    A graphene-based hybrid plasmonic modulator is designed based on an asymmetric double-electrode plasmonic waveguide structure. The photonic device consists of a monolayer graphene, a thin metal strip, and a thin dielectric layer that is inserted between the grapheme and the metal strip. By electrically tuning the graphene’s refractive index, the propagation loss of the hybrid long-range surface plasmon polariton strip mode in the proposed graphene-based hybrid plasmonic waveguide is switchable, and hence the intensity of the guided modes is modulated. The highest modulation depth is observed at the graphene’s epsilon-near-zero region. The device characteristics are characterized over the entire C-band (1.530–1.565 μm). (paper)

  14. Application of STEM/EELS to Plasmon-Related Effects in Optical Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Camden, Jon [Univ. of Notre Dame, IN (United States). Dept. of Chemistry and Biochemistry

    2017-08-15

    In this project we employed EELS/STEM to understand the near-field enhancements that drive current applications of plasmonic nanostructures. In particular, we explore the connection between optical and electron excitation of plasmon modes in metallic nanostructures: (1) Probing the structural parameters and dielectric properties of multimetallic nanoparticles; (2) Characterization of the near-electric-field enhancements obtained upon excitation of the localized surface plasmon resonance and understand the connection between electron- and photon-driven plasmons; (3) Understanding the behavior of molecules in plasmon-enhanced fields which is essential to emerging applications such as plasmon-assisted catalysis and solar energy harvesting.

  15. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    Science.gov (United States)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  16. Experimental investigation of two-dimensional critical surface structure, stimulated Raman scattering, and two-plasmon decay instability. Annual report, January 1, 1981-April 30, 1982

    International Nuclear Information System (INIS)

    Wong, A.Y.; Eggleston, D.L.; Tanikawa, T.; Qian, S.J.

    1982-11-01

    Experimental observations of the space and time evolution of resonantly enhanced electrostatic electric fields and plasma density in cylindrical geometry demonstrate the development of two-dimensional caviton structure when an initial density perturbation is imposed on the plasma in the direction perpendicular to the driver field. This two-dimensional structure is observed after the development of profile modification and grows on the ion time scale. The existence of a large azimuthal electric field component is an observational signature of two-dimensional structure. Enhanced electric field maxima are found to be azimuthally correlated with the density minima. Both the density cavities and electric field peaks exhibit increased azimuthal location with the growth of two-dimensional structure. The two-dimensional development exhibits a strong dependence on both perturbation wavenumber and driver power. The related theoretical literature is reviewed and numerical, analytical, and qualitative hybrid models for a driven, two-dimensional, inhomogeneous plasma are presented. Preliminary work is presented in the following additional areas: weak magnetic field effects on critical surface physics, optical measurements of fast electron production, two-dimensional effects in microwave-plasma interactions, Langmuir wave trapping, stimulated Raman scattering and two-plasmon decay instability

  17. Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications

    Science.gov (United States)

    Al-mahmod, Md. Jubayer; Hyder, Rakib; Islam, Md Zahurul

    2017-07-01

    A nanosensor, based on a metal-insulator-metal (MIM) plasmonic ring resonator, is proposed for potential on-chip temperature sensing and its performance is evaluated numerically. The sensor components can be fabricated by using planar processes on a silicon substrate, making its manufacturing compatible to planar electronic fabrication technology. The sensor, constructed using silver as the metal rings and a thermo-optic liquid ethanol film between the metal layers, is capable of sensing temperature with outstanding optical sensitivity, as high as -0.53 nm/°C. The resonance wavelength is found to be highly sensitive to the refractive index of the liquid dielectric film. The resonance peak can be tuned according to the requirement of intended application by changing the radii of the ring resonator geometries in the design phase. The compact size, planar and silicon-based design, and very high resolutions- these characteristics are expected to make this sensor technology a preferred choice for lab-on-a-chip applications, as compared to other contemporary sensors.

  18. Plasmonics analysis of nanostructures for bioapplications

    Science.gov (United States)

    Xie, Qian

    Plasmonics, the science and technology of the plasmons, is a rapidly growing field with substantial broader impact in numerous different fields, especially for bio-applications such as bio-sensing, bio-photonics and photothermal therapy. Resonance effects associated with plasmatic behavior i.e. surface Plasmon resonance (SPR) and localize surface Plasmon resonance (LSPR), are of particular interest because of their strong sensitivity to the local environment. In this thesis, plasmonic resonance effects are discussed from the basic theory to applications, especially the application in photothermal therapy, and grating bio-sensing. This thesis focuses on modeling different metallic nanostructures, i.e. nanospheres, nanorods, core-shell nanoparticles, nanotori and hexagonal closed packed nanosphere structures, to determine their LSPR wavelengths for use in various applications. Experiments regarding photothermal therapy using gold nanorods are described and a comparison is presented with results obtained from simulations. Lastly, experiments of grating-based plasmon-enhanced bio-sensing are also discussed. In chapter one, the physics of plasmonics is reviewed, including surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR). In the section on surface plasmon resonance, the physics behind the phenomenon is discussed, and also, the detection methods and applications in bio-sensing are described. In the section on localized surface plasmon resonance (LSPR), the phenomenon is described with respect to sub wavelength metallic nanoparticles. In chapter two, specific plasmonic-based bio-applications are discussed including plasmonic and magneto-plasmonic enhanced photothermal therapy and grating-based SPR bio-sening. In chapter three, which is the most important part in the thesis, optical modeling of different gold nanostructures is presented. The modeling tools used in this thesis are Comsol and custom developed Matlab programs. In Comsol, the

  19. Plasmonic laser printing for functional metasurfaces

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Carstensen, M. S.; Vannahme, Christoph

    2016-01-01

    Recently, we show a method of color printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation that leads to melting and reshaping of the imprinted nanostructures [1]. Depending on the laser pulse energy density, different surface...... morphologies that support different plasmonic resonances can be created. This technology creates a laser printer capable of producing color images with a resolution up to 127,000 DPI. With tailored trains of laser pulses, multiple optical states are flatiron onto the metasurface film with a nanoscale...

  20. Plasmonic Metasurfaces for Coloration of Plastic Consumer Products

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik; Højlund-Nielsen, Emil; Christiansen, Alexander Bruun

    2014-01-01

    We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large-area struc......We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large......-area structurally colored plastic surfaces robust to daily life handling. We utilize the hybridization between LSPR modes in aluminum nanodisks and nanoholes to design and fabricate bright angle-insensitive colors that may be tuned across the entire visible spectrum....

  1. Harmonics radiation of graphene surface plasmon polaritons in terahertz regime

    Energy Technology Data Exchange (ETDEWEB)

    Li, D., E-mail: dazhi_li@hotmail.com [Institute for Laser Technology, Suita, Osaka 565-0871 (Japan); Wang, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Nakajima, M. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Hashida, M. [Advanced Research Center for Beam Science, ICR, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Wei, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205 (Japan)

    2016-06-03

    This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation. - Highlights: • An approach to extract terahertz radiation from graphene surface plasmon polaritons is presented. • A sidewall configuration is proposed to lift the surface plasmon mode. • Harmonics of surface plasmon polaritons are possible to radiate.

  2. Force Structure: Capabilities and Cost of Army Modular Force Remain Uncertain

    National Research Council Canada - National Science Library

    2006-01-01

    .... In short, because of uncertainties in cost, equipment, and personnel plans and the absence of a comprehensive approach for assessing modularity results, we do not believe decision makers have sufficient information to assess the capabilities, costs, and risks posed by the transformation to a modular force. I will now turn to our four main issues.

  3. IMPACT OF CO-CREATION ON INNOVATION CAPABILITY AND FIRM PERFORMANCE: A STRUCTURAL EQUATION MODELING

    Directory of Open Access Journals (Sweden)

    FATEMEH HAMIDI

    Full Text Available ABSTRACT Traditional firms used to design products, evaluate marketing messages and control product distribution channels with no costumer interface. With the advancements in interaction technologies, however, users can easily make impacts on firms; the interaction between costumers and firms is now in peak condition in comparison to the past and is no longer controlled by firms. Customers are playing two roles of value creators and consumers simultaneously. We examine the role of co-creation on the influences of innovation capability and firm performance. We develop hypotheses and test them using researcher survey data. The results suggest that implement of co-creation partially mediate the effect of process innovation capability. We discuss the implications of these findings for research and practice on the depict and implement of unique value co-creation model.

  4. The financial and structural capabilities of key infrastructure sectors in Serbia

    Directory of Open Access Journals (Sweden)

    Malinić Dejan

    2012-01-01

    Full Text Available Experts and economic policy creators debate various economic growth rates without a direct insight into the capabilities of the different economic sectors motivated us to devote this paper to the research of key infrastructure sector capabilities, both in terms of the economic prosperity of the Serbian national economy and as a support for the development of other sectors. This paper examines the energy, transportation, and telecommunications sectors’ exposure to short-term and long-term risks, and assesses their financial strength, investment possibilities, and long-term profitability. We believe that the following results will be a valuable information input for making better strategic decisions and more expedient planning of economic sustainable growth.

  5. Development of a structural optimization capability for the aeroelastic tailoring of composite rotor blades with straight and swept tips

    Science.gov (United States)

    Friedmann, P. P.; Venkatesan, C.; Yuan, K.

    1992-01-01

    This paper describes the development of a new structural optimization capability aimed at the aeroelastic tailoring of composite rotor blades with straight and swept tips. The primary objective is to reduce vibration levels in forward flight without diminishing the aeroelastic stability margins of the blade. In the course of this research activity a number of complicated tasks have been addressed: (1) development of a new, aeroelastic stability and response analysis; (2) formulation of a new comprehensive sensitive analysis, which facilitates the generation of the appropriate approximations for the objective and the constraints; (3) physical understanding of the new model and, in particular, determination of its potential for aeroelastic tailoring, and (4) combination of the newly developed analysis capability, the sensitivity derivatives and the optimizer into a comprehensive optimization capability. The first three tasks have been completed and the fourth task is in progress.

  6. Long-range plasmonic waveguides with hyperbolic cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly...

  7. Plasmon band gap generated by intense ion acoustic waves

    International Nuclear Information System (INIS)

    Son, S.; Ku, S.

    2010-01-01

    In the presence of an intense ion acoustic wave, the energy-momentum dispersion relation of plasmons is strongly modified to exhibit a band gap structure. The intensity of an ion acoustic wave might be measured from the band gap width. The plasmon band gap can be used to block the nonlinear cascading channel of the Langmuir wave decay.

  8. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NARCIS (Netherlands)

    Vesseur, P.C.

    2011-01-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide

  9. Plasmonic enhancement of ultraviolet fluorescence

    Science.gov (United States)

    Jiao, Xiaojin

    Plasmonics relates to the interaction between electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures. Surface plasmons are collective electron oscillations at a metal surface, which can be manipulated by shape, texture and material composition. Plasmonic applications cover a broad spectrum from visible to near infrared, including biosensing, nanolithography, spectroscopy, optoelectronics, photovoltaics and so on. However, there remains a gap in this activity in the ultraviolet (UV, research. Motivating factors in the study of UV Plasmonics are the direct access to biomolecular resonances and native fluorescence, resonant Raman scattering interactions, and the potential for exerting control over photochemical reactions. This dissertation aims to fill in the gap of Plasmonics in the UV with efforts of design, fabrication and characterization of aluminium (Al) and magnesium (Mg) nanostructures for the application of label-free bimolecular detection via native UV fluorescence. The first contribution of this dissertation addresses the design of Al nanostructures in the context of UV fluorescence enhancement. A design method that combines analytical analysis with numerical simulation has been developed. Performance of three canonical plasmonic structures---the dipole antenna, bullseye nanoaperture and nanoaperture array---has been compared. The optimal geometrical parameters have been determined. A novel design of a compound bullseye structure has been proposed and numerically analyzed for the purpose of compensating for the large Stokes shift typical of UV fluorescence. Second, UV lifetime modification of diffusing molecules by Al nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ~3.5x have been observed for the high quantum yield (QY) laser dye p-terphenyl in a 60 nm diameter aperture with 50 nm undercut. Furthermore, quantum-yield-dependence of lifetime reduction has been

  10. Direct Photonic-Plasmonic Coupling and Routing in Single Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Rouxue; Pausauskie, Peter; Huang, Jiaxing; Yang, Piedong

    2009-10-20

    Metallic nanoscale structures are capable of supporting surface plasmon polaritons (SPPs), propagating collective electron oscillations with tight spatial confinement at the metal surface. SPPs represent one of the most promising structures to beat the diffraction limit imposed by conventional dielectric optics. Ag nano wires have drawn increasing research attention due to 2D sub-100 nm mode confinement and lower losses as compared with fabricated metal structures. However, rational and versatile integration of Ag nanowires with other active and passive optical components, as well as Ag nanowire based optical routing networks, has yet to be achieved. Here, we demonstrate that SPPs can be excited simply by contacting a silver nanowire with a SnO2 nanoribbon that serves both as an unpolarized light source and a dielectric waveguide. The efficient coupling makes it possible to measure the propagation-distance-dependent waveguide spectra and frequency-dependent propagation length on a single Ag nanowire. Furthermore, we have demonstrated prototypical photonic-plasmonic routing devices, which are essential for incorporating low-loss Ag nanowire waveguides as practical components into high-capacity photonic circuits.

  11. Structural Modifications of Continuous Aerogel Films for Low-power, High Performance Sensing Capabilities

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent work has found that TiO2 nanorods and nanowires can be grown from a high-surface area, highly porous TiO2 ambiently-dried aerogel structure through varying...

  12. THE INFLUENCE OF PLASMONIC AND DIELECTRIC INCLUSIONS ON ANTIREFLECTIVE PROPERTIES OF HOMOGENEOUS COATINGS FOR SILICON PHOTOVOLTAIC STRUCTURES

    Directory of Open Access Journals (Sweden)

    K. V. Baryshnikova

    2015-09-01

    Full Text Available Subject of Study. Theoretical analysis of the efficiency for the antireflective coatings based on plasmonic silver (Ag and dielectric silicon (Si nanoparticles is presented. We observe the increase of light absorption in the active layer, which is related to the optical resonant properties of considered nanoparticles. Characteristic property of the studied composite layer is its ability to combine the functions of electric contacts and anti-reflective coating. Method. Numerical calculations were performed in CST Microwave Studio with FDFD method (Finite Difference in Frequency Domain. The optical parameters of materials were extracted from the experimentally measured data available in literature. Geometrical parameters of composite layer – size and location of particles – were varied. Comparison of light absorption efficiency for different coatings on top of the active layer is presented: the homogeneous Indium Tin Oxide (ITO layer, ITO layer with the spherical nanoparticle inclusions on the ITO surface, ITO layer with spherical nanoparticle bulk inclusions. Periodical lattices of particles with sizes of range between 15 and 80 nm were considered. Nanoparticles of this size have dominant dipole response. Main Results. Numerical calculations have shown that nanoparticle inclusions cause significant deformation of the absorption spectra with appearing of resonant pecularities in the wavelength range equal to 300-800 nm. It originates from the nanoparticle resonant features, which are similar to the resonant features of isolated nanoparticles. Absorption in the active layer decreases sharply at the resonant wavelength. Resonant response of nanoparticles placed on the ITO surface differs significally from the isolated ones: the resonant frequency and Q-factor decrease. It was shown that absorption in the active layer decreases by 25 % when the size of Ag and Si particles increases. Ag nanoparticles, placed in ITO layer on top of the active layer

  13. Plasmonics theory and applications

    CERN Document Server

    Shahbazyan, Tigran V

    2014-01-01

    This contributed volume summarizes recent theoretical developments in plasmonics and its applications in physics, chemistry, materials science, engineering, and medicine. It focuses on recent advances in several major areas of plasmonics including plasmon-enhanced spectroscopies, light scattering, many-body effects, nonlinear optics, and ultrafast dynamics. The theoretical and computational methods used in these investigations include electromagnetic calculations, density functional theory calculations, and nonequilibrium electron dynamics calculations. The book presents a comprehensive overview of these methods as well as their applications to various current problems of interest.

  14. Robust plasmonic substrates

    DEFF Research Database (Denmark)

    Kostiučenko, Oksana; Fiutowski, Jacek; Tamulevicius, Tomas

    2014-01-01

    Robustness is a key issue for the applications of plasmonic substrates such as tip-enhanced Raman spectroscopy, surface-enhanced spectroscopies, enhanced optical biosensing, optical and optoelectronic plasmonic nanosensors and others. A novel approach for the fabrication of robust plasmonic...... substrates is presented, which relies on the coverage of gold nanostructures with diamond-like carbon (DLC) thin films of thicknesses 25, 55 and 105 nm. DLC thin films were grown by direct hydrocarbon ion beam deposition. In order to find the optimum balance between optical and mechanical properties...

  15. Plasmonics based micro/nano manufacturing

    Science.gov (United States)

    Garner, Quincy

    Since the advent of the Information Age, there has been an ever growing demand to continually shrink and reduce the cost of semiconductor products. To meet this demand, a great amount of research has been done to improve our current micro/nano manufacturing processes and develop the next generation of semiconductor fabrication techniques. High throughput, low cost, smaller features, high repeatability, and the simplification of the manufacturing processes are all targets that researchers continually strive for. To this day, there are no perfect systems capable of simultaneously achieving all of these targets. For this reason, much research time is spent improving and developing new techniques in hopes of developing a system that will incorporate all of these targets. While there are numerous techniques being investigated and developed every year, one of the most promising areas of research that may one day be capable of achieving our desired targets is plasmonics. Plasmonics, or the study of the free electron oscillations in metals, is the driving phenomena in the applications reported in this paper. In chapter 2, the formation of ordered gold nanoparticles on a silicon substrate through the use of energetic surface plasmons is reported. Utilizing a gold/alumina nano-hole antenna and 1064 nm Nd:YAG laser system, semi-periodic gold nanoparticles were deposited onto the surface of a silicon substrate. The novel technique is simpler, faster, and safer than any known gold nanoparticle deposition technique reported in literature. The implementation of this technique has potential wide-ranging applications in photovoltaic cells, medical products, and many others. In chapter 3, a low cost lithography technique utilizing surface plasmons is reported. In this technique, a plasmonic photomask is created by coating a pre-made porous alumina membrane with a thin aluminum layer. A coherent, 337 nm UV laser source is used to expose the photomask and excite surface plasmons along

  16. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage.

    Science.gov (United States)

    Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh

    2016-08-10

    This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  17. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2016-08-01

    Full Text Available This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs and an indium-tin-oxide (ITO electrode with periodic holes (perforations under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  18. Plasmonic vortex generator without polarization dependence

    Science.gov (United States)

    Wang, Han; Liu, Lixia; Liu, Chunxiang; Li, Xing; Wang, Shuyun; Xu, Qing; Teng, Shuyun

    2018-03-01

    In view of the limitations of vortex generators with polarization dependence at present, we propose a plasmonic vortex generator composed of rectangular holes etched in silver film, in which the optical vortex can be generated under arbitrary linearly polarized light illumination. Two sets of rectangular holes are arranged equidistantly on a circle and rotate in postulate directions. Theoretical analysis provides the design principle for the vortex generator, and numerical simulations give guidance on designating the vortex generator parameters. Experimental measurements verify the performance of the proposed vortex generator. Moreover, two alternative structures for the generation of a plasmonic vortex are also provided in this paper. The resulting perfect vortex, compact structure and flexible illumination conditions will lead to wide applications of this plasmonic vortex generator.

  19. A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Vial, A.; Dridi, M.; Cunff, L. le [Universite de Technologie de Troyes, Institut Charles Delaunay, CNRS UMR 6279, Laboratoire de Nanotechnologie et d' Instrumentation Optique, 12, rue Marie Curie, BP-2060, Troyes Cedex (France); Laroche, T. [Universite de Franche-Comte, Institut FEMTO-ST, CNRS UMR 6174, Departement de Physique et de Metrologie des Oscillateurs, Besancon Cedex (France)

    2011-06-15

    We present FDTD simulations results obtained using the Drude critical points model. This model enables spectroscopic studies of metallic structures over wider wavelength ranges than usually used, and it facilitates the study of structures made of several metals. (orig.)

  20. Identification of the smallest structure capable of evoking opsonophagocytic antibodies against Streptococcus pneumoniae type 14

    NARCIS (Netherlands)

    Safari, D.; Dekker, H.A.T.; Joosten, J.A.; Michalik, D.; de Souza, A.C.; Adamo, R.; Lahmann, M.; Oscarson, S.; Kamerling, J.P.|info:eu-repo/dai/nl/070433941; Snippe, H.

    2008-01-01

    Synthetic overlapping oligosaccharide fragments of Streptococcus pneumoniae serotype 14 capsular polysaccharide (Pn14PS), {6)-[β-D-Galp-(14)-]β-D-GlcpNAc-(13)-β-D-Galp-(14)-β-D-Glcp-(1}n, were conjugated to CRM197 protein and injected into mice to determine the smallest immunogenic structure. The

  1. Strong population genetic structure and larval dispersal capability of the burrowing ghost shrimp (Neotrypaea californiensis)

    Science.gov (United States)

    The burrowing ghost shrimp, Neotrypaea californiensis, is a vital member of the estuarine benthic community. Dense populations of shrimp are found in the major estuaries of Washington and Oregon. Our study determines the genetic structure of shrimp populations in order to gain ...

  2. STRUCTURAL CAPABILITIES OF NO-DIG MANHOLE REHABILITATION (WE&RF Report INFR1R12)

    Science.gov (United States)

    Failure of a manhole may have catastrophic consequences such as a sinkhole. At a minimum, wastewater flow will be blocked and flow upstream of the manhole will backup, causing a sanitary sewer overflow (SSO). Accordingly, the structural condition of a manhole is an important perf...

  3. THE ANTECEDENTS OF ORGANIZATIONAL AGILITY: ORGANIZATIONAL STRUCTURE, DYNAMIC CAPABILITIES AND CUSTOMER ORIENTATION

    OpenAIRE

    Kanten, Pelin; Kanten, Selahattin; Keceli, Munevver; Zaimoglu, Zuhal

    2017-01-01

    This study aims to investigate someantecedents of organizational agility. In the literature, it is seen thatstudies suggest that some organizational factors provide to maintainorganizational agility. Therefore, organizational structure, dynamic capabilitiesand customer orientation are considered as predictors of organizational agilitywithin the scope of the study. For this purpose, the data which were collectedfrom 176 employees in the retailing industry by the survey method were analyzedusin...

  4. IMPROVING STRUCTURAL INTEGRITY MONITORING CAPABILITY FOR WATER MAINS: COLLABORATION EFFORTS AND OPPORTUNITIES

    Science.gov (United States)

    The structural integrity of the approximately 1,000,000 miles of U.S. water mains is important to both immediate and long-term drinking water quality and availability. As pipes wear out, leaks and main breaks increase, as well as the associated occurrences of water loss and low-...

  5. Role and capabilities of financial structures in development of fuel-power complex in Russia

    International Nuclear Information System (INIS)

    Nevzlin, L.B.; Kukin, N.V.

    1993-01-01

    The problems of financing the enterprises of the fuel-power complex (FPC) in Russia nowadays are discussed. The causes of the FPC hard financial situation are analyzed. The forms and methods of investing activity financing and participation of financial structures in stock-holding of FPC enterprises, which can improve the present situation, are shown

  6. Color display and encryption with a plasmonic polarizing metamirror

    Directory of Open Access Journals (Sweden)

    Song Maowen

    2018-01-01

    Full Text Available Structural colors emerge when a particular wavelength range is filtered out from a broadband light source. It is regarded as a valuable platform for color display and digital imaging due to the benefits of environmental friendliness, higher visibility, and durability. However, current devices capable of generating colors are all based on direct transmission or reflection. Material loss, thick configuration, and the lack of tunability hinder their transition to practical applications. In this paper, a novel mechanism that generates high-purity colors by photon spin restoration on ultrashallow plasmonic grating is proposed. We fabricated the sample by interference lithography and experimentally observed full color display, tunable color logo imaging, and chromatic sensing. The unique combination of high efficiency, high-purity colors, tunable chromatic display, ultrathin structure, and friendliness for fabrication makes this design an easy way to bridge the gap between theoretical investigations and daily-life applications.

  7. Improved cladding nano-structured materials with self-repairing capabilities

    International Nuclear Information System (INIS)

    Popa-Simil, L.

    2012-01-01

    When designing nuclear reactors or the materials that go into them, one of the key challenges is finding materials that can withstand an outrageously extreme environment. In addition to constant bombardment by radiation, reactor materials may be subjected to extremes in temperature, physical stress, and corrosive conditions. A limitation in fuel burnup is and usage of the nuclear fuel material is related to the structural material radiation damage, that makes the fuel be removed with low-burnup and immobilized in the waste storage pools. The advanced burnup brings cladding material embitterment due to radiation damage effects corroborated with corrosion effects makes the fuel pellet life shorter. The novel nano-clustered structured sintered material may mitigate simultaneously the radiation damage and corrosion effects driving to more robust structural materials that may make the nuclear reactor safer and more reliable. The development of nano-clustered sinter alloys provides new avenues for further examination of the role of grain boundaries and engineered material interfaces in self-healing of radiation-induced defects driving to the design of highly radiation-tolerant materials for the next generation of nuclear energy applications. (authors)

  8. Topographical coloured plasmonic coins

    OpenAIRE

    Guay, Jean-Michel; Lesina, Antonino Calà; Côté, Guillaume; Charron, Martin; Ramunno, Lora; Berini, Pierre; Weck, Arnaud

    2016-01-01

    Plasmonic resonances in metallic nanoparticles have been used since antiquity to colour glasses. The use of metal nanostructures for surface colourization has attracted considerable interest following recent developments in plasmonics. However, current top-down colourization methods are not ideally suited to large-scale industrial applications. Here we use a bottom-up approach where picosecond laser pulses can produce a full palette of non-iridescent colours on silver, gold, copper and alumin...

  9. Comparison of structural health assessment capabilities in epoxy – carbon black and epoxy – carbon nanotube nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Inam

    2014-01-01

    Full Text Available A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB and epoxy – 0.2 vol% carbon nanotube (CNT nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by indentation. For comprehensive comparison, fracture toughness and percolation threshold were analysed as well. Because of the systematically induced indentation damage, a sharp decrease of 89% was observed in the electrical conductivity of epoxy – CNT nanocomposite as compared to 25% in the electrical conductivity of epoxy – CB nanocomposite. CNTs impart superior damage sensing capability in brittle nanocomposite structures, in comparison to CB, due to their high aspect ratio (fibrous nature and high electrical conductivity.

  10. Hot Charge Carrier Transmission from Plasmonic Nanostructures

    Science.gov (United States)

    Christopher, Phillip; Moskovits, Martin

    2017-05-01

    Surface plasmons have recently been harnessed to carry out processes such as photovoltaic current generation, redox photochemistry, photocatalysis, and photodetection, all of which are enabled by separating energetic (hot) electrons and holes—processes that, previously, were the domain of semiconductor junctions. Currently, the power conversion efficiencies of systems using plasmon excitation are low. However, the very large electron/hole per photon quantum efficiencies observed for plasmonic devices fan the hope of future improvements through a deeper understanding of the processes involved and through better device engineering, especially of critical interfaces such as those between metallic and semiconducting nanophases (or adsorbed molecules). In this review, we focus on the physics and dynamics governing plasmon-derived hot charge carrier transfer across, and the electronic structure at, metal-semiconductor (molecule) interfaces, where we feel the barriers contributing to low efficiencies reside. We suggest some areas of opportunity that deserve early attention in the still-evolving field of hot carrier transmission from plasmonic nanostructures to neighboring phases.

  11. Microgrooved plasmonic bottle microresonator

    Science.gov (United States)

    Mohd Nasir, M. N.; Ding, M.; Murugan, G. S.; Zervas, M. N.

    2015-06-01

    In this paper, we demonstrate an enhancement to SPW cavity through the incorporation of high-Q WGM bottle microresonator (BMR) with surface microgrooves. A standard BMR fabricated through the “soften-and-compress” technique with initial length of 280 μm, bottle diameter of 187 μm and stem diameter of 125 μm was utilized in the experiment for supporting WGMs. Thin gold film was deposited on top of the BMR for generating SPWs. 21 microgrooves was then inscribed on the metal surface of the BMR along the azimuthal direction with 10 μm length, 485 nm width, 6 μm depth and pitch of 1.5 μm. Due to surface curvature, the gold film only covered half of the BMR with a characteristic meniscus shape and maximum thickness of 30 nm. The meniscus provides appropriately tapered metal edges that facilitate the adiabatic transformation of BMR WGMs to SPWs and vice-versa. Lorentzian shape-line fit performed on the TM excited resonances show that plasmonic Q values in excess of 4000 could be achieved from such structure with ∼ 25% coupling efficiency.

  12. Capability of ds-DNA duplex structure in growing fluorescent silver nanoclusters

    International Nuclear Information System (INIS)

    Wu, Tao; Lin, Fan; Hu, Yuehua; Wang, Ying; Zhou, Xiaoshun; Shao, Yong

    2016-01-01

    Silver nanoclusters (AgNCs) have attracted wide interests in variant fields due to their easy synthesis and practical tunability in fluorescence properties. DNA has been generally used as the host to grow AgNCs due to the sequence-dependent fluorescence behavior. Actually, in such DNA, various ss-DNA segments that are structurally confined by the rigid ds-DNA counterparts have been used as the AgNCsГ—Ві growth sites. However, whether the ds-DNA structure plays somewhat role in AgNCsГ—Ві creation has not been well elucidated. Herein, we found that ds-DNA can also accommodate the growth of fluorescent AgNCs. The fluorescent AgNCs grown on ds-DNA should be separated each other and the G/C base pairs with right context sequences are the growth sites of fluorescent AgNCs. The intermediate A/T base pair among the continuous G/C ones seems to quench the growth of fluorescent AgNCs. For the repeat sequences, the fluorescence band position of AgNCs is not changed but the intensity is enhanced upon increasing the ds-DNA length, which is different from the results obtained with the previously reported ss-DNAs. AgNCs should be grown on the ds-DNA major groove, as convinced by the cytosine methylation experiment. Our work demonstrates that besides the ss-DNA role in defining AgNCs, one should also take into account the critical role of the ds-DNA segment in tuning the AgNCsГ—Ві fluorescence property.

  13. Electron energy-loss spectroscopy of branched gap plasmon resonators

    DEFF Research Database (Denmark)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen

    2016-01-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale......, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons...... in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron...

  14. Hybrid plasmonic systems: from optical transparencies to strong coupling and entanglement

    Science.gov (United States)

    Gray, Stephen K.

    2018-02-01

    Classical electrodynamics and quantum mechanical models of quantum dots and molecules interacting with plasmonic systems are discussed. Calculations show that just one quantum dot interacting with a plasmonic system can lead to interesting optical effects, including optical transparencies and more general Fano resonance features that can be tailored with ultrafast laser pulses. Such effects can occur in the limit of moderate coupling between quantum dot and plasmonic system. The approach to the strong coupling regime is also discussed. In cases with two or more quantum dots within a plasmonic system, the possibility of quantum entanglement mediated through the dissipative plasmonic structure arises.

  15. Capability Paternalism

    NARCIS (Netherlands)

    Claassen, R.J.G.|info:eu-repo/dai/nl/269266224

    A capability approach prescribes paternalist government actions to the extent that it requires the promotion of specific functionings, instead of the corresponding capabilities. Capability theorists have argued that their theories do not have much of these paternalist implications, since promoting

  16. Communication network structure parameters and new knowledge generation capabilities in companies engaged in industry control system engineering projects

    Directory of Open Access Journals (Sweden)

    Titov Sergei

    2016-01-01

    Full Text Available Engineering companies engaged in business of industry control systems need to manage the processes of generation of innovations within and across their projects. Generation and diffusion of innovations materialize through the communication networks of project teams. Therefore, it is possible to hypothesize that the characteristics of communication networks play role in generation of new knowledge. With the data from 14 industry control system projects of a Russian engineering company the communication network structure characteristics were calculated and the analysis of correlation between these characteristics and knowledge generation capabilities was performed. As a result correlation between centralization of communication and the number of new technical solutions developed in projects was discovered.

  17. Plasmonic-photonic crystal coupled nanolaser

    International Nuclear Information System (INIS)

    Zhang, Taiping; Callard, Ségolène; Jamois, Cécile; Chevalier, Céline; Feng, Di; Belarouci, Ali

    2014-01-01

    We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. For this purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using a fully top-down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices. (paper)

  18. Enhanced Nonlinear Effects in Metamaterials and Plasmonics

    Directory of Open Access Journals (Sweden)

    C. Argyropoulos

    2012-07-01

    Full Text Available In this paper we provide an overview of the anomalous and enhanced nonlinear effects available when optical nonlinear materials are combined inside plasmonic waveguide structures. Broad, bistable and all-optical switching responses are exhibited at the cut-off frequency of these waveguides, characterized by reduced Q-factor resonances. These phenomena are due to the large field enhancement obtained inside specific plasmonic gratings, which ensures a significant boosting of the nonlinear operation. Several exciting applications are proposed, which may potentially lead to new optical components and add to the optical nanocircuit paradigm.

  19. Surface plasmon polariton nanocavity with ultrasmall mode volume

    Science.gov (United States)

    Yue, Wencheng; Yao, Peijun; Luo, Huiwen; Liu, Wen

    2017-08-01

    We present a plasmonic nanocavity structure, consisting of a gallium phosphide (GaP) cylinder penetrating into a rectangular silver plate, and study its properties using a finite element method (FEM). An ultrasmall mode volume of 1.5×10-5[λ_0/(2n)]3 is achieved, which is more than 200 times smaller than the previous ultrasmall mode volume plasmonic nanodisk resonators. Meanwhile, the quality factor of the plasmonic nanocavity is about 38.2 and is over two times greater than the ultrasmall mode volume plasmonic nanodisk resonators. Compared to the aforementioned plasmonic nanodisk resonators, a more than one-order of magnitude larger Purcell factor of 1.2×104 is achieved. We determined the resonant modes of our plasmonic nanocavity are dipolar plasmon modes by analyzing the electric field properties. In addition, we investigate the dependence of the optical properties on the refractive index of the cavity material and discuss the effect of including the silica (SiO2) substrate. Our work provides an alternative approach to achieve ultrasmall plasmonic nanocavity of interest in applications to many areas of research, including device physics, nonlinear optics and quantum optics.

  20. Analytical capability for predicting structural response of NPP concrete containments to severe loads

    International Nuclear Information System (INIS)

    Planas, J.; Guinea, G.; Trbojevic, V.M.; Marti, J.; Martinez, F.; Cortes, P.

    1989-12-01

    A survey has been conducted on the state-of-the-art of analytical techniques for predicting the structural response of concrete containment buildings under severe accident conditions. The validity of inelastic analysis is often limited by the inadequacy of the material models adopted. This is specially true in the case of materials which undergo localization phenomena in the course of the deformation process. Because of this, the Joint Research Centre at Ispra has given a high priority to the review of existing constitutive models for concrete. Such models must be able to describe concrete behaviour with and without steel reinforcement across the complete stress range, from initial elastic behaviour to and beyond the point of failure. For reinforced and prestressed concrete, segregated models (where concrete and steel are independently simulated) are preferred. A review of existing constitutive models for mass concrete has been conducted. The review focused on necessary features for describing the near-peak and post-peak stages of deformation. Special attention was dedicated to the localization of strains in tension and the post-peak softening behaviour. Existing models for representing the concrete steel bond were also reviewed. These models are still relatively simplistic and incorporate seldom a number of effects of considerable importance: sustained, dynamic and cyclic loading, environmental effects, etc. Finally, the computational procedures currently available for modelling problems involving the ultimate capacity of concrete containments have also been reviewed. This includes methodologies for modelling amongst other mass concrete, cracking procedures, bond behaviour, in existing computer codes

  1. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities

    Science.gov (United States)

    Balakireva, Anastasia V.; Zamyatnin, Andrey A.

    2016-01-01

    Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders. PMID:27763541

  2. Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges

    International Nuclear Information System (INIS)

    Lantada, Andrés Díaz; De Blas Romero, Adrián; Schwentenwein, Martin; Jellinek, Christopher; Homa, Johannes

    2016-01-01

    Auxetic metamaterials are known for having a negative Poisson’s ratio (NPR) and for displaying the unexpected properties of lateral expansion when stretched and densification when compressed. Even though a wide set of micro-manufacturing resources have been used for the development of auxetic metamaterials and related devices, additional precision and an extension to other families of materials is needed for their industrial expansion. In addition, their manufacture using ceramic materials is still challenging. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of lithography-based ceramic manufacturing. The process stands out for its precision and complex three-dimensional geometries attainable, without the need of supporting structures, and for enabling the manufacture of ceramic auxetics with their geometry controlled from the design stage with micrometric precision. To our knowledge it represents the first example of application of this technology to the manufacture of auxetic geometries using ceramic materials. We have used a special three-dimensional auxetic design whose remarkable NPR has been previously highlighted. (paper)

  3. Numerical Investigation of Pulse Wave Propagation in Arteries Using Fluid Structure Interaction Capabilities

    Directory of Open Access Journals (Sweden)

    Hisham Elkenani

    2017-01-01

    Full Text Available The aim of this study is to present a reliable computational scheme to serve in pulse wave velocity (PWV assessment in large arteries. Clinicians considered it as an indication of human blood vessels’ stiffness. The simulation of PWV was conducted using a 3D elastic tube representing an artery. The constitutive material model specific for vascular applications was applied to the tube material. The fluid was defined with an equation of state representing the blood material. The onset of a velocity pulse was applied at the tube inlet to produce wave propagation. The Coupled Eulerian-Lagrangian (CEL modeling technique with fluid structure interaction (FSI was implemented. The scaling of sound speed and its effect on results and computing time is discussed and concluded that a value of 60 m/s was suitable for simulating vascular biomechanical problems. Two methods were used: foot-to-foot measurement of velocity waveforms and slope of the regression line of the wall radial deflection wave peaks throughout a contour plot. Both methods showed coincident results. Results were approximately 6% less than those calculated from the Moens-Korteweg equation. The proposed method was able to describe the increase in the stiffness of the walls of large human arteries via the PWV estimates.

  4. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities

    Directory of Open Access Journals (Sweden)

    Anastasia V. Balakireva

    2016-10-01

    Full Text Available Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD, allergy to wheat and non-celiac gluten sensitivity (NCGS. Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD, which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders.

  5. Improved understanding of physics processes in pedestal structure, leading to improved predictive capability for ITER

    International Nuclear Information System (INIS)

    Groebner, R.J.; Snyder, P.B.; Leonard, A.W.; Chang, C.S.; Maingi, R.; Boyle, D.P.; Diallo, A.; Hughes, J.W.; Davis, E.M.; Ernst, D.R.; Landreman, M.; Xu, X.Q.; Boedo, J.A.; Cziegler, I.; Diamond, P.H.; Eldon, D.P.; Callen, J.D.; Canik, J.M.; Elder, J.D.; Fulton, D.P.

    2013-01-01

    Joint experiment/theory/modelling research has led to increased confidence in predictions of the pedestal height in ITER. This work was performed as part of a US Department of Energy Joint Research Target in FY11 to identify physics processes that control the H-mode pedestal structure. The study included experiments on C-Mod, DIII-D and NSTX as well as interpretation of experimental data with theory-based modelling codes. This work provides increased confidence in the ability of models for peeling–ballooning stability, bootstrap current, pedestal width and pedestal height scaling to make correct predictions, with some areas needing further work also being identified. A model for pedestal pressure height has made good predictions in existing machines for a range in pressure of a factor of 20. This provides a solid basis for predicting the maximum pedestal pressure height in ITER, which is found to be an extrapolation of a factor of 3 beyond the existing data set. Models were studied for a number of processes that are proposed to play a role in the pedestal n e and T e profiles. These processes include neoclassical transport, paleoclassical transport, electron temperature gradient turbulence and neutral fuelling. All of these processes may be important, with the importance being dependent on the plasma regime. Studies with several electromagnetic gyrokinetic codes show that the gradients in and on top of the pedestal can drive a number of instabilities. (paper)

  6. Refracting surface plasmon polaritons with nanoparticle arrays

    DEFF Research Database (Denmark)

    Radko, I.P.; Evlyukhin, A.B.; Boltasseva, Alexandra

    2008-01-01

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive...... to design nanoparticle arrays for specific applications requiring in-plane SPP manipulation....

  7. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously...

  8. Plasmonic nanospherical dimers for color pixels

    KAUST Repository

    Alrasheed, Salma

    2018-04-20

    Display technologies are evolving more toward higher resolution and miniaturization. Plasmonic color pixels can offer solutions to realize such technologies due to their sharp resonances and selective scattering and absorption at particular wavelengths. Metal nanosphere dimers are capable of supporting plasmon resonances that can be tuned to span the entire visible spectrum. In this article, we demonstrate numerically bright color pixels that are highly polarized and broadly tuned using periodic arrays of metal nanosphere dimers on a glass substrate. We show that it is possible to obtain RGB pixels in the reflection mode. The longitudinal plasmon resonance of nanosphere dimers along the axis of the dimer is the main contributor to the color of the pixel, while far-field diffractive coupling further enhances and tunes the plasmon resonance. The computational method used is the finite-difference time-domain method. The advantages of this approach include simplicity of the design, bright coloration, and highly polarized function. In addition, we show that it is possible to obtain different colors by varying the angle of incidence, the periodicity, the size of the dimer, the gap, and the substrate thickness.

  9. Searching for better plasmonic materials

    DEFF Research Database (Denmark)

    West, P.; Ishii, S.; Naik, G.

    2010-01-01

    Plasmonics is a research area merging the fields of optics and nanoelectronics by confining light with relatively large free-space wavelength to the nanometer scale - thereby enabling a family of novel devices. Current plasmonic devices at telecommunication and optical frequencies face significan...... for realizing optimal plasmonic material properties for specific frequencies and applications, thereby providing a reference for those searching for better plasmonic materials....

  10. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  11. Kozloduy Nuclear Power Plant (Unit 1 and 2). Proposed modifications to increase the seismic capability of equipment and main structures

    International Nuclear Information System (INIS)

    Ordonez Villalobos, A.; Monette, P.R.

    1993-01-01

    Within the framework of the European Community's PHARE Programme of improvement to facilities, their operating systems, equipment and buildings of the Kozloduy NPP in Bulgaria, plant safety during seismic events is considered to be an issue of overriding importance, especially in view of the earthquakes the region suffered during the last decade. Westinghouse Energy Systems International (WESI) and Empresarios Agrupados (EA) have initiated an intensive programme for physical upgrading of equipment with a view to augmenting its seismic capability and, at the same time, to studying design modifications in the diesel-generator buildings, pump house and main building structures (turbines, electrical building). The implementation of these modifications requires an in situ inspection of the real conditions of the various elements, analyses, conceptual design and detail engineering, all of which has to be done in short periods of time using resources available at the plant. This activity is performed by the companies mentioned above, with the collaboration of two engineering companies, Energoproekt of Bulgaria and INITEC of Spain. This paper describes the activities developed and the treatment given to the various aspects of improvement of the seismic capability of equipment and structures. (author)

  12. Plasmon-exciton-polariton lasing

    NARCIS (Netherlands)

    Ramezani, M.; Halpin, A.; Fernández-Dominguez, A.I.; Feist, J.; Rodriguez, S.R.K.; Gómez-Rivas, J.; Garcia-Vidal, F.J.

    2016-01-01

    Strong coupling of Frenkel excitons with surface plasmons leads to the formation of bosonic quasi-particles known as plasmon-exciton-polaritons (PEPs).Localized surface plasmons in nanoparticles are lossy due to radiative and nonradiative decays, which has hampered the realization of polariton

  13. Photoluminescence emission from Alq3 organic layer in metal–Alq3–metal plasmonic structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bohr-Ran; Liao, Chung-Chi [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Fan, Wan-Ting [Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, Tao-Yuan 333, Taiwan (China); Wu, Jin-Han; Chen, Cheng-Chang; Lin, Yi-Ping; Li, Jung-Yu; Chen, Shih-Pu [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute (ITRI), 195, Sec. 4, Chung-Hsin Road, Chutung 310, Taiwan (China); Ke, Wen-Cheng [Department of Mechanical Engineering, Yuan Ze University, Tao-Yuan 320, Taiwan (China); Chen, Nai-Chuan, E-mail: ncchen001@mail.cgu.edu.tw [Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, Tao-Yuan 333, Taiwan (China)

    2014-06-01

    The emission properties of an organic layer embedded in a metal–organic–metal (MOM) structure were investigated. A partially radiative odd-SPW as well as a non-radiative even-SPW modes are supported by hybridization of the SPW modes on the opposite organic/metal interface in the structure. Because of the competition by this radiative SPW, the population of excitons that recombine to form non-radiative SPW should be reduced. This may account for why the photoluminescence intensity of the MOM sample is higher than that of an organic–metal sample even though the MOM sample has an additional metal layer that should intuitively act as a filter.

  14. Real-time sensing of surface-bound fibrinogen and fibrin interactions using spectroscopy of guided modes in optical waveguide structures, surface plasmon resonance, and monoclonal antibodies

    Czech Academy of Sciences Publication Activity Database

    Dyr, J. E.; Tichý, Ivo; Jiroušková, M.; Tobiška, Petr; Slavík, Radan; Homola, Jiří; Suttnar, J.

    1998-01-01

    Roč. 9, č. 7 (1998), s. 675 ISSN 0957-5235 R&D Projects: GA ČR GA303/96/1358 Institutional research plan: CEZ:AV0Z2067918 Keywords : surface plasmons * biosensors * biomedical engineering Subject RIV: CE - Biochemistry

  15. Single Nanoparticle Plasmonic Sensors

    Directory of Open Access Journals (Sweden)

    Manish Sriram

    2015-10-01

    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  16. Quantum theory of plasmon

    International Nuclear Information System (INIS)

    Nguyen, Van Hieu; Nguyen, Bich Ha

    2014-01-01

    Since very early works on plasma oscillations in solids, it was known that in collective excitations (fluctuations of the charge density) of the electron gas there exists the resonance appearing as a quasiparticle of a special type called the plasmon. The elaboration of the quantum theory of plasmon in the framework of the canonical formalism is the purpose of the present work. We start from the establishment of the Lagrangian of the system of itinerant electrons in metal and the definition of the generalized coordinates and velocities of this system. Then we determine the expression of the Hamiltonian and perform the quantization procedure in the canonical formalism. By means of this rigorous method we can derive the expressions of the Hamiltonians of the interactions of plasmon with photon and all quasiparticles in solid from the first principles. (papers)

  17. Plasmonics of magnetic and topological graphene-based nanostructures

    Science.gov (United States)

    Kuzmin, Dmitry A.; Bychkov, Igor V.; Shavrov, Vladimir G.; Temnov, Vasily V.

    2018-02-01

    Graphene is a unique material in the study of the fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner, the electrodynamic properties of graphene can be varied from highly conductive to dielectric. Graphene supports strongly confined, propagating surface plasmon polaritons (SPPs) in a broad spectral range from terahertz to mid-infrared frequencies. It also possesses a strong magneto-optical response and thus provides complimentary architectures to conventional magneto-plasmonics based on magneto-optically active metals or dielectrics. Despite a large number of review articles devoted to plasmonic properties and applications of graphene, little is known about graphene magneto-plasmonics and topological effects in graphene-based nanostructures, which represent the main subject of this review. We discuss several strategies to enhance plasmonic effects in topologically distinct closed surface landscapes, i.e. graphene nanotubes, cylindrical nanocavities and toroidal nanostructures. A novel phenomenon of the strongly asymmetric SPP propagation on chiral meta-structures and the fundamental relations between structural and plasmonic topological indices are reviewed.

  18. Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions

    Science.gov (United States)

    Chen, Kai; Leong, Eunice Sok Ping; Rukavina, Michael; Nagao, Tadaaki; Liu, Yan Jun; Zheng, Yuebing

    2015-06-01

    Molecular plasmonics explores and exploits the molecule-plasmon interactions on metal nanostructures to harness light at the nanoscale for nanophotonic spectroscopy and devices. With the functional molecules and polymers that change their structural, electrical, and/or optical properties in response to external stimuli such as electric fields and light, one can dynamically tune the plasmonic properties for enhanced or new applications, leading to a new research area known as active molecular plasmonics (AMP). Recent progress in molecular design, tailored synthesis, and self-assembly has enabled a variety of scenarios of plasmonic tuning for a broad range of AMP applications. Dimension (i.e., zero-, two-, and threedimensional) of the molecules on metal nanostructures has proved to be an effective indicator for defining the specific scenarios. In this review article, we focus on structuring the field of AMP based on the dimension of molecules and discussing the state of the art of AMP. Our perspective on the upcoming challenges and opportunities in the emerging field of AMP is also included.

  19. Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions

    Directory of Open Access Journals (Sweden)

    Chen Kai

    2015-06-01

    Full Text Available Molecular plasmonics explores and exploits the molecule–plasmon interactions on metal nanostructures to harness light at the nanoscale for nanophotonic spectroscopy and devices. With the functional molecules and polymers that change their structural, electrical, and/or optical properties in response to external stimuli such as electric fields and light, one can dynamically tune the plasmonic properties for enhanced or new applications, leading to a new research area known as active molecular plasmonics (AMP. Recent progress in molecular design, tailored synthesis, and self-assembly has enabled a variety of scenarios of plasmonic tuning for a broad range of AMP applications. Dimension (i.e., zero-, two-, and threedimensional of the molecules on metal nanostructures has proved to be an effective indicator for defining the specific scenarios. In this review article, we focus on structuring the field of AMP based on the dimension of molecules and discussing the state of the art of AMP. Our perspective on the upcoming challenges and opportunities in the emerging field of AMP is also included.

  20. Plasmonic colour laser printing

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil

    2016-01-01

    -beam lithography (EBL) or focused ion beam (FIB), both expensive and not scalable processes that are not suitable for post-processing customization. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation...... that leads to melting and reshaping of the imprinted nanostructures. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different colour appearances can be created. Using this technique we can print all primary colours...

  1. Plasmonic transparent conductors

    Science.gov (United States)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-09-01

    Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.

  2. Development of Ultrasensitive Plasmonic Nanosensors

    Science.gov (United States)

    Joshi, Gayatribahen K.

    Nanostructures (NSs) based localized surface plasmon resonance (LSPR) sensors have brought a transformation in development of sensing devices due to their ability to detect extremely small changes in surrounding refractive index (R.I.). NS-based LSPR sensing approaches have been employed to enhance the sensitivity for a variety of applications, such as diagnosis of disease, food and environmental analysis, and chemical and biological threat detection. Generally in LSPR spectroscopy, absorption and scattering of light is greatly enhanced at a frequency that excites the NS's LSPR and results in well-defined LSPR extinction peak (lambdaLSPR). This lambdaLSPR is highly dependent on the size, shape, and surrounding R.I. of NSs. Compositional and confirmational change within the surrounding R.I. near the NS could be detected by monitoring the shifts in lambdaLSPR. This thesis specifically focuses on the rational development of the plasmonic nanosensors for various sensing applications by utilizing the LSPR properties of Au NS with prismatic shape. First the chemical synthetic approach that can produce Au nanoprisms, which displayed lambdaLSPR in 650-850 nm range corresponding to 20-50 nm edge lengths has been developed. The chemically synthesized Au nanoprisms were attached to silanized glass substrate and employed as a solid-state sensing platform for the development of label-free plasmonic nanosensors. The size, shape, and surface of nanoprisms were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV-visible spectroscopy. Further, the influence of the structure, size and surface ligand chemistry onto the lambda LSPR of nanoprisms were investigated in detail. Both bulk and local R.I. sensitivity, and the electromagnetic-field (EM-field) decay length were derived for various edge lengths of nanoprisms through measuring the lambda LSPR shifts by UV-visible spectroscopy. Finally, nanoprisms

  3. 3D inverse-opal structured Li4Ti5O12 Anode for fast Li-Ion storage capabilities

    Science.gov (United States)

    Kim, Dahye; Quang, Nguyen Duc; Hien, Truong Thi; Chinh, Nguyen Duc; Kim, Chunjoong; Kim, Dojin

    2017-11-01

    Since the demand for high power Li-ion batteries (LIBs) is increasing, spinel-structured lithium titanate, Li4Ti5O12 (LTO), as the anode material has attracted great attention because of its excellent cycle retention, good thermal stability, high rate capability, and so on. However, LTO shows relatively low conductivity due to empty 3 d orbital of Ti4+ state. Nanoscale architectures can shorten electron conduction path, thus such low electronic conductivity can be overcome while Li+ can be easily accessed due to large surface area. Herein, three dimensional bicontinuous LTO electrodes were prepared via close-packed self-assembly with polystyrene (PS) spheres followed by removal of them, which leads to no blockage of Li+ ion transportation pathways as well as fast electron conduction. 3D bicontinuous LTO electrodes showed high-rate lithium storage capability (103 mAh/g at 20 C), which is promising as the power sources that require rapid electrochemical response.[Figure not available: see fulltext.

  4. Structural evolvement and the capability of resistance to γ-ray irradiation on zircon originating from nyainqentanglha granite

    International Nuclear Information System (INIS)

    Cui Chunlong; Zhang Dong; Kang Houjun; Wang Xiaoli; Zhou Yulin; Yi Facheng; Lu Xirui; Tang Jingyou

    2010-01-01

    In order to investigate the structural evolvement and the capability of resistance to γ-ray irradiation on zircon as mothball waste forms of radionuclide, the zircon crystals (11.01±0.24 M) were studied as investigative object, which were collected from nyainqentanglha granite. All the samples were irradiated using a 60 Co y-ray source with 576 kGy doses. Phases, structures and microstructures of the as-gained samples before and after y-ray irradiation were characterized by means of a multi-functional microscope, cathodoluminescence (CL), backscattered electron microprobe (BEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), infrared spectroscopy (IR) and scanning electron microscopy (SEM), and so on. Moreover, the geological backgrounds and chemical compositions of zircons originating from natural rocks were analyzed as well. The results indicated that the as-gained crystals came from magmatic rock which undergone near 11 million years geological evolvement and still contain UO 2 and ThO 2 with the contents of 0.5729 wt%. The alteration of 10 -3 nm magnitude in the crystal cell parameters was measured (of the standard XRD card of zircon). The irradiation on the crystalline samples using γ-ray induced to the alteration of 10 -4 nm magnitude for their crystal cell parameters. The conclusion shows that zircon crystals with a certain amount of UO 2 and ThO 2 have better structural stability for the y-ray irradiation. (authors)

  5. A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure

    Science.gov (United States)

    Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya

    2011-06-01

    This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.

  6. Surface plasmon optics for biosensors with advanced sensitivity and throughput

    International Nuclear Information System (INIS)

    Toma, M.

    2012-01-01

    Plasmonic biosensors represent a rapidly advancing technology which enables rapid and sensitive analysis of target analytes. This thesis focuses on novel metallic and polymer structures for plasmonic biosensors based on surface plasmon resonance (SPR) and surface plasmon-enhanced fluorescence (SPF). It comprises four projects addressing key challenges concerning the enhancement of sensitivity and throughput. In the project 1, an advanced optical platform is developed which relies on reference-compensated angular spectroscopy of hydrogel-guided waves. The developed optical setup provides superior refractive index resolution of 1.2×10 -7 RIU and offers an attractive platform for direct detection of small analytes which cannot be analyzed by regular SPR biosensors. The project 2 carries out theoretical study of SPR imaging with advanced lateral resolution by utilizing Bragg scattered surface plasmons (BSSPs) on sub-wavelength metallic gratings. The results reveal that the proposed concept provides better lateral resolution and fidelity of the images. This feature opens ways for high-throughput SPR biosensors with denser arrays of sensing spots. The project 3 investigates surface plasmon coupled-emission from fluorophores in the vicinity of plasmonic Bragg-gratings. The experimental results provide leads on advancing the collection efficiency of fluorescence light by controlling the directions of fluorescence emission. This functionality can directly improve the sensitivity of fluorescence-based assays. In the last project 4, a novel sensing scheme with actively tuneable plasmonic structures is developed by employing thermo-responsive hydrogel binding matrix. The hydrogel film simultaneously serves as a large capacity binding matrix and provides means for actuating of surface plasmons through reversible swelling and collapsing of the hydrogel. This characteristic is suitable for multiplexing of sensing channels in fluorescence-based biosensor scheme (author)

  7. Nanobump assembly for plasmonic organic solar cells

    Science.gov (United States)

    Song, Hyung-Jun; Jung, Kinam; Lee, Gunhee; Ko, Youngjun; Lee, Jong-Kwon; Choi, Mansoo; Lee, Changhee

    2014-10-01

    We demonstrate novel plasmonic organic solar cells (OSCs) by embedding an easy processible nanobump assembly (NBA) for harnessing more light. The NBA is consisted of precisely size-controlled Ag nanoparticles (NPs) generated by an aerosol process at atmospheric pressure and thermally deposited molybdenum oxide (MoO3) layer which follows the underlying nano structure of NPs. The active layer, spin-casted polymer blend solution, has an undulated structure conformably covering the NBA structure. To find the optimal condition of the NBA structure for enhancing light harvest as well as carrier transfer, we systematically investigate the effect of the size of Ag NPs and the MoO3 coverage on the device performance. It is observed that the photocurrent of device increases as the size of Ag NP increases owing to enhanced plasmonic and scattering effect. In addition, the increased light absorption is effectively transferred to the photocurrent with small carrier losses, when the Ag NPs are fully covered by the MoO3 layer. As a result, the NBA structure consisted of 40 nm Ag NPs enclosed by 20 nm MoO3 layer leads to 18% improvement in the power conversion efficiency compared to the device without the NBA structure. Therefore, the NBA plasmonic structure provides a reliable and efficient light harvesting in a broad range of wavelength, which consequently enhances the performance of organic solar cells.

  8. Plasmonics light modulators

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Malureanu, Radu; Lavrinenko, Andrei

    Surface plasmon polaritons (SPPs) are waves propagating at the interface between a metal and a dielectric and, due to their tight confinement, may be used for nanoscale control of the light propagation. Thus, photonic integrated circuits can benefit from devices using SPPs because of their highly...

  9. Active Control of Nitride Plasmonic Dispersion in the Far Infrared.

    Energy Technology Data Exchange (ETDEWEB)

    Shaner, Eric A.; Dyer, Gregory Conrad; Seng, William Francis; Bethke, Donald Thomas; Grine, Albert Dario,; Baca, Albert G.; Allerman, Andrew A.

    2014-11-01

    We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

  10. Plasmons in inhomogeneously doped neutral and charged graphene nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Silveiro, Iván [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Javier García de Abajo, F., E-mail: javier.garciadeabajo@icfo.es [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona (Spain)

    2014-03-31

    We study plasmons in graphene nanodisks including the effect of inhomogeneity in the distribution of the doping charge. Specifically, we discuss the following two configurations: charged disks containing a fixed amount of additional carriers, which are self-consistently distributed along the surface to produce a uniform DC potential; and neutral disks exposed to a neighboring external point charge. A suitable finite-element method is elaborated to compute the charge density associated with the plasmons in the electrostatic limit. For charged disks, we find dipolar plasmons similar to those of uniformly doped graphene structures, in which the plasmon induced charge piles up near the edges. In contrast, in neutral disks placed near an external point charge, plasmons are strongly localized away from the edges. Surprisingly, a single external electron is enough to trap plasmons. The disks also display axially symmetric dark-plasmons, which can be excited through external illumination by coupling them to a neighboring metallic element. Our results have practical relevance for graphene nanophotonics under inhomogeneous doping conditions.

  11. Plasmon-induced carrier polarization in semiconductor nanocrystals

    Science.gov (United States)

    Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V.

    2018-06-01

    Spintronics1 and valleytronics2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In2O3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.

  12. Voltage tunable plasmon propagation in dual gated bilayer graphene

    Science.gov (United States)

    Farzaneh, Seyed M.; Rakheja, Shaloo

    2017-10-01

    In this paper, we theoretically investigate plasmon propagation characteristics in AB and AA stacked bilayer graphene (BLG) in the presence of energy asymmetry due to an electrostatic field oriented perpendicularly to the plane of the graphene sheet. We first derive the optical conductivity of BLG using the Kubo formalism incorporating energy asymmetry and finite electron scattering. All results are obtained for room temperature (300 K) operation. By solving Maxwell's equations in a dual gate device setup, we obtain the wavevector of propagating plasmon modes in the transverse electric (TE) and transverse magnetic (TM) directions at terahertz frequencies. The plasmon wavevector allows us to compare the compression factor, propagation length, and the mode confinement of TE and TM plasmon modes in bilayer and monolayer graphene sheets and also to study the impact of material parameters on plasmon characteristics. Our results show that the energy asymmetry can be harnessed to increase the propagation length of TM plasmons in BLG. AA stacked BLG shows a larger increase in the propagation length than AB stacked BLG; conversely, it is very insensitive to the Fermi level variations. Additionally, the dual gate structure allows independent modulation of the energy asymmetry and the Fermi level in BLG, which is advantageous for reconfiguring plasmon characteristics post device fabrication.

  13. Field enhancement in plasmonic nanostructures

    Science.gov (United States)

    Piltan, Shiva; Sievenpiper, Dan

    2018-05-01

    Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of {{W}} {{{c}}{{m}}}-2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.

  14. Laser patterning of transparent polymers assisted by plasmon excitation.

    Science.gov (United States)

    Elashnikov, R; Trelin, A; Otta, J; Fitl, P; Mares, D; Jerabek, V; Svorcik, V; Lyutakov, O

    2018-06-13

    Plasmon-assisted lithography of thin transparent polymer films, based on polymer mass-redistribution under plasmon excitation, is presented. The plasmon-supported structures were prepared by thermal annealing of thin Ag films sputtered on glass or glass/graphene substrates. Thin films of polymethylmethacrylate, polystyrene and polylactic acid were then spin-coated on the created plasmon-supported structures. Subsequent laser beam writing, at the wavelength corresponding to the position of plasmon absorption, leads to mass redistribution and patterning of the thin polymer films. The prepared structures were characterized using UV-Vis spectroscopy and confocal and AFM microscopy. The shape of the prepared structures was found to be strongly dependent on the substrate type. The mechanism leading to polymer patterning was examined and attributed to the plasmon-heating. The proposed method makes it possible to create different patterns in polymer films without the need for wet technological stages, powerful light sources or a change in the polymer optical properties.

  15. Revealing Nanostructures through Plasmon Polarimetry.

    Science.gov (United States)

    Kleemann, Marie-Elena; Mertens, Jan; Zheng, Xuezhi; Cormier, Sean; Turek, Vladimir; Benz, Felix; Chikkaraddy, Rohit; Deacon, William; Lombardi, Anna; Moshchalkov, Victor V; Vandenbosch, Guy A E; Baumberg, Jeremy J

    2017-01-24

    Polarized optical dark-field spectroscopy is shown to be a versatile noninvasive probe of plasmonic structures that trap light to the nanoscale. Clear spectral polarization splittings are found to be directly related to the asymmetric morphology of nanocavities formed between faceted gold nanoparticles and an underlying gold substrate. Both experiment and simulation show the influence of geometry on the coupled system, with spectral shifts Δλ = 3 nm from single atoms. Analytical models allow us to identify the split resonances as transverse cavity modes, tightly confined to the nanogap. The direct correlation of resonance splitting with atomistic morphology allows mapping of subnanometre structures, which is crucial for progress in extreme nano-optics involving chemistry, nanophotonics, and quantum devices.

  16. 3D hollow nanostructures as building blocks for multifunctional plasmonics

    KAUST Repository

    De Angelis, Francesco De; Malerba, Mario; Patrini, Maddalena; Miele, Ermanno; Das, Gobind; Toma, Andrea; Proietti Zaccaria, Remo; Di Fabrizio, Enzo M.

    2013-01-01

    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications. © 2013 American Chemical Society.

  17. 3D hollow nanostructures as building blocks for multifunctional plasmonics

    KAUST Repository

    De Angelis, Francesco De

    2013-08-14

    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications. © 2013 American Chemical Society.

  18. Plasmonic Nanostructures for Enhanced Light-Matter Interactions

    DEFF Research Database (Denmark)

    Zhu, Xiaolong

    Plasmonics, a recent booming field, plays a major role in the fascinating research area of nanophotonics. Graphene, the newly rising star on the horizon of materials science and optoelectronics, exhibits exceptionally surprising properties. In optoelectronics, graphene (including other 2D materials...... an important platform for optoelectronic applications. Then, unprecedented large-area graphene nanodot and antidot optical arrays are fabricated by nanosphere lithography, with structural control down to the sub-100 nm regime. The interaction between graphene plasmon modes and the substrate phonons...

  19. Plasmon Enhanced Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Aleksandr [Univ. of California, Berkeley, CA (United States)

    2012-05-08

    this work, the structure consisted of rectangular nano-grooves (NGs) arranged in a subwavelength grating on a metal surface is presented that provides a dramatic increase in the metal’s absorption, field localization, and field enhancement. When light is polarized perpendicular to the orientation of the grooves a standing SPP wave is excited along the vertical walls in the NGs, that act as Fabry-Perot resonators. By adjusting the geometry of the NGs and the period of the subwavelength grating the resonance can be fine tuned to a desired position, for example, the laser fundamental wavelength, anywhere from the UV to the near infrared (NIR). Two types of gratings are presented: (a) a gold grating with period of 600 nm, and (b) an aluminum-gold grating with a period of 100 nm; both with resonance at 720 nm. In each case, strong on-resonance absorption was observed, with over 98% for grating (b). Unlike the grating-coupled SPP waves, where the angle is well defined by the momentum matching condition, the resonant NGs allow coupling to the standing modes at a range of angles of incidence, referred to as the angular bandwidth. A new model for the on-resonance absorption based on the ensamble action of the NGs is presented that serves as the basis for a design of an NG grating with an ultrawide spectral as well as angular bandwidth. For sample (b), the angular bandwidth is 80 degrees, corresponding to an opening angle of 160 degrees. The photoemission enhancement for such a grating was measured to be seven orders of magnitude for a four-photon photoemission. This is an incredible result demonstrating the power of the plasmonic grating presented, which is an efficient light trapper and field enhancer for a non-linear processes. These results demonstrate that the metal photocathode prepared with a NG grating on the metal surface will provide sufficient pulse charge driven by a 1 μJ 15fs pulsed laser at 800 nm for the optimum FEL operation.

  20. Plasmonic interferometers: From physics to biosensing applications

    Science.gov (United States)

    Zeng, Xie

    Optical interferometry has a long history and wide range of applications. In recent years, plasmonic interferometer arouses great interest due to its compact size and enhanced light-matter interaction. They have demonstrated attractive applications in biomolecule sensing, optical modulation/switching, and material characterization, etc. In this work, we first propose a practical far-field method to extract the intrinsic phase dispersion, revealing important phase information during interactions among free-space light, nanostructure, and SPs. The proposed approach is confirmed by both simulation and experiment. Then we design novel plasmonic interferometer structure for sensitive optical sensing applications. To overcome two major limitations suffered by previously reported double-slit plasmonic Mach-Zehnder interferometer (PMZI), two new schemes are proposed and investigated. (1) A PMZI based on end-fire coupling improves the SP coupling efficiency and enhance the interference contrast more than 50 times. (2) In another design, a multi-layered metal-insulator-metal PMZI releases the requirement for single-slit illumination, which enables sensitive, high-throughput sensing applications based on intensity modulation. We develop a sensitive, low-cost and high-throughput biosensing platform based on intensity modulation using ring-hole plasmonic interferometers. This biosensor is then integrated with cell-phone-based microscope, which is promising to develop a portable sensor for point-of-care diagnostics, epidemic disease control and food safety monitoring.

  1. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  2. Electric-dipole absorption resonating with longitudinal optical phonon-plasmon system and its effect on dispersion relations of interface phonon polariton modes in metal/semiconductor-stripe structures

    Science.gov (United States)

    Sakamoto, Hironori; Takeuchi, Eito; Yoshida, Kouki; Morita, Ken; Ma, Bei; Ishitani, Yoshihiro

    2018-01-01

    Interface phonon polaritons (IPhPs) in nano-structures excluding metal components are thoroughly investigated because they have lower loss in optical emission or absorption and higher quality factors than surface plasmon polaritons. In previous reports, it is found that strong infrared (IR) absorption is based on the interaction of p-polarized light and materials, and the resonance photon energy highly depends on the structure size and angle of incidence. We report the optical absorption by metal/semiconductor (bulk-GaAs and thin film-AlN)-stripe structures in THz to mid-IR region for the electric field of light perpendicular to the stripes, where both of s- and p-polarized light are absorbed. The absorption resonates with longitudinal optical (LO) phonon or LO phonon-plasmon coupling (LOPC) modes, and thus is independent of the angle of incidence or structure size. This absorption is attributed to the electric dipoles by the optically induced polarization charges at the metal/semiconductor, heterointerfaces, or interfaces of high electron density layers and depression ones. The electric permittivity is modified by the formation of these dipoles. It is found to be indispensable to utilize our form of altered permittivity to explain the experimental dispersion relations of metal/semiconductor-IPhP and SPhP in these samples. This analysis reveals that the IPhPs in the stripe structures of metal/AlN-film on a SiC substrate are highly confined in the AlN film, while the permittivity of the structures of metal/bulk-GaAs is partially affected by the electric-dipoles. The quality factors of the electric-dipole absorption are found to be 42-54 for undoped samples, and the value of 62 is obtained for Al/AlN-IPhP. It is thought that metal-contained structures are not obstacles to mode energy selectivity in phonon energy region of semiconductors.

  3. Single-mode surface plasmon distributed feedback lasers.

    Science.gov (United States)

    Karami Keshmarzi, Elham; Tait, R Niall; Berini, Pierre

    2018-03-29

    Single-mode surface plasmon distributed feedback (DFB) lasers are realized in the near infrared using a two-dimensional non-uniform long-range surface plasmon polariton structure. The surface plasmon mode is excited onto a 20 nm-thick, 1 μm-wide metal stripe (Ag or Au) on a silica substrate, where the stripe is stepped in width periodically, forming a 1st order Bragg grating. Optical gain is provided by optically pumping a 450 nm-thick IR-140 doped PMMA layer as the top cladding, which covers the entire length of the Bragg grating, thus creating a DFB laser. Single-mode lasing peaks of very narrow linewidth were observed for Ag and Au DFBs near 882 nm at room temperature. The narrow linewidths are explained by the low spontaneous emission rate into the surface plasmon lasing mode as well as the high quality factor of the DFB structure. The lasing emission is exclusively TM polarized. Kinks in light-light curves accompanied by spectrum narrowing were observed, from which threshold pump power densities can be clearly identified (0.78 MW cm-2 and 1.04 MW cm-2 for Ag and Au DFB lasers, respectively). The Schawlow-Townes linewidth for our Ag and Au DFB lasers is estimated and very narrow linewidths are predicted for the lasers. The lasers are suitable as inexpensive, recyclable and highly coherent sources of surface plasmons, or for integration with other surface plasmon elements of similar structure.

  4. Capability ethics

    OpenAIRE

    Robeyns, Ingrid

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological theories, virtue ethics, or pragmatism. As I will argue in this chapter, at present the core of the capability approach is an account of value, which together with some other (more minor) normative comm...

  5. TiO2 brookite nanostructured thin layer on magneto-optical surface plasmon resonance transductor for gas sensing applications

    Science.gov (United States)

    Manera, M. G.; Colombelli, A.; Rella, R.; Caricato, A.; Cozzoli, P. D.; Martino, M.; Vasanelli, L.

    2012-09-01

    The sensing performance comparisons presented in this work were carried out by exploiting a suitable magneto-plasmonic sensor in both the traditional surface plasmon resonance configuration and the innovative magneto-optic surface plasmon resonance one. The particular multilayer transducer was functionalized with TiO2 Brookite nanorods layers deposited by matrix assisted pulsed laser evaporation, and its sensing capabilities were monitored in a controlled atmosphere towards different concentrations of volatile organic compounds mixed in dry air.

  6. Tunneling Plasmonics in Bilayer Graphene.

    Science.gov (United States)

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  7. Top-down fabrication of plasmonic nanostructures for deterministic coupling to single quantum emitters

    NARCIS (Netherlands)

    Pfaff, W.; Vos, A.; Hanson, R.

    2013-01-01

    Metal nanostructures can be used to harvest and guide the emission of single photon emitters on-chip via surface plasmon polaritons. In order to develop and characterize photonic devices based on emitter-plasmon hybrid structures, a deterministic and scalable fabrication method for such structures

  8. Plasmon excitation in single wall carbon nanotubes by penetrating charged particles

    International Nuclear Information System (INIS)

    Segui, Silvina; Gervasoni, Juana L; Arista, Néstor R; Mowbray, Duncan J; Mišković, Zoran L

    2012-01-01

    In this work we study the excitation of plasmons due to the incidence of a charged particle passing through a single wall carbon nanotube. We use a quantized hydrodynamic, in which the σ and π electrons characteristic of these carbonaceous structures are depicted as two interacting 2-dimensional fluids, to calculate the average number of plasmons excited. We analyze the contribution of the different plasmon modes in a variety of configurations, and study the energy lost by the incident particle.

  9. Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes.

    Science.gov (United States)

    Hu, Li; Huang, Yingzhou; Pan, Lujun; Fang, Yurui

    2017-09-11

    Plasmonic chirality represents significant potential for novel nanooptical devices due to its association with strong chiroptical responses. Previous reports on plasmonic chirality mechanism mainly focus on phase retardation and coupling. In this paper, we propose a model similar to the chiral molecules for explaining the intrinsic plasmonic chirality mechanism of varies 3D chiral structures quantitatively based on the interplay and mixing of electric and magnetic dipole modes (directly from electromagnetic field numerical simulations), which forms mixed electric and magnetic polarizability.

  10. Dynamic Capabilities

    DEFF Research Database (Denmark)

    Grünbaum, Niels Nolsøe; Stenger, Marianne

    2013-01-01

    The findings reveal a positive relationship between dynamic capabilities and innovation performance in the case enterprises, as we would expect. It was, however, not possible to establish a positive relationship between innovation performance and profitability. Nor was there any positive...... relationship between dynamic capabilities and profitability....

  11. Capability ethics

    NARCIS (Netherlands)

    I.A.M. Robeyns (Ingrid)

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological

  12. Nonsymmorphic symmetry-protected topological modes in plasmonic nanoribbon lattices

    Science.gov (United States)

    Zhang, Yong-Liang; Wu, Raymond P. H.; Kumar, Anshuman; Si, Tieyan; Fung, Kin Hung

    2018-04-01

    Using a dynamic eigenresponse theory, we study the topological edge plasmon modes in dispersive plasmonic lattices constructed by unit cells of multiple nanoribbons. In dipole approximation, the bulk-edge correspondence in the lattices made of dimerized unit cell and one of its square-root daughter with nonsymmorphic symmetry are demonstrated. Calculations with consideration of dynamic long-range effects and retardation are compared to those given by nearest-neighbor approximations. It is shown that nonsymmorphic symmetry opens up two symmetric gaps where versatile topological edge plasmon modes are found. Unprecedented spectral shifts of the edge states with respect to the zero modes due to long-range coupling are found. The proposed ribbon structure is favorable to electrical gating and thus could serve as an on-chip platform for electrically controllable subwavelength edge states at optical wavelengths. Our eigenresponse approach provides a powerful tool for the radiative topological mode analysis in strongly coupled plasmonic lattices.

  13. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    Science.gov (United States)

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  14. Effect of dispersion capability of organoclay on cellular structure and physical properties of PMMA/clay nanocomposite foams

    International Nuclear Information System (INIS)

    Yeh, Jui-Ming; Chang, Kung-Chin; Peng, Chih-Wei; Lai, Mei-Chun; Hung, Chih-Bing; Hsu, Sheng-Chieh; Hwang, Shyh-Shin; Lin, Hong-Ru

    2009-01-01

    In this study, PMMA/clay nanocomposite (PCN) materials with two kinds of organoclay were prepared via in situ bulk polymerization. The as-prepared PCN materials were then characterized by Fourier transformation infrared (FTIR) spectroscopy, wide-angle X-ray diffraction (WAXRD) and transmission electron microscopy (TEM). WAXRD and TEM analysis revealed that combination of both intercalated and exfoliated nanocomposites was formed and the silicate layers of the clay were uniformly dispersed at a nanometer scale in PMMA matrix. The molecular weights of PMMA extracted from PCN materials and bulk PMMA were determined by gel permeation chromatography (GPC) with THF used as the eluant. The PCN materials were used to produce foams by a batch process in an autoclave using nitrogen as foaming agent. The cellular structure analysis of foams was examined by SEM. The effect of dispersion capability of organoclay on the dielectric and thermal transport properties of PCN materials and foams and mechanical properties of PCN foams were investigated by LCR meter, transient plane source (TPS) technique and dynamic mechanical analysis (DMA), respectively.

  15. Energy transfer in plasmonic systems

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy N; Urbas, Augustine M; Shahbazyan, Tigran V

    2014-01-01

    We present our results on energy transfer between donor and acceptor molecules or quantum dots near a plasmonic nanoparticle. In such systems, the Förster resonance energy transfer is strongly modified due to plasmon-mediated coupling between donors and acceptors. The transfer efficiency is determined by a competition between transfer, radiation and dissipation that depends sensitively on system parameters. When donor and accepror spectral bands overlap with dipole surface plasmon resonance, the dominant transfer mechanism is through plasmon-enhanced radiative coupling. When transfer takes place from an ensemble of donors to an acceptor, a cooperative amplification of energy transfer takes place in a wide range of system parameters. (paper)

  16. An Introduction to Graphene Plasmonics

    DEFF Research Database (Denmark)

    Gonçalves, P.A.D.; Peres, N. M. R.

    This book is meant as an introduction to graphene plasmonics and aims at the advanced undergraduate and graduate students entering the field of plasmonics in graphene. In it different theoretical methods are introduced, starting with an elementary description of graphene plasmonics and evolving...... the chapters to get acquainted with the field of plasmonics in graphene or reading the chapters and studying the appendices to get a working knowledge of the topic. The study of the material in this book will bring the students to the forefront of the research in this field....

  17. Surface Plasmon Singularities

    Directory of Open Access Journals (Sweden)

    Gabriel Martínez-Niconoff

    2012-01-01

    Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.

  18. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  19. Local refractive index sensitivity of plasmonic nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Piliarik, Marek; Kvasnička, Pavel; Galler, N.; Krenn, J. R.; Homola, Jiří

    2011-01-01

    Roč. 19, č. 10 (2011), s. 9213-9220 ISSN 1094-4087 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance * Subwavelength structures, nanostructures * Optical sensing and sensors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.587, year: 2011

  20. Plasmon-plasmon coupling in nested fullerenes: photoexcitation of interlayer plasmonic cross modes

    International Nuclear Information System (INIS)

    McCune, Mathew A; De, Ruma; Chakraborty, Himadri S; Madjet, Mohamed E; Manson, Steven T

    2011-01-01

    Considering the photoionization of a two-layer fullerene-onion system, C 60 -C 240 , strong plasmonic couplings between the nested fullerenes are demonstrated. The resulting hybridization produces four cross-over plasmons generated from the bonding and antibonding mixing of excited charge clouds of individual fullerenes. This suggests the possibility of designing buckyonions exhibiting plasmon resonances with specified properties and may motivate future research to modify the resonances with encaged atoms, molecules or clusters. (fast track communication)

  1. Structural characterization and plasmonic properties of two-dimensional arrays of hydrophobic large gold nanoparticles fabricated by Langmuir-Blodgett technique

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Takuya; Tachikiri, Yuki; Sako, Takayuki [Department of Materials Physics and Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Takahashi, Yukina, E-mail: yukina@mail.cstm.kyushu-u.ac.jp [Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Yamada, Sunao, E-mail: yamada@mail.cstm.kyushu-u.ac.jp [Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2017-05-15

    Highlights: • Hydrophobic gold nanoparticles (AuNPs) by our method were large and stable enough. • Two-dimensional (2D) arrays of the AuNPs were obtained by Langmuir-Blodgett method with polyethylene glycol. • The plasmon resonant wavelength of the 2D arrays can be controlled by the diameter. - Abstract: We have succeeded in fabricating two-dimensional (2D) arrays of larger gold nanoparticles (AuNPs) (diameters 17, 28, and 48 nm) by Langmuir-Blodgett (LB) method. Although the particle size of AuNPs is one of the most important factors in order to control the optical properties of 2D arrays, there have been reported only the size of less than ∼20 nm. This is a first report on the bottom-up fabrication of 2D arrays consisting of hydrophobic AuNP with the diameter of ∼50 nm, of which the size is expected to obtain maximum near-field effects. Octadecylthiolate-capped AuNPs (ODT-AuNPs) which were prepared by our method could be re-dispersed in chloroform even after drying completely, realizing the spreading of the colloidal chloroform solution onto the water surface. Accordingly, densely-packed 2D LB films of ODT-AuNPs could be fabricated on an indium-tin-oxide substrate, when water as the subphase and polyethylene glycol (PEG) as an amphiphilic agent were used. PEG played an important role to form densely-packed film uniformly due to increasing affinity between hydrophobic AuNP and water. Absorption spectra of the films revealed that the resonance wavelengths of plasmon oscillation through interparticle plasmon coupling were clearly correlated with the particle sizes rather than deposition densities.

  2. Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides

    DEFF Research Database (Denmark)

    Leißner, Till; Lemke, Christoph; Jauernik, Stephan

    2013-01-01

    Plasmonic wave packet propagation is monitored in dielectric-loaded surface plasmon polariton waveguides realized from para-hexaphenylene nanofibers deposited onto a 60 nm thick gold film. Using interferometric time resolved two-photon photoemission electron microscopy we are able to determine...

  3. On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot.

    Science.gov (United States)

    Wu, Xiaofei; Jiang, Ping; Razinskas, Gary; Huo, Yongheng; Zhang, Hongyi; Kamp, Martin; Rastelli, Armando; Schmidt, Oliver G; Hecht, Bert; Lindfors, Klas; Lippitz, Markus

    2017-07-12

    Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. However, for quantum plasmonic circuits, integration of stable, bright, and narrow-band single photon sources in the structure has so far not been reported. Here we present a plasmonic nanocircuit driven by a self-assembled GaAs quantum dot. Through a planar dielectric-plasmonic hybrid waveguide, the quantum dot efficiently excites narrow-band single plasmons that are guided in a two-wire transmission line until they are converted into single photons by an optical antenna. Our work demonstrates the feasibility of fully on-chip plasmonic nanocircuits for quantum optical applications.

  4. Surface plasmon resonance application for herbicide detection

    Science.gov (United States)

    Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.

    1998-01-01

    The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.

  5. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr

    2014-01-01

    simply by changing geometric parameters of the waveguide, keeping in mind the trade-off between confinement and propagation losses. A broad variety of plasmonic waveguides and waveguide components, including antennas for coupling the light in/out of the waveguide, requires correspondent characterization...... capabilities, especially on experimental side. The most straight-forward and powerful technique for such purpose is scanning near-field optical microscopy, which allows to probe and map near-field distribution and therefore becomes the main tool in this project. The detailed description of the used setups...

  6. Gossiping Capabilities

    DEFF Research Database (Denmark)

    Mogensen, Martin; Frey, Davide; Guerraoui, Rachid

    Gossip-based protocols are now acknowledged as a sound basis to implement collaborative high-bandwidth content dissemination: content location is disseminated through gossip, the actual contents being subsequently pulled. In this paper, we present HEAP, HEterogeneity Aware gossip Protocol, where...... nodes dynamically adjust their contribution to gossip dissemination according to their capabilities. Using a continuous, itself gossip-based, approximation of relative capabilities, HEAP dynamically leverages the most capable nodes by (a) increasing their fanouts (while decreasing by the same proportion...... declare a high capability in order to augment their perceived quality without contributing accordingly. We evaluate HEAP in the context of a video streaming application on a 236 PlanetLab nodes testbed. Our results shows that HEAP improves the quality of the streaming by 25% over a standard gossip...

  7. All-optical bit magnitude comparator device using metal-insulator-metal plasmonic waveguide

    Science.gov (United States)

    Kumar, Santosh; Singh, Lokendra; Chen, Nan-Kuang

    2017-12-01

    A plasmonic metal-insulator-metal (MIM) waveguide has great success in confining the surface plasmon up to a deep subwavelength scale. The structure of a nonlinear Mach-Zehnder interferometer (MZI) using a plasmonic MIM waveguide has been analyzed. A one-bit magnitude comparator has been designed using an MZI and two linear control waveguides. The device works on the Kerr effect inside the plasmonics waveguide. The mathematical description of the device is explained. The simulation of the device is done using MATLAB® and the finite-difference time-domain (FDTD) method.

  8. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.

    Science.gov (United States)

    Zhou, Chao; Duan, Xiaoyang; Liu, Na

    2017-12-19

    The development of DNA nanotechnology, especially the advent of DNA origami, has made DNA ideally suited to construct nanostructures with unprecedented complexity and arbitrariness. As a fully addressable platform, DNA origami can be used to organize discrete entities in space through DNA hybridization with nanometer accuracy. Among a variety of functionalized particles, metal nanoparticles such as gold nanoparticles (AuNPs) feature an important pathway to endow DNA-origami-assembled nanostructures with tailored optical functionalities. When metal particles are placed in close proximity, their particle plasmons, i.e., collective oscillations of conduction electrons, can be coupled together, giving rise to a wealth of interesting optical phenomena. Nevertheless, characterization methods that can read out the optical responses from plasmonic nanostructures composed of small metal particles, and especially can optically distinguish in situ their minute conformation changes, are very few. Circular dichroism (CD) spectroscopy has proven to be a successful means to overcome these challenges because of its high sensitivity in discrimination of three-dimensional conformation changes. In this Account, we discuss a variety of static and dynamic chiral plasmonic nanostructures enabled by DNA nanotechnology. In the category of static plasmonic systems, we first show chiral plasmonic nanostructures based on spherical AuNPs, including plasmonic helices, toroids, and tetramers. To enhance the CD responses, anisotropic gold nanorods with larger extinction coefficients are utilized to create chiral plasmonic crosses and helical superstructures. Next, we highlight the inevitable evolution from static to dynamic plasmonic systems along with the fast development of this interdisciplinary field. Several dynamic plasmonic systems are reviewed according to their working mechanisms. We first elucidate a reconfigurable plasmonic cross structure that can execute DNA-regulated conformational

  9. Spectrally and Spatially Resolved Smith-Purcell Radiation in Plasmonic Crystals with Short-Range Disorder

    Directory of Open Access Journals (Sweden)

    I. Kaminer

    2017-01-01

    Full Text Available Electrons interacting with plasmonic structures can give rise to resonant excitations in localized plasmonic cavities and to collective excitations in periodic structures. We investigate the presence of resonant features and disorder in the conventional Smith-Purcell effect (electrons interacting with periodic structures and observe the simultaneous excitation of both the plasmonic resonances and the collective excitations. For this purpose, we introduce a new scanning-electron-microscope-based setup that allows us to probe and directly image new features of electron-photon interactions in nanophotonic structures like plasmonic crystals with strong disorder. Our work creates new possibilities for probing nanostructures with free electrons, with potential applications that include tunable sources of short-wavelength radiation and plasmonic-based particle accelerators.

  10. Advances in optoplasmonic sensors – combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles

    Directory of Open Access Journals (Sweden)

    Xavier Jolly

    2018-01-01

    Full Text Available Nanophotonic device building blocks, such as optical nano/microcavities and plasmonic nanostructures, lie at the forefront of sensing and spectrometry of trace biological and chemical substances. A new class of nanophotonic architecture has emerged by combining optically resonant dielectric nano/microcavities with plasmonically resonant metal nanostructures to enable detection at the nanoscale with extraordinary sensitivity. Initial demonstrations include single-molecule detection and even single-ion sensing. The coupled photonic-plasmonic resonator system promises a leap forward in the nanoscale analysis of physical, chemical, and biological entities. These optoplasmonic sensor structures could be the centrepiece of miniaturised analytical laboratories, on a chip, with detection capabilities that are beyond the current state of the art. In this paper, we review this burgeoning field of optoplasmonic biosensors. We first focus on the state of the art in nanoplasmonic sensor structures, high quality factor optical microcavities, and photonic crystals separately before proceeding to an outline of the most recent advances in hybrid sensor systems. We discuss the physics of this modality in brief and each of its underlying parts, then the prospects as well as challenges when integrating dielectric nano/microcavities with metal nanostructures. In Section 5, we hint to possible future applications of optoplasmonic sensing platforms which offer many degrees of freedom towards biomedical diagnostics at the level of single molecules.

  11. Plasmon-exciton-polariton lasing

    NARCIS (Netherlands)

    Ramezani, M.; Halpin, A.; Fernandez, A. I.; Feist, J.; Rodriguez, S. R. K.; Garcia-Vidal, F. J.; J. Gomez Rivas,

    2017-01-01

    Metallic nanostructures provide a toolkit for the generation of coherent light below the diffraction limit. Plasmonic-based lasing relies on the population inversion of emitters (such as organic fluorophores) along with feedback provided by plasmonic resonances. In this regime, known as weak

  12. Interference effects with surface plasmons

    NARCIS (Netherlands)

    Kuzmin, Nikolay Victorovich

    2008-01-01

    A surface plasmon is a purely two-dimensional electromagnetic excitation bound to the interface between metal and dielectric and quickly decaying away from it. A surface plasmon is able to concentrate light on sub-wavelength scales – a feature that is attractive for nano-photonics and integrated

  13. Hot carrier dynamics in plasmonic transition metal nitrides

    Science.gov (United States)

    Habib, Adela; Florio, Fred; Sundararaman, Ravishankar

    2018-06-01

    Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nano-structures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing. Transition metal nitrides are an exciting class of new plasmonic materials with superior thermal and mechanical properties compared to conventional noble metals, but their suitability for plasmonic hot carrier applications remains unknown. Here, we present fully first principles calculations of the plasmonic response, hot carrier generation and subsequent thermalization of all group IV, V and VI transition metal nitrides, fully accounting for direct and phonon-assisted transitions as well as electron–electron and electron–phonon scattering. We find the largest frequency ranges for plasmonic response in ZrN, HfN and WN, between those of gold and silver, while we predict strongest absorption in the visible spectrum for the VN, NbN and TaN. Hot carrier generation is dominated by direct transitions for most of the relevant energy range in all these nitrides, while phonon-assisted processes dominate only below 1 eV plasmon energies primarily for the group IV nitrides. Finally, we predict the maximum hot carrier lifetimes to be around 10 fs for group IV and VI nitrides, a factor of 3–4 smaller than noble metals, due to strong electron–phonon scattering. However, we find longer carrier lifetimes for group V nitrides, comparable to silver for NbN and TaN, while exceeding 100 fs (twice that of silver) for VN, making them promising candidates for efficient hot carrier extraction.

  14. Effect of strain on the plasmonic response of graphene

    International Nuclear Information System (INIS)

    Codorniu Pujals, D.

    2013-01-01

    Recent experimental researches have shown that the plasmonic response of graphene to the electromagnetic excitations can be comparable to that of certain metals like silver and gold, that have been traditionally used to produce the plasmonic surface resonance (SPR) in different systems. The possible use of graphene in substitution of the mentioned metals for this and other applications has stimulated the interest in studying the waves of plasma in this material, what has given place to a series of works in which approximate equations for the plasmons in the graphene lattice have been obtained, and the essential differences of the graphene plasmons, with regard to those of other materials, have been settled down. Those differences are a consequence of the behavior of the electrons in the graphene as massless Dirac fermions. In this direction, a topic of special theoretical and practical interest is the study of the external factors able to modify the plasmonic response. In this work, the possibility of achieving those modifications by straining the graphene lattice is analyzed. With that aim, the results obtained by other authors for the plasmonic response, based on the Many Body Theory, are combined with a tight binding approach of the electronic structure of strained graphene. On this basis, the influence of the strain fields on the Fermi velocity and on the plasma frequency of graphene is analyzed. Possible practical implications of the obtained results for different applications in nano-sciences and nano-technologies, as well as alternatives for further theoretical developments, are discussed. (Author)

  15. Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering.

    Science.gov (United States)

    Chen, Ji; Li, Tao; Wang, Shuming; Zhu, Shining

    2017-08-09

    Thanks to the superiority in controlling the optical wave fronts, plasmonic nanostructures have led to various striking applications, among which metasurface holograms have been well developed and endowed with strong multiplexing capability. Here, we report a new design of multiplexed plasmonic hologram, which allows for reconstruction of multiple holographic images in free space by scatterings of surface plasmon polariton (SPP) waves in different propagation directions. Besides, the scattered polarization states can be further modulated by arranging the orientations of nanoscatterers. By incorporation of the SPP propagation and polarized scattering, a 4-fold hologram with low crosstalk is successfully demonstrated, which breaks the limitation of only two orthogonal states in conventional polarization multiplexers. Moreover, our design using the near-field SPP as reference wave holds the advantage for compact integration. This holographic approach is expected to inspire new photonic designs with enhanced information capacity and integratability.

  16. Plasmon holographic experiments: theoretical framework

    International Nuclear Information System (INIS)

    Verbeeck, J.; Dyck, D. van; Lichte, H.; Potapov, P.; Schattschneider, P.

    2005-01-01

    A theoretical framework is described to understand the results of plasmon holography experiments leading to insight in the meaning of the experimental results and pointing out directions for future experiments. The framework is based on the formalism of mutual intensity to describe how coherence is transferred through an optical system. For the inelastic interaction with the object, an expression for the volume plasmon excitations in a free electron gas is used as a model for the behaviour of aluminium. The formalism leads to a clear graphical intuitive tool for understanding the experiments. It becomes evident that the measured coherence is solely related to the angular distribution of the plasmon scattering in the case of bulk plasmons. After describing the framework, the special case of coherence outside a spherical particle is treated and the seemingly controversial idea of a plasmon with a limited coherence length obtained from experiments is clarified

  17. Giant Photogalvanic Effect in Noncentrosymmetric Plasmonic Nanoparticles

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Babicheva, Viktoriia; Evlyukhin, Andrey B.

    2014-01-01

    Photoelectric properties of noncentrosymmetric, similarly oriented metallic nanoparticles embedded in a homogeneous semiconductor matrix are theoretically studied. Because of the asymmetric shape of the nanoparticle boundary, photoelectron emission acquires a preferred direction, resulting......, but is several orders of magnitude stronger. Termed the giant plasmonic photogalvanic effect, the reported phenomenon is valuable for characterizing photoemission and photoconductive properties of plasmonic nanostructures and can find many uses for photodetection and photovoltaic applications....... in a photocurrent flow in that direction when nanoparticles are uniformly illuminated by a homogeneous plane wave. This effect is a direct analogy of the photogalvanic (or bulk photovoltaic) effect known to exist in media with noncentrosymmetric crystal structure, such as doped lithium niobate or bismuth ferrite...

  18. Projected Dipole Model for Quantum Plasmonics

    DEFF Research Database (Denmark)

    Yan, Wei; Wubs, Martijn; Mortensen, N. Asger

    2015-01-01

    of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer-the only introduced parameter-is mapped from the free-electron distribution near the metal surface...... as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects......Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features...

  19. Tunable plasmonic lattices of silver nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2008-02-18

    Silver nanocrystals are ideal building blocks for plasmonicmaterials that exhibit a wide range of unique and potentially usefuloptical phenomena. Individual nanocrystals display distinct opticalscattering spectra and can be assembled into hierarchical structures thatcouple strongly to external electromagnetic fields. This coupling, whichis mediated by surface plasmons, depends on their shape and arrangement.Here we demonstrate the bottom-up assembly of polyhedral silvernanocrystals into macroscopic two-dimensional superlattices using theLangmuir-Blodgett technique. Our ability to control interparticlespacing, density, and packing symmetry allows for tunability of theoptical response over the entire visible range. This assembly strategyoffers a new, practical approach to making novel plasmonic materials forapplication in spectroscopic sensors, sub-wavelength optics, andintegrated devices that utilize field enhancement effects.

  20. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying

    2017-06-15

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  1. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying; Li, Shaoxian; Xu, Quan; Tian, Chunxiu; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Ouyang, Chunmei; Han, Jiaguang; Zhang, Weili

    2017-01-01

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  2. Review of Plasmonic Nanocomposite Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Mehdi Keshavarz Hedayati

    2014-02-01

    Full Text Available Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon. These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented.

  3. Active components for integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Krasavin, A.V.; Bolger, P.M.; Zayats, A.V.

    2009-01-01

    We present a comprehensive study of highly efficient and compact passive and active components for integrated plasmonic circuit based on dielectric-loaded surface plasmon polariton waveguides.......We present a comprehensive study of highly efficient and compact passive and active components for integrated plasmonic circuit based on dielectric-loaded surface plasmon polariton waveguides....

  4. Partial Polarization in Interfered Plasmon Fields

    Directory of Open Access Journals (Sweden)

    P. Martínez Vara

    2014-01-01

    Full Text Available We describe the polarization features for plasmon fields generated by the interference between two elemental surface plasmon modes, obtaining a set of Stokes parameters which allows establishing a parallelism with the traditional polarization model. With the analysis presented, we find the corresponding coherence matrix for plasmon fields incorporating to the plasmon optics the study of partial polarization effects.

  5. Dynamic Capabilities and Performance

    DEFF Research Database (Denmark)

    Wilden, Ralf; Gudergan, Siegfried P.; Nielsen, Bo Bernhard

    2013-01-01

    are contingent on the competitive intensity faced by firms. Our findings demonstrate the performance effects of internal alignment between organizational structure and dynamic capabilities, as well as the external fit of dynamic capabilities with competitive intensity. We outline the advantages of PLS...

  6. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide

    Science.gov (United States)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-07-01

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.

  7. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun

    2012-08-28

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  8. Plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites

    Science.gov (United States)

    Bityurin, N.; Ermolaev, N.; Smirnov, A. A.; Afanasiev, A.; Agareva, N.; Koryukina, T.; Bredikhin, V.; Kamensky, V.; Pikulin, A.; Sapogova, N.

    2016-03-01

    UV irradiation of materials consisting of a polymer matrix that possesses precursors of different kinds can result in creation of nanoparticles within the irradiated domains. Such photoinduced nanocomposites are promising for photonic applications due to the strong alteration of their optical properties compared to initial non-irradiated materials. We report our results on the synthesis and investigation of plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites. Plasmonic nanocomposites contain metal nanoparticles of noble metals with a pronounced plasmon resonance. Excitonic nanocomposites possess semiconductor nanoclusters (quantum dots). We consider the CdS-Au pair because the luminescent band of CdS nanoparticles enters the plasmon resonance band of gold nanoparticles. The obtaining of such particles within the same composite materials is promising for the creation of media with exciton-plasmon resonance. We demonstrate that it is possible to choose appropriate precursor species to obtain the initially transparent poly(methyl methacrylate) (PMMA) films containing both types of these molecules either separately or together. Proper irradiation of these materials by a light-emitting diode operating at the wavelength of 365 nm provides material alteration demonstrating light-induced optical absorption and photoluminescent properties typical for the corresponding nanoparticles. Thus, an exciton-plasmonic photoinduced nanocomposite is obtained. It is important that here we use the precursors that are different from those usually employed.

  9. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun; Wang, Feng; Li, Kun; Woo, Katchoi; Wang, Jianfang; Li, Quan; Sun, Ling Dong; Zhang, Xixiang; Lin, Haiqing; YAN, Chunhua

    2012-01-01

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  10. Dynamic capabilities, Marketing Capability and Organizational Performance

    Directory of Open Access Journals (Sweden)

    Adriana Roseli Wünsch Takahashi

    2017-01-01

    Full Text Available The goal of the study is to investigate the influence of dynamic capabilities on organizational performance and the role of marketing capabilities as a mediator in this relationship in the context of private HEIs in Brazil. As a research method we carried out a survey with 316 IES and data analysis was operationalized with the technique of structural equation modeling. The results indicate that the dynamic capabilities have influence on organizational performance only when mediated by marketing ability. The marketing capability has an important role in the survival, growth and renewal on educational services offerings for HEIs in private sector, and consequently in organizational performance. It is also demonstrated that mediated relationship is more intense for HEI with up to 3,000 students and other organizational profile variables such as amount of courses, the constitution, the type of institution and type of education do not significantly alter the results.

  11. Capability approach

    DEFF Research Database (Denmark)

    Jensen, Niels Rosendal; Kjeldsen, Christian Christrup

    Lærebogen er den første samlede danske præsentation af den af Amartya Sen og Martha Nussbaum udviklede Capability Approach. Bogen indeholder en præsentation og diskussion af Sen og Nussbaums teoretiske platform. I bogen indgår eksempler fra såvel uddannelse/uddannelsespolitik, pædagogik og omsorg....

  12. Resources, constraints and capabilities

    NARCIS (Netherlands)

    Dhondt, S.; Oeij, P.R.A.; Schröder, A.

    2018-01-01

    Human and financial resources as well as organisational capabilities are needed to overcome the manifold constraints social innovators are facing. To unlock the potential of social innovation for the whole society new (social) innovation friendly environments and new governance structures

  13. Plasmonic reflectors and high-Q nano-cavities based on coupled metal-insulator-metal waveguides

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2012-03-01

    Full Text Available Based on the contra-directional coupling, a composite structure consisting of two coupled metal-insulator-metal (MIM waveguides is proposed to act as an attractive plasmonic reflector. By introducing a defect into one of the MIM waveguides, we show that such a composite structure can be operated as a plasmonic nanocavity with a high quality factor. Both symmetric and anti-symmetric cavity modes are supported in the plasmonic cavity, and their resonance frequencies can be tuned by controlling the defect width. The present structures could have a significant impact for potential applications such as surface plasmon mirrors, filters and solid-state cavity quantum electrodynamics.

  14. Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches

    KAUST Repository

    Zheng, Yue Bing

    2009-02-11

    A gold nanodisk array, coated with bistable, redox-controllable [2]rotaxane molecules, when exposed to chemical oxidants and reductants, undergoes switching of its plasmonic properties reversibly. By contrast, (i) bare gold nanodisks and (ii) disks coated with a redox-active, but mechanically inert, control compound do not display surface-plasmon-based switching. Along with calculations based on time-dependent density functional theory, these experimental observations suggest that the nanoscale movements within surface-bound “molecular machines” can be used as the active components in plasmonic devices.

  15. Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches

    KAUST Repository

    Zheng, Yue Bing; Yang, Ying-Wei; Jensen, Lasse; Fang, Lei; Juluri, Bala Krishna; Flood, Amar H.; Weiss, Paul S.; Stoddart, J. Fraser; Huang, Tony Jun

    2009-01-01

    A gold nanodisk array, coated with bistable, redox-controllable [2]rotaxane molecules, when exposed to chemical oxidants and reductants, undergoes switching of its plasmonic properties reversibly. By contrast, (i) bare gold nanodisks and (ii) disks coated with a redox-active, but mechanically inert, control compound do not display surface-plasmon-based switching. Along with calculations based on time-dependent density functional theory, these experimental observations suggest that the nanoscale movements within surface-bound “molecular machines” can be used as the active components in plasmonic devices.

  16. Plasmonic enhancement of electroluminescence

    Science.gov (United States)

    Guzatov, D. V.; Gaponenko, S. V.; Demir, H. V.

    2018-01-01

    Here plasmonic effect specifically on electroluminescence (EL) is studied in terms of radiative and nonradiative decay rates for a dipole near a metal spherical nanoparticle (NP). Contribution from scattering is taken into account and is shown to play a decisive role in EL enhancement owing to pronounced size-dependent radiative decay enhancement and weak size effect on non-radiative counterpart. Unlike photoluminescence where local incident field factor mainly determines the enhancement possibility and level, EL enhancement is only possible by means of quantum yield rise, EL enhancement being feasible only for an intrinsic quantum yield Q0 red-orange range only. Independently of positive effect on quantum yield, metal nanoparticles embedded in an electroluminescent device will improve its efficiency at high currents owing to enhanced overall recombination rate which will diminish manifestation of Auger processes. The latter are believed to be responsible for the known undesirable efficiency droop in semiconductor commercial quantum well based LEDs at higher current. For the same reason plasmonics can diminish quantum dot photodegradation from Auger process induced non-radiative recombination and photoionization thus opening a way to avoid negative Auger effects in emerging colloidal semiconductor LEDs.

  17. Plasmonic and silicon spherical nanoparticle antireflective coatings

    Science.gov (United States)

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-03-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.

  18. ENTREPRENEURIAL CAPABILITIES

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Nielsen, Thorkild

    2003-01-01

    The aim of this article is to analyse entrepreneurship from an action research perspective. What is entrepreneurship about? Which are the fundamental capabilities and processes of entrepreneurship? To answer these questions the article includes a case study of a Danish entrepreneur and his networ....... Finally, the article discuss, how more long term action research methods could be integrated into the entrepreneurial processes and the possible impacts of such an implementation?...

  19. Plasmonic Horizon in Gold Nanosponges.

    Science.gov (United States)

    Vidal, Cynthia; Sivun, Dmitry; Ziegler, Johannes; Wang, Dong; Schaaf, Peter; Hrelescu, Calin; Klar, Thomas A

    2018-02-14

    An electromagnetic wave impinging on a gold nanosponge coherently excites many electromagnetic hot-spots inside the nanosponge, yielding a polarization-dependent scattering spectrum. In contrast, a hole, recombining with an electron, can locally excite plasmonic hot-spots only within a horizon given by the lifetime of localized plasmons and the speed carrying the information that a plasmon has been created. This horizon is about 57 nm, decreasing with increasing size of the nanosponge. Consequently, photoluminescence from large gold nanosponges appears unpolarized.

  20. Plasmonic nanoholes as SERS devices for biosensing applications: An easy route for nanostructures fabrication on glass substrates

    KAUST Repository

    Candeloro, Patrizio; Iuele, Ernesto; Perozziello, Gerardo; Coluccio, Maria Laura; Gentile, Francesco; Malara, Natalia; Mollace, Vincenzo; Di Fabrizio, Enzo M.

    2016-01-01

    , such as reproducibility, quantitative analysis and signal background interference. In this work we propose an easy and cheap route, based on a template stripping technique, for producing plasmonic nanostructured films with SERS capabilities. We focus our attention

  1. Intersubband surface plasmon polaritons in all-semiconductor planar plasmonic resonators

    Science.gov (United States)

    ZałuŻny, M.

    2018-01-01

    We theoretically discuss properties of intersubband surface plasmon polaritons (ISPPs) supported by the system consisting of a multiple quantum well (MQW) slab embedded into planar resonator with highly doped semiconducting claddings playing the role of cavity mirrors. Symmetric structures, where the MQW slab occupies the whole space between the claddings and asymmetric structures, where the MQW occupy only half of the space between mirrors, are considered. We focus mainly on the nearly degenerate structures where intersubband frequency is close to frequency of the surface plasmon of the mirrors. The ISPP characteristics are calculated numerically using a semiclassical approach based on the transfer matrix formalism and the effective-medium approximation. The claddings are described by the lossless Drude model. The possibility of engineering the dispersion of the ISPP branches is demonstrated. In particular, for certain parameters of the asymmetric structures we observe the formation of the multimode ISPP branches with two zero group velocity points. We show that the properties of the ISPP branches are reasonably well interpreted employing quasiparticle picture provided that the concept of the mode overlap factor is generalized, taking into account the dispersive character of the mirrors. In addition to this, we demonstrate that the lossless dispersion characteristics of the ISPP branches obtained in the paper are consistent with the angle-resolved reflection-absorption spectra of the GaAlAs-based realistic plasmonic resonators.

  2. Electro-optic polymeric reflection modulator based on plasmonic metamaterial

    Science.gov (United States)

    Abbas, A.; Swillam, M.

    2018-02-01

    A novel low power design for polymeric Electro-Optic reflection modulator is proposed based on the Extraordinary Reflection of light from multilayer structure consisting of a plasmonic metasurface with a periodic structure of sub wavelength circular apertures in a gold film above a thin layer of EO polymer and above another thin gold layer. The interference of the different reflected beams from different layer construct the modulated beam, The applied input driving voltage change the polymer refractive index which in turn determine whether the interference is constructive or destructive, so both phase and intensity modulation could be achieved. The resonant wavelength is tuned to the standard telecommunication wavelength 1.55μm, at this wavelength the reflection is minimum, while the absorption is maximum due to plasmonic resonance (PR) and the coupling between the incident light and the plasmonic metasurface.

  3. A ``plasmonic cuvette'': dye chemistry coupled to plasmonic interferometry for glucose sensing

    Science.gov (United States)

    Siu, Vince S.; Feng, Jing; Flanigan, Patrick W.; Palmore, G. Tayhas R.; Pacifici, Domenico

    2014-06-01

    A non-invasive method for the detection of glucose is sought by millions of diabetic patients to improve personal management of blood glucose over a lifetime. In this work, the synergistic advantage of combining plasmonic interferometry with an enzyme-driven dye assay yields an optical sensor capable of detecting glucose in saliva with high sensitivity and selectivity. The sensor, coined a "plasmonic cuvette," is built around a nano-scale groove-slit-groove (GSG) plasmonic interferometer coupled to an Amplex-red/Glucose-oxidase/Glucose (AR/GOx/Glucose) assay. The proposed device is highly sensitive, with a measured intensity change of 1.7×105%/m (i.e., one order of magnitude more sensitive than without assay) and highly specific for glucose sensing in picoliter volumes, across the physiological range of glucose concentrations found in human saliva (20-240 μm). Real-time glucose monitoring in saliva is achieved by performing a detailed study of the underlying enzyme-driven reactions to determine and tune the effective rate constants in order to reduce the overall assay reaction time to ˜2 min. The results reported suggest that by opportunely choosing the appropriate dye chemistry, a plasmonic cuvette can be turned into a general, real-time sensing scheme for detection of any molecular target, with high sensitivity and selectivity, within extremely low volumes of biological fluid (down to femtoliters). Hereby, we present the results on glucose detection in artificial saliva as a notable and clinically relevant case study.

  4. Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes.

    Science.gov (United States)

    DuChene, Joseph S; Tagliabue, Giulia; Welch, Alex J; Cheng, Wen-Hui; Atwater, Harry A

    2018-04-11

    Harvesting nonequilibrium hot carriers from plasmonic-metal nanostructures offers unique opportunities for driving photochemical reactions at the nanoscale. Despite numerous examples of hot electron-driven processes, the realization of plasmonic systems capable of harvesting hot holes from metal nanostructures has eluded the nascent field of plasmonic photocatalysis. Here, we fabricate gold/p-type gallium nitride (Au/p-GaN) Schottky junctions tailored for photoelectrochemical studies of plasmon-induced hot-hole capture and conversion. Despite the presence of an interfacial Schottky barrier to hot-hole injection of more than 1 eV across the Au/p-GaN heterojunction, plasmonic Au/p-GaN photocathodes exhibit photoelectrochemical properties consistent with the injection of hot holes from Au nanoparticles into p-GaN upon plasmon excitation. The photocurrent action spectrum of the plasmonic photocathodes faithfully follows the surface plasmon resonance absorption spectrum of the Au nanoparticles and open-circuit voltage studies demonstrate a sustained photovoltage during plasmon excitation. Comparison with Ohmic Au/p-NiO heterojunctions confirms that the vast majority of hot holes generated via interband transitions in Au are sufficiently hot to inject above the 1.1 eV interfacial Schottky barrier at the Au/p-GaN heterojunction. We further investigated plasmon-driven photoelectrochemical CO 2 reduction with the Au/p-GaN photocathodes and observed improved selectivity for CO production over H 2 evolution in aqueous electrolytes. Taken together, our results offer experimental validation of photoexcited hot holes more than 1 eV below the Au Fermi level and demonstrate a photoelectrochemical platform for harvesting hot carriers to drive solar-to-fuel energy conversion.

  5. An introduction to graphene plasmonics

    CERN Document Server

    Goncalves, P A D

    2016-01-01

    This book is meant as an introduction to graphene plasmonics and aims at the advanced undergraduate and graduate students entering the field of plasmonics in graphene. In it different theoretical methods are introduced, starting with an elementary description of graphene plasmonics and evolving towards more advanced topics. This book is essentially self-contained and brings together a number of different topics about the field that are scattered in the vast literature. The text is composed of eleven chapters and of a set of detailed appendices. It can be read in two different ways: Reading only the chapters to get acquainted with the field of plasmonics in graphene or reading the chapters and studying the appendices to get a working knowledge of the topic. The study of the material in this book will bring the students to the forefront of the research in this field.

  6. Group-IV midinfrared plasmonics

    Science.gov (United States)

    Biagioni, Paolo; Frigerio, Jacopo; Samarelli, Antonio; Gallacher, Kevin; Baldassarre, Leonetta; Sakat, Emilie; Calandrini, Eugenio; Millar, Ross W.; Giliberti, Valeria; Isella, Giovanni; Paul, Douglas J.; Ortolani, Michele

    2015-01-01

    The use of heavily doped semiconductors to achieve plasma frequencies in the mid-IR has been recently proposed as a promising way to obtain high-quality and tunable plasmonic materials. We introduce a plasmonic platform based on epitaxial n-type Ge grown on standard Si wafers by means of low-energy plasma-enhanced chemical vapor deposition. Due to the large carrier concentration achieved with P dopants and to the compatibility with the existing CMOS technology, SiGe plasmonics hold promises for mid-IR applications in optoelectronics, IR detection, sensing, and light harvesting. As a representative example, we show simulations of mid-IR plasmonic waveguides based on the experimentally retrieved dielectric constants of the grown materials.

  7. Controlling light with plasmonic multilayers

    DEFF Research Database (Denmark)

    Orlov, Alexey A.; Zhukovsky, Sergei; Iorsh, Ivan V.

    2014-01-01

    metamaterials and describe their use for light manipulation at the nanoscale. While demonstrating the recently emphasized hallmark effect of hyperbolic dispersion, we put special emphasis to the comparison between multilayered hyperbolic metamaterials and more broadly defined plasmonic-multilayer metamaterials...

  8. BIM Software Capability and Interoperability Analysis : An analytical approach toward structural usage of BIM software (S-BIM)

    OpenAIRE

    A. Taher, Ali

    2016-01-01

    This study focused on the structuralanalysis of BIM models. Different commercial software (Autodesk products and Rhinoceros)are presented through modelling and analysis of different structures with varying complexity,section properties, geometry, and material. Beside the commercial software, differentarchitectural and different tools for structural analysis are evaluated (dynamo, grasshopper,add-on tool, direct link, indirect link via IFC). BIM and Structural BIM (S-BIM)

  9. Semiconductors for plasmonics and metamaterials

    DEFF Research Database (Denmark)

    Naik, G.V.; Boltasseva, Alexandra

    2010-01-01

    Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals with semiconduct......Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals...... with semiconductors can alleviate these problems if only semiconductors could exhibit negative real permittivity. Aluminum doped zinc oxide (AZO) is a low loss semiconductor that can show negative real permittivity in the NIR. A comparative assessment of AZO-based plasmonic devices such as superlens and hyperlens...... with their metal-based counterparts shows that AZO-based devices significantly outperform at a wavelength of 1.55 µm. This provides a strong stimulus in turning to semiconductor plasmonics at the telecommunication wavelengths. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)....

  10. Photoelectron Energy Loss in Al(002) Revisited: Retrieval of the Single Plasmon Loss Energy Distribution by a Fourier Transform Method

    Science.gov (United States)

    Santana, Victor Mancir da Silva; David, Denis; de Almeida, Jailton Souza; Godet, Christian

    2018-06-01

    A Fourier transform (FT) algorithm is proposed to retrieve the energy loss function (ELF) of solid surfaces from experimental X-ray photoelectron spectra. The intensity measured over a broad energy range towards lower kinetic energies results from convolution of four spectral distributions: photoemission line shape, multiple plasmon loss probability, X-ray source line structure and Gaussian broadening of the photoelectron analyzer. The FT of the measured XPS spectrum, including the zero-loss peak and all inelastic scattering mechanisms, being a mathematical function of the respective FT of X-ray source, photoemission line shape, multiple plasmon loss function, and Gaussian broadening of the photoelectron analyzer, the proposed algorithm gives straightforward access to the bulk ELF and effective dielectric function of the solid, assuming identical ELF for intrinsic and extrinsic plasmon excitations. This method is applied to aluminum single crystal Al(002) where the photoemission line shape has been computed accurately beyond the Doniach-Sunjic approximation using the Mahan-Wertheim-Citrin approach which takes into account the density of states near the Fermi level; the only adjustable parameters are the singularity index and the broadening energy D (inverse hole lifetime). After correction for surface plasmon excitations, the q-averaged bulk loss function, q , of Al(002) differs from the optical value Im[- 1 / ɛ( E, q = 0)] and is well described by the Lindhard-Mermin dispersion relation. A quality criterion of the inversion algorithm is given by the capability of observing weak interband transitions close to the zero-loss peak, namely at 0.65 and 1.65 eV in ɛ( E, q) as found in optical spectra and ab initio calculations of aluminum.

  11. Photoelectron Energy Loss in Al(002) Revisited: Retrieval of the Single Plasmon Loss Energy Distribution by a Fourier Transform Method

    Science.gov (United States)

    Santana, Victor Mancir da Silva; David, Denis; de Almeida, Jailton Souza; Godet, Christian

    2018-04-01

    A Fourier transform (FT) algorithm is proposed to retrieve the energy loss function (ELF) of solid surfaces from experimental X-ray photoelectron spectra. The intensity measured over a broad energy range towards lower kinetic energies results from convolution of four spectral distributions: photoemission line shape, multiple plasmon loss probability, X-ray source line structure and Gaussian broadening of the photoelectron analyzer. The FT of the measured XPS spectrum, including the zero-loss peak and all inelastic scattering mechanisms, being a mathematical function of the respective FT of X-ray source, photoemission line shape, multiple plasmon loss function, and Gaussian broadening of the photoelectron analyzer, the proposed algorithm gives straightforward access to the bulk ELF and effective dielectric function of the solid, assuming identical ELF for intrinsic and extrinsic plasmon excitations. This method is applied to aluminum single crystal Al(002) where the photoemission line shape has been computed accurately beyond the Doniach-Sunjic approximation using the Mahan-Wertheim-Citrin approach which takes into account the density of states near the Fermi level; the only adjustable parameters are the singularity index and the broadening energy D (inverse hole lifetime). After correction for surface plasmon excitations, the q-averaged bulk loss function, q , of Al(002) differs from the optical value Im[- 1 / ɛ(E, q = 0)] and is well described by the Lindhard-Mermin dispersion relation. A quality criterion of the inversion algorithm is given by the capability of observing weak interband transitions close to the zero-loss peak, namely at 0.65 and 1.65 eV in ɛ(E, q) as found in optical spectra and ab initio calculations of aluminum.

  12. A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure

    International Nuclear Information System (INIS)

    Jiang, Shouzhen; Li, Zhe; Zhang, Chao; Gao, Saisai; Li, Zhen; Li, Chonghui; Yang, Cheng; Liu, Mei; Qiu, Hengwei; Liu, Yanjun

    2017-01-01

    In this work, we have presented a novel local surface plasmon resonance (LSPR) sensor based on the U-bent plastic optical fibre (U-POF). Firstly, a layer of discontinuous silver (Ag) thin film was deposited on the U-POF and then the Ag film was covered by a layer of cladding synthesized by polyvinyl alcohol (PVA), graphene and silver nanoparticles forming the PVA/G/AgNPs@Ag film. The normalized transmittance spectrum of the LSPR sensor have been collected in a range of the refractive index (RI) from 1.330 to 1.3657 in ethanol solution, and 700.3 nm/RIU sensitivity of the developed LSPR sensor has been demonstrated. By experiments, we demonstrated that the graphene could improve the sensitivity of the LSPR sensor and delay the oxidation process of the AgNPs effectively to keep the stability of the LSPR sensor. The LSPR sensor also exhibited good sensitivity and linearity in the detection of glucose solutions. This work shows that the developed LSPR sensor may have promising applications in biosensing. (paper)

  13. Silver nanoparticles from silver halide photography to plasmonics

    CERN Document Server

    Tani, Tadaaki

    2015-01-01

    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  14. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.

    Science.gov (United States)

    Zhu, Wenqi; Crozier, Kenneth B

    2014-10-14

    Plasmonic nanostructures enable light to be concentrated into nanoscale 'hotspots', wherein the intensity of light can be enhanced by orders of magnitude. This plasmonic enhancement significantly boosts the efficiency of nanoscale light-matter interactions, enabling unique linear and nonlinear optical applications. Large enhancements are often observed within narrow gaps or at sharp tips, as predicted by the classical electromagnetic theory. Only recently has it become appreciated that quantum mechanical effects could emerge as the feature size approaches atomic length-scale. Here we experimentally demonstrate, through observations of surface-enhanced Raman scattering, that the emergence of electron tunnelling at optical frequencies limits the maximum achievable plasmonic enhancement. Such quantum mechanical effects are revealed for metallic nanostructures with gap-widths in the single-digit angstrom range by correlating each structure with its optical properties. This work furthers our understanding of quantum mechanical effects in plasmonic systems and could enable future applications of quantum plasmonics.

  15. Multi-directional plasmonic surface-wave splitters with full bandwidth isolation

    International Nuclear Information System (INIS)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.

  16. Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface

    Science.gov (United States)

    Kosobukin, V. A.; Korotchenkov, A. V.

    2016-12-01

    A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.

  17. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    Science.gov (United States)

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  18. Electromagnetic near-field coupling induced polarization conversion and asymmetric transmission in plasmonic metasurfaces

    Science.gov (United States)

    Peng, Yu-Xiang; Wang, Kai-Jun; He, Meng-Dong; Luo, Jian-Hua; Zhang, Xin-Min; Li, Jian-Bo; Tan, Shi-Hua; Liu, Jian-Qiang; Hu, Wei-Da; Chen, Xiaoshuang

    2018-04-01

    In this paper, we demonstrate the effect of polarization conversion in a plasmonic metasurface structure, in which each unit cell consists of a metal bar and four metal split-ring resonators (SRRs). Such effect is attributed to the fact that the dark plasmon mode of SRRs (bar), which radiates cross-polarized component, is induced by the bright plasmon mode of bar (SRRs) due to the electromagnetic near-field coupling between bar and SRRs. We find that there are two ways to achieve a large cross-polarized component in our proposed metasurface structure. The first way is realized when the dark plasmon mode of bar (SRRs) is in resonance, while at this time the bright plasmon mode of SRRs (bar) is not at resonant state. The second way is realized when the bright plasmon mode of SRRs (bar) is resonantly excited, while the dark plasmon mode of bar (SRRs) is at nonresonant state. It is also found that the linearly polarized light can be rotated by 56.50 after propagation through the metasurface structure. Furthermore, our proposed metasurface structure exhibits an asymmetric transmission for circularly polarized light. Our findings take a further step in developing integrated metasurface-based photonics devices for polarization manipulation and modulation.

  19. Universal description of channel plasmons in two-dimensional materials

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Bozhevolnyi, Sergey I.; Mortensen, N. Asger

    2017-01-01

    Channeling surface plasmon-polaritons to control their propagation direction is of the utmost importance for future optoelectronic devices. Here, we develop an effective-index method to describe and characterize the properties of 2D material's channel plasmon-polaritons (CPPs) guided along a V......-shaped channel. Focusing on the case of graphene, we derive a universal Schr\\"odinger-like equation from which one can determine the dispersion relation of graphene CPPs and corresponding field distributions at any given frequency, since they depend on the geometry of the structure alone. The results...

  20. Plasmonic direct writing lithography with a macroscopical contact probe

    Science.gov (United States)

    Huang, Yuerong; Liu, Ling; Wang, Changtao; Chen, Weidong; Liu, Yunyue; Li, Ling

    2018-05-01

    In this work, we design a plasmonic direct writing lithography system with a macroscopical contact probe to achieve nanometer scale spots. The probe with bowtie-shaped aperture array adopts spring hinge and beam deflection method (BDM) to realize near-field lithography. Lithography results show that a macroscopical plasmonic contact probe can achieve a patterning resolution of around 75 nm at 365 nm wavelength, and demonstrate that the lithography system is promising for practical applications due to beyond the diffraction limit, low cost, and simplification of system configuration. CST calculations provide a guide for the design of recording structure and the arrangement of placing polarizer.

  1. Plasmon-polariton modes of dense Au nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hongdan; Lemmens, Peter; Wulferding, Dirk; Cetin, Mehmet Fatih [IPKM, TU-BS, Braunschweig (Germany); Tornow, Sabine; Zwicknagl, Gertrud [IMP, TU-BS, Braunschweig (Germany); Krieg, Ulrich; Pfnuer, Herbert [IFP, LU Hannover (Germany); Daum, Winfried; Lilienkamp, Gerhard [IEPT, TU Clausthal (Germany); Schilling, Meinhard [EMG, TU-BS, Braunschweig (Germany)

    2011-07-01

    Using optical absorption and other techniques we study plasmon-polariton modes of dense Au nanowire arrays as function of geometrical parameters and coupling to molecular degrees of freedom. For this instance we electrochemically deposit Au nanowires in porous alumina with well controlled morphology and defect concentration. Transverse and longitudinal modes are observed in the absorption spectra resulting from the anisotropic plasmonic structure. The longitudinal mode shows a blue shift of energy with increasing length of the wires due to the more collective nature of this response. We compare our observations with model calculations and corresponding results on 2D Ag nanowire lattices.

  2. Looking into meta-atoms of plasmonic nanowire metamaterial

    KAUST Repository

    Tsai, Kuntong

    2014-09-10

    Nanowire-based plasmonic metamaterials exhibit many intriguing properties related to the hyperbolic dispersion, negative refraction, epsilon-near-zero behavior, strong Purcell effect, and nonlinearities. We have experimentally and numerically studied the electromagnetic modes of individual nanowires (meta-atoms) forming the metamaterial. High-resolution, scattering-type near-field optical microscopy has been used to visualize the intensity and phase of the modes. Numerical and analytical modeling of the mode structure is in agreement with the experimental observations and indicates the presence of the nonlocal response associated with cylindrical surface plasmons of nanowires.

  3. Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide

    International Nuclear Information System (INIS)

    Talebi, Nahid; Shahabadi, Mahmoud

    2010-01-01

    Using the rigorous mode-matching technique, we have investigated a periodically corrugated perfectly conducting coaxial waveguide for the possibility of propagation of localized spoof surface plasmons. To verify our results, the computed band diagram of the structure has been compared with the one obtained using the body-of-revolution finite-difference time-domain method. The obtained spoof surface plasmon modes have been shown to be highly localized and slowly propagating. Variations of the obtained modal frequencies and mode profiles as a function of the depth and width of the grooves have also been investigated.

  4. Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Talebi, Nahid; Shahabadi, Mahmoud, E-mail: n.talebi@ece.ut.ac.i [Photonics Research Laboratory, Center of Excellence for Applied Electromagnetic Systems, School of Electrical and Computer Engineering, University of Tehran, North Kargar Ave., Tehran (Iran, Islamic Republic of)

    2010-04-07

    Using the rigorous mode-matching technique, we have investigated a periodically corrugated perfectly conducting coaxial waveguide for the possibility of propagation of localized spoof surface plasmons. To verify our results, the computed band diagram of the structure has been compared with the one obtained using the body-of-revolution finite-difference time-domain method. The obtained spoof surface plasmon modes have been shown to be highly localized and slowly propagating. Variations of the obtained modal frequencies and mode profiles as a function of the depth and width of the grooves have also been investigated.

  5. Comparison of structural health assessment capabilities in epoxy – carbon black and epoxy – carbon nanotube nanocomposites

    OpenAIRE

    F. Inam; B. R. Bhat; N. Luhyna; T. Vo

    2014-01-01

    A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB) and epoxy – 0.2 vol% carbon nanotube (CNT) nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by...

  6. Hybrid plasmonic waveguide in a metal V-groove

    Directory of Open Access Journals (Sweden)

    Zhao-xian Chen

    2014-01-01

    Full Text Available We propose and investigate a type of hybrid plasmonic waveguide in a metal V-groove. A high-permittivity nanowire was placed in the metal channel covered with a dielectric film of lower permittivity. Deeper sub-wavelength confinement and much longer propagation distance were achieved in comparison with conventional channel plasmonic waveguides. The overall performance was improved as compared with the conventional hybrid plasmonic structure based on a flat metal surface. Finite element analysis showed that both the mode propagation and field profile can be adjusted by changing the nanowire radius and film thickness. Some benefits, such as a reduced scattering loss caused by the surface roughness, are also expected owing to the unique mode profile. The proposed approach has potential for application in high-level photonic integration.

  7. Beam manipulating by metal–anisotropic–metal plasmonic lens

    International Nuclear Information System (INIS)

    Bahramipanah, M; Abrishamian, M S; Mirtaheri, S A

    2012-01-01

    Embedding anisotropic media in the slit region of a plasmonic nano-optic lens is proposed as a new method of actively modulating the output beam. The focal length can be controlled easily by exposing the plasmonic nano-optic lens to a constant external electric field. The physical principle of this phenomenon is evaluated from the phase of surface plasmon polaritons (SPPs) in the slits and the electro-optical effect of liquid crystals. Our numerical simulations using the finite-difference time-domain (FDTD) technique reveal that a large tuning range of the focal length up to 545 nm at the first communication window can be achieved. The special feature of the proposed structure gives it an opportunity to be used as an efficient element in ultrahigh nano-scale integrated photonic circuits for miniaturization and tuning purposes. (paper)

  8. Optical enhancement effects of plasmonic nanostructures on organic photovoltaic cells

    KAUST Repository

    Park, Hui Joon

    2015-04-01

    © 2015 Hui Joon Park and L. Jay Guo. Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. All rights reserved. In this article, the optical enhancement effects of plasmonic nanostructures on OPV cells were reviewed as an effective way to resolve the mismatch problems between the short exciton diffusion length in organic semiconductors (around 10 nm) and the large thickness required to fully absorb sunlight (e.g. hundreds of nanometers). Especially, the performances of OPVs with plasmonic nanoparticles in photoactive and buffer layers and with periodic nanostructures were investigated. Furthermore, nanoimprint lithography-based nanofabrication processes that can easily control the dimension and uniformity of structures for large-area and uniform plasmonic nanostructures were demonstrated.

  9. Plasmonic resonances in ordered and disordered aluminum nanocavities arrays.

    Science.gov (United States)

    Campuzano, R. G.; Mendoza, D.

    2017-01-01

    Nanocavities arrays were synthesized by electrochemical anodization of aluminum using oxalic and phosphoric acids as electrolytes. The morphology and topography of these structures were evaluated by SEM and AFM. Plasmonic properties of Al cavities arrays with different ordering and dimensions were analysed based on specular reflectivity. Al cavities arrays fabricated with phosphoric acid dramatically reduced the optical reflectivity as compared with unstructured Al. At the same time pronounced reflectivity dips were detectable in the 300nm-400nm range, which were ascribed to (0,1) plasmonic mode, and also a colored appearance in the samples is noticeably depending on the observation angle. These changes are not observed in samples made with oxalic acid and this fact was explained, based on a theoretical model, in terms that the surface plasmons are excited far in the UV range.

  10. Fabrication of overlaid nanopattern arrays for plasmon memory

    Science.gov (United States)

    Okabe, Takao; Wadayama, Hisahiro; Taniguchi, Jun

    2018-01-01

    Stacking technique of nanopattern array is gathering attention to fabricate next generation data storage such as plasmon memory. This technique provides multi- overlaid nanopatterns which made by nanoimprint lithography. In the structure, several metal nanopatterned layer and resin layer as a spacer are overlaid alternately. The horizontal position of nanopatterns to under nanopatterns and thickness of resin layer as spacer should be controlled accurately, because these parameters affect reading performance and capacity of plasmon memory. In this study, we developed new alignment mark to fabricate multi- overlaid nanopatterns. The alignment accuracy with the order of 300 nm was demonstrated for Ag nanopatterns in 2 layers. The alignment mark can measure the thickness of spacer. The relationship of spacer thickness and position of scale bar on the alignment mark was measured. The usefulness of the alignment mark for highdensity plasmon memory is shown.

  11. Plasmonic resonances in ordered and disordered aluminum nanocavities arrays

    International Nuclear Information System (INIS)

    Campuzano, R. G.; Mendoza, D.

    2017-01-01

    Nanocavities arrays were synthesized by electrochemical anodization of aluminum using oxalic and phosphoric acids as electrolytes. The morphology and topography of these structures were evaluated by SEM and AFM. Plasmonic properties of Al cavities arrays with different ordering and dimensions were analysed based on specular reflectivity. Al cavities arrays fabricated with phosphoric acid dramatically reduced the optical reflectivity as compared with unstructured Al. At the same time pronounced reflectivity dips were detectable in the 300nm-400nm range, which were ascribed to (0,1) plasmonic mode, and also a colored appearance in the samples is noticeably depending on the observation angle. These changes are not observed in samples made with oxalic acid and this fact was explained, based on a theoretical model, in terms that the surface plasmons are excited far in the UV range. (paper)

  12. Non-blinking quantum dot with a plasmonic nanoshell resonator

    Science.gov (United States)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  13. One-dimensional Tamm plasmons: Spatial confinement, propagation, and polarization properties

    Science.gov (United States)

    Chestnov, I. Yu.; Sedov, E. S.; Kutrovskaya, S. V.; Kucherik, A. O.; Arakelian, S. M.; Kavokin, A. V.

    2017-12-01

    Tamm plasmons are confined optical states at the interface of a metal and a dielectric Bragg mirror. Unlike conventional surface plasmons, Tamm plasmons may be directly excited by an external light source in both TE and TM polarizations. Here we consider the one-dimensional propagation of Tamm plasmons under long and narrow metallic stripes deposited on top of a semiconductor Bragg mirror. The spatial confinement of the field imposed by the stripe and its impact on the structure and energy of Tamm modes are investigated. We show that the Tamm modes are coupled to surface plasmons arising at the stripe edges. These plasmons form an interference pattern close to the bottom surface of the stripe that involves modification of both the energy and loss rate for the Tamm mode. This phenomenon is pronounced only in the case of TE polarization of the Tamm mode. These findings pave the way to application of laterally confined Tamm plasmons in optical integrated circuits as well as to engineering potential traps for both Tamm modes and hybrid modes of Tamm plasmons and exciton polaritons with meV depth.

  14. Plasmonic energy transfer in periodically doped graphene

    International Nuclear Information System (INIS)

    Silveiro, I; Manjavacas, A; Thongrattanasiri, S; García de Abajo, F J

    2013-01-01

    We predict unprecedentedly large values of the energy-transfer rate between an optical emitter and a layer of periodically doped graphene. The transfer exhibits divergences at photon frequencies corresponding to the Van Hove singularities of the plasmonic band structure of the graphene. In particular, we find flat bands associated with regions of vanishing doping charge, which appear in graphene when it is patterned through gates of spatially alternating signs, giving rise to intense transfer rate singularities. Graphene is thus shown to provide a unique platform for fast control of optical energy transfer via fast electrostatic inhomogeneous doping. (paper)

  15. Compacted dimensions and singular plasmonic surfaces

    Science.gov (United States)

    Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-01

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.

  16. Dynamic capabilities

    DEFF Research Database (Denmark)

    Grünbaum, Niels Nolsøe; Stenger, Marianne

    2013-01-01

    enterprises’ internal and external business atmosphere. A sphere dominated, on the positive side, by high product quality, high product innovation, high flexibility, a very low return rate of failed products, a flat organization structure and an involving style of leadership. On the opposite pole...

  17. Plasmonic Devices for Near and Far-Field Applications

    KAUST Repository

    Alrasheed, Salma

    2017-11-30

    thesis, we propose numerically an approach to narrow the plasmon linewidth and enhance the magnetic near field intensity at a magnetic hot spot in a hybridized metal-insulator-metal (MIM) structure. The computational method used throughout the thesis is the finite-difference time-domain method (FDTD).

  18. Nanoimprinted reflecting gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Haugstrup; Boltasseva, Alexandra; Johansen, Dan Mario

    2007-01-01

    We present a novel design, fabrication, and characterization of reflecting gratings for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. LR-SPP waveguides consisting of a thin (12 nm) gold film embedded in a thick (45 μm) layer of dielectric polymer cladding are structured...

  19. Superfocusing properties of disorder-enhanced plasmonic nanolenses

    KAUST Repository

    Gongora, J. S. Totero; Coluccio, Maria Laura; Proietti Zaccaria, Remo; Di Fabrizio, Enzo M.; Fratalocchi, Andrea

    2014-01-01

    We investigated a disordered plasmonic nanolens using an extensive campaign of FDTD simulations. Our results show that surface roughness plays a crucial role in the enhancement of the electromagnetic energy with respect to regular structures. © 2014 Optical Society of America.

  20. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy...

  1. Ultralow-loss CMOS copper plasmonic waveguides

    DEFF Research Database (Denmark)

    Fedyanin, Dmitry Yu.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.

    2016-01-01

    with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which...

  2. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  3. Plasmonic materials based on ZnO films and their potential for developing broadband middle-infrared absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Kesim, Yunus E., E-mail: yunus.kesim@bilkent.edu.tr; Battal, Enes [Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800 (Turkey); UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800 (Turkey); Okyay, Ali K. [Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800 (Turkey); UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 (Turkey)

    2014-07-15

    Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic losses. Alternative plasmonic materials that offer low loss and tunability are desired for a new generation of efficient and agile devices. In this paper, atomic layer deposition (ALD) grown ZnO is investigated as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. We show that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectric properties. In order to demonstrate plasmonic resonances, we simulate a grating structure and computationally demonstrate an ultra-wide-band (4–15 μm) infrared absorber.

  4. Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons

    DEFF Research Database (Denmark)

    Raza, Søren; Mortensen, N. Asger

    2016-01-01

    The miniaturization of metal structures down to the nanoscale has been accompanied with several recent studies demonstrating plasmonic effects not explainable by classical electromagnetic theory. Describing the optical properties of materials solely through the bulk dielectric function has been...

  5. Novel hard mask fabrication method for hybrid plasmonic waveguide and metasurfaces

    DEFF Research Database (Denmark)

    Choudhury, Sajid; Zenin, Vladimir A.; Saha, Soham

    2017-01-01

    A hybrid plasmonic waveguide fabrication technique has been developed and waveguides fabricated using this technique have been demonstrated experimentally. The developed technique can be utilized for creating similar hybrid waveguide structures and metasurfaces with an array of material platforms...

  6. Electrically Tunable Plasmonic Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Ni, Xingjie

    2012-01-01

    Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance.......Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance....

  7. Simulation-Visualization and Self-Assessment Modules' Capabilities in Structural Analysis Course Including Survey Analysis Results

    Science.gov (United States)

    Kadiam, Subhash Chandra Bose S. V.; Mohammed, Ahmed Ali; Nguyen, Duc T.

    2010-01-01

    In this paper, we describe an approach to analyze 2D truss/Frame/Beam structures under Flash-based environment. Stiffness Matrix Method (SMM) module was developed as part of ongoing projects on a broad topic "Students' Learning Improvements in Science, Technology, Engineering and Mathematics (STEM) Related Areas" at Old Dominion…

  8. An optical device capable of providing a structural color, and a corresponding method of manufacturing such a device

    DEFF Research Database (Denmark)

    2014-01-01

    ) with respect to the average surface positions. The position, size, and randomness of the protrusions are arranged so as to provide, at least up to a maximum angle of incidence (A_in) with respect to a normal to the surface, an angle-independent substantially homogeneous structural color perception for a normal...

  9. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation

    DEFF Research Database (Denmark)

    Lu, Yuhua; Dong, Wen; Chen, Zhuo

    2016-01-01

    Plasmonic hot-electron generation has recently come into focus as a new scheme for solar energy conversion. So far, however, due to the relatively narrow bandwidth of the surface plasmon resonances and the insufficient resonant light absorption, most of plasmonic photocatalysts show narrow......-band spectral responsivities and small solar energy conversion efficiencies. Here we experimentally demonstrate that a three-layered nanostructure, consisting of a monolayer gold-nanoparticles and a gold film separated by a TiO2 gap layer (Au-NPs/TiO2/Au-film), is capable of near-completely absorbing light...... within the whole visible region. We show that the Au-NPs/TiO2/Au-film device can take advantage of such strong and broadband light absorption to enhance the generation of hot electrons and thus the photocurrent under visible irradiation. As compared to conventional plasmonic photocatalysts such as Au...

  10. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light

    Science.gov (United States)

    Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei

    2016-01-01

    Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.’s study), although the metal’s ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell’s law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process. PMID:26767195

  11. Near field plasmon and force microscopy

    NARCIS (Netherlands)

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the

  12. Full-Color Plasmonic Metasurface Holograms.

    Science.gov (United States)

    Wan, Weiwei; Gao, Jie; Yang, Xiaodong

    2016-12-27

    Holography is one of the most attractive approaches for reconstructing optical images, due to its capability of recording both the amplitude and phase information on light scattered from objects. Recently, optical metasurfaces for manipulating the wavefront of light with well-controlled amplitude, phase, and polarization have been utilized to reproduce computer-generated holograms. However, the currently available metasurface holograms have only been designed to achieve limited colors and record either amplitude or phase information. This fact significantly limits the performance of metasurface holograms to reconstruct full-color images with low noise and high quality. Here, we report the design and realization of ultrathin plasmonic metasurface holograms made of subwavelength nanoslits for reconstructing both two- and three-dimensional full-color holographic images. The wavelength-multiplexed metasurface holograms with both amplitude and phase modulations at subwavelength scale can faithfully produce not only three primary colors but also their secondary colors. Our results will advance various holographic applications.

  13. CT virtual endoscopy: a study of the capability to display the structures and abnormalities in nasal cavity

    International Nuclear Information System (INIS)

    Han Ping; Brambs, H.J.; Sokiranski, R.

    1999-01-01

    Objective: To evaluate display ability of virtual endoscopy and its clinical application in comparison with fiberoptic nasal endoscopy. Methods: 11 patients (22 nasal cavities) were examined by virtual endoscopy after axial spiral CT scanning was performed. Virtual endoscopy was performed by Explorer software package in a computer workstation. 9 patients (18 nasal cavities) underwent fiberoptic endoscopy. Results: Virtual endoscopy could clearly demonstrate the anatomical structures in nasal cavity, septal deviation, nasal meatus narrowing and obstruction, turbinate hyperplasia, and pathological masses larger than 3 mm in diameter. However, 'false adhesions' may appear in virtual endoscopy. The main limitation of virtual endoscopy was inability to evaluate mucosa and lack of histological diagnosis. Conclusions: Virtual endoscopy is a new, non-invasive method for demonstrating anatomical structures and diseases in nasal cavity. Its display ability is comparable with fiberoptic nasal endoscopy and is a supplement to fiberoptic nasal endoscopy

  14. Time Domain Surface Integral Equation Solvers for Quantum Corrected Electromagnetic Analysis of Plasmonic Nanostructures

    KAUST Repository

    Uysal, Ismail Enes

    2016-10-01

    Plasmonic structures are utilized in many applications ranging from bio-medicine to solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical effects start to appear. These effects cannot be accurately modeled by available classical numerical methods. One of these quantum effects is the tunneling, which is observed when two structures are located within a sub-nanometer distance of each other. At these small distances electrons “jump" from one structure to another and introduce a path for electric current to flow. Classical equations of electrodynamics and the schemes used for solving them do not account for this additional current path. This limitation can be lifted by introducing an auxiliary tunnel with material properties obtained using quantum models and applying a classical solver to the structures connected by this auxiliary tunnel. Early work on this topic focused on quantum models that are generated using a simple one-dimensional wave function to find the tunneling probability and assume a simple Drude model for the permittivity of the tunnel. These tunnel models are then used together with a classical frequency domain solver. In this thesis, a time domain surface integral equation solver for quantum corrected analysis of transient plasmonic interactions is proposed. This solver has several advantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to differential equation solvers, it only discretizes surfaces (reducing number of unknowns), enforces the radiation condition implicitly (increasing the accuracy), and allows for time step selection independent of spatial discretization (increasing efficiency). The quantum model

  15. Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector.

    Science.gov (United States)

    Ren, Fang-Fang; Ang, Kah-Wee; Ye, Jiandong; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2011-03-09

    Bull's eye antennas are capable of efficiently collecting and concentrating optical signals into an ultrasmall area, offering an excellent solution to break the bottleneck between speed and photoresponse in subwavelength photodetectors. Here, we exploit the idea of split bull's eye antenna for a nanometer germanium photodetector operating at a standard communication wavelength of 1310 nm. The nontraditional plasmonic metal aluminum has been implemented in the resonant antenna structure fabricated by standard complementary metal-oxide-semiconductor (CMOS) processing. A significant enhancement in photoresponse could be achieved over the conventional bull's eye scheme due to an increased optical near-field in the active region. Moreover, with this novel antenna design the effective grating area could be significantly reduced without sacrificing device performance. This work paves the way for the future development of low-cost, high-density, and high-speed CMOS-compatible germanium-based optoelectronic devices.

  16. Novel plasmonic probes and smart superhydrophobic devices, New tools for forthcoming spectroscopies at the nanoscale

    KAUST Repository

    Giugni, Andrea; Torre, Bruno; Allione, Marco; Gentile, Francesco T.; Candeloro, Patrizio; Coluccio, Maria Laura; Perozziello, Gerardo; Limongi, Tania; Marini, Monica; Raimondo, Raffaella; Tirinato, Luca; Francardi, Marco; Das, Gobind; Proietti Zaccaria, Remo; Falqui, Andrea; Di Fabrizio, Enzo M.

    2014-01-01

    In this work we review novel strategies and new physical effects to achieve compositional and structural recognition at single molecule level. This chapter is divided in two main parts. The first one introduces the strategies currently adopted to investigate matter at few molecules level. Exploiting the capability of surface plasmon polaritons to deliver optical excitation at nanoscale, we introduce a technique relying on a new transport phenomenon with chemical sensitivity and nanometer spatial resolution. The second part describes how micro and nanostructured superhydrofobic textures can concentrate and localize a small number of molecules into a well-defined region, even when only an extremely diluted solution is available. Several applications of these devices as micro- and nano-systems for high-resolution imaging techniques, cell cultures and tissue engineering applications are also discussed.

  17. Novel plasmonic probes and smart superhydrophobic devices, New tools for forthcoming spectroscopies at the nanoscale

    KAUST Repository

    Giugni, Andrea

    2014-08-11

    In this work we review novel strategies and new physical effects to achieve compositional and structural recognition at single molecule level. This chapter is divided in two main parts. The first one introduces the strategies currently adopted to investigate matter at few molecules level. Exploiting the capability of surface plasmon polaritons to deliver optical excitation at nanoscale, we introduce a technique relying on a new transport phenomenon with chemical sensitivity and nanometer spatial resolution. The second part describes how micro and nanostructured superhydrofobic textures can concentrate and localize a small number of molecules into a well-defined region, even when only an extremely diluted solution is available. Several applications of these devices as micro- and nano-systems for high-resolution imaging techniques, cell cultures and tissue engineering applications are also discussed.

  18. Tunable wavelength demultiplexer using modified graphene plasmonic split ring resonators for terahertz communication

    Science.gov (United States)

    Joshi, Neetu; Pathak, Nagendra P.

    2018-02-01

    This paper presents graphene modified ring resonator based wavelength demultiplexer (WDM) for THz device applications that is, a surface plasmon polaritons (SPPs) demultiplexer consisting of two nanostrip waveguides at input as well as output coupled to each other by a split ring resonator (SRR), which is modified in shape as compared to a simple ring-shaped resonator. A systematic analysis of the transmission spectra for the graphene based SRR poses clear insight on the demultiplexing phenomenon of the proposed nanodevice. The results show resonance peaks in the transmission spectrum, having a linear relationship with the chemical potential of graphene. The influence of structural parameters have also been analyzed. The tuning capability of graphene based tunable WDM, lays its foundation in the applications of optical switches, modulators, etc.

  19. Plasmon polaritons in nanostructured graphene

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2013-01-01

    Graphene has attracted considerable attention due to its unique electronic and optical properties. When graphene is electrically/chemically doped, it can support surface plasmon where the light propagates along the surface with a very short wavelength and an extremely small mode volume. The optical...... properties of graphene can be tuned by electrical gating, thus proving a promising way to realize a tunable plasmonic material. We firstly investigate the performance of bends and splitters in graphene nanoribbon waveguides, and show that bends and splitters do not induce any additional loss provided...... that the nanoribbon width is sub-wavelength. Then we experimentally demonstrate the excitation of graphene plasmon polaritons in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The silicon grating is realized by a nanosphere lithography technique with a self...

  20. Engineering Gold Nanorod-Based Plasmonic Nanocrystals for Optical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-09-01

    Plasmonic nanocrystals have a unique ability to support localized surface plasmon resonances and exhibit rich and intriguing optical properties. Engineering plasmonic nanocrystals can maximize their potentials for specific applications. In this dissertation, we developed three unprecedented Au nanorod-based plasmonic nanocrystals through rational design of the crystal shape and/or composition, and successfully demonstrated their applications in light condensation, photothermal conversion, and surface-enhanced Raman spectroscopy (SERS). The “Au nanorod-Au nanosphere dimer” nanocrystal was synthesized via the ligand-induced asymmetric growth of a Au nanosphere on a Au nanorod. This dimeric nanostructure features an extraordinary broadband optical absorption in the range of 400‒1400nm, and it proved to be an ideal black-body material for light condensation and an efficient solar-light harvester for photothermal conversion. The “Au nanorod (core) @ AuAg alloy (shell)” nanocrystal was built through the epitaxial growth of homogeneously alloyed AuAg shells on Au nanorods by precisely controlled synthesis. The resulting core-shell structured, bimetallic nanorods integrate the merits of the AuAg alloy with the advantages of anisotropic nanorods, exhibiting strong, stable and tunable surface plasmon resonances that are essential for SERS applications in a corrosive environment. The “high-index faceted Au nanorod (core) @ AuPd alloy (shell)” nanocrystal was produced via site-specific epitaxial growth of AuPd alloyed horns at the ends of Au nanorods. The AuPd alloyed horns are bound with high-index side facets, while the Au nanorod concentrates an intensive electric field at each end. This unique configuration unites highly active catalytic sites with strong SERS sites into a single entity and was demonstrated to be ideal for in situ monitoring of Pd-catalyzed reactions by SERS. The synthetic strategies developed here are promising towards the fabrication of

  1. Structural Analysis of Shipping Casks, Vol. 9. Energy Absorption Capabilities of Plastically Deformed Struts Under Specified Impact Loading Conditions (Thesis)

    International Nuclear Information System (INIS)

    Davis, F.C.

    2001-01-01

    The purpose of this investigation was to determine the energy absorption characteristics of plastically deformed inclined struts under impact loading. This information is needed to provide a usable method by which designers and analysts of shipping casks for radioactive or fissile materials can determine the energy absorption capabilities of external longitudinal fins on cylindrical casks under specified impact conditions. A survey of technical literature related to experimental determination of the dynamic plastic behavior of struts revealed no information directly applicable to the immediate problem, especially in the impact velocity ranges desired, and an experimental program was conducted to obtain the needed data. Mild-steel struts with rectangular cross sections were impacted by free-falling weights dropped from known heights. These struts or fin specimens were inclined at five different angles to simulate different angles of impact that fins on a shipping cask could experience under certain accident conditions. The resisting force of the deforming strut was measured and recorded as a function of time by using load cells instrumented with resistance strain gage bridges, signal conditioning equipment, an oscilloscope, and a Polaroid camera. The acceleration of the impacting weight was measured and recorded as a function of time during the latter portion of the testing program by using an accelerometer attached to the drop hammer, appropriate signal conditioning equipment, the oscilloscope, and the camera. A digital computer program was prepared to numerically integrate the force-time and acceleration-time data recorded during the tests to obtain deformation-time data. The force-displacement relationships were then integrated to obtain values of absorbed energy with respect to deformation or time. The results for various fin specimen geometries and impact angles are presented graphically, and these curves may be used to compute the energy absorption capacity of

  2. Field and Laboratory Investigation of USS3 Ultrasonic Sensors Capability for Non-contact Measurement of Pistachio Canopy Structure

    Directory of Open Access Journals (Sweden)

    H Maghsoudi

    2015-03-01

    Full Text Available Electronic canopy characterization to determine structural properties is an important issue in tree crop management. Ultrasonic and optical sensors are the most used sensors for this purpose. The objective of this work was to assess the performance of an ultrasonic sensor under laboratory and field conditions in order to provide reliable estimations of distance measurements to apple tree canopies. To achieve this purpose, a methodology has been designed to analyze sensor performance in relation to foliage distance and to the effects of interference with adjacent sensors when working simultaneously. Results showed that the average error in distance measurement using the ultrasonic sensor in laboratory conditions was 0.64 cm. However, the increase of variability in field conditions reduced the accuracy of this kind of sensors when estimating distances to canopies. The average error in such situations was 3.19 cm. When analyzing interferences of adjacent sensors 30 cm apart, the average error was ±14.65 cm. When adjacent sensors were placed apart by 60 cm, the average error became 6.73 cm. The ultrasonic sensor tested has been proven to be suitable to estimate distances to the canopy in pistachio garden conditions when sensors are 60 cm apart or more and can, therefore, be used in a system to estimate structural canopy parameters in precision horticulture.

  3. Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-09-01

    Full Text Available Two-dimensional metasurfaces are widely focused on for their ability for flexible light manipulation (phase, amplitude, polarization over sub-wavelength propagation distances. Most of the metasurfaces can be divided into two categories by the material type of unit structure, i.e., plasmonic metasurfaces and dielectric metasurfaces. For plasmonic metasurfaces, they are made on the basis of metallic meta-atoms whose optical responses are driven by the plasmon resonances supported by metallic particles. For dielectric metasurfaces, the unit structure is constructed with high refractive index dielectric resonators, such as silicon, germanium or tellurium, which can support electric and magnetic dipole responses based on Mie resonances. The responses of plasmonic and dielectric metasurfaces are all relevant to the characteristics of unit structure, such as dimensions and materials. One can manipulate the electromagnetic field of light wave scattered by the metasurfaces through designing the dimension parameters of each unit structure in the metasurfaces. In this review article, we give a brief overview of our recent progress in plasmonic and dielectric metasurface-assisted nanophotonic devices and their design, fabrication and applications, including the metasurface-based broadband and the selective generation of orbital angular momentum (OAM carrying vector beams, N-fold OAM multicasting using a V-shaped antenna array, a metasurface on conventional optical fiber facet for linearly-polarized mode (LP11 generation, graphene split-ring metasurface-assisted terahertz coherent perfect absorption, OAM beam generation using a nanophotonic dielectric metasurface array, as well as Bessel beam generation and OAM multicasting using a dielectric metasurface array. It is believed that metasurface-based nanophotonic devices are one of the devices with the most potential applied in various fields, such as beam steering, spatial light modulator, nanoscale

  4. Graphene-protected copper and silver plasmonics

    DEFF Research Database (Denmark)

    Kravets, V. G.; Jalil, R.; Kim, Y. J.

    2014-01-01

    suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered...... with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic...

  5. Nanofocusing in a tapered graphene plasmonic waveguide

    DEFF Research Database (Denmark)

    Dai, Yunyun; Zhu, Xiaolong; Mortensen, N. Asger

    2015-01-01

    Gated or doped graphene can support plasmons making it a promising plasmonic material in the terahertz regime. Here, we show numerically that in a tapered graphene plasmonic waveguide mid- and far-infrared light can be focused in nanometer scales, far beyond the diffraction limit. The underlying...... physics lies in that when propagating along the direction towards the tip both the group and phase velocities of the plasmons supported by the tapered graphene waveguide are reduced accordingly, eventually leading to nanofocusing at the tip with a huge enhancement of optical fields. The nanofocusing...... of optical fields in tapered graphene plasmonic waveguides could be potentially exploited in the enhancement of light–matter interactions....

  6. Effect of edge plasmons on the optical properties of MoS2 monolayer flakes

    DEFF Research Database (Denmark)

    Rossi, Tuomas P.; Winther, Kirsten Trøstrup; Jacobsen, Karsten Wedel

    2017-01-01

    . Thus, we observe that while an evenly-spaced edge configuration supports one-dimensional (1D) plasmon modes similar to those of an ideal 1D electron gas, the relaxed structures show mixed plasmon and single-electron excitations in the low-energy response. Our findings illustrate the sensitivity...

  7. Sub-wavelength plasmon laser

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  8. Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuyan; Sun, Cancan; Tan, Kemin; Ye, Sheng; Zhang, Rongguang

    2017-09-01

    Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystal structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.

  9. Self-Assembled Nanorod Structures on Nanofibers for Textile Electrochemical Capacitor Electrodes with Intrinsic Tactile Sensing Capabilities.

    Science.gov (United States)

    Shi, HaoTian H; Khalili, Nazanin; Morrison, Taylor; Naguib, Hani E

    2018-05-21

    A novel polyaniline nanorod (PAniNR) three-dimensional structure was successfully grown on flexible polyacrylonitrile (PAN) nanofiber substrate as the electrode material for electrochemical capacitors (ECs), constructed via self-stabilized dispersion polymerization process. The electrode offered desired mechanical properties such as flexibility and bendability, whereas it maintained optimal electrochemical characteristics. The electrode and the assembled EC cell also achieved intrinsic piezoresistive sensing properties, leading to real-time monitoring of excess mechanical pressure and bending during cell operations. The PAniNR@PAN electrodes show an average diameter of 173.6 nm, with the PAniNR growth of 50.7 nm in length. Compared to the electrodes made from pristine PAni, the gravimetric capacitance increased by 39.8% to 629.6 F/g with aqueous acidic electrolyte. The electrode and the assembled EC cell with gel electrolyte were responsive to tensile, compressive, and bending stresses with a sensitivity of 0.95 MPa -1 .

  10. Numerical study of the thermal behavior of a new deicing road structure design with energy harvesting capabilities

    Science.gov (United States)

    Le Touz, Nicolas; Dumoulin, Jean

    2015-04-01

    Facing the heavy organisational, financial and environmental constraints imposed by usual winter maintenance salting operations, pavement engineers have been led to look for alternative solutions to avoid ice or snow deposit at pavements surface. Among the solutions, one is self-de-icing heating pavements, for which two technologies have been developed so far: one is based on embedded coils circulating a heated calorific fluid under the pavement surface; the other one relies on the use of embedded resistant electric wires. The use and operation of such systems in the world is still limited and was only confined to small road stretches or specific applications, such as bridges which are particularly sensitive to frost. One of the most significant "coil technology" example in Europe is the SERSO-System (Solar Energy recovery from road surfaces) built in 1994, on a Switzerland bridge. Many of these experiences are referenced in the technical literature, which provides state-of-the art papers (see for instance Eugster) and useful detailed information dealing with the construction and operational management of such installation. The present study is taking part of the Forever Open Road Concept addressed by the R5G: 5th Generation Road [1], one of the major project supported by IFSTTAR. It considers a different design of self-de-icing road that simplify its mode of construction and maintenance, compared to the two technologies mentioned above. It should also be noted that similar to pavements instrumented with coils, such structure could be used in the reversible way to capture the solar energy at the pavement surface during sunny days and store it, to either warm the pavement at a later stage or for exogenous needs (e.g. contribution to domestic hot water). To complete our study we also considered the use of semi-transparent pavement course wearing in place of the traditional opaque one. In the present study, a 2D model was developed using FEM approach. It combines 2

  11. Design, fabrication, and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy and plasmonic applications

    Science.gov (United States)

    Hao, Qingzhen

    Metal/dielectric nanostructures have the ability to sustain coherent electron oscillations known as surface plasmons. Due to their capability of localizing and guiding light in sub-wavelength metal nanostructures beyond diffraction limits, surface plasmon-based photonics, or “plasmonics” has opened new physical phenomena and lead to novel applications in metamaterials, optoelectronics, surface enhanced spectroscopy and biological sensing. This dissertation centers on design, fabrication, characterization of metallic nanostructures and their applications in surface-enhanced Raman spectroscopy (SERS) and actively tunable plasmonics. Metal-dielectric nanostructures are the building blocks for photonic metamaterials. One valuable design guideline for metamaterials is the Babinet’s principle, which governs the optical properties of complementary nanostructures. However, most complementary metamaterials are designed for the far infrared region or beyond, where the optical absorption of metal is small. We have developed a novel dual fabrication method, capable of simultaneously producing optically thin complementary structures. From experimental measurements and theoretical simulations, we showed that Babinet’s principle qualitatively holds in the visible region for the optically thin complements. The complementary structure is also a good platform to study subtle differences between nanoparticles and nanoholes in SERS (a surface sensitive technique, which can enhance the conventional Raman cross-section by 106˜108 fold, thus very useful for highly sensitive biochemical sensing). Through experimental measurement and theoretical analysis, we showed that the SERS enhancement spectrum (plot of SERS enhancement versus excitation wavelengths), dominated by local near-field, for nanoholes closely follows their far-field optical transmission spectrum. However, the enhancement spectrum for nanoparticles red-shifts significantly from their far-field optical extinction

  12. Surface Plasmon Resonance Biosensor

    Directory of Open Access Journals (Sweden)

    Nina GRIDINA

    2013-02-01

    Full Text Available Performed in this paper is numerical modeling of the angular dependence for light reflectivity R(F in surface plasmon-polariton resonance (SPR realized in Kretschmann geometry when studying the interface gold/suspension of spherical particles (cells in the assumption that the dielectric permittivity of particles suspension is described by the theory of effective medium. It has been shown that availability of suspended particles in solution inevitably results in appearance of an intermediate layer with the ε gradient between gold surface and suspension bulk, as a result of which the SPR angle shifts to lower values. Near the critical angle, the first derivative dR/dF demonstrates a clearly pronounced peak, which allows determining the value for suspension bulk and the gradient in the intermediate layer. Obtained in our experiments were SPR curves for two suspensions of erythrocytes – the dense one (erythrocyte mass after centrifuging and loose solution (whole blood. In the case of erythrocyte mass, fitting the experimental and calculated curves enabled us to quantitatively determine the bulk value for this erythrocyte mass (εb =1.96, thickness of the intermediate layer dm (300…400 nm and gradient in the intermediate layer. On the contrary, the SPR curve for whole blood appeared to be close to that of pure plasma. This fact allows only estimation of the thickness dm~2000...3000 nm as well as minimum ε value in the intermediate layer, which is close to that of plasma (ε = 1.79. Also, discussed is the mechanism of influence of the cell shape near the gold surface on the SPR effect.

  13. Plasmonic Physics of 2D Crystalline Materials

    Directory of Open Access Journals (Sweden)

    Zahra Torbatian

    2018-02-01

    Full Text Available Collective modes of doped two-dimensional crystalline materials, namely graphene, MoS 2 and phosphorene, both monolayer and bilayer structures, are explored using the density functional theory simulations together with the random phase approximation. The many-body dielectric functions of the materials are calculated using an ab initio based model involving material-realistic physical properties. Having calculated the electron energy-loss, we calculate the collective modes of each material considering the in-phase and out-of-phase modes for bilayer structures. Furthermore, owing to many band structures and intreband transitions, we also find high-energy excitations in the systems. We explain that the material-specific dielectric function considering the polarizability of the crystalline material such as MoS 2 are needed to obtain realistic plasmon dispersions. For each material studied here, we find different collective modes and describe their physical origins.

  14. A Microring Temperature Sensor Based on the Surface Plasmon Wave

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2015-01-01

    Full Text Available A structure of microring sensor suitable for temperature measurement based on the surface plasmon wave is put forward in this paper. The sensor uses surface plasmon multilayer waveguiding structure in the vertical direction and U-shaped microring structure in the horizontal direction and utilizes SOI as the thermal material. The transfer function derivation of the structure of surface plasmon microring sensor is according to the transfer matrix method. While the change of refractive index of Si is caused by the change of ambient temperature, the effective refractive index of the multilayer waveguiding structure is changed, resulting in the drifting of the sensor output spectrum. This paper focuses on the transmission characteristics of multilayer waveguide structure and the impact on the output spectrum caused by refractive index changes in temperature parts. According to the calculation and simulation, the transmission performance of the structure is stable and the sensitivity is good. The resonance wavelength shift can reach 0.007 μm when the temperature is increased by 100 k and FSR can reach about 60 nm. This structure achieves a high sensitivity in the temperature sense taking into account a wide range of filter frequency selections, providing a theoretical basis for the preparation of microoptics.

  15. Dispersion characteristics of plasmonic waveguides for THz waves

    Science.gov (United States)

    Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur

    2013-05-01

    Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.

  16. Three-dimensional plasmonic chiral tetramers assembled by DNA origami.

    Science.gov (United States)

    Shen, Xibo; Asenjo-Garcia, Ana; Liu, Qing; Jiang, Qiao; García de Abajo, F Javier; Liu, Na; Ding, Baoquan

    2013-05-08

    Molecular chemistry offers a unique toolkit to draw inspiration for the design of artificial metamolecules. For a long time, optical circular dichroism has been exclusively the terrain of natural chiral molecules, which exhibit optical activity mainly in the UV spectral range, thus greatly hindering their significance for a broad range of applications. Here we demonstrate that circular dichroism can be generated with artificial plasmonic chiral nanostructures composed of the minimum number of spherical gold nanoparticles required for three-dimensional (3D) chirality. We utilize a rigid addressable DNA origami template to precisely organize four nominally identical gold nanoparticles into a three-dimensional asymmetric tetramer. Because of the chiral structural symmetry and the strong plasmonic resonant coupling between the gold nanoparticles, the 3D plasmonic assemblies undergo different interactions with left and right circularly polarized light, leading to pronounced circular dichroism. Our experimental results agree well with theoretical predictions. The simplicity of our structure geometry and, most importantly, the concept of resorting on biology to produce artificial photonic functionalities open a new pathway to designing smart artificial plasmonic nanostructures for large-scale production of optically active metamaterials.

  17. Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS{sub 2} hybrid structure with TiO{sub 2}-SiO{sub 2} composite layer

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, J.B.; Prajapati, Y.K. [Motilal Nehru National Institute of Technology, Electronics and Communication Engineering Department, Allahabad, Uttar Pradesh (India); Singh, V. [Banaras Hindu University, Department of Physics, Varanasi, Uttar Pradesh (India); Saini, J.P. [Bundelkhand Institute of Engineering and Technology, Electronics and Communication Engineering Department, Jhansi, Uttar Pradesh (India)

    2015-11-15

    In this paper, surface plasmon resonance (SPR) sensor based on graphene-MoS{sub 2} hybrid structure with composite layer of TiO{sub 2}-SiO{sub 2} is presented. The angular interrogation method is used for the analysis of reflected light from the sensor. For the calculation of the sensitivity, first of all the thicknesses of TiO{sub 2}, SiO{sub 2} and gold layers are optimized for the monolayer graphene and MoS{sub 2}. Thereafter, at these optimum thicknesses the reflectance curves are plotted for different sensor structure and comparison of change in resonance angle is made among these structures. It is observed that the sensitivity of the graphene-MoS{sub 2}-based sensor is enhanced by 9.24 % with respect conventional SPR sensor. The sensitivity is further enhanced by including TiO{sub 2}-SiO{sub 2} composite layer between prism base and metal layer and observed that the enhanced sensitivity for this sensor is 12.82 % with respect to conventional SPR sensor and 3.28 % with respect to graphene-MoS{sub 2}-based SPR sensor. At the end of this paper, the variation of the sensitivity and minimum reflectance is plotted with respect to sensing layer refractive index at the optimum thickness of all the layers and optimum number of MoS{sub 2} and graphene layers. It is also observed that four layers of MoS{sub 2} and monolayer graphene are best selection for the maximum enhancement of the sensitivity. (orig.)

  18. Structure Interlacing and Pore Engineering of Zn2GeO4 Nanofibers for Achieving High Capacity and Rate Capability as an Anode Material of Lithium Ion Batteries.

    Science.gov (United States)

    Wang, Wei; Qin, Jinwen; Cao, Minhua

    2016-01-20

    An interlaced Zn2GeO4 nanofiber network with continuous and interpenetrated mesoporous structure was prepared using a facile electrospinning method followed by a thermal treatment. The mesoporous structure in Zn2GeO4 nanofibers is directly in situ constructed by the decomposition of polyvinylpyrolidone (PVP), while the interlaced nanofiber network is achieved by the mutual fusion of the junctions between nanofibers in higher calcination temperatures. When used as an anode material in lithium ion batteries (LIBs), it exhibits superior lithium storage performance in terms of specific capacity, cycling stability, and rate capability. The pore engineering and the interlaced network structure are believed to be responsible for the excellent lithium storage performance. The pore structure allows for easy diffusion of electrolyte, shortens the pathway of Li(+) transport, and alleviates large volume variation during repeated Li(+) extraction/insertion. Moreover, the interlaced network structure can provide continuous electron/ion pathways and effectively accommodate the strain induced by the volume change during the electrochemical reaction, thus maintaining structural stability and mechanical integrity of electrode materials during lithiation/delithiation process. This strategy in current work offers a new perspective in designing high-performance electrodes for LIBs.

  19. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.

    Science.gov (United States)

    Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2017-02-01

    By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire.

    Science.gov (United States)

    Li, Qiang; Pan, Deng; Wei, Hong; Xu, Hongxing

    2018-03-14

    Hybrid systems composed of multiple quantum emitters coupled with plasmonic waveguides are promising building blocks for future integrated quantum nanophotonic circuits. The techniques that can super-resolve and selectively excite contiguous quantum emitters in a diffraction-limited area are of great importance for studying the plasmon-mediated interaction between quantum emitters and manipulating the single plasmon generation and propagation in plasmonic circuits. Here we show that multiple quantum dots coupled with a silver nanowire can be controllably excited by tuning the interference field of surface plasmons on the nanowire. Because of the period of the interference pattern is much smaller than the diffraction limit, we demonstrate the selective excitation of two quantum dots separated by a distance as short as 100 nm. We also numerically demonstrate a new kind of super-resolution imaging method that combines the tunable surface plasmon interference pattern on the NW with the structured illumination microscopy technique. Our work provides a novel high-resolution optical excitation and imaging method for the coupled systems of multiple quantum emitters and plasmonic waveguides, which adds a new tool for studying and manipulating single quantum emitters and single plasmons for quantum plasmonic circuitry applications.

  1. Ultraconfined Plasmonic Hotspots Inside Graphene Nanobubbles.

    Science.gov (United States)

    Fei, Z; Foley, J J; Gannett, W; Liu, M K; Dai, S; Ni, G X; Zettl, A; Fogler, M M; Wiederrecht, G P; Gray, S K; Basov, D N

    2016-12-14

    We report on a nanoinfrared (IR) imaging study of ultraconfined plasmonic hotspots inside graphene nanobubbles formed in graphene/hexagonal boron nitride (hBN) heterostructures. The volume of these plasmonic hotspots is more than one-million-times smaller than what could be achieved by free-space IR photons, and their real-space distributions are controlled by the sizes and shapes of the nanobubbles. Theoretical analysis indicates that the observed plasmonic hotspots are formed due to a significant increase of the local plasmon wavelength in the nanobubble regions. Such an increase is attributed to the high sensitivity of graphene plasmons to its dielectric environment. Our work presents a novel scheme for plasmonic hotspot formation and sheds light on future applications of graphene nanobubbles for plasmon-enhanced IR spectroscopy.

  2. Three-dimensional concentration of light in deeply sub-wavelength, laterally tapered gap-plasmon nanocavities

    Energy Technology Data Exchange (ETDEWEB)

    Tagliabue, Giulia [Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092 (Switzerland); Thomas J. Watson, Sr. Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125 (United States); Poulikakos, Dimos; Eghlidi, Hadi, E-mail: eghlidim@ethz.ch [Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092 (Switzerland)

    2016-05-30

    Gap-plasmons (GP) in metal-insulator-metal (MIM) structures have shown exceptional performance in guiding and concentrating light within deep subwavelength layers. Reported designs to date exploit tapered thicknesses of the insulating layer in order to confine and focus the GP mode. Here, we propose a mechanism for the three dimensional concentration of light in planar MIM structures which exploits exclusively the lateral tapering of the front metallic layer while keeping a constant thickness of the insulating layer. We demonstrate that an array of tapered planar GP nanocavities can efficiently concentrate light in all three dimensions. A semi-analytical, one-dimensional model provides understanding of the underlying physics and approximately predicts the behavior of the structure. Three-dimensional simulations are then used to precisely calculate the optical behavior. Cavities with effective volumes as small as 10{sup −5} λ{sup 3} are achieved in an ultrathin MIM configuration. Our design is inherently capable of efficiently coupling with free-space radiation. In addition, being composed of two electrically continuous layers separated by an ultrathin dielectric spacer, it could find interesting applications in the area of active metamaterials or plasmonic photocatalysis where both electrical access and light concentration are required.

  3. Hybrid plasmonic bullseye antennas for efficient photon collection

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Bozhevolnyi, Sergey I.; Shalaev, Vladimir M.

    2018-01-01

    We propose highly efficient hybrid plasmonic bullseye antennas for collecting photon emission from nm sized quantum emitters. In our approach, the emitter radiation is coupled to surface plasmon polaritons that are consequently converted into highly directional out-of-plane emission. The proposed...... configuration consists of a high-index titania bullseye grating separated from a planar silver film by a thin low-index silica spacer layer. Such hybrid systems are theoretically capable of directing 85% of the dipole emission into a 0.9 NA objective, while featuring a spectrally narrow-band tunable decay rate...... stable operation. For experimental characterization of the antenna properties, a fluorescent nanodiamond containing multiple nitrogen vacancy centers (NV-center) was deterministically placed in the bullseye center, using an atomic force microscope. Probing the NV-center fluorescence we demonstrate...

  4. Recent advances in plasmonic dye-sensitized solar cells

    Science.gov (United States)

    Rho, Won-Yeop; Song, Da Hyun; Yang, Hwa-Young; Kim, Ho-Sub; Son, Byung Sung; Suh, Jung Sang; Jun, Bong-Hyun

    2018-02-01

    Dye-sensitized solar cells (DSSCs) are among the best devices in generating electrons from solar light energy due to their high efficiency, low-cost in processing and transparency in building integrated photovoltaics. There are several ways to improve their energy-conversion efficiency, such as increasing light harvesting and electron transport, of which plasmon and 3-dimensional nanostructures are greatly capable. We review recent advances in plasmonic effects which depend on optimizing sizes, shapes, alloy compositions and integration of metal nanoparticles. Different methods to integrate metal nanoparticles into 3-dimensional nanostructures are also discussed. This review presents a guideline for enhancing the energy-conversion efficiency of DSSCs by utilizing metal nanoparticles that are incorporated into 3-dimensional nanostructures.

  5. Plasmonic nanofocusing of light in an integrated silicon photonics platform.

    Science.gov (United States)

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2011-07-04

    The capability to focus electromagnetic energy at the nanoscale plays an important role in nanoscinece and nanotechnology. It allows enhancing light matter interactions at the nanoscale with applications related to nonlinear optics, light emission and light detection. It may also be used for enhancing resolution in microscopy, lithography and optical storage systems. Hereby we propose and experimentally demonstrate the nanoscale focusing of surface plasmons by constructing an integrated plasmonic/photonic on chip nanofocusing device in silicon platform. The device was tested directly by measuring the optical intensity along it using a near-field microscope. We found an order of magnitude enhancement of the intensity at the tip's apex. The spot size is estimated to be 50 nm. The demonstrated device may be used as a building block for "lab on a chip" systems and for enhancing light matter interactions at the apex of the tip.

  6. Compact plasmonic variable optical attenuator

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Rosenzveig, Tiberiu; Hermannsson, Pétur Gordon

    2008-01-01

    We demonstrate plasmonic nanowire-based thermo-optic variable optical attenuators operating in the 1525-1625 nm wavelength range. The devices have a footprint as low as 1 mm, extinction ratio exceeding 40 dB, driving voltage below 3 V, and full modulation bandwidth of 1 kHz. The polarization...

  7. Simulating Photons and Plasmons in a Three-dimensional Lattice

    International Nuclear Information System (INIS)

    Pletzer, A.; Shvets, G.

    2002-01-01

    Three-dimensional metallic photonic structures are studied using a newly developed mixed finite element-finite difference (FE-FD) code, Curly3d. The code solves the vector Helmholtz equation as an eigenvalue problem in the unit cell of a triply periodic lattice composed of conductors and/or dielectrics. The mixed FE-FD discretization scheme ensures rapid numerical convergence of the eigenvalue and allows the code to run at low resolution. Plasmon and photonic band structure calculations are presented

  8. Photonic crystals with plasmonic patterns: novel type of the heterostructures for enhanced magneto-optical activity

    International Nuclear Information System (INIS)

    Khokhlov, N E; Belotelov, V I; Prokopov, A R; Shaposhnikov, A N; Berzhansky, V N; Kozhaev, M A; Andreev, S N; Zvezdin, A K; Ravishankar, Ajith P; Achanta, Venu Gopal; Bykov, D A

    2015-01-01

    A multilayer structure consisting of a magnetophotonic crystal with a rare-earth iron garnet microresonator layer and plasmonic grating deposited on it was fabricated and studied in order to combine functionalities of photonic and plasmonic crystals. The plasmonic pattern allows excitation of the hybrid plasmonic-waveguide modes localized in dielectric Bragg mirrors of the magnetophotonic crystal or waveguide modes inside its microresonator layer. These modes give rise to the additional resonances in the optical spectra of the structure and to the enhancement of the magneto-optical effects. The Faraday effect increases by about 50% at the microresonator modes while the transverse magneto-optical Kerr effect demonstrates pronounced peculiarities at both hybrid waveguide modes and microresonator modes and increases by several times with respect to the case of the bare magnetophotonic crystal without the metal grating. (paper)

  9. Proposal for nanoscale cascaded plasmonic majority gates for non-Boolean computation.

    Science.gov (United States)

    Dutta, Sourav; Zografos, Odysseas; Gurunarayanan, Surya; Radu, Iuliana; Soree, Bart; Catthoor, Francky; Naeemi, Azad

    2017-12-19

    Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality - the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 μm 2 for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.

  10. Au-Graphene Hybrid Plasmonic Nanostructure Sensor Based on Intensity Shift

    Science.gov (United States)

    Alharbi, Raed; Irannejad, Mehrdad; Yavuz, Mustafa

    2017-01-01

    Integrating plasmonic materials, like gold with a two-dimensional material (e.g., graphene) enhances the light-material interaction and, hence, plasmonic properties of the metallic nanostructure. A localized surface plasmon resonance sensor is an effective platform for biomarker detection. They offer a better bulk surface (local) sensitivity than a regular surface plasmon resonance (SPR) sensor; however, they suffer from a lower figure of merit compared to that one in a propagating surface plasmon resonance sensors. In this work, a decorated multilayer graphene film with an Au nanostructures was proposed as a liquid sensor. The results showed a significant improvement in the figure of merit compared with other reported localized surface plasmon resonance sensors. The maximum figure of merit and intensity sensitivity of 240 and 55 RIU−1 (refractive index unit) at refractive index change of 0.001 were achieved which indicate the capability of the proposed sensor to detect a small change in concentration of liquids in the ng/mL level which is essential in early-stage cancer disease detection. PMID:28106850

  11. Au-Graphene Hybrid Plasmonic Nanostructure Sensor Based on Intensity Shift

    Directory of Open Access Journals (Sweden)

    Raed Alharbi

    2017-01-01

    Full Text Available Integrating plasmonic materials, like gold with a two-dimensional material (e.g., graphene enhances the light-material interaction and, hence, plasmonic properties of the metallic nanostructure. A localized surface plasmon resonance sensor is an effective platform for biomarker detection. They offer a better bulk surface (local sensitivity than a regular surface plasmon resonance (SPR sensor; however, they suffer from a lower figure of merit compared to that one in a propagating surface plasmon resonance sensors. In this work, a decorated multilayer graphene film with an Au nanostructures was proposed as a liquid sensor. The results showed a significant improvement in the figure of merit compared with other reported localized surface plasmon resonance sensors. The maximum figure of merit and intensity sensitivity of 240 and 55 RIU−1 (refractive index unit at refractive index change of 0.001 were achieved which indicate the capability of the proposed sensor to detect a small change in concentration of liquids in the ng/mL level which is essential in early-stage cancer disease detection.

  12. Parameter estimation in plasmonic QED

    Science.gov (United States)

    Jahromi, H. Rangani

    2018-03-01

    We address the problem of parameter estimation in the presence of plasmonic modes manipulating emitted light via the localized surface plasmons in a plasmonic waveguide at the nanoscale. The emitter that we discuss is the nitrogen vacancy centre (NVC) in diamond modelled as a qubit. Our goal is to estimate the β factor measuring the fraction of emitted energy captured by waveguide surface plasmons. The best strategy to obtain the most accurate estimation of the parameter, in terms of the initial state of the probes and different control parameters, is investigated. In particular, for two-qubit estimation, it is found although we may achieve the best estimation at initial instants by using the maximally entangled initial states, at long times, the optimal estimation occurs when the initial state of the probes is a product one. We also find that decreasing the interqubit distance or increasing the propagation length of the plasmons improve the precision of the estimation. Moreover, decrease of spontaneous emission rate of the NVCs retards the quantum Fisher information (QFI) reduction and therefore the vanishing of the QFI, measuring the precision of the estimation, is delayed. In addition, if the phase parameter of the initial state of the two NVCs is equal to πrad, the best estimation with the two-qubit system is achieved when initially the NVCs are maximally entangled. Besides, the one-qubit estimation has been also analysed in detail. Especially, we show that, using a two-qubit probe, at any arbitrary time, enhances considerably the precision of estimation in comparison with one-qubit estimation.

  13. Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Liu, Jingjing; Kildishev, Alexander V.

    2012-01-01

    Noble metals such as gold and silver are conventionally used as the primary plasmonic building blocks of optical metamaterials. Making subwavelength-scale structural elements from these metals not only seriously limits the optical performance of a device due to high absorption, it also substantia....... In this letter, we replace a metal with aluminum-doped zinc oxide as a new plasmonic material and experimentally demonstrate negative refraction in an Al:ZnO/ZnO metamaterial in the near-infrared range....

  14. Modes and Mode Volumes for Leaky Optical Cavities and Plasmonic Nanoresonators

    DEFF Research Database (Denmark)

    Hughes, Stephen; Kristensen, Philip Trøst

    2013-01-01

    Electromagnetic cavity modes in photonic and plasmonic resonators offer rich and attractive regimes for tailoring the properties of light–matter interactions, yet there is a disturbing lack of a precise definition for what constitutes a cavity mode, and as a result their mathematical properties r...... methods for quasinormal modes of both photonic and plasmonic resonators and the concept of a generalized effective mode volume, and we illustrate the theory with several representative cavity structures from the fields of photonic crystals and nanoplasmonics....

  15. Hybrid plasmonic nanodevices: Switching mechanism for the nonlinear emission

    Energy Technology Data Exchange (ETDEWEB)

    Bragas, Andrea V. [Departamento de Física, FCEyN, Universidad de Buenos Aires, IFIBA CONICET, 1428 Buenos Aires (Argentina); Singh, Mahi R. [Department of Physics and Astronomy, Western University, London (Canada)

    2014-03-31

    Control of the light emission at the nanoscale is of central interest in nanophotonics due to the many applications in very different fields, ranging from quantum information to biophysics. Resonant excitation of surface plasmon polaritons in metal nanoparticles create nanostructured and enhanced light fields around those structures, which produce their strong interaction in a hybrid nanodevice with other plasmonic or non-plasmonic objects. This interaction may in turn also modulate the far field with important consequences in the applications. We show in this paper that the nonlinear emission from semiconductor quantum dots is strongly affected by the close presence of metal nanoparticles, which are resonantly excited. Using a pulsed laser, optical second harmonic is generated in the quantum dot, and it is highly enhanced when the laser is tuned around the nanoparticle plasmon resonance. Even more interesting is the demonstration of a switching mechanism, controlled by an external continuous-wave field, which can enhance or extinguish the SH signal, even when the pulsed laser is always on. Experimental observations are in excellent agreement with the theoretical calculations, based on the dipole-dipole near-field coupling of the objects forming the hybrid system.

  16. Plasmonic photonic crystals realized through DNA-programmable assembly.

    Science.gov (United States)

    Park, Daniel J; Zhang, Chuan; Ku, Jessie C; Zhou, Yu; Schatz, George C; Mirkin, Chad A

    2015-01-27

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (∼10(2)) over the visible and near-infrared spectrum.

  17. Nanoscale devices based on plasmonic coaxial waveguide resonators

    Science.gov (United States)

    Mahigir, A.; Dastmalchi, P.; Shin, W.; Fan, S.; Veronis, G.

    2015-02-01

    Waveguide-resonator systems are particularly useful for the development of several integrated photonic devices, such as tunable filters, optical switches, channel drop filters, reflectors, and impedance matching elements. In this paper, we introduce nanoscale devices based on plasmonic coaxial waveguide resonators. In particular, we investigate threedimensional nanostructures consisting of plasmonic coaxial stub resonators side-coupled to a plasmonic coaxial waveguide. We use coaxial waveguides with square cross sections, which can be fabricated using lithography-based techniques. The waveguides are placed on top of a silicon substrate, and the space between inner and outer coaxial metals is filled with silica. We use silver as the metal. We investigate structures consisting of a single plasmonic coaxial resonator, which is terminated either in a short or an open circuit, side-coupled to a coaxial waveguide. We show that the incident waveguide mode is almost completely reflected on resonance, while far from the resonance the waveguide mode is almost completely transmitted. We also show that the properties of the waveguide systems can be accurately described using a single-mode scattering matrix theory. The transmission and reflection coefficients at waveguide junctions are either calculated using the concept of the characteristic impedance or are directly numerically extracted using full-wave three-dimensional finite-difference frequency-domain simulations.

  18. Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys

    International Nuclear Information System (INIS)

    Santos, Filipe Amarante dos; Rodrigues, André; Micheletti, Andrea

    2015-01-01

    The present paper explores the capabilities of a tensegrity-inspired tower with regard to frequency tuning by shape morphing. To change the configuration of the proposed structure, shape-memory-alloy (SMA) actuators are used. This actuation principle also takes advantage of the variation of the elastic modulus of SMAs associated with the martensitic transformation. The temperature modulation of the SMA wires is successfully achieved by Joule heating, through a proportional-integral-derivative controller, to change between a low-temperature shape and a high-temperature shape. The implementation of a short-time-Fourier-transform control algorithm allows for the correct identification of the dominant input frequency, associated with the dynamic excitation. This information is used to automatically change the configuration of the structure in order to shift its natural frequency away from that of the dynamic excitation. With this frequency tuning, one obtains a reduction of the accelerations throughout the structure up to about 80%. The good performance of the proposed control approach gives promising indications regarding the use of tensegrity systems, in combination with SMAs, for shape-morphing applications, and, in particular, for self-tuning structures. (paper)

  19. EDITORIAL: Plasmas and plasmons: links in nanosilver Plasmas and plasmons: links in nanosilver

    Science.gov (United States)

    Demming, Anna

    2013-03-01

    Silver has long been valued not just for its rarity but also for its broad ranging attractive properties as a conductor, catalyst and antimicrobial agent, among others. In nanoscale structures, silver takes on a number of additional attributes, as properties such as antimicrobial activity show size dependence. In addition plasmonic properties are exhibited, which enhance local electromagnetic fields and can be hugely beneficial in sensing and imaging applications. As a result silver nanoparticles are increasingly in demand. In this issue researchers describe a microplasma-assisted electrochemical synthesis that allows excellent control over the size and spacing of the resulting particles, which are important parameters for optimizing their performance in device applications [1]. Wet chemistry [2] and lithography [3] are common processes for silver nanoparticle synthesis. However, other methods are constantly in development. Biosynthesis approaches have been attracting increasing interest as more environmentally friendly alternatives. Takayuki Kuwabara and colleagues at Xiamen University in China used the sundried biomass of Cinnamomum camphora leaf to reduce silver nitrate [4], demonstrating a cost-efficient alternative to conventional methods which might also be suitable for large-scale production. At Zhejiang Normal University researchers noted that the abasic site (AP site) in the DNA duplex can act as a capping scaffold in the generation of fluorescent silver nanoclusters [5]. In addition the resulting fluorescence of the nanocrystals can be used for detecting DNA single-nucleotide polymorphism. Researchers in Malaysia have also noted the potential sensing applications of nanoparticles of another noble metal for swine DNA [6]. They observed that single-strand DNA was absorbed on gold nanoparticles and led to a colour shift from pinkish-red to grey-purple. The shift was the result of a reduction in the surface plasmon resonance peak at 530 nm and new features

  20. The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min; Zhao, Fuli [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275 (China); Cheng, Ya; Xu, Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai, 201800 (China)

    2013-02-15

    Nowadays, plasmonics aiming at manipulating light beyond the diffraction limit has aroused great interest on account of the promise of nanoscale optical devices. Generally, the ability to break diffraction barrier is achieved via controlling surface plasmons (SPs) on artificial structures as products of human ingenuity. Here, nevertheless, it is demonstrated that in short-pulse laser ablation ultrafast active plasmonic structures spontaneously generate by virtue of plasmonic effects rather than human will. First, with the experimental results on ZnO, Si, and GaAs, explicit evidence is provided for the grating-splitting phenomenon that acts as a direct route for the formation of laser-induced deep-subwavelength gratings. The splitting mechanism can break through the diffraction limit and push laser-induced structures towards the nanoscale. Then, through comprehensive numerical studies based on the viewpoint of plasmonics, it can be confirmed that the grating-splitting phenomenon originates in the conversion of SP modes from the resonant to the nonresonant mode and further to the inphase or antiphase asymmetric mode. In short, plasmonic effects play an important role in ultrafast laser-induced grating splitting towards the nanoscale, which will provide new insights into the mechanisms of ultrafast laser-induced nanostructures. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale

    International Nuclear Information System (INIS)

    Huang, Min; Zhao, Fuli; Cheng, Ya; Xu, Zhizhan

    2013-01-01

    Nowadays, plasmonics aiming at manipulating light beyond the diffraction limit has aroused great interest on account of the promise of nanoscale optical devices. Generally, the ability to break diffraction barrier is achieved via controlling surface plasmons (SPs) on artificial structures as products of human ingenuity. Here, nevertheless, it is demonstrated that in short-pulse laser ablation ultrafast active plasmonic structures spontaneously generate by virtue of plasmonic effects rather than human will. First, with the experimental results on ZnO, Si, and GaAs, explicit evidence is provided for the grating-splitting phenomenon that acts as a direct route for the formation of laser-induced deep-subwavelength gratings. The splitting mechanism can break through the diffraction limit and push laser-induced structures towards the nanoscale. Then, through comprehensive numerical studies based on the viewpoint of plasmonics, it can be confirmed that the grating-splitting phenomenon originates in the conversion of SP modes from the resonant to the nonresonant mode and further to the inphase or antiphase asymmetric mode. In short, plasmonic effects play an important role in ultrafast laser-induced grating splitting towards the nanoscale, which will provide new insights into the mechanisms of ultrafast laser-induced nanostructures. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Plasmonic properties of gold-coated nanoporous anodic alumina ...

    Indian Academy of Sciences (India)

    gold-coated NAA is strongly quenched due to the strong plasmonic coupling. Keywords. Plasmon ... When coated by a thin film of gold, these templates can support surface plasmon resonance. ... 2.2 Equipment for characterization. Surface ...

  3. Manipulation of plasmonic resonances in graphene coated dielectric cylinders

    KAUST Repository

    Ge, Lixin; Han, Dezhuan; Wu, Ying

    2016-01-01

    Graphene sheets can support surface plasmon as the Dirac electrons oscillate collectively with electromagnetic waves. Compared with the surface plasmon in conventional metal (e.g., Ag and Au), graphene plasmonic owns many remarkable merits

  4. Structural stability and self-healing capability of Er2O3 in situ coating on V-4Cr-4Ti in liquid lithium

    International Nuclear Information System (INIS)

    Yao, Zhenyu; Suzuki, Akihiro; Muroga, Takeo; Nagasaka, Takuya

    2006-01-01

    The in situ Er 2 O 3 insulating coating is under development for the self-cooled Li/V-alloy type fusion blanket. In this study, the structural stability and self-healing capability of the coating are investigated. Since the cracking in the coating was not observed after exposure when Li was removed with a weak lotion (liquid NH 3 ), the cracking observed in the previous studies is not a practical issue in a real blanket. The re-exposure of the coating in pure Li showed that the coating once formed in Li (Er) is thought to be stable in pure Li. Thus, coating has the possibility to be serviced in a Li environment without an Er supply. By prior exposure to Li (Er) at 873 K, the exhaustion of the oxygen storage in V-alloy substrate during exposure at 973 K could be delayed effectively. The self-healing capability of the coating was demonstrated by the examination with the re-exposing cracked coating in Li (Er)

  5. Plasmon instability under four external fields

    International Nuclear Information System (INIS)

    Pereira, R.B.; Fonseca, A.L.A.; Nunes, O.A.C.

    1998-01-01

    The plasmon instability in a laboratory produced plasma in the presence of four external fields, namely two laser fields, one strong magnetic field and one static electric field, is discussed. The method of unitary transformations is used to transform the problem of electron motion under the four external fields to that of an electron in the presence only of crossed electric and magnetic fields. A kinetic equation for the plasmon population is derived from which the damping (amplification) rate is calculated. We found that the joint action of the four fields results in a relatively larger amplification rate for some values of the static electric field in contrast to the case where no electric field is present. It was also found that the plasmon growth rate favors plasmon wave vectors in an extremely narrow band i.e., the plasmon instability in four external fields is a very selective mechanism for plasmon excitation. (author)

  6. Inverse Faraday effect with plasmon beams

    International Nuclear Information System (INIS)

    Ali, S; Mendonca, J T

    2011-01-01

    The angular momentum conservation equation is considered for an electron gas, in the presence of Laguerre-Gaussian (LG) plasmons propagating along the z-axis. The LG plasmons carry a finite orbital angular momentum despite longitudinal nature, which can be partly transfered to the electrons. For short timescales, such that ion motion can be neglected, plasmons primarily interact with the electrons, creating an azimuthal electric field and generating an axial magnetic field. This effect can be called an inverse Faraday effect due to plasmons. Numerically, it is found that the magnitude of the magnetic field enhances with the plasmon density or with the energy of the electron plasma waves. A comparison of the magnitudes of the axial magnetic field is made for the inverse Faraday effect excited by both plasmons and transverse photons.

  7. Evaluation of state-of-the-art imaging systems for in vivo monitoring of retinal structure in mice: current capabilities and limitations

    Science.gov (United States)

    Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.

    2014-02-01

    Animal models of human diseases play an important role in studying and advancing our understanding of these conditions, allowing molecular level studies of pathogenesis as well as testing of new therapies. Recently several non-invasive imaging modalities including Fundus Camera, Scanning Laser Ophthalmoscopy (SLO) and Optical Coherence Tomography (OCT) have been successfully applied to monitor changes in the retinas of the living animals in experiments in which a single animal is followed over a portion of its lifespan. Here we evaluate the capabilities and limitations of these three imaging modalities for visualization of specific structures in the mouse eye. Example images acquired from different types of mice are presented. Future directions of development for these instruments and potential advantages of multi-modal imaging systems are discussed as well.

  8. Near field plasmon and force microscopy

    OpenAIRE

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the probe size to about 20 nm. At variance to previous work, utilizing a scanning tunneling microscope (STM) with a metallic tip, a dielectric silicon-nitride tip is used in contact mode. This arrangement ...

  9. Plasmonic Dye-Sensitized Solar Cells

    KAUST Repository

    Ding, I-Kang

    2010-12-14

    This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a plasmonic back reflector, overlaid with simulated field intensity plots when monochromatic light is incident on the device. Plasmonic back reflectors, which consist of 2D arrays of silver nanodomes, can enhance absorption through excitation of plasmonic modes and increased light scattering, as reported by Michael D. McGehee, Yi Cui, and co-workers.

  10. Propagation and excitation of graphene plasmon polaritons

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jeppesen, Claus

    2013-01-01

    We theoretically investigate the propagation of graphene plasmon polaritons in graphene nanoribbon waveguides and experimentally observe the excitation of the graphene plasmon polaritons in a continuous graphene monolayer. We show that graphene nanoribbon bends do not induce any additional loss...... and nanofocusing occurs in a tapered graphene nanoriboon, and we experimentally demonstrate the excitation of graphene plasmon polaritonss in a continuous graphene monolayer assisted by a two-dimensional subwavelength silicon grating....

  11. Investigating the capability to resolve complex white matter structures with high b-value diffusion magnetic resonance imaging on the MGH-USC Connectom scanner.

    Science.gov (United States)

    Fan, Qiuyun; Nummenmaa, Aapo; Witzel, Thomas; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Van Dijk, Koene R A; Buckner, Randy L; Wedeen, Van J; Rosen, Bruce R; Wald, Lawrence L

    2014-11-01

    One of the major goals of the NIH Blueprint Human Connectome Project was to map and quantify the white matter connections in the brain using diffusion tractography. Given the prevalence of complex white matter structures, the capability of resolving local white matter geometries with multiple crossings in the diffusion magnetic resonance imaging (dMRI) data is critical. Increasing b-value has been suggested for delineation of the finer details of the orientation distribution function (ODF). Although increased gradient strength and duration increase sensitivity to highly restricted intra-axonal water, gradient strength limitations require longer echo times (TE) to accommodate the increased diffusion encoding times needed to achieve a higher b-value, exponentially lowering the signal-to-noise ratio of the acquisition. To mitigate this effect, the MGH-USC Connectom scanner was built with 300 mT/m gradients, which can significantly reduce the TE of high b-value diffusion imaging. Here we report comparisons performed across b-values based on q-ball ODF metrics to investigate whether high b-value diffusion imaging on the Connectom scanner can improve resolving complex white matter structures. The q-ball ODF features became sharper as the b-value increased, with increased power fraction in higher order spherical harmonic series of the ODF and increased peak heights relative to the overall size of the ODF. Crossing structures were detected in an increasingly larger fraction of white matter voxels and the spatial distribution of two-way and three-way crossing structures was largely consistent with known anatomy. Results indicate that dMRI with high diffusion encoding on the Connectom system is a promising tool to better characterize, and ultimately understand, the underlying structural organization and motifs in the human brain.

  12. PDGFRβ+/c-kit+ pulp cells are odontoblastic progenitors capable of producing dentin-like structure in vitro and in vivo.

    Science.gov (United States)

    Cai, Shiwei; Zhang, Wenjian; Chen, Wei

    2016-10-28

    Successful pulp regeneration depends on identification of pulp stem cells capable of differentiation under odontoblastic lineage and producing pulp-dentinal like structure. Recent studies demonstrate that platelet-derived growth factor (PDGF) plays an important role in damage repair and tissue regeneration. The aim of this study was to identify a subpopulation of dental pulp cells responsive to PDGF and with dentin regeneration potential. Pulp tissues were isolated from 12 freshly extracted human impacted third molars. Pulp cells were sorted by their expression of PDGFRβ and stem cell marker genes via flow cytometry. For the selected cells, proliferation was analyzed by a colorimetric cell proliferation assay, differentiation was assessed by real time PCR detection the expression of odontoblast marker genes, and mineralization was evaluated by Alizarin Red S staining. GFP marked PDGFRβ + /c-kit + pulp cells were transplanted into emptied root canals of nude rat lower left incisors. Pulp-dentinal regeneration was examined by immunohistochemistry. PDGFRβ + /c-kit + pulp cells proliferated significantly faster than whole pulp cells. In mineralization media, PDGFRβ + /c-kit + pulp cells were able to develop under odontoblastic linage as demonstrated by a progressively increased expression of DMP1, DSPP, and osteocalcin. BMP2 seemed to enhance whereas PDGF-BB seemed to inhibit odontoblastic differentiation and mineralization of PDGFRβ + /c-kit + pulp cells. In vivo root canal transplantation study revealed globular dentin and pulp-like tissue formation by PDGFRβ + /c-kit + cells. PDGFRβ + /c-kit + pulp cells appear to have pulp stem cell potential capable of producing dentinal like structure in vitro and in vivo.

  13. Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach

    DEFF Research Database (Denmark)

    Gonçalves, P:A.D.; Dias, E. J. C.; Bludov, Yu V.

    2016-01-01

    We study electromagnetic scattering and subsequent plasmonic excitations in periodic grids of graphene ribbons. To address this problem, we develop an analytical method to describe the plasmon-assisted absorption of electromagnetic radiation by a periodic structure of graphene ribbons forming...... a diffraction grating for THz and mid-IR light. The major advantage of this method lies in its ability to accurately describe the excitation of graphene surface plasmons (GSPs) in one-dimensional (1D) graphene gratings without the use of both time-consuming, and computationally demanding full-wave numerical...... compare the theoretical data with spectra taken from experiments, for which we observe a very good agreement. These theoretical tools may therefore be applied to design new experiments and cutting-edge nanophotonic devices based on graphene plasmonics....

  14. Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges

    Directory of Open Access Journals (Sweden)

    Cristian Vacacela Gomez

    2017-01-01

    Full Text Available Recent experimental evidence for and the theoretical confirmation of tunable edge plasmons and surface plasmons in graphene nanoribbons have opened up new opportunities to scrutinize the main geometric and conformation factors, which can be used to modulate these collective modes in the infrared-to-terahertz frequency band. Here, we show how the extrinsic plasmon structure of regular planar arrays of graphene nanoribbons, with perfectly symmetric edges, is influenced by the width, chirality and unit-cell length of each ribbon, as well as the in-plane vacuum distance between two contiguous ribbons. Our predictions, based on time-dependent density functional theory, in the random phase approximation, are expected to be of immediate help for measurements of plasmonic features in nanoscale architectures of nanoribbon devices.

  15. Solution-Processed Smart Window Platforms Based on Plasmonic Electrochromics

    KAUST Repository

    Abbas, Sara

    2018-04-30

    Electrochromic smart windows offer a viable route to reducing the consumption of buildings energy, which represents about 30% of the worldwide energy consumption. Smart windows are far more compelling than current static windows in that they can dynamically modulate the solar spectrum depending on climate and lighting conditions or simply to meet personal preferences. The latest generation of smart windows relies on nominally transparent metal oxide nanocrystal materials whose chromism can be electrochemically controlled using the plasmonic effect. Plasmonic electrochromic materials selectively control the near infrared (NIR) region of the solar spectrum, responsible for solar heat, without affecting the visible transparency. This is in contrast to conventional electrochromic materials which block both the visible and NIR and thus enables electrochromic devices to reduce the energy consumption of a building or a greenhouse in warm climate regions due to enhancements of both visible lighting and heat blocking. Despite this edge, this technology can benefit from important developments, including low-cost solution-based manufacturing on flexible substrates while maintaining durability and coloration efficiency, demonstration of independent control in the NIR and visible spectra, and demonstration of self-powering capabilities. This thesis is focused on developing low-temperature and all-solution processed plasmonic electrochromic devices and dual-band electrochromic devices. We demonstrate new device fabrication approaches in terms of materials and processes which enhance electrochromic performance all the while maintaining low processing temperatures. Scalable fabrication methods are used to highlight compatibility with high throughput, continuous roll-to-roll fabrication on flexible substrates. In addition, a dualband plasmonic electrochromic device was developed by combining the plasmonic layer with a conventional electrochromic ion storage layer. This enables

  16. Graphene Plasmons in Triangular Wedges and Grooves

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Dias, E. J. C.; Xiao, Sanshui

    2016-01-01

    and tunability of graphene plasmons guided along the apex of a graphene-covered dielectric wedge or groove. In particular, we present a quasi-analytic model to describe the plasmonic eigenmodes in such a system, including the complete determination of their spectrum and corresponding induced potential...... and electric-field distributions. We have found that the dispersion of wedge/groove graphene plasmons follows the same functional dependence as their flat-graphene plasmon counterparts, but now scaled by a (purely) geometric factor in which all the information about the system’s geometry is contained. We...

  17. Novel plasmonic polarimeter for biomedical imaging applications

    Science.gov (United States)

    Cheney, Alec; Chen, Borui; Cartwright, Alexander; Thomay, Tim

    2018-02-01

    Using polarized light in medical imaging is a valuable tool for diagnostic purposes since light traveling through scattering tissues such as skin, blood, or cartilage may be subject to changes in polarization. We present a new detection scheme and sensor that allows for directly measuring the polarization of light electronically using a plasmonic sensor. The sensor we fabricated consists of a plasmonic nano-grating that is embedded in a Wheatstone circuit. Using resistive losses induced by optically excited plasmons has shown promise as a CMOScompatible plasmonic light detector. Since the plasmonic response is sensitive to polarization with respect to the grating orientation, measuring the resistance change under incident light supplies a direct electronic measure of the polarization of light without polarization optics. Increased electron scattering introduced by plasmons in an applied current results in a measurable decrease in electrical conductance of a grating, allowing a purely electronic readout of a plasmonic excitation. Accordingly, because of its plasmonic nature, such a detector is dependent on both the wavelength and polarization of incident light with a response time limited by the surface plasmon lifetime.

  18. Morphing a plasmonic nanodisk into a nanotriangle.

    Science.gov (United States)

    Schmidt, Franz P; Ditlbacher, Harald; Hofer, Ferdinand; Krenn, Joachim R; Hohenester, Ulrich

    2014-08-13

    We morph a silver nanodisk into a nanotriangle by producing a series of nanoparticles with electron beam lithography. Using electron energy loss spectroscopy (EELS), we map out the plasmonic eigenmodes and trace the evolution of edge and film modes during morphing. Our results suggest that disk modes, characterized by angular order, can serve as a suitable basis for other nanoparticle geometries and are subject to resonance energy shifts and splittings, as well as to hybridization upon morphing. Similar to the linear combination of atomic orbitals (LCAO) in quantum chemistry, we introduce a linear combination of plasmonic eigenmodes to describe plasmon modes in different geometries, hereby extending the successful hybridization model of plasmonics.

  19. Culturing photosynthetic bacteria through surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David [Department of Mechanical and Industrial Engineering and Centre for Sustainable Energy, University of Toronto, Toronto M5S 3G8 (Canada)

    2012-12-17

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 {mu}m thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  20. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J S; Geisler, P; Bruening, C; Kern, J; Prangsma, J C; Wu, X; Feichtner, Thorsten; Ziegler, J; Weinmann, P; Kamp, M; Forchel, A; Hecht, B [Wilhelm-Conrad-Roentgen-Center for Complex Material Systems, University of Wuerzburg (Germany); Biagioni, P [CNISM, Dipartimento di Fisica, Politecnico di Milano (Italy)

    2011-07-01

    Deep subwavelength integration of high-definition plasmonic nano-structures is of key importance for the development of future optical nanocircuitry. So far the experimental realization of proposed extended plasmonic networks remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large but thin chemically grown single-crystalline gold flakes. After immobilization on any arbitrary surface, they serve as an ideal basis for focused-ion beam milling. We present high-definition ultra-smooth gold nanostructures with reproducible nanosized features over micrometer lengthscales. By comparing multi- and single-crystalline optical antennas we prove that the latter have superior optical properties which are in good agreement with numerical simulations.

  1. Design of a tunable graphene plasmonic-on-white graphene switch at infrared range

    Science.gov (United States)

    Farmani, Ali; Zarifkar, Abbas; Sheikhi, Mohammad H.; Miri, Mehdi

    2017-12-01

    A tunable Y-branch graphene plasmonic switch operating at the wavelength of 1.55 μm is proposed in which graphene is placed on white graphene. The switch structure is investigated analytically and numerically by the finite difference time domain method. The graphene plasmonic switch considered here supports both transverse magnetic and transverse electric graphene plasmons whose propagation characteristics can be controlled by modulating the external electric field and the temperature of graphene. Our calculations show that by strong coupling between the incident waves and the graphene plasmons of the structure, a high polarization extinction ratio of 45 dB and relatively large bandwidth of 150 nm around the central wavelength of 1.55 μm are achievable. Furthermore, the application of white graphene as the substrate of graphene decreases the propagation loss of the graphene plasmons and the required applied electric field. It is also shown that the propagation mode of the graphene plasmons can be tuned by changing the temperature and the calculated threshold temperature is 650 K.

  2. Schottky-contact plasmonic rectenna for biosensing

    Science.gov (United States)

    Alavirad, Mohammad; Siadat Mousavi, Saba; Roy, Langis; Berini, Pierre

    2013-10-01

    We propose a plasmonic gold nanodipole array on silicon, forming a Schottky contact thereon, and covered by water. The behavior of this array under normal excitation has been extensively investigated. Trends have been found and confirmed by identification of the mode propagating in nanodipoles and its properties. This device can be used to detect infrared radiation below the bandgap energy of the substrate via internal photoelectric effect (IPE). Also we estimate its responsivity and detection limit. Finally, we assess the potential of the structure for bulk and surface (bio) chemical sensing. Based on modal results an analytical model has been proposed to estimate the sensitivity of the device. Results show a good agreement between numerical and analytical interpretations.

  3. Coherence matrix of plasmonic beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Lavrinenko, Andrei

    2013-01-01

    We consider monochromatic electromagnetic beams of surface plasmon-polaritons created at interfaces between dielectric media and metals. We theoretically study non-coherent superpositions of elementary surface waves and discuss their spectral degree of polarization, Stokes parameters, and the for...... of the spectral coherence matrix. We compare the polarization properties of the surface plasmonspolaritons as three-dimensional and two-dimensional fields concluding that the latter is superior....

  4. Plasmonic Metallurgy Enabled by DNA.

    Science.gov (United States)

    Ross, Michael B; Ku, Jessie C; Lee, Byeongdu; Mirkin, Chad A; Schatz, George C

    2016-04-13

    Mixed silver and gold plasmonic nanoparticle architectures are synthesized using DNA-programmable assembly, unveiling exquisitely tunable optical properties that are predicted and explained both by effective thin-film models and explicit electrodynamic simulations. These data demonstrate that the manner and ratio with which multiple metallic components are arranged can greatly alter optical properties, including tunable color and asymmetric reflectivity behavior of relevance for thin-film applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Plasmonic Paper as a Novel Chem/Bio Detection Platform

    Science.gov (United States)

    Tian, Limei

    /LSPR sensors is rationalized by numerous advantages such as (i) high specific surface area resulting in large dynamic range (ii) excellent wicking properties for rapid uptake and transport of analytes to test domains (iii) compatibility with conventional printing approaches, enabling multi-analyte plasmonic sensors (iv) significant reduction in cost (v) smaller sample volume requirement (vi) easy disposability. In this work, we have introduced novel SERS and LSPR substrates based on conventional filter paper decorated with plasmonic nanostructures, called plasmonic paper. A flexible SERS substrate based on common filter paper adsorbed with gold nanostructures allows conformal contact with real-world surfaces, enabling rapid trace detection. To realize multifunctional SERS substrates, paper substrates were cut into star-shaped structures and the fingers were differentially functionalized with polyelectrolytes that allows separation and pre-concentration of different components of a complex sample in a small surface area by taking advantage of the properties of cellulose paper and shape-enhanced capillary effect. Plasmonic paper can also serve as a novel LSPR biosensing platform by decorating the paper substrate with biofunctionalized nanostructures. Furthermore, calligraphy approach was employed to create well-isolated test domains on paper substrates using functionalized plasmonic nanostructures as ink for multiplexed chemical sensing and label-free biosensing. These plasmonic paper substrates exhibit excellent sample collection efficiency and do not require complex fabrication processes. This class of substrates is expected to have applications not only to first responders and military personal but also to several areas of medical, food analysis, and environmental research.

  6. Tunable plasmonic toroidal terahertz metamodulator

    Science.gov (United States)

    Gerislioglu, Burak; Ahmadivand, Arash; Pala, Nezih

    2018-04-01

    Optical modulators are essential and strategic parts of micro- and nanophotonic circuits to encode electro-optical signals in the optical domain. Here, by using arrays of multipixel toroidal plasmonic terahertz (THz) metamolecules, we developed a functional plasmonic metamodulator with high efficiency and tunability. Technically, the dynamic toroidal dipole induces nonradiating charge-current arrangements leading to have an exquisite role in defining the inherent spectral features of various materials. By categorizing in a different family of multipoles far from the traditional electromagnetic multipoles, the toroidal dipole corresponds to poloidal currents flowing on the surface of a closed-loop torus. Utilizing the sensitivity of the optically driven toroidal momentum to the incident THz beam power and by employing both numerical tools and experimental analysis, we systematically studied the spectral response of the proposed THz plasmonic metadevice. In this Rapid Communication, we uncover a correlation between the existence and the excitation of the toroidal response and the incident beam power. This mechanism is employed to develop THz toroidal metamodulators with a strong potential to be employed for practical advanced and next-generation communication, filtering, and routing applications.

  7. PAME: plasmonic assay modeling environment

    Directory of Open Access Journals (Sweden)

    Adam Hughes

    2015-08-01

    Full Text Available Plasmonic assays are an important class of optical sensors that measure biomolecular interactions in real-time without the need for labeling agents, making them especially well-suited for clinical applications. Through the incorporation of nanoparticles and fiberoptics, these sensing systems have been successfully miniaturized and show great promise for in-situ probing and implantable devices, yet it remains challenging to derive meaningful, quantitative information from plasmonic responses. This is in part due to a lack of dedicated modeling tools, and therefore we introduce PAME, an open-source Python application for modeling plasmonic systems of bulk and nanoparticle-embedded metallic films. PAME combines aspects of thin-film solvers, nanomaterials and fiber-optics into an intuitive graphical interface. Some of PAME’s features include a simulation mode, a database of hundreds of materials, and an object-oriented framework for designing complex nanomaterials, such as a gold nanoparticles encased in a protein shell. An overview of PAME’s theory and design is presented, followed by example simulations of a fiberoptic refractometer, as well as protein binding to a multiplexed sensor composed of a mixed layer of gold and silver colloids. These results provide new insights into observed responses in reflectance biosensors.

  8. UV Nano-Lights - Nonlinear Quantum Dot-Plasmon Coupling

    Science.gov (United States)

    2016-06-20

    the electromagnetic interaction shows significant plasmonic interaction at the interface between the gold and semiconductor particles as shown in...crystal facets possessing hexagonal symmetry, and the (000 ) basal plane of the seeded, wurzite ZnO nanocrytals. Au particle size played a crucial...discovered. Au particle size played a crucial role in determining the structure and morphology of newly forming crystallites. Small (~4 nm) Au seeds

  9. UV Nano Lights - Nonlinear Quantum Dot-Plasmon Coupling

    Science.gov (United States)

    2016-06-20

    the electromagnetic interaction shows significant plasmonic interaction at the interface between the gold and semiconductor particles as shown in...crystal facets possessing hexagonal symmetry, and the (000 ) basal plane of the seeded, wurzite ZnO nanocrytals. Au particle size played a crucial...discovered. Au particle size played a crucial role in determining the structure and morphology of newly forming crystallites. Small (~4 nm) Au seeds

  10. Poloidal and toroidal plasmons and fields of multilayer nanorings

    OpenAIRE

    Garapati, Kumar Vijay; Salhi, Marouane; Kouchekian, Sherwin; Siopsis, George; Passian, Ali

    2017-01-01

    Composite and janus type metallo-dielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieve invisibility cloaks, and obtain quantum correlations between qubits. We investigate the surface modes of a toroidal nano-structure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle pla...

  11. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    International Nuclear Information System (INIS)

    Singh, Asha; Jayabalan, J; Chari, Rama; Srivastava, Himanshu; Oak, S M

    2010-01-01

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  12. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Asha; Jayabalan, J; Chari, Rama [Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Srivastava, Himanshu [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Oak, S M, E-mail: jjaya@rrcat.gov.i [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2010-08-25

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  13. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    KAUST Repository

    Saeed, A.; Panaro, S.; Zaccaria, R. Proietti; Raja, W.; Liberale, Carlo; Dipalo, M.; Messina, G. C.; Wang, H.; De Angelis, F.; Toma, A.

    2015-01-01

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding. © 2015, Nature Publishing Group. All rights reserved.

  14. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    KAUST Repository

    Saeed, A.

    2015-06-09

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding. © 2015, Nature Publishing Group. All rights reserved.

  15. Finite element analysis of ageing reinforced and prestressed concrete structures in nuclear plant - An international review of current capabilities and priorities for future developments

    International Nuclear Information System (INIS)

    2002-01-01

    Nuclear plants contain a variety of concrete structures whose structural performance is essential to the safety of the plant. There is a requirement to demonstrate the robustness of these structures during normal operating and extreme accident conditions, throughout their life. During this time, the concrete may degrade due to the effects of ageing. This degradation must be accounted for during the assessment of their performance. Finite Element Analysis (FEA) techniques have tremendous potential for providing valuable insight into the behaviour of these aged concrete structures under a range of different loading conditions. Advanced FEA techniques currently enjoy widespread use within the nuclear industry for the non-linear analysis of concrete. Many practitioners within the nuclear industry are at the forefront of the industrial application of these methods. However, in some areas, the programs that are commercially available lag behind the best information available from research. This document is an international review of current capabilities and priorities for future development relating to non-linear finite element analysis of reinforced and prestressed concrete in the nuclear industry in the various member states. Particular attention is paid to the analysis of degraded or ageing structures. This report: 1. Summarises the needs for FEA of aged concrete nuclear structures; 2. Details the existing capabilities, not just in terms of what the software is capable of, but also in terms of the current practices employed by those in industry; 3. Looks at how engineers, within the nuclear industry, working in this field would like to see methods improved, and identifies the factors that are limiting current practice; 4. Summarises ongoing research that may provide beneficial technological advances; 5. Assigns priorities to the different development requests; 6. Selects those developments that are felt to be of greatest benefit to industry and provides a qualitative

  16. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles.

    Science.gov (United States)

    Lee, Hye-Eun; Ahn, Hyo-Yong; Mun, Jungho; Lee, Yoon Young; Kim, Minkyung; Cho, Nam Heon; Chang, Kiseok; Kim, Wook Sung; Rho, Junsuk; Nam, Ki Tae

    2018-04-01

    Understanding chirality, or handedness, in molecules is important because of the enantioselectivity that is observed in many biochemical reactions 1 , and because of the recent development of chiral metamaterials with exceptional light-manipulating capabilities, such as polarization control 2-4 , a negative refractive index 5 and chiral sensing 6 . Chiral nanostructures have been produced using nanofabrication techniques such as lithography 7 and molecular self-assembly 8-11 , but large-scale and simple fabrication methods for three-dimensional chiral structures remain a challenge. In this regard, chirality transfer represents a simpler and more efficient method for controlling chiral morphology 12-18 . Although a few studies 18,19 have described the transfer of molecular chirality into micrometre-sized helical ceramic crystals, this technique has yet to be implemented for metal nanoparticles with sizes of hundreds of nanometres. Here we develop a strategy for synthesizing chiral gold nanoparticles that involves using amino acids and peptides to control the optical activity, handedness and chiral plasmonic resonance of the nanoparticles. The key requirement for achieving such chiral structures is the formation of high-Miller-index surfaces ({hkl}, h ≠ k ≠ l ≠ 0) that are intrinsically chiral, owing to the presence of 'kink' sites 20-22 in the nanoparticles during growth. The presence of chiral components at the inorganic surface of the nanoparticles and in the amino acids and peptides results in enantioselective interactions at the interface between these elements; these interactions lead to asymmetric evolution of the nanoparticles and the formation of helicoid morphologies that consist of highly twisted chiral elements. The gold nanoparticles that we grow display strong chiral plasmonic optical activity (a dis-symmetry factor of 0.2), even when dispersed randomly in solution; this observation is supported by theoretical calculations and direct

  17. Multiscale time-dependent density functional theory: Demonstration for plasmons.

    Science.gov (United States)

    Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J

    2017-08-07

    Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.

  18. Optofluidic plasmonic onchip nanosensor array for biodetection

    Science.gov (United States)

    Huang, Min

    Surface plasmon resonance (SPR) sensing has been demonstrated in the past decade to be the gold standard technique for biochemical interaction analysis, and plays an important role in drug discovery and biomedical research. The technique circumvents the need of fluorescence/radioactive tagging or enzymatic detection, enables ultrasensitive remote sensing, and quantitatively monitors bio-interaction in real time. Although SPR has these attractive features that can satisfy most research/clinic requirements, there still exist problems that limit its applications. First, the reflection geometry of the prism coupling scheme adds limitations for high throughput screening application. Additionally, SPR instrumentations are bulky and not suitable for point-of-care settings. Moreover, the SPR sensor is embedded in conventional micro-fluidic cells, in which the sensor performance is limited by inefficient analyte transport. Suspended plasmonic nanohole array (PNA) offers an opportunity to overcome these limitations. A collinear excitation/collection coupling scheme combined with the small footprint of PNA provides unique platform for multiplexing and system minimization. The suspended nanohole structure also offers a unique configuration to integrate nano-photonics with nano-fluidics. This thesis focuses on developing a lab-on-a-chip PNA platform for point-of-care bio-detection. To achieve this, we first demonstrate that the figure-of-merit of our PNA sensor surpasses that of the prism coupled SPR. We also show that the ultrasensitive label-free PNA sensor is able to directly detect intact viruses from biological media at clinically relevant concentrations with little sample preparation. We then present a plasmonic microarray with over one million PNA sensors on a microscope slide for high throughput screening applications. A dual-color filter imaging method is introduced to increase the accuracy, reliability, and signal-to-noise ratio in a highly multiplexed manner. Finally

  19. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives

    Science.gov (United States)

    Kriegel, Ilka; Scotognella, Francesco; Manna, Liberato

    2017-02-01

    Degenerately doped semiconductor nanocrystals (NCs) are of recent interest to the NC community due to their tunable localized surface plasmon resonances (LSPRs) in the near infrared (NIR). The high level of doping in such materials with carrier densities in the range of 1021cm-3 leads to degeneracy of the doping levels and intense plasmonic absorption in the NIR. The lower carrier density in degenerately doped semiconductor NCs compared to noble metals enables LSPR tuning over a wide spectral range, since even a minor change of the carrier density strongly affects the spectral position of the LSPR. Two classes of degenerate semiconductors are most relevant in this respect: impurity doped semiconductors, such as metal oxides, and vacancy doped semiconductors, such as copper chalcogenides. In the latter it is the density of copper vacancies that controls the carrier concentration, while in the former the introduction of impurity atoms adds carriers to the system. LSPR tuning in vacancy doped semiconductor NCs such as copper chalcogenides occurs by chemically controlling the copper vacancy density. This goes in hand with complex structural modifications of the copper chalcogenide crystal lattice. In contrast the LSPR of degenerately doped metal oxide NCs is modified by varying the doping concentration or by the choice of host and dopant atoms, but also through the addition of capacitive charge carriers to the conduction band of the metal oxide upon post-synthetic treatments, such as by electrochemical- or photodoping. The NIR LSPRs and the option of their spectral fine-tuning make accessible important new features, such as the controlled coupling of the LSPR to other physical signatures or the enhancement of optical signals in the NIR, sensing application by LSPR tracking, energy production from the NIR plasmon resonance or bio-medical applications in the biological window. In this review we highlight the recent advances in the synthesis of various different plasmonic

  20. Tunable plasmon resonances in anisotropic metal nanostructures

    Science.gov (United States)

    Penninkhof, J. J.

    2006-09-01

    Coherent oscillations of free electrons in a metal, localized in a small volume or at an interface between a metal and a dielectric medium, have attracted a lot of attention in the past decades. These so-called surface plasmons have special optical properties that can be used in many applications ranging from optoelectronics to sensing of small quantities of molecules. One of the key issues is that electromagnetic energy can be confined to a relatively small volume close to the metal surface. This field enhancement and the resonance frequency strongly depend on the shape and size of the metal structures. In this thesis, several fabrication methods to create these metal structures on the nanometer to micrometer scale are presented. The optical properties are studied with a special emphasis on the effect of shape anisotropy. Self-assembled 2D colloidal crystals are used as mask to fabricate arrays of metal triangles on a substrate. One of the limitations of this nanosphere lithography technique is that the size of the holes in the colloidal mask (through which the metal is evaporated) is determined by the size of the colloids in the mask. The masks, however, can be modified by use of MeV ion beams and/or wet-chemical growth of a thin layer of silica, resulting in a reduced hole size. Arbitrary symmetry and spacing can be obtained by use of optical tweezers and angle-resolved metal deposition. In contrast to pure metals, amorphous materials like silica are known to show anisotropic plastic deformation at constant volume when subject to MeV ion irradiation. Gold cores embedded in a silica matrix, however, show an elongation along the direction of the ion beam, whereas silver cores rather disintegrate. Silver nanocrystals in an ion-exchanged soda-lime glass redistribute themselves in arrays along the ion beam direction. The optical extinction becomes polarization-dependent, with red- and blue-shifts of the plasmon resonances for polarizations longitudinal and transverse