WorldWideScience

Sample records for plasmonic silver nanostructures

  1. Propagation of plasmons in designed single crystalline silver nanostructures

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Lu, Ying-Wei; Huck, Alexander

    2012-01-01

    We demonstrate propagation of plasmons in single crystalline silver nanostructures fabricated using a combination of a bottom-up and a top-down approach. Silver nanoplates of thickness around 65 nm and a surface area of about 100 μm2 are made using a wet chemical method. Silver nanotips...

  2. Optical properties and plasmonic response of silver-gallium nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lereu, A. L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6123 (United States); Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille (France); Lemarchand, F.; Zerrad, M. [Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille (France); Yazdanpanah, M. [NaugaNeedles LLC, Louisville, Kentucky 40299 (United States); Passian, A., E-mail: passianan@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6123 (United States); Department of Physics, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200 (United States)

    2015-02-14

    Silver and gallium form an alloy Ag{sub 2}Ga via a room temperature spontaneous self-assembly that exhibits remarkable mechanical and electrical properties suitable for nanoscale measurements. However, whether photon excitation of plasmons in this emerging nanomaterial is retained or not has not been established. Here, we present a thin film formation of Ag{sub 2}Ga via a spreading-reactive process of liquid Ga on an Ag film and a characterization of its dielectric function ϵ(E) = ϵ{sub 1}(E) + iϵ{sub 2}(E) in the photon energy range 1.42 eV ≤ E < 4.2 eV. It is observed that while the plasmon damping increases, near an energy of 2.25 eV, the real part of ϵ exhibits a crossing with respect to that of Ag. Furthermore, the impact of new plasmon supporting materials is discussed and in order to enable further applications in plasmonics, the possibility of photon excitation of surface plasmons in Ag{sub 2}Ga is studied.

  3. Photochemical Synthesis of Silver Nanodecahedrons and Related Nanostructures for Plasmonic Field Enhancement Applications

    Science.gov (United States)

    Lu, Haifei

    Noble-metal nanocrystals have received considerable attention in recent years for their size and shape dependent localized surface Plasmon resonances (LSPR). Various applications based on colloidal nanoparticles, such as surface enhanced Raman scattering (SERS), surface enhanced fluorescence (SEF), plasmonic sensing, photothermal therapy etc., have been broadly explored in the field of biomedicine, because of their extremely large optical scattering and absorption cross sections, as well as giant electric field enhancement on their surface. However, despite its high chemical stability, gold exhibits quite large losses and electric field enhancement is comparatively weaker than silver. Silver nanoparticles synthesized by the traditional technique only cover an LSPR ranged from 420~500 nm. On the other hand, the range of 500~660 nm, which is covered by several easily available commercial laser lines, very limited colloidal silver nanostructures with controllable size and shape have been reported, and realization of tuning the resonance to longer wavelengths is very important for the practical applications. In this thesis, a systematic study on photochemical synthesis of silver nanodecahedrons (NDs) and related nanostructures, and their plasmonic field enhancements are presented. First, the roles of chemicals and the light source during the formation of silver nanoparticles have been studied. We have also developed a preparation route for the production size-controlled silver nanodecahedrons (LSPR range 420 ~ 660 nm) in high purity. Indeed our experiments indicate that both the chemicals and the light sources can affect the shape and purity of final products. Adjusting the molar ratio between sodium citrate and silver nitrate can help to control the crystal structure following rapid reduction from sodium borohydride. Light from a blue LED (465 nm) can efficiently transform the polyvinylpyrrolidone stabilized small silver nanoparticles into silver NDs through photo

  4. Facile synthesis of silver/silver thiocyanate (Ag@AgSCN plasmonic nanostructures with enhanced photocatalytic performance

    Directory of Open Access Journals (Sweden)

    Xinfu Zhao

    2017-12-01

    Full Text Available A nanostructured plasmonic photocatalyst, silver/silver thiocyanate (Ag@AgSCN, has been prepared by a simple precipitation method followed by UV-light-induced reduction. The ratio of Ag to silver thiocyanate (AgSCN can be controlled by simply adjusting the photo-induced reduction time. The formation mechanism of the product was investigated based on the time-dependent experiments. Further experiments indicated that the prepared Ag@AgSCN nanostructures with an atomic ratio of Ag/AgSCN = 0.0463 exhibited high photocatalytic activity and long-term stability for the degradation of oxytetracycline (84% under visible-light irradiation. In addition to the microstructure and high specific surface area, the enhanced photocatalytic activity was mainly caused by the surface plasmon resonance of Ag nanoparticles, and the high stability of AgSCN resulted in the long-term stability of the photocatalyst product.

  5. Synthesis of Gold Nanoparticle-Embedded Silver Cubic Mesh Nanostructures Using AgCl Nanocubes for Plasmonic Photocatalysis.

    Science.gov (United States)

    Joo, Jang Ho; Kim, Byung-Ho; Lee, Jae-Seung

    2017-11-01

    A novel room-temperature aqueous synthesis for gold nanoparticle-embedded silver cubic mesh nanostructures using AgCl templates via a template-assisted coreduction method is developed. The cubic AgCl templates are coreduced in the presence of AuCl 4 - and Ag + , resulting in the reduction of AuCl 4 - into gold nanoparticles on the outer region of AgCl templates, followed by the reduction of AgCl and Ag + into silver cubic mesh nanostructures. Removal of the template clearly demonstrates the delicately designed silver mesh nanostructures embedded with gold nanoparticles. The synthetic mechanism, structural properties, and surface functionalization are spectroscopically investigated. The plasmonic photocatalysis of the cubic mesh nanostructures for the degradation of organic pollutants and removal of highly toxic metal ions is investigated; the photocatalytic activity of the cubic mesh nanostructures is superior to those of conventional TiO 2 catalysts and they are catalytically functional even in natural water, owing to their high surface area and excellent chemical stability. The synthetic development presented in this study can be exploited for the highly elaborate, yet, facile design of nanomaterials with outstanding properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability.

    Science.gov (United States)

    Fasciani, Chiara; Silvero, M Jazmin; Anghel, Maria Alexandra; Argüello, Gerardo A; Becerra, Maria Cecilia; Scaiano, Juan C

    2014-12-17

    Gold-silver core-shell nanoparticles stabilized with a common sweetener, aspartame (AuNP@Ag@Asm), combine the antimicrobial properties of silver with the photoinduced plasmon-mediated photothermal effects of gold. The particles were tested with several bacterial strains, while biocompatibility was verified with human dermal fibroblasts.

  7. Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Mårsell, Erik; Larsen, Esben W.; Arnold, Cord L.; Xu, Hongxing; Mauritsson, Johan; Mikkelsen, Anders, E-mail: anders.mikkelsen@sljus.lu.se [Department of Physics, Lund University, P.O. Box 118, 22 100 Lund (Sweden)

    2015-02-28

    We image the field enhancement at Ag nanostructures using femtosecond laser pulses with a center wavelength of 1.55 μm. Imaging is based on non-linear photoemission observed in a photoemission electron microscope (PEEM). The images are directly compared to ultra violet PEEM and scanning electron microscopy (SEM) imaging of the same structures. Further, we have carried out atomic scale scanning tunneling microscopy on the same type of Ag nanostructures and on the Au substrate. Measuring the photoelectron spectrum from individual Ag particles shows a larger contribution from higher order photoemission processes above the work function threshold than would be predicted by a fully perturbative model, consistent with recent results using shorter wavelengths. Investigating a wide selection of both Ag nanoparticles and nanowires, field enhancement is observed from 30% of the Ag nanoparticles and from none of the nanowires. No laser-induced damage is observed of the nanostructures neither during the PEEM experiments nor in subsequent SEM analysis. By direct comparison of SEM and PEEM images of the same nanostructures, we can conclude that the field enhancement is independent of the average nanostructure size and shape. Instead, we propose that the variations in observed field enhancement could originate from the wedge interface between the substrate and particles electrically connected to the substrate.

  8. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  9. Plasmon hybridization in complex metallic nanostructures

    Science.gov (United States)

    Hao, Feng

    With Plasmon Hybridization (PH) and Finite-Difference Time-Domain (FDTD) method, we theoretically investigated the optical properties of some complex metallic nanostructures (coupled nanoparticle/wire, nanostars, nanorings and combined ring/disk nanocavity systems). We applied the analytical formulism of PH studying the plasmonic coupling of a spherical metallic nanoparticle and an infinite long cylindrical nanowire. The plasmon resonance of the coupled system is shown shifted in frequency, which highly depends on the polarization of incident light relative to the geometry of the structure. We also showed the nanoparticle serves as an efficient antenna coupling the electromagnetic radiation into the low-energy propagating wire plasmons. We performed an experimental and theoretical analysis of the optical properties of gold nanorings with different sizes and cross sections. For light polarized parallel to the ring, the optical spectrum sensitively depends on the incident angle. When light incidence is normal to the ring, two dipolar resonance is observed. As the incident light is titled, some previously dark mulipolar plasmon resonances will be excited as a consequence of the retardation. The concept of plasmon hybridization is combined with the power of brute-force numerical methods to understand the plasmonic properties of some very complicated nanostructures. We showed the plasmons of a gold nanostar are a result of hybridization of the plasmons of the core and the tips of the particle. The core serves as a nanoantenna, dramatically enhanced the optical spectrum and the field enhancement of the nanostar. We also applied this method analyzing the plasmonic modes of a nanocavity structure composed of a nanodisk with a surrounding minoring. For the concentric combination, we showed the nature of the plasmon modes can be understood as the plasmon hybrization of an individual ring and disk. The interation results in a blueshifted and broadened superradiant antibonding

  10. Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures

    DEFF Research Database (Denmark)

    Sánchez-García, Laura; Tserkezis, Christos; Ramírez, Mariola O

    2016-01-01

    or up to 60 times when it matches the fundamental NIR radiation. The results are consistent with the more spatially-extended near-field response of complex metallic nanostructures and can be well explained by taking into account the quadratic character of the SHG process. The work points out...... the visible to the near-infrared (NIR) spectral region, matching either the SH or the fundamental frequency. In both cases the SHG signal at the metal-dielectric interface is enhanced, although with substantially different enhancement values: around 5 times when the plasmonic resonance is at the SH frequency...

  11. Plasmonic hybrid nanostructure with controlled interaction strength

    Science.gov (United States)

    Grzelak, Justyna K.; Krajnik, Bartosz; Thoreson, Mark D.; Nyga, Piotr; Shalaev, Vladimir M.; Mackowski, Sebastian

    2014-03-01

    In this report we discuss the influence of plasmon excitations in a silver island film on the fluorescence of photosynthetic complex, peridinin-chlorophyll-protein (PCP). Control of the separation between these two components is obtained by fabricating a wedge layer of silica across the substrate, with a thickness from 0 to 46 nm. Continuous variation of the silica thickness allows for gradual change of interaction strength between plasmon excitations in the metallic film and the excited states of pigments comprising photosynthetic complexes. While the largest separation between the silver film and photosynthetic complexes results in fluorescence featuring a mono-exponential decay and relatively narrow distribution of intensities, the PCP complexes placed on thinner silica spacers show biexponential fluorescence decay and significantly broader distribution of total fluorescence intensities. This broad distribution is a signature of stronger sensitivity of fluorescence enhancement upon actual parameters of a hybrid nanostructure. By gradual change of the silica spacer thickness we are able to reproduce classical distance dependence of fluorescence intensity in plasmonic hybrid nanostructures on ensemble level. Experiments carried out for different excitation wavelengths indicate that the interaction is stronger for excitations resonant with plasmon absorption in the metallic layer.

  12. Plasmonic Nanostructures for Biosensor Applications

    Science.gov (United States)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  13. Highly Stable Monocrystalline Silver Clusters for Plasmonic Applications

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Popok, Vladimir N.; Evlyukhin, Andrey B.

    2017-01-01

    Plasmonic sensor configurations utilizing localized plasmon resonances in silver nanostructures typically suffer from the rapid degradation of silver under ambient atmospheric conditions. In this work, we report on the fabrication and detailed characterization of ensembles of monocrystalline silver......-beam technique and characterized by linear spectroscopy, two-photon-excited photoluminescence, surface-enhanced Raman scattering microscopy, and transmission electron, helium ion, and atomic force microscopies. It is found that the fabricated ensembles of monocrystalline silver NPs preserve their plasmonic...... properties (monitored with optical spectroscopy) and strong field enhancements (revealed by surface-enhanced Raman spectroscopy) at least 5 times longer as compared to chemically synthesized silver NPs with similar sizes. The obtained results are of high practical relevance for the further development...

  14. Probing plasmonic nanostructures by photons and electrons

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Harald; Kneipp, Janina

    2015-01-01

    We discuss recent developments for studying plasmonic metal nanostructures. Exploiting photons and electrons opens up new capabilities to probe the complete plasmon spectrum including bright and dark modes and related local optical fields at subnanometer spatial resolution. This comprehensive cha...

  15. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes

    KAUST Repository

    Xie, Fang; Pang, Jing S.; Centeno, Anthony; Ryan, Mary P.; Riley, D. Jason; Alford, Neil M.

    2013-01-01

    of increasing the sensitivity of protein detection in clinical applications. We report the use of tunable plasmonic silver nanostructures for the fluorescence enhancement of a near-infrared (NIR) dye (Alexa Fluor 790). Extensive fluorescence enhancement of ∼2

  16. Formation of novel assembled silver nanostructures from polyglycol solution

    International Nuclear Information System (INIS)

    Zhang Jie; Liu Ke; Dai Zhihui; Feng Yuying; Bao Jianchun; Mo Xiangyin

    2006-01-01

    This paper described a simple and mild chemical reduction approach to prepare novel silver nanostructures with different morphologies. Dendritic silver nanostructure was obtained by a fast reduction reaction using hydrazine as a reducing agent in aqueous solution of polyglycol, while both the zigzag and linear Ag nanostructures were slowly assembled using polyglycol as a reducing agent. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained silver nanostructures. Fourier transform infrared absorption (FT-IR) spectra were recorded to show that there exists a certain coordination of the oxygen atoms in the polyglycol with Ag + ions in aqueous solution of the AgNO 3 /polyglycol. Furthermore, the examination of the morphologies of the products obtained at different stages of the reaction of Ag + ions with polyglycol revealed that such a coordination is of utmost importance for the formation of the silver nanostructures, namely polyglycol provided lots of active sites for the coordination, nucleation, growth and serves as backbones for directing the assembly of the metal particles formed. The formation mechanism of the dendritic silver nanostructure was called a coordination-reduction-nucleation-growth-fractal growth process. The strong surface plasmon absorption bands at 470 nm for the zigzag silver and at 405 nm for the dendritic silver were found

  17. Graphene-protected copper and silver plasmonics

    DEFF Research Database (Denmark)

    Kravets, V. G.; Jalil, R.; Kim, Y. J.

    2014-01-01

    suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered...... with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic...

  18. Mesoscopic quantum emitters coupled to plasmonic nanostructures

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke

    for the spontaneous emission of mesoscopic quantum emitters is developed. The light-matter interaction is in this model modied beyond the dipole expectancy and found to both suppress and enhance the coupling to plasmonic modes in excellent agreement with our measurements. We demonstrate that this mesoscopic effect......This thesis reports research on quantum dots coupled to dielectric and plasmonic nano-structures by way of nano-structure fabrication, optical measurements, and theoretical modeling. To study light-matter interaction, plasmonic gap waveguides with nanometer dimensions as well as samples for studies...... to allow for e- cient plasmon-based single-photon sources. Theoretical studies of coupling and propagation properties of plasmonic waveguides reveal that a high-refractive index of the medium surrounding the emitter, e.g. nGaAs = 3.5, limits the realizability of ecient plasmon-based single-photon sources...

  19. Controlling light with resonant plasmonic nanostructures

    NARCIS (Netherlands)

    Waele, R. de

    2009-01-01

    Plasmons are collective oscillations of free electrons in a metal. At optical frequencies plasmons enable nanoscale confinement of light in metal nanostructures. This ability has given rise to many applications in e.g. photothermal cancer treatment, light trapping in photovoltaic cells, and sensing.

  20. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures

    International Nuclear Information System (INIS)

    Ye Jian; Van Dorpe, Pol; Lagae, Liesbet; Borghs, Gustaaf; Maes, Guido

    2009-01-01

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  1. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jian; Van Dorpe, Pol; Lagae, Liesbet; Borghs, Gustaaf [Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven (Belgium); Maes, Guido, E-mail: Jian.Ye@imec.b [Chemistry Department, Katholieke Universiteit Leuven, Celestijnenlaan 200 F, B-3001 Leuven (Belgium)

    2009-11-18

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  2. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures

    Science.gov (United States)

    Ye, Jian; Van Dorpe, Pol; Lagae, Liesbet; Maes, Guido; Borghs, Gustaaf

    2009-11-01

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  3. Alternative Plasmonic Materials: Beyond Gold and Silver

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2013-01-01

    Materials research plays a vital role in transforming breakthrough scientific ideas into next‐generation technology. Similar to the way silicon revolutionized the microelectronics industry, the proper materials can greatly impact the field of plasmonics and metamaterials. Currently, research...... such as gold and silver, that exhibit metallic properties and provide advantages in device performance, design flexibility, fabrication, integration, and tunability. This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent...

  4. Thermo-plasmonics of Irradiated Metallic Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan

    Thermo-plasmonics is an emerging field in photonics which aims at harnessing the kinetic energy of light to generate nanoscopic sources of heat. Localized surface plasmons (LSP) supported by metallic nanostructures greatly enhance the interactions of light with the structure. By engineering...... delivery, nano-surgeries and thermo-transportations. Apart from generating well-controlled temperature increase in functional thermo-plasmonic devices, thermo-plasmonics can also be used in understanding complex phenomena in thermodynamics by creating drastic temperature gradients which are not accessible...... using conventional techniques. In this thesis, we present novel experimental and numerical tools to characterize thermo-plasmonic devices in a biologically relevant environment, and explore the thermodiffusion properties and measure thermophoretic forces for particles in temperature gradients ranging...

  5. Engineering metallic nanostructures for plasmonics and nanophotonics

    Science.gov (United States)

    Lindquist, Nathan C.; Nagpal, Prashant; McPeak, Kevin M.; Norris, David J.; Oh, Sang-Hyun

    2012-03-01

    Metallic nanostructures now play an important role in many applications. In particular, for the emerging fields of plasmonics and nanophotonics, the ability to engineer metals on nanometric scales allows the development of new devices and the study of exciting physics. This review focuses on top-down nanofabrication techniques for engineering metallic nanostructures, along with computational and experimental characterization techniques. A variety of current and emerging applications are also covered.

  6. Plasmonics analysis of nanostructures for bioapplications

    Science.gov (United States)

    Xie, Qian

    Plasmonics, the science and technology of the plasmons, is a rapidly growing field with substantial broader impact in numerous different fields, especially for bio-applications such as bio-sensing, bio-photonics and photothermal therapy. Resonance effects associated with plasmatic behavior i.e. surface Plasmon resonance (SPR) and localize surface Plasmon resonance (LSPR), are of particular interest because of their strong sensitivity to the local environment. In this thesis, plasmonic resonance effects are discussed from the basic theory to applications, especially the application in photothermal therapy, and grating bio-sensing. This thesis focuses on modeling different metallic nanostructures, i.e. nanospheres, nanorods, core-shell nanoparticles, nanotori and hexagonal closed packed nanosphere structures, to determine their LSPR wavelengths for use in various applications. Experiments regarding photothermal therapy using gold nanorods are described and a comparison is presented with results obtained from simulations. Lastly, experiments of grating-based plasmon-enhanced bio-sensing are also discussed. In chapter one, the physics of plasmonics is reviewed, including surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR). In the section on surface plasmon resonance, the physics behind the phenomenon is discussed, and also, the detection methods and applications in bio-sensing are described. In the section on localized surface plasmon resonance (LSPR), the phenomenon is described with respect to sub wavelength metallic nanoparticles. In chapter two, specific plasmonic-based bio-applications are discussed including plasmonic and magneto-plasmonic enhanced photothermal therapy and grating-based SPR bio-sening. In chapter three, which is the most important part in the thesis, optical modeling of different gold nanostructures is presented. The modeling tools used in this thesis are Comsol and custom developed Matlab programs. In Comsol, the

  7. Nanogap embedded silver gratings for surface plasmon enhanced fluorescence

    Science.gov (United States)

    Bhatnagar, Kunal

    Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal and dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures have shown to provide very efficient and extreme light concentration at the nano-scale in recent years. The enhanced electric field produced within a few hundred nanometers of these surfaces can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences and improving the qualities and capabilities of fluorescence based detectors and imaging equipment remains a big challenge for industry manufacturers. We report a novel fabrication technique for producing nano-gap embedded periodic grating substrates on the nanoscale using a store bought HD-DVD and conventional soft lithography procedures. Polymethylsilsesquioxane (PMSSQ) polymer is used as the ink for the micro-contact printing process with PDMS stamps obtained from the inexpensive HD-DVDs as master molds. Fluorescence enhancement factors of up to 118 times were observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for a robust and inexpensive optical system with applications such as low-level fluorescence based analyte detection, single molecule imaging, and surface enhanced Raman studies. Preliminary results in single molecule experiments have also been obtained by imaging individual 3 nm and 20 nm dye-doped nanoparticles attached to the silver plasmonic gratings using epi-fluorescence microscopy.

  8. Plasmon polaritons in nanostructured graphene

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2013-01-01

    Graphene has attracted considerable attention due to its unique electronic and optical properties. When graphene is electrically/chemically doped, it can support surface plasmon where the light propagates along the surface with a very short wavelength and an extremely small mode volume. The optical...... properties of graphene can be tuned by electrical gating, thus proving a promising way to realize a tunable plasmonic material. We firstly investigate the performance of bends and splitters in graphene nanoribbon waveguides, and show that bends and splitters do not induce any additional loss provided...... that the nanoribbon width is sub-wavelength. Then we experimentally demonstrate the excitation of graphene plasmon polaritons in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The silicon grating is realized by a nanosphere lithography technique with a self...

  9. The Physics and Applications of a 3D Plasmonic Nanostructure

    Science.gov (United States)

    Terranova, Brandon B.

    In this work, the dynamics of electromagnetic field interactions with free electrons in a 3D metallic nanostructure is evaluated theoretically. This dissertation starts by reviewing the relevant fundamentals of plasmonics and modern applications of plasmonic systems. Then, motivated by the need to have a simpler way of understanding the surface charge dynamics on complex plasmonic nanostructures, a new plasmon hybridization tree method is introduced. This method provides the plasmonicist with an intuitive way to determine the response of free electrons to incident light in complex nanostructures within the electrostatic regime. Next, a novel 3D plasmonic nanostructure utilizing reflective plasmonic coupling is designed to perform biosensing and plasmonic tweezing applications. By applying analytical and numerical methods, the effectiveness of this nanostructure at performing these applications is determined from the plasmonic response of the nanostructure to an excitation beam of coherent light. During this analysis, it was discovered that under certain conditions, this 3D nanostructure exhibits a plasmonic Fano resonance resulting from the interference of an in-plane dark mode and an out-of-plane bright mode. In evaluating this nanostructure for sensing changes in the local dielectric environment, a figure of merit of 68 is calculated, which is competitive with current localized surface plasmon resonance refractometric sensors. By evaluating the Maxwell stress tensor on a test particle in the vicinity of the nanostructure, it was found that under the right conditions, this plasmonic nanostructure design is capable of imparting forces greater than 10.5 nN on dielectric objects of nanoscale dimensions. The results obtained in these studies provides new routes to the design and engineering of 3D plasmonic nanostructures and Fano resonances in these systems. In addition, the nanostructure presented in this work and the design principles it utilizes have shown

  10. Hot Charge Carrier Transmission from Plasmonic Nanostructures

    Science.gov (United States)

    Christopher, Phillip; Moskovits, Martin

    2017-05-01

    Surface plasmons have recently been harnessed to carry out processes such as photovoltaic current generation, redox photochemistry, photocatalysis, and photodetection, all of which are enabled by separating energetic (hot) electrons and holes—processes that, previously, were the domain of semiconductor junctions. Currently, the power conversion efficiencies of systems using plasmon excitation are low. However, the very large electron/hole per photon quantum efficiencies observed for plasmonic devices fan the hope of future improvements through a deeper understanding of the processes involved and through better device engineering, especially of critical interfaces such as those between metallic and semiconducting nanophases (or adsorbed molecules). In this review, we focus on the physics and dynamics governing plasmon-derived hot charge carrier transfer across, and the electronic structure at, metal-semiconductor (molecule) interfaces, where we feel the barriers contributing to low efficiencies reside. We suggest some areas of opportunity that deserve early attention in the still-evolving field of hot carrier transmission from plasmonic nanostructures to neighboring phases.

  11. Enhancement of short-circuit current density in polymer bulk heterojunction solar cells comprising plasmonic silver nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuzhao; Lin, Xiaofeng; Ou, Jiemei; Chen, Xudong, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education of China, Sun Yat-sen University, Guangzhou 510275 (China); Qing, Jian; Zhong, Zhenfeng; Zhou, Xiang, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn; Chen, Yujie, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056 (China)

    2014-03-24

    We demonstrate that the influence of plasmonic effects based on silver nanowires (Ag NWs) on the characteristics of polymer solar cells (PSCs). The solution-processed Ag NWs are situated at the interface of anode buffer layer and active layer, which could enhance the performance especially the photocurrent of PSCs by scattering, localized surface plasmon resonance, and surface plasmon polaritons. Plasmonic effects are confirmed by the enhancement of extinction spectra, external quantum efficiency, and steady state photoluminescence. Consequently, the short-circuit current density (J{sub sc}) and power conversion efficiency enhance about 24% and 18%, respectively, under AM1.5 illumination when Ag NWs plasmonic nanostructure incorporated into PSCs.

  12. Field enhancement in plasmonic nanostructures

    Science.gov (United States)

    Piltan, Shiva; Sievenpiper, Dan

    2018-05-01

    Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of {{W}} {{{c}}{{m}}}-2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.

  13. Revealing Nanostructures through Plasmon Polarimetry.

    Science.gov (United States)

    Kleemann, Marie-Elena; Mertens, Jan; Zheng, Xuezhi; Cormier, Sean; Turek, Vladimir; Benz, Felix; Chikkaraddy, Rohit; Deacon, William; Lombardi, Anna; Moshchalkov, Victor V; Vandenbosch, Guy A E; Baumberg, Jeremy J

    2017-01-24

    Polarized optical dark-field spectroscopy is shown to be a versatile noninvasive probe of plasmonic structures that trap light to the nanoscale. Clear spectral polarization splittings are found to be directly related to the asymmetric morphology of nanocavities formed between faceted gold nanoparticles and an underlying gold substrate. Both experiment and simulation show the influence of geometry on the coupled system, with spectral shifts Δλ = 3 nm from single atoms. Analytical models allow us to identify the split resonances as transverse cavity modes, tightly confined to the nanogap. The direct correlation of resonance splitting with atomistic morphology allows mapping of subnanometre structures, which is crucial for progress in extreme nano-optics involving chemistry, nanophotonics, and quantum devices.

  14. Tunable plasmonic lattices of silver nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2008-02-18

    Silver nanocrystals are ideal building blocks for plasmonicmaterials that exhibit a wide range of unique and potentially usefuloptical phenomena. Individual nanocrystals display distinct opticalscattering spectra and can be assembled into hierarchical structures thatcouple strongly to external electromagnetic fields. This coupling, whichis mediated by surface plasmons, depends on their shape and arrangement.Here we demonstrate the bottom-up assembly of polyhedral silvernanocrystals into macroscopic two-dimensional superlattices using theLangmuir-Blodgett technique. Our ability to control interparticlespacing, density, and packing symmetry allows for tunability of theoptical response over the entire visible range. This assembly strategyoffers a new, practical approach to making novel plasmonic materials forapplication in spectroscopic sensors, sub-wavelength optics, andintegrated devices that utilize field enhancement effects.

  15. Quantum theory of plasmons in nanostructures

    DEFF Research Database (Denmark)

    Winther, Kirsten Trøstrup

    ripples in a pond where the water represents a sea of free electrons. Plasmons on metal surfaces and in nanostructured materials, such as metal nanoparticles and atomically thin two-dimensional materials, have several technological applications due to their ability to confine light on nanoscale......, also van der Waals heterostructures (vdWh), which are stacks of different twodimensional materials, are considered. A new multi-scale approach for calculating the dielectric-function of vdWh, which extends ab initio accuracy to the description of hundreds of atomic layers, is presented. Also, one...

  16. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    Science.gov (United States)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  17. Silver nanoparticles from silver halide photography to plasmonics

    CERN Document Server

    Tani, Tadaaki

    2015-01-01

    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  18. Plasmonics and single-molecule detection in evaporated silver-island films

    Energy Technology Data Exchange (ETDEWEB)

    Moula, G.; Aroca, R.F. [Materials and Surface Science Group, University of Windsor, Ontario (Canada); Rodriguez-Oliveros, R.; Sanchez-Gil, J.A. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Albella, P. [Centro de Fisica de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), 20018 Donostia, San Sebastian (Spain)

    2012-11-15

    The plasmonic origin of surface-enhanced Raman scattering (SERS) leads to the concept of hotspots and plasmon coupling that can be realized in the interstitial regions, or on specially engineered, silver and gold nanostructures. It is also possible to achieve spatial locations of high local field or hotspots on silver-island films (SIF) allowing single-molecule detection (SMD). When a single monomolecular layer coating the SIFs contains dye molecules dispersed in it, single-molecule impurities, (with an average of one hundred dye molecules in 1 {mu}m{sup 2}, which is the field of view of the micro-Raman system), SMD is observed as a rare statistical event. Here, the SMD results for silver-island films are presented, with the same nominal mass thickness, but differing in the localized surface plasmon resonance that is a function of the temperature of substrate during deposition. A blue-shifted plasmon can be seen as a decrease in plasmon coupling for deposition at higher temperature. A simple two-particle model for localized plasmon resonance coupling calculations, including the shape and substrate effects seems to explain the trend of observations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Femtosecond Snapshots of quantum mechanics at work in plasmonic nano-structures

    Science.gov (United States)

    Carbone, Fabrizio

    Ultrafast Transmission Electron Microscopy enabled a new technique (Photon-Induced Near Field Electron Microscopy, PINEM), capable of controlling electromagnetic fields confined on the surface of nanostructures and image their properties with nm-resolution in direct space and fs resolution in time. In this presentation, we will show some recent results where the standing wave formed by the plasmonic field confined on the surface of one silver nano-wire was imaged together with its energy exchange with the imaging electrons. In these results, both the interference and the quantization of the plasmonic near field could be imaged simultaneously, revealing both a quantum and a classical aspect of the electromagnetic field in one snapshot. The implications of these results will be discussed, and we will also present new ideas and methodologies to go beyond such an experiment and image the interaction between single electrons and single plasmons. We will also show that shaping the electron density in a thin film via light pulses is possible by taking advantage of the plasmon-plasmon interference and the ability of light polarization to control the excitation of different plasmonic field geometries in ad hoc designed nanostructures. Movies of the propagation of plasmons will also be presented, providing insights into their speed, propagation losses and the effect of confinment. This work was supported by an ERC Grant USED.

  20. Plasmonic characterization of photo-induced silver nanoparticles extracted from silver halide based TEM film

    Energy Technology Data Exchange (ETDEWEB)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.; Srivastava, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India); Varshney, G. K. [Laser Bio-medical Applications & Instrumentation Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India)

    2016-05-23

    The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.

  1. Optical enhancement effects of plasmonic nanostructures on organic photovoltaic cells

    KAUST Repository

    Park, Hui Joon; Guo, L. Jay

    2015-01-01

    .g. hundreds of nanometers). Especially, the performances of OPVs with plasmonic nanoparticles in photoactive and buffer layers and with periodic nanostructures were investigated. Furthermore, nanoimprint lithography-based nanofabrication processes that can

  2. Quantum-corrected transient analysis of plasmonic nanostructures

    KAUST Repository

    Uysal, Ismail Enes; Ulku, Huseyin Arda; Sajjad, Muhammad; Singh, Nirpendra; Schwingenschlö gl, Udo; Bagci, Hakan

    2017-01-01

    A time domain surface integral equation (TD-SIE) solver is developed for quantum-corrected analysis of transient electromagnetic field interactions on plasmonic nanostructures with sub-nanometer gaps. “Quantum correction” introduces an auxiliary

  3. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Guehlke, Marina

    2016-01-01

    We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial...... for one-and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS) and surface enhanced hyper-Raman scattering (SEHRS). Our studies demonstrate a templated green preparation of enhancing plasmonic nanoparticles and suggest a new route to deliver silver nanoparticles as basic...... building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts....

  4. Manipulation of plasmonic wavefront and light–matter interaction in metallic nanostructures: A brief review

    International Nuclear Information System (INIS)

    Li Jia-Fang; Li Zhi-Yuan

    2014-01-01

    The control and application of surface plasmons (SPs), is introduced with particular emphasis on the manipulation of the plasmonic wavefront and light–matter interaction in metallic nanostructures. We introduce a direct design methodology called the surface wave holography method and show that it can be readily employed for wave-front shaping of near-infrared light through a subwavelength hole, it can also be used for designing holographic plasmonic lenses for SPs with complex wavefronts in the visible band. We also discuss several issues of light–matter interaction in plasmonic nanostructures. We show theoretically that amplification of SPs can be achieved in metal nanoparticles incorporated with gain media, leading to a giant reduction of surface plasmon resonance linewidth and enhancement of local electric field intensity. We present an all-analytical semiclassical theory to evaluate spaser performance in a plasmonic nanocavity incorporated with gain media described by the four-level atomic model. We experimentally demonstrate amplified spontaneous emission of SP polaritons and their amplification at the interface between a silver film and a polymer film doped with dye molecules. We discuss various aspects of microscopic and macroscopic manipulation of fluorescent radiation from gold nanorod hybrid structures in a system of either a single nanoparticle or an aligned group of nanoparticles. The findings reported and reviewed here could help others explore various approaches and schemes to manipulate plasmonic wavefront and light–matter interaction in metallic nanostructures for potential applications, such as optical displays, information integration, and energy harvesting technologies. (topical review - plasmonics and metamaterials)

  5. Synthesis of self-assembly plasmonic silver nanoparticles with tunable luminescence color

    International Nuclear Information System (INIS)

    Al-Ghamdi, Haifa S.; Mahmoud, Waleed E.

    2014-01-01

    Assembly is an elegant and effective bottom-up approach to prepare arrays of nanoparticles from nobel metals. Noble metal nanoparticles are perfect building blocks because they can be prepared with an adequate functionalization to allow their assembly and with controlled sizes. Herein, we report a novel recipe for the synthesis of self-assembled silver nanoparticles with tunable optical properties and sizes. The synthetic route followed here based on the covalent binding among silver nanoparticles by means of poly vinyl alcohol for the first time. The size of silver nanoparticle is governed by varying the amount of sodium borohydride. The as-synthesized nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, selected area electron diffraction and UV–vis spectroscopy. Results depicted that self-assembly of mono-dispersed silver nanoparticles with different sizes have been achieved. The silver nanostructure has a single crystalline faced centered cubic structure with growth orientation along (1 1 1) facet. These nanoparticles exhibited localized surface plasmon resonance at 403 nm. The luminescence peaks were red-sifted from violet to green due to the increase of the particle sizes. -- Highlights: • Self-assembled silver nanoparticles based PVA were synthesized. • NaBH 4 amount was found particle size dependent. • Silver nanoparticles strongly affected the surface plasmon resonance. • Highly symmetric luminescence emission band narrow width is obtained. • Dark field image showed a tunable color change from violet to green

  6. Tunable plasmon resonances in anisotropic metal nanostructures

    Science.gov (United States)

    Penninkhof, J. J.

    2006-09-01

    Coherent oscillations of free electrons in a metal, localized in a small volume or at an interface between a metal and a dielectric medium, have attracted a lot of attention in the past decades. These so-called surface plasmons have special optical properties that can be used in many applications ranging from optoelectronics to sensing of small quantities of molecules. One of the key issues is that electromagnetic energy can be confined to a relatively small volume close to the metal surface. This field enhancement and the resonance frequency strongly depend on the shape and size of the metal structures. In this thesis, several fabrication methods to create these metal structures on the nanometer to micrometer scale are presented. The optical properties are studied with a special emphasis on the effect of shape anisotropy. Self-assembled 2D colloidal crystals are used as mask to fabricate arrays of metal triangles on a substrate. One of the limitations of this nanosphere lithography technique is that the size of the holes in the colloidal mask (through which the metal is evaporated) is determined by the size of the colloids in the mask. The masks, however, can be modified by use of MeV ion beams and/or wet-chemical growth of a thin layer of silica, resulting in a reduced hole size. Arbitrary symmetry and spacing can be obtained by use of optical tweezers and angle-resolved metal deposition. In contrast to pure metals, amorphous materials like silica are known to show anisotropic plastic deformation at constant volume when subject to MeV ion irradiation. Gold cores embedded in a silica matrix, however, show an elongation along the direction of the ion beam, whereas silver cores rather disintegrate. Silver nanocrystals in an ion-exchanged soda-lime glass redistribute themselves in arrays along the ion beam direction. The optical extinction becomes polarization-dependent, with red- and blue-shifts of the plasmon resonances for polarizations longitudinal and transverse

  7. Silver-graphene oxide based plasmonic spacer for surface plasmon-coupled fluorescence emission enhancements

    Science.gov (United States)

    Badiya, Pradeep Kumar; Srinivasan, Venkatesh; Sathish Ramamurthy, Sai

    2017-06-01

    We report the application of single layered graphene oxide (SLGO) and silver decorated SLGO (Ag-SLGO) as plasmonic spacer material for obtaining enhanced fluorescence from a Rhodamine 6G (Rh6G) radiating dipole in a surface plasmon-coupled emission platform. To this end, we have decorated SLGO with biphasic silver nanoparticles using an in situ deposition technique to achieve 112-fold fluorescence enhancements.

  8. Nanostructured silver sulfide: synthesis of various forms and their application

    Science.gov (United States)

    Sadovnikov, S. I.; Rempel, A. A.; Gusev, A. I.

    2018-04-01

    The results of experimental studies on nanostructured silver sulfide are analyzed and generalized. The influence of small particle size on nonstoichiometry of silver sulfide is discussed. Methods for the synthesis of various forms of nanostructured Ag2S including nanopowders, stable colloidal solutions, quantum dots, core–shell nanoparticles and heteronanostructures are described. The advantages and drawbacks of different synthetic procedures are analyzed. Main fields of application of nanostructured silver sulfide are considered. The bibliography includes 184 references.

  9. Optical response of heterogeneous polymer layers containing silver nanostructures

    Directory of Open Access Journals (Sweden)

    Miriam Carlberg

    2017-05-01

    Full Text Available This work is focused on the study of the optical properties of silver nanostructures embedded in a polymer host matrix. The introduction of silver nanostructures in polymer thin films is assumed to result in layers having adaptable optical properties. Thin film layers with inclusions of differently shaped nanoparticles, such as nanospheres and nanoprisms, and of different sizes, are optically characterized. The nanoparticles are produced by a simple chemical synthesis at room temperature in water. The plasmonic resonance peaks of the different colloidal solutions range from 390 to 1300 nm. The non-absorbing, transparent polymer matrix poly(vinylpyrrolidone (PVP was chosen because of its suitable optical and chemical properties. The optical studies of the layers include spectrophotometry and spectroscopic ellipsometry measurements, which provide information about the reflection, transmission, absorption of the material as well as the complex optical indices, n and k. Finite difference time domain simulations of nanoparticles in thin film layers allow the visualization of the nanoparticle interactions or the electric field enhancement on and around the nanoparticles to complete the optical characterization. A simple analysis method is proposed to obtain the complex refractive index of nanospheres and nanoprisms in a polymer matrix.

  10. Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices

    Science.gov (United States)

    Rodionov, Ilya A.; Baburin, Alexander S.; Zverev, Alexander V.; Philippov, Ivan A.; Gabidulin, Aidar R.; Dobronosova, Alina A.; Ryzhova, Elena V.; Vinogradov, Alexey P.; Ivanov, Anton I.; Maklakov, Sergey S.; Baryshev, Alexander V.; Trofimov, Igor V.; Merzlikin, Alexander M.; Orlikovsky, Nikolay A.; Rizhikov, Ilya A.

    2017-08-01

    During last 20 years, great results in metamaterials and plasmonic nanostructures fabrication were obtained. However, large ohmic losses in metals and mass production compatibility still represent the most serious challenge that obstruct progress in the fields of metamaterials and plasmonics. Many recent research are primarily focused on developing low-loss alternative materials, such as nitrides, II-VI semiconductor oxides, high-doped semiconductors, or two-dimensional materials. In this work, we demonstrate that our perfectly fabricated silver films can be an effective low-loss material system, as theoretically well-known. We present a fabrication technology of plasmonic and metamaterial nanodevices on transparent (quartz, mica) and non-transparent (silicon) substrates by means of e-beam lithography and ICP dry etch instead of a commonly-used focused ion beam (FIB) technology. We eliminate negative influence of litho-etch steps on silver films quality and fabricate square millimeter area devices with different topologies and perfect sub-100 nm dimensions reproducibility. Our silver non-damage fabrication scheme is tested on trial manufacture of spasers, plasmonic sensors and waveguides, metasurfaces, etc. These results can be used as a flexible device manufacture platform for a broad range of practical applications in optoelectronics, communications, photovoltaics and biotechnology.

  11. Biomimetic plasmonic color generated by the single-layer coaxial honeycomb nanostructure arrays

    Science.gov (United States)

    Zhao, Jiancun; Gao, Bo; Li, Haoyong; Yu, Xiaochang; Yang, Xiaoming; Yu, Yiting

    2017-07-01

    We proposed a periodic coaxial honeycomb nanostructure array patterned in a silver film to realize the plasmonic structural color, which was inspired from natural honeybee hives. The spectral characteristics of the structure with variant geometrical parameters are investigated by employing a finite-difference time-domain method, and the corresponding colors are thus derived by calculating XYZ tristimulus values corresponding with the transmission spectra. The study demonstrates that the suggested structure with only a single layer has high transmission, narrow full-width at half-maximum, and wide color tunability by changing geometrical parameters. Therefore, the plasmonic colors realized possess a high color brightness, saturation, as well as a wide color gamut. In addition, the strong polarization independence makes it more attractive for practical applications. These results indicate that the recommended color-generating plasmonic structure has various potential applications in highly integrated optoelectronic devices, such as color filters and high-definition displays.

  12. Plasmon hybridization in silver nanoislands as semishell arrays coupled to a thin metallic film

    DEFF Research Database (Denmark)

    Maaroof, Abbas; Nygaard, Jens Vinge; Sutherland, Duncan S

    2011-01-01

    We obtained experimentally strong plasmon interactions between localized surface plasmon with delocalized surface plasmon polaritons in a new nanosystem of silver semishells island film arrays arranged as a closed-packing structure coupled to an adjacent thin silver film. We show that plasmon int...

  13. Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Kildishev, Alexander V.

    2014-01-01

    Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant eleme......-element simulations. Our approach can be used for development of next generation of tunable plasmonic and hybrid nanophotonic devices.......Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant...... elements enhances the interaction of incident radiation with the graphene sheet and enables efficient electrical modulation of the plasmonic resonance. We observe electrically controlled damping in the Fano resonances occurring at approximately 2 μm, and the results are verified by full-wave 3D finite...

  14. Optical enhancement effects of plasmonic nanostructures on organic photovoltaic cells

    KAUST Repository

    Park, Hui Joon

    2015-04-01

    © 2015 Hui Joon Park and L. Jay Guo. Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. All rights reserved. In this article, the optical enhancement effects of plasmonic nanostructures on OPV cells were reviewed as an effective way to resolve the mismatch problems between the short exciton diffusion length in organic semiconductors (around 10 nm) and the large thickness required to fully absorb sunlight (e.g. hundreds of nanometers). Especially, the performances of OPVs with plasmonic nanoparticles in photoactive and buffer layers and with periodic nanostructures were investigated. Furthermore, nanoimprint lithography-based nanofabrication processes that can easily control the dimension and uniformity of structures for large-area and uniform plasmonic nanostructures were demonstrated.

  15. 3D hollow nanostructures as building blocks for multifunctional plasmonics

    KAUST Repository

    De Angelis, Francesco De; Malerba, Mario; Patrini, Maddalena; Miele, Ermanno; Das, Gobind; Toma, Andrea; Proietti Zaccaria, Remo; Di Fabrizio, Enzo M.

    2013-01-01

    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications. © 2013 American Chemical Society.

  16. 3D hollow nanostructures as building blocks for multifunctional plasmonics

    KAUST Repository

    De Angelis, Francesco De

    2013-08-14

    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications. © 2013 American Chemical Society.

  17. Multiple surface plasmon polaritons modes on thin silver film controlled by a two-dimensional lattice of silver nanodimers

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ying; Jiang, Yongyuan, E-mail: jiangyy@hit.edu.cn [Harbin Institute of Technology, Department of Physics (China)

    2015-01-15

    We study the optical resonant spectrum of a two-dimensional periodic array of silver nanodimers on a thin silver film using multiple scattering formalism. The excited multiple plasmonic modes on two interfaces of the silver film reveal that the dispersion relationships of surface plasmon polaritons on metallic film are modified by doubly periodic lattice due to the fact that wave vectors matching conditions are satisfied. Moreover, we demonstrate that the plasmonic modes are directly controlled by the thickness of silver film, as well as the gap between nanodimer array and silver film. These effects provide novel high-efficient and steady way for excitation in future plasmonic nanodevices.

  18. Plasmonics of magnetic and topological graphene-based nanostructures

    Science.gov (United States)

    Kuzmin, Dmitry A.; Bychkov, Igor V.; Shavrov, Vladimir G.; Temnov, Vasily V.

    2018-02-01

    Graphene is a unique material in the study of the fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner, the electrodynamic properties of graphene can be varied from highly conductive to dielectric. Graphene supports strongly confined, propagating surface plasmon polaritons (SPPs) in a broad spectral range from terahertz to mid-infrared frequencies. It also possesses a strong magneto-optical response and thus provides complimentary architectures to conventional magneto-plasmonics based on magneto-optically active metals or dielectrics. Despite a large number of review articles devoted to plasmonic properties and applications of graphene, little is known about graphene magneto-plasmonics and topological effects in graphene-based nanostructures, which represent the main subject of this review. We discuss several strategies to enhance plasmonic effects in topologically distinct closed surface landscapes, i.e. graphene nanotubes, cylindrical nanocavities and toroidal nanostructures. A novel phenomenon of the strongly asymmetric SPP propagation on chiral meta-structures and the fundamental relations between structural and plasmonic topological indices are reviewed.

  19. Localized surface plasmon resonance enhanced photoluminescence of CdSe QDs in PMMA matrix on silver colloids with different shapes

    International Nuclear Information System (INIS)

    Lu Liu; Xu Xiaoliang; Shi Chaoshu; Ming Hai

    2010-01-01

    Localized surface plasmon resonance (LSPR) enhanced photoluminescences (PL) from CdSe quantum dots (QDs) on worm-like or quasi-spherical silver colloids have been investigated. The shape of silver colloid film is controlled by annealing temperature (200 o C∼350 o C). Strong PL enhancements of CdSe QDs on both as-grown and annealed silver colloid films are observed. The results show that the PL enhancement factor of CdSe QDs on worm-like silver colloid film reaches as high as 15-fold. Moreover, the enhancement factor is 5 times larger than that obtained from the quasi-spherical silver colloids. The superiority of worm-like silver nanostructure on LSPR enhanced photoluminescence is attributed to its larger size, hot spots and multiple dipole resonance modes coupling, which are induced by aggregation effect.

  20. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    International Nuclear Information System (INIS)

    Singh, Asha; Jayabalan, J; Chari, Rama; Srivastava, Himanshu; Oak, S M

    2010-01-01

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  1. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Asha; Jayabalan, J; Chari, Rama [Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Srivastava, Himanshu [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Oak, S M, E-mail: jjaya@rrcat.gov.i [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2010-08-25

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  2. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy...

  3. Low-temperature enhancement of plasmonic performance in silver films

    Czech Academy of Sciences Publication Activity Database

    Jayanti, S.V.; Park, J.H.; Dejneka, Alexandr; Chvostová, Dagmar; McPeak, K.M.; Chen, X.; Oh, S.H.; Norris, D.J.

    2015-01-01

    Roč. 5, č. 5 (2015), 1147-1155 ISSN 2159-3930 R&D Projects: GA ČR(CZ) GA15-13853S Institutional support: RVO:68378271 Keywords : plasmonic performance * silver films * low temperature * spectroscopic ellipsometry Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.657, year: 2015

  4. A concetration-dependent model for silver colloids in nanostructured sol-gel materials

    Science.gov (United States)

    Garcia-Macedo, Jorge A.; Franco, Alfredo; Renteria, Victor; Valverde-Aguilar, Guadalupe

    2005-08-01

    We report on the physical modelling of the photoconductive response of nanostructured sol-gel films in function of the silver nitrate concentration (ions and colloids). This model considers several factors as the silver nitrate concentration and the transport parameters obtained. The model is compared with others commonly used. 2d-hexagonal nanostructured sol-gel thin films were prepared by dip-coating method using a non-ionic diblock copolymer Brij58 (surfactant) to produce channels into the film. Silver colloids (metallic Ag0 nanoparticles ) were obtained by spontaneous reduction process of Ag+ ions to Ag0. These nanoparticles were deposited into the channels formed by the surfactant. The structure was identified by X-ray diffraction and TEM. An absorption band located at 430 nm was detected by optical absorption; it corresponds to the plasmon surface. Fit to this band with modified Gans theory is presented. Photoconductivity studies were performed on films with silver ions and films with silver colloids to characterized their mechanisms of charge transport in the darkness and under illumination at 420, 633 nm wavelengths. Transport parameters were calculated. The films with silver colloids exhibit a photovoltaic effect stronger than the films with silver ions. While, the last ones possesses a photoconductivity behaviour.

  5. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Min; Dhar, Purnim; Chen, Huandong; Montenegro, Angelo; Liaw, Lauren; Kang, Dongseok; Gai, Boju; Benderskii, Alexander V.; Yoon, Jongseung

    2017-04-12

    Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption and enhance their performance. The 8 μm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF4:Yb3+,Er3+ nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (~40.1 mA/cm2) and energy conversion efficiency (~12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ~13.6 mA/cm2 compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.

  6. Ion beam induced optical and surface modification in plasmonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udai B., E-mail: udaibhansingh123@gmail.com; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran

    2016-07-15

    In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm{sup −1} along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.

  7. Liquid radiation detectors based on nano-silver surface plasmon resonance phenomena

    International Nuclear Information System (INIS)

    Puiso, J.; Laurikaitiene, J.; Adliene, D.; Prosycevas, I.

    2010-01-01

    The rapid development of micro- and nano-structures containing silver nano-particles is based on their unique physical properties. Despite the new applications of silver nano-particles in nano-medicine are under heavy discussions, silver nano-particles could be used in liquid radiation detectors thanks to the irradiation-induced surface plasmon resonance (SPR) phenomena observed in the colloidal solutions. Silver nitrate (1 mM AgNO 3 ) and sodium citrate (1 wt% and 5 wt% C 6 H 5 O 7 Na 3 ) were used as precursors for the fabrication of colloidal solutions. Prepared solutions were exposed to gamma-rays from a 60 Co gamma therapy unit 'Rokus-M' to varying absorbed doses, from 2 to 250 Gy. A UV/VIS/NIR spectrometer (Avantes-2048) was used for the measurement of the optical properties (absorbance) of the silver solutions. It was found that an initial absorbed dose of 2 Gy induced the formation of spherical silver nano-particles as it was indicated in the absorbance spectrum of the solution, which had a well-pronounced absorption maximum at the wavelength of 410 nm. There is a potential to measure absorbed doses down to around 20 mGy. The SPR peaks at the wavelengths of 500-700 nm were found at the highest investigated doses > 100 Gy, indicating the presence of silver nano-rods. The colour of colloidal solutions ranged from pale yellow to green and was dependent on the absorbed dose. The investigation has shown that density, size and shape of synthesised silver nano-particles are dependent on the absorbed dose and that shape transformations of the particles due to irradiation are possible. Application of colloidal solutions containing silver nano-particles for dosimetric purposes is discussed on the basis of the obtained results. (authors)

  8. Quantum-corrected transient analysis of plasmonic nanostructures

    KAUST Repository

    Uysal, Ismail Enes

    2017-03-08

    A time domain surface integral equation (TD-SIE) solver is developed for quantum-corrected analysis of transient electromagnetic field interactions on plasmonic nanostructures with sub-nanometer gaps. “Quantum correction” introduces an auxiliary tunnel to support the current path that is generated by electrons tunneled between the nanostructures. The permittivity of the auxiliary tunnel and the nanostructures is obtained from density functional theory (DFT) computations. Electromagnetic field interactions on the combined structure (nanostructures plus auxiliary tunnel connecting them) are computed using a TD-SIE solver. Time domain samples of the permittivity and the Green function required by this solver are obtained from their frequency domain samples (generated from DFT computations) using a semi-analytical method. Accuracy and applicability of the resulting quantum-corrected solver scheme are demonstrated via numerical examples.

  9. Darkfield microspectroscopy of nanostructures on silver tip-enhanced Raman scattering probes

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Tamitake, E-mail: tamitake-itou@aist.go.jp [Nano-Bioanalysis Team, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395 (Japan); Yamamoto, Yuko S., E-mail: yamayulab@gmail.com [Research Fellow of the Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-8472 (Japan); Department of Chemistry, School of Science and Technology, Kagawa University, Takamatsu, Kagawa 761-0396 (Japan); Suzuki, Toshiaki [UNISOKU Co. Ltd., 2-4-3 Kasugano, Hirakata, Osaka 573-0131 (Japan); Kitahama, Yasutaka; Ozaki, Yukihiro [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337 (Japan)

    2016-01-11

    We report an evaluation method employing darkfield microspectroscopy for silver probes used in tip-enhanced Raman scattering (TERS). By adjusting the darkfield illumination, the diffracted light from the probe outlines disappears and the diffracted light from the surface nanostructures and tips of the probes appears as colorful spots. Scanning electron microscopy reveals that the spectral variations in these spots reflect the shapes of the surface nanostructures. The tip curvatures correlate to the spectral maxima of their spots. Temporal color changes in the spots indicate the deterioration due to the oxidation of the silver surfaces. These results show that the proposed method is useful for in situ evaluation of plasmonic properties of TERS probes.

  10. Size measurement of gold and silver nanostructures based on their extinction spectrum: limitations and extensions

    Directory of Open Access Journals (Sweden)

    A A Ashkarran

    2013-09-01

    Full Text Available  This paper reports on physical principles and the relations between extinction cross section and geometrical properties of silver and gold nanostructures. We introduce some simple relations for determining geometrical properties of silver and gold nanospheres based on the situation of their plasmonic peak. We also applied, investigated and compared the accuracy of these relations using other published works in order to make clear the effects of shape, size distribution and refractive index of particles’ embedding medium. Finally, we extended the equations to non-spherical particles and investigated their accuracy. We found that modified forms of the equations may lead to more exact results for non-spherical metal particles, but for better results, modified equations should depend on shape and size distribution of particles. It seems that these equations are not applicable to particles with corners sharper than cubes' corners i.e. nanostructures with spatial angles less than π/2 sr.

  11. Radiative decay of surface plasmons on nonspherical silver particles

    International Nuclear Information System (INIS)

    Little, J.W.; Ferrell, T.L.; Callcott, T.A.; Arakawa, E.T.

    1982-01-01

    We have studied the radiation emitted by electron-bombarded silver particles. Electron micrographs have shown that the particles, obtained by heating thin (5 nm) silver films, were oblate (flattened) with minor axes aligned along the substrate normal. The characteristic wavelength obtained by bombarding these particles with 15-keV electrons was found to vary with angle of photon emission. We have modeled this wavelength shift as a result of the mixture of radiation from dipole and quadrupole surface-plasmon oscillations on oblate spheroids. Experimental observations of the energy, polarization, and angular distribution of the emitted radiation are in good agreement with theoretical calculations

  12. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    International Nuclear Information System (INIS)

    Akhter, Perveen; Huang, Mengbing; Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-01-01

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics

  13. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J S; Geisler, P; Bruening, C; Kern, J; Prangsma, J C; Wu, X; Feichtner, Thorsten; Ziegler, J; Weinmann, P; Kamp, M; Forchel, A; Hecht, B [Wilhelm-Conrad-Roentgen-Center for Complex Material Systems, University of Wuerzburg (Germany); Biagioni, P [CNISM, Dipartimento di Fisica, Politecnico di Milano (Italy)

    2011-07-01

    Deep subwavelength integration of high-definition plasmonic nano-structures is of key importance for the development of future optical nanocircuitry. So far the experimental realization of proposed extended plasmonic networks remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large but thin chemically grown single-crystalline gold flakes. After immobilization on any arbitrary surface, they serve as an ideal basis for focused-ion beam milling. We present high-definition ultra-smooth gold nanostructures with reproducible nanosized features over micrometer lengthscales. By comparing multi- and single-crystalline optical antennas we prove that the latter have superior optical properties which are in good agreement with numerical simulations.

  14. Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light.

    Science.gov (United States)

    Saito, Koichiro; Tatsuma, Tetsu

    2018-05-09

    The chirality of materials results in a wide variety of advanced technologies including image display, data storage, light management including negative refraction, and enantioselective catalysis and sensing. Here, we introduce chirality to plasmonic nanostructures by using circularly polarized light as the sole chiral source for the first time. Gold nanocuboids as precursors on a semiconductor were irradiated with circularly polarized light to localize electric fields at specific corners of the cuboids depending on the handedness of light and deposited dielectric moieties as electron oscillation boosters by the localized electric field. Thus, plasmonic nanostructures with high chirality were developed. The present bottom-up method would allow the large-scale and cost-effective fabrication of chiral materials and further applications to functional materials and devices.

  15. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes

    KAUST Repository

    Xie, Fang

    2013-05-23

    Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based detection techniques. Metal induced fluorescence enhancement offers the possibility of increasing the sensitivity of protein detection in clinical applications. We report the use of tunable plasmonic silver nanostructures for the fluorescence enhancement of a near-infrared (NIR) dye (Alexa Fluor 790). Extensive fluorescence enhancement of ∼2 orders of magnitude is obtained by the nanoscale control of the Ag nanostructure dimensions and interparticle distance. These Ag nanostructures also enhanced fluorescence from a dye with very high quantum yield (7.8 fold for Alexa Fluor 488, quantum efficiency (Qy) = 0.92). A combination of greatly enhanced excitation and an increased radiative decay rate, leading to an associated enhancement of the quantum efficiency leads to the large enhancement. These results show the potential of Ag nanostructures as metal induced fluorescence enhancement (MIFE) substrates for dyes in the NIR "biological window" as well as the visible region. Ag nanostructured arrays fabricated by colloidal lithography thus show great potential for NIR dye-based biosensing applications. [Figure not available: see fulltext.] © 2013 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  16. Modeling molecular effects on plasmon transport: Silver nanoparticles with tartrazine

    Science.gov (United States)

    Arntsen, Christopher; Lopata, Kenneth; Wall, Michael R.; Bartell, Lizette; Neuhauser, Daniel

    2011-02-01

    Modulation of plasmon transport between silver nanoparticles by a yellow fluorophore, tartrazine, is studied theoretically. The system is studied by combining a finite-difference time-domain Maxwell treatment of the electric field and the plasmons with a time-dependent parameterized method number 3 simulation of the tartrazine, resulting in an effective Maxwell/Schrödinger (i.e., classical/quantum) method. The modeled system has three linearly arranged small silver nanoparticles with a radius of 2 nm and a center-to-center separation of 4 nm; the molecule is centered between the second and third nanoparticles. We initiate an x-polarized current on the first nanoparticle and monitor the transmission through the system. The molecule rotates much of the x-polarized current into the y-direction and greatly reduces the overall transmission of x-polarized current.

  17. Plasmonic properties of graphene-based nanostructures in terahertz waves

    Directory of Open Access Journals (Sweden)

    Do T. Nga

    2017-09-01

    Full Text Available We theoretically study the plasmonic properties of graphene on bulk substrates and graphene-coated nanoparticles. The surface plasmons of such systems are strongly dependent on bandgap and Fermi level of graphene that can be tunable by applying external fields or doping. An increase of bandgap prohibits the surface plasmon resonance for GHz and THz frequency regime. While increasing the Fermi level enhances the absorption of the graphene-based nanostructures in these regions of wifi-waves. Some mechanisms for electric-wifi-signal energy conversion devices are proposed. Our results have a good agreement with experimental studies and can pave the way for designing state-of-the-art electric graphene-integrated nanodevices that operate in the GHz–THz radiation.

  18. Plasmonic nanostructures: synthesis, functionalization & sensing applications

    OpenAIRE

    Yang, Wenjuan

    2017-01-01

    Nobel metal nanoparticles possess unique materials properties different from their corresponding bulk materials, which have sparked extensive research developments in the field of nanofabrication over the past few decades. In particular, the rational design of plasmonic nanoparticles (“artificial atoms”) is emerging as an exciting route for engineering material properties with high accuracy. Synthetic advances enable the sophisticated control over their size, shape, composition, and morpholog...

  19. Microwave-Assisted Green Synthesis of Silver Nanostructures

    Science.gov (United States)

    This account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. The rapid and in-core MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Conceptually...

  20. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

    DEFF Research Database (Denmark)

    Hyllested, Jes Ærøe; Espina Palanco, Marta; Hagen, Nicolai

    2015-01-01

    Cl. This explains only modest enhancement factors for near-infrared-excited surface enhanced Raman scattering. In addition to the surface plasmon band, UV-visible absorption spectra show features in the UV range which indicates also the presence of small silver clusters, such as Ag42+. The increase of the plasmon...... absorption correlates with the decrease of absorption band in the UV. This confirms the evolution of silver nanoparticles from silver clusters. The presence of various silver clusters on the surface of the “green” plasmonic silver nanoparticles is also supported by a strong multi-color luminesce signal...

  1. Control of Resonances and Optical Properties of Plasmonic-Patch Metamaterials

    Science.gov (United States)

    2012-08-01

    nanostructures made of plasmonic materials like gold and silver can resonantly interact with radiation over a range of wavelengths from micro...specific metal nanostructures, such as nanorods, hemispheres, nanocrescent arrays, nanorings , dimers, nanoprisms, nanocrystals, nanoparticles in a periodic...known that nanostructures made of plasmonic materials like gold and silver can resonantly interact with radiation over a range of wavelengths from micro

  2. Size-dependent surface plasmon resonance in silver silica nanocomposites

    International Nuclear Information System (INIS)

    Thomas, Senoy; Nair, Saritha K; Jamal, E Muhammad Abdul; Anantharaman, M R; Al-Harthi, S H; Varma, Manoj Raama

    2008-01-01

    Silver silica nanocomposites were obtained by the sol-gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO 3 ) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO 3 concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5 nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5-10 nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory

  3. Plasmonic behaviour of phenylenediamine functionalised silver nanoparticles

    Science.gov (United States)

    Akmal Che Lah, Nurul; Samykano, Mahendran; Rafie Johan, Mohd; Syahierah Othman, Nuurul; Mawardi Saari, Mohd; Bey Fen, Leo; Zalikha Khalil, Nur

    2017-09-01

    The surface functionalisation of AgNPs has demonstrated improved capability for various applications by modifying their surface chemical conditions. In this study, AgNPs functionalised with p-phenylenediamine (PPD) ligand were prepared, and the plasmonic effects of the nanocomposites were then investigated. The synthesis and functionalisation of Ag nanocomposites were achieved through chemical modification reaction of naphthalene group through hydrothermal synthesis. The influence of the chemical modification reaction on the plasmonic behaviour and size variation were obtained via optical measurement techniques such as UV-visible spectroscopy (UV-Vis) for absorbance characteristic, photoluminescence for emission response and micro-Raman spectroscopy (MRS) for SERS study on the presence of regions containing AgNPs and PPD ligand. It was observed that the one-step process of deprotonation of the amino group on the aromatic rings gives the re-arrangement of the electron cloud towards the π-conjugated system. High-resolution transmission electron microscope (TEM) analysis showed the formation of the nanocomposites and the AgNPs (for ~4 and ~5 nm of diameter sizes) are well-dispersed over the PPD matrix. The nanocomposites are assembled into higher dimensional structures through coordination with functional PPD ligand and also increasing the PPD amount led to the increase in the surface area of the nanoparticles.

  4. Topographically Engineered Large Scale Nanostructures for Plasmonic Biosensing

    Science.gov (United States)

    Xiao, Bo; Pradhan, Sangram K.; Santiago, Kevin C.; Rutherford, Gugu N.; Pradhan, Aswini K.

    2016-04-01

    We demonstrate that a nanostructured metal thin film can achieve enhanced transmission efficiency and sharp resonances and use a large-scale and high-throughput nanofabrication technique for the plasmonic structures. The fabrication technique combines the features of nanoimprint and soft lithography to topographically construct metal thin films with nanoscale patterns. Metal nanogratings developed using this method show significantly enhanced optical transmission (up to a one-order-of-magnitude enhancement) and sharp resonances with full width at half maximum (FWHM) of ~15nm in the zero-order transmission using an incoherent white light source. These nanostructures are sensitive to the surrounding environment, and the resonance can shift as the refractive index changes. We derive an analytical method using a spatial Fourier transformation to understand the enhancement phenomenon and the sensing mechanism. The use of real-time monitoring of protein-protein interactions in microfluidic cells integrated with these nanostructures is demonstrated to be effective for biosensing. The perpendicular transmission configuration and large-scale structures provide a feasible platform without sophisticated optical instrumentation to realize label-free surface plasmon resonance (SPR) sensing.

  5. Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating

    International Nuclear Information System (INIS)

    Abel, B.; Aslan, K.

    2012-01-01

    This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization, where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Plasmon-modulated photoluminescence from gold nanostructures and its dependence on plasmon resonance, excitation energy, and band structure

    NARCIS (Netherlands)

    Le Thi Ngoc, Loan; Wiedemair, Justyna; van den Berg, Albert; Carlen, Edwin

    2015-01-01

    Two distinct single-photon plasmon-modulated photoluminescence processes are generated from nanostructured gold surfaces by tuning the spectral overlap of the incident laser source, localized surface plasmon resonance band, and the interband transitions between the d and sp bands, near the X-and

  7. Ultrathin and Nanostructured Au Films with Gradient of Effective Thickness. Optical and Plasmonic Properties

    International Nuclear Information System (INIS)

    Tomilin, S V; Berzhansky, V N; Shaposhnikov, A N; Prokopov, A R; Milyukova, E T; Karavaynikov, A V; Tomilina, O A

    2016-01-01

    In present work the results of investigation of optical (transmission spectra) and plasmonic (surface plasmon-polariton resonance) properties of ultrathin and nanostructured Au films are presents. Methods and techniques for the syntheses of samples of ultrathin and nanostructured metallic films, and for the experimental studies of optical and plasmonic properties are representative. Au films on SiO 2 (optic glass) substrates were investigated. (paper)

  8. FDTD simulations of localization and enhancements on fractal plasmonics nanostructures.

    Science.gov (United States)

    Buil, Stéphanie; Laverdant, Julien; Berini, Bruno; Maso, Pierre; Hermier, Jean-Pierre; Quélin, Xavier

    2012-05-21

    A parallelized 3D FDTD (Finite-Difference Time-Domain) solver has been used to study the near-field electromagnetic intensity upon plasmonics nanostructures. The studied structures are obtained from AFM (Atomic Force Microscopy) topography measured on real disordered gold layers deposited by thermal evaporation under ultra-high vacuum. The simulation results obtained with these 3D metallic nanostructures are in good agreement with previous experimental results: the localization of the electromagnetic intensity in subwavelength areas ("hot spots") is demonstrated; the spectral and polarization dependences of the position of these "hot spots" are also satisfactory; the enhancement factors obtained are realistic compared to the experimental ones. These results could be useful to further our understanding of the electromagnetic behavior of random metal layers.

  9. Radiation synthesis of silver nanostructures in cotton matrix

    International Nuclear Information System (INIS)

    Chmielewska, Dagmara; Sartowska, Bożena

    2012-01-01

    Cotton is one of the most popular natural fibres, composed mainly of cellulose, which finds a wide range of applications in paper, textile and health care products industry. Researchers have focused their interest on the synthesis of cotton nanocomposites, which enhances its mechanical, thermal and antimicrobial properties by the incorporation of various nanoparticles into the cotton matrix. Silver is one of the most popular antimicrobial agents with a wide spectrum of antibacterial and antifungal activity that results from a complex mechanism of its interactions with the cells of harmful microorganism. In this work, electron beam radiation was applied to synthesise silver nanostructures in cotton fibres. Investigations of the influence of the initial silver salt concentration on the size and distribution of the obtained silver nanostructures were carried out. A detailed characterisation of these nanocomposites with SEM-BSE and EDS methods was performed. TGA and DSC analyses were performed to assess the influence of different size silver nanoparticles and the effect of electron beam irradiation on the thermal properties of cotton fibres. A microbiological investigation to determine the antibacterial activity of Ag-cotton nanocomposites was carried out. - Highlights: ► Ag NPs embedded in cotton matrix were synthesised by electron beam irradiation. ► Concentration of silver salt solution influences on size of silver nanoparticles. ► Silver content as well as irradiation affect thermal properties of cotton fabrics. ► Ag-cotton nanocomposites exhibit antibacterial activity against bacteria and fungi.

  10. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure

    Science.gov (United States)

    Zito, Gianluigi; Rusciano, Giulia; Pesce, Giuseppe; Dochshanov, Alden; Sasso, Antonio

    2015-04-01

    Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (~104 μm-2), superior spatial reproducibility (SD nanotoxicity issues. See DOI: 10.1039/c5nr01341k

  11. Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis

    International Nuclear Information System (INIS)

    Gong, Dangguo; Ho, Weng Chye Jeffrey; Tang Yuxin; Tay Qiuling; Lai Yuekun; Highfield, James George; Chen Zhong

    2012-01-01

    Photocatalysis has attracted significant interest to solve both the energy crisis and effectively combat environmental contamination. However, as the most widely used photocatalyst, titania (TiO 2 ) suffers from inefficient utilization of solar energy due to its wide band gap. In the present paper, we describe a method to extend the absorption edge of photocatalyst to visible region by the surface plasmon effect of silver. Silver ions are photo-reduced onto the surface of titanate nanotubes, which are synthesized by a conventional hydrothermal method. The as-synthesized Ag/titanate composite is transformed into Ag/titania nanoparticles by annealing at different temperatures. It is found that the interaction of Ag nanoparticles with the supports (titanate/titania) plays a key role for the visible light activity. The samples annealed at low temperature (<350 °C) do not show significant activity under our conditions, while the one annealed at 450 °C shows fast-degradation of methyl orange (MO) under visible light irradiation. The detailed mechanisms are also discussed. - Graphical abstract: Silver nanoparticles decorated titanate/titania as visible light active photocatalysts: silver nanoparticles could be excited by visible light due to its surface plasmon effect and excited electrons could be transferred to the conduction band of the semiconductor, where the reduction process occurs. Highlights: ► Uniform Ag nanoparticles are photo-reduced onto titanate and titania nanostructures. ► Titania crystal is formed by annealing hydrogen titanate at different temperatures. ► Best visible-light activity is achieved by Ag-loaded titania annealed at 450 °C. ► The visible light activity is attributed to the surface plasmonic resonance effect.

  12. From silver nanoparticles to nanostructures through matrix chemistry

    International Nuclear Information System (INIS)

    Ayyad, Omar; Munoz-Rojas, David; Oro-Sole, Judith; Gomez-Romero, Pedro

    2010-01-01

    Direct in situ reduction of silver ions by a biopolymer such as agar, without any other reducing nor capping agent is shown in this article to lead either to nanoparticles (typically 12(2) nm in an optimized case) or to more complex nanostructures depending on the reaction conditions used. This approach takes advantage of the porous polymer lattice acting as a template and leads to hybrid Ag-Agar materials with long-term synergic stability. Silver acts as an antibacterial agent for agar whereas the biopolymer prevents agglomeration of the inorganic nanoparticles leading to a stable nanocomposite formed by a thermoreversible biopolymer from which silver nanoparticles can eventually be recovered.

  13. Transformation of irregular shaped silver nanostructures into nanoparticles by under water pulsed laser melting

    Science.gov (United States)

    Yadavali, S.; Sandireddy, V. P.; Kalyanaraman, R.

    2016-05-01

    The ability to easily manufacture nanostructures with a desirable attribute, such as well-defined size and shape, especially from any given initial shapes or sizes of the material, will be helpful towards accelerating the use of nanomaterials in various applications. In this work we report the transformation of discontinuous irregular nanostructures (DIN) of silver metal by rapid heating under a bulk fluid layer. Ag films were changed into DIN by dewetting in air and subsequently heated by nanosecond laser pulses under water. Our findings show that the DIN first ripens into elongated structures and then breaks up into nanoparticles. From the dependence of this behavior on laser fluence we found that under water irradiation reduced the rate of ripening and also decreased the characteristic break-up length scale of the elongated structures. This latter result was qualitatively interpreted as arising from a Rayleigh-Plateau instability modified to yield significantly smaller length scales than the classical process due to pressure gradients arising from the rapid evaporation of water during laser melting. These results demonstrate that it is possible to fabricate a dense collection of monomodally sized Ag nanoparticles with significantly enhanced plasmonic quality starting from the irregular shaped materials. This can be beneficial towards transforming discontinuous Ag films into nanostructures with useful plasmonic properties, that are relevant for biosensing applications.

  14. Enhanced Detection of Human Plasma Proteins on Nanostructured Silver Surfaces

    Directory of Open Access Journals (Sweden)

    Zuzana Orságová Králová

    2013-08-01

    enhancement factor of 3.6×102 was achieved for a band with a Raman shift of 2104cm‐1 for globulin deposited onto silver nanostructured film on unpolished stainless steel substrate. The detection limit was 400g/mL. Plasma or serum could present a preferable material for non‐ invasive cancer disease diagnosis using the SERS method.

  15. Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod.

    Science.gov (United States)

    Zhan, Pengfei; Dutta, Palash K; Wang, Pengfei; Song, Gang; Dai, Mingjie; Zhao, Shu-Xia; Wang, Zhen-Gang; Yin, Peng; Zhang, Wei; Ding, Baoquan; Ke, Yonggang

    2017-02-28

    Distinct electromagnetic properties can emerge from the three-dimensional (3D) configuration of a plasmonic nanostructure. Furthermore, the reconfiguration of a dynamic plasmonic nanostructure, driven by physical or chemical stimuli, may generate a tailored plasmonic response. In this work, we constructed a 3D reconfigurable plasmonic nanostructure with controllable, reversible conformational transformation using bottom-up DNA self-assembly. Three gold nanorods (AuNRs) were positioned onto a reconfigurable DNA origami tripod. The internanorod angle and distance were precisely tuned through operating the origami tripod by toehold-mediated strand displacement. The transduction of conformational change manifested into a controlled shift of the plasmonic resonance peak, which was studied by dark-field microscopy, and agrees well with electrodynamic calculations. This new 3D plasmonic nanostructure not only provides a method to study the plasmonic resonance of AuNRs at prescribed 3D conformations but also demonstrates that DNA origami can serve as a general self-assembly platform for constructing various 3D reconfigurable plasmonic nanostructures with customized optical properties.

  16. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    Science.gov (United States)

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  17. Magneto-Plasmonic Properties of Au/Fe/Au Planar Nanostructures: Theory and Experiments

    Czech Academy of Sciences Publication Activity Database

    Vlček, J.; Lesňák, M.; Otipka, P.; Sobota, Jaroslav

    2016-01-01

    Roč. 12, č. 1 (2016), s. 136-141 ISSN 2211-8128 Institutional support: RVO:68081731 Keywords : magneto-plasmonics * planar nanostructures * response factors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  18. Transient analysis of plasmonic nanostructures using an MOT-PMCHWT solver

    KAUST Repository

    Uysal, Ismail Enes; Ulku, Huseyin Arda; Bagci, Hakan

    2015-01-01

    A marching on in time (MOT) scheme for solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation on plasmonic nanostructures is described. The proposed scheme calls for temporal convolutions of the permittivity and Green

  19. Sandwich type plasmonic platform for MEF using silver fractals

    DEFF Research Database (Denmark)

    Raut, Sangram L.; Rich, Ryan; Shtoyko, Tanya

    2015-01-01

    was studied with the N-methyl-azadioxatriangulenium chloride salt (Me-ADOTA·Cl) in PVA films made from 0.2% PVA (w/v) solution spin-coated on a clean glass coverslip. The Plasmonic Platforms (PP) were assembled by pressing together silver fractals on one glass slide and a separate glass coverslip spin-coated...... with a uniform Me-ADOTA·Cl in PVA film. In addition, we also tested ADOTA labeled human serum albumin (HSA) deposited on a glass slide for potential PP bioassay applications. Using the new PP, we could achieve more than a 20-fold fluorescence enhancement (bright spots) accompanied by a decrease...... of PP can be a convenient approach for constructing assays utilizing metal enhanced fluorescence (MEF) without the need for depositing the material directly on metal structures platforms....

  20. Surface plasmon-enhanced molecular fluorescence induced by gold nanostructures

    International Nuclear Information System (INIS)

    Teng, Y.; Ueno, K.; Shi, X.; Aoyo, D.; Misawa, H.; Qiu, J.

    2012-01-01

    The authors report on surface plasmon-enhanced fluorescence of Eosin Y molecules induced by gold nanostructures. Al 2 O 3 films deposited by atomic layer deposition with sub-nanometer resolution were used as the spacer layer to control the distance between molecules and the gold surface. As the thickness of the Al 2 O 3 film increased, the fluorescence intensity first increased and then decreased. The highest enhancement factor is achieved with a 1 nm Al 2 O 3 film. However, the trend for the fluorescence lifetime is the opposite. It first decreased and then increased. The changes in the fluorescence quantum yield were also calculated. The yield shows a similar trend to the fluorescence intensity. The competition between the surface plasmon-induced increase in the radiative decay rate and the gold-induced fluorescence quenching is responsible for the observed phenomenon. In addition, this competition strongly depends on the thickness of the spacer layer between Eosin Y molecules and the gold surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Plasmonics

    DEFF Research Database (Denmark)

    Berini, P.; Bozhevolnyi, Sergey I.; Kim, D. S.

    2016-01-01

    referred to as “extraordinary optical transmission.” Surface plasmons are intimately involved in the response of “metamaterials” and “metasurfaces” constructed from deep subwavelength metallic features, producing esoteric macroscopic properties such as a negative refractive index, or a permittivity...... or localized at metal nanostructures. Light suitable for exciting surface plasmons is typically within or near the visible but may extend into the infrared and ultraviolet regions. Metallic structures that support surface plasmons are highly varied, including planar arrangements of metal films, stripes...

  2. Top-down fabrication of plasmonic nanostructures for deterministic coupling to single quantum emitters

    NARCIS (Netherlands)

    Pfaff, W.; Vos, A.; Hanson, R.

    2013-01-01

    Metal nanostructures can be used to harvest and guide the emission of single photon emitters on-chip via surface plasmon polaritons. In order to develop and characterize photonic devices based on emitter-plasmon hybrid structures, a deterministic and scalable fabrication method for such structures

  3. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    International Nuclear Information System (INIS)

    Savaloni, Hadi; Haydari-Nasab, Fatemh; Malmir, Mariam

    2011-01-01

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30 o and 70 o incidence angles and at different azimuthal angles (φ). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the φ angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths ( o incidence angle.

  4. 3D plasmonic nanostructures as building blocks for ultrasensitive Raman spectroscopy

    KAUST Repository

    Toma, Andrea; Chirumamilla, Manohar; Gopalakrishnan, Anisha; Das, Gobind; Proietti Zaccaria, Remo; Krahne, Roman; Rondanina, Eliana; Leoncini, Marco; Liberale, Carlo; De Angelis, Francesco De; Di Fabrizio, Enzo M.

    2014-01-01

    The fabrication of complex 3D plasmonic nanostructures opens new scenarios towards the realization of high electric field confinement and enhancement. We exploit the unique properties of these nanostructures for performing Raman spectroscopy in the single/few molecules detection limit. © 2014 OSA.

  5. Gold/silver/gold trilayer films on nanostructured polycarbonate substrates for direct and label-free nanoplasmonic biosensing.

    Science.gov (United States)

    López-Muñoz, Gerardo A; Estévez, M-Carmen; Vázquez-García, Marc; Berenguel-Alonso, Miguel; Alonso-Chamarro, Julián; Homs-Corbera, Antoni; Lechuga, Laura M

    2018-05-01

    Ultrasmooth gold/silver/gold trilayer nanostructured plasmonic sensors were obtained using commercial Blu-ray optical discs as nanoslits-based flexible polymer substrates. A thin gold film was used as an adhesion and nucleation layer to improve the chemical stability and reduce the surface roughness of the overlying silver film, without increasing ohmic plasmon losses. The structures were physically and optically characterized and compared with nanostructures of single gold layer. Ultrasmooth and chemically stable trilayer nanostructures with a surface roughness <0.5 nm were obtained following a simple and reproducible fabrication process. They showed a figure of merit (FOM) value up to 69.2 RIU -1 which is significantly higher (more than 95%) than the gold monolayer counterpart. Their potential for biosensing was demonstrated by employing the trilayer sensor for the direct and refractometric (label-free) detection of C-reactive protein (CRP) biomarker in undiluted urine achieving a Limit of Detection (LOD) in the pM order. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preparation of Silver Nanostructures from Bicontinuous Microemulsions

    Directory of Open Access Journals (Sweden)

    M. A. Pedroza-Toscano

    2012-01-01

    Full Text Available Precipitation of silver nanoparticles at 70°C was carried out by dosing a 1.3 M sodium borohydride aqueous solution over bicontinuous microemulsions formed with a mixture of sodium bis(2-ethylhexyl sulfosuccinate (AOT and sodium dodecylsulfate (SDS as surfactants, a 0.5 M silver nitrate aqueous solution, and toluene. Weight ratios of 2.5/1 and 3/1 AOT/SDS were used in the precipitation reactions. Silver nanoparticles were characterized by transmission electronic microscopy, X-ray diffraction, and atomic absorption spectroscopy. A mixture of isolated spheroidal nanoparticles (≈15 wt.% with an average diameter around 10 nm and wormlike structures (≈85 wt.% with an average length close to 480 nm and an average diameter ca. 40 nm was obtained, regardless of the AOT/SDS ratio. Higher yields were obtained compared with those reported when reverse microemulsions were employed. Formation of wormlike structures was ascribed to one-dimensional aggregation of crystal and particles within the channels of bicontinuous microemulsions, which performed as templates.

  7. Plasmon mode excitation and photoluminescence enhancement on silver nanoring

    Science.gov (United States)

    Kuchmizhak, Aleksandr A.; Gurbatov, Stanislav O.; Kulchin, Yuri N.; Vitrik, Oleg B.

    2015-12-01

    We demonstrate a simple and high-performance laser-assisted technique for silver nanoring fabrication, which includes the ablation of the Ag film by focused nanosecond pulses and subsequent reactive ion polishing. The nanoring diameter and thickness can be controlled by optimizing both the pulse energy and the metal film thickness at laser ablation step, while the subsequent reactive ion polishing provides the ability to fabricate the nanoring with desirable height. Scattering patterns of s-polarized collimated laser beam obliquely illuminating the nanoring demonstrate the focal spot inside the nanoring shifted from its center at a distance of ~0.57Rring. Five-fold enhancement of the photoluminescence signal from the Rhodamine 6G organic dye near the Ag nanoring was demonstrated. This enhancement was attributed to the increase of the electromagnetic field amplitude near the nanoring surface arising from excitation of the multipole plasmon modes traveling along the nanoring. This assumption was confirmed by dark-field back-scattering spectrum of the nanoring measured under white-light illumination, as well as by supporting finite-difference time-domain simulations.

  8. Silver chromate and silver dichromate nanostructures: Sonochemical synthesis, characterization, and photocatalytic properties

    International Nuclear Information System (INIS)

    Soofivand, Faezeh; Mohandes, Fatemeh; Salavati-Niasari, Masoud

    2013-01-01

    Graphical abstract: In this work, Ag 2 CrO 4 and Ag 2 Cr 2 O 7 nanostructures have been sonochemically prepared using silver salicylate. The effect of preparation parameters on the morphology of the products was investigated by SEM images. Highlights: ► Herein, Ag 2 CrO 4 and Ag 2 Cr 2 O 7 nanostructures have been sonochemically prepared. ► The effect of preparation parameters on the morphology of the products was investigated. ► The photocatalytic activity of the as-prepared Ag 2 CrO 4 nanoparticles was tested. ► XPS spectra indicated the high purity of Ag 2 Cr 2 O 7 nanostructures obtained. - Abstract: In this work, Ag 2 CrO 4 and Ag 2 Cr 2 O 7 nanostructures have been produced via a sonochemical method using silver salicylate as precursor. Besides silver salicylate, Na 2 CrO 4 and (NH 4 ) 2 Cr 2 O 7 as starting reagents were applied. To investigate the effect of preparation parameters on the morphology and particle size of Ag 2 CrO 4 and Ag 2 Cr 2 O 7 , sonication time, type of surfactant and its concentration were changed. The as-produced nanostructures were characterized by techniques like powder X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The scanning electron micrographs showed that particle-like and rod-like nanostructures of Ag 2 CrO 4 and Ag 2 Cr 2 O 7 were produced using different surfactants. To investigate the catalytic properties of Ag 2 CrO 4 nanoparticles, photooxidation of methyl orange (MO) was performed. According to the obtained results, it was found that the methyl orange degradation was about 87.3% after 280 min irradiation of visible light

  9. Directional Etching of Silicon by Silver Nanostructures

    Science.gov (United States)

    Sharma, Pradeep; Wang, Yuh-Lin

    2011-02-01

    We report directional etching of nanostructures (nanochannels and nanotrenches) into the Si(100) substrates in aqueous HF and H2O2 solution by lithographically defined Ag patterns (nanoparticles, nanorods, and nanorings). The Effect of Ag/Si interface oxide on the directional etching has been studied by etching Ag/SiOx/Si samples of known interface oxide thickness. Based on high resolution transmission electron microscopy (HRTEM) imaging and TEM-energy dispersive X-ray (EDX) spectra of the Ag/Si interfaces, we propose that maintenance of the sub-nanometer oxide at the Ag/Si interfaces and Ag-Si interaction are the key factors which regulate the directional etching of Si.

  10. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J.P.; Mogensen, Klaus Bo

    2014-01-01

    Fluorescence microscopy of individual silver quantum clusters on the surface of silver nanoparticles reveals strong photoactivated emission under blue light excitation [1-4]. In this work, silver nanoparticles are produced by annealing silver thin films deposited on a glass substrate and silver q...... purposes. It was found, that in presence of a strong nucleophile (such as CN-), silver quantum clusters are dissolved into non-fluorescing AgCN complexes, resulting in a fast and observable decrease of the fluorescent signal....

  11. Silver nanoparticles plasmonic effect on eosin and rhodamine 6G luminescence in various media

    Science.gov (United States)

    Samusev, Ilia G.; Tikhomirova, Nadezhda S.; Slezhkin, Vasiliy A.; Zyubin, Andrey Yu.; Bryukhanov, Valery V.; Tsibulnikova, Anna V.

    2016-11-01

    The plasmonic enhancement and quenching of phosphorescence and fluorescence of the anionic (eosin) and cationic (rhodamine 6G) dyes have been studied in various environments: silver nanoparticles of silver hydrosol citrate in water, in polymer films and on the surface of nanoporous silica in order to determine the kinetic and spectral effects on the dye luminescence. Depending on the silver nanoparticles concentration both the enhancement and quenching of the dyes phosphorescence and fluorescence have been detected. The mechanism of interaction between the excited molecules and silver nanoparticles has been discussed.

  12. Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement.

    Science.gov (United States)

    Zhao, Mengzhen; Wang, Xu; Ren, Shaokang; Xing, Yikang; Wang, Jun; Teng, Nan; Zhao, Dongxia; Liu, Wei; Zhu, Dan; Su, Shao; Shi, Jiye; Song, Shiping; Wang, Lihua; Chao, Jie; Wang, Lianhui

    2017-07-05

    DNA origami has been established as addressable templates for site-specific anchoring of gold nanoparticles (AuNPs). Given that AuNPs are assembled by charged DNA oligonucleotides, it is important to reduce the charge repulsion between AuNPs-DNA and the template to realize high yields. Herein, we developed a cavity-type DNA origami as templates to organize 30 nm AuNPs, which formed dimer and tetramer plasmonic nanostructures. Transmission electron microscopy images showed that high yields of dimer and tetramer plasmonic nanostructures were obtained by using the cavity-type DNA origami as the template. More importantly, we observed significant Raman signal enhancement from molecules covalently attached to the plasmonic nanostructures, which provides a new way to high-sensitivity Raman sensing.

  13. Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; de Lasson, Jakob Rosenkrantz; Beleggia, Marco

    2014-01-01

    The dependence of surface plasmon coupling on the distance between two nanoparticles (dimer) is the basis of nanometrology tools such as plasmon rulers. Application of these nanometric rulers requires an accurate description of the scaling of the surface plasmon resonance (SPR) wavelength...... with distance. Here, we have applied electron energy-loss spectroscopy (EELS) and scanning transmission electron microscopy (STEM) imaging to investigate the relationship between the SPR wavelength of gold and silver nanosphere dimers (radius R) and interparticle distance (d) in the range 0.1R .... Instead, within the range 0.1R gold and silver dimers. Despite this common power dependence, consistently larger SPR wavelength shifts are registered for silver for a given change in d, implying...

  14. Plasmonic Switches and Sensors Based on PANI-Coated Gold Nanostructures

    Science.gov (United States)

    Jiang, Nina

    Gold nanostructures have been received intense and growing attention due to their unique properties associated with localized surface plasmon resonance (LSPR). The frequency and strength of the LSPR are highly dependent on the dielectric properties of the surrounding environment around gold nanostructures. Such dependence offers the essential basis for the achievement of plasmonic switching and sensing. While the plasmonic response of gold nanostructures is tuned by changing their dielectric environment, the external stimuli inducing the changes in the dielectric environment will be read out through the plasmonic response of gold nanostructures. As a consequence, plasmonic sensors and switches can be engineered by integrating active media that can respond to external stimuli with gold nanostructures. In this thesis research, I have achieved the coating of polyaniline (PANI) ' a conductive polymer, on gold nanostructures, and exploited the application of the core/shell nanostructures in plasmonic switching and sensing. Large modulation of the longitudinal plasmon resonance of single gold nanorods is achieved by coating PANI shell onto gold nanorods to produce colloidal plasmonic switches. The dielectric properties of PANI shell can be tuned by changing the proton-doping levels, which allows for the modulation of the plasmonic response of gold nanorods. The coated nanorods are sparsely housed in a simple microfluidic chamber. HCl and NaOH solutions are alternately pumped through the chamber for the realization of proton doping and dedoping. The plasmonic switching behavior is examined by monitoring the single-particle scattering spectra under the proton-doped and dedoped state of PANI. The coated nanorods exhibit a remarkable switching performance, with the modulation depth and scattering peak shift reaching 10 dB and 100 nm, respectively. Electrodynamic simulations are employed to confirm the plasmon switching behavior. I have further investigated the modulation of

  15. Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode

    Science.gov (United States)

    Zhang, Z.; Li, R.; To, H.; Andonian, G.; Pirez, E.; Meade, D.; Maxson, J.; Musumeci, P.

    2017-09-01

    Nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.

  16. Topographical coloured plasmonic coins

    OpenAIRE

    Guay, Jean-Michel; Lesina, Antonino Calà; Côté, Guillaume; Charron, Martin; Ramunno, Lora; Berini, Pierre; Weck, Arnaud

    2016-01-01

    Plasmonic resonances in metallic nanoparticles have been used since antiquity to colour glasses. The use of metal nanostructures for surface colourization has attracted considerable interest following recent developments in plasmonics. However, current top-down colourization methods are not ideally suited to large-scale industrial applications. Here we use a bottom-up approach where picosecond laser pulses can produce a full palette of non-iridescent colours on silver, gold, copper and alumin...

  17. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Haydari-Nasab, Fatemh; Malmir, Mariam [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of)

    2011-08-15

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30{sup o} and 70{sup o} incidence angles and at different azimuthal angles ({phi}). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the {phi} angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths (<450 nm) is observed in the s-polarization spectra, while in addition to this peak a broad peak at longer wavelengths (i.e., LM) observed in the p-polarization spectra, which is more dominant for 70{sup o} incidence angle.

  18. Preparation of Plasmonic Platforms of Silver Wires on Gold Mirrors and Their Application to Surface Enhanced Fluorescence

    Science.gov (United States)

    2015-01-01

    In this report we describe a preparation of silver wires (SWs) on gold mirrors and its application to surface enhanced fluorescence (SEF) using a new methodology. Silica protected gold mirrors were drop-coated with a solution of silver triangular nanoprisms. The triangular nanoprisms were slowly air-dried to get silver wires that self-assembled on the gold mirrors. Fluorescence enhancement was studied using methyl azadioxatriangulenium chloride (Me-ADOTA·Cl) dye in PVA spin-coated on a clean glass coverslip. New Plasmonic Platforms (PPs) were assembled by placing a mirror with SWs in contact with a glass coverslip spin-coated with a uniform Me-ADOTA·Cl film. It was shown that surface enhanced fluorescence is a real phenomenon, not just an enhancement of the fluorescence signal due to an accumulation of the fluorophore on rough nanostructure surfaces. The average fluorescence enhancement was found to be about 15-fold. The lifetime of Me-ADOTA·Cl dye was significantly reduced (∼4 times) in the presence of SWs. Moreover, fluorescence enhancement and lifetime did not show any dependence on the excitation light polarization. PMID:25296293

  19. Plasmons on the edge of MoS2 nanostructures

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2014-01-01

    Using ab initio calculations we predict the existence of one-dimensional (1D), atomically confined plasmons at the edges of a zigzag MoS2 nanoribbon. The strongest plasmon originates from a metallic edge state localized on the sulfur dimers decorating the Mo edge of the ribbon. A detailed analysis...... of the dielectric function reveals that the observed deviations from the ideal 1D plasmon behavior result from single-particle transitions between the metallic edge state and the valence and conduction bands of the MoS2 sheet. The Mo and S edges of the ribbon are clearly distinguishable in calculated spatially...... resolved electron energy loss spectrum owing to the different plasmonic properties of the two edges. The edge plasmons could potentially be utilized for tuning the photocatalytic activity of MoS2 nanoparticles....

  20. Nanostructured materials with plasmonic nanobiosensors for early cancer detection: A past and future prospect.

    Science.gov (United States)

    Sugumaran, Sathish; Jamlos, Mohd Faizal; Ahmad, Mohd Noor; Bellan, Chandar Shekar; Schreurs, Dominique

    2018-02-15

    Early cancer detection and treatment is an emerging and fascinating field of plasmonic nanobiosensor research. It paves to enrich a life without affecting living cells leading to a possible survival of the patient. This review describes a past and future prospect of an integrated research field on nanostructured metamaterials, microwave transmission, surface plasmonic resonance, nanoantennas, and their manifested versatile properties with nano-biosensors towards early cancer detection to preserve human health. Interestingly, (i) microwave transmission shows more advantages than other electromagnetic radiation in reacting with biological tissues, (ii) nanostructured metamaterial (Au) with special properties like size and shape can stimulate plasmonic effects, (iii) plasmonic based nanobiosensors are to explore the efficacy for early cancer tumour detection or single molecular detection and (iv) nanoantenna wireless communication by using microwave inverse scattering nanomesh (MISN) technique instead of conventional techniques can be adopted to characterize the microwave scattered signals from the biomarkers. It reveals that the nanostructured material with plasmonic nanobiosensor paves a fascinating platform towards early detection of cancer tumour and is anticipated to be exploited as a magnificent field in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Surface plasmon microscopy with low-cost metallic nanostructures for biosensing I

    Science.gov (United States)

    Lindquist, Nathan; Oh, Sang-Hyun; Otto, Lauren

    2012-02-01

    The field of plasmonics aims to manipulate light over dimensions smaller than the optical wavelength by exploiting surface plasmon resonances in metallic films. Typically, surface plasmons are excited by illuminating metallic nanostructures. For meaningful research in this exciting area, the fabrication of high-quality nanostructures is critical, and in an undergraduate setting, low-cost methods are desirable. Careful optical characterization of the metallic nanostructures is also required. Here, we present the use of novel, inexpensive nanofabrication techniques and the development of a customized surface plasmon microscopy setup for interdisciplinary undergraduate experiments in biosensing, surface-enhanced Raman spectroscopy, and surface plasmon imaging. A Bethel undergraduate student performs the nanofabrication in collaboration with the University of Minnesota. The rewards of mentoring undergraduate students in cooperation with a large research university are numerous, exposing them to a wide variety of opportunities. This research also interacts with upper-level, open-ended laboratory projects, summer research, a semester-long senior research experience, and will enable a large range of experiments into the future.

  2. Ultrasmooth metallic films with buried nanostructures for backside reflection-mode plasmonic biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, N.C.; Johnson, T.W.; Jose, J.; Otto, L.M. [Laboratory of Nanostructures and Biosensing, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Oh, S.H. [Laboratory of Nanostructures and Biosensing, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 151-747 (Korea, Republic of)

    2012-11-15

    A new plasmonic device architecture based on ultrasmooth metallic surfaces with buried plasmonic nanostructures is presented. Using template-stripping techniques, ultrathin gold films with less than 5 Aa surface roughness are optically coupled to an arbitrary arrangement of buried metallic gratings, rings, and nanodots. As a prototypical example, linear plasmonic gratings buried under an ultrasmooth 20 nm thick gold surface for biosensing are presented. The optical illumination and collection are completely decoupled from the microfluidic delivery of liquid samples due to the backside, reflection-mode geometry. This allows for sensing with opaque or highly scattering liquids. With the buried nanostructure design, high sensitivity and decoupled backside (reflective) optical access are maintained, as with traditional prism-based surface plasmon resonance (SPR) sensors. In addition, the benefits offered by nanoplasmonic sensors such as spectral tunability and high-resolution, wide-field SPR imaging with normal-incidence epi-illumination that is simple to construct and align are gained as well. Beyond sensing, the buried plasmonic nanostructures with ultrasmooth metallic surfaces can benefit nanophotonic waveguides, surface-enhanced spectroscopy, nanolithography, and optical trapping. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Silver chromate and silver dichromate nanostructures: Sonochemical synthesis, characterization, and photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Soofivand, Faezeh [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2013-06-01

    Graphical abstract: In this work, Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7} nanostructures have been sonochemically prepared using silver salicylate. The effect of preparation parameters on the morphology of the products was investigated by SEM images. Highlights: ► Herein, Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7} nanostructures have been sonochemically prepared. ► The effect of preparation parameters on the morphology of the products was investigated. ► The photocatalytic activity of the as-prepared Ag{sub 2}CrO{sub 4} nanoparticles was tested. ► XPS spectra indicated the high purity of Ag{sub 2}Cr{sub 2}O{sub 7} nanostructures obtained. - Abstract: In this work, Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7} nanostructures have been produced via a sonochemical method using silver salicylate as precursor. Besides silver salicylate, Na{sub 2}CrO{sub 4} and (NH{sub 4}){sub 2}Cr{sub 2}O{sub 7} as starting reagents were applied. To investigate the effect of preparation parameters on the morphology and particle size of Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7}, sonication time, type of surfactant and its concentration were changed. The as-produced nanostructures were characterized by techniques like powder X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The scanning electron micrographs showed that particle-like and rod-like nanostructures of Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7} were produced using different surfactants. To investigate the catalytic properties of Ag{sub 2}CrO{sub 4} nanoparticles, photooxidation of methyl orange (MO) was performed. According to the obtained results, it was found that the methyl orange degradation was about 87.3% after 280 min irradiation of visible light.

  4. Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off

    Science.gov (United States)

    Chen, Yiqin; Li, Zhiqin; Xiang, Quan; Wang, Yasi; Zhang, Zhiqiang; Duan, Huigao

    2015-10-01

    Lift-off is the most commonly used pattern-transfer method to define lithographic plasmonic metal nanostructures. A typical lift-off process is realized by dissolving patterned resists in solutions, which has the limits of low yield when not using adhesion layers and incompatibility with the fabrication of some specific structures and devices. In this work, we report an alternative ‘dry’ lift-off process to obtain metallic nanostructures via mechanical stripping by using the advantage of poor adhesion between resists and noble metal films. We show that this dry stripping lift-off method is effective for both positive- and negative-tone resists to fabricate sparse and densely-packed plasmonic nanostructures, respectively. In particular, this method is achieved without using an adhesion layer, which enables the mitigation of plasmon damping to obtain larger field enhancement. Dark-field scattering, one-photon luminescence and surface-enhanced Raman scattering measurements were performed to demonstrate the improved quality factor of the plasmonic nanostructures fabricated by this dry lift-off process.

  5. Plasmonic enhancement of scattering and emission of light in nanostructures: from basic science to biomedical applications

    International Nuclear Information System (INIS)

    Gaponenko, Sergey

    2013-01-01

    Advances and challenges of plasmonic enhancement of Raman scattering and fluorescence with metal-dielectric nanostructures are discussed. Theoretical predictions and experimental implementation are presented and compared. Reasonable agreement of experimental data with the theory is outlined. Special attention is given to biomedical applications including fluorescent and Raman immunospectroscopy. (author)

  6. Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off

    International Nuclear Information System (INIS)

    Chen, Yiqin; Li, Zhiqin; Xiang, Quan; Wang, Yasi; Duan, Huigao; Zhang, Zhiqiang

    2015-01-01

    Lift-off is the most commonly used pattern-transfer method to define lithographic plasmonic metal nanostructures. A typical lift-off process is realized by dissolving patterned resists in solutions, which has the limits of low yield when not using adhesion layers and incompatibility with the fabrication of some specific structures and devices. In this work, we report an alternative ‘dry’ lift-off process to obtain metallic nanostructures via mechanical stripping by using the advantage of poor adhesion between resists and noble metal films. We show that this dry stripping lift-off method is effective for both positive- and negative-tone resists to fabricate sparse and densely-packed plasmonic nanostructures, respectively. In particular, this method is achieved without using an adhesion layer, which enables the mitigation of plasmon damping to obtain larger field enhancement. Dark-field scattering, one-photon luminescence and surface-enhanced Raman scattering measurements were performed to demonstrate the improved quality factor of the plasmonic nanostructures fabricated by this dry lift-off process. (paper)

  7. Surface plasmon modes of a single silver nanorod: An electron energy loss study

    DEFF Research Database (Denmark)

    Nicoletti, Olivia; Wubs, Martijn; Mortensen, N. Asger

    2011-01-01

    We present an electron energy loss study using energy filtered TEM of spatially resolved surface plasmon excitations on a silver nanorod of aspect ratio 14.2 resting on a 30 nm thick silicon nitride membrane. Our results show that the excitation is quantized as resonant modes whose intensity maxima...

  8. Multipole plasmons and their disappearance in few-nanometre silver nanoparticles

    DEFF Research Database (Denmark)

    Raza, Søren; Kadkhodazadeh, Shima; Christensen, Thomas

    2015-01-01

    to play a role. Here, applying electron energy-loss spectroscopy to individual silver nanoparticles encapsulated in silicon nitride, we observe besides the usual dipole resonance an additional surface plasmon resonance corresponding to higher angular momenta for nanoparticle radii as small as 4 nm. We...

  9. Dimensional and Compositional Change of 1D Chalcogen Nanostructures Leading to Tunable Localized Surface Plasmon Resonances.

    Science.gov (United States)

    Min, Yuho; Seo, Ho Jun; Choi, Jong-Jin; Hahn, Byung-Dong; Moon, Geon Dae

    2018-05-31

    As the oxygen family, chalcogen (Se, Te) nanostructures have been considered important elements for various practical fields and further exploited to constitute metal chalcogenides for each targeted application. Here we report a controlled synthesis of well-defined one-dimensional chalcogen nanostructures such as nanowries, nanorods, and nanotubes by controlling reduction reaction rate to fine-tune the dimension and composition of the products. Tunable optical properties (localized surface plasmon resonances) of these chalcogen nanostructures are observed depending on their morphological, dimensional, and compositional variation. © 2018 IOP Publishing Ltd.

  10. Au-Graphene Hybrid Plasmonic Nanostructure Sensor Based on Intensity Shift

    Science.gov (United States)

    Alharbi, Raed; Irannejad, Mehrdad; Yavuz, Mustafa

    2017-01-01

    Integrating plasmonic materials, like gold with a two-dimensional material (e.g., graphene) enhances the light-material interaction and, hence, plasmonic properties of the metallic nanostructure. A localized surface plasmon resonance sensor is an effective platform for biomarker detection. They offer a better bulk surface (local) sensitivity than a regular surface plasmon resonance (SPR) sensor; however, they suffer from a lower figure of merit compared to that one in a propagating surface plasmon resonance sensors. In this work, a decorated multilayer graphene film with an Au nanostructures was proposed as a liquid sensor. The results showed a significant improvement in the figure of merit compared with other reported localized surface plasmon resonance sensors. The maximum figure of merit and intensity sensitivity of 240 and 55 RIU−1 (refractive index unit) at refractive index change of 0.001 were achieved which indicate the capability of the proposed sensor to detect a small change in concentration of liquids in the ng/mL level which is essential in early-stage cancer disease detection. PMID:28106850

  11. Au-Graphene Hybrid Plasmonic Nanostructure Sensor Based on Intensity Shift

    Directory of Open Access Journals (Sweden)

    Raed Alharbi

    2017-01-01

    Full Text Available Integrating plasmonic materials, like gold with a two-dimensional material (e.g., graphene enhances the light-material interaction and, hence, plasmonic properties of the metallic nanostructure. A localized surface plasmon resonance sensor is an effective platform for biomarker detection. They offer a better bulk surface (local sensitivity than a regular surface plasmon resonance (SPR sensor; however, they suffer from a lower figure of merit compared to that one in a propagating surface plasmon resonance sensors. In this work, a decorated multilayer graphene film with an Au nanostructures was proposed as a liquid sensor. The results showed a significant improvement in the figure of merit compared with other reported localized surface plasmon resonance sensors. The maximum figure of merit and intensity sensitivity of 240 and 55 RIU−1 (refractive index unit at refractive index change of 0.001 were achieved which indicate the capability of the proposed sensor to detect a small change in concentration of liquids in the ng/mL level which is essential in early-stage cancer disease detection.

  12. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, P.; Rustagi, K. C.; Vasa, P.; Singh, B. P., E-mail: bhanuprs@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Mumbai- 400076 (India)

    2015-05-15

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electron microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.

  13. Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures

    Science.gov (United States)

    Ruan, Qifeng

    Localized surface plasmon resonance, which stems from the collective oscillations of conduction-band electrons, endows Au nanocrystals with unique optical properties. Au nanocrystals possess extremely large scattering/absorption cross-sections and enhanced local electromagnetic field, both of which are synthetically tunable. Moreover, when Au nanocrystals are closely placed or hybridized with semiconductors, the coupling and interaction between the individual components bring about more fascinating phenomena and promising applications, including plasmon-enhanced spectroscopies, solar energy harvesting, and cancer therapy. The continuous development in the field of plasmonics calls for further advancements in the preparation of high-quality plasmonic nanocrystals, the facile construction of hybrid plasmonic nanostructures with desired functionalities, as well as deeper understanding and efficient utilization of the interaction between plasmonic nanocrystals and semiconductor components. In this thesis, I developed a seed-mediated growth method for producing size-controlled Au nanospheres with high monodispersity and assembled Au nanospheres of different sizes into core/satellite nanostructures for enhancing Raman signals. For investigating the interactions between Au nanocrystals and semiconductors, I first prepared (Au core) (TiO2 shell) nanostructures, and then studied their synthetically controlled plasmonic properties and light-harvesting applications. Au nanocrystals with spherical shapes are desirable in plasmon-coupled systems owing to their high geometrical symmetry, which facilitates the analysis of electrodynamic responses in a classical electromagnetic framework and the investigation of quantum tunneling and nonlocal effects. I prepared remarkably uniform Au nanospheres with diameters ranging from 20 nm to 220 nm using a simple seed-mediated growth method associated with mild oxidation. Core/satellite nanostructures were assembled out of differently sized

  14. Plasmonic Nanostructures for Enhanced Light-Matter Interactions

    DEFF Research Database (Denmark)

    Zhu, Xiaolong

    Plasmonics, a recent booming field, plays a major role in the fascinating research area of nanophotonics. Graphene, the newly rising star on the horizon of materials science and optoelectronics, exhibits exceptionally surprising properties. In optoelectronics, graphene (including other 2D materials...... an important platform for optoelectronic applications. Then, unprecedented large-area graphene nanodot and antidot optical arrays are fabricated by nanosphere lithography, with structural control down to the sub-100 nm regime. The interaction between graphene plasmon modes and the substrate phonons...

  15. Optimized organic photovoltaics with surface plasmons

    Science.gov (United States)

    Omrane, B.; Landrock, C.; Aristizabal, J.; Patel, J. N.; Chuo, Y.; Kaminska, B.

    2010-06-01

    In this work, a new approach for optimizing organic photovoltaics using nanostructure arrays exhibiting surface plasmons is presented. Periodic nanohole arrays were fabricated on gold- and silver-coated flexible substrates, and were thereafter used as light transmitting anodes for solar cells. Transmission measurements on the plasmonic thin film made of gold and silver revealed enhanced transmission at specific wavelengths matching those of the photoactive polymer layer. Compared to the indium tin oxide-based photovoltaic cells, the plasmonic solar cells showed overall improvements in efficiency up to 4.8-fold for gold and 5.1-fold for the silver, respectively.

  16. Silver electrodeposition on nanostructured gold: from nanodots to nanoripples

    International Nuclear Information System (INIS)

    Claro, P C dos Santos; Fonticelli, M; BenItez, G; Azzaroni, O; Schilardi, P L; Luque, N B; Leiva, E; Salvarezza, R C

    2006-01-01

    Silver nanodots and nanoripples have been grown on nanocavity-patterned polycrystalline Au templates by controlled electrodeposition. The initial step is the growth of a first continuous Ag monolayer followed by preferential deposition at nanocavities. The Ag-coated nanocavities act as preferred sites for instantaneous nucleation and growth of the three-dimensional metallic centres. By controlling the amount of deposited Ag, dots of ∼50 nm average size and ∼4 nm average height can be grown with spatial and size distributions dictated by the template. The dots are in a metastable state. Further Ag deposition drives the dot surface structure to nanoripple formation. Results show that electrodeposition on nanopatterned electrodes can be used to prepare a high density of nanostructures with a narrow size distribution and spatial order

  17. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, S. [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Moradi, M., E-mail: m.moradi@kashanu.ac.ir [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Mohseni, S.M. [Department of Physics, Shahid Beheshti University, Evin, Tehran, 19839 (Iran, Islamic Republic of)

    2016-12-15

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism. - Highlights: • Large magneto-optical response in Cu/NiFe/Cu multilayer nanostructure is achieved. • Layer thickness and sequence are studied to find large transverse Kerr signal. • Hybridization of surface plasmon excitation and cavity resonance were done.

  18. Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces.

    Science.gov (United States)

    Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting

    2017-11-07

    Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.

  19. Plasmonic nanoholes as SERS devices for biosensing applications: An easy route for nanostructures fabrication on glass substrates

    KAUST Repository

    Candeloro, Patrizio; Iuele, Ernesto; Perozziello, Gerardo; Coluccio, Maria Laura; Gentile, Francesco; Malara, Natalia; Mollace, Vincenzo; Di Fabrizio, Enzo M.

    2016-01-01

    , such as reproducibility, quantitative analysis and signal background interference. In this work we propose an easy and cheap route, based on a template stripping technique, for producing plasmonic nanostructured films with SERS capabilities. We focus our attention

  20. Noble metal nanostructures for double plasmon resonance with tunable properties

    Science.gov (United States)

    Petr, M.; Kylián, O.; Kuzminova, A.; Kratochvíl, J.; Khalakhan, I.; Hanuš, J.; Biederman, H.

    2017-02-01

    We report and compare two vacuum-based strategies to produce Ag/Au materials characterized by double plasmon resonance peaks: magnetron sputtering and method based on the use of gas aggregation sources (GAS) of nanoparticles. It was observed that the double plasmon resonance peaks may be achieved by both of these methods and that the intensities of individual localized surface plasmon resonance peaks may be tuned by deposition conditions. However, in the case of sputter deposition it was necessary to introduce a separation dielectric interlayer in between individual Ag and Au nanoparticle films which was not the case of films prepared by GAS systems. The differences in the optical properties of sputter deposited bimetallic Ag/Au films and coatings consisted of individual Ag and Au nanoparticles produced by GAS is ascribed to the divers mechanisms of nanoparticles formation.

  1. Modeling, Fabrication and Characterization of Scalable Electroless Gold Plated Nanostructures for Enhanced Surface Plasmon Resonance

    Science.gov (United States)

    Jang, Gyoung Gug

    The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are consistent with optical feature of CF-EL and BI-EL films. The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages of conventional EL plating, such as no continuous process and low deposition rate, using continuous process and controllable deposition rate. Throughout this work, dynamic morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The characterization suggests that four previously unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform morphology formation under

  2. Transient analysis of plasmonic nanostructures using an MOT-PMCHWT solver

    KAUST Repository

    Uysal, Ismail Enes

    2015-10-26

    A marching on in time (MOT) scheme for solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation on plasmonic nanostructures is described. The proposed scheme calls for temporal convolutions of the permittivity and Green function of the plasmonic medium with the temporal basis function. Time domain samples of the permittivity and the Green function required by these convolutions are computed using a fast relaxed vector fitting (FRVF) algorithm. Numerical results demonstrate the accuracy and applicability of the proposed MOT-PMCHWT solver.

  3. Blueshift of the silver plasmon band using controlled nanoparticle dissolution in aqueous solution

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kneipp, Katrin

    2014-01-01

    In this work, we report the size-dependent blue shift of the silver nanoparticle plasmon band in aqueous solution by means of UV/VIS spectroscopy. An oxidative dissolution scheme allows a gradual decrease in the particle sizes by controlled oxidation during recording of the optical spectra. Hence......-dependence of the plasmon peak energy is seen, which is interpreted as an increase in the free electron density of the nanoparticles. Utilization of the size-dependent electronic contribution to the optical response in nanoplasmonic sensors is shown to be a promising extension to improve the sensitivity and specificity...

  4. Spatiotemporal Ultrafast-Plasmon Control Based on Response Functions of Nanostructures Measured by Interferometric Cross-Correlation Microscopy

    Directory of Open Access Journals (Sweden)

    Kusaba Miyuki

    2013-03-01

    Full Text Available We demonstrate an electrical-field cross-correlation imaging technique to obtain a response function of localized plasmon generated by femtosecond laser pulses on gold nanostructures. Based on the measured response functions, we spatiotemporally control the plasmon by shaping the femtosecond excitation laser pulses.

  5. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  6. Nanoscale and femtosecond optical autocorrelator based on a single plasmonic nanostructure

    International Nuclear Information System (INIS)

    Melentiev, P N; Afanasiev, A E; Balykin, V I; Tausenev, A V; Konyaschenko, A V; Klimov, V V

    2014-01-01

    We demonstrated a nanoscale size, ultrafast and multiorder optical autocorrelator with a single plasmonic nanostructure for measuring the spatio-temporal dynamics of femtosecond laser light. As a nanostructure, we use a split hole resonator (SHR), which was made in an aluminium nanofilm. The Al material yields the fastest response time (100 as). The SHR nanostructure ensures a high nonlinear optical efficiency of the interaction with laser radiation, which leads to (1) the second, (2) the third harmonics generation and (3) the multiphoton luminescence, which, in turn, are used to perform multi-order autocorrelation measurements. The nano-sized SHR makes it possible to conduct autocorrelation measurements (i) with a subwavelength spatial resolution and (ii) with no significant influence on the duration of the laser pulse. The time response realized by the SHR nanostructure is about 10 fs. (letter)

  7. Efficient light absorption by plasmonic metallic nanostructures in photovoltaic application

    Science.gov (United States)

    Roy, Rhombik; Datta, Debasish

    2018-04-01

    This article reports the way to trap light efficiently inside a tri-layered Cu(Zn,Sn)S2 (CZTS) and Zinc Oxide (ZnO) based solar cell module using Ag nanoparticles as light concentrators by virtue of their plasmonic property. The passage of E. M. radiation within the cell has been simulated using finite difference time domain (FDTD) method.

  8. SERS activity of silver and gold nanostructured thin films deposited by pulsed laser ablation

    Science.gov (United States)

    Agarwal, N. R.; Tommasini, M.; Fazio, E.; Neri, F.; Ponterio, R. C.; Trusso, S.; Ossi, P. M.

    2014-10-01

    Nanostructured Au and Ag thin films were obtained by nanosecond pulsed laser ablation in presence of a controlled Ar atmosphere. Keeping constant other deposition parameters such as target-to-substrate distance, incidence angle, laser wavelength and laser fluence, the film morphology, revealed by SEM, ranges from isolated NPs to island structures and sensibly depends on gas pressure (10-100 Pa) and on the laser pulse number (500-3 × 10). The control of these two parameters allows tailoring the morphology and correspondingly the optical properties of the films. The position and width of the surface plasmon resonance peak, in fact, can be varied with continuity. The films showed remarkable surface-enhanced Raman activity (SERS) that depends on the adopted deposition conditions. Raman maps were acquired on micrometer-sized areas of both silver and gold substrates selected among those with the strongest SERS activity. Organic dyes of interest in cultural heritage studies (alizarin, purpurin) have been also considered for bench marking the substrates produced in this work. Also the ability to detect the presence of biomolecules was tested using lysozyme in a label free configuration.

  9. Controlled synthesis and characterization of hollow flower-like silver nanostructures

    Directory of Open Access Journals (Sweden)

    Eid KAM

    2012-03-01

    Full Text Available Kamel AM Eid, Hassan ME AzzazyNovel Diagnostics and Therapeutics Group, Yousef Jameel Science and Technology Research Center, School of Sciences and Engineering, The American University in Cairo, New Cairo, EgyptBackground: The synthesis of anisotropic silver nanoparticles is a time-consuming process and involves the use of expensive toxic chemicals and specialized laboratory equipment. The presence of toxic chemicals in the prepared anisotropic silver nanostructures hindered their medical application. The authors have developed a fast and inexpensive method for the synthesis of three-dimensional hollow flower-like silver nanostructures without the use of toxic chemicals.Methods: In this method, silver nitrate was reduced using dextrose in presence of trisodium citrate as a capping agent. Sodium hydroxide was added to enhance reduction efficacy of dextrose and reduce time of synthesis. The effects of all four agents on the shape and size of silver nanostructures were investigated.Results: Robust hollow flower-like silver nanostructures were successfully synthesized and ranged in size from 0.2 µm to 5.0 µm with surface area between 25–240 m2/g. Changing the concentration of silver nitrate, dextrose, sodium hydroxide, and trisodium citrate affected the size and shape of the synthesized structures, while changing temperature had no effect.Conclusion: The proposed method is simple, safe, and allows controlled synthesis of anisotropic silver nanostructures, which may represent promising tools as effective antimicrobial agents and for in vitro diagnostics. The synthesized hollow nanostructures may be used for enhanced drug encapsulation and sustained release.Keywords: silver nanoparticles, 3D hollow, flower-like, green synthesis

  10. Enhanced absorption of graphene in the visible region by use of plasmonic nanostructures

    DEFF Research Database (Denmark)

    Hashemi, Mahdieh; Farzad, Mahmood Hosseini; Mortensen, N. Asger

    2013-01-01

    Low absorption of graphene in the visible range of the spectrum makes it difficult to uniquely benefit from this material in ultra-fast optoelectronic applications. We numerically propose to utilize patterned metallic nanostructures to increase light absorption in single-layer graphene. Simulation...... results show that excitation of surface plasmon resonances in the metallic nanostructures significantly enhances the local electromagnetic field near the graphene layer, therefore leading to a dramatic enhancement of the absorption in the graphene layer itself. Broadband high optical absorption can...

  11. Strong plasmonic enhancement of single molecule photostability in silver dimer optical antennas

    Directory of Open Access Journals (Sweden)

    Kaminska Izabela

    2018-02-01

    Full Text Available Photobleaching is an effect terminating the photon output of fluorophores, limiting the duration of fluorescence-based experiments. Plasmonic nanoparticles (NPs can increase the overall fluorophore photostability through an enhancement of the radiative rate. In this work, we use the DNA origami technique to arrange a single fluorophore in the 12-nm gap of a silver NP dimer and study the number of emitted photons at the single molecule level. Our findings yielded a 30× enhancement in the average number of photons emitted before photobleaching. Numerical simulations are employed to rationalize our results. They reveal the effect of silver oxidation on decreasing the radiative rate enhancement.

  12. Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Wu, Kaiyu; Larsen, Peter Emil

    2014-01-01

    We demonstrate the direct photothermal probing and mapping of single plasmonic nanostructures via the temperature-induced detuning of nanomechanical string resonators. Single Au nanoslits and nanorods are illuminated with a partially polarized focused laser beam (λ = 633 nm) with irradiances...... in the range of 0.26–38 μW/μm2. Photothermal heating maps with a resolution of ∼375 nm are obtained by scanning the laser over the nanostructures. Based on the string sensitivities, absorption efficiencies of 2.3 ± 0.3 and 1.1 ± 0.7 are extracted for a single nanoslit (53 nm × 1 μm) and nanorod (75 nm × 185 nm......). Our results show that nanomechanical resonators are a unique and robust analysis tool for the low-power investigation of thermoplasmonic effects in plasmonic hot spots....

  13. Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-04-30

    We report on chemical etching of ordered Au nanostructure arrays to continuously tune their localized surface plasmon resonances (LSPR). Real-time extinction spectra were recorded from both Au nanodisks and nanospheres immobilized on glass substrates when immersed in Au etchant. The time-dependent LSPR frequencies, intensities, and bandwidths were studied theoretically with discrete dipole approximations and the Mie solution, and they were correlated with the evolution of the etched Au nanostructures\\' morphology (as examined by atomic force microscopy). Since this chemical etching method can conveniently and accurately tune LSPR, it offers precise control of plasmonic properties and can be useful in applications such as surfaceenhanced Raman spectroscopy and molecular resonance spectroscopy. © 2009 American Chemical Society.

  14. Enhancement of the thermo-optical response of silver nanoparticles due to surface plasmon resonance

    Science.gov (United States)

    Hashemi Zadeh, Sakineh; Rashidi-Huyeh, Majid; Palpant, Bruno

    2017-10-01

    Owing to their remarkable optical properties, noble metals' nanoparticles are proposed for many applications. Controlling the temperature dependence of these properties may then appear to be of great relevance. In this paper, we investigate the thermo-optical properties of silver nanoparticles. Different silver nanocolloids were prepared with different surface plasmon resonance modes. The thermo-extinction spectra of the colloidal solutions were then evaluated by measuring the extinction spectra at different temperatures. This reveals a typical peak-valley profile around each surface plasmon resonance mode. Mie theory was used to study theoretically the impact of nanoparticle size on the thermo-optical properties. The results allow us to interpret properly the experimental findings.

  15. Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method

    Science.gov (United States)

    Qiu, T.; Wu, X. L.; Mei, Y. F.; Chu, P. K.; Siu, G. G.

    2005-09-01

    Unique silver dendritic nanostructures, with stems, branches, and leaves, were synthesized with self-organization via a simple electroless metal deposition method in a conventional autoclave containing aqueous HF and AgNO3 solution. Their growth mechanisms are discussed in detail on the basis of a self-assembled localized microscopic electrochemical cell model. A process of diffusion-limited aggregation is suggested for the formation of the silver dendritic nanostructures. This nanostructured material is of great potential to be building blocks for assembling mini-functional devices of the next generation.

  16. Nanostructure induced changes in lifetime and enhanced second-harmonic response of organic-plasmonic hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Leißner, Till [NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg (Denmark); Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense (Denmark); Kostiučenko, Oksana; Rubahn, Horst-Günter; Fiutowski, Jacek, E-mail: fiutowski@mci.sdu.dk [NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg (Denmark); Brewer, Jonathan R. [Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense (Denmark)

    2015-12-21

    In this letter we show that the optical response of organic nanofibers, grown from functionalized para-quaterphenylene molecules, can be controlled by forming organic-plasmonic hybrid systems. The interaction between nanofibers and supporting regular arrays of nanostructures leads to a strongly enhanced second harmonic response. At the same time, the fluorescence lifetime of the nanofibers is reduced from 0.32 ns for unstructured gold films to 0.22 ns for gold nanosquare arrays, demonstrating efficient organic–plasmonic interaction. To study the origin of these effects, we applied two-photon laser scanning microscopy and fluorescence lifetime imaging microscopy. These findings provide an effective approach for plasmon-enhanced second-harmonic generation at the nanoscale, which is attractive for nanophotonic circuitry.

  17. Controlled coupling of NV defect centers to plasmonic and photonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Michael, E-mail: michael.barth@physik.hu-berlin.d [Institute of Physics, Humboldt-Universitaet zu Berlin, Hausvogteiplatz 5-7, D-10117 Berlin (Germany); Schietinger, Stefan; Schroeder, Tim; Aichele, Thomas; Benson, Oliver [Institute of Physics, Humboldt-Universitaet zu Berlin, Hausvogteiplatz 5-7, D-10117 Berlin (Germany)

    2010-09-15

    Nitrogen-vacancy (NV) defect centers in diamond have recently emerged as promising candidates for a number of applications in the fields of quantum optics and quantum information, such as single photon generation and spin qubit operations. The performance of these defect centers can strongly be enhanced through coupling to plasmonic and photonic nanostructures, such as metal particles and optical microcavities. Here, we demonstrate the controlled assembly of such hybrid structures via manipulation with scanning near-field probes. In particular, we investigate the plasmonic enhancement of the single photon emission through coupling to gold nanospheres as well as the coupling of diamond nanocrystals to the optical modes of microsphere resonators and photonic crystal cavities. These systems represent prototypes of fundamental nanophotonic/plasmonic elements and provide control on the generation and coherent transfer of photons on the level of a single quantum emitter.

  18. Plasmonic Nanostructures Prepared by Soft UV Nanoimprint Lithography and Their Application in Biological Sensing

    Directory of Open Access Journals (Sweden)

    Grégory Barbillon

    2012-01-01

    Full Text Available We prepared high-density plasmonic nanostructures on a glass substrate. By using soft UV nanoimprint lithography, gold nanodisks with a diameter of 65 nm were obtained on an area of 1 mm2. We tested these gold nanosensors in the biotin/streptavidin system to study their selectivity and sensitivity of detection. The prepared gold nanodisks could detect streptavidin at 10 pM.

  19. Platinum plasmonic nanostructure arrays for massively parallel single-molecule detection based on enhanced fluorescence measurements

    International Nuclear Information System (INIS)

    Saito, Toshiro; Takahashi, Satoshi; Obara, Takayuki; Itabashi, Naoshi; Imai, Kazumichi

    2011-01-01

    We fabricated platinum bowtie nanostructure arrays producing fluorescence enhancement and evaluated their performance using two-photon photoluminescence and single-molecule fluorescence measurements. A comprehensive selection of suitable materials was explored by electromagnetic simulation and Pt was chosen as the plasmonic material for visible light excitation near 500 nm, which is preferable for multicolor dye-labeling applications like DNA sequencing. The observation of bright photoluminescence (λ = 500-600 nm) from each Pt nanostructure, induced by irradiation at 800 nm with a femtosecond laser pulse, clearly indicates that a highly enhanced local field is created near the Pt nanostructure. The attachment of a single dye molecule was attempted between the Pt triangles of each nanostructure by using selective immobilization chemistry. The fluorescence intensities of the single dye molecule localized on the nanostructures were measured. A highly enhanced fluorescence, which was increased by a factor of 30, was observed. The two-photon photoluminescence intensity and fluorescence intensity showed qualitatively consistent gap size dependence. However, the average fluorescence enhancement factor was rather repressed even in the nanostructure with the smallest gap size compared to the large growth of photoluminescence. The variation of the position of the dye molecule attached to the nanostructure may influence the wide distribution of the fluorescence enhancement factor and cause the rather small average value of the fluorescence enhancement factor.

  20. Coupling between plasmonic films and nanostructures: from basics to applications

    Directory of Open Access Journals (Sweden)

    Maurer Thomas

    2015-11-01

    Full Text Available Plasmonic film-nanoparticles coupled systems have had a renewed interest for the past 5 years both for the richness of the provided plasmonic modes and for their high technological potential. Many groups started to investigate the optical properties of film-nanoparticles coupled systems, as to whether the spacer layer thickness is tens of nanometers thick or goes down to a few nanometers or angstroms, even reaching contact. This article reviews the recent breakthroughs in the physical understanding of such coupled systems and the different systems where nanoparticles on top of the spacer layer are either isolated/random or form regular arrays. The potential for applications, especially as perfect absorbers or transmitters is also put into evidence.

  1. Direct transfer of subwavelength plasmonic nanostructures on bioactive silk films.

    Science.gov (United States)

    Lin, Dianmin; Tao, Hu; Trevino, Jacob; Mondia, Jessica P; Kaplan, David L; Omenetto, Fiorenzo G; Dal Negro, Luca

    2012-11-27

    By a reusable transfer fabrication technique, we demonstrate high-fidelity fabrication of metal nanoparticles, optical nanoantennas, and nanohole arrays directly on a functional silk biopolymer. The ability to reproducibly pattern silk biopolymers with arbitrarily complex plasmonic arrays is of importance for a variety of applications in optical biosensing, tissue engineering, cell biology, and the development of novel bio-optoelectronic medical devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optical Biosensors Based on Plasmonic Nanostructures: A Review

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Wróbel, Piotr; Bocková, Markéta; Homola, Jiří

    2016-01-01

    Roč. 104, č. 12 (2016), s. 2380-2408 ISSN 0018-9219 R&D Projects: GA ČR(CZ) GBP205/12/G118 Grant - others:AV ČR(CZ) AP1101 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985882 Keywords : Plasmonics * Biomolecular interaction analysis * Detection of biomolecules Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 9.237, year: 2016

  3. Study of resonant processes in plasmonic nanostructures for sensor applications (Conference Presentation)

    Science.gov (United States)

    Pirunčík, Jiří; Kwiecien, Pavel; Fiala, Jan; Richter, Ivan

    2017-05-01

    This contribution is focused on the numerical studies of resonant processes in individual plasmonic nanostructures, with the attention particularly given to rectangular nanoparticles and concominant localized surface plasmon resonance processes. Relevant models for the description and anylysis of localized surface plasmon resonance are introduced, in particular: quasistatic approximation, Mie theory and in particular, a generalized (quasi)analytical approach for treating rectangularly shaped nanostructures. The parameters influencing resonant behavior of nanoparticles are analyzed with special interest in morphology and sensor applications. Results acquired with Lumerical FDTD Solutions software, using finite-difference time-domain simulation method, are shown and discussed. Simulations were mostly performed for selected nanostructures composed of finite rectangular nanowires with square cross-sections. Systematic analysis is made for single nanowires with varying length, parallel couple of nanowires with varying gap (cut -wires) and selected dolmen structures with varying gap between one nanowire transversely located with respect to parallel couple of nanowires (in both in-plane and -out-of-plane arrangements). The dependence of resonant peaks of cross-section spectral behavior (absorption, scattering, extinction) and their tunability via suitable structuring and morphology changes are primarily researched. These studies are then followed with an analysis of the effect of periodic arrangements. The results can be usable with respect to possible sensor applications.

  4. Double surface plasmon enhanced organic light-emitting diodes by gold nanoparticles and silver nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-12-30

    Graphical abstract: - Highlights: • The buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated. • The silver nanoclusters will generate surface plasmon resonance effect, resulting that the localized electric field around the silver nanoclusters is enhanced. • When the recombination region of the excitons is too close to the nanoparticles of the hole-transport layer, the nonradiative quenching of excitons is generated. - Abstract: The influence of gold nanoparticles (GNPs) and silver nanoclusters (SNCs) on the performance of organic light-emitting diodes is investigated in this study. The GNPs are doped into (poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate)) (PEDOT: PSS) and the SNCs are introduced between the electron-injection layer and cathode alumina. The power efficiency of the device, at the maximum luminance, with double surface plasmon resonance and buffer layer is about 2.15 times higher than that of the device without GNPs and SNCs because the absorption peaks of GNPs and SNCs are as good as the photoluminescence peak of the emission layer, resulting in strong surface plasmon resonance effect in the device. In addition, the buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated.

  5. Plasmonic resonance of colloidal silver in nanoporous matrix

    International Nuclear Information System (INIS)

    Andreeva, O V; Saitov, S V; Andreeva, N V; Sidorov, A I

    2014-01-01

    The object of the study in this paper – silver nanoporous silicate matrix with pore size less than 20 nm. Colloidal silver particles with volume concentration about 10 −4 are formed within free volume of pores of silicate matrix by chemical method. Changes in the attenuation spectra of the investigated object during changing of the refractive index of free volume of pores from 1.0 to 1.5 are reviewed. Comparison of the obtained experimental data with the results of calculations was carried out

  6. Diffraction efficiency of plasmonic gratings fabricated by electron beam lithography using a silver halide film

    Energy Technology Data Exchange (ETDEWEB)

    Sudheer,, E-mail: sudheer@rrcat.gov.in, E-mail: sudheer.rrcat@gmail.com; Tiwari, P.; Srivastava, Himanshu; Rai, V. N.; Srivastava, A. K.; Naik, P. A. [Homi Bhabha National Institute, Mumbai, Maharashtra 400094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Porwal, S. [Solid State Lasers Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Bhartiya, S. [Homi Bhabha National Institute, Mumbai, Maharashtra 400094 (India); Laser Materials Development and Device Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Rao, B. T. [Homi Bhabha National Institute, Mumbai, Maharashtra 400094 (India); Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Sharma, T. K. [Homi Bhabha National Institute, Mumbai, Maharashtra 400094 (India); Solid State Lasers Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India)

    2016-07-28

    The silver nanoparticle surface relief gratings of ∼10 μm period are fabricated using electron beam lithography on the silver halide film substrate. Morphological characterization of the gratings shows that the period, the shape, and the relief depth in the gratings are mainly dependent on the number of lines per frame, the spot size, and the accelerating voltage of electron beam raster in the SEM. Optical absorption of the silver nanoparticle gratings provides a broad localized surface plasmon resonance peak in the visible region, whereas the intensity of the peaks depends on the number density of silver nanoparticles in the gratings. The maximum efficiency of ∼7.2% for first order diffraction is observed for the grating fabricated at 15 keV. The efficiency is peaking at 560 nm with ∼380 nm bandwidth. The measured profiles of the diffraction efficiency for the gratings are found in close agreement with the Raman-Nath diffraction theory. This technique provides a simple and efficient method for the fabrication of plasmonic nanoparticle grating structures with high diffraction efficiency having broad wavelength tuning.

  7. Probing Plasmonic Nanostructures with Electron Energy - Loss Spectroscopy

    DEFF Research Database (Denmark)

    Raza, Søren

    for nonlocal response. The experimental work comprises the use of electron energy-loss spectroscopy (EELS) to excite and study both localized and propagating surface plasmons in metal structures. Following a short introduction, we present the theoretical foundation to describe nonlocal response in Maxwell......, dimer with nanometer-sized gaps, core-shell nanowire with ultrathin metal shell, and a thin metal film. In all cases we compare the nonlocal models with the local-response approximation. Below the plasma frequency, we find that the distance between the induced positive and negative surface charges...

  8. Electrochemical deposition of silver nanostructures from aqueous solutions in the presence of sodium polyacrylate

    OpenAIRE

    Topchak, Roman; Okhremchuk, Yevhen; Kuntyi, Orest

    2013-01-01

    The silver nanostructures obtaining was investigated by electrochemical deposition from aqueous solutions ((1?10) mM AgNO3 + 50 m? NaPA) onto graphite substrate. The influence of the concentration of silver ions and cathodic potential values in the range E = -0,2 ... -1,0 V on surface filling degree and geometry of silver particles was (had been) studied. It is shown, the discrete silver particles ranging in size from 50 to 400 nm with a uniform distribution on the surface of the substrate...

  9. Time-domain analysis of surface-plasmon-polariton propagation in Ag nano-films using a generalized polarization approach

    KAUST Repository

    Al-Jabr, Ahmad; Alsunaidi, Mohammad A.

    2010-01-01

    A time-domain analysis of the propagation properties of surface-plasmon-polaritons (SPP) in Silver nanostructures is presented. The analysis is based on a simulation algorithm that unifies the formulation of different dispersion models and multi

  10. Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique.

    Science.gov (United States)

    Barakat, Nasser A M; Woo, Kee-Do; Kanjwal, Muzafar A; Choi, Kyung Eun; Khil, Myung Seob; Kim, Hak Yong

    2008-10-21

    In the present study, silver metal nanofibers have been successfully prepared by using the electrospinning technique. Silver nanofibers have been produced by electrospinning a sol-gel consisting of poly(vinyl alcohol) and silver nitrate. The dried nanofiber mats have been calcined at 850 degrees C in an argon atmosphere. The produced nanofibers do have distinct plasmon resonance compared with the reported silver nanoparticles. Contrary to the introduced shapes of silver nanoparticles, the nanofibers have a blue-shifted plasmon resonance at 330 nm. Moreover, the optical properties study indicated that the synthesized nanofibers have two band gap energies of 0.75 and 2.34 eV. An investigation of the electrical conductivity behavior of the obtained nanofibers shows thermal hystersis. These privileged physical features greatly widen the applications of the prepared nanofibers in various fields.

  11. Study of Chemistry and Structure-Property Relationship on Tunable Plasmonic Nanostructures

    Science.gov (United States)

    Jing, Hao

    In this dissertation, the rational design and controllable fabrication of an array of novel plasmonic nanostructures with geometrically tunable optical properties are demonstrated, including metal-semiconductor hybrid hetero-nanoparticles, bimetallic noble metal nanoparticles and hollow nanostructures (nanobox and nanocage). Firstly, I have developed a robust wet chemistry approach to the geometry control of Ag-Cu2O core-shell nanoparticles through epitaxial growth of Cu2O nanoshells on the surfaces of various Ag nanostructures, such as quasi-spherical nanoparticles, nanocubes, and nanocuboids. Precise control over the core and the shell geometries enables me to develop detailed, quantitative understanding of how the Cu2O nanoshells introduce interesting modifications to the resonance frequencies and the extinction spectral line shapes of multiple plasmon modes of the Ag cores. Secondly, I present a detailed and systematic study of the controlled overgrowth of Pd on Au nanorods. The overgrowth of Pd nanoshells with fine-controlled dimensions and architectures on single-crystalline Au nanorods through seed-mediated growth protocol in the presence of various surfactants is investigated. Thirdly, I have demonstrated that creation of high-index facets on subwavelength metallic nanoparticles provides a unique approach to the integration of desired plasmonic and catalytic properties on the same nanoparticle. Through site-selective surface etching of metallic nanocuboids whose surfaces are dominated by low-index facets, I have controllably fabricated nanorice and nanodumbbell particles, which exhibit drastically enhanced catalytic activities arising from the catalytically active high index facets abundant on the particle surfaces. And the nanorice and nanodumbbell particles also possess appealing tunable plasmonic properties that allow us to gain quantitative insights into nanoparticle-catalyzed reactions with unprecedented sensitivity and detail through time

  12. Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review

    Directory of Open Access Journals (Sweden)

    Thi Thuy Nguyen

    2018-03-01

    Full Text Available Iron oxide and gold-based magneto-plasmonic nanostructures exhibit remarkable optical and superparamagnetic properties originating from their two different components. As a consequence, they have improved and broadened the application potential of nanomaterials in medicine. They can be used as multifunctional nanoprobes for magneto-plasmonic heating as well as for magnetic and optical imaging. They can also be used for magnetically assisted optical biosensing, to detect extreme traces of targeted bioanalytes. This review introduces the previous work on magneto-plasmonic hetero-nanostructures including: (i their synthesis from simple “one-step” to complex “multi-step” routes, including seed-mediated and non-seed-mediated methods; and (ii the characterization of their multifunctional features, with a special emphasis on the relationships between their synthesis conditions, their structures and their properties. It also focuses on the most important progress made with regard to their use in nanomedicine, keeping in mind the same aim, the correlation between their morphology—namely spherical and non-spherical, core-satellite and core-shell, and the desired applications.

  13. Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, Ulrich W., E-mail: u.paetzold@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Meier, Matthias, E-mail: ma.meier@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Moulin, Etienne, E-mail: e.moulin@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Smirnov, Vladimir, E-mail: v.smirnov@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Pieters, Bart E., E-mail: b.pieters@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Rau, Uwe, E-mail: u.rau@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Carius, Reinhard, E-mail: r.carius@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2013-05-15

    In this work, we investigate the light trapping of thin-film silicon solar cells which apply plasmonic Ag back contacts with non-ordered Ag nanostructures. The preparation, characterization and three-dimensional electromagnetic simulations of these back contacts with various distributions of non-ordered Ag nanostructures are presented. The measured reflectance spectra of the Ag back contacts with non-ordered nanostructures in air are well reproduced in reflectance spectra derived from the three-dimensional electromagnetic simulations of isolated nanostructures on Ag back contacts. The light–matter interaction of these nanostructures is given by localized surface plasmons and, thus, the measured diffuse reflectance of the back contacts is attributed to plasmon-induced light scattering. A significant plasmonic light-trapping effect in n-i-p substrate-type μc-Si:H thin-film solar cell prototypes which apply a Ag back contact with non-ordered nanostructures is identified when compared with flat reference solar cells.

  14. Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells

    International Nuclear Information System (INIS)

    Paetzold, Ulrich W.; Meier, Matthias; Moulin, Etienne; Smirnov, Vladimir; Pieters, Bart E.; Rau, Uwe; Carius, Reinhard

    2013-01-01

    In this work, we investigate the light trapping of thin-film silicon solar cells which apply plasmonic Ag back contacts with non-ordered Ag nanostructures. The preparation, characterization and three-dimensional electromagnetic simulations of these back contacts with various distributions of non-ordered Ag nanostructures are presented. The measured reflectance spectra of the Ag back contacts with non-ordered nanostructures in air are well reproduced in reflectance spectra derived from the three-dimensional electromagnetic simulations of isolated nanostructures on Ag back contacts. The light–matter interaction of these nanostructures is given by localized surface plasmons and, thus, the measured diffuse reflectance of the back contacts is attributed to plasmon-induced light scattering. A significant plasmonic light-trapping effect in n-i-p substrate-type μc-Si:H thin-film solar cell prototypes which apply a Ag back contact with non-ordered nanostructures is identified when compared with flat reference solar cells

  15. Design, fabrication, and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy and plasmonic applications

    Science.gov (United States)

    Hao, Qingzhen

    Metal/dielectric nanostructures have the ability to sustain coherent electron oscillations known as surface plasmons. Due to their capability of localizing and guiding light in sub-wavelength metal nanostructures beyond diffraction limits, surface plasmon-based photonics, or “plasmonics” has opened new physical phenomena and lead to novel applications in metamaterials, optoelectronics, surface enhanced spectroscopy and biological sensing. This dissertation centers on design, fabrication, characterization of metallic nanostructures and their applications in surface-enhanced Raman spectroscopy (SERS) and actively tunable plasmonics. Metal-dielectric nanostructures are the building blocks for photonic metamaterials. One valuable design guideline for metamaterials is the Babinet’s principle, which governs the optical properties of complementary nanostructures. However, most complementary metamaterials are designed for the far infrared region or beyond, where the optical absorption of metal is small. We have developed a novel dual fabrication method, capable of simultaneously producing optically thin complementary structures. From experimental measurements and theoretical simulations, we showed that Babinet’s principle qualitatively holds in the visible region for the optically thin complements. The complementary structure is also a good platform to study subtle differences between nanoparticles and nanoholes in SERS (a surface sensitive technique, which can enhance the conventional Raman cross-section by 106˜108 fold, thus very useful for highly sensitive biochemical sensing). Through experimental measurement and theoretical analysis, we showed that the SERS enhancement spectrum (plot of SERS enhancement versus excitation wavelengths), dominated by local near-field, for nanoholes closely follows their far-field optical transmission spectrum. However, the enhancement spectrum for nanoparticles red-shifts significantly from their far-field optical extinction

  16. Facile synthesis of silver nanostructures by using various deposition potential and time: A nonenzymetic sensor for hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Mandana, E-mail: mandanaamiri@uma.ac.ir [Department of Chemistry, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Nouhi, Sima [Department of Chemistry, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Azizian-Kalandaragh, Yashar [Department of Physics, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2015-04-01

    Silver nanostructures have been successfully fabricated by using electrodeposition method onto indiumtinoxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet–visible spectroscopy (UV–Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H{sub 2}O{sub 2}. The presented electrode can be employed as sensing element for hydrogen peroxide. - Highlights: • Silver nanostructures (AgNS) have been fabricated using electrodeposition ITO. • AgNS with different morphology and electrochemical properties obtained. • AgNS exhibits good electrocatalytic activity for reduction of H{sub 2}O{sub 2}.

  17. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  18. Transparent conductive oxide films embedded with plasmonic nanostructure for light-emitting diode applications.

    Science.gov (United States)

    Chuang, Shih-Hao; Tsung, Cheng-Sheng; Chen, Ching-Ho; Ou, Sin-Liang; Horng, Ray-Hua; Lin, Cheng-Yi; Wuu, Dong-Sing

    2015-02-04

    In this study, a spin coating process in which the grating structure comprises an Ag nanoparticle layer coated on a p-GaN top layer of InGaN/GaN light-emitting diode (LED) was developed. Various sizes of plasmonic nanoparticles embedded in a transparent conductive layer were clearly observed after the deposition of indium tin oxide (ITO). The plasmonic nanostructure enhanced the light extraction efficiency of blue LED. Output power was 1.8 times the magnitude of that of conventional LEDs operating at 350 mA, but retained nearly the same current-voltage characteristic. Unlike in previous research on surface-plasmon-enhanced LEDs, the metallic nanoparticles were consistently deposited over the surface area. However, according to microstructural observation, ITO layer mixed with Ag-based nanoparticles was distributed at a distance of approximately 150 nm from the interface of ITO/p-GaN. Device performance can be improved substantially by using the three-dimensional distribution of Ag-based nanoparticles in the transparent conductive layer, which scatters the propagating light randomly and is coupled between the localized surface plasmon and incident light internally trapped in the LED structure through total internal reflection.

  19. Plasmonic Nanostructure for Enhanced Light Absorption in Ultrathin Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Jinna He

    2012-01-01

    Full Text Available The performances of thin film solar cells are considerably limited by the low light absorption. Plasmonic nanostructures have been introduced in the thin film solar cells as a possible solution around this issue in recent years. Here, we propose a solar cell design, in which an ultrathin Si film covered by a periodic array of Ag strips is placed on a metallic nanograting substrate. The simulation results demonstrate that the designed structure gives rise to 170% light absorption enhancement over the full solar spectrum with respect to the bared Si thin film. The excited multiple resonant modes, including optical waveguide modes within the Si layer, localized surface plasmon resonance (LSPR of Ag stripes, and surface plasmon polaritons (SPP arising from the bottom grating, and the coupling effect between LSPR and SPP modes through an optimization of the array periods are considered to contribute to the significant absorption enhancement. This plasmonic solar cell design paves a promising way to increase light absorption for thin film solar cell applications.

  20. Plasmon-assisted photoluminescence enhancement of SiC nanocrystals by proximal silver nanoparticles

    International Nuclear Information System (INIS)

    Zhang, N.; Dai, D.J.; Fan, J.Y.

    2012-01-01

    Highlights: ► We studied metal surface plasmon-enhanced photoluminescence in SiC nanocrystals. ► The integrated emission intensity can be enhanced by 17 times. ► The coupling between SiC emission and Ag plasmon oscillation induces the enhancement. ► The enhancement is tunable with varied spacing thickness of electrolytes. - Abstract: Plasmon-enhanced photoluminescence has wide application potential in many areas, whereas the underlying mechanism is still in debate. We report the photoluminescence enhancement in SiC nanocrystal–Ag nanoparticle coupled system spaced by the poly(styrene sulfonic acid) sodium salt/poly(allylamine hydrochloride) polyelectrolyte bilayers. The integrated luminescence intensity can be improved by up to 17 times. Our analysis indicates that the strong coupling between the SiC nanocrystals and the surface plasmon oscillation of the silver nanoparticles is the major cause of the luminescence enhancement. These findings will help to understand the photoluminescence enhancement mechanism as well as widen the applications of the SiC nanocrystals in photonics and life sciences.

  1. Rapid direct laser writing of desired plasmonic nanostructures.

    Science.gov (United States)

    Tong, Quang Cong; Luong, Mai Hoang; Remmel, Jacqueline; Do, Minh Thanh; Nguyen, Dam Thuy Trang; Lai, Ngoc Diep

    2017-06-15

    We demonstrate a direct way to realize arbitrary gold nanostructures via a local dewetting method. This technique was based on the optically induced local thermal effect at the focusing region of a direct laser writing (DLW) system employing a green continuous-wave laser. The local high temperature allowed the creation of gold nano-islands only at the focusing area of the optical system. By moving the focusing spot, this DLW method allowed us to "write" desired two-dimensional gold patterns with a feature size down to sub-lambda. A heat model was also proposed to theoretically explain the localized heating process of the absorbing gold layer. The preliminary results were demonstrated for data storage and color printer applications.

  2. Attosecond experiments on plasmonic nanostructures principles and experiments

    CERN Document Server

    Schötz, Johannes

    2016-01-01

    Johannes Schötz presents the first measurements of optical electro-magnetic near-fields around nanostructures with subcycle-resolution. The ability to measure and understand light-matter interactions on the nanoscale is an important component for the development of light-wave-electronics, the control and steering of electron dynamics with the frequency of light, which promises a speed-up by several orders of magnitude compared to conventional electronics. The experiments presented here on metallic nanotips, widely used in experiments and applications, do not only demonstrate the feasibility of attosecond streaking as a unique tool for fundamental studies of ultrafast nanophotonics but also represent a first important step towards this goal. Contents Electron Scattering in Solids Attosecond Streaking from Metal Nanotips Target Groups Lecturers and students of physics, especially in the area of nanophotonics and attosecond physics About the Author Johannes Schötz received his Master's degree in physics and cu...

  3. Phase dependence of optical bistability and multistability in a four-level quantum system near a plasmonic nanostructure

    International Nuclear Information System (INIS)

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H.

    2016-01-01

    The optical bistability and multistability properties of a four-level quantum system near a plasmonic nanostructure embedded in a unidirectional ring cavity are studied theoretically. Two orthogonal circularly polarized laser fields with the same frequency, different phases and electric fields amplitude are interacted by four-level quantum system. It is found that in the presence of the plasmonic nanostructure, the bistable behaviors related to one of the laser fields propagating through the unidirectional ring cavity can be modified by relative phase and amplitude control of another laser fields. Our obtained results show that the optical bistability can be converted into the optical multistability by varying the value of distance between the quantum system and the surface of the plasmonic nanostructure. Moreover, it is shown that under specific condition related to the distance, the lasing without population inversion can be obtained

  4. Phase dependence of optical bistability and multistability in a four-level quantum system near a plasmonic nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H., E-mail: Rahimpour@guilan.ac.ir [Computational Nanophysics Laboratory (CNL), Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)

    2016-01-14

    The optical bistability and multistability properties of a four-level quantum system near a plasmonic nanostructure embedded in a unidirectional ring cavity are studied theoretically. Two orthogonal circularly polarized laser fields with the same frequency, different phases and electric fields amplitude are interacted by four-level quantum system. It is found that in the presence of the plasmonic nanostructure, the bistable behaviors related to one of the laser fields propagating through the unidirectional ring cavity can be modified by relative phase and amplitude control of another laser fields. Our obtained results show that the optical bistability can be converted into the optical multistability by varying the value of distance between the quantum system and the surface of the plasmonic nanostructure. Moreover, it is shown that under specific condition related to the distance, the lasing without population inversion can be obtained.

  5. Fabrication of single-crystalline plasmonic nanostructures on transparent and flexible amorphous substrates

    Science.gov (United States)

    Mori, Tomohiro; Mori, Takeshi; Tanaka, Yasuhiro; Suzaki, Yoshifumi; Yamaguchi, Kenzo

    2017-02-01

    A new experimental technique is developed for producing a high-performance single-crystalline Ag nanostructure on transparent and flexible amorphous substrates for use in plasmonic sensors and circuit components. This technique is based on the epitaxial growth of Ag on a (001)-oriented single-crystalline NaCl substrate, which is subsequently dissolved in ultrapure water to allow the Ag film to be transferred onto a wide range of different substrates. Focused ion beam milling is then used to create an Ag nanoarray structure consisting of 200 cuboid nanoparticles with a side length of 160 nm and sharp, precise edges. This array exhibits a strong signal and a sharp peak in plasmonic properties and Raman intensity when compared with a polycrystalline Ag nanoarray.

  6. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.

    Science.gov (United States)

    Shen, Xibo; Song, Chen; Wang, Jinye; Shi, Dangwei; Wang, Zhengang; Liu, Na; Ding, Baoquan

    2012-01-11

    Construction of three-dimensional (3D) plasmonic architectures using structural DNA nanotechnology is an emerging multidisciplinary area of research. This technology excels in controlling spatial addressability at sub-10 nm resolution, which has thus far been beyond the reach of traditional top-down techniques. In this paper, we demonstrate the realization of 3D plasmonic chiral nanostructures through programmable transformation of gold nanoparticle (AuNP)-dressed DNA origami. AuNPs were assembled along two linear chains on a two-dimensional rectangular DNA origami sheet with well-controlled positions and particle spacing. By rational rolling of the 2D origami template, the AuNPs can be automatically arranged in a helical geometry, suggesting the possibility of achieving engineerable chiral nanomaterials in the visible range. © 2011 American Chemical Society

  7. Enhanced light absorption in an ultrathin silicon solar cell utilizing plasmonic nanostructures

    Science.gov (United States)

    Xiao, Sanshui; Mortensen, Niels A.

    2012-10-01

    Nowadays, bringing photovoltaics to the market is mainly limited by high cost of electricity produced by the photovoltaic solar cell. Thin-film photovoltaics offers the potential for a significant cost reduction compared to traditional photovoltaics. However, the performance of thin-film solar cells is generally limited by poor light absorption. We propose an ultrathin-film silicon solar cell configuration based on SOI structure, where the light absorption is enhanced by use of plasmonic nanostructures. By placing a one-dimensional plasmonic nanograting on the bottom of the solar cell, the generated photocurrent for a 200 nm-thickness crystalline silicon solar cell can be enhanced by 90% in the considered wavelength range. These results are paving a promising way for the realization of high-efficiency thin-film solar cells.

  8. Polarization-driven self-organization of silver nanoparticles in 1D and 2D subwavelength gratings for plasmonic photocatalysis

    Science.gov (United States)

    Baraldi, G.; Bakhti, S.; Liu, Z.; Reynaud, S.; Lefkir, Y.; Vocanson, F.; Destouches, N.

    2017-01-01

    One of the main challenges in plasmonics is to conceive large-scale, low-cost techniques suitable for the fabrication of metal nanoparticle patterns showing precise spatial organization. Here, we introduce a simple method based on continuous-wave laser illumination to induce the self-organization of silver nanoparticles within high-index thin films. We show that highly regular and homogeneous nanoparticle gratings can be produced on large areas using laser-controlled self-organization processes. This very versatile technique can provide 1D and 2D patterns at a subwavelength scale with tunable features. It does not need any stabilization or expensive devices, such as those required by optical or electron lithography, and is rapid to implement. Accurate in-plane and in-depth characterizations provide valuable information to explain the mechanisms that lead to pattern formation and especially how 2D self-organization can fall into place with successive laser scans. The regular and homogeneous 2D self-organization of metallic NPs with a single laser scan is also reported for the first time in this article. As the reported nanostructures are embedded in porous TiO2, we also theoretically explore the interesting potential of organization on the photocatalytic activity of Ag-NP-containing TiO2 porous films, which is one of the most promising materials for self-cleaning or remediation applications. Realistic electromagnetic simulations demonstrate that the periodic organization of silver nanoparticles can increase the light intensity within the film more than ten times that produced with randomly distributed nanoparticles, leading as expected to enhanced photocatalytic efficiency.

  9. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings.

    Science.gov (United States)

    Bialiayeu, A; Bottomley, A; Prezgot, D; Ianoul, A; Albert, J

    2012-11-09

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ~100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.

  10. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings

    International Nuclear Information System (INIS)

    Bialiayeu, A; Albert, J; Bottomley, A; Prezgot, D; Ianoul, A

    2012-01-01

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ∼100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre. (paper)

  11. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks.

    Science.gov (United States)

    Wei, Hong; Li, Zhipeng; Tian, Xiaorui; Wang, Zhuoxian; Cong, Fengzi; Liu, Ning; Zhang, Shunping; Nordlander, Peter; Halas, Naomi J; Xu, Hongxing

    2011-02-09

    We show that the local electric field distribution of propagating plasmons along silver nanowires can be imaged by coating the nanowires with a layer of quantum dots, held off the surface of the nanowire by a nanoscale dielectric spacer layer. In simple networks of silver nanowires with two optical inputs, control of the optical polarization and phase of the input fields directs the guided waves to a specific nanowire output. The QD-luminescent images of these structures reveal that a complete family of phase-dependent, interferometric logic functions can be performed on these simple networks. These results show the potential for plasmonic waveguides to support compact interferometric logic operations.

  12. Comparison of nanostructured silver-modified silver and carbon ultramicroelectrodes for electrochemical detection of nitrate.

    Science.gov (United States)

    Lotfi Zadeh Zhad, Hamid R; Lai, Rebecca Y

    2015-09-10

    We report the use of silver (Ag)-modified carbon and Ag ultramicroelectrodes (UMEs) for electrochemical detection of nitrate. We investigated several methods for electrodeposition of Ag; our results show that the addition of a complexation agent (ammonium sulfate) in the Ag deposition solution is necessary for electrodeposition of nanostructured Ag that adheres well to the electrode. The electrodeposited Ag on both types of electrodes has branch-like structures that are well-suited for electrocatalytic reduction of nitrate. The use of UMEs is advantageous; the sigmoidal-shaped cyclic voltammogram allows for sensitive detection of nitrate by reducing the capacitive current, as well as enabling easy quantification of the nitrate reduction current. Both cyclic voltammetry and chronoamperometry were used to characterize the electrodes; and independent of the electrochemical interrogation technique, both UMEs were found to have a wide linear dynamic range (4-1000 μM) and a low limit of detection (3.2-5.1 μM). More importantly, they are reusable up to ∼100 interrogation cycles and are selective enough to be used for direct detection of nitrate in a synthetic aquifer sample without any sample pretreatment and/or pH adjustment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Nanostructured Silver Substrates With Stable and Universal SERS Properties: Application to Organic Molecules and Semiconductor Nanoparticles

    Directory of Open Access Journals (Sweden)

    Waurisch C

    2009-01-01

    Full Text Available Abstract Nanostructured silver films have been prepared by thermal deposition on silicon, and their properties as SERS substrates investigated. The optimal conditions of the post-growth annealing of the substrates were established. Atomic force microscopy study revealed that the silver films with relatively dense and homogeneous arrays of 60–80-nm high pyramidal nanoislands are the most efficient for SERS of both organic dye and inorganic nanoparticles analytes. The noticeable enhancement of the Raman signal from colloidal nanoparticles with the help of silver island films is reported for the first time.

  14. (Gold core) at (ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light

    KAUST Repository

    Wang, Jianfang; Li, Benxia; Gu, Ting; Ming, Tian; Wang, Junxin; Wang, Peng; Yu, Jimmy C.

    2014-01-01

    Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures. © 2014 American Chemical Society.

  15. (Gold core) at (ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light

    KAUST Repository

    Wang, Jianfang

    2014-08-26

    Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures. © 2014 American Chemical Society.

  16. Silver nanoparticles containing hybrid polymer microgels with tunable surface plasmon resonance and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ajmal, Muhammad; Siddiq, Mohammad [Quaid-I-Azam University, Islamabad (Pakistan); Farooqi, Zahoor Hussain [University of the Punjab, Lahore (Pakistan)

    2013-11-15

    Multi-responsive poly(N-isopropylacrylamide-methacrylic acid-acrylamide) [P(NIPAM-MAA-AAm)] copolymer microgel was prepared by free radical emulsion polymerization. Silver nanoparticles were fabricated inside the microgel network by in-situ reduction of silver nitrate. Swelling and deswelling behavior of the pure microgels was studied under various conditions of pH and temperature using dynamic light scattering. A red shift was observed in surface plasmon resonance wavelength of Ag nanoparticles with pH induced swelling of hybrid microgel. The catalytic activity of the hybrid system was investigated by monitoring the reduction of p-nitrophenol under different conditions of temperature and amount of catalysts. For this catalytic reaction a time delay of 8 to 10min was observed at room temperature, which was reduced to 2 min at high temperature due to swelling of microgels, which facilitated diffusion of reactants to catalyst surface and increased rate of reaction.

  17. Numerical investigation of radiative properties and surface plasmon resonance of silver nanorod dimers on a substrate

    International Nuclear Information System (INIS)

    An, Wei; Zhu, Tong; Zhu, QunZhi

    2014-01-01

    When the distance between two silver nanoparticles is small enough, interparticle surface plasmon coupling has a great impact on their radiative properties. It is becoming a promising technique to use in the sensing and imaging. A model based on finite difference time domain method is developed to investigate the effect of the assembled parameters on the radiative properties and the field-enhancement effect of silver nanorod dimer. The numerical results indicate that the radiative properties of silver nanorod dimer are very sensitive to the assembled angle and the polarization orientation of incident wave. There is great difference on the intensity and location of field-enhancement effect for the cases of different assembled angle and polarization. The most intensive field-enhancement effect occurs in the middle of two nanorods when two nanorods is assembled head to head and the polarization orientation parallels to the length axis of nanorods. Moreover, compared with the single nanorod, the wavelength of extinction peak of dimer has a red-shift, and the intensity of field-enhancement effect on the dimer is more intensive than that of single particle. With the increasing of particle length, extinction cross-section of silver nanorod dimer rises, while extinction efficiency and scattering efficiency firstly increase then drop down gradually. In addition, the extinction peaks of silver nanorod dimer on the substrate are smaller than that without the substrate, and their extinction peaks has a red-shift compared with that without the substrate. -- Highlights: ► Radiative properties of silver nanorod dimer are very sensitive to the assembled angle. ► The projective length of nanorod dimer on the polarization orientation is crucial. ► Compared with single nanorod, wavelength of extinction peak of dimer has a red-shift. ► Extinction peaks of dimer on the substrate are smaller than that without the substrate

  18. Electrochemical growth of high-aspect ratio nanostructured silver chloride on silver and its application to miniaturized reference electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Safari, S; Selvaganapathy, P R [Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7 (Canada); Derardja, A [Faculty of Science and Engineering, University of Batna (Algeria); Deen, M J, E-mail: selvaga@mcmaster.ca, E-mail: jamal@mcmaster.ca [Electrical and Computer Engineering, McMaster University, Hamilton, ON, L8S 4L8 (Canada)

    2011-08-05

    The sensitivity of many biological and chemical sensors is critically dependent on the stability of the potential of the reference electrode being used. The stability of a reference electrode's potential is highly influenced by the properties of its surface. In this paper, for the first time, the formation of nanosheets of silver chloride on silver wire is observed and controlled using high anodic constant potential (>0.5 V) and pulsed electrodeposition. The resulting nanostructured morphology substantially improves the electrode's potential stability in comparison with the conventional globular surface structure. The increased stability is attributed to the increase in the surface area of the silver chloride produced by the nanosheet formation.

  19. Microstructural, spectroscopic, and antibacterial properties of silver-based hybrid nanostructures biosynthesized using extracts of coriander leaves and seeds

    Directory of Open Access Journals (Sweden)

    Luna C

    2016-09-01

    Full Text Available Carlos Luna,1 Enrique Díaz Barriga-Castro,2 Alberto Gómez-Treviño,3 Nuria O Núñez,4 Raquel Mendoza-Reséndez1 1Research Center of Mathematics and Physics, Faculty of Mathematics and Physics, Autonomous University of Nuevo León, Nuevo León, Mexico; 2Central Laboratory of Analytical Instrumentation, Research Center for Applied Chemistry, Coahuila, Mexico; 3Laboratory of Molecular Biology, Faculty of Chemistry, Autonomous University of Nuevo León, Nuevo León, Mexico; 4Colloidal Materials Research Group, Institute of Materials Science of Seville, Spanish National Research Council, University of Seville, Seville, Spain Abstract: Coriander leaves and seeds have been highly appreciated since ancient times, not only due to their pleasant flavors but also due to their inhibitory activity on food degradation and their beneficial properties for health, both ascribed to their strong antioxidant activity. Recently, it has been shown that coriander leaf extracts can mediate the synthesis of metallic nanoparticles through oxidation/reduction reactions. In the present study, extracts of coriander leaves and seeds have been used as reaction media for the wet chemical synthesis of ultrafine silver nanoparticles and nanoparticle clusters, with urchin- and tree-like shapes, coated by biomolecules (mainly, proteins and polyphenols. In this greener route of nanostructure preparation, the active biocompounds of coriander simultaneously play the roles of reducing and stabilizing agents. The morphological and microstructural studies of the resulting biosynthesized silver nanostructures revealed that the nanostructures prepared with a small concentration of the precursor Ag salt (AgNO3 =5 mM exhibit an ultrafine size and a narrow size distribution, whereas particles synthesized with high concentrations of the precursor Ag salt (AgNO3 =0.5 M are polydisperse and formation of supramolecular structures occurs. Fourier transform infrared and Raman spectroscopy

  20. Distance-dependent metal enhanced fluorescence by flowerlike silver nanostructures fabricated in liquid crystalline phase

    Science.gov (United States)

    Zhang, Ying; Yang, Chengliang; Zhang, Guiyang; Peng, Zenghui; Yao, Lishuang; Wang, Qidong; Cao, Zhaoliang; Mu, Quanquan; Xuan, Li

    2017-10-01

    Flowerlike silver nanostructure substrates were fabricated in liquid crystalline phase and the distance dependent property of metal enhanced fluorescence for such substrate was studied for the first time. The distance between silver nanostructures and fluorophore was controlled by the well-established layer-by-layer (LbL) technique constructing alternate layers of poly (allylamine hydrochloride) (PAH) and poly (sodium 4-styrenesulfonate) (PSS). The Rhodamine 6G (R6G) molecules were electrostatically attached to the outmost negative charged PSS layer. The fluorescence enhancement factor of flowerlike nanostructure substrate increased firstly and then decreased with the distance increasing. The best enhanced fluorescence intensity of 71 fold was obtained at a distance of 5.2 nm from the surface of flowerlike silver nanostructure. The distance for best enhancement effect is an instructive parameter for the applications of such substrates and could be used in the practical MEF applications with the flowerlike nanostructure substrates fabricated in such way which is simple, controllable and cost-effective.

  1. Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver

    KAUST Repository

    Uysal, Ismail Enes

    2016-08-09

    Transient electromagnetic interactions on plasmonic nanostructures are analyzed by solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation (SIE). Equivalent (unknown) electric and magnetic current densities, which are introduced on the surfaces of the nanostructures, are expanded using Rao-Wilton-Glisson and polynomial basis functions in space and time, respectively. Inserting this expansion into the PMCHWT-SIE and Galerkin testing the resulting equation at discrete times yield a system of equations that is solved for the current expansion coefficients by a marching on-in-time (MOT) scheme. The resulting MOT-PMCHWT-SIE solver calls for computation of additional convolutions between the temporal basis function and the plasmonic medium\\'s permittivity and Green function. This computation is carried out with almost no additional cost and without changing the computational complexity of the solver. Time-domain samples of the permittivity and the Green function required by these convolutions are obtained from their frequency-domain samples using a fast relaxed vector fitting algorithm. Numerical results demonstrate the accuracy and applicability of the proposed MOT-PMCHWT solver. © 2016 Optical Society of America.

  2. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.

    Science.gov (United States)

    Zhou, Ning; Yuan, Meng; Gao, Yuhan; Li, Dongsheng; Yang, Deren

    2016-04-26

    Strong coupling between semiconductor excitons and localized surface plasmons (LSPs) giving rise to hybridized plexciton states in which energy is coherently and reversibly exchanged between the components is vital, especially in the area of quantum information processing from fundamental and practical points of view. Here, in photoluminescence spectra, rather than from common extinction or reflection measurements, we report on the direct observation of Rabi splitting of approximately 160 meV as an indication of strong coupling between excited states of CdSe/ZnS quantum dots (QDs) and LSP modes of silver nanoshells under nonresonant nanosecond pulsed laser excitation at room temperature. The strong coupling manifests itself as an anticrossing-like behavior of the two newly formed polaritons when tuning the silver nanoshell plasmon energies across the exciton line of the QDs. Further analysis substantiates the essentiality of high pump energy and collective strong coupling of many QDs with the radiative dipole mode of the metallic nanoparticles for the realization of strong coupling. Our finding opens up interesting directions for the investigation of strong coupling between LSPs and excitons from the perspective of radiative recombination under easily accessible experimental conditions.

  3. Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates

    Science.gov (United States)

    Richardson, Beau J.; Zhu, Leize; Yu, Qiuming

    2017-04-01

    Indium tin oxide (ITO) is the most common transparent electrode used in organic photovoltaics (OPVs), yet limited indium reserves and poor mechanical properties make it non-ideal for large-scale OPV production. To replace ITO, we designed, fabricated, and deployed plasmonic nanostructured electrodes in inverted OPV devices. We found that active layer absorption is significantly impacted by ZnO thickness which affects the optical field distribution inside the resonant cavity formed between the plasmonic nanostructured electrode and top electrode. High quality Cr/Au nanostructured electrodes were fabricated by nanoimprint lithography and deployed in ITO-free inverted devices on glass. Devices with thinner ZnO showed a PCE as high as 5.70% and higher J SC’s than devices on thicker ZnO, in agreement with finite-difference time-domain simulations. In addition, as the active layer was made optically thin, ITO-based devices showed diminished J SC while the resonant cavity effect from plasmonic nanostructured electrodes retained J SC. Preliminary ITO-free, flexible devices on PET showed a PCE of 1.82% and those fabricated on ultrathin and conformable Parylene substrates yielded an initial PCE over 1%. The plasmonic electrodes and device designs in this work show promise for developing highly functioning conformable devices that can be applied to numerous needs for lightweight, ubiquitous power generation.

  4. Self-limiting atomic layer deposition of conformal nanostructured silver films

    International Nuclear Information System (INIS)

    Golrokhi, Zahra; Chalker, Sophia; Sutcliffe, Christopher J.; Potter, Richard J.

    2016-01-01

    Graphical abstract: - Highlights: • We grow metallic silver by direct liquid injection thermal atomic layer deposition. • Highly conformal silver nanoparticle coatings on high aspect ratio surfaces. • An ALD temperature growth window between 123 and 128 °C is established. • ALD cycles provides sub nanometre control of silver growth. • Catalytic dehydrogenation ALD mechanism has been elucidated by in-situ QCM. - Abstract: The controlled deposition of ultra-thin conformal silver nanoparticle films is of interest for applications including anti-microbial surfaces, plasmonics, catalysts and sensors. While numerous techniques can produce silver nanoparticles, few are able to produce highly conformal coatings on high aspect ratio surfaces, together with sub-nanometre control and scalability. Here we develop a self-limiting atomic layer deposition (ALD) process for the deposition of conformal metallic silver nanoparticle films. The films have been deposited using direct liquid injection ALD with ((hexafluoroacetylacetonato)silver(I)(1,5-cyclooctadiene)) and propan-1-ol. An ALD temperature window between 123 and 128 °C is identified and within this range self-limiting growth is confirmed with a mass deposition rate of ∼17.5 ng/cm"2/cycle. The effects of temperature, precursor dose, co-reactant dose and cycle number on the deposition rate and on the properties of the films have been systematically investigated. Under self-limiting conditions, films are metallic silver with a nano-textured surface topography and nanoparticle size is dependent on the number of ALD cycles. The ALD reaction mechanisms have been elucidated using in-situ quartz crystal microbalance (QCM) measurements, showing chemisorption of the silver precursor, followed by heterogeneous catalytic dehydrogenation of the alcohol to form metallic silver and an aldehyde.

  5. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, R D; Souza Filho, A G; Alves, O L [Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13081-970, Campinas-SP (Brazil); Brocchi, M; Martins, D [Departamento de Genetica, Evolucao and Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Duran, N, E-mail: rholtz@iqm.unicamp.br, E-mail: agsf@fisica.ufc.br, E-mail: oalves@iqm.unicamp.br [Laboratorio de Quimica Biologica, Instituto de Quimica, Universidade Estadual de Campinas, Campinas-SP (Brazil)

    2010-05-07

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  6. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process

    Science.gov (United States)

    Chen, Chang; Wang, Li; Yu, Haojie; Wang, Jianjun; Zhou, Junfeng; Tan, Qiaohua; Deng, Libo

    2007-03-01

    A novel, effective strategy named 'seed catalysis' has been described here to synthesize silver nanostructures with controllable morphology. Typically, we added Na2S into the reaction system and the Ag2S semiconductor colloids formed at the initial stage would act as both seeds and catalyst in the silver reduction. The morphology of products is controlled by the concentration of Na2S added to the system. Low concentration of Na2S gives nanocubes of 40-50 nm in size, while a high concentration of Na2S is of benefit to obtain nanowires. The growth of the silver crystal is also accelerated by the catalysis of Ag2S. Electron microscopy and UV-vis absorption spectra have been used to investigate the evolution of silver nanowires, and a reasonable mechanism to explain the role of Ag2S seeds has also been suggested. This semiconductor seed catalysis strategy will provide wide applications in the fabrication of metal nanomaterials.

  7. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process

    International Nuclear Information System (INIS)

    Chen Chang; Wang Li; Yu Haojie; Wang Jianjun; Zhou Junfeng; Tan Qiaohua; Deng Libo

    2007-01-01

    A novel, effective strategy named 'seed catalysis' has been described here to synthesize silver nanostructures with controllable morphology. Typically, we added Na 2 S into the reaction system and the Ag 2 S semiconductor colloids formed at the initial stage would act as both seeds and catalyst in the silver reduction. The morphology of products is controlled by the concentration of Na 2 S added to the system. Low concentration of Na 2 S gives nanocubes of 40-50 nm in size, while a high concentration of Na 2 S is of benefit to obtain nanowires. The growth of the silver crystal is also accelerated by the catalysis of Ag 2 S. Electron microscopy and UV-vis absorption spectra have been used to investigate the evolution of silver nanowires, and a reasonable mechanism to explain the role of Ag 2 S seeds has also been suggested. This semiconductor seed catalysis strategy will provide wide applications in the fabrication of metal nanomaterials

  8. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity.

    Science.gov (United States)

    He, Weiwei; Cai, Junhui; Jiang, Xiumei; Yin, Jun-Jie; Meng, Qingbo

    2018-06-13

    The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.

  9. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures.

    Science.gov (United States)

    Maksymov, Ivan S

    2015-04-09

    A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient exchange of results between the two research sectors. Consequently, the goal of this review paper is to bridge this gap by presenting an overview of recent progress in the field of magneto-plasmonics from two different points of view: magneto-plasmonics, and magnonics and magnetisation dynamics. It is expected that this presentation style will make this review paper of particular interest to both general physical audience and specialists conducting research on photonics, plasmonics, Brillouin light scattering spectroscopy of magnetic nanostructures and magneto-optical Kerr effect magnetometry, as well as ultrafast all-optical and THz-wave excitation of spin waves. Moreover, readers interested in a new, rapidly emerging field of all-dielectric nanophotonics will find a section about all-magneto-dielectric nanostructures.

  10. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures

    Directory of Open Access Journals (Sweden)

    Ivan S. Maksymov

    2015-04-01

    Full Text Available A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient exchange of results between the two research sectors. Consequently, the goal of this review paper is to bridge this gap by presenting an overview of recent progress in the field of magneto-plasmonics from two different points of view: magneto-plasmonics, and magnonics and magnetisation dynamics. It is expected that this presentation style will make this review paper of particular interest to both general physical audience and specialists conducting research on photonics, plasmonics, Brillouin light scattering spectroscopy of magnetic nanostructures and magneto-optical Kerr effect magnetometry, as well as ultrafast all-optical and THz-wave excitation of spin waves. Moreover, readers interested in a new, rapidly emerging field of all-dielectric nanophotonics will find a section about all-magneto-dielectric nanostructures.

  11. Few molecule SERS detection using nanolens based plasmonic nanostructure: application to point mutation detection

    KAUST Repository

    Das, Gobind

    2016-10-27

    Advancements in nanotechnology fabrication techniques allow the possibility to design and fabricate a device with a minimum gap (<10 nm) between the composing nanostructures in order to obtain better control over the creation and spatial definition of plasmonic hot-spots. The present study is intended to show the fabrication of nanolens and their application to single/few molecules detection. Theoretical simulations were performed on different designs of real structures, including comparison of rough and smooth surfaces. Various molecules (rhodamine 6G, benzenethiol and BRCA1/BRCT peptides) were examined in this regard. Single molecule detection was possible for synthetic peptides, with a possible application in early detection of diseases. © The Royal Society of Chemistry.

  12. Few molecule SERS detection using nanolens based plasmonic nanostructure: application to point mutation detection

    KAUST Repository

    Das, Gobind; Alrasheed, Salma; Coluccio, Maria Laura; Gentile, Francesco; Nicastri, Annalisa; Candeloro, Patrizio; Cuda, Giovanni; Perozziello, Gerardo; Di Fabrizio, Enzo M.

    2016-01-01

    Advancements in nanotechnology fabrication techniques allow the possibility to design and fabricate a device with a minimum gap (<10 nm) between the composing nanostructures in order to obtain better control over the creation and spatial definition of plasmonic hot-spots. The present study is intended to show the fabrication of nanolens and their application to single/few molecules detection. Theoretical simulations were performed on different designs of real structures, including comparison of rough and smooth surfaces. Various molecules (rhodamine 6G, benzenethiol and BRCA1/BRCT peptides) were examined in this regard. Single molecule detection was possible for synthetic peptides, with a possible application in early detection of diseases. © The Royal Society of Chemistry.

  13. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Alan X. Wang

    2015-05-01

    Full Text Available Surface-enhanced Raman scattering (SERS has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs. Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  14. Enhanced EGFR Targeting Activity of Plasmonic Nanostructures with Engineered GE11 Peptide.

    Science.gov (United States)

    Biscaglia, Francesca; Rajendran, Senthilkumar; Conflitti, Paolo; Benna, Clara; Sommaggio, Roberta; Litti, Lucio; Mocellin, Simone; Bocchinfuso, Gianfranco; Rosato, Antonio; Palleschi, Antonio; Nitti, Donato; Gobbo, Marina; Meneghetti, Moreno

    2017-12-01

    Plasmonic nanostructures show important properties for biotechnological applications, but they have to be guided on the target for exploiting their potentialities. Antibodies are the natural molecules for targeting. However, their possible adverse immunogenic activity and their cost have suggested finding other valid substitutes. Small molecules like peptides can be an alternative source of targeting agents, even if, as single molecules, their binding affinity is usually not very good. GE11 is a small dodecapeptide with specific binding to the epidermal growth factor receptor (EGFR) and low immunogenicity. The present work shows that thousands of polyethylene glycol (PEG) chains modified with lysines and functionalized with GE11 on clusters of naked gold nanoparticles, obtained by laser ablation in water, achieves a better targeting activity than that recorded with nanoparticles decorated with the specific anti-EGFR antibody Cetuximab (C225). The insertion of the cationic spacer between the polymeric part of the ligand and the targeting peptide allows for a proper presentation of GE11 on the surface of the nanosystems. Surface enhanced resonance Raman scattering signals of the plasmonic gold nanoparticles are used for quantifying the targeting activity. Molecular dynamic calculations suggest that subtle differences in the exposition of the peptide on the PEG sea are important for the targeting activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Up-scalable low-cost fabrication of plasmonic and photonic nanostructures for sensing

    Science.gov (United States)

    Gallinet, Benjamin; Davoine, Laurent; Basset, Guillaume; Schnieper, Marc

    2013-09-01

    The fabrication by nanoimprint lithography of large-area plasmonic and photonic sensing platforms is reported. The plasmonic nanostructures have the shape of split-ring resonators and support both electric dipole and quadrupole modes. They carry the spectral signature of Fano resonances. Their near-field and far-field optical properties are investigated with an analytical model together with numerical calculations. Fano-resonant systems combine strong nanoscale light confinement with a narrow spectral line width, which makes them very promising for biochemical sensing and immunoassays. On the other hand, chemical sensors based on resonant gratings are obtained by patterning a sol-gel material, evaporating a high refractive index semiconductor and coating with a chemically sensitive dye layer. By exposition to a liquid or an invisible gas such as ammonium, the change in absorption is detected optically. An analytical model is introduced to explain the enhancement of the signal by the resonant grating, which can be detected with the naked eye from a color change of the reflected light.

  16. Broadband plasmonic silver nanoflowers for high-performance random lasing covering visible region

    Directory of Open Access Journals (Sweden)

    Chang Qing

    2017-05-01

    Full Text Available Multicolor random lasing has broad potential applications in the fields of imaging, sensing, and optoelectronics. Here, silver nanoflowers (Ag NF with abundant nanogaps are fabricated by a rapid one-step solution-phase synthesis method and are first proposed as effective broadband plasmonic scatterers to achieve different color random lasing. With abundant nanogaps and spiky tips near the surface and the interparticle coupling effect, Ag NFs greatly enhance the local electromagnetic field and induce broadband plasmonic scattering spectra over the whole visible range. The extremely low working threshold and the high-quality factor for Ag NF-based random lasers are thus demonstrated as 0.24 MW cm−2 and 11,851, respectively. Further, coherent colorful random lasing covering the visible range is realized using the dye molecules oxazine (red, Coumarin 440 (blue, and Coumarin 153 (green, showing high-quality factor of more than 10,000. All these features show that Ag NF are highly efficient scatterers for high-performance coherent random lasing and colorful random lasers.

  17. Formation of plasmonic colloidal silver for flexible and printed electronics using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S., E-mail: skasa@physics.auth.gr [University of Ioannina, Department of Materials Science and Engineering, 45110 Ioannina (Greece); Kaziannis, S. [University of Ioannina, Department of Physics, 45110 Ioannina (Greece); Pliatsikas, N. [University of Ioannina, Department of Materials Science and Engineering, 45110 Ioannina (Greece); Aristotle University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Avgeropoulos, A.; Karantzalis, A.E. [University of Ioannina, Department of Materials Science and Engineering, 45110 Ioannina (Greece); Kosmidis, C. [University of Ioannina, Department of Physics, 45110 Ioannina (Greece); Lidorikis, E. [University of Ioannina, Department of Materials Science and Engineering, 45110 Ioannina (Greece); Patsalas, P. [Aristotle University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece)

    2015-05-01

    Highlights: • Silver plasmonic colloidal in organic solvents by ps laser ablation process. • Ag NPs that meet size requirements of the printed organic electronics technology. • Ag NPs size refinement by secondary process using the 355 nm beam of a ns laser. - Abstract: Laser ablation (LA) in liquids has been used for the development of various nanoparticles (NPs); among them, Ag NPs in aqueous solutions (usually produced by nanosecond (ns) LA) have attracted exceptional interest due to its strong plasmonic response. In this work, we present a comprehensive study of the LA of Ag in water, chloroform and toluene, with and without PVP, using a picosecond (ps) Nd:YAG laser and we consider a wide range of LA parameters such as the laser wavelength (1064, 532, 355 nm), the pulse energy (0.3–17 mJ) and the number of pulses. In addition, we consider the use of a secondary nanosecond laser beam for the refinement of the NPs size distribution. The optical properties of the NPs were evaluated by in situ optical transmittance measurements in the UV–vis spectral ranges. The morphology of the NPs and the formation of aggregates were investigated by Scanning Electron Microscopy and High-Resolution Transmission Electron Microscopy. The ps LA process resulted in the development of bigger Ag NPs, compared to the ns LA, compatible with the size requirements of the printed organic electronics technology. The optimum conditions for the ps LA of Ag in organic solvents include the use of the 355 nm beam at low pulse energy (<1 mJ); these conditions rendered isolated Ag nanoparticles manifesting strong and well defined surface plasmon resonance peak. The use of the secondary ns laser beam was proven to be able to refine the nanoparticles to intermediate size between those produced by the single ns or ps LA.

  18. Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode.

    Science.gov (United States)

    Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P

    2013-02-15

    We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.

  19. Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

    Directory of Open Access Journals (Sweden)

    Katarzyna Grochowska

    2014-11-01

    Full Text Available A brief description of research advances in the area of short-pulse-laser nanostructuring of thin Au films is followed by examples of experimental data and a discussion of our results on the characterization of structural and optical properties of gold nanostructures. These consist of partially spherical or spheroidal nanoparticles (NPs which have a size distribution (80 ± 42 nm and self-organization characterized by a short-distance order (length scale ≈140 nm. For the NP shapes produced, an observably broader tuning range (of about 150 nm of the surface plasmon resonance (SPR band is obtained by renewal thin film deposition and laser annealing of the NP array. Despite the broadened SPR bands, which indicate damping confirmed by short dephasing times not exceeding 4 fs, the self-organized Au NP structures reveal quite a strong enhancement of the optical signal. This was consistent with the near-field modeling and micro-Raman measurements as well as a test of the electrochemical sensing capability.

  20. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.

    Science.gov (United States)

    Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia

    2014-11-07

    In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.

  1. Current-driven plasmonic boom instability in three-dimensional gated periodic ballistic nanostructures

    Science.gov (United States)

    Aizin, G. R.; Mikalopas, J.; Shur, M.

    2016-05-01

    An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.

  2. Perturbation theory for plasmonic modulation and sensing

    KAUST Repository

    Raman, Aaswath

    2011-05-25

    We develop a general perturbation theory to treat small parameter changes in dispersive plasmonic nanostructures and metamaterials. We specifically apply it to dielectric refractive index and metallic plasma frequency modulation in metal-dielectric nanostructures. As a numerical demonstration, we verify the theory\\'s accuracy against direct calculations for a system of plasmonic rods in air where the metal is defined by a three-pole fit of silver\\'s dielectric function. We also discuss new optical behavior related to plasma frequency modulation in such systems. Our approach provides new physical insight for the design of plasmonic devices for biochemical sensing and optical modulation and future active metamaterial applications. © 2011 American Physical Society.

  3. Plasmon-enhanced luminescence of Sm complex using silver nanoparticles in Polyvinyl Alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gagandeep; Verma, R.K.; Rai, D.K. [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, India 221005 (India); Rai, S.B., E-mail: sbrai49@yahoo.co.in [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, India 221005 (India)

    2012-07-15

    Silver (Ag) nanoparticles (NPs) were prepared by laser ablation in water with an aim to enhance the luminescence of rare earth coordinated complex in polymer host. A fixed concentration of the complex containing Samarium (Sm), Salicylic acid (Sal) and 1, 10-phenanthroline (Phen) were combined with different concentrations of silver NPs in PolyVinyl Alcohol at room temperature. Absorption spectrum and XRD patterns of the sample show that the Sm(Sal){sub 3}Phen complex is accompanied by Ag NPs. The luminescence from the complex was recorded in the presence and absence of Ag NPs using two different excitation wavelengths viz. 400 and 355 nm. Of these, 400 nm radiation falls in the surface plasmon resonance of Ag NPs. It was found that the Ag NPs led to a significant enhancement in luminescence of the complex. Surprisingly, a high concentration of Ag NPs tends to quench the luminescence. - Highlights: Black-Right-Pointing-Pointer Sm complex with Ag nanoparticles in PVA was prepared at room temperature. Black-Right-Pointing-Pointer UV-vis absorption and XRD confirms the presence of Sm complex and Ag NPs. Black-Right-Pointing-Pointer Enhancement in luminescence of complex was observed with Ag NPs. Black-Right-Pointing-Pointer Coupling between radiative transitions of Sm and SPR of NPs enhances the emission. Black-Right-Pointing-Pointer The higher concentration of Ag NPs quenches the luminescence of the complex.

  4. Bactericidal performance of visible-light responsive titania photocatalyst with silver nanostructures.

    Directory of Open Access Journals (Sweden)

    Ming-Show Wong

    Full Text Available BACKGROUND: Titania dioxide (TiO(2 photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO(2 photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved. METHODOLOGY/PRINCIPAL FINDINGS: Using thermal reduction method, here we synthesized silver-nanostructures coated TiO(2 thin films that contain a high visible-light responsive antibacterial property. Among our tested titania substrates including TiO(2, carbon-doped TiO(2 [TiO(2 (C] and nitrogen-doped TiO(2 [TiO(2 (N], TiO(2 (N showed the best performance after silver coating. The synergistic antibacterial effect results approximately 5 log reductions of surviving bacteria of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Acinetobacter baumannii. Scanning electron microscope analysis indicated that crystalline silver formed unique wire-like nanostructures on TiO(2 (N substrates, while formed relatively straight and thicker rod-shaped precipitates on the other two titania materials. CONCLUSION/SIGNIFICANCE: Our results suggested that proper forms of silver on various titania materials could further influence the bactericidal property.

  5. Plasmonic 3D-structures based on silver decorated nanotips for biological sensing

    Science.gov (United States)

    Coluccio, M. L.; Francardi, M.; Gentile, F.; Candeloro, P.; Ferrara, L.; Perozziello, G.; Di Fabrizio, E.

    2016-01-01

    Recent progresses in nanotechnology fabrication gives the opportunity to build highly functional nano-devices. 3D structures based on noble metals or covered by them can be realized down to the nano-scales, obtaining different devices with the functionalities of plasmonic nano-lenses or nano-probes. Here, nano-cones decorated with silver nano-grains were fabricated using advanced nano-fabrication techniques. In fabricating the cones, the angle of the apex was varied over a significant range and, in doing so, different geometries were realized. In depositing the silver nano-particles, the concentration of solution was varied, whereby different growth conditions were realized. The combined effect of tip geometry and growth conditions influences the size and distribution of the silver nano grains. The tips have the ability to guide or control the growth of the grains, in the sense that the nano-particles would preferentially distribute along the cone, and especially at the apex of the cone, with no o minor concentration effects on the substrate. The arrangement of metallic nano-particles into three-dimensional (3D) structures results in a Surface Enhanced Raman Spectroscopy (SERS) device with improved interface with analytes compared to bi-dimensional arrays of metallic nanoparticles. In the future, similar devices may find application in microfluidic devices, and in general in flow chambers, where the system can be inserted as to mimic a a nano-bait, for the recognition of specific biomarkers, or the manipulation and chemical investigation of single cells directly in native environments with good sensitivity, repeatability and selectivity.

  6. Plasmonic 3D-structures based on silver decorated nanotips for biological sensing

    KAUST Repository

    Coluccio, M. L.

    2015-05-01

    Recent progresses in nanotechnology fabrication gives the opportunity to build highly functional nano-devices. 3D structures based on noble metals or covered by them can be realized down to the nano-scales, obtaining different devices with the functionalities of plasmonic nano-lenses or nano-probes. Here, nano-cones decorated with silver nano-grains were fabricated using advanced nano-fabrication techniques. In fabricating the cones, the angle of the apex was varied over a significant range and, in doing so, different geometries were realized. In depositing the silver nano-particles, the concentration of solution was varied, whereby different growth conditions were realized. The combined effect of tip geometry and growth conditions influences the size and distribution of the silver nano grains. The tips have the ability to guide or control the growth of the grains, in the sense that the nano-particles would preferentially distribute along the cone, and especially at the apex of the cone, with no o minor concentration effects on the substrate. The arrangement of metallic nano-particles into three-dimensional (3D) structures results in a Surface Enhanced Raman Spectroscopy (SERS) device with improved interface with analytes compared to bi-dimensional arrays of metallic nanoparticles. In the future, similar devices may find application in microfluidic devices, and in general in flow chambers, where the system can be inserted as to mimic a a nano-bait, for the recognition of specific biomarkers, or the manipulation and chemical investigation of single cells directly in native environments with good sensitivity, repeatability and selectivity. © 2015 Elsevier Ltd.

  7. Single Nanoparticle Plasmonic Sensors

    Directory of Open Access Journals (Sweden)

    Manish Sriram

    2015-10-01

    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  8. Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations

    OpenAIRE

    Kuisma, Mikael; Sakko, Arto; Rossi, Tuomas P.; Larsen, Ask H.; Enkovaara, Jussi; Lehtovaara, Lauri; Rantala, Tapio T.

    2015-01-01

    We observe using ab initio methods that localized surface plasmon resonances in icosahedral silver nanoparticles enter the asymptotic region already between diameters of 1 and 2 nm, converging close to the classical quasistatic limit around 3.4 eV. We base the observation on time-dependent density-functional theory simulations of the icosahedral silver clusters Ag$_{55}$ (1.06 nm), Ag$_{147}$ (1.60 nm), Ag$_{309}$ (2.14 nm), and Ag$_{561}$ (2.68 nm). The simulation method combines the adiabat...

  9. Two-Photon Vibrational Spectroscopy using local optical fields of gold and silver nanostructures

    Science.gov (United States)

    Kneipp, Katrin; Kneipp, Janina; Kneipp, Harald

    2007-03-01

    Spectroscopic effects can be strongly affected when they take place in the immediate vicinity of metal nanostructures due to coupling to surface plasmons. We introduce a new approach that suggests highly efficient two-photon labels as well as two-photon vibrational spectroscopy for non-destructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states performed in the enhanced local optical fields of gold nanoparticles, surface enhanced hyper Raman scattering (SEHRS). We infer effective two-photon cross sections for SEHRS on the order of 10^5 GM, similar or higher than the best known cross sections for two-photon fluorescence. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy, and the high sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy.

  10. The spontaneous formation and plasmonic properties of ultrathin gold–silver nanorods and nanowires stabilized in oleic acid

    KAUST Repository

    Crespo, Julian

    2015-10-02

    Ultrathin Au-Ag alloy nanorods and nanowires of different lengths and ca. 1.9 nm diameter are prepared through a low-temperature decomposition of the precursor [AuAg(CF)(OEt)] in oleic acid. This nanostructure formation has been studied through TEM, HRTEM, EDS, HS-SPME-GC-MS and F NMR spectroscopy. The UNRs and UNWs display a length-dependent broad band in the mid-IR region that is related to the longitudinal mode of the surface plasmon resonance of the ultrathin nanostructures.

  11. The spontaneous formation and plasmonic properties of ultrathin gold–silver nanorods and nanowires stabilized in oleic acid

    KAUST Repository

    Crespo, Julian; Ló pez-De-Luzuriaga, José M.; Monge, Miguel; Elena Olmos, M.; Rodrí guez-Castillo, Marí a; Cormary, Benoî t; Soulantica, Katerina; Sestu, Matteo; Falqui, Andrea

    2015-01-01

    Ultrathin Au-Ag alloy nanorods and nanowires of different lengths and ca. 1.9 nm diameter are prepared through a low-temperature decomposition of the precursor [AuAg(CF)(OEt)] in oleic acid. This nanostructure formation has been studied through TEM, HRTEM, EDS, HS-SPME-GC-MS and F NMR spectroscopy. The UNRs and UNWs display a length-dependent broad band in the mid-IR region that is related to the longitudinal mode of the surface plasmon resonance of the ultrathin nanostructures.

  12. Stepwise synthesis of cubic Au-AgCdS core-shell nanostructures with tunable plasmon resonances and fluorescence.

    Science.gov (United States)

    Liu, Xiao-Li; Liang, Shan; Nan, Fan; Pan, Yue-Yue; Shi, Jun-Jun; Zhou, Li; Jia, Shuang-Feng; Wang, Jian-Bo; Yu, Xue-Feng; Wang, Qu-Quan

    2013-10-21

    Cubic Au-AgCdS core-shell nanostructures were synthesized through cation exchange method assisted by tributylphosphine (TBP) as a phase-transfer agent. Among intermediate products, Au-Ag core-shell nanocubes exhibited many high-order plasmon resonance modes related to the special cubic shape, and these plasmon bands red-shifted along with the increasing of particle size. The plasmon band of Au core first red-shifted and broadened at the step of Au-Ag₂S and then blue-shifted and narrowed at the step of Au-AgCdS. Since TBP was very crucial for the efficient conversion from Ag₂S to CdS, we found that both absorption and fluorescence of the final products could be controlled by TBP.

  13. Advances in optoplasmonic sensors – combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles

    Directory of Open Access Journals (Sweden)

    Xavier Jolly

    2018-01-01

    Full Text Available Nanophotonic device building blocks, such as optical nano/microcavities and plasmonic nanostructures, lie at the forefront of sensing and spectrometry of trace biological and chemical substances. A new class of nanophotonic architecture has emerged by combining optically resonant dielectric nano/microcavities with plasmonically resonant metal nanostructures to enable detection at the nanoscale with extraordinary sensitivity. Initial demonstrations include single-molecule detection and even single-ion sensing. The coupled photonic-plasmonic resonator system promises a leap forward in the nanoscale analysis of physical, chemical, and biological entities. These optoplasmonic sensor structures could be the centrepiece of miniaturised analytical laboratories, on a chip, with detection capabilities that are beyond the current state of the art. In this paper, we review this burgeoning field of optoplasmonic biosensors. We first focus on the state of the art in nanoplasmonic sensor structures, high quality factor optical microcavities, and photonic crystals separately before proceeding to an outline of the most recent advances in hybrid sensor systems. We discuss the physics of this modality in brief and each of its underlying parts, then the prospects as well as challenges when integrating dielectric nano/microcavities with metal nanostructures. In Section 5, we hint to possible future applications of optoplasmonic sensing platforms which offer many degrees of freedom towards biomedical diagnostics at the level of single molecules.

  14. Ultrafast excited-state dynamics in shape- and composition-controlled gold–silver bimetallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zarick, Holly F. [Vanderbilt Univ., Nashville, TN (United States); Boulesbaa, Abdelaziz [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Talbert, Eric M. [Vanderbilt Univ., Nashville, TN (United States); Puretzky, Alexander A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Geohegan, David B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bardhan, Rizia [Vanderbilt Univ., Nashville, TN (United States)

    2017-02-01

    In this paper, we have examined the ultrafast dynamics of shape- and composition-controlled bimetallic Au/Ag core/shell nanostructures with transient absorption spectroscopy (TAS) as a function of Ag layer thickness (0–15 nm) and pump excitation fluence (50–500 nJ/pulse). Our synthesis approach generated both bimetallic nanocubes and nanopyramids with distinct dipolar plasmon resonances and plasmon dephasing behavior at the resonance. Lifetimes obtained from TAS at low powers (50 nJ/pulse) demonstrated minimal dependence on the Ag layer thickness, whereas at high power (500 nJ/pulse) a rise in electron–phonon coupling lifetime (τ1) was observed with increasing Ag shell thickness for both nanocubes and nanopyramids. This is attributable to the stronger absorption of the 400 nm pump pulse with higher Ag content, which induced higher electron temperatures. The phonon–phonon scattering lifetime (τ2) also rises with increasing Ag layer, contributed both by the increasing size of the Au/Ag nanostructures as well as by surface chemistry effects. Further, we observed that even the thinnest, 2 nm, Ag shell strongly impacts both τ1 and τ2 at high power despite minimal change in overall size, indicating that the nanostructure composition also strongly impacts the thermalization temperature following absorption of 400 nm light. We also observed a shape-dependent trend at high power, where τ2 increased for the nanopyramids with increasing Ag shell thickness and nanostructure size, but bimetallic nanocubes demonstrated an unexpected decrease in τ2 for the thickest, 15 nm, Ag shell. This was attributed to the larger number of corners and edges in the nanocubes relative to the nanopyramids.

  15. Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms

    International Nuclear Information System (INIS)

    Kan Caixia; Zhu Jiejun; Zhu Xiaoguang

    2008-01-01

    This paper describes a poly(vinylpyrollidone)-directed polyol synthesis method for the fabrication of silver (Ag) nanostructures with well-controlled shapes (such as nanorods and nanocubes) by adjusting the synthesizing parameters. The structure characterizations suggest that the Ag nanorods grow from the five-fold twinned decahedral crystal nuclei. The nature of the {1 1 1} planes of Ag crystal and the highly selective poly(vinylpyrollidone) adsorption on the {100} planes of Ag crystal nuclei are favourable for the formation of Ag nanorods and Ag nanowires. The single crystalline Ag nanocubes obtained at optimum conditions are perfect in shape and are enclosed by the {1 0 0} facets. The optical properties of the Ag nanostructures show an attractive plasma resonance, displaying a considerable dependence on the shape and size. The formation of the Ag nanostructures with well-defined shapes is probably due to the fact that the nanostructures are controlled thermodynamically and kinetically. The ability to generate shape-controlled Ag nanostructures also provides an opportunity to experimentally and systematically study the relationship between their properties and geometric shapes

  16. Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms

    Science.gov (United States)

    Kan, Cai-Xia; Zhu, Jie-Jun; Zhu, Xiao-Guang

    2008-08-01

    This paper describes a poly(vinylpyrollidone)-directed polyol synthesis method for the fabrication of silver (Ag) nanostructures with well-controlled shapes (such as nanorods and nanocubes) by adjusting the synthesizing parameters. The structure characterizations suggest that the Ag nanorods grow from the five-fold twinned decahedral crystal nuclei. The nature of the {1 1 1} planes of Ag crystal and the highly selective poly(vinylpyrollidone) adsorption on the {100} planes of Ag crystal nuclei are favourable for the formation of Ag nanorods and Ag nanowires. The single crystalline Ag nanocubes obtained at optimum conditions are perfect in shape and are enclosed by the {1 0 0} facets. The optical properties of the Ag nanostructures show an attractive plasma resonance, displaying a considerable dependence on the shape and size. The formation of the Ag nanostructures with well-defined shapes is probably due to the fact that the nanostructures are controlled thermodynamically and kinetically. The ability to generate shape-controlled Ag nanostructures also provides an opportunity to experimentally and systematically study the relationship between their properties and geometric shapes.

  17. Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kan Caixia [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Zhu Jiejun [Department of Physics, Nanjing University, Nanjing 210093 (China); Zhu Xiaoguang [Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: cxkan@nuaa.edu.cn

    2008-08-07

    This paper describes a poly(vinylpyrollidone)-directed polyol synthesis method for the fabrication of silver (Ag) nanostructures with well-controlled shapes (such as nanorods and nanocubes) by adjusting the synthesizing parameters. The structure characterizations suggest that the Ag nanorods grow from the five-fold twinned decahedral crystal nuclei. The nature of the {l_brace}1 1 1{r_brace} planes of Ag crystal and the highly selective poly(vinylpyrollidone) adsorption on the {l_brace}100{r_brace} planes of Ag crystal nuclei are favourable for the formation of Ag nanorods and Ag nanowires. The single crystalline Ag nanocubes obtained at optimum conditions are perfect in shape and are enclosed by the {l_brace}1 0 0{r_brace} facets. The optical properties of the Ag nanostructures show an attractive plasma resonance, displaying a considerable dependence on the shape and size. The formation of the Ag nanostructures with well-defined shapes is probably due to the fact that the nanostructures are controlled thermodynamically and kinetically. The ability to generate shape-controlled Ag nanostructures also provides an opportunity to experimentally and systematically study the relationship between their properties and geometric shapes.

  18. Growth and optical properties of silver nanostructures obtained on connected anodic aluminum oxide templates

    Science.gov (United States)

    Giallongo, G.; Durante, C.; Pilot, R.; Garoli, D.; Bozio, R.; Romanato, F.; Gennaro, A.; Rizzi, G. A.; Granozzi, G.

    2012-08-01

    Ag nanostructures are grown by AC electrodeposition on anodic alumina oxide (AAO) connected membranes acting as templates. Depending on the thickness of the template and on the voltage applied during the growth process, different Ag nanostructures with different optical properties are obtained. When AAO membranes about 1 μm thick are used, the Ag nanostructures consist in Ag nanorods, at the bottom of the pores, and Ag nanotubes departing from the nanorods and filling the pores almost for the whole length. When AAO membranes about 3 μm thick are used, the nanostructures are Ag spheroids, at the bottom of the pores, and Ag nanowires that do not reach the upper part of the alumina pores. The samples are characterized by angle resolved x-ray photoelectron spectroscopy, scanning electron microscopy and UV-vis and Raman spectroscopies. A simple NaOH etching procedure, followed by sonication in ethanol, allows one to obtain an exposed ordered array of Ag nanorods, suitable for surface-enhanced Raman spectroscopy, while in the other case (3 μm thick AAO membranes) the sample can be used in localized surface plasmon resonance sensing.

  19. Growth and optical properties of silver nanostructures obtained on connected anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Giallongo, G; Durante, C; Pilot, R; Bozio, R; Gennaro, A; Rizzi, G A; Granozzi, G; Garoli, D; Romanato, F

    2012-01-01

    Ag nanostructures are grown by AC electrodeposition on anodic alumina oxide (AAO) connected membranes acting as templates. Depending on the thickness of the template and on the voltage applied during the growth process, different Ag nanostructures with different optical properties are obtained. When AAO membranes about 1 μm thick are used, the Ag nanostructures consist in Ag nanorods, at the bottom of the pores, and Ag nanotubes departing from the nanorods and filling the pores almost for the whole length. When AAO membranes about 3 μm thick are used, the nanostructures are Ag spheroids, at the bottom of the pores, and Ag nanowires that do not reach the upper part of the alumina pores. The samples are characterized by angle resolved x-ray photoelectron spectroscopy, scanning electron microscopy and UV–vis and Raman spectroscopies. A simple NaOH etching procedure, followed by sonication in ethanol, allows one to obtain an exposed ordered array of Ag nanorods, suitable for surface-enhanced Raman spectroscopy, while in the other case (3 μm thick AAO membranes) the sample can be used in localized surface plasmon resonance sensing. (paper)

  20. Nanostructured high valence silver oxide produced by pulsed laser deposition

    International Nuclear Information System (INIS)

    Dellasega, D.; Facibeni, A.; Di Fonzo, F.; Russo, V.; Conti, C.; Ducati, C.; Casari, C.S.; Li Bassi, A.; Bottani, C.E.

    2009-01-01

    Among silver oxides, Ag 4 O 4 , i.e. high valence Ag(I)Ag(III) oxide, is interesting for applications in high energy batteries and for the development of antimicrobial coatings. We here show that ns UV pulsed laser deposition (PLD) in an oxygen containing atmosphere allows the synthesis of pure Ag 4 O 4 nanocrystalline thin films, permitting at the same time to control the morphology of the material at the sub-micrometer scale. Ag 4 O 4 films with a crystalline domain size of the order of tens of nm can be deposited provided the deposition pressure is above a threshold (roughly 4 Pa pure O 2 or 20 Pa synthetic air). The formation of this particular high valence silver oxide is explained in terms of the reactions occurring during the expansion of the ablated species in the reactive atmosphere. In particular, expansion of the PLD plasma plume is accompanied by formation of low stability Ag-O dimers and atomic oxygen, providing reactive species at the substrate where the film grows. Evidence of reactive collisions in the expanding ablation plume is obtained by analysis of the plume visible shape in inert and reactive atmospheres. In addition, we show how the dimensionless deposition parameter L, relating the target-to-substrate distance to the ablation plume maximum expansion length, can be used to classify different growth regimes. It is thus possible to vary the stoichiometry and the morphology of the films, from compact and columnar to foam-like, by controlling both the gas pressure and the target-to-substrate distance

  1. Study of UV surface plasmons on metallic nanostructures and its applications to nanophotonics

    Science.gov (United States)

    Zhou, Liangcheng

    Modern nanotechnology requires the characterization ability in the order of 100 nm or smaller. This resolution requirement cannot be met by using conventional optical microscopy. Nowadays, the mainstream technique that is universally adopted to characterize optical properties on this length scale is Near-field Scanning Optical Microscopy (NSOM). In the effort to improve the resolution and efficiency of NSOM techniques, both nanoscopic fabrication and imaging techniques are critical because the light field strongly intereacts with the metallic NSOM probe or other surfaces to form surface plasmons (SPs). However, much is still unknown about the behavior of light interacting with metallic nanostructures. This calls for research that develops the tool set, methodology and that includes both experimental characterization, and numerical simulations, for the investigation of SPs. The short wavelength of UV light makes it particularly desirable for many industrial processes. So far, little research has been carried out to understand surface plasmon in the UV spectral region. Like conventional optics, UV SPs have unique properties and optical behavior. For this purpose, we modified our existing NSOM into a Photon Scanning Tunneling Microscope (PTSM) and demonstrate its power for the imaging of UV SPs. We present what we believe to be the first direct mapping of the UV SPs on an Al2O3/Al surface. UV SP modes launched by one-dimensional slits or two-dimensional groove arrays and corresponding interference phenomenon were both observed. We then use the same methodology in the engineering of optimized nano aperture such as UV bowtie nanoantenna. For the latter, we find a strong UV intensity profile which is localized to less than 50nm caused by a localized surface plasmon resonance. The relationship of optical field enhancement and antenna geometric shape is studied using numerical simulations and NSOM experiments. In another project, we examine the propagation of light from

  2. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species

    KAUST Repository

    Fang, Caihong; Jia, Henglei; Chang, Shuai; Ruan, Qifeng; Wang, Peng; Chen, Tao; Wang, Jianfang

    2014-01-01

    Integration of gold and titania in a nanoscale core/shell architecture can offer large active metal/semiconductor interfacial areas and avoid aggregation and reshaping of the metal nanocrystal core. Such hybrid nanostructures are very useful for studying plasmon-enhanced/enabled processes and have great potential in light-harvesting applications. Herein we report on a facile route to (gold nanocrystal core)/(titania shell) nanostructures with their plasmon band synthetically variable from ∼700 nm to over 1000 nm. The coating method has also been applied to other mono- and bi-metallic Pd, Pt, Au nanocrystals. The gold/titania nanostructures have been employed as the scattering layer in dye-sensitized solar cells, with the resultant cells exhibiting a 13.3% increase in the power conversion efficiency and a 75% decrease in the scattering-layer thickness. Moreover, under resonant excitation, the gold/titania nanostructures can efficiently utilize low-energy photons to generate reactive oxygen species, including singlet oxygen and hydroxyl radicals.

  3. Optical anisotropy of layered metal-dielectric nanostructures based on dense 2D-arrays of silver nanoparticles

    International Nuclear Information System (INIS)

    Jeshchenko, O.A.

    2013-01-01

    The spatial and polarization anisotropy of extinction spectra of parallel dense 2D-monolayers of Ag nanoparticles separated by dielectric films is theoretically studied. The dependences are interpreted as a result of collectivization of surface plasmon modes occurring due to strong dipole-dipole coupling silver nanoparticles

  4. Analysis of Mycotoxins in Beer Using a Portable Nanostructured Imaging Surface Plasmon Resonance Biosensor.

    Science.gov (United States)

    Joshi, Sweccha; Annida, Rumaisha M; Zuilhof, Han; van Beek, Teris A; Nielen, Michel W F

    2016-11-02

    A competitive inhibition immunoassay is described for the mycotoxins deoxynivalenol (DON) and ochratoxin A (OTA) in beer using a portable nanostructured imaging surface plasmon resonance (iSPR) biosensor, also referred to as imaging nanoplasmonics. The toxins were directly and covalently immobilized on a 3-dimensional carboxymethylated dextran (CMD) layer on a nanostructured iSPR chip. The assay is based on competition between the immobilized mycotoxins and free mycotoxins in the solution for binding to specific antibodies. The chip surface was regenerated after each cycle, and the combination of CMD and direct immobilization of toxins allowed the chips to be used for more than 450 cycles. The limits of detection (LODs) in beer were 17 ng/mL for DON and 7 ng/mL for OTA (or 0.09 ng/mL after 75 times enrichment). These LODs allowed detection of even less than 10% depletion of the tolerable daily intake of DON and OTA by beer. Significant cross-reactivity of anti-DON was observed toward DON-3-glucoside and 3-acetyl-DON, while no cross-reactivity was seen for 15-acetyl-DON. A preliminary in-house validation with 20 different batches of beer showed that both toxins can be detected at the considered theoretical safe level for beer. The assay can be used for in-field or at-line detection of DON in beer and also in barley without preconcentration, while OTA in beer requires an additional enrichment step, thus making the latter in its present form less suitable for field applications.

  5. Plasmonic enhancement in upconversion emission of La2O3:Er3+/Yb3+ phosphor via introducing silver metal nanoparticles

    Science.gov (United States)

    Tiwari, S. P.; Kumar, K.; Rai, V. K.

    2015-11-01

    In the present work, authors have synthesized silver (Ag) nanoparticle (NP) embedded La2O3:Er3+/Yb3+ powder phosphor. The synthesis method has resulted in silver oxide-lanthanum oxide composite material. Through subsequent heat treatment of sample in pellet form, the silver metal nanoparticles were formed. The presence of plasmonic Ag NPs in the matrix is confirmed by various techniques. Large enhancement in downconversion as well as upconversion emission intensity of Er3+ ions at various concentrations of Ag NPs is obtained. Large enhancement in the upconversion emission intensity is correlated to the reduction in decay time of 4S3/2 level in the presence of Ag NPs, and possible reasons for intensity enhancement are discussed. The application of phosphor in fingermark detection is demonstrated.

  6. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Directory of Open Access Journals (Sweden)

    J. Gabriel Ortega-Mendoza

    2014-10-01

    Full Text Available This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR. We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  7. Surface-Enhanced Raman Spectroscopy of Dye and Thiol Molecules Adsorbed on Triangular Silver Nanostructures: A Study of Near-Field Enhancement, Localization of Hot-Spots, and Passivation of Adsorbed Carbonaceous Species

    Directory of Open Access Journals (Sweden)

    Manuel R. Gonçalves

    2012-01-01

    Full Text Available Surface-enhanced Raman spectroscopy (SERS of thiols and dye molecules adsorbed on triangular silver nanostructures was investigated. The SERS hot-spots are localized at the edges and corners of the silver triangular particles. AFM and SEM measurements permit to observe many small clusters formed at the edges of triangular particles fabricated by nanosphere lithography. Finite-element calculations show that near-field enhancements can reach values of more than 200 at visible wavelengths, in the gaps between small spherical particles and large triangular particles, although for the later no plasmon resonance was found at the wavelengths investigated. The regions near the particles showing strong near-field enhancement are well correlated with spatial localization of SERS hot-spots done by confocal microscopy. Silver nanostructures fabricated by thermal evaporation present strong and fast fluctuating SERS activity, due to amorphous carbon contamination. Thiols and dye molecules seem to be able to passivate the undesired SERS activity on fresh evaporated silver.

  8. As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance

    Science.gov (United States)

    Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo

    2016-11-01

    The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics.

  9. Plasmonic light-sensitive skins of nanocrystal monolayers

    Science.gov (United States)

    Akhavan, Shahab; Gungor, Kivanc; Mutlugun, Evren; Demir, Hilmi Volkan

    2013-04-01

    We report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.

  10. Nucleation and Growth of Ordered Arrays of Silver Nanoparticles on Peptide Nanofibers: Hybrid Nanostructures with Antimicrobial Properties.

    Science.gov (United States)

    Pazos, Elena; Sleep, Eduard; Rubert Pérez, Charles M; Lee, Sungsoo S; Tantakitti, Faifan; Stupp, Samuel I

    2016-05-04

    Silver nanoparticles have been of great interest as plasmonic substrates for sensing and imaging, catalysts, or antimicrobial systems. Their physical properties are strongly dependent on parameters that remain challenging to control such as size, chemical composition, and spatial distribution. We report here on supramolecular assemblies of a novel peptide amphiphile containing aldehyde functionality in order to reduce silver ions and subsequently nucleate silver metal nanoparticles in water. This system spontaneously generates monodisperse silver particles at fairly regular distances along the length of the filamentous organic assemblies. The metal-organic hybrid structures exhibited antimicrobial activity and significantly less toxicity toward eukaryotic cells. Metallized organic nanofibers of the type described here offer the possibility to create hydrogels, which integrate the useful functions of silver nanoparticles with controllable metallic content.

  11. Surface Plasmon Resonance of Counterions coated Charged Silver Nanoparticles and Application in Bio-interaction

    Science.gov (United States)

    Ghosh, Goutam; Panicker, Lata; Naveen Kumar, N.; Mallick, Vivek

    2018-05-01

    Silver nanoparticles (SNPs) play very significant roles in biomedical applications, e.g., biosensors in numerous assays for quantitative detection, and the surface chemistry adds an important factor in that. In this investigation, we coated SNPs either by anionic citrates, like tri-lithium citrate (TLC) or tri-potassium citrate (TKC) which are associated with Li+ or K+ counterions, respectively; or by cationic surfactants, like cetylpyridinium chloride (CPC) or cetylpyridinium iodide (CPI) which are associated with Cl‑ or I‑ counterions, respectively, at the surface of nanoparticles. Our aim was to study (i) how the counterions affect the optical property of SNPs and (ii) the interaction of coated SNPs with a protein, hen egg white lysozyme (HEWL). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques were used to measure the size, and UV absorption spectroscopy was used to characterize the surface plasmon resonance (SPR) band of SNPs. ζ-potential, fluorescence quenching and circular dichroism (CD) spectroscopy techniques were used for characterizing the protein-nanoparticles interaction.

  12. Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles.

    Science.gov (United States)

    Amirjani, Amirmostafa; Fatmehsari, Davoud Haghshenas

    2018-01-01

    In this work, a rapid and straightforward method was developed for colorimetric determination of ammonia using smartphones. The mechanisms is based on the manipulation of the surface plasmon band of silver nanoparticles (AgNPs) via the formation of Ag (NH 3 ) 2 + complex. This complex decreases the amount of AgNPs in the solution and consequently, the color intensity of the colloidal system decreases. Not only the variation in color intensity of the solution can be tracked by a UV-vis spectrophotometer, but also a smartphone can be employed to monitor the color intensity variation by RGB analysis. Ammonia, in the concentration range of 10-1000mgL -1 , was successfully measured spectrophotometrically (UV-vis spectrophotometer) and colorimetrically (RGB measurement) with the detection limit of 180 and 200mgL -1 , respectively. Linear relationships were also developed for both methods. Also, the response time of the developed colorimetric sensor was around 20s. Both of the colorimetric and spectrophotometric methods showed a reliable performance for determination of ammonia in the real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  14. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chang; Wang Li; Yu Haojie; Wang Jianjun; Zhou Junfeng; Tan Qiaohua; Deng Libo [State Key Laboratory of Polymer Reaction Engineering, Zhejiang University, Hangzhou 310027 (China)

    2007-03-21

    A novel, effective strategy named 'seed catalysis' has been described here to synthesize silver nanostructures with controllable morphology. Typically, we added Na{sub 2}S into the reaction system and the Ag{sub 2}S semiconductor colloids formed at the initial stage would act as both seeds and catalyst in the silver reduction. The morphology of products is controlled by the concentration of Na{sub 2}S added to the system. Low concentration of Na{sub 2}S gives nanocubes of 40-50 nm in size, while a high concentration of Na{sub 2}S is of benefit to obtain nanowires. The growth of the silver crystal is also accelerated by the catalysis of Ag{sub 2}S. Electron microscopy and UV-vis absorption spectra have been used to investigate the evolution of silver nanowires, and a reasonable mechanism to explain the role of Ag{sub 2}S seeds has also been suggested. This semiconductor seed catalysis strategy will provide wide applications in the fabrication of metal nanomaterials.

  15. Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors.

    Science.gov (United States)

    Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju

    2018-01-10

    With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.

  16. Study of Immobilization Procedure on Silver Nanolayers and Detection of Estrone with Diverged Beam Surface Plasmon Resonance (SPR Imaging

    Directory of Open Access Journals (Sweden)

    Ibrahim Abdulhalim

    2013-03-01

    Full Text Available An immobilization protocol was developed to attach receptors on smooth silver thin films. Dense and packed 11-mercaptoundecanoic acid (11-MUA was used to avoid uncontrolled sulfidization and harmful oxidation of silver nanolayers. N,N'-dicyclohexylcarbodiimide (DCC and N-hydroxysuccinimide (NHS were added to make the silver surfaces reactive. A comparative study was carried out with different immersion times of silver samples in 11-MUA solutions with different concentrations to find the optimum conditions for immobilization. The signals, during each step of the protocol, were analyzed with a refractometer based on the surface plasmon resonance (SPR effect and luminescence techniques. Molecular interactions at the surfaces between the probe and target at the surface nanolayer shift the SPR signal, thus indicating the presence of the substance. To demonstrate specific biosensing, rabbit anti-estrone polyclonal immunoglobulin G (IgG antibody was immobilized through a linker on 47 nm silver layer deposited on SF11 glass. At the final stage, the representative endocrine disruptor—estrone—was attached and detected in deionized water with a diverging beam SPR imaging sensor.

  17. Dynamic Control of Plasmon-Exciton Coupling in Au Nanodisk–J-Aggregate Hybrid Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing; Juluri, Bala Krishna; Jensen, Linlin; Jensen, Lasse; Huang, Tony Jun

    2009-01-01

    We report the dynamic control of plasmon-exciton coupling in Au nanodisk arrays adsorbed with J-aggregate molecules by incident angle of light. The angle-resolved spectra of an array of bare Au nanodisks exhibit continuous shifting of localized surface plasmon resonances. This characteristic enables the production of real-time, controllable spectral overlaps between molecular and plasmonic resonances, and the efficient measurement of plasmon-exciton coupling as a function of wavelength with one or fewer nanodisk arrays. Experimental observations of varying plasmon-exciton coupling match with coupled dipole approximation calculations.

  18. Controlling successive ionic layer absorption and reaction cycles to optimize silver nanoparticle-induced localized surface plasmon resonance effects on the paper strip

    Science.gov (United States)

    Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin

    2017-03-01

    This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.

  19. Plasmonic photocatalysts based on silver nanoparticles - layered double hydroxides for efficient removal of toxic compounds using solar light

    Science.gov (United States)

    Gilea, Diana; Radu, Teodora; Muresanu, Mihaela; Carja, Gabriela

    2018-06-01

    Plasmon-enhanced photocatalysis holds important promise for chemical processes and outcomes. We present here the self-assemblies of silver nanoparticles (AgNP)/layered double hydroxides (LDHs: MeAlLDHs with Me2+ = Zn2+;Mg2+) and their derived AgNP/MMOs (type AgNP/MgAl2O4; AgNP/ZnO/ZnAl2O4) as novel plasmonic photocatalysts exhibiting activity for phenol photodegradation from aqueous solution by solar-light. The fabrication procedure of AgNP/LDHs assemblies is simple and cost effective and is based on the in-situ synthesis of AgNP on the LDHs matrices during the reconstruction of MgAlLDH and ZnAlLDH in the aqueous solution of Ag2SO4. The tested catalysts were thoroughly investigated - techniques to obtain information on their crystalline structure (XRD), surface properties (XPS), morphological features (TEM) and optical properties (UV-vis). The results show that the solar photocatalytic response of the catalysts is ascribed to the plasmonic response of AgNP though the catalytic efficiency is strongly influenced by the composition of the MeAlLDHs. The best photocatalytic performance was obtained on AgNP/ZnAlLDH750 catalyst that degraded 100% of phenol after 80 min of irradiation with solar light. The results reveal the high potential to tailor AgNP/LDHs and AgNP/MMOs as efficient photo-functional plasmonic hybrids for waste-water cleaning.

  20. Sensitive spectrophotometric determination of ascorbic acid in drugs and foods using surface plasmon resonance band of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Kobra Zarei

    2015-12-01

    Full Text Available A simple and sensitive procedure was proposed for spectrophotometric determination of ascorbic acid. It was found that the reduction of Ag+ to silver nanoparticles (Ag-NPs by ascorbic acid in the presence of polyvinylpyrrolidone (PVP as a stabilizing agent produce very intense surface plasmon resonance peak of Ag-NPs. The plasmon absorbance of the Ag-NPs at λ = 440 nm allows the quantitative spectrophotometric detection of the ascorbic acid. The calibration curve was linear with concentration of ascorbic acid in the range of 0.5–60 μM. The detection limit was obtained as 0.08 μM. The influence of potential interfering substances on the determination of ascorbic acid was studied. The proposed method was successfully applied for the determination of ascorbic acid in some powdered drink mixtures, commercial orange juice, natural orange juice, vitamin C injection, effervescent tablet, and multivitamin tablet.

  1. Unobstructed electron transfer on porous polyelectrolyte nanostructures and its characterization by electrochemical surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bryce W.; Linman, Matthew J.; Linley, Kamara S.; Hare, Christopher D. [Department of Chemistry, University of California, Riverside, CA 92521 (United States); Cheng Quan, E-mail: quan.cheng@ucr.ed [Department of Chemistry, University of California, Riverside, CA 92521 (United States)

    2010-06-01

    Thin organic films with desirable redox properties have long been sought in biosensor research. We report here the development of a polymer thin film interface with well-defined hierarchical nanostructure and electrochemical behavior, and its characterization by electrochemical surface plasmon resonance (ESPR) spectroscopy. The nano-architecture build-up is monitored in real time with SPR, while the redox response is characterized by cyclic voltammetry in the same flow cell. The multilayer assembly is built on a self-assembled monolayer (SAM) of 1:1 (molar ratio) 11-ferrocenyl-1-undecanethiolate (FUT) and mercaptoundecanoic acid (MUA), and constructed using a layer-by-layer deposition of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrenesulfonate) (PSS). Electron transfer (ET) on the mixed surface and the effect of the layer structures on ET are systematically studied. Under careful control, multiple layers can be deposited onto the 1:1 FUT/MUA SAM that presents unobstructed redox chemistry, indicating a highly ordered, extensively porous structure obtained under this condition. The use of SPR to trace the minute change during the electrochemical process offers neat characterization of local environment at the interface, in particular double layer region, allowing for better control over the redox functionality of the multilayers. The 1:1 SAM has a surface coverage of 4.1 +- 0.3 x 10{sup -10} mol cm{sup -2} for ferrocene molecules and demonstrates unperturbed electrochemistry activity even in the presence of a 13 nm polymer film adhered to the electrode surface. This thin layer possesses some desirable properties similar to those on a SAM while presenting approx15 nm exceedingly porous structure for high loading capacity. The high porosity allows perchlorate to freely partition into the film, leading to high current density that is useful for sensitive electrochemical measurements.

  2. Fabrication of Conductive Nanostructures by Femtosecond Laser Induced Reduction of Silver Ions

    Science.gov (United States)

    Barton, Peter G.

    6x bulk silver have been fabricated. Three-dimensional structures have also been fabricated with up to a 10microm height at a thickness of 500nm. This method can fabricate structures with the possible applications in plasmonic metamaterials, photonic crystals, MEMS/NEMS and micro/nanocircuitry.

  3. The substrate effect in electron energy-loss spectroscopy of localized surface plasmons in gold and silver nanoparticles

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Christensen, Thomas; Beleggia, Marco

    2017-01-01

    , as in optical measurements, the substrate material can modify the acquired signal. Here, we have investigated how the EELS signal recorded from supported silver and gold spheroidal nanoparticles at different electron beam impact parameter positions is affected by the choice of a dielectric substrate material...... and thickness. Consistent with previous optical studies, the presence of a dielectric substrate is found to redshift localized surface plasmons, increase their line-widths, and lead to increased prominence of higher order modes. The extent of these modifications heightens with increasing substrate permittivity...

  4. Plasmon-mediated binding forces on gold or silver homodimer and heterodimer

    International Nuclear Information System (INIS)

    Liaw, Jiunn-Woei; Kuo, Ting-Yu; Kuo, Mao-Kuen

    2016-01-01

    This study theoretically investigates plasmon-mediated optical binding forces, which are exerted on metal homo or heterodimers, induced by the normal illumination of a linearly polarized plane wave or Gaussian beam. Using the multiple multipole method, we analyzed the optical force in terms of Maxwell's stress tensor for various interparticle distance at some specific wavelengths. Numerical results show that for a given wavelength there are several stable equilibrium distances between two nanoparticles (NPs) of a homodimer, which are slightly shorter than some integer multiples of the wavelength in medium, such that metal dimer acts as bonded together. At these specific interparticle distances, the optical force between dimer is null and serves a restoring force, which is repulsive and attractive, respectively, as the two NPs are moving closer to and away from each other. The spring constant of the restoring force at the first stable equilibrium is always the largest, indicating that the first stable equilibrium distance is the most stable one. Moreover, the central line (orientation) of a dimer tends to be perpendicular to the polarization of light. For the cases of heterodimers, the phenomenon of stable equilibrium interparticle distance still exists, except there is an extra net photophoretic force drifting the heterodimer as one. Moreover, gradient force provided by a Gaussian beam may reduce the stability of these equilibriums, so larger NPs are preferred to stabilize a dimer under illumination of Gaussian beam. The finding may pave the way for using optical manipulation on the gold or silver colloidal self-assembly. - Highlights: • Optical binding force on Au/Ag dimer by linearly polarized light is studied. • For a wavelength several stable equilibriums for homodimer bound together exist. • The central line of a dimer tends to be perpendicular to the polarization of light. • For a heterodimer, stable equilibriums still exist with a net photophoretic

  5. Affecting the morphology of silver deposition on carbon nanotube surface: From nanoparticles to dendritic (tree-like) nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Forati-Nezhad, Mohsen [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Mir Mohamad Sadeghi, Gity, E-mail: gsadeghi@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Yaghmaie, Frank [Northern California Nanotechnology Center, University of California, Davis, CA 95616 (United States); Alimohammadi, Farbod [Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-01-01

    Chemical reduction was used to synthesize silver crystals on the surface of multiwall carbon nanotubes (MWCNTs) in the presence of acetone, N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone, and isopropyl alcohol as solvent. DMF and sodium dodecyl sulfate were used as a reducing and a stabilizing agent, respectively. The structure and nature of hybrid MWCNT/silver were characterized by Raman spectroscopy, FTIR spectroscopy, transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM). The presence of silver crystals on the nanotubes was confirmed by XRD. The results show the formation of silver crystals on the MWCNT surface and indicate that the morphology of silver crystals can be control by changing the solvent. The type of solvent is an effective parameter that affects the particle size and morphological transition from nanoparticles to silver trees. - Highlights: • The silver crystals are grown on the CNT surface by chemical reduction method. • The morphology of silver crystals is controlled by changing the solvent. • Silver nanoparticles and dendritic nanostructures on CNT surface are achieved. • Any change in structure and surface defects by synthesis condition is investigated.

  6. Silver nanoparticles incorporated into nanostructured biopolymer membranes produced by electrospinning: a study of antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Karen Segala

    2015-12-01

    Full Text Available abstract This study examines the antimicrobial activity of silver nanoparticles incorporated into nanostructured membranes made of cellulose acetate (CA and blends of chitosan/poly-(ethylene oxide, CTS/PEO and prepared by electrospinning. The formation of chemically synthesized Ag nanoparticles (AgNPs was monitored by UV-visible spectroscopy (UV-Vis and characterized by transmission electron microscopy (TEM. The size distribution of the AgNPs was measured by dynamic light scattering (DLS, with an average size of approximately 20 nm. The presence of AgNPs on the surface of electrospun nanofibers was observed by field emission electron microscopy (FEG and confirmed by TEM. The antimicrobial activity of AgNPs incorporated into nanostructured membranes made of CA and CTS/PEO electrospun nanofibers was evaluated in the presence of both Gram-positive bacteria, such as Staphylococcus aureus ATCC 29213 and Propionibacterium acnes ATCC 6919, and Gram-negative bacteria, such as Escherichia coli ATCC 25992 and Pseudomonas aeruginosa ATCC 17933. Microbiological results showed that the presence of AgNPs in CA and CTS/PEO nanostructured membranes has significant antimicrobial activity for the Gram-positive bacteria Escherichia coli and Propionibacterium acnes.

  7. Characterization and Application of DNA-templated Silver Nanoclusters and Polarized Spectroscopy of Self-Assembled Nanostructures

    DEFF Research Database (Denmark)

    Carro-Temboury, Miguel R.

    In this thesis two different systems are investigated envisioning their potential applications: DNA-templated silver nanoclusters (DNA-AgNCs) and ionic self-assembled (ISA) nanostructures based on azo-dyes. Mainly Visible-NIR spectroscopy was used to probe electronic transitions with absorbance a...

  8. Silver nanoparticles plasmon resonance-based method for the determination of uric acid in human plasma and urine samples

    International Nuclear Information System (INIS)

    Amjadi, M.; Rahimpour, E.

    2012-01-01

    We have developed a simple and sensitive colorimetric procedure for the quantification of trace amounts of uric acid. It is based on the finding that uric acid in a medium containing ammonia and sodium hydroxide at 65 0 C can reduce silver ions to form yellow silver nanoparticles (Ag NPs). These are stabilized in solution by using poly(vinyl alcohol) as a capping agent. The yellow color of the solution that results from the localized surface plasmon resonance of Ag NPs can be observed by the bare eye. The absorbance at 415 nm is proportional to the concentration of uric acid which therefore can be determined quantitatively. The calibration curve is linear in the concentration range from 10 to 200 nM, with a limit of detection of 3.3 nM. The method was successfully applied to the determination of uric acid in human plasma and urine samples. (author)

  9. Plasmonic biosensors.

    Science.gov (United States)

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  10. Plasmonic electromagnetic hot spots temporally addressed by photoinduced molecular displacement.

    Energy Technology Data Exchange (ETDEWEB)

    Juan, M. L.; Plain, J.; Bachelot, R.; Vial, A.; Royer, P.; Gray, S. K.; Montgomery, J. M.; Wiederrecht, G. P.; Univ. de Technologie de Troyes

    2009-04-23

    We report the observation of temporally varying electromagnetic hot spots in plasmonic nanostructures. Changes in the field amplitude, position, and spatial features are induced by embedding plasmonic silver nanorods in the photoresponsive azo-polymer. This polymer undergoes cis?trans isomerization and wormlike transport within resonant optical fields, producing a time-varying local dielectric environment that alters the locations where electromagnetic hot spots are produced. Finite-difference time-domain and Monte Carlo simulations that model the induced field and corresponding material response are presented to aid in the interpretation of the experimental results. Evidence for propagating plasmons induced at the ends of the rods is also presented.

  11. Indirect spectrophotometric determination of sulfadiazine based on localized surface plasmon resonance peak of silver nanoparticles after cloud point extraction.

    Science.gov (United States)

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Fattahi, Mohammad Reza; Khodaveisi, Javad

    2017-12-05

    A novel, efficient, easy to use, environmentally friendly and cost-effective methodology is developed for the indirect spectrophotometric determination of sulfadiazine in different samples. The method is based on the micelle-mediated extraction of silver sulfadiazine and converting the silver content of the resultant surfactant-rich phase to the silver nanoparticles via generation of [Ag(NH 3 ) 2 ] + followed by its chemical reduction using ascorbic acid. The changes in the amplitude of localized surface plasmon resonance peak of silver nanoparticles as a function of sulfadiazine concentration in the sample solution was monitored using fiber optic linear array spectrophotometry at 457nm. The experimental conditions were thoroughly investigated and optimized. Under the optimized condition, the developed procedure showed dynamic linear calibration within the range of 10.0-800.0μgL -1 with a detection limit of 2.8μgL -1 for sulfadiazine. The relative standard deviation of the method for six replicate measurements at 150.0μgL -1 of sulfadiazine was 4.7%. The developed method was successfully applied to the determination of sulfadiazine in different samples including well water, human urine, milk and pharmaceutical formulation. Copyright © 2017. Published by Elsevier B.V.

  12. Indirect spectrophotometric determination of sulfadiazine based on localized surface plasmon resonance peak of silver nanoparticles after cloud point extraction

    Science.gov (United States)

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Fattahi, Mohammad Reza; Khodaveisi, Javad

    2017-12-01

    A novel, efficient, easy to use, environmentally friendly and cost-effective methodology is developed for the indirect spectrophotometric determination of sulfadiazine in different samples. The method is based on the micelle-mediated extraction of silver sulfadiazine and converting the silver content of the resultant surfactant-rich phase to the silver nanoparticles via generation of [Ag(NH3)2]+ followed by its chemical reduction using ascorbic acid. The changes in the amplitude of localized surface plasmon resonance peak of silver nanoparticles as a function of sulfadiazine concentration in the sample solution was monitored using fiber optic linear array spectrophotometry at 457 nm. The experimental conditions were thoroughly investigated and optimized. Under the optimized condition, the developed procedure showed dynamic linear calibration within the range of 10.0-800.0 μg L- 1 with a detection limit of 2.8 μg L- 1 for sulfadiazine. The relative standard deviation of the method for six replicate measurements at 150.0 μg L- 1 of sulfadiazine was 4.7%. The developed method was successfully applied to the determination of sulfadiazine in different samples including well water, human urine, milk and pharmaceutical formulation.

  13. Plasmon-Organic Fiber Interactions in Diamond-Like Carbon Coated Nanostructured Gold Films

    DEFF Research Database (Denmark)

    Cielecki, Pawel Piotr; Sobolewska, Elżbieta Karolina; Kostiučenko, Oksana

    2017-01-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such p......Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence...

  14. Plasmon-organic fiber interactions in diamond-like carbon coated nanostructured gold films

    Science.gov (United States)

    Cielecki, Paweł Piotr; Sobolewska, Elżbieta Karolina; Kostiuočenko, Oksana; Leißner, Till; Tamulevičius, Tomas; Tamulevičius, Sigitas; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek

    2017-11-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays, coated with protective layers of varying thickness. We numerically investigate the spectral position of surface plasmon polariton resonances and electric field intensity, as a function of protective layer thickness, using the finite-difference time-domain method. To confirm the numerically indicated field enhancement preservation on top of protective layers, we experimentally map the second harmonic response of organic nanofibers. Subsequently, we characterize the plasmonic coupling between organic nanofibers and underlying substrates, considered as one of the main loss channels for photoluminescence from nanofibers, by time-resolved photoluminescence spectroscopy. Our findings reveal that, for the investigated system, plasmonic interactions are preserved for DLC coatings up to 55 nm. This is relevant for the fabrication of new passive and active plasmonic components with increased durability and hence prolonged lifetime.

  15. Synthesis of highly conductive cotton fiber/nanostructured silver/polyaniline composite membranes for water sterilization application

    International Nuclear Information System (INIS)

    Abu-Thabit, Nedal Y; Basheer, Rafil A

    2014-01-01

    Electrically conductive composite membranes (ECCMs) composed of cotton fibers, conductive polyaniline and silver nanostructures were prepared and utilized as electrifying filter membranes for water sterilization. Silver metal and polyaniline were formed in situ during the oxidative polymerization of aniline monomers in the presence of silver nitrate as weak oxidizing agent. The reaction was characterized by long induction period and the morphology of the obtained ECCMs contained silver nanoparticles and silver flakes of 500–1000 nm size giving a membrane electrical resistance in the range of 10–30 Ohm sq −1 . However, when dimethylformamide (DMF) was employed as an auxiliary reducing agent to trigger and speed up the polymerization reaction, silver nanostructures such as wires, ribbons, plates were formed and were found to be embedded between polyaniline coating and cotton fibers. These ECCMs exhibited a slightly lower resistance in the range of 2–10 Ohm sq. −1 and, therefore, were utilized for the fabrication of a bacteria inactivation device. When water samples containing 10 7 –10 8 CFU mL −1 E. coli bacteria were passed through the prepared ECCMs by gravity force, with a filtration rate of 0.8 L h −1 and at an electric potential of 20 V, the fabricated device showed 92% bacterial inactivation efficiency. When the treated solution was passed through the membrane for a second time under the same conditions, no E. coli bacteria was detected. (paper)

  16. Synthesis of highly conductive cotton fiber/nanostructured silver/polyaniline composite membranes for water sterilization application

    Science.gov (United States)

    Abu-Thabit, Nedal Y.; Basheer, Rafil A.

    2014-09-01

    Electrically conductive composite membranes (ECCMs) composed of cotton fibers, conductive polyaniline and silver nanostructures were prepared and utilized as electrifying filter membranes for water sterilization. Silver metal and polyaniline were formed in situ during the oxidative polymerization of aniline monomers in the presence of silver nitrate as weak oxidizing agent. The reaction was characterized by long induction period and the morphology of the obtained ECCMs contained silver nanoparticles and silver flakes of 500-1000 nm size giving a membrane electrical resistance in the range of 10-30 Ohm sq-1. However, when dimethylformamide (DMF) was employed as an auxiliary reducing agent to trigger and speed up the polymerization reaction, silver nanostructures such as wires, ribbons, plates were formed and were found to be embedded between polyaniline coating and cotton fibers. These ECCMs exhibited a slightly lower resistance in the range of 2-10 Ohm sq.-1 and, therefore, were utilized for the fabrication of a bacteria inactivation device. When water samples containing 107-108 CFU mL-1 E. coli bacteria were passed through the prepared ECCMs by gravity force, with a filtration rate of 0.8 L h-1 and at an electric potential of 20 V, the fabricated device showed 92% bacterial inactivation efficiency. When the treated solution was passed through the membrane for a second time under the same conditions, no E. coli bacteria was detected.

  17. Plasmonic nanoholes as SERS devices for biosensing applications: An easy route for nanostructures fabrication on glass substrates

    KAUST Repository

    Candeloro, Patrizio

    2016-12-26

    Surface enhanced Raman spectroscopy (SERS) has been largely exploited in the last decade for biochemical and biomedical research. But some issues still require attention before transferring SERS to bioclinical routinely practices, such as reproducibility, quantitative analysis and signal background interference. In this work we propose an easy and cheap route, based on a template stripping technique, for producing plasmonic nanostructured films with SERS capabilities. We focus our attention to nanoholes in a continuous gold film, conversely to the majority of the literature which is dealing with individual nanostructures. Plasmon resonances occur at the holes edges, thus enabling the possibility of SERS signals from biomolecules and the potential application as biosensors. One advantage of the nanoholes patterned film is the optical-subdiffraction pitch, which prevents any Raman and/or fluorescence signal arising from the bottom slide. This effect paves the way to standard glass slides, much cheaper than CaF2 ones, as suitable substrates for SERS devices, without any interfering signal coming from the glass itself.

  18. Recent Progress on Plasmon-Enhanced Fluorescence

    Directory of Open Access Journals (Sweden)

    Dong Jun

    2015-12-01

    Full Text Available The optically generated collective electron density waves on metal–dielectric boundaries known as surface plasmons have been of great scientific interest since their discovery. Being electromagnetic waves on gold or silver nanoparticle’s surface, localised surface plasmons (LSP can strongly enhance the electromagnetic field. These strong electromagnetic fields near the metal surfaces have been used in various applications like surface enhanced spectroscopy (SES, plasmonic lithography, plasmonic trapping of particles, and plasmonic catalysis. Resonant coupling of LSPs to fluorophore can strongly enhance the emission intensity, the angular distribution, and the polarisation of the emitted radiation and even the speed of radiative decay, which is so-called plasmon enhanced fluorescence (PEF. As a result, more and more reports on surface-enhanced fluorescence have appeared, such as SPASER-s, plasmon assisted lasing, single molecule fluorescence measurements, surface plasmoncoupled emission (SPCE in biological sensing, optical orbit designs etc. In this review, we focus on recent advanced reports on plasmon-enhanced fluorescence (PEF. First, the mechanism of PEF and early results of enhanced fluorescence observed by metal nanostructure will be introduced. Then, the enhanced substrates, including periodical and nonperiodical nanostructure, will be discussed and the most important factor of the spacer between molecule and surface and wavelength dependence on PEF is demonstrated. Finally, the recent progress of tipenhanced fluorescence and PEF from the rare-earth doped up-conversion (UC and down-conversion (DC nanoparticles (NPs are also commented upon. This review provides an introduction to fundamentals of PEF, illustrates the current progress in the design of metallic nanostructures for efficient fluorescence signal amplification that utilises propagating and localised surface plasmons.

  19. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    Science.gov (United States)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  20. Participation of the Third Order Optical Nonlinearities in Nanostructured Silver Doped Zinc Oxide Thin Solid Films

    Directory of Open Access Journals (Sweden)

    C. Torres-Torres

    2012-01-01

    Full Text Available We report the transmittance modulation of optical signals in a nanocomposite integrated by two different silver doped zinc oxide thin solid films. An ultrasonic spray pyrolysis approach was employed for the preparation of the samples. Measurements of the third-order nonlinear optical response at a nonresonant 532 nm wavelength of excitation were performed using a vectorial two-wave mixing. It seems that the separated contribution of the optical nonlinearity associated with each film noticeable differs in the resulting nonlinear effects with respect to the additive response exhibited by the bilayer system. An enhancement of the optical Kerr nonlinearity is predicted for prime number arrays of the studied nanoclusters in a two-wave interaction. We consider that the nanostructured morphology of the thin solid films originates a strong modification of the third-order optical phenomena exhibited by multilayer films based on zinc oxide.

  1. High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics

    International Nuclear Information System (INIS)

    Abargues, R; Marques-Hueso, J; Canet-Ferrer, J; Pedrueza, E; Valdes, J L; Jimenez, E; MartInez-Pastor, J P

    2008-01-01

    Polymer nanocomposites containing noble metal nanoparticles are promising materials for plasmonic applications. In this paper, we report on a high-resolution negative-tone nanocomposite resist based on poly(vinyl alcohol) where silver nanoparticles and nanopatterns are simultaneously generated by electron-beam lithography. Our results indicate nanostructures with a relatively high concentration of nanoparticles and, consequently, an electromagnetic coupling among the nanoparticles. Therefore, the patternable nanocomposite described in this work may be a suitable material for future plasmonic circuitry

  2. Dependence of the carrier mobility and trapped charge limited conduction on silver nanoparticles embedment in doped polypyrrole nanostructures

    Science.gov (United States)

    Biswas, Swarup; Dutta, Bula; Bhattacharya, Subhratanu

    2013-10-01

    The present article demonstrates an intensive study upon the temperature dependent current density (J)-voltage (V) characteristics of moderately doped polypyrrole nanostructure and its silver nanoparticles incorporated nanocomposites. Analysis of the measured J-V characteristics of different synthesized nano-structured samples within a wide temperature range revealed that the electrical conduction behavior followed a trapped charge-limited conduction and a transition of charge transport mechanism from deep exponential trap limited conduction to shallow traps limited conduction had been occurred due to the incorporation of silver nanoparticles within the polypyrrole matrix. A direct evaluation of carrier mobility as a function of electric field and temperature from the measured J-V characteristics illustrates that the incorporation of silver nanoparticles within the polypyrrole matrix enhances the carrier mobility at a large extent by reducing the concentration of traps within the polypyrrole matrix. The calculated mobility is consistent with the Poole-Frenkel form for the electrical field up to a certain temperature range. The nonlinear low temperature dependency of mobility of all the nanostructured samples was explained by Mott variable range hopping conduction mechanisms. Quantitative information regarding the charge transport parameters obtained from the above study would help to extend optimization strategies for the fabrication of new organic semiconducting nano-structured devices.

  3. Silver-mediated base pairings: towards dynamic DNA nanostructures with enhanced chemical and thermal stability

    International Nuclear Information System (INIS)

    Swasey, Steven M; Gwinn, Elisabeth G

    2016-01-01

    The thermal and chemical fragility of DNA nanomaterials assembled by Watson–Crick (WC) pairing constrain the settings in which these materials can be used and how they can be functionalized. Here we investigate use of the silver cation, Ag + , as an agent for more robust, metal-mediated self-assembly, focusing on the simplest duplex building blocks that would be required for more elaborate Ag + –DNA nanostructures. Our studies of Ag + -induced assembly of non-complementary DNA oligomers employ strands of 2–24 bases, with varied base compositions, and use electrospray ionization mass spectrometry to determine product compositions. High yields of duplex products containing narrowly distributed numbers of Ag + can be achieved by optimizing solution conditions. These Ag + -mediated duplexes are stable to at least 60 mM Mg 2+ , higher than is necessary for WC nanotechnology schemes such as tile assemblies and DNA origami, indicating that sequential stages of Ag + -mediated and WC-mediated assembly may be feasible. Circular dichroism spectroscopy suggests simple helical structures for Ag + -mediated duplexes with lengths to at least 20 base pairs, and further indicates that the structure of cytosine-rich duplexes is preserved at high urea concentrations. We therefore propose an approach towards dynamic DNA nanomaterials with enhanced thermal and chemical stability through designs that combine sturdy silver-mediated ‘frames’ with WC paired ‘pictures’. (paper)

  4. Application of aqueous dispersions of silver nanostructures for treatment of pyoinflammatory diseases with a chronic component

    International Nuclear Information System (INIS)

    Rutberg, Ph; Kolikov, V; Snetov, V; Stogov, A; Moshkin, A; Khalilov, M

    2011-01-01

    Bactericidal properties of aqueous dispersions of oxide silver nanostructures (ADSN) produced by means of pulsed electric discharges (PED) in water can use in surgery for treatment of upper purulent wounds with a chronic component. The patients with such wounds are of large number and differ on etiology of diseases but their mutual feature is long treatment without marked positive changes. Thus long application of antibiotics leads to abnormality of immune processes and antibacterial resistance of microbial flora. Moreover, local antiseptics are frequently toxic and one can oppress processes of reparation in a wound. The investigation is addressed to finding out the opportunity of usage of an ADSN for treatment of purulent wounds with a chronic component and comparison of its efficiency with the sodium hypochlorite. At investigation, the ADSN formed at PED of 5 - 10 μs duration, with highest share of 'small' (hydrodynamic diameter ≤ 100 nm) nanostructures and greatest surface electric charge we used. It was found that the usage of ADSN during the first 5 days characterized by high active reparative processes with their maximum at 3rd - 4th days and subsequent moderate further healing. At local use of ADSN, there were no cellular atypia and preternatural representations about inflammatory reactions. It is possible to assume that usage of ADSN will allow in prospect to correct the practice of out-patient therapy of chronic and slow pyoinflammatory diseases.

  5. Silver-Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy against Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Chen, Shaojiang; Popovich, John; Iannuzo, Natalie; Haydel, Shelley E; Seo, Dong-Kyun

    2017-11-15

    As antibiotic resistance continues to be a major public health problem, antimicrobial alternatives have become critically important. Nanostructured zeolites have been considered as an ideal host for improving popular antimicrobial silver-ion-exchanged zeolites, because with very short diffusion path lengths they offer advantages in ion diffusion and release over their conventional microsized zeolite counterparts. Herein, comprehensive studies are reported on materials characteristics, silver-ion release kinetics, and antibacterial properties of silver-ion-exchanged nanostructured zeolite X with comparisons to conventional microsized silver-ion-exchanged zeolite (∼2 μm) as a reference. The nanostructured zeolites are submicrometer-sized aggregates (100-700 nm) made up of primary zeolite particles with an average primary particle size of 24 nm. The silver-ion-exchanged nanostructured zeolite released twice the concentration of silver ions at a rate approximately three times faster than the reference. The material exhibited rapid antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 4 to 16 μg/mL after 24 h exposure in various growth media and a minimum bactericidal concentration (MBC; >99.9% population reduction) of 1 μg/mL after 2 h in water. While high concentrations of silver-ion-exchanged nanostructured zeolite X were ineffective at reducing MRSA biofilm cell viability, efficacy increased at lower concentrations. In consideration of potential medical applications, cytotoxicity of the silver-ion-exchanged nanostructured zeolite X was also investigated. After 4 days of incubation, significant reduction in eukaryotic cell viability was observed only at concentrations 4-16-fold greater than the 24 h MIC, indicating low cytotoxicity of the material. Our results establish silver-ion-exchanged nanostructured zeolites as an effective antibacterial material against dangerous

  6. Single attosecond pulse generation by using plasmon-driven double optical gating technology in crossed metal nanostructures

    Science.gov (United States)

    Feng, Liqiang; Liu, Katheryn

    2018-05-01

    An effective method to obtain the single attosecond pulses (SAPs) by using the multi-cycle plasmon-driven double optical gating (DOG) technology in the specifically designed metal nanostructures has been proposed and investigated. It is found that with the introduction of the crossed metal nanostructures along the driven and the gating polarization directions, not only the harmonic cutoff can be extended, but also the efficient high-order harmonic generation (HHG) at the very highest orders occurs only at one side of the region inside the nanostructure. As a result, a 93 eV supercontinuum with the near stable phase can be found. Further, by properly introducing an ultraviolet (UV) pulse into the driven laser polarization direction (which is defined as the DOG), the harmonic yield can be enhanced by two orders of magnitude in comparison with the singe polarization gating (PG) technology. However, as the polarized angle or the ellipticity of the UV pulse increase, the enhancement of the harmonic yield is slightly reduced. Finally, by superposing the selected harmonics from the DOG scheme, a 30 as SAP with intensity enhancement of two orders of magnitude can be obtained.

  7. Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates.

    Science.gov (United States)

    Xu, Ping; Mack, Nathan H; Jeon, Sea-Ho; Doorn, Stephen K; Han, Xijiang; Wang, Hsing-Lin

    2010-06-01

    We report a facile synthesis of large-area homogeneous three-dimensional (3D) Ag nanostructures on Au-supported polyaniline (PANI) membranes through a direct chemical reduction of metal ions by PANI. The citric acid absorbed on the Au nuclei that are prefabricated on PANI membranes directs Ag nanoaprticles (AgNPs) to self-assemble into 3D Ag nanosheet structures. The fabricated hybrid metal nanostructures display uniform surface-enhanced Raman scattering (SERS) responses throughout the whole surface area, with an average enhancement factor of 10(6)-10(7). The nanocavities formed by the stereotypical stacking of these Ag nanosheets and the junctions and gaps between two neighboring AgNPs are believed to be responsible for the strong SERS response upon plasmon absorption. These homogeneous metal nanostructure decorated PANI membranes can be used as highly efficient SERS substrates for sensitive detection of chemical and biological analytes.

  8. Graphene as a local probe to investigate near-field properties of plasmonic nanostructures

    Science.gov (United States)

    Wasserroth, Sören; Bisswanger, Timo; Mueller, Niclas S.; Kusch, Patryk; Heeg, Sebastian; Clark, Nick; Schedin, Fredrik; Gorbachev, Roman; Reich, Stephanie

    2018-04-01

    Light interacting with metallic nanoparticles creates a strongly localized near-field around the particle that enhances inelastic light scattering by several orders of magnitude. Surface-enhanced Raman scattering describes the enhancement of the Raman intensity by plasmonic nanoparticles. We present an extensive Raman characterization of a plasmonic gold nanodimer covered with graphene. Its two-dimensional nature and energy-independent optical properties make graphene an excellent material for investigating local electromagnetic near-fields. We show the localization of the near-field of the plasmonic dimer by spatial Raman measurements. Energy- and polarization-dependent measurements reveal the local near-field resonance of the plasmonic system. To investigate the far-field resonance we perform dark-field spectroscopy and find that near-field and far-field resonance energies differ by 170 meV, much more than expected from the model of a damped oscillator (40 meV).

  9. Coherent Plasmon-Exciton Coupling in Silver Platelet-J-aggregate Nanocomposites

    Science.gov (United States)

    2015-02-27

    visible spectra of colloidal suspensions containing silver nanoplatelets and a cyanine dye, 1,1?-diethyl-2,2?-cyanine iodide (PIC). PIC was...highest reported for colloidal nanoparticles. The optical properties of the silver platelet-J-aggregate nanocomposites were supported numerically and...visible spectra of colloidal suspensions containing silver nanoplatelets and a cyanine dye, 1,1′-diethyl-2,2′-cyanine iodide (PIC). PIC was electrostati

  10. Electron energy-loss spectroscopy of branched gap plasmon resonators

    DEFF Research Database (Denmark)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen

    2016-01-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale......, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons...... in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron...

  11. Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from a weed Solidago altissima (goldenrod)

    Science.gov (United States)

    Kumar, Vemu Anil; Uchida, Takashi; Mizuki, Toru; Nakajima, Yoshikata; Katsube, Yoshihiro; Hanajiri, Tatsuro; Maekawa, Toru

    2016-03-01

    Phytosynthesis of nanomaterials is advantageous since it is economical, ecofriendly, and simple, and, what is more, in the synthetic protocols, nontoxic chemicals and biocompatible materials are used. Here, a green synthetic methodology of nanoparticles (NPs) composed of silver (Ag) and silver chloride (AgCl) NPs is developed using a leaf extract of Solidago altissima as a reducing agent for the first time. Utilization of a terrestrial weed for the synthesis of Ag and AgCl NPs is a novel environmentally friendly approach considering that no toxic chemicals, external halide source, or elaborate experimental procedures are included in the process. The optical properties and elemental compositions of as-synthesized Ag and AgCl NPs are well characterized, and the degradation of an organic dye, i.e., rhodamine B (RhB), is investigated using the Ag and AgCl NPs. We find that degradation of RhB is effectively achieved thanks to both surface plasmon resonance and semiconductor properties of Ag and AgCl NPs. The surface-enhanced Raman scattering and antibacterial activities are also examined. The present approach to the synthesis of NPs using a weed may encourage the utilization of hazardous plants for the creation of novel nanomaterials.

  12. Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from a weed Solidago altissima (goldenrod)

    International Nuclear Information System (INIS)

    Kumar, Vemu Anil; Uchida, Takashi; Mizuki, Toru; Nakajima, Yoshikata; Katsube, Yoshihiro; Hanajiri, Tatsuro; Maekawa, Toru

    2016-01-01

    Phytosynthesis of nanomaterials is advantageous since it is economical, ecofriendly, and simple, and, what is more, in the synthetic protocols, nontoxic chemicals and biocompatible materials are used. Here, a green synthetic methodology of nanoparticles (NPs) composed of silver (Ag) and silver chloride (AgCl) NPs is developed using a leaf extract of Solidago altissima as a reducing agent for the first time. Utilization of a terrestrial weed for the synthesis of Ag and AgCl NPs is a novel environmentally friendly approach considering that no toxic chemicals, external halide source, or elaborate experimental procedures are included in the process. The optical properties and elemental compositions of as-synthesized Ag and AgCl NPs are well characterized, and the degradation of an organic dye, i.e., rhodamine B (RhB), is investigated using the Ag and AgCl NPs. We find that degradation of RhB is effectively achieved thanks to both surface plasmon resonance and semiconductor properties of Ag and AgCl NPs. The surface-enhanced Raman scattering and antibacterial activities are also examined. The present approach to the synthesis of NPs using a weed may encourage the utilization of hazardous plants for the creation of novel nanomaterials. (paper)

  13. Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers

    International Nuclear Information System (INIS)

    Toudert, J.; Camelio, S.; Babonneau, D.; Denanot, M.-F.; Girardeau, T.; Espinos, J.P.; Yubero, F.; Gonzalez-Elipe, A.R.

    2005-01-01

    Nanocermet trilayered thin films consisting of silver nanoclusters sandwiched between two dielectric layers (the buffer and the cap) have been synthesized by ion-beam sputtering with an alternate deposition of the metal and the dielectric species. The influence of the amount of silver, the nature of the buffer and the cap (BN or Si 3 N 4 ), and a time delay before the cap deposition on clusters morphology and repartition have been investigated by transmission electron microscopy. It has been observed that the clusters display truncated ellipsoidal shapes in which the height to diameter ratio H/D decreases as the amount of deposited silver increases. For a given amount of silver, this ratio is lower in the case of a Si 3 N 4 cap, whatever the nature of the buffer. Two explanations are proposed to account for this 'cap effect' on clusters morphology: the first one is based on a calculation of the H/D minimizing the surface free energy of the clusters embedded between the buffer and the cap; the second one holds on the shape relaxation of the coalesced nonequilibrium clusters towards their equilibrium shape with the buffer, this process occurring until clusters are fully covered with the cap. Because of the higher deposition rate of Si 3 N 4 compared to BN, a Si 3 N 4 cap would allow a less efficient reshaping and consequently lead to flatter clusters. This explanation is supported by the temporal evolution of clusters morphology and repartition observed during the time delay before deposition of the cap. The evolution of the spectral position of the surface-plasmon resonance (SPR) of the trilayers as a function of their structure has also been investigated by optical transmittance measurements. The influence of cluster morphology, as well as the nature of the buffer and the cap on the SPR spectral position are discussed

  14. Formation of plasmonic silver nanoparticles using rapid thermal annealing at low temperature and study in reflectance reduction of Si surface

    Science.gov (United States)

    Barman, Bidyut; Dhasmana, Hrishikesh; Verma, Abhishek; Kumar, Amit; Pratap Chaudhary, Shiv; Jain, V. K.

    2017-09-01

    This work presents studies of plasmonic silver nanoparticles (AgNPs) formation at low temperatures (200 °C-300 °C) onto Si surface by sputtering followed with rapid thermal processing (RTP) for different time durations(5-30 min). The study reveals that 20 min RTP at all temperatures show minimum average size of AgNPs (60.42 nm) with corresponding reduction in reflectance of Si surface from 40.12% to mere 1.15% only in wavelength region 300-800 nm for RTP at 200 °C. A detailed supporting growth mechanism is also discussed. This low temperature technique can be helpful in achieving efficiency improvement in solar cells via reflectance reduction with additional features such as reproducibility, minimal time and very good adhesion without damaging underlying layers device parameters.

  15. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances.

    Science.gov (United States)

    Halpern, Aaron R; Corn, Robert M

    2013-02-26

    A novel low-cost nanoring array fabrication method that combines the process of lithographically patterned nanoscale electrodeposition (LPNE) with colloidal lithography is described. Nanoring array fabrication was accomplished in three steps: (i) a thin (70 nm) sacrificial nickel or silver film was first vapor-deposited onto a plasma-etched packed colloidal monolayer; (ii) the polymer colloids were removed from the surface, a thin film of positive photoresist was applied, and a backside exposure of the photoresist was used to create a nanohole electrode array; (iii) this array of nanoscale cylindrical electrodes was then used for the electrodeposition of gold, silver, or nickel nanorings. Removal of the photoresist and sacrificial metal film yielded a nanoring array in which all of the nanoring dimensions were set independently: the inter-ring spacing was fixed by the colloidal radius, the radius of the nanorings was controlled by the plasma etching process, and the width of the nanorings was controlled by the electrodeposition process. A combination of scanning electron microscopy (SEM) measurements and Fourier transform near-infrared (FT-NIR) absorption spectroscopy were used to characterize the nanoring arrays. Nanoring arrays with radii from 200 to 400 nm exhibited a single strong NIR plasmonic resonance with an absorption maximum wavelength that varied linearly from 1.25 to 3.33 μm as predicted by a simple standing wave model linear antenna theory. This simple yet versatile nanoring array fabrication method was also used to electrodeposit concentric double gold nanoring arrays that exhibited multiple NIR plasmonic resonances.

  16. Plasmonic Photovoltaic Cells with Dual-Functional Gold, Silver, and Copper Half-Shell Arrays.

    Science.gov (United States)

    Wu, Ling; Kim, Gyu Min; Nishi, Hiroyasu; Tatsuma, Tetsu

    2017-09-12

    Solid-state photovoltaic cells based on plasmon-induced charge separation (PICS) have attracted growing attention during the past decade. However, the power conversion efficiency (PCE) of the previously reported devices, which are generally loaded with dispersed metal nanoparticles as light absorbers, has not been sufficiently high. Here we report simpler plasmonic photovoltaic cells with interconnected Au, Ag, and Cu half-shell arrays deposited on SiO 2 @TiO 2 colloidal crystals, which serve both as a plasmonic light absorber and as a current collector. The well-controlled and easily prepared plasmonic structure allows precise comparison of the PICS efficiency between different plasmonic metal species. The cell with the Ag half-shell array has higher photovoltaic performance than the cells with Au and Cu half-shell arrays because of the high population of photogenerated energetic electrons, which gives a high electron injection efficiency and suppressed charge recombination probability, achieving the highest PCE among the solid-state PICS devices even without a hole transport layer.

  17. Fabrication of large area plasmonic nanoparticle grating structure on silver halide based transmission electron microscope film and its application as a surface enhanced Raman spectroscopy substrate

    International Nuclear Information System (INIS)

    Sudheer,; Tiwari, P.; Singh, M. N.; Sinha, A. K.; Rai, V. N.; Srivastava, A. K.; Bhartiya, S.; Mukherjee, C.

    2015-01-01

    The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating. The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure

  18. Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyoshi, Yoshifumi; Nemoto, Takashi; Kurata, Hiroki, E-mail: kurata@eels.kuicr.kyoto-u.ac.jp

    2017-04-15

    In this study, electron energy-loss spectroscopy (EELS) in conjunction with scanning transmission electron microscopy (STEM) was used to investigate surface plasmons in a single silver nanoparticle (NP) on a magnesium oxide substrate, employing an incident electron trajectory parallel to the substrate surface. This parallel irradiation allowed a direct exploration of the substrate effects on localized surface plasmon (LSP) excitations as a function of the distance from the substrate. The presence of the substrate was found to lower the symmetry of the system, such that the resonance energies of LSPs were dependent on the polarization direction relative to the substrate surface. The resulting mode splitting could be detected by applying different electron trajectories, providing results similar to those previously obtained from optical studies using polarized light. However, the LSP maps obtained by STEM-EELS analysis show an asymmetric intensity distribution with the highest intensity at the top surface of the NP (that is, far from the substrate), a result that is not predicted by optical simulations. We show that modifications of the applied electric field by the substrate cause this asymmetric intensity distribution in the LSP maps.

  19. Biomolecule-assisted hydrothermal synthesis of silver bismuth sulfide with nanostructures

    International Nuclear Information System (INIS)

    Kaowphong, Sulawan

    2012-01-01

    Silver bismuth sulfide (AgBiS 2 ) nanostructures were successfully prepared via a simple biomolecule-assisted hydrothermal synthesis at 200 °C for 12–72 h. Silver nitrate, bismuth nitrate and L-cysteine were used as starting materials. Here, the biomolecule, L-cysteine, was served as the sulfide source and a complexing agent. The products, characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were cubic AgBiS 2 nanoparticles with a diameter range of about 20–75 nm. It was found that their crystallinity and particle size increased with increasing reaction time. The energy dispersive X-ray spectroscopy (EDX) and inductively coupled plasma optical emission spectrophotometry (ICP-OES) analyses were used to confirm the stoichiometry of AgBiS 2 . The optical band gap of the AgBiS 2 nanoparticles, calculated from UV–vis spectra, was 3.0 eV which indicated a strong blue shift because of the quantum confinement effect. A possible formation mechanism of the AgBiS 2 nanoparticles was also discussed. - Graphical abstract: The optical band gap of the as-prepared AgBiS 2 nanoparticles displays a strong blue shift comparing to the 2.46 eV of bulk AgBiS 2 caused by the quantum confinement effects. Highlights: ► A simple biomolecule-assisted hydrothermal method is developed to prepare AgBiS 2 . ► L-Cysteine is served as the sulfide source and a complexing agent. ► Increase in band gap of the AgBiS 2 nanoparticles attributes to the quantum confinement effects.

  20. Microstructural and Z-scan measurement of silver nanoparticles

    International Nuclear Information System (INIS)

    Sivakami, R.; Dhanuskodi, S.

    2015-01-01

    Graphical abstract: - Highlights: • Novel Ag nanoparticles were prepared by hydrothermal method. • The modified forms of W-H analysis of Ag nanoparticles are reported first time. • Nonlinear optical (NLO) properties of Ag nanoflowers are reported and high nonlinearity was obtained. - Abstract: Silver nanoflowers were synthesized by the hydrothermal route. Formation of Ag nanoparticles is confirmed from the UV–vis spectrum where the surface plasmon absorption maxima are observed at 415–454 nm. FE-SEM and TEM images revealed the formation of silver nanoflowers and the flower-like silver nanostructures are estimated using transmission electron microscopy. XRD confirms that the synthesized silver is highly crystalline with face centered cubic structure. The X-ray line broadening is studied by the modified forms of Williamson–Hall analysis. The Z-scan results reveal that the flower-like silver nanostructures exhibit the nonlinear susceptilibility as 1.14 × 10 −5 esu

  1. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.

    Science.gov (United States)

    Li, Chien-Hung; Jamison, Andrew C; Rittikulsittichai, Supparesk; Lee, Tai-Chou; Lee, T Randall

    2014-11-26

    Porous silica-coated hollow gold-silver nanoshells were successfully synthesized utilizing a procedure where the porous silica shell was produced prior to the transformation of the metallic core, providing enhanced control over the structure/composition of the bimetallic hollow core. By varying the reaction time and the precise amount of gold salt solution added to a porous silica-coated silver-core template solution, composite nanoparticles were tailored to reveal a readily tunable surface plasmon resonance that could be centered across the visible and near-IR spectral regions (∼445-800 nm). Characterization by X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed that the synthetic methodology afforded particles having uniform composition, size, and shape. The optical properties were evaluated by absorption/extinction spectroscopy. The stability of colloidal solutions of our composite nanoparticles as a function of pH was also investigated, revealing that the nanoshells remain intact over a wide range of conditions (i.e., pH 2-10). The facile tunability, enhanced stability, and relatively small diameter of these composite particles (∼110 nm) makes them promising candidates for use in tumor ablation or as photothermal drug-delivery agents.

  2. Ultrathin silicon solar cells with enhanced photocurrents assisted by plasmonic nanostructures

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Stassen, Erik; Mortensen, N. Asger

    2012-01-01

    Thin-film photovoltaics offers the potential for a significant cost reduction compared to traditional photovoltaics. However, the performance of thin-film solar cells is limited by poor light absorption. We have devised an ultra-thin-film silicon solar cell configuration assisted by plasmonic nan...

  3. Negative optical absorption and up-energy conversion in dendrites of nanostructured silver grafted with α/β-poly(vinylidene fluoride) in small hierarchical structures

    Science.gov (United States)

    Phule, A. D.; Ram, S.; Shinde, S. K.; Choi, J. H.; Tyagi, A. K.

    2018-04-01

    We report that a negative optical absorption arises in a sharp band at 325 nm (energy hν2) in a nanostructured silver (n-Ag) doped poly(vinylidene fluoride) (PVF2) in a hybrid nanocomposite of films (∼100 μm thickness). Two polymorphs α- and β-PVF2 are co-stretched through the n-Ag crystallites in dendrites of hierarchical structures. A critical 0.5 wt% n-Ag dosage promotes this band of extinction coefficient to be enhanced by as much as 2.009 × 103, i.e. a 30% value in the Ag-surface plasmon band 350-650 nm (hν1). An electron donor Ag (4d105s1) bonds to an electron accepter moiety CF2 of PVF2, it tunes a dielectric field and sets up an up-energy conversion of the plasmon band. The FESEM and HRTEM images reveal fcc-Ag dendrites entangled with in-built PVF2 surface layers (2-3 nm thickness). The IR phonon bands show how a α → β-PVF2 transformation propagates onto a nascent n-Ag surface and how it is raised-up in small steps of 0.1 wt% and up to 5.0 wt%. In a model scheme, we illustrate how a rigid core-shell of a capsule conducts a new transfer mechanism of the energy to a cold surface plasmon (core) in a coherent collision, so as to balance a net value hν2 = h(ν3 - ν1). It absorbs light in a weak band at 210 nm (hν3) in a π → π* electron transition in the Cdbnd C bonds of the PVF2 (shell), and results in a negative absorption in a coherent excitation of the energy-carriers. A light-emitter on absorption over a wide range of wavelengths (200-650 nm) offers a unique type of energy-converter.

  4. Mega-electron-volt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass

    NARCIS (Netherlands)

    Penninkhof, JJ; Polman, A; Sweatlock, LA; Maier, SA; Atwater, HA; Vredenberg, AM; Kooi, BJ; Sweatlock, Luke A.; Maier, Stefan A.

    2003-01-01

    30 MeV Si ion beam irradiation of silica glass containing Ag nanocrystals causes alignment of Ag nanocrystals in arrays along the ion tracks. Optical transmission measurements show a large splitting of the surface plasmon resonance bands for polarizations longitudinal and transversal to the arrays.

  5. Optical spectra of composite silver-porous silicon (Ag-pSi) nanostructure based periodical lattice

    Science.gov (United States)

    Amedome Min-Dianey, Kossi Aniya; Zhang, Hao-Chun; Brohi, Ali Anwar; Yu, Haiyan; Xia, Xinlin

    2018-03-01

    Numerical finite differential time domain (FDTD) tools were used in this study for predicting the optical characteristics through the nanostructure of composite silver-porous silicon (Ag-pSi) based periodical lattice. This is aimed at providing an interpretation of the optical spectra at known porosity in improvement of the light manipulating efficiency through a proposed structure. With boundary conditions correctly chosen, the numerical simulation was achieved using FDTD Lumerical solutions. This was used to investigate the effect of porosity and the number of layers on the reflection, transmission and absorption characteristics through a proposed structure in a visible wavelength range of 400-750 nm. The results revealed that the higher the number of layers, the lower the reflection. Also, the reflection increases with porosity increase. The transmission characteristics were the inverse to those found in the case of reflection spectra and optimum transmission was attained at high number of layers. Also, increase in porosity results in reduced transmission. Increase in porosity as well as in the number of layers led to an increase in absorption. Therefore, absorption into such structure can be enhanced by elevating the number of layers and the degree of porosity.

  6. Fabrication of flexible silver nanowire conductive films and transmittance improvement based on moth-eye nanostructure array

    Science.gov (United States)

    Zhang, Chengpeng; Zhu, Yuwen; Yi, Peiyun; Peng, Linfa; Lai, Xinmin

    2017-07-01

    Transparent conductive electrodes (TCEs) are widely used in optoelectronic devices, such as touch screens, liquid-crystal displays and light-emitting diodes. To date, the material of the most commonly used TCEs was indium-tin oxide (ITO), which had several intrinsic drawbacks that limited its applications in the long term, including relatively high material cost and brittleness. Silver nanowire (AgNW), as one of the alternative materials for ITO TCEs, has already gained much attention all over the world. In this paper, we reported a facile method to greatly enhance the transmittance of the AgNW TCEs without reducing the electrical conductivity based on moth-eye nanostructures, and the moth-eye nanostructures were fabricated by using a roll-to-roll ultraviolet nanoimprint lithography process. Besides, the effects of mechanical pressure and bending on the moth-eye nanostructure layer were also investigated. In the research, the optical transmittance of the flexible AgNW TCEs was enhanced from 81.3% to 86.0% by attaching moth-eye nanostructures onto the other side of the flexible polyethylene terephthalate substrate while the electrical conductivity of the AgNW TCEs was not sacrificed. This research can provide a direction for the cost-effective fabrication of moth-eye nanostructures and the transmittance improvement of the flexible transparent electrodes.

  7. Fabrication of flexible silver nanowire conductive films and transmittance improvement based on moth-eye nanostructure array

    International Nuclear Information System (INIS)

    Zhang, Chengpeng; Zhu, Yuwen; Yi, Peiyun; Peng, Linfa; Lai, Xinmin

    2017-01-01

    Transparent conductive electrodes (TCEs) are widely used in optoelectronic devices, such as touch screens, liquid-crystal displays and light-emitting diodes. To date, the material of the most commonly used TCEs was indium-tin oxide (ITO), which had several intrinsic drawbacks that limited its applications in the long term, including relatively high material cost and brittleness. Silver nanowire (AgNW), as one of the alternative materials for ITO TCEs, has already gained much attention all over the world. In this paper, we reported a facile method to greatly enhance the transmittance of the AgNW TCEs without reducing the electrical conductivity based on moth-eye nanostructures, and the moth-eye nanostructures were fabricated by using a roll-to-roll ultraviolet nanoimprint lithography process. Besides, the effects of mechanical pressure and bending on the moth-eye nanostructure layer were also investigated. In the research, the optical transmittance of the flexible AgNW TCEs was enhanced from 81.3% to 86.0% by attaching moth-eye nanostructures onto the other side of the flexible polyethylene terephthalate substrate while the electrical conductivity of the AgNW TCEs was not sacrificed. This research can provide a direction for the cost-effective fabrication of moth-eye nanostructures and the transmittance improvement of the flexible transparent electrodes. (paper)

  8. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: Dependence on metal film thickness

    Science.gov (United States)

    Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.

    2018-05-01

    We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.

  9. A volume integral equation solver for quantum-corrected transient analysis of scattering from plasmonic nanostructures

    KAUST Repository

    Sayed, Sadeed Bin; Uysal, Ismail Enes; Bagci, Hakan; Ulku, H. Arda

    2018-01-01

    Quantum tunneling is observed between two nanostructures that are separated by a sub-nanometer gap. Electrons “jumping” from one structure to another create an additional current path. An auxiliary tunnel is introduced between the two structures as a support for this so that a classical electromagnetic solver can account for the effects of quantum tunneling. The dispersive permittivity of the tunnel is represented by a Drude model, whose parameters are obtained from the electron tunneling probability. The transient scattering from the connected nanostructures (i.e., nanostructures plus auxiliary tunnel) is analyzed using a time domain volume integral equation solver. Numerical results demonstrating the effect of quantum tunneling on the scattered fields are provided.

  10. Planar self-aligned imprint lithography for coplanar plasmonic nanostructures fabrication

    KAUST Repository

    Wan, Weiwei

    2014-03-01

    Nanoimprint lithography (NIL) is a cost-efficient nanopatterning technology because of its promising advantages of high throughput and high resolution. However, accurate multilevel overlay capability of NIL required for integrated circuit manufacturing remains a challenge due to the high cost of achieving mechanical alignment precision. Although self-aligned imprint lithography was developed to avoid the need of alignment for the vertical layered structures, it has limited usage in the manufacture of the coplanar structures, such as integrated plasmonic devices. In this paper, we develop a new process of planar self-alignment imprint lithography (P-SAIL) to fabricate the metallic and dielectric structures on the same plane. P-SAIL transfers the multilevel imprint processes to a single-imprint process which offers higher efficiency and less cost than existing manufacturing methods. Such concept is demonstrated in an example of fabricating planar plasmonic structures consisting of different materials. © 2014 Springer-Verlag Berlin Heidelberg.

  11. Hot Electron Photoemission from Plasmonic Nanostructures: The Role of Surface Photoemission and Transition Absorption

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Ikhsanov, Renat Sh

    2015-01-01

    We study mechanisms of photoemission of hot electrons from plasmonic nanoparticles. We analyze the contribution of "transition absorption", i.e., loss of energy of electrons passing through the boundary between different materials, to the surface mechanism of photoemission. We calculate photoemis......We study mechanisms of photoemission of hot electrons from plasmonic nanoparticles. We analyze the contribution of "transition absorption", i.e., loss of energy of electrons passing through the boundary between different materials, to the surface mechanism of photoemission. We calculate...... photoemission rate and transition absorption for nanoparticles surrounded by various media with a broad range of permittivities and show that photoemission rate and transition absorption follow the same dependence on the permittivity. Thus, we conclude that transition absorption is responsible...

  12. Spatially-resolved EEL studies of plasmons in silver filled carbon nanotubes using a dedicated STEM

    International Nuclear Information System (INIS)

    Bangert, U; Harvey, A J; Seepujak, A

    2008-01-01

    Using a dedicated FEG STEM, we present highly spatially-resolved electron energy-loss (EEL) studies of individual multi-walled carbon nanotubes (MWCNTs), each with the inner cavity possessing regions completely filled with silver. The transmission and attenuation of graphite π-collective mode E-fields through the MWCNT walls are established. Noticeable changes in the graphite π-surface mode are witnessed, concomitant with coupling of the silver Mie mode and the graphite π-surface mode. The resulting collective mode is significantly red-shifted to below 5 eV, with considerable intensity in the visible frequency regime. It appears that silver retains its ability to enhance E-fields when surrounded by a MWCNT. Present observations lead to the possibility of collective modes propagating on graphene monolayers being tuned in frequency by the presence of a metal.

  13. Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: Towards plasmonic thin-film luminescent solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    El-Bashir, S.M., E-mail: elbashireg@yahoo.com [Department of Physics and Astronomy, Science College, King Saud University, Riyadh, KSA (Saudi Arabia); Department of Physics Faculty of Science, Benha University (Egypt); Barakat, F.M.; AlSalhi, M.S. [Department of Physics and Astronomy, Science College, King Saud University, Riyadh, KSA (Saudi Arabia)

    2013-11-15

    Poly(methyl methacrylate) (PMMA) nanocomposite films doped with mixed coumarin dyestuffs and noble metal nanoparticles (60 nm silver and 100 nm gold) were prepared by spin coating technique. The effect of silver and gold nanoparticles on the film properties was studied by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–vis absorption and fluorescence spectroscopy measurements. DSC measurements indicated the increase of the glass transition temperature of the films by increasing nanogold concentration, recommending their promising thermal stability towards hot climates. It was found that the fluorescence signals of the mixed coumarin dyes were amplified by 5.4 and 7.15 folds as a result of metal enhanced fluorescence (MEF). The research outcomes offered a potential application of these films in solar energy conversion by plasmonic thin film luminescent solar concentrator (PTLSC). -- Graphical abstract: Plasmonic thin film luminescent solar concentrators. Highlights: • Metal enhanced fluorescence was achieved for mixed coumarin dyes doped in PMMA nanocomposite films. • The amplification of the fluorescence signals is dependent on the concentration of silver and gold nanoparticles. • These films is considered as potential candidates for plasmonic thin film luminescent solar concentrators (PTLSCs)

  14. Plasmonic and silicon spherical nanoparticle antireflective coatings

    Science.gov (United States)

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-03-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.

  15. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    International Nuclear Information System (INIS)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-01-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light–matter interactions and the realization of future metamaterials. (fast track communication)

  16. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    Science.gov (United States)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-03-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light-matter interactions and the realization of future metamaterials.

  17. Nano-structure and optical properties (plasmonic) of graded helical square tower-like (terraced) Mn sculptured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Fakharpour, Mahsa [Department of Physics, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Siabi-Garjan, Araz [Department of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Ardabil (Iran, Islamic Republic of); Department of Materials Engineering and Nanotechnology, Sabalan University of Advanced Technologies (SUAT), Namin (Iran, Islamic Republic of); Placido, Frank [SUPA and Institute of Thin Films, Sensors and Imaging, University of The West of Scotland, High Street, Paisley (United Kingdom); Babaei, Ferydon [Department of Physics, University of Qom, Qom (Iran, Islamic Republic of)

    2017-01-30

    Highlights: • Graded helical square tower-like terraced sculptured Mn thin films are produced with different number of arms. • XRD, AFM, FESEM and optical analyses as well as theoretical calculations are carried out. • Intensity of Plasmon peaks depend on the polarization, the incident angle, and the distance from the shadowing block. • The presence of defects in these sculptured structures can be predicted by theoretical investigation. • Experimental and theoretical investigations show consistent results. - Abstract: Graded helical square tower-like terraced sculptured Mn thin films (GHSTTS) are produced in three stages with different number of arms using oblique angle deposition together with rotation of substrate holder about its surface normal, plus a shadowing block fixed at the centre of the substrate holder. The structural characterization of the produced samples was obtained using field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Results showed a structural gradient with distance from the edge of the shadowing block, which in turn is responsible for the decrease in the volume of void fraction and increase of grain size. Plasmon absorption peaks observed in the optical analysis of these nano-structures showed that their wavelength region and intensity depend on the polarization and the incident angle of light, as well as the distance from the edge of the shadowing block. According to our model and discrete dipole approximation (DDA) calculations, when the number of parallel nano-rods of different lengths and radii are increased the peak in the spectrum shifts to shorter wavelengths (blue shift). Also when the diameters of the nano-rods increases (a situation that occurs with increasing film thickness) the results is again a blue shift in the spectrum. The presence of defects in these sculptured structures caused by the shadowing effect is predicted by the theoretical DDA investigation of their optical spectra

  18. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2010-01-01

    nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X

  19. Plasmonic nanoengineering in hollow metal nanostructures: an electron energy-loss spectroscopy study

    OpenAIRE

    Genç, Aziz; Universitat Autònoma de Barcelona. Departament de Física

    2015-01-01

    Resumen en Español Las nanoestructuras metálicas están siendo objeto de gran atención dada su capacidad para generar resonancias plasmónicas, que son oscilaciones colectivas de electrones alojados en la banda de conducción en un metal excitado por efecto de un campo electromagnético. El creciente interés entorno a las nanoestructuras metálicas como fuentes de plasmones, ha resultado en el desarrollo de un nuevo campo, la plasmónica, definida como la ciencia y tecnología de la generación, cont...

  20. Stimulated emission within the exciplex band by plasmonic-nanostructured polymeric heterojunctions

    Science.gov (United States)

    Zhang, Xinping; Li, Hongwei; Wang, Yimeng; Liu, Feifei

    2015-03-01

    Organic heterojunctions have been extensively employed in the design of light-emitting diodes, photovoltaic devices, and thin-film field-effect transistors, which can be achieved by constructing a bilayer or a multi-layered thin-film deposition, or by blending two or more organic semiconductors with different charge-transport performances. Charge transfer excited states or exciplex may form on the heterointerfaces. Efficient light-emitting diodes have been demonstrated using exciplex emission. However, lasing or stimulated emission processes have not been observed with exciplex formation at organic heterojunctions. In this work, we demonstrate strong coherent interaction between photons and exciplex formation in the blends of poly-9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-l,4-phenylenediamine (PFB) and poly-9,9'-dioctylfluorene-co-benzothiadiazole (F8BT), leading to transient stimulated exciplex emission. The responsible mechanisms involve plasmonic local-field enhancement and plasmonic feedback in a three-dimensional gold-nanoparticle matrix.Organic heterojunctions have been extensively employed in the design of light-emitting diodes, photovoltaic devices, and thin-film field-effect transistors, which can be achieved by constructing a bilayer or a multi-layered thin-film deposition, or by blending two or more organic semiconductors with different charge-transport performances. Charge transfer excited states or exciplex may form on the heterointerfaces. Efficient light-emitting diodes have been demonstrated using exciplex emission. However, lasing or stimulated emission processes have not been observed with exciplex formation at organic heterojunctions. In this work, we demonstrate strong coherent interaction between photons and exciplex formation in the blends of poly-9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-l,4-phenylenediamine (PFB) and poly-9,9'-dioctylfluorene-co-benzothiadiazole (F8BT), leading to transient

  1. Plasmon-Sensitized Graphene/TiO2 Inverse Opal Nanostructures with Enhanced Charge Collection Efficiency for Water Splitting.

    Science.gov (United States)

    Boppella, Ramireddy; Kochuveedu, Saji Thomas; Kim, Heejun; Jeong, Myung Jin; Marques Mota, Filipe; Park, Jong Hyeok; Kim, Dong Ha

    2017-03-01

    In this contribution we have developed TiO 2 inverse opal based photoelectrodes for photoelectrochemical (PEC) water splitting devices, in which Au nanoparticles (NPs) and reduced graphene oxide (rGO) have been strategically incorporated (TiO 2 @rGO@Au). The periodic hybrid nanostructure showed a photocurrent density of 1.29 mA cm -2 at 1.23 V vs RHE, uncovering a 2-fold enhancement compared to a pristine TiO 2 reference. The Au NPs were confirmed to extensively broaden the absorption spectrum of TiO 2 into the visible range and to reduce the onset potential of these photoelectrodes. Most importantly, TiO 2 @rGO@Au hybrid exhibited a 14-fold enhanced PEC efficiency under visible light and a 2.5-fold enrichment in the applied bias photon-to-current efficiency at much lower bias potential compared with pristine TiO 2 . Incident photon-to-electron conversion efficiency measurements highlighted a synergetic effect between Au plasmon sensitization and rGO-mediated facile charge separation/transportation, which is believed to significantly enhance the PEC activity of these nanostructures under simulated and visible light irradiation. Under the selected operating conditions the incorporation of Au NPs and rGO into TiO 2 resulted in a remarkable boost in the H 2 evolution rate (17.8 μmol/cm 2 ) compared to a pristine TiO 2 photoelectrode reference (7.6 μmol/cm 2 ). In line with these results and by showing excellent stability as a photoelectrode, these materials are herin underlined to be of promising interest in the PEC water splitting reaction.

  2. A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated microfluidics for sensitive biodetection.

    Science.gov (United States)

    López-Muñoz, Gerardo A; Estevez, M-Carmen; Peláez-Gutierrez, E Cristina; Homs-Corbera, Antoni; García-Hernandez, M Carmen; Imbaud, J Ignacio; Lechuga, Laura M

    2017-10-15

    Nanostructure-based plasmonic biosensors have quickly positioned themselves as interesting candidates for the design of portable optical biosensor platforms considering the potential benefits they can offer in integration, miniaturization, multiplexing, and real-time label-free detection. We have developed a simple integrated nanoplasmonic sensor taking advantage of the periodic nanostructured array of commercial Blu-ray discs. Sensors with two gold film thicknesses (50 and 100nm) were fabricated and optically characterized by varying the oblique-angle of the incident light in optical reflectance measurements. Contrary to the use normal light incidence previously reported with other optical discs, we observed an enhancement in sensitivity and a narrowing of the resonant linewidths as the light incidence angle was increased, which could be related to the generation of Fano resonant modes. The new sensors achieve a figure of merit (FOM) up to 35 RIU -1 and a competitive bulk limit of detection (LOD) of 6.3×10 -6 RIU. These values significantly improve previously reported results obtained with normal light incidence reflectance measurements using similar structures. The sensor has been combined with versatile, simple, ease to-fabricate microfluidics. The integrated chip is only 1cm 2 (including a PDMS flow cell with a 50µm height microfluidic channel fabricated with double-sided adhesive tape) and all the optical components are mounted on a 10cm×10cm portable prototype, illustrating its facile miniaturization, integration and potential portability. Finally, to assess the label-free biosensing capability of the new sensor, we have evaluated the presence of specific antibodies against the GTF2b protein, a tumor-associate antigen (TAA) related to colorectal cancer. We have achieved a LOD in the pM order and have assessed the feasibility of directly measuring biological samples such as human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Multispectral surface plasmon resonance approach for ultra-thin silver layer characterization: Application to top-emitting OLED cathode

    Science.gov (United States)

    Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.

    2018-01-01

    While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.

  4. Lanthanum doped titania decorated with silver plasmonic nanoparticles with enhanced photocatalytic activity under UV-visible light

    Science.gov (United States)

    Dal'Toé, Adrieli T. O.; Colpani, Gustavo Lopes; Padoin, Natan; Fiori, Márcio Antônio; Soares, Cíntia

    2018-05-01

    Lanthanum doped titanium dioxide decorated with silver plasmonic nanoparticles (Ag-La/TiO2 NPs) materials were prepared using a simple ultrasound-assisted wet impregnation method followed by silver photodeposition. The obtained photocatalysts with different Ag contents were characterized by XRD, FE-SEM, EDX, TEM, BET, XPS, DRS and PL techniques. Moreover, the size distribution of the nanoparticles aggregates was assessed. The characterization analysis revealed that La doping slightly changed the crystalline phase of TiO2, increased the amount of surface hydroxyl groups and interacted with TiO2 nanoparticles via Ti-O-La bond, while Ag photodeposition enhanced the absorption of visible light due to the effects of localized surface plamon resonance and significantly decreased electronic recombination rate by the Schottky junction. Furthermore, the combination of Ag-La induced the formation of oxygen vacancies, which increased the amount of adsorbed surface hydroxyl groups in Ag-La/TiO2. In addition, Ag-La possibly decreased the semiconductor surface energy, which acted positively in the reduction of NPs aggregation. These features along with better textural properties (greater surface areas) played a fundamental role in the enhancement of the photocatalytic activity of Ag-La/TiO2 composites for the decolorization of methylene blue under UV-visible irradiation compared to the mono-metallic (La/TiO2 and Ag/TiO2) modified photocatalysts. Finally, a mechanism for the transfer of charge carriers in Ag-La/TiO2 photocatalyst under UV-visible irradiation was proposed.

  5. Roadmap on plasmonics

    Science.gov (United States)

    Stockman, Mark I.; Kneipp, Katrin; Bozhevolnyi, Sergey I.; Saha, Soham; Dutta, Aveek; Ndukaife, Justus; Kinsey, Nathaniel; Reddy, Harsha; Guler, Urcan; Shalaev, Vladimir M.; Boltasseva, Alexandra; Gholipour, Behrad; Krishnamoorthy, Harish N. S.; MacDonald, Kevin F.; Soci, Cesare; Zheludev, Nikolay I.; Savinov, Vassili; Singh, Ranjan; Groß, Petra; Lienau, Christoph; Vadai, Michal; Solomon, Michelle L.; Barton, David R., III; Lawrence, Mark; Dionne, Jennifer A.; Boriskina, Svetlana V.; Esteban, Ruben; Aizpurua, Javier; Zhang, Xiang; Yang, Sui; Wang, Danqing; Wang, Weijia; Odom, Teri W.; Accanto, Nicolò; de Roque, Pablo M.; Hancu, Ion M.; Piatkowski, Lukasz; van Hulst, Niek F.; Kling, Matthias F.

    2018-04-01

    Plasmonics is a rapidly developing field at the boundary of physical optics and condensed matter physics. It studies phenomena induced by and associated with surface plasmons—elementary polar excitations bound to surfaces and interfaces of good nanostructured metals. This Roadmap is written collectively by prominent researchers in the field of plasmonics. It encompasses selected aspects of nanoplasmonics. Among them are fundamental aspects, such as quantum plasmonics based on the quantum-mechanical properties of both the underlying materials and the plasmons themselves (such as their quantum generator, spaser), plasmonics in novel materials, ultrafast (attosecond) nanoplasmonics, etc. Selected applications of nanoplasmonics are also reflected in this Roadmap, in particular, plasmonic waveguiding, practical applications of plasmonics enabled by novel materials, thermo-plasmonics, plasmonic-induced photochemistry and photo-catalysis. This Roadmap is a concise but authoritative overview of modern plasmonics. It will be of interest to a wide audience of both fundamental physicists and chemists, as well as applied scientists and engineers.

  6. Size-Dependent Shifts of Plasmon Resonance in Silver Nanoparticle Films Using Controlled Dissolution

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kneipp, Katrin

    2014-01-01

    to a transition from an extrinsic regime for the larger particles, where shifts of the plasmon frequency are related to changes in the dielectric environment, while the dielectric function of the metal is constant, to an intrinsic regime for the smaller particles. For this intrinsic regime, operative for small...... in a corrected electron density. The reported results have potential for developing nanosensors based on small nanoparticles below 5 nm in size by using their intrinsic response to adsorbed analytes. This detection scheme suggests a potential increase in the sensitivity of up to 3×, particularly when redox...

  7. Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects

    DEFF Research Database (Denmark)

    Raza, Søren; Yan, Wei; Stenger, Nicolas

    2013-01-01

    We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS) [1]. As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.5 e......V of the SP resonance energy is observed. In this paper, we base our theoretical interpretation of our experimental findings on the nonlocal hydrodynamic model, and compare the effect of the substrate on the SP resonance energy to the approach of an effective homogeneous background permittivity. We derive...

  8. Plasmons in N-doped graphene nanostructures tuned by Au/Ag films: a time-dependent density functional theory study.

    Science.gov (United States)

    Shu, Xiaoqin; Cheng, Xinlu; Zhang, Hong

    2018-04-18

    The energy resonance point of the prominent peak of the absorption spectrum of nitrogen-doped graphene is in the ultraviolet region. This limits its application as a co-catalyst in renewable hydrogen evolution through photocatalytic water splitting in the visible light region. It is well known that noble metal films show active absorption in the visible region due to the existence of the unique feature known as surface plasmon resonance. Here we report tunable plasmons in nitrogen-doped graphene nanostructures using noble metal (Au/Ag) films. The energy resonance point of the prominent peak of the composite nanostructure is altered by changing the separation space of two-layered nanostructures. We found the strength of the absorption spectrum of the composite nanostructure is much stronger than the isolated N-doped graphene monolayer. When the separation space is decreased, the prominent peak of the absorption spectrum is red-shifted to the visible light region. Moreover, currents of several microamperes exist above the surface of the N-doped graphene and Au film composite nanostructure. In addition, the field enhancement exceeds 1000 when an impulse excitation polarized in the armchair-edge direction (X-axis) when the separation space is decreased to 3 Å and is close to 100 when an impulse excitation polarized in the zigzag-edge direction (Y-axis). The N-doped graphene and noble metal film composite nanostructure is a good candidate material as a co-catalyst in renewable hydrogen production by photocatalytic water splitting in the visible light region.

  9. A Flexible High-Performance Photoimaging Device Based on Bioinspired Hierarchical Multiple-Patterned Plasmonic Nanostructures.

    Science.gov (United States)

    Lee, Yoon Ho; Lee, Tae Kyung; Kim, Hongki; Song, Inho; Lee, Jiwon; Kang, Saewon; Ko, Hyunhyub; Kwak, Sang Kyu; Oh, Joon Hak

    2018-03-01

    In insect eyes, ommatidia with hierarchical structured cornea play a critical role in amplifying and transferring visual signals to the brain through optic nerves, enabling the perception of various visual signals. Here, inspired by the structure and functions of insect ommatidia, a flexible photoimaging device is reported that can simultaneously detect and record incoming photonic signals by vertically stacking an organic photodiode and resistive memory device. A single-layered, hierarchical multiple-patterned back reflector that can exhibit various plasmonic effects is incorporated into the organic photodiode. The multiple-patterned flexible organic photodiodes exhibit greatly enhanced photoresponsivity due to the increased light absorption in comparison with the flat systems. Moreover, the flexible photoimaging device shows a well-resolved spatiotemporal mapping of optical signals with excellent operational and mechanical stabilities at low driving voltages below half of the flat systems. Theoretical calculation and scanning near-field optical microscopy analyses clearly reveal that multiple-patterned electrodes have much stronger surface plasmon coupling than flat and single-patterned systems. The developed methodology provides a versatile and effective route for realizing high-performance optoelectronic and photonic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nanostructured zinc oxide thin film for application to surface plasmon resonance based cholesterol biosensor

    Science.gov (United States)

    Kaur, Gurpreet; Tomar, Monika; Gupta, Vinay

    2015-11-01

    ZnO thin film was deposited on gold coated glass prism by RF sputtering technique in glancing angle deposition (GLAD) configuration. The structural, morphological and optical properties of the deposited film were investigated using X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and Fourier Transform Infrared (FTIR) Spectroscopy. ZnO coated Au prisms (ZnO/Au/prism) were used to excite surface plasmons in Kretschmann configuration at the Au- ZnO interface on a laboratory assembled Surface Plasmon Resonance (SPR) measurement setup. Cholesterol oxidase (ChOx) enzyme was immobilized on the ZnO/Au/prism structure by physical adsorption technique. Polydimethylsiloxane (PDMS) microchannels were fabricated over ChOx/ZnO/Au/prism system and various concentrations of cholesterol were passed over the sensor surface. The concentration of cholesterol was varied from 0.12 to 10.23 mM and the SPR reflectance curves were recorded in both static as well as dynamic modes demonstrating a high sensitivity of 0.36° mM-1.

  11. Luminescence lifetime enhanced by exciton-plasmon couple in hybrid CsPbBr3 perovskite/Pt nanostructure

    Science.gov (United States)

    Liu, Chunxu; Zhang, Jisen; Chen, Yongyi; Jing, Pengtao; Zhang, Ligong; Zhao, Haifeng; Fu, Xihong; Wang, Lijun

    2018-02-01

    Photoluminescence (PL) and time-resolved spectroscopic studies on plasmonically coupled semiconductor nanoparticles (SNPs) have demonstrated the PL quenched and lifetime enhanced of SNPs in the presence of metal nanoparticles (MNPs). The hybrid colloidal CsPbBr3 perovskite SNPs/Pt MNPs (S-M) structures exhibit novel optical properties due to the synergetic interaction between the individual components. In hybrid S-M nanostructures colloidal chemistry incorporates SNP and MNP into a single unit resulting in the formation of plexciton (or excimon) which has now been established in a series of hybrid structures. The experimental results of femtosecond transient absorption (TA) spectroscopy based on the time-resolved pump-probe confirm the transformation from excitons to plexcitons. It was found that the experimental data can’t be well described by the theory based on conventional Fӧster resonance energy transfer (FRET). The differences between theory and experiment may be due to the missing some PbBr2 PL peaks, the reason will be revealed further.

  12. Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma

    Science.gov (United States)

    Khan, T. M.; Pokle, A.; Lunney, J. G.

    2018-04-01

    Two methods of atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver are described. In both methods the ablation plume, produced by a 248 nm, 20 ns excimer laser in gas, is strongly confined near the target and forms a nanoparticle aerosol. For both the flowing gas, and the atmospheric plasma from a dielectric barrier discharge plasma source, the aerosol is entrained in the flow and carried to a substrate for deposition. The nanoparticle films produced by both methods were examined by electron microscopy and optical absorption spectroscopy. With plasma assistance, the deposition rate was significantly enhanced and the film morphology altered. With argon gas, isolated nanoparticles of 20 nm size were obtained, whereas in argon plasma, the nanoparticles are aggregated in clusters of 90 nm size. Helium gas also leads to the deposition of isolated nanoparticles, but with helium plasma, two populations of nanoparticles are observed: one of rounded particles with a mean size of 26 nm and the other of faceted particles with a mean size 165 nm.

  13. Catalytic effects of silver plasmonic nanoparticles on the redox reaction leading to ABTS˙+ formation studied using UV-visible and Raman spectroscopy.

    Science.gov (United States)

    Garcia-Leis, A; Jancura, D; Antalik, M; Garcia-Ramos, J V; Sanchez-Cortes, S; Jurasekova, Z

    2016-09-29

    ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) is a compound extensively employed to evaluate the free radical trapping capacity of antioxidant agents and complex mixtures such as biological fluids or foods. This evaluation is usually performed by using a colourimetric experiment, where preformed ABTS radical cation (ABTS˙ + ) molecules are reduced in the presence of an antioxidant causing an intensity decrease of the specific ABTS˙ + UV-visible absorption bands. In this work we report a strong effect of silver plasmonic nanoparticles (Ag NPs) on ABTS leading to the formation of ABTS˙ + . The reaction of ABTS with Ag NPs has been found to be dependent on the interfacial and plasmonic properties of NPs. Specifically, this reaction is pronounced in the presence of spherical nanoparticles prepared by the reduction of silver nitrate with hydroxylamine (AgH) and in the case of star-shaped silver nanoparticles (AgNS). On the other hand, spherical nanoparticles prepared by the reduction of silver nitrate with citrate apparently do not react with ABTS. Additionally, the formation of ABTS˙ + is investigated by surface-enhanced Raman scattering (SERS) and the assignment of the most intense vibrational bands of this compound is performed. The SERS technique enables us to detect this radical cation at very low concentrations of ABTS (∼2 μM). Altogether, these findings allow us to suggest the use of ABTS/Ag NPs-systems as reliable and easy going substrates to test the antioxidant capacity of various compounds, even at concentrations much lower than those usually used in the spectrophotometric assays. Moreover, we have suggested that ABTS could be employed as a suitable agent to investigate the interfacial and plasmonic properties of the metal nanoparticles and, thus, to characterize the nanoparticle metal systems employed for various purposes.

  14. Plasmon-Enhanced Photoluminescence of an Amorphous Silicon Quantum Dot Light-Emitting Device by Localized Surface Plasmon Polaritons in Ag/SiOx:a-Si QDs/Ag Sandwich Nanostructures

    Directory of Open Access Journals (Sweden)

    Tsung-Han Tsai

    2015-01-01

    Full Text Available We investigated experimentally the plasmon-enhanced photoluminescence of the amorphous silicon quantum dots (a-Si QDs light-emitting devices (LEDs with the Ag/SiOx:a-Si QDs/Ag sandwich nanostructures, through the coupling between the a-Si QDs and localized surface plasmons polaritons (LSPPs mode, by tuning a one-dimensional (1D Ag grating on the top. The coupling of surface plasmons at the top and bottom Ag/SiOx:a-Si QDs interfaces resulted in the localized surface plasmon polaritons (LSPPs confined underneath the Ag lines, which exhibit the Fabry-Pérot resonance. From the Raman spectrum, it proves the existence of a-Si QDs embedded in Si-rich SiOx film (SiOx:a-Si QDs at a low annealing temperature (300°C to prevent the possible diffusion of Ag atoms from Ag film. The photoluminescence (PL spectra of a-Si QDs can be precisely tuned by a 1D Ag grating with different pitches and Ag line widths were investigated. An optimized Ag grating structure, with 500 nm pitch and 125 nm Ag line width, was found to achieve up to 4.8-fold PL enhancement at 526 nm and 2.46-fold PL integrated intensity compared to the a-Si QDs LEDs without Ag grating structure, due to the strong a-Si QDs-LSPPs coupling.

  15. Time Domain Surface Integral Equation Solvers for Quantum Corrected Electromagnetic Analysis of Plasmonic Nanostructures

    KAUST Repository

    Uysal, Ismail Enes

    2016-10-01

    Plasmonic structures are utilized in many applications ranging from bio-medicine to solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical effects start to appear. These effects cannot be accurately modeled by available classical numerical methods. One of these quantum effects is the tunneling, which is observed when two structures are located within a sub-nanometer distance of each other. At these small distances electrons “jump" from one structure to another and introduce a path for electric current to flow. Classical equations of electrodynamics and the schemes used for solving them do not account for this additional current path. This limitation can be lifted by introducing an auxiliary tunnel with material properties obtained using quantum models and applying a classical solver to the structures connected by this auxiliary tunnel. Early work on this topic focused on quantum models that are generated using a simple one-dimensional wave function to find the tunneling probability and assume a simple Drude model for the permittivity of the tunnel. These tunnel models are then used together with a classical frequency domain solver. In this thesis, a time domain surface integral equation solver for quantum corrected analysis of transient plasmonic interactions is proposed. This solver has several advantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to differential equation solvers, it only discretizes surfaces (reducing number of unknowns), enforces the radiation condition implicitly (increasing the accuracy), and allows for time step selection independent of spatial discretization (increasing efficiency). The quantum model

  16. Nanostructural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nanosized Particles of Both Starch and Silver

    Directory of Open Access Journals (Sweden)

    A. Hebeish

    2013-01-01

    Full Text Available Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nanosized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM, particle size analyzer (PS, Polydispersity index (PdI, Zeta potential (ZP, XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm. The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs.

  17. Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Kadkhodazadeh, Shima

    2013-01-01

    We study the surface plasmon (SP) resonance energy of isolated spherical Ag nanoparticles dispersed on a silicon nitride substrate in the diameter range 3.5–26 nm with monochromated electron energy-loss spectroscopy. A significant blueshift of the SP resonance energy of 0.5 eV is measured when...... the particle size decreases from 26 down to 3.5 nm. We interpret the observed blueshift using three models for a metallic sphere embedded in homogeneous background material: a classical Drude model with a homogeneous electron density profile in the metal, a semiclassical model corrected for an inhomogeneous...... electron density associated with quantum confinement, and a semiclassical nonlocal hydrodynamic description of the electron density. We find that the latter two models provide a qualitative explanation for the observed blueshift, but the theoretical predictions show smaller blueshifts than observed...

  18. Hot carrier dynamics in plasmonic transition metal nitrides

    Science.gov (United States)

    Habib, Adela; Florio, Fred; Sundararaman, Ravishankar

    2018-06-01

    Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nano-structures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing. Transition metal nitrides are an exciting class of new plasmonic materials with superior thermal and mechanical properties compared to conventional noble metals, but their suitability for plasmonic hot carrier applications remains unknown. Here, we present fully first principles calculations of the plasmonic response, hot carrier generation and subsequent thermalization of all group IV, V and VI transition metal nitrides, fully accounting for direct and phonon-assisted transitions as well as electron–electron and electron–phonon scattering. We find the largest frequency ranges for plasmonic response in ZrN, HfN and WN, between those of gold and silver, while we predict strongest absorption in the visible spectrum for the VN, NbN and TaN. Hot carrier generation is dominated by direct transitions for most of the relevant energy range in all these nitrides, while phonon-assisted processes dominate only below 1 eV plasmon energies primarily for the group IV nitrides. Finally, we predict the maximum hot carrier lifetimes to be around 10 fs for group IV and VI nitrides, a factor of 3–4 smaller than noble metals, due to strong electron–phonon scattering. However, we find longer carrier lifetimes for group V nitrides, comparable to silver for NbN and TaN, while exceeding 100 fs (twice that of silver) for VN, making them promising candidates for efficient hot carrier extraction.

  19. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    Science.gov (United States)

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  20. Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching

    Directory of Open Access Journals (Sweden)

    Manuel R. Gonçalves

    2011-08-01

    Full Text Available We present two routes for the fabrication of plasmonic structures based on nanosphere lithography templates. One route makes use of soft-lithography to obtain arrays of epoxy resin hemispheres, which, in a second step, can be coated by metal films. The second uses the hexagonal array of triangular structures, obtained by evaporation of a metal film on top of colloidal crystals, as a mask for reactive ion etching (RIE of the substrate. In this way, the triangular patterns of the mask are transferred to the substrate through etched triangular pillars. Making an epoxy resin cast of the pillars, coated with metal films, allows us to invert the structure and obtain arrays of triangular holes within the metal. Both fabrication methods illustrate the preparation of large arrays of nanocavities within metal films at low cost.Gold films of different thicknesses were evaporated on top of hemispherical structures of epoxy resin with different radii, and the reflectance and transmittance were measured for optical wavelengths. Experimental results show that the reflectivity of coated hemispheres is lower than that of coated polystyrene spheres of the same size, for certain wavelength bands. The spectral position of these bands correlates with the size of the hemispheres. In contrast, etched structures on quartz coated with gold films exhibit low reflectance and transmittance values for all wavelengths measured. Low transmittance and reflectance indicate high absorbance, which can be utilized in experiments requiring light confinement.

  1. Improvement of optical and electrical properties of indium tin oxide layer of GaN-based light-emitting diode by surface plasmon in silver nanoparticles

    International Nuclear Information System (INIS)

    Cho, Chu-Young; Hong, Sang-Hyun; Park, Seong-Ju

    2015-01-01

    We report on the effect of silver (Ag) nanoparticles on the optical transmittance and electrical conductivity of indium tin oxide (ITO) transparent conducting layer deposited on p-GaN layer of light-emitting diodes (LEDs). The sheet resistance of ITO and the series resistance of LEDs were decreased due to the increased electrical conductivity of ITO by Ag nanoparticles, compared with those of the LEDs with a bare ITO only. The ITO transmittance was also improved by localized surface plasmon resonance between the incident light and the randomly distributed Ag nanoparticles on ITO. The optical output power of LEDs with Ag nanoparticles on ITO was increased by 16% at 20 mA of injection current. - Highlights: • We studied the effect of Ag nanoparticles deposited on ITO on the properties of LED. • The optical power of LED and transmittance of ITO were improved by Ag surface plasmon. • The electrical conductivity of ITO was increased by Ag nanoparticles

  2. Enhancing light reflective properties on ITO glass by plasmonic effect of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Dezhong Zhang

    Full Text Available The preparation of well-defined silver (Ag nanoparticle arrays is reported in this paper. Ag nanoparticles are electrodeposited on Indium tin oxide (ITO coated glass substrates at 30 °C. The size, shape and periodicity of the Ag nanoparticle arrays are well-controlled. We study the effect of particle size and interparticle distance on reflection enhancement. The sample at the deposition potential of −0.2 V for an electrodeposition time of 3600 s exhibits an enhancement of 28% in weighted reflection in contrast with bare ITO glass. This study reports the high reflection of Ag nanoparticle arrays by electrodeposition method might be application to large-scale photovoltaic devices.

  3. Self-limited plasmonic welding of silver nanowire junctions

    KAUST Repository

    Garnett, Erik C.

    2012-02-05

    Nanoscience provides many strategies to construct high-performance materials and devices, including solar cells, thermoelectrics, sensors, transistors, and transparent electrodes. Bottom-up fabrication facilitates large-scale chemical synthesis without the need for patterning and etching processes that waste material and create surface defects. However, assembly and contacting procedures still require further development. Here, we demonstrate a light-induced plasmonic nanowelding technique to assemble metallic nanowires into large interconnected networks. The small gaps that form naturally at nanowire junctions enable effective light concentration and heating at the point where the wires need to be joined together. The extreme sensitivity of the heating efficiency on the junction geometry causes the welding process to self-limit when a physical connection between the wires is made. The localized nature of the heating prevents damage to low-thermal-budget substrates such as plastics and polymer solar cells. This work opens new avenues to control light, heat and mass transport at the nanoscale. © 2012 Macmillan Publishers Limited. All rights reserved.

  4. Plasmon-enhanced scattering and charge transfer in few-layer graphene interacting with buried printed 2D-pattern of silver nanoparticles

    Science.gov (United States)

    Carles, R.; Bayle, M.; Bonafos, C.

    2018-04-01

    Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.

  5. Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles

    International Nuclear Information System (INIS)

    Hong, Sang-Hyun; Kim, Jae-Joon; Jung, Yen-Sook; Kim, Dong-Yu; Park, Seong-Ju; Kang, Jang-Won; Yim, Sang-Youp

    2015-01-01

    We report on the characteristics of localized surface plasmon (LSP)-enhanced near-ultraviolet light-emitting diodes (NUV-LEDs) fabricated by using colloidal silver (Ag) nanoparticles (NPs). Colloidal Ag NPs were deposited on the 20 nm thick p-GaN spacer layer using a spray process. The optical output power of NUV-LEDs with colloidal Ag NPs was increased by 48.7% at 20 mA compared with NUV-LEDs without colloidal Ag NPs. The enhancement was attributed to increased internal quantum efficiency caused by the resonance coupling between excitons in the multiple quantum wells and the LSPs in the Ag NPs. (paper)

  6. Surface Plasmon Resonance Properties of Silver Nanosphere Arrays%银纳米球阵列的表面等离子体共振特性

    Institute of Scientific and Technical Information of China (English)

    张明; 吕靖薇; 刘昭廷; 杨琳; 柴雅婷; 汪发美

    2016-01-01

    采用离散偶极近似(DDA)法计算直线、平面和立方体排列的银纳米球阵列的消光谱及其电场分布情况.研究表明,银纳米球阵列的表面等离子体共振峰随银纳米球直径的增大而红移,随纳米球个数的增多而蓝移;不同结构银纳米球阵列间的耦合作用对其表面等离子体共振模式有显著影响,相同直径的银纳米球阵列耦合作用由强到弱的排列方式分别为平面排列、立方体排列、直线排列;银纳米球阵列的光谱特性与入射光偏振态的变化密切相关.%The extinction spectra and electric field distribution of silver nanosphere arrays positioned in a line,plane or cube are calculated by discrete dipole approximation.It is demonstrated that the surface plasmon resonance peaks of extinction spectra are red-shifted with the increase of silver nanosphere diameter and blue-shifted with the increase of the number of nanospheres.The coupling effects of silver nanoparticles with different structures between arrays have a significant impact on their surface plasmon resonance mode.It is found that the electric field coupling effects of silver nanosphcrc arrays positioned in a plane,cube and line is weakened in the order,when the arrays have the same diameter.The spectral characteristics of nanosphere arrays are closely related to the changes of polarization state of the incident light.

  7. Sub-surface laser nanostructuring in stratified metal/dielectric media: a versatile platform towards flexible, durable and large-scale plasmonic writing

    International Nuclear Information System (INIS)

    Siozios, A; Bellas, D V; Lidorikis, E; Patsalas, P; Kalfagiannis, N; Cranton, W M; Koutsogeorgis, D C; Bazioti, C; Dimitrakopulos, G P; Vourlias, G

    2015-01-01

    Laser nanostructuring of pure ultrathin metal layers or ceramic/metal composite thin films has emerged as a promising route for the fabrication of plasmonic patterns with applications in information storage, cryptography, and security tagging. However, the environmental sensitivity of pure Ag layers and the complexity of ceramic/metal composite film growth hinder the implementation of this technology to large-scale production, as well as its combination with flexible substrates. In the present work we investigate an alternative pathway, namely, starting from non-plasmonic multilayer metal/dielectric layers, whose growth is compatible with large scale production such as in-line sputtering and roll-to-roll deposition, which are then transformed into plasmonic templates by single-shot UV-laser annealing (LA). This entirely cold, large-scale process leads to a subsurface nanoconstruction involving plasmonic Ag nanoparticles (NPs) embedded in a hard and inert dielectric matrix on top of both rigid and flexible substrates. The subsurface encapsulation of Ag NPs provides durability and long-term stability, while the cold character of LA suits the use of sensitive flexible substrates. The morphology of the final composite film depends primarily on the nanocrystalline character of the dielectric host and its thermal conductivity. We demonstrate the emergence of a localized surface plasmon resonance, and its tunability depending on the applied fluence and environmental pressure. The results are well explained by theoretical photothermal modeling. Overall, our findings qualify the proposed process as an excellent candidate for versatile, large-scale optical encoding applications. (paper)

  8. Kinetically controlled synthesis of large-scale morphology-tailored silver nanostructures at low temperature

    Science.gov (United States)

    Zhang, Ling; Zhao, Yuda; Lin, Ziyuan; Gu, Fangyuan; Lau, Shu Ping; Li, Li; Chai, Yang

    2015-08-01

    Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology-tailored Ag nanostructures, which is significant to the controllable fabrication of Ag nanostructures and fundamental understanding of the growth kinetics.Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology

  9. TiO2 brookite nanostructured thin layer on magneto-optical surface plasmon resonance transductor for gas sensing applications

    Science.gov (United States)

    Manera, M. G.; Colombelli, A.; Rella, R.; Caricato, A.; Cozzoli, P. D.; Martino, M.; Vasanelli, L.

    2012-09-01

    The sensing performance comparisons presented in this work were carried out by exploiting a suitable magneto-plasmonic sensor in both the traditional surface plasmon resonance configuration and the innovative magneto-optic surface plasmon resonance one. The particular multilayer transducer was functionalized with TiO2 Brookite nanorods layers deposited by matrix assisted pulsed laser evaporation, and its sensing capabilities were monitored in a controlled atmosphere towards different concentrations of volatile organic compounds mixed in dry air.

  10. Laser-induced atomic assembling of periodic layered nanostructures of silver nanoparticles in fluoro-polymer film matrix

    International Nuclear Information System (INIS)

    Bagratashvili, V N; Minaev, N V; Timashev, P S; Yusupov, V I; Rybaltovsky, A O; Firsov, V V

    2010-01-01

    Fluorinated acrylic polymer (FAP) films have been impregnated with silver precursor (Ag(hfac)COD) by supercritical fluid technique and next irradiated with laser (λ = 532 nm). Laser-chemically reduced Ag atoms have been assembled into massifs of Ag nanoparticles (3 – 8 nm) in FAP/Ag(hfac)COD films matrix in the form of periodic layered nanostructures (horizontal to film surface) with unexpectedly short period (90 – 180 nm). The wavelet analysis of TEM images reveals the existence of even shorter-period structures in such films. Photolysis with non-coherent light or pyrolysis of FAP/Ag(hfac)COD film results in formation of Ag nanoparticles massifs but free of any periodic nanoparticle assemblies. Our interpretation of the observed effect of laser formation of short-period nano-sized Ag nanoparticle assemblies is based on self-enhanced interference process in the course of modification of optical properties of film

  11. Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment

    NARCIS (Netherlands)

    Rebe-Raz, S.; Leontaridou, M.; Bremer, M.G.E.G.; Peters, R.J.B.; Weigel, S.

    2012-01-01

    Silver nanoparticles are recognized as effective antimicrobial agents and have been implemented in various consumer products including washing machines, refrigerators, clothing, medical devices, and food packaging. Alongside the silver nanoparticles benefits, their novel properties have raised

  12. Localized surface plasmon resonance properties of Ag nanorod arrays on graphene-coated Au substrate

    Science.gov (United States)

    Mu, Haiwei; Lv, Jingwei; Liu, Chao; Sun, Tao; Chu, Paul K.; Zhang, Jingping

    2017-11-01

    Localized surface plasmon resonance (LSPR) on silver nanorod (SNR) arrays deposited on a graphene-coated Au substrate is investigated by the discrete dipole approximation (DDA) method. The resonance peaks in the extinction spectra of the SNR/graphene/Au structure show significantly different profiles as SNR height, and refractive index of the surrounding medium are varied gradually. Numerical simulation reveals that the shifts in the resonance peaks arise from hybridization of multiple plasmon modes as a result of coupling between the SNR arrays and graphene-coated Au substrate. Moreover, the LSPR modes blue-shifts from 800 nm to 700 nm when the thickness of the graphene layer in the metal nanoparticle (NP) - graphene hybrid nanostructure increases from 1 nm to 5 nm, which attribute to charge transfer between the graphene layer and SNR arrays. The results provide insights into metal NP-graphene hybrid nanostructures which have potential applications in plasmonics.

  13. Graphene-Silver-Induced Self-Polarized PVDF-Based Flexible Plasmonic Nanogenerator Toward the Realization for New Class of Self Powered Optical Sensor.

    Science.gov (United States)

    Sinha, Tridib Kumar; Ghosh, Sujoy Kumar; Maiti, Rishi; Jana, Santanu; Adhikari, Basudam; Mandal, Dipankar; Ray, Samit K

    2016-06-22

    Plasmonic characteristics of graphene-silver (GAg) nanocomposite coupled with piezoelectric property of Poly(vinylidene fluoride) (PVDF) have been utilized to realize a new class of self-powered flexible plasmonic nanogenerator (PNG). A few layer graphene has been prepared in a facile and cost-effective method and GAg doped PVDF hybrid nanocomposite (PVGAg) is synthesized in a one-pot method. The PNG exhibits superior piezoelectric energy conversion efficiency (∼15%) under the dark condition. The plasmonic behavior of GAg nanocomposite makes the PNG highly responsive to the visible light illumination that leads to ∼50% change in piezo-voltage and ∼70% change in piezo-current, leading to enhanced energy conversion efficiency up to ∼46.6%. The piezoelectric throughput of PNG (e.g., capacitor charging performance) has been monitored during the detection of the different wavelengths of visible light illumination and showed maximum selectivity to the green light. The simultaneous mechanical energy harvesting and visible-light detection capabilities of the PNG are attractive for futuristic self-powered optoelectronic smart sensors and devices.

  14. Plasmonic Encoding

    Science.gov (United States)

    2014-10-06

    Mangelson, B. F.; Schatz, G. C.; and Mirkin, C. A. “ Silver -based Nanodisk Codes,” ACS Nano, 2010, 9, 5446-5452. 6. Zhang, J.; Langille, M. R...Wei, W. D.; Zhang, H.; Schatz, G.; Boey, F.; Mirkin, C. A. “Free Standing Bimetallic Nanorings and Nanoring Arrays Made by On-Wire Lithography (OWL...Mirkin, C. A.; Marks, L. D.; Van Duyne, R. P. “Correlating the Structure and Localized Surface Plasmon Resonance of Single Silver Right Bipyramids

  15. Nanostructured titanium–silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Long [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan (China); Hang, Ruiqiang, E-mail: hangruiqiang@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan (China); Gao, Ang [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Zhang, Xiangyu; Huang, Xiaobo; Wang, Yueyue; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan (China); Zhao, Lingzhou, E-mail: zhaolingzhou1983@hotmail.com [State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-11-15

    Graphical abstract: - Highlights: • We fabricate Ti–Ag coatings with different Ag contents and surface morphologies. • The Ti–Ag coatings possess long-term antibacterial ability. • Increased Ag contents in the coatings leads to enhanced osteoblast functions. - Abstract: Bacterial infection and loosing are serious complications for biomedical implants in the orthopedic, dental, and other biomedical fields and the ideal implants should combine good antibacterial ability and bioactivity. In this study, nanostructured titanium–silver (Ti–Ag) coatings with different Ag contents (1.2 to 21.6 at%) are prepared on Ti substrates by magnetron sputtering. As the Ag concentration is increased, the coatings change from having dense columnar crystals to sparse ones and eventually no columnar structure. The Ti–Ag coatings can effectively kill Staphylococcus aureus during the first few days and remain moderately antibacterial after immersion for 75 days. Compared to pure Ti, the Ti–Ag coatings show good cytocompatibility as indicated by good osteoblast adhesion, proliferation, intracellular total protein synthesis, and alkaline phosphatase (ALP) activity. In addition, cell spreading, collagen secretion, and extracellular matrix mineralization are promoted on the coatings with the proper Ag contents due to the nanostructured morphological features. Our results indicate that favorable antibacterial activity and osseointegration ability can be simultaneously achieved by regulating the Ag contents in Ti–Ag coatings.

  16. Using reflectance anisotropy spectroscopy to characterize capped silver nanostructures grown on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, K.; Jacob, J.; McGilp, J.F. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Chandola, S. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Strasse 9, 12489 Berlin (Germany); Esser, N. [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Strasse 9, 12489 Berlin (Germany)

    2008-07-01

    Using the single domain Si(111)-3 x 1-Ag surface as a template, room temperature deposition of two or more monolayers of Ag leads to the formation of metallic nanostructures. Reflectance anisotropy spectroscopy (RAS) in the infrared (IR) spectral region is used to analyse the anisotropic conductivity of the structures. The anisotropy is found to be influenced by the offcut angle of the substrate, and hence the terrace width. The Ag nanostructures were capped with Si to form a near-IR transparent protecting layer. The samples are stable to exposure to ambient conditions for significant periods. The RAS spectra are compared to model calculations, which support the conclusion that the buried metallic Ag nanostructures survive the capping process. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R ... in the plasmon band. This is demonstrated by using the strong nucleophiles, cyanide and cysteamine, as ligands. The “dissolution paths” in terms of peak wavelength and amplitude shifts differ significantly between different types of analytes, which are suggested as a means to obtain selectivity of the detection...... that cannot be obtained by traditional refractive index sensing, without the use of bioprobes. A simple modified Drude model is used to account for shifts in the plasmon band position due to electrical charging. Here, a screening parameter is introduced in the expression for the free electron density...

  18. Colorimetric Detection Based on Localised Surface Plasmon Resonance Optical Characteristics for the Detection of Hydrogen Peroxide Using Acacia Gum–Stabilised Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Eman Alzahrani

    2017-02-01

    Full Text Available The use of nanoparticles in sensing is attracting the interest of many researchers. The aim of this work was to fabricate Acacia gum–stabilised silver nanoparticles (SNPs using green chemistry to use them as a highly sensitive and cost-effective localised surface plasmon resonance (LSPR colorimeter sensor for the determination of reactive oxygen species, such as hydrogen peroxide (H 2 O 2 . Silver nanoparticles were fabricated by the reduction of an inorganic precursor silver nitrate solution (AgNO 3 using white sugar as the reducing reagent and Acacia gum as the stabilising reagent and a sonication bath to form uniform silver nanoparticles. The fabricated nanoparticles were characterised by visual observation, ultraviolet-visible (UV-Vis spectrophotometry, transmission electron microscopy (TEM analysis, energy-dispersive X-ray spectroscopy (EDAX, thermogravimetric analysis (TGA, and Fourier transform infrared spectroscopy (FT-IR. The TEM micrographs of the synthesised nanoparticles showed the presence of spherical nanoparticles with sizes of approximately 10 nm. The EDAX spectrum result confirmed the presence of silver (58%, carbon (30%, and oxygen (12%. Plasmon colorimetric sensing of H 2 O 2 solution was investigated by introducing H 2 O 2 solution into Acacia gum–capped SNP dispersion, and the change in the LSPR band in the UV-Vis region of spectra was monitored. In this study, it was found that the yellow colour of Acacia gum–stabilised SNPs gradually changed to transparent, and moreover, a remarkable change in the LSPR absorbance strength was observed. The calibration curve was linear over 0.1–0.00001 M H 2 O 2 , with a correlation estimation ( R 2 of .953. This was due to the aggregation of SNPs following introduction of the H 2 O 2 solution. Furthermore, the fabricated SNPs were successfully used to detect H 2 O 2 solution in a liquid milk sample, thereby demonstrating the ability of the fabricated SNPs to detect H 2 O 2

  19. Surface-enhanced Raman scattering (SERS) of riboflavin on nanostructured Ag surfaces: The role of excitation wavelength, plasmon resonance and molecular resonance

    Science.gov (United States)

    Šubr, Martin; Kuzminova, Anna; Kylián, Ondřej; Procházka, Marek

    2018-05-01

    Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism.

  20. Enhanced Light Output of Dipole Source in GaN-Based Nanorod Light-Emitting Diodes by Silver Localized Surface Plasmon

    Directory of Open Access Journals (Sweden)

    Huamao Huang

    2014-01-01

    Full Text Available The light output of dipole source in three types of light-emitting diodes (LEDs, including the conventional planar LED, the nanorod LED, and the localized surface plasmon (LSP assisted LED by inserting silver nanoparticles in the gaps between nanorods, was studied by use of two-dimensional finite difference time domain method. The height of nanorod and the size of silver nanoparticles were variables for discussion. Simulation results show that a large height of nanorod induces strong wavelength selectivity, which can be significantly enhanced by LSP. On condition that the height of nanorod is 400 nm, the diameter of silver nanoparticle is 100 nm, and the wavelength is 402.7 nm, the light-output efficiency for LSP assisted LED is enhanced by 190% or 541% as compared to the nanorod counterpart or the planar counterpart, respectively. The space distribution of Poynting vector was present to demonstrate the significant enhancement of light output at the resonant wavelength of LSP.

  1. Laser-induced plasmonic colours on metals

    Science.gov (United States)

    Guay, Jean-Michel; Calà Lesina, Antonino; Côté, Guillaume; Charron, Martin; Poitras, Daniel; Ramunno, Lora; Berini, Pierre; Weck, Arnaud

    2017-07-01

    Plasmonic resonances in metallic nanoparticles have been used since antiquity to colour glasses. The use of metal nanostructures for surface colourization has attracted considerable interest following recent developments in plasmonics. However, current top-down colourization methods are not ideally suited to large-scale industrial applications. Here we use a bottom-up approach where picosecond laser pulses can produce a full palette of non-iridescent colours on silver, gold, copper and aluminium. We demonstrate the process on silver coins weighing up to 5 kg and bearing large topographic variations (~1.5 cm). We find that colours are related to a single parameter, the total accumulated fluence, making the process suitable for high-throughput industrial applications. Statistical image analyses of laser-irradiated surfaces reveal various nanoparticle size distributions. Large-scale finite-difference time-domain computations based on these nanoparticle distributions reproduce trends seen in reflectance measurements, and demonstrate the key role of plasmonic resonances in colour formation.

  2. Optimization of silver-dielectric-silver nanoshell for sensing applications

    International Nuclear Information System (INIS)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  3. Plasmonic colour generation

    DEFF Research Database (Denmark)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.

    2016-01-01

    Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic...... colours and recent nanofabrication developments, comparing technology-performance indicators for traditional and nanophotonic colour technologies. The structures of interest include diffraction gratings, nanoaperture arrays, thin films, and multilayers and structures that support Mie resonances...... and whispering-gallery modes. We discuss plasmonic colour nanotechnology based on localized surface plasmon resonances, such as gap plasmons and hybridized disk–hole plasmons, which allow for colour printing with sub-diffraction resolution. We also address a range of fabrication approaches that enable large...

  4. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract

    International Nuclear Information System (INIS)

    Mohapatra, Bandita; Kuriakose, Sini; Mohapatra, Satyabrata

    2015-01-01

    Highlights: • Silver nanorods were synthesized by photoreduction using Piper nigrum extract. • The morphological and structural properties were studied by XRD and AFM. • Silver nanoparticles were formed at lower AgNO 3 concentration. • Increase in AgNO 3 concentration resulted in formation of silver nanorods. - Abstract: We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO 3 solution. The effects of AgNO 3 concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV–visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO 3 concentration resulted in the formation of Ag nanorods. UV–visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO 3 concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods

  5. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Bandita [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Kuriakose, Sini [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Mohapatra, Satyabrata, E-mail: smiuac@gmail.com [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India)

    2015-07-15

    Highlights: • Silver nanorods were synthesized by photoreduction using Piper nigrum extract. • The morphological and structural properties were studied by XRD and AFM. • Silver nanoparticles were formed at lower AgNO{sub 3} concentration. • Increase in AgNO{sub 3} concentration resulted in formation of silver nanorods. - Abstract: We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO{sub 3} solution. The effects of AgNO{sub 3} concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV–visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO{sub 3} concentration resulted in the formation of Ag nanorods. UV–visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO{sub 3} concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods.

  6. Tailored Surfaces/Assemblies for Molecular Plasmonics and Plasmonic Molecular Electronics.

    Science.gov (United States)

    Lacroix, Jean-Christophe; Martin, Pascal; Lacaze, Pierre-Camille

    2017-06-12

    Molecular plasmonics uses and explores molecule-plasmon interactions on metal nanostructures for spectroscopic, nanophotonic, and nanoelectronic devices. This review focuses on tailored surfaces/assemblies for molecular plasmonics and describes active molecular plasmonic devices in which functional molecules and polymers change their structural, electrical, and/or optical properties in response to external stimuli and that can dynamically tune the plasmonic properties. We also explore an emerging research field combining molecular plasmonics and molecular electronics.

  7. [INVITED] Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures

    Science.gov (United States)

    Gupta, Banshi D.; Kant, Ravi

    2018-05-01

    Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.

  8. Facile synthesis of microporous SiO2/triangular Ag composite nanostructures for photocatalysis

    Science.gov (United States)

    Sirohi, Sidhharth; Singh, Anandpreet; Dagar, Chakit; Saini, Gajender; Pani, Balaram; Nain, Ratyakshi

    2017-11-01

    In this article, we present a novel fabrication of microporous SiO2/triangular Ag nanoparticles for dye (methylene blue) adsorption and plasmon-mediated degradation. Microporous SiO2 nanoparticles with pore size aminopropyl) trimethoxysilane) to introduce amine groups. Amine-functionalized microporous silica was used for adsorption of triangular silver (Ag) nanoparticles. The synthesized microporous SiO2 nanostructures were investigated for adsorption of different dyes including methylene blue, congo red, direct green 26 and curcumin crystalline. Amine-functionalized microporous SiO2/triangular Ag nanostructures were used for plasmon-mediated photocatalysis of methylene blue. The experimental results revealed that the large surface area of microporous silica facilitated adsorption of dye. Triangular Ag nanoparticles, due to their better charge carrier generation and enhanced surface plasmon resonance, further enhanced the photocatalysis performance.

  9. Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature

    KAUST Repository

    Alabastri, A.; Tuccio, S.; Giugni, A.; Toma, A.; Liberale, Carlo; Das, G.; Angelis, F.D.; Fabrizio, E.D.; Zaccaria, R.P.

    2013-01-01

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  10. Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature

    KAUST Repository

    Alabastri, A.

    2013-10-25

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  11. Nano-Gap Embedded Plasmonic Gratings for Surface Plasmon Enhanced Fluorescence

    Science.gov (United States)

    Bhatnagar, Kunal; Bok, Sangho; Korampally, Venumadhav; Gangopadhyay, Shubhra

    2012-02-01

    Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal/dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures on the sub wavelength scale have been shown to provide very efficient and extreme light concentration at the nano-scale. The enhanced electric field produced within a few hundred nanometers of these structures can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences. Improving the qualities and capabilities of fluorescence based detectors and imaging equipment has been a big challenge to the industry manufacturers. We report the novel fabrication of nano-gap embedded periodic grating substrates on the nanoscale using micro-contact printing and polymethylsilsesquioxane (PMSSQ) polymer. Fluorescence enhancement of up to 118 times was observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for low-level fluorescence detection and single molecule imaging.

  12. Electrically conductive nanostructured silver doped zinc oxide (Ag:ZnO) prepared by solution-immersion technique

    International Nuclear Information System (INIS)

    Afaah, A. N.; Asib, N. A. M.; Aadila, A.; Khusaimi, Z.; Mohamed, R.; Rusop, M.

    2016-01-01

    p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO_3 as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films were characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.

  13. Controllable fabrication of large-scale hierarchical silver nanostructures for long-term stable and ultrasensitive SERS substrates

    Science.gov (United States)

    Wu, Jing; Fang, Jinghuai; Cheng, Mingfei; Gong, Xiao

    2016-09-01

    In this work, we aim to prepare effective and long-term stable hierarchical silver nanostructures serving as surface-enhanced Raman scattering (SERS) substrates simply via displacement reaction on Aluminum foils. In our experiments, Hexadecyltrimethylammonium bromide (CTAB) is used as cationic surfactant to control the velocity of displacement reaction as well as the hierarchical morphology of the resultant. We find that the volume ratio of CTAB to AgNO3 plays a dominant role in regulating the hierarchical structures besides the influence of displacement reaction time. These as-prepared hierarchical morphologies demonstrate excellent SERS sensitivity, structural stability and reproducibility with low values of relative standard deviation less than 20 %. The high SERS analytical enhancement factor of ~6.7 × 108 is achieved even at the concentration of Crystal Violet (CV) as low as 10-7 M, which is sufficient for single-molecule detection. The detection limit of CV is 10-9 M in this study. We believe that this simple and rapid approach integrating advantages of low-cost production and high reproducibility would be a promising way to facilitate routine SERS detection and will get wide applications in chemical synthesis.

  14. Copper, gold, and silver decorated magnetic core-polymeric shell nanostructures for destruction of pathogenic bacteria

    Science.gov (United States)

    Padervand, Mohsen; Karanji, Ahmad Kiani; Elahifard, Mohammad Reza

    2017-05-01

    Fe3O4 magnetic nanoparticles (MNPs) were prepared by co-precipitation method. The nanoparticles were silica coated using TEOS, and then modified by the polymeric layers of polypropylene glycol (PPG) and polyethylene glycol (PEG). Finally, the core-shell samples were decorated with Ag, Au, and Cu nanoparticles. The products were characterized by vibrating sample magnetometry (VSM), TGA, SEM, XRD, and FTIR methods. The antibacterial activity of the prepared samples was evaluated in inactivation of E. coli and S. aureus microorganisms, representing the Gram-negative and Gram-positive species, respectively. The effect of solid dosage, bacteria concentration and type of polymeric modifier on the antibacterial activity was investigated. TEM images of the bacteria were recorded after the treatment time and according to the observed changes in the cell wall, the mechanism of antibacterial action was discussed. The prepared nanostructures showed high antibacterial activity against both Gram-negative and Gram-positive bacteria. This was due to the leaching of metal ions which subsequently led to the lysis of bacteria. A theoretical investigation was also done by studying the interaction of loaded metals with the nucleotide components of the microorganism DNA, and the obtained results were used to explain the experimental data. Finally, based on the observed inactivation curves, we explain the antibacterial behavior of the prepared nanostructures mathematically.

  15. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO2 were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO2, large photoelectrocatalytic effect for the reduction of CO2 was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO2 in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  16. Effect of x-radiation on SERS spectra of chitosan adsorbed on silver nanoparticles with plasmon resonance

    International Nuclear Information System (INIS)

    Motevich, I.G.; Strekal', N.D.; Dul', M.V.; Ganchits, A.T.; Lagun, Yu.Ya.; Melamed, V.D.; Maskevich, S.A.

    2016-01-01

    Chitosan, a deacetylated product of the polysaccharide chitin, is a natural biopolyaminosaccharide obtained from various organisms. Raman and SERS spectra of irradiated and unirradiated chitosan, adsorbed on silver hydrosols, are presented. (authors)

  17. Ambiance-dependent agglomeration and surface-enhanced Raman spectroscopy response of self-assembled silver nanoparticles for plasmonic photovoltaic devices

    Science.gov (United States)

    Gwamuri, Jephias; Venkatesan, Ragavendran; Sadatgol, Mehdi; Mayandi, Jeyanthinath; Guney, Durdu O.; Pearce, Joshua M.

    2017-07-01

    The agglomeration/dewetting process of thin silver films provides a scalable method of obtaining self-assembled nanoparticles (SANPs) for plasmonics-based thin-film solar photovoltaic (PV) devices. We show the effect of annealing ambiance on silver SANP average size, particle/cluster finite shape, substrate area coverage/particle distribution, and how these physical parameters influence optical properties and surface-enhanced Raman scattering (SERS) responses of SANPs. Statistical analysis performed indicates that generally Ag SANPs processed in the presence of a gas (argon and nitrogen) ambiance tend to have smaller average size particles compared to those processed under vacuum. Optical properties are observed to be highly dependent on particle size, separation distance, and finite shape. The greatest SERS enhancement was observed for the argon-processed samples. There is a correlation between simulation and experimental data that indicate argon-processed AgNPs have a great potential to enhance light coupling when integrated to thin-film PV.

  18. The ligand-to-metal energy transfer and the role of Lewis base ligands and silver plasmons in emission of new type of lanthanide phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Gawryszewska, Paula [Faculty of Chemistry, University of Wroclaw, 14F. Joliot-Curie Street, 50-383 Wroclaw (Poland); Amirkhanov, Vladimir M.; Trush, Victor A. [Department of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska Street 64, Kyiv 01601 (Ukraine); Kulesza, Dagmara [Faculty of Chemistry, University of Wroclaw, 14F. Joliot-Curie Street, 50-383 Wroclaw (Poland); Legendziewicz, Janina, E-mail: janina.legendziewicz@chem.uni.wroc.pl [Faculty of Chemistry, University of Wroclaw, 14F. Joliot-Curie Street, 50-383 Wroclaw (Poland)

    2016-02-15

    Two types of new Ln{sup 3+} chelates, phosphoro- and sulfono-derivatives of beta-diketones and Lewis base ligands were obtained and characterized by the high resolution photoluminescence spectroscopy at 293 and 77 as well as by luminescence decay times. The new type of phosphors shows very strong emission after excitation in the UV range within the ligand bands. The dynamics of the excited state will be discussed. The paths of the energy transfer (ET) are analyzed and mechanism of this process is proposed. The silica gels containing investigated complexes with silver particles were obtained and the role of silver plasmons on spectroscopic properties is displayed. - Highlights: • Spectral characteristic of new type of lanthanide chelates: Na[Ln(SP){sub 4}] and [Ln(SP){sub 3}L]. • Preparation of the energy-transfer (E-T) diagram. • Analysis of the possible pathways of energy transfer and their mechanism. • Application of chelates incorporated in sol–gel codoped by Ag particles.

  19. A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure

    International Nuclear Information System (INIS)

    Jiang, Shouzhen; Li, Zhe; Zhang, Chao; Gao, Saisai; Li, Zhen; Li, Chonghui; Yang, Cheng; Liu, Mei; Qiu, Hengwei; Liu, Yanjun

    2017-01-01

    In this work, we have presented a novel local surface plasmon resonance (LSPR) sensor based on the U-bent plastic optical fibre (U-POF). Firstly, a layer of discontinuous silver (Ag) thin film was deposited on the U-POF and then the Ag film was covered by a layer of cladding synthesized by polyvinyl alcohol (PVA), graphene and silver nanoparticles forming the PVA/G/AgNPs@Ag film. The normalized transmittance spectrum of the LSPR sensor have been collected in a range of the refractive index (RI) from 1.330 to 1.3657 in ethanol solution, and 700.3 nm/RIU sensitivity of the developed LSPR sensor has been demonstrated. By experiments, we demonstrated that the graphene could improve the sensitivity of the LSPR sensor and delay the oxidation process of the AgNPs effectively to keep the stability of the LSPR sensor. The LSPR sensor also exhibited good sensitivity and linearity in the detection of glucose solutions. This work shows that the developed LSPR sensor may have promising applications in biosensing. (paper)

  20. The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures

    DEFF Research Database (Denmark)

    Ni, X.; Liu, Z.; Boltasseva, Alexandra

    2010-01-01

    formulations are implemented using the scattering matrix algorithm for multilayer cascading. Then, by comparing the results from both formulations, it is shown that choosing an advanced fast-converging scheme could be essential for accurate and efficient modeling of plasmonic structures. Important obstacles...

  1. Formation of nitrile species on Ag nanostructures supported on a-Al2O3: a new corrosion route for silver exposed to the atmosphere

    Science.gov (United States)

    Peláez, R. J.; Espinós, J. P.; Afonso, C. N.

    2017-04-01

    The aging of supported Ag nanostructures upon storage in ambient conditions (air and room temperature) for 20 months has been studied. The samples are produced on glass substrates by pulsed laser deposition (PLD); first a 15 nm thick buffer layer of amorphous aluminum oxide (a-Al2O3) is deposited, followed by PLD of Ag. The amount of deposited Ag ranges from that leading to a discontinuous layer up to an almost-percolated layer with a thickness of oxidized faster, the smaller the amount of Ag. The corrosion leads to the formation of nitrile species due to the reaction between NO x species from the atmosphere adsorbed at the surface of Ag, and hydrocarbons adsorbed in defects at the surface of the a-Al2O3 layer during the deposition of the Ag nanostructures by PLD that migrate to the surface of the metal with time. The nitrile formation thus results in the main oxidation mechanism and inhibits almost completely the formation of sulphate/sulphide. Finally, the optical changes upon aging offer an easy-to-use tool for following the aging process. They are dominated by an enhanced absorption in the UV side of the spectrum and a blue-shift of the surface plasmon resonance that are, respectively, related to the formation of a dielectric overlayer on the Ag nanostructure and changes in the dimensions/features of the nanostructures, both due to the oxidation process.

  2. Description of plasmon-like band in silver clusters: the importance of the long-range Hartree-Fock exchange in time-dependent density-functional theory simulations.

    Science.gov (United States)

    Rabilloud, Franck

    2014-10-14

    Absorption spectra of Ag20 and Ag55(q) (q = +1, -3) nanoclusters are investigated in the framework of the time-dependent density functional theory in order to analyse the role of the d electrons in plasmon-like band of silver clusters. The description of the plasmon-like band from calculations using density functionals containing an amount of Hartree-Fock exchange at long range, namely, hybrid and range-separated hybrid (RSH) density functionals, is in good agreement with the classical interpretation of the plasmon-like structure as a collective excitation of valence s-electrons. In contrast, using local or semi-local exchange functionals (generalized gradient approximations (GGAs) or meta-GGAs) leads to a strong overestimation of the role of d electrons in the plasmon-like band. The semi-local asymptotically corrected model potentials also describe the plasmon as mainly associated to d electrons, though calculated spectra are in fairly good agreement with those calculated using the RSH scheme. Our analysis shows that a portion of non-local exchange modifies the description of the plasmon-like band.

  3. Laser-induced single point nanowelding of silver nanowires

    International Nuclear Information System (INIS)

    Dai, Shuowei; Li, Qiang; Liu, Guoping; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Wang, Wei; Qiu, Min

    2016-01-01

    Nanowelding of nanomaterials opens up an emerging set of applications in transparent conductors, thin-film solar cells, nanocatalysis, cancer therapy, and nanoscale patterning. Single point nanowelding (SPNW) is highly demanded for building complex nanostructures. In this letter, the precise control of SPNW of silver nanowires is explored in depth, where the nanowelding is laser-induced through the plasmonic resonance enhanced photothermal effect. It is shown that the illumination position is a critical factor for the nanowelding process. As an example of performance enhancement, output at wire end can be increased by 65% after welding for a plasmonic nanocoupler. Thus, single point nanowelding technique shows great potentials for high-performance electronic and photonic devices based on nanowires, such as nanoelectronic circuits and plasmonic nanodevices.

  4. Laser-induced single point nanowelding of silver nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuowei; Li, Qiang, E-mail: qiangli@zju.edu.cn; Liu, Guoping; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Wang, Wei; Qiu, Min, E-mail: minqiu@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-03-21

    Nanowelding of nanomaterials opens up an emerging set of applications in transparent conductors, thin-film solar cells, nanocatalysis, cancer therapy, and nanoscale patterning. Single point nanowelding (SPNW) is highly demanded for building complex nanostructures. In this letter, the precise control of SPNW of silver nanowires is explored in depth, where the nanowelding is laser-induced through the plasmonic resonance enhanced photothermal effect. It is shown that the illumination position is a critical factor for the nanowelding process. As an example of performance enhancement, output at wire end can be increased by 65% after welding for a plasmonic nanocoupler. Thus, single point nanowelding technique shows great potentials for high-performance electronic and photonic devices based on nanowires, such as nanoelectronic circuits and plasmonic nanodevices.

  5. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    International Nuclear Information System (INIS)

    Jacob, Rajani; Philip, Rachel Reena; Nazer, Sheeba; Abraham, Anitha; Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-01

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ∼1.78eV with high absorption coefficient ∼10 6 /m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80–330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ∼2.6Ωm and the films showed good photo response

  6. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    Science.gov (United States)

    Jacob, Rajani; Philip, Rachel Reena; Nazer, Sheeba; Abraham, Anitha; Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-01

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ˜1.78eV with high absorption coefficient ˜106/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80-330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ˜2.6Ωm and the films showed good photo response.

  7. Generation and preservation of field enhancement for organic-plasmonic devices

    DEFF Research Database (Denmark)

    Kostiučenko, Oksana

    with optically transparent and hard diamond-like carbon thin films has been investigated by means of atomic-force microscopy. The following optical characterizations of nanostructures with different coating thicknesses allow one to find the optimum balance between their optical and mechanical properties. Finally...... transferred on a silver film have been investigated by means of leakage spectroscopy, demonstrating the possibility to excite surface plasmon polaritons by luminescence from irradiated nanofibers. As an example for applications of such hybrid systems, the organic phototransistor with integrated gold....... The optical response of fabricated nanostructures has been characterized using a recently developed “imprint” technique, where a polymer film, deposited on the nanostructures is ablated by the structure-enhanced electric near-field. The improvement of mechanical durability of gold nanostructures coated...

  8. Polyoxometalate-Promoted Electrocatalytic CO2 Reduction at Nanostructured Silver in Dimethylformamide.

    Science.gov (United States)

    Guo, Si-Xuan; Li, Fengwang; Chen, Lu; MacFarlane, Douglas R; Zhang, Jie

    2018-04-18

    Electrochemical reduction of CO 2 is a promising method to convert CO 2 into fuels or useful chemicals, such as carbon monoxide (CO), hydrocarbons, and alcohols. In this study, nanostructured Ag was obtained by electrodeposition of Ag in the presence of a Keggin type polyoxometalate, [PMo 12 O 40 ] 3- (PMo). Metallic Ag is formed upon reduction of Ag + . Adsorption of PMo on the surface of the newly formed Ag lowers its surface energy thus stabilizes the nanostructure. The electrocatalytic performance of this Ag-PMo nanocomposite for CO 2 reduction was evaluated in a CO 2 saturated dimethylformamide medium containing 0.1 M [ n-Bu 4 N]PF 6 and 0.5% (v/v) added H 2 O. The results show that this Ag-PMo nanocomposite can catalyze the reduction of CO 2 to CO with an onset potential of -1.70 V versus Fc 0/+ , which is only 0.29 V more negative than the estimated reversible potential (-1.41 V) for this process and 0.70 V more positive than that on bulk Ag metal. High faradaic efficiencies of about 90% were obtained over a wide range of applied potentials. A Tafel slope of 60 mV dec -1 suggests that rapid formation of *CO 2 •- is followed by the rate-determining protonation step. This is consistent with the voltammetric data which suggest that the reduced PMo interacts strongly with CO 2 (and presumably CO 2 •- ) and hence promotes the formation of CO 2 •- .

  9. Color and dichroism of silver-stained glasses

    International Nuclear Information System (INIS)

    Molina, Gloria; Murcia, Sonia; Molera, Judit; Roldan, Clodoaldo; Crespo, Daniel; Pradell, Trinitat

    2013-01-01

    Yellow decorations in glasses have been produced since the beginning of the fourteenth century by incorporating metallic silver nanoparticles into the glass (from a few to some tens of nanometers). The optical response of the glass-particles composite is determined by the surface plasmon resonance absorption and scattering of the nanometric metallic particles. Generally, the same color is perceived in reflection and in transmission although dichroic effects are occasionally observed. As silver-stained glasses were designed to be observed in transmission, tuning the transmission color from yellow to red was of technological interest. The relationship between the color observed both in transmission and reflection and the composition and nanostructure of regular (yellow) and dichroic (yellow and red) silver stains from the Renaissance (late fifteenth and sixteenth century, respectively) is related to the presence of a layer (of about 10–20 μm thick) of metallic silver nanoparticles (from few to 100 nm in size). The correlation between the colors observed and the silver stain nanostructure is studied with particular emphasis on the origin of the dichroic behavior. The optical response is computed and compared to the experimental data. Differences in the synthesis parameters responsible for the colors and for the dichroic behavior of the silver stain glasses are proposed. This is essential for the replication of the glass pieces which are required as replacements in the restoration/conservation of the windows but is also of broader interest

  10. Color and dichroism of silver-stained glasses

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Gloria [Universitat Politecnica de Catalunya, Center for Research in NanoEngineering (Spain); Murcia, Sonia [Universidad de Valencia, Instituto de Ciencia de los Materiales (Spain); Molera, Judit [Universitat de Vic, GRTD, Escola Politecnica Superior (Spain); Roldan, Clodoaldo [Universidad de Valencia, Instituto de Ciencia de los Materiales (Spain); Crespo, Daniel; Pradell, Trinitat, E-mail: Trinitat.Pradell@upc.edu [Universitat Politecnica de Catalunya, Center for Research in NanoEngineering (Spain)

    2013-09-15

    Yellow decorations in glasses have been produced since the beginning of the fourteenth century by incorporating metallic silver nanoparticles into the glass (from a few to some tens of nanometers). The optical response of the glass-particles composite is determined by the surface plasmon resonance absorption and scattering of the nanometric metallic particles. Generally, the same color is perceived in reflection and in transmission although dichroic effects are occasionally observed. As silver-stained glasses were designed to be observed in transmission, tuning the transmission color from yellow to red was of technological interest. The relationship between the color observed both in transmission and reflection and the composition and nanostructure of regular (yellow) and dichroic (yellow and red) silver stains from the Renaissance (late fifteenth and sixteenth century, respectively) is related to the presence of a layer (of about 10-20 {mu}m thick) of metallic silver nanoparticles (from few to 100 nm in size). The correlation between the colors observed and the silver stain nanostructure is studied with particular emphasis on the origin of the dichroic behavior. The optical response is computed and compared to the experimental data. Differences in the synthesis parameters responsible for the colors and for the dichroic behavior of the silver stain glasses are proposed. This is essential for the replication of the glass pieces which are required as replacements in the restoration/conservation of the windows but is also of broader interest.

  11. Invited Article: Plasmonic growth of patterned metamaterials with fractal geometry

    Directory of Open Access Journals (Sweden)

    Nobuyuki Takeyasu

    2016-08-01

    Full Text Available Large-scale metallic three-dimensional (3D structures composed of sub-wavelength fine details, called metamaterials, have attracted optical scientists and materials scientists because of their unconventional and extraordinary optical properties that are not seen in nature. However, existing nano-fabrication technologies including two-photon fabrication, e-beam, focused ion-beam, and probe microscopy are not necessarily suitable for fabricating such large-scale 3D metallic nanostructures. In this article, we propose a different method of fabricating metamaterials, which is based on a bottom-up approach. We mimicked the generation of wood forest under the sunlight and rain in nature. In our method, a silver nano-forest is grown from the silver seeds (nanoparticles placed on the glass substrate in silver-ion solution. The metallic nano-forest is formed only in the area where ultraviolet light is illuminated. The local temperature increases at nano-seeds and tips of nano-trees and their branches due to the plasmonic heating as a result of UV light excitation of localized mode of surface plasmon polaritons. We have made experiments of growth of metallic nano-forest patterned by the light distribution. The experimental results show a beautiful nano-forest made of silver with self-similarity. Fractal dimension and spectral response of the grown structure are discussed. The structures exhibit a broad spectral response from ultraviolet to infrared, which was used for surface-enhanced Raman detection of molecules.

  12. Electromigration in gold and silver nanostructures; Elektromigration in Gold und Silber Nanostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Stahlmecke, Burkhard

    2008-01-15

    Electromigration is the current induced mass transport in metallic wires. It is the main reason for electrical breakdown in integrated circuits and has been studied for more than 50 years. In this thesis, the electromigration behavior in polycrystalline gold as well as in self-organized single crystalline silver wires are studied. To study the electromigration behavior in detail, in-situ investigations of the wires are performed in a scanning electron microscope, for which a new test rig was successfully installed. During electromigration, the development of voids on the cathode and hillocks on the anode side of the wire are observed. This behavior is studied in detail in this thesis. Electrical breakdown in the gold wires takes place due to the presence of slit-like voids perpendicular to the current direction. The void area grows linearly during the course of the experiments, and the electrical breakdown takes place when the total void area reaches a value of 2 % to 4 % of the total wire area. The influence of single voids on the electrical resistance during high current stressing is determined. The dependence of the electromigration behavior on the width and height as well as on the crystallinity and temperature of the gold wires is studied in detail. For high resolution imaging of the wires during the experiments, a special layout with arbitrary kinks is used. The dependence of electromigration effects on current density and on the influence of the measurement setup itself are also discussed in this thesis. When reversing the current direction, a reversible electromigration behavior is observed. Also, the lifetime of the wires grows considerably. According to the resistance data, a remarkable stabilization of the polycrystalline wires is observed during this experiments. Furthermore, it is possible to define an alternative sheet length according to the position of voids and hillocks in the wires. This leads also to the determination of the critical product for

  13. Time-domain analysis of surface-plasmon-polariton propagation in Ag nano-films using a generalized polarization approach

    KAUST Repository

    Al-Jabr, Ahmad

    2010-01-01

    A time-domain analysis of the propagation properties of surface-plasmon-polaritons (SPP) in Silver nanostructures is presented. The analysis is based on a simulation algorithm that unifies the formulation of different dispersion models and multi-pole relations into one form. The main objective of this work is to perform a comparative analysis between different dispersion models used for Silver, including Debye, Drude and multi-pole Lorentz-Drude models. The quantities that are used in the comparison are the SPP propagation length and propagation speed. Experimental results reported in literature are used to support the conclusions.

  14. Increasing of sensitivity of fluorescent immunoassay analysis of alpha-fetoprotein by means of plasmonical silver nanoparticles

    International Nuclear Information System (INIS)

    Vashchenko, S.V.; Min'ko, A.A.; Romanenko, A.A.; Gaponenko, S.V.; Kulakovich, O.S.

    2014-01-01

    A test system is proposed based on metal enhanced fluorescence to analyze low concentrations of alpha-fetoprotein (AFP), a tumor marker. Antigen-antibody reaction was performed on polystyrene plates coated with silver nanoparticles to increase sensitivity of fluorescent immunoassay and signal-to-noise ratio as compared to silver-free system. As compared to widely used ELISA technique and other immunoassay techniques the proposed approach is characterized by smaller probe volume, fast analysis and simplicity. The proposed test system uses layer-by-layer assembly approach, LED excitation and nanowatt photodetection set-up. The proposed test system offers AFP detection at concentrations used in clinical practice. Fluorescence enhancement for labeled AFP antibodies on a silver substrate was found to depend on antibodies concentration and was up to 6 times. (authors)

  15. Determination of dextrose in peritoneal dialysis solution by localized surface plasmon resonance technique based on silver nanoparticles formation

    Science.gov (United States)

    Masrournia, Mahboube; Montazarolmahdi, Maliheh; Sani, Faramarz Aliasghari

    2017-07-01

    Determination of dextrose in peritoneal dialysis with a method based on silver nanoparticles (AgNPs) formation was investigated. In a green chemistry method, silver nanoparticles (AgNPs) were synthesized in the natural polymeric matrix of gelatin. The nanoparticles were characterized with UV-Vis spectroscopy and transmission electron microscopy (TEM). Absorbance signal of AgNPs could be applied to determine the various concentrations of dextrose solutions. Drop wise and ultrasonic methods were used and compared with each other. The dynamic range of methods with limit of detection and relative standard deviations were obtained. Results for real sample (peritoneal dialysis) were satisfied.

  16. Plasmonic Paper as a Novel Chem/Bio Detection Platform

    Science.gov (United States)

    Tian, Limei

    The time varying electric field of electromagnetic (EM) radiation causes oscillation of conduction electrons of metal nanoparticles. The resonance of such oscillation, termed localized surface plasmon resonance (LSPR), falls into the visible spectral region for noble metals such as gold, silver and copper. LSPR of metal nanostructures is sensitive to numerous factors such as composition, size, shape, dielectric properties of surrounding medium, and proximity to other nanostructures (plasmon coupling). The sensitivity of LSPR to the refractive index of surrounding medium renders it an attractive platform for chemical and biological sensing. When the excitation light is in resonance with the plasmon frequency of the metal nanoparticle, it radiates a characteristic dipolar radiation causing a characteristic spatial distribution in which certain areas show higher EM field intensity, which is manifested as electromagnetic field enhancement. Surface enhanced Raman scattering (SERS) involves dramatic enhancement of the intensity of the Raman scattering from the analyte adsorbed on or in proximity to a nanostructured metal surface exhibiting such strong EM field enhancement. Both LSPR and SERS have been widely investigated for highly sensitive and label-free chemical & biological sensors. Most of the SERS/LSPR sensors demonstrated so far rely on rigid planar substrates (e.g., glass, silicon) owing to the well-established lithographic approaches, which are routinely employed for either fabrication or assembly of plasmonic nanotransducers. In many cases, their rigid nature results in low conformal contact with the sample and hence poor sample collection efficiency. We hypothesized that paper substrates are an excellent alternative to conventional rigid substrates to significantly improve the (multi-)functionality of LSPR/SERS substrates, dramatically simplify the fabrication procedures and lower the cost. The choice of paper substrates for the implementation of SERS

  17. Polymer films with size-selected silver nanoparticles as plasmon resonance-based transducers for protein sensing

    DEFF Research Database (Denmark)

    Muhammad, Hanif; Juluri, Raghavendra Rao; Fojan, Peter

    2016-01-01

    and deposited on the films in vacuum. Immersion of NPs is controlled by post-deposition thermal annealing providing very good adhesion, in particular, resistance against following wet chemical procedures. LSPR properties of silver NPs are exploited for protein detection using a classical antibody-antigen scheme...

  18. A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure

    Science.gov (United States)

    Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya

    2011-06-01

    This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.

  19. Refractive index sensor based on total scattering of plasmonic nanotube

    Science.gov (United States)

    Yao, Kaiqiang; Zeng, Qingbing; Hu, Zengrong; Zhan, Yaohui

    2018-03-01

    Plasmonic nanostructures can couple free space light into anultrafine space; therefore,they are employed extensively in the refractive index sensors to minimize the device size or further improve the detection sensitivity. In this work, the optical response of the plasmonic nanotube are investigated comprehensively by using full wave finite element method. With a subwavelength scale, the silver nanotube have prominent scattering peaks in the visible range, which is very suitable for observing through the dark field microscope. The geometric dependence of the scattering spectra and the sensing performance are evaluated carefully. Results show that the scattering peaks are in linear relationship to the circumstance refractive index and a sensitivity of 337 nm/RIUcan be achieved easily by such a plasmonicnanotube with an optimized size.

  20. Fluorescence Enhancement on Large Area Self-Assembled Plasmonic-3D Photonic Crystals.

    Science.gov (United States)

    Chen, Guojian; Wang, Dongzhu; Hong, Wei; Sun, Lu; Zhu, Yongxiang; Chen, Xudong

    2017-03-01

    Discontinuous plasmonic-3D photonic crystal hybrid structures are fabricated in order to evaluate the coupling effect of surface plasmon resonance and the photonic stop band. The nanostructures are prepared by silver sputtering deposition on top of hydrophobic 3D photonic crystals. The localized surface plasmon resonance of the nanostructure has a symbiotic relationship with the 3D photonic stop band, leading to highly tunable characteristics. Fluorescence enhancements of conjugated polymer and quantum dot based on these hybrid structures are studied. The maximum fluorescence enhancement for the conjugated polymer of poly(5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene) potassium salt by a factor of 87 is achieved as compared with that on a glass substrate due to the enhanced near-field from the discontinuous plasmonic structures, strong scattering effects from rough metal surface with photonic stop band, and accelerated decay rates from metal-coupled excited state of the fluorophore. It is demonstrated that the enhancement induced by the hybrid structures has a larger effective distance (optimum thickness ≈130 nm) than conventional plasmonic systems. It is expected that this approach has tremendous potential in the field of sensors, fluorescence-imaging, and optoelectronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. PARAMETERS OPTIMIZATION OF METAL-DIELECTRIC NANOSTRUCTURES FOR SENSOR APPLICATIONS

    Directory of Open Access Journals (Sweden)

    V. I. Egorov

    2014-07-01

    Full Text Available We present calculation results of optical properties of silver nanoparticles with dielectric shell in relation to their applications in chemical and biosensors. Absorption cross-section calculation for spherical silver nanoparticles was performed by quasi static dipole approximation. It is shown that dielectric shell thickness equal to 2-3 nm and its refraction index equal to 1,5-1,75 are optimal. Calculation results were compared to experimental data. Experimental investigation of metal-dielectric nanostructures sensitivity to external refraction index was performed. Synthesis of silver nanoparticles with dielectric shell on glass surface was performed by nanosecond laser ablation method in near-surface glass layer at 1,06 μm wavelength (Solar LQ129. Synthesis of silver nanoparticles without a shell on the glass surface with silver ions was performed using thermal treatment in wet atmosphere. Spectrophotometer Cary 500 (Varyan was used for spectral measurements. In case of laser ablation method application, external refraction index changes from 1 (the air to 1,33 (water and plasmon resonance band shift for 6 nm occurs. In case of another method application at the same conditions the registered shift was equal to 13 nm. However, in the latter case the particles can be easily removed from the substrate surface. Obtained results will be useful for developing chemical and biological sensors based on plasmon resonance band shift.

  2. Plasmon-exciton-polariton lasing

    NARCIS (Netherlands)

    Ramezani, M.; Halpin, A.; Fernandez, A. I.; Feist, J.; Rodriguez, S. R. K.; Garcia-Vidal, F. J.; J. Gomez Rivas,

    2017-01-01

    Metallic nanostructures provide a toolkit for the generation of coherent light below the diffraction limit. Plasmonic-based lasing relies on the population inversion of emitters (such as organic fluorophores) along with feedback provided by plasmonic resonances. In this regime, known as weak

  3. In situ photoactivated plasmonic Ag{sub 3}PO{sub 4}@silver as a stable catalyst with enhanced photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongfang; Wang, Jiaxun, E-mail: zdfbb66@aliyun.com [College of Science, Huazhong Agricultural University, Wuhan (China)

    2017-05-15

    Silver orthophosphate (Ag{sub 3}PO{sub 4}) had been reported as an excellent candidate to split water or decompose pollutants with high efficiency in visible light region, yet is not stable due to the reduction of silver ion. In this work, an easy-fabricated method (in situ photoinduced reduction) was provided to enhance the stability of Ag{sub 3}PO{sub 4} for its possible application as a visible-light sensitive photocatalyst. The as-prepared samples were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra, photoluminescence spectra (PL) and Photoelectrochemical measurements. The Ag{sub 3}PO{sub 4}/Ag photocatalysts showed strong photocatalytic activity for decomposition of RhB dye or phenol-X-3B mixture under visible light irradiation (λ> 420 nm) and can be used repeatedly. The possible mechanism for the enhanced photocatalytic properties of the Ag{sub 3}PO{sub 4} /Ag hybrid was also discussed. It was found that •OH and holes take priority over •O{sub 2}{sup -} radicals in serving as the main oxidant in the Ag{sub 3}PO{sub 4}/Ag photocatalytic system. Especially, the experimental results indicate that the surface plasmon resonance of Ag nanoparticles and a large negative charge of PO{sub 4}{sup 3-} ions as well as high separation efficiency of {sup e-} --h{sup +} pairs, facilitated the enhancement of the photocatalytic activity of the Ag{sub 3} PO{sub 4} /Ag composite. The results indicated that Ag{sub 3} PO{sub 4} /Ag is an efficient and stable visible-light-driven photocatalyst. (author)

  4. Robust plasmonic substrates

    DEFF Research Database (Denmark)

    Kostiučenko, Oksana; Fiutowski, Jacek; Tamulevicius, Tomas

    2014-01-01

    Robustness is a key issue for the applications of plasmonic substrates such as tip-enhanced Raman spectroscopy, surface-enhanced spectroscopies, enhanced optical biosensing, optical and optoelectronic plasmonic nanosensors and others. A novel approach for the fabrication of robust plasmonic...... substrates is presented, which relies on the coverage of gold nanostructures with diamond-like carbon (DLC) thin films of thicknesses 25, 55 and 105 nm. DLC thin films were grown by direct hydrocarbon ion beam deposition. In order to find the optimum balance between optical and mechanical properties...

  5. EDITORIAL: Plasmas and plasmons: links in nanosilver Plasmas and plasmons: links in nanosilver

    Science.gov (United States)

    Demming, Anna

    2013-03-01

    appearing in the 620-800 nm regions of the absorption spectra. A number of research groups have investigated the possibility of exploiting the plasmonic properties of silver and gold nanostructures for optoelectronic devices [7-9]. The advantages can be quite substantial. Researchers in Korea successfully used silver nanoparticles to obtain a 38% increase in performance of blue LEDs by using silver nanoparticles embedded in p-GaN [10]. The researchers attribute the improvement to an increase in the spontaneous emission rate through resonance coupling between the excitons in multiple quantum wells and localized surface plasmons in the silver nanoparticles. In their work reported in this issue Kostya Ostrikov and his co-authors bridge the link between microplasma-assisted electrochemical process parameters and the plasmonic response. As they point out, 'This is an important experimental step towards bringing together plasma chemistry and plasmonics' [1]. All-gas-phase plasma approaches have already been demonstrated for the synthesis of nanoparticles of other metals. X D Pi and colleagues from the University of Minnesota demonstrated how one simple gas-phase process could produce stable silicon nanocrystal emitters with tailored size and surface functionalization [11]. Previously silicon nanocrystals had been prone to emission instabilities in air. Now Ostrikov and colleagues at the University of Sydney, CSIRO Materials Science and Engineering in Australia and the Key Laboratory for Laser Plasmas in China have studied microplasma-assisted electrochemical synthesis of Ag nanoparticles for plasmonic applications [1]. The synthesis uses moderate temperatures and atmospheric pressures and does not involve any toxic reducing agents. In addition they demonstrate how it allows control over nanoparticle size and interparticle spacing to optimize performance in device applications. Despite the overlap in plasma physics and the origins of plasmonic phenomena, studies of the

  6. Poly(vinylpyrrolidone)-Free Multistep Synthesis of Silver Nanoplates with Plasmon Resonance in the Near Infrared Range.

    Science.gov (United States)

    Khan, Assad U; Zhou, Zhengping; Krause, Joseph; Liu, Guoliang

    2017-11-01

    Herein, a poly(vinylpyrrolidone) (PVP)-free method is described for synthesizing Ag nanoplates that have localized surface plasmon resonance in the near-infrared (NIR) range. Citrate-capped Ag spherical nanoparticles are first grown into small Ag nanoplates that resonate in the range of 500-800 nm. The small Ag nanoplates are used as seeds to further grow into large Ag nanoplates with a lateral dimension of 100-600 nm and a plasmon resonance wavelength of 800-1660 nm and above. The number of growth steps can be increased as desired. Without introducing additional citrate into the solutions of small Ag nanoplate seeds, large Ag nanoplates can be synthesized within minutes. The entire synthesis is completely PVP free, which promotes the nanoparticle growth along the lateral direction to form large Ag nanoplates. The multistep growth and the minimum usage of citrate are essential for the fast growth of high-aspect-ratio Ag nanoplates resonating in the NIR range. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enhancement of plasmon-induced charge separation efficiency by coupling silver nanocubes with a thin gold film

    Science.gov (United States)

    Akiyoshi, Kazutaka; Saito, Koichiro; Tatsuma, Tetsu

    2016-10-01

    Plasmon-induced charge separation (PICS), in which an energetic electron is injected from a plasmonic nanoparticle (NP) to a semiconductor on contact, is often inhibited by a protecting agent adsorbed on the NP. We addressed this issue for an Ag nanocube-TiO2 system by coating it with a thin Au layer or by inserting the Au layer between the nanocubes (NCs) and TiO2. Both of the electrodes exhibit much higher photocurrents due to PICS than the electrodes without the Au film or the Ag NCs. These photocurrent enhancements can be explained in terms of PICS with accelerated electron transfer, in which electron injection from the Ag NCs or Ag@Au core-shell NCs to TiO2 is promoted by the Au film, or PICS enhanced by a nanoantenna effect, in which the electron injection from the Au film to TiO2 is enhanced by optical near field generated by the Ag NC.

  8. Coherent interaction of single molecules and plasmonic nanowires

    Science.gov (United States)

    Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg

    2017-09-01

    Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.

  9. The fabrication of highly ordered silver nanodot patterns by platinum assisted nanoimprint lithography

    International Nuclear Information System (INIS)

    Yoo, Hae-Wook; Jung, Jin-Mi; Lee, Su-kyung; Jung, Hee-Tae

    2011-01-01

    Silver has been widely used for optical sensing and imaging applications which benefit from localized surface plasmon resonance (LSPR) in a nanoscale configuration. Many attempts have been made to fabricate and control silver nanostructures in order to improve the high performance in sensing and other applications. However, a fatal mechanical weakness of silver and a lack of durability in oxygen-rich conditions have disrupted the manufacturing of reproducible nanostructures by the top-down lithography approach. In this study, we suggest a steady fabrication strategy to obtain highly ordered silver nanopatterns that are able to provide tunable LSPR characteristics. By using a protecting layer of platinum on a silver surface in the lithography process, we successfully obtained large-area (2.7 x 2.7 mm 2 ) silver nanopatterns with high reproducibility. This large-area silver nanopattern was capable of enhancing the low concentration of a Cy3 fluorescence signal (∼10 -10 M) which was labeled with DNA oligomers.

  10. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun

    2012-08-28

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  11. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun; Wang, Feng; Li, Kun; Woo, Katchoi; Wang, Jianfang; Li, Quan; Sun, Ling Dong; Zhang, Xixiang; Lin, Haiqing; YAN, Chunhua

    2012-01-01

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  12. Silver nanoparticles on GaSb nanodots: a LSPR-boosted binary platform for broadband light harvesting and SERS

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, Mukul, E-mail: mkbh10@gmail.com; Ranjan, Mukesh; Mukherjee, Subroto [FCIPT, Institute for Plasma Research (India)

    2015-02-15

    We report the LSPR-augmented optical response of silver nanoparticle-topped GaSb nanodots produced by low-energy ion beam irradiation. Nanostructure ordering and interdot gap play crucial roles for inducing the LSPR effect, enhancing the absorbing capacity of the structure as validated by reflection measurements. The measured size of silver-capped GaSb nanodot varies from 28 to 48 nm. Enhanced plasmon coupling for the 600 eV configuration initiates the presence of giant electromagnetic fields as confirmed by LSPR and SERS measurements. Anisotropic Bruggeman effective medium approximation was performed to match the experimentally observed optical response of the nanostructure. Calculated screening factor values of 0.29 and 0.23 for 600 and 800 eV ion energy produced nanodot configurations were obtained, respectively, which are in tune with the measured reflected and SERS signal. The calculated dielectric constants confirm the directional anisotropy along the length of the silver-capped GaSb nanodots. The proposed model successfully matches the void fraction and nanostructure height in accordance with SEM and reported TEM measurements. Thus, the model developed can be used to optimize the maximum plasmonic coupling efficiency among the dots. We propose two key applications for this nanostructure, first as an absorptive substrate for deep space photovoltaics and second to act as an effective SERS substrate.

  13. Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon

    Science.gov (United States)

    Nagarajappa, Kiran; Guha, Puspendu; Thirumurugan, Arun; Satyam, Parlapalli V.; Bhatta, Umananda M.

    2018-06-01

    Coherently, embedded metal nanostructures (endotaxial) are known to have potential applications concerning the areas of plasmonics, optoelectronics and thermoelectronics. Incorporating appropriate concentrations of metal atoms into crystalline silicon is critical for these applications. Therefore, choosing proper dose of low-energy ions, instead of depositing thin film as a source of metal atoms, helps in avoiding surplus concentration of metal atoms that diffuses into the silicon crystal. In this work, 30 keV silver negative ions are implanted into a SiO x /Si(100) at two different fluences: 1 × 1015 and 2.5 × 1015 Ag- ions/cm2. Later, the samples are annealed at 700 °C for 1 h in Ar atmosphere. Embedded silver nanostructures have been characterized using planar and cross-sectional TEM (XTEM) analysis. Planar TEM analysis shows the formation of mostly rectangular silver nanostructures following the fourfold symmetry of the substrate. XTEM analysis confirms the formation of prism-shaped silver nanostructures embedded inside crystalline silicon. Endotaxial nature of the embedded crystals has been discussed using selected area electron diffraction analysis.

  14. Nanoscale devices based on plasmonic coaxial waveguide resonators

    Science.gov (United States)

    Mahigir, A.; Dastmalchi, P.; Shin, W.; Fan, S.; Veronis, G.

    2015-02-01

    Waveguide-resonator systems are particularly useful for the development of several integrated photonic devices, such as tunable filters, optical switches, channel drop filters, reflectors, and impedance matching elements. In this paper, we introduce nanoscale devices based on plasmonic coaxial waveguide resonators. In particular, we investigate threedimensional nanostructures consisting of plasmonic coaxial stub resonators side-coupled to a plasmonic coaxial waveguide. We use coaxial waveguides with square cross sections, which can be fabricated using lithography-based techniques. The waveguides are placed on top of a silicon substrate, and the space between inner and outer coaxial metals is filled with silica. We use silver as the metal. We investigate structures consisting of a single plasmonic coaxial resonator, which is terminated either in a short or an open circuit, side-coupled to a coaxial waveguide. We show that the incident waveguide mode is almost completely reflected on resonance, while far from the resonance the waveguide mode is almost completely transmitted. We also show that the properties of the waveguide systems can be accurately described using a single-mode scattering matrix theory. The transmission and reflection coefficients at waveguide junctions are either calculated using the concept of the characteristic impedance or are directly numerically extracted using full-wave three-dimensional finite-difference frequency-domain simulations.

  15. Poloidal and toroidal plasmons and fields of multilayer nanorings

    International Nuclear Information System (INIS)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.

    2017-01-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  16. Poloidal and toroidal plasmons and fields of multilayer nanorings

    Science.gov (United States)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A.

    2017-04-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  17. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR and Surface Enhanced Raman Spectroscopy (SERS Detection of Adsorbed (Biomolecules

    Directory of Open Access Journals (Sweden)

    Rodica Elena Ionescu

    2017-01-01

    Full Text Available Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography or inexpensive (e.g., thermal synthesis approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C. The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR and surface enhanced Raman spectroscopy (SERS optical responses and where used for the detection of low concentrations of two model (biochemical molecules, namely the human cytochrome b5 (Cyt-b5 and trans-1,2-bis(4-pyridylethylene (BPE.

  18. Plasma processing of the Si(0 0 1) surface for tuning SPR of Au/Si-based plasmonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy)]. E-mail: michelaria.giangregorio@ba.imip.cnr.it; Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy); Sacchetti, Alberto [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy); Capezzuto, Pio [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy); Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy)

    2006-12-15

    Au nanoclusters have been deposited on Si(0 0 1) surfaces by sputtering of a metallic Au target using an Ar plasma. Different wet and dry treatments of the Si(0 0 1) surface, including dipping in HF solution and exposure to H{sub 2} and N{sub 2} plasmas, have been applied and the effects of these treatments on the Au nanoparticles/Si interface, the Au nanoclusters aspect ratio and the surface plasmon resonance (SPR) energy and amplitude are investigated exploiting spectroscopic ellipsometry and atomic force microscopy. It is found that the Au nanoclusters aspect ratio depends on the extent of the Au-Si intermixing. The thicker the Au-Si interface layer, the larger the Au nanoparticles aspect ratio and the red-shift of the SPR peak. Furthermore, SiO{sub 2} and the H{sub 2} plasma treatment inhibit the Si-Au intermixing, while HF-dipping and the N{sub 2} plasma treatment favour Au-Si intermixing, yielding silicide formation which increases the Si wetting by Au.

  19. Surface plasmon resonance effect of silver nanoparticles on a TiO2 electrode for dye-sensitized solar cells

    Science.gov (United States)

    Jung, Haeng-Yun; Yeo, In-Seon; Kim, Tae-Un; Ki, Hyun-Chul; Gu, Hal-Bon

    2018-02-01

    In this study, we exploit local surface plasmon resonance (LSPR) in order to improve the efficiency of dye-sensitized solar cells (DSSCs). In order to investigate the effect of LSPR, Ag nanoparticles of several sizes were formed using electro-beam equipment; sizes were varied by changing the annealing time. DSSCs were fabricated by coating Ag nanoparticles onto a TiO2 thin film. Finally, TiO2 nanoparticles were layered onto the Ag nanoparticles via a titanium tetra-isopropoxide (TTIP) treatment. This study used nanoparticle-coated TiO2 thin films as photoelectrodes, and manufactured the cell in the unit of the DSSCs. We compared the behavior of the electrical properties of DSSCs depending on the presence or absence of Ag nanoparticles, as well as on the nanoparticle size. The Ag particles did not affect dye adsorption because the content of Ag particles is very low (0.13%) compared to that in TiO2 in the photoelectrode. The DSSCs with LSPR showed increased electric current density compared to those without LSPR, and improved the solar conversion efficiency (η) by 24%. The current density of the DSSCs increased because the light absorption of the dye increased. Therefore, we determined that LSPR affects the electrical properties of DSSCs.

  20. Correlation of carrier localization with relaxation time distribution and electrical conductivity relaxation in silver-nanoparticle-embedded moderately doped polypyrrole nanostructures

    Science.gov (United States)

    Biswas, Swarup; Dutta, Bula; Bhattacharya, Subhratanu

    2014-02-01

    The electrical conductivity relaxation in moderately doped polypyrrole and its nanocomposites reinforced with different proportion of silver nanoparticles was investigated in both frequency and time domain. An analytical distribution function of relaxation times is constructed from the results obtained in the frequency domain formalism and is used to evaluate the Kohlrausch-Williams-Watts (KWW) type decay function in the time domain. The thermal evolution of different relaxation parameters was analyzed. The temperature-dependent dc electrical conductivity, estimated from the average conductivity relaxation time is observed to depend strongly on the nanoparticle loading and follows Mott three-dimensional variable range hopping (VRH) conduction mechanism. The extent of charge carrier localization calculated from the VRH mechanism is well correlated to the evidences obtained from the structural characterizations of different nanostructured samples.

  1. Morphology Effect of Silver Nanostructures on the Performance of a P3HT:Graphene:AgNs-Based Active Layer Obtained via Dip Coating

    Directory of Open Access Journals (Sweden)

    Alí Gómez-Acosta

    2016-01-01

    Full Text Available We report the effect of the use of different silver nanostructures (AgNs layers deposited via dip coating onto a poly(3-hexylthiophene (P3HT and solution processable functionalized graphene (SPFGraphene composite film intended to be used as active layer in BHJ devices. SPFGraphene was added to P3HT in a ratio of 1.5 wt%. The best results were achieved when a layer of silver nano-pseudospheres (AgNPSs obtained after 10 immersion cycles was used as coating; in this case the highest light trapping and efficiency percent (η=0.23% were achieved. This means an increase of ~11.3% in comparison with the efficiency of the noncoated P3HT:SPFGraphene composite. Results also indicate that graphene was successfully functionalized in order to obtain appropriate dispersion in P3HT and that such conjugated polymer remained unaltered after the addition of SPFGraphene. Finally, it can be concluded that the electrical properties of the as-synthesized films are dependent on the shape and concentration of the AgNs deposited via dip coating.

  2. Plasmonic Devices for Near and Far-Field Applications

    KAUST Repository

    Alrasheed, Salma

    2017-11-30

    Plasmonics is an important branch of nanophotonics and is the study of the interaction of electromagnetic fields with the free electrons in a metal at metallic/dielectric interfaces or in small metallic nanostructures. The electric component of an exciting electromagnetic field can induce collective electron oscillations known as surface plasmons. Such oscillations lead to the localization of the fields that can be at sub-wavelength scale and to its significant enhancement relative to the excitation fields. These two characteristics of localization and enhancement are the main components that allow for the guiding and manipulation of light beyond the diffraction limit. This thesis focuses on developing plasmonic devices for near and far-field applications. In the first part of the thesis, we demonstrate the detection of single point mutation in peptides from multicomponent mixtures for early breast cancer detection using selfsimilar chain (SCC) plasmonic devices that show high field enhancement and localization. In the second part of this work, we investigate the anomalous reflection of light for TM polarization for normal and oblique incidence in the visible regime. We propose gradient phase gap surface plasmon (GSP) metasurfaces that exhibit high conversion efficiency (up to ∼97% of total reflected light) to the anomalous reflection angle for blue, green and red wavelengths at normal and oblique incidence. In the third part of the thesis, we present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. In the fourth part of this work, we demonstrate numerically bright color pixels that are highly polarized and broadly tuned using periodic arrays of metal nanosphere dimers on a glass substrate. In the fifth and final part of the

  3. Nanostructures via DNA scaffold metallization

    OpenAIRE

    Ning, C.; Zinchenko, A.; Baigl, D.; Pyshkina, O.; Sergeyev, V.; Endo, Kazunaka; Yoshikawa, K.

    2005-01-01

    The critical role of polymers in process of noble metals nanostructures formation is well known, however, the use of DNA chain template in this process is yet largely unknown. In this study we demonstrate different ways of silver deposition on DNA template and report the influence of silver nanostructures formation on DNA conformational state. Metallization of DNA chain proceeds by two different scenarios depending on DNA conformation. If DNA chain is unfolded (elongated) chain, silver reduct...

  4. Plasmonic colour laser printing

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil

    2016-01-01

    -beam lithography (EBL) or focused ion beam (FIB), both expensive and not scalable processes that are not suitable for post-processing customization. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation...... that leads to melting and reshaping of the imprinted nanostructures. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different colour appearances can be created. Using this technique we can print all primary colours...

  5. Plasmonic transparent conductors

    Science.gov (United States)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-09-01

    Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.

  6. Plasmonic Dye-Sensitized Solar Cells

    KAUST Repository

    Ding, I-Kang; Zhu, Jia; Cai, Wenshan; Moon, Soo-Jin; Cai, Ning; Wang, Peng; Zakeeruddin, Shaik M; Grä tzel, Michael; Brongersma, Mark L.; Cui, Yi; McGehee, Michael D.

    2010-01-01

    reflectors, which consist of 2D arrays of silver nanodomes, can enhance absorption through excitation of plasmonic modes and increased light scattering, as reported by Michael D. McGehee, Yi Cui, and co-workers.

  7. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  8. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts

    NARCIS (Netherlands)

    Ma, Ming; Trześniewski, Bartek J.; Xie, Jie; Smith, Wilson A.

    2016-01-01

    In this work, the selective electrocatalytic reduction of carbon dioxide to carbon monoxide on oxide-derived silver electrocatalysts is presented. By a simple synthesis technique, the overall high faradaic efficiency for CO production on the oxide-derived Ag was shifted by more than 400 mV towards a

  9. Study of Charge-Dependent Transport and Toxicity of Peptide-Functionalized Silver Nanoparticles Using Zebrafish Embryos and Single Nanoparticle Plasmonic Spectroscopy

    Science.gov (United States)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Xu, Xiao-Hong Nancy

    2013-01-01

    Nanomaterials possess unusually high surface area-to-volume ratios, and surface-determined physicochemical properties. It is essential to understand their surface-dependent toxicity in order to rationally design biocompatible nanomaterials for a wide variety of applications. In this study, we have functionalized the surfaces of silver nanoparticles (Ag NPs, 11.7 ± 2.7 nm in diameters) with three biocompatible peptides (CALNNK, CALNNS, CALNNE) to prepare positively (Ag-CALNNK NPs+ζ), negatively (Ag-CALNNS NPs−2ζ), and more negatively charged NPs (Ag-CALNNE NPs−4ζ), respectively. Each peptide differs in a single amino acid at its C-terminus, which minimizes the effects of peptide sequences and serves as a model molecule to create positive, neutral and negative charges on the surface of the NPs at pH 4–10. We have studied their charge-dependent transport into early-developing (cleavage-stage) zebrafish embryos and their effects on embryonic development using dark-field optical microscopy and spectroscopy (DFOMS). We found that all three Ag-peptide NPs passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h), showing charge-independent diffusion modes and charge-dependent diffusion coefficients. Notably, the NPs create charge-dependent toxic effects on embryonic development, showing that the Ag-CALNNK NPs+ζ (positively charged) are the most biocompatible while the Ag-CALNNE NPs–4ζ (more negatively charged) are the most toxic. By comparing with our previous studies of the same sized citrated Ag and Au NPs, the Ag-peptide NPs are much more biocompatible than the citrated Ag NPs, and nearly as biocompatible as the Au NPs, showing the dependence of nanotoxicity upon the surface charges, surface functional groups and chemical compositions of the NPs. This study also demonstrates powerful applications of single NP plasmonic spectroscopy for quantitative analysis of single NPs

  10. Control of optical properties of metal-dielectric planar plasmonic nanostructures by adjusting their architecture in the case of TiAlN/Ag system

    Science.gov (United States)

    Wainstein, D. L.; Vakhrushev, V. O.; Kovalev, A. I.

    2017-05-01

    The multilayer Ag/(Ti34Al66)N metal-insulator-metal (MIM) heterostructures with different thicknesses of individual layers varied from several to several hundred nanometers were fabricated by DC-magnetron sputtering on the surfaces of Si single crystal wafers. The coatings structure was determined by STEM. The phase composition and crystallography of individual layers were studied by X-ray diffraction. The reflection indexes were measured in the photons energies range from 1 to 5 eV, or from 1240 to 248 nm. The spectroscopy of plasmon losses and plasmon microscopy allowed us to measure the plasmons losses characteristic energies and their surface distribution. The energies of plasmons peaks and their locations are strongly depending on Ag layers thickness in the MIM nanocomposite. The surface plasmon with energy about 4 eV was observed in the middle of 20 nm Ag layer. The plasmons were localized at the metal/dielectric interface for Ag layers 5 nm and less. The reflectance spectral profiles edges positions at long and short waves are correlated with plasmons energies and features of their spatial distribution. The MIMs based on the TiAlN/Ag can find applications as optical filters, photovoltaic energy conversion devices, etc.

  11. Photothermal probing of plasmonic hotspots with nanomechanical resonator

    DEFF Research Database (Denmark)

    Schmid, Silvan; Wu, Kaiyu; Rindzevicius, Tomas

    2014-01-01

    Plasmonic nanostructures (hotspots) are key components e.g. in plasmon-enhanced spectroscopy, plasmonic solar cells, or as nano heat sources. The characterization of single hotspots is still challenging due to a lack of experimental tools. We present the direct photothermal probing and mapping...

  12. Plasmonic Dye-Sensitized Solar Cells

    KAUST Repository

    Ding, I-Kang

    2010-12-14

    This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a plasmonic back reflector, overlaid with simulated field intensity plots when monochromatic light is incident on the device. Plasmonic back reflectors, which consist of 2D arrays of silver nanodomes, can enhance absorption through excitation of plasmonic modes and increased light scattering, as reported by Michael D. McGehee, Yi Cui, and co-workers.

  13. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    Energy Technology Data Exchange (ETDEWEB)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States)

    2014-10-06

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  14. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    International Nuclear Information System (INIS)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric

    2014-01-01

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  15. Spontaneous light emission in complex nanostructures

    Science.gov (United States)

    Blanco, L. A.; García de Abajo, F. J.

    2004-05-01

    The spontaneous emission of an excited atom surrounded by different materials is studied in the framework of a semiclassical approach, where the transition dipole moment acts as the source of the emission field. The emission in the presence of semiinfinite media, metallic nanorings, spheres, gratings, and other complex geometries is investigated. Strong emission enhancement effects are obtained in some of these geometries associated to the excitation of plasmons (e.g., in nanorings or spheres). Furthermore, the emission is shown to take place only along narrow angular distributions when the atom is located inside a low-index dielectric and near its planar surface, or when metallic nanogratings are employed at certain resonant wave lengths. In particular, axially symmetric gratings made of real silver metal are considered, and both emission rate enhancement and focused far-field emission are achieved simultaneously when the grating is decorated with further nanostructures.

  16. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method.

    Science.gov (United States)

    Wani, Irshad A; Khatoon, Sarvari; Ganguly, Aparna; Ahmed, Jahangeer; Ahmad, Tokeer; Manzoor, Nikhat

    2013-01-01

    Silver nanoparticles have been synthesized in the inverse microemulsions formed using three different surfactants viz., cetyl-trimethyl ammonium bromide (CTAB), Tergitol and Triton X-100. We have done a systematic study of the effect of the surfactants on the particle size and properties of the silver nanoparticles. Microscopic studies show the formation of spheres, cubes and discs shaped silver nanostructures with the size in the range from 8 to 40 nm. Surface plasmon resonance (SPR) peak was observed around 400 nm and 500 nm. In addition to SPR some extra peaks have also been observed due to the formation of silver metal clusters. The surface area increases from 3.45 to 15.06 m(2)/g with decreasing the size of silver nanoparticles (40-8 nm). To investigate the antimicrobial activity of silver nanoparticles, the nanoparticles were tested against the yeast, Candida albicans and the bacterium, E. coli. The results suggest very good antimicrobial activity of the silver nanoparticles against the test microbes. The mode of action of the antimicrobial activity was also proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    Science.gov (United States)

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  18. Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes

    Science.gov (United States)

    Zito, Gianluigi; Rusciano, Giulia; Vecchione, Antonio; Pesce, Giuseppe; di Girolamo, Rocco; Malafronte, Anna; Sasso, Antonio

    2016-08-01

    In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization.

  19. SERS microscopy: plasmonic nanoparticle probes and biomedical applications

    Science.gov (United States)

    Gellner, M.; Schütz, M.; Salehi, M.; Packeisen, J.; Ströbel, P.; Marx, A.; Schmuck, C.; Schlücker, S.

    2010-08-01

    Nanoparticle probes for use in targeted detection schemes and readout by surface-enhanced Raman scattering (SERS) comprise a metal core, Raman reporter molecules and a protective shell. One design of SERS labels specifically optimized for biomedical applications in conjunction with red laser excitation is based on tunable gold/silver nanoshells, which are completely covered by a self-assembled monolayer (SAM) of Raman reporters. A shell around the SAM-coated metal core stabilizes the colloid and prevents particle aggregation. The optical properties and SERS efficiencies of these plasmonic nanostructures are characterized both experimentally and theoretically. Subsequent bioconjugation of SERS probes to ligands such as antibodies is a prerequisite for the selective detection of the corresponding target molecule via the characteristic Raman signature of the label. Biomedical imaging applications of SERS-labeled antibodies for tumor diagnostics by SERS microscopy are presented, using the localization of the tumor suppressor p63 in prostate tissue sections as an example.

  20. Plasmonic Manipulation of Light for Sensing and Photovoltaic Applications

    Science.gov (United States)

    Sobhani Khakestar, Heidar

    Plasmonics is a successful new field of science and technology that exploits the exclusive optical properties of metallic nanostructures to manipulate and concentrate light at nano-meter length scales. When light hits the surface of gold or silver nanoparticles it can excite collective oscillations of the conduction electrons called surface plasmons. This surface plasmon undergoes two damping processes; it can decay into photon and reemit the plasmon energy as scattered energy or decay into electron-hole pair with the excitation energy equal to the energy of the plasmon resonance, known as absorption. This high energy electron subsequently undergoes into the carrier multiplication and eventually scatters into the electrons with lower energy. We used Finite-Difference Time-Domain (FDTD) and Finite-Element Method (Comsol) to design nanoscale structures to act as nanoantenna for light harvesting and consequently manipulating radiative and absorption properties of them for Sensing and Photovoltaic applications. To manipulate near and far field we designed our structures in a way that the bright and dark plasmon modes overlap and couple to each other. This process is called Fano resonance and introduces a transparency window in the far-field spectra. At the same time it increases the near-field enhancement. We applied the changes in near-field and far-field to SERS (Surface Enhanced Raman Spectroscopy) and LSPR (Localized Surface plasmon Resonance) shift for sensing purposes. We modeled Fano resonances with classical harmonic oscillator and reproduced the same feature with a simple equation of motion. We used this model to replicate scattering spectra from different geometries and explain the cathodoluminescence results obtained from nanoscale gold clusters structure. All of these nanoantenna optical properties and applications are due to the reemission ability of the plasmon energy to the vacuum and confining optical field, but the plasmon energy can decay into a high

  1. Nonlocal Response in Plasmonic Nanostructures

    DEFF Research Database (Denmark)

    Wubs, Martijn; Mortensen, N. Asger

    2016-01-01

    After a brief overview of nanoplasmonics experiments that defy explanation with classical electrodynamics, we introduce nonlocal response as a main reason for non-classical effects. This concept is first introduced phenomenologically, and afterwards based on the semi-classical hydrodynamic Drude...

  2. Evaluation of the Antimicrobial Activity of Nanostructured Materials of Titanium Dioxide Doped with Silver and/or Copper and Their Effects on Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Cristina Garcidueñas-Piña

    2016-01-01

    Full Text Available Nanostructured materials (NSMs of silver (Ag@TiO2 and copper (TiO2-Cu2+ doped titanium dioxide were synthesized, fully characterized, and evaluated for their antimicrobial efficiency and effects on Arabidopsis thaliana. The NSMs were prepared using an environmentally benign route. The physicochemical properties of the materials were determined with analytical techniques. These materials are active under visible light, exhibit a small size (10–12 nm, are crystalline (anatase, and liberate metal ions (Ag+ and Cu2+ in solution. Microbicide activity was observed in E. coli C600 and S. cerevisiae W303 strains treated with several concentrations of Ag@TiO2 and TiO2-Cu2+, radiated and nonradiated, and after different times. Higher inactivation was achieved with Ag@TiO2 in E. coli, with value of log inactivation of 2.2 with 0.5 mg/mL after 4 h, than in S. cerevisiae, with a log inactivation of 2.6 with 10 mg/mL after 24 h. The impact of these NSMs in plants was evaluated in Arabidopsis thaliana Col-0 strain exposed to such materials at different conditions and concentrations, and physical and biochemical effects were analyzed. Seeds exposed to NSMs did not show effects on germination and growth. However, seedlings treated with these materials modified their growth and their total chlorophyll content.

  3. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    Science.gov (United States)

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  4. Synergistic effect of shape-selective silver nanostructures decorating reduced graphene oxide nanoplatelets for enhanced cytotoxicity against breast cancer

    Science.gov (United States)

    Derakhshi, Maryam; Ashkarran, Ali Akbar; Bahari, Ali; Bonakdar, Shahin

    2018-07-01

    Graphene-based nanomaterials contain unique physicochemical properties and have been widely investigated due to a variety of applications particularly in cancer therapy. Furthermore, Ag has been known for its extensive historical background for biomedical applications. Therefore, conjugation of shape-selective Ag nanostructures with graphene may provide new horizons for pharmaceutical applications such as cancer treatments. Here we report on the synthesis of Ag nanoparticles (NPs)/reduced graphene oxide (AgNPs/RGO) conjugate nanomaterials containing various shapes of AgNPs by a novel and simple synthesis route using the deformation of dimethylformamide (DMF) as the reducing and coupling agent. The cytotoxicity and anticancer properties of AgNPs, AgNPs/RGO conjugate nanomaterials, RGO and graphene oxide (GO) were probed against MDA-MB-231 cancer and MCF-10A normal human breast cells in vitro. The AgNPs/RGO nanocomposites exhibited a strong anticancer effect by penetration and apoptosis in cancer cells as well as the lowest influence on the viability of normal cells. It was found that cancer cell viability not only depends on the geometry of Ag nanostructures but also on the interaction between AgNPs and RGO nanoplatelets. It is suggested that AgNPs/RGO conjugate nanomaterials with various shapes of AgNPs is a promising therapeutic platform for cancer therapy.

  5. Core and shell sizing of small silver-coated nanospheres by optical extinction spectroscopy

    International Nuclear Information System (INIS)

    Schinca, D C; Scaffardi, L B

    2008-01-01

    Silver metal nanoparticles (Nps) are extensively used in different areas of research and technology due to their interesting optical, thermal and electric properties, especially for bare core and core-shell nanostructures with sizes smaller than 10 nm. Since these properties are core-shell size-dependent, size measurement is important in manipulating their potential functionalization and applications. Bare and coated small silver Nps fabricated by physical and chemical methods present specific characteristics in their extinction spectra that are potentially useful for sizing purposes. This work presents a novel procedure to size mean core radius smaller than 10 nm and mean shell thickness of silver core-shell Nps based on a comparative study of the characteristics in their optical extinction spectra in different media as a function of core radii, shell thickness and coating refractive index. From the regularities derived from these relationships, it can be concluded that plasmon full width at half-maximum (FWHM) is sensitive to core size but not to coating thickness, while plasmon resonance wavelength (PRW) is related to shell thickness and mostly independent of core radius. These facts, which allow sizing simultaneously both mean core radius and shell thickness, can also be used to size bare silver Nps as a special case of core-shell Nps with zero shell thickness. The proposed method was applied to size experimental samples and the results show good agreement with conventional TEM microscopy.

  6. Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering in bimetallic CoAg nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Malasi

    2016-10-01

    Full Text Available Plasmonic nanoparticles are amongst the most effective ways to resonantly couple optical energy into and out of nanometer sized volumes. However, controlling and/or tuning the transfer of this incident energy to the surrounding near and far field is one of the most interesting challenges in this area. Due to the dielectric properties of metallic silver (Ag, its nanoparticles have amongst the highest radiative quantum efficiencies (η, i.e., the ability to radiatively transfer the incident energy to the surrounding. Here we report the discovery that bimetallic nanoparticles of Ag made with immiscible and plasmonically weak Co metal can show comparable and/or even higher η values. The enhancement is a result of the narrowing of the plasmon bandwidth from these bimetal systems. The phenomenological explanation of this effect based on the dipolar approximation points to the reduction in radiative losses within the Ag nanoparticles when in contact with cobalt. This is also supported by a model of coupling between poor and good conductors based on the surface to volume ratio. This study presents a new type of bandwidth engineering, one based on using bimetal nanostructures, to tune and/or enhance the quality factor and quantum efficiency for near and far-field plasmonic applications.

  7. Morphing a plasmonic nanodisk into a nanotriangle.

    Science.gov (United States)

    Schmidt, Franz P; Ditlbacher, Harald; Hofer, Ferdinand; Krenn, Joachim R; Hohenester, Ulrich

    2014-08-13

    We morph a silver nanodisk into a nanotriangle by producing a series of nanoparticles with electron beam lithography. Using electron energy loss spectroscopy (EELS), we map out the plasmonic eigenmodes and trace the evolution of edge and film modes during morphing. Our results suggest that disk modes, characterized by angular order, can serve as a suitable basis for other nanoparticle geometries and are subject to resonance energy shifts and splittings, as well as to hybridization upon morphing. Similar to the linear combination of atomic orbitals (LCAO) in quantum chemistry, we introduce a linear combination of plasmonic eigenmodes to describe plasmon modes in different geometries, hereby extending the successful hybridization model of plasmonics.

  8. Surface-Plasmon-Driven Hot Electron Photochemistry.

    Science.gov (United States)

    Zhang, Yuchao; He, Shuai; Guo, Wenxiao; Hu, Yue; Huang, Jiawei; Mulcahy, Justin R; Wei, Wei David

    2017-11-30

    Visible-light-driven photochemistry has continued to attract heightened interest due to its capacity to efficiently harvest solar energy and its potential to solve the global energy crisis. Plasmonic nanostructures boast broadly tunable optical properties coupled with catalytically active surfaces that offer a unique opportunity for solar photochemistry. Resonant optical excitation of surface plasmons produces energetic hot electrons that can be collected to facilitate chemical reactions. This review sums up recent theoretical and experimental approaches for understanding the underlying photophysical processes in hot electron generation and discusses various electron-transfer models on both plasmonic metal nanostructures and plasmonic metal/semiconductor heterostructures. Following that are highlights of recent examples of plasmon-driven hot electron photochemical reactions within the context of both cases. The review concludes with a discussion about the remaining challenges in the field and future opportunities for addressing the low reaction efficiencies in hot-electron-induced photochemistry.

  9. The first report on SILAR deposited nano-structured uranyl sulphide thin films and their chemical conversion to silver sulphide

    International Nuclear Information System (INIS)

    Garole, Dipak J.; Tetgure, Sandesh R.; Borse, Amulrao U.; Yogesh R Toda; Vaman J Garole; Babasaheb R Sankapal; Prashant K Baviskar

    2015-01-01

    This paper reports the novel synthesis of uranyl sulphide (UO_2S) thin films using the successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Cationic exchange reaction was used to convert uranyl sulphide (UO_2S) to silver sulphide (Ag_2S). The influence of concentration variation on the structural and optical properties of UO_2S and Ag_2S thin films was investigated. The structural, surface morphological, elemental analysis and optical absorption studies were performed. Structural studies revealed that all the deposited films were nano-sized and amorphous in nature. Surface morphology showed that all the grains were spherical and granular in nature and grains got conglomerated to form a large particle. Also, the variations of the optical band gap and the width of the tail of localized states were represented as a function of various parameters. (authors)

  10. Surface Plasmon Polariton Resonance of Gold, Silver, and Copper Studied in the Kretschmann Geometry: Dependence on Wavelength, Angle of Incidence, and Film Thickness

    Science.gov (United States)

    Takagi, Kentaro; Nair, Selvakumar V.; Watanabe, Ryosuke; Seto, Keisuke; Kobayashi, Takayoshi; Tokunaga, Eiji

    2017-12-01

    Surface plasmon polariton (SPP) resonance spectra for noble metals (Au, Ag, and Cu) were comprehensively studied in the Kretschmann attenuated total reflection (ATR) geometry, in the wavelength (λ) range from 300 to 1000 nm with the angle of incidence (θ) ranging from 45 to 60° and the film thickness (d) ranging from 41 to 76 nm. The experimental plasmon resonance spectra were reproduced by a calculation that included the broadening effects as follows: (1) the imaginary part of the bulk dielectric constant, (2) the thickness-dependent radiative coupling of the SPP at the metal-air interface to the prism, (3) the lack of conservation of the wavevector parallel to the interface kx(k||) caused by the surface roughness, (4) scanning λ at a fixed θ (changing both energy and kx at the same time) over the SPP dispersion relation. For Au and Ag, the experimental results were in good agreement with the calculated results using the bulk dielectric constants, showing no film thickness dependence of the plasmon resonance energy. A method to extract the true width of the plasmon resonance from raw ATR spectra is proposed and the results are rigorously compared with those expected from the bulk dielectric function given in the literature. For Au and Ag, the width increases with energy, in agreement with that expected from the relaxation of bulk free electrons including the electron-electron interaction, but there is clear evidence of extra broadening, which is more significant for thinner films, possibly due to relaxation pathways intrinsic to plasmons near the interface. For Cu, the visibility of the plasmon resonance critically depends on the evaporation conditions, and low pressures and fast deposition rates are required. Otherwise, scattering from the surface roughness causes considerable broadening of the plasmon resonance, resulting in an apparently fixed resonance energy without clear incident angle dependence. For Cu, the observed plasmon dispersion agrees well with

  11. Plasmon enhancement of Raman scattering and fluorescence for rhodamine 6G molecules in the porous glass and PVA films with nanoparticles of silver citrate hydrosol

    International Nuclear Information System (INIS)

    Konstantinova, E I; Zyubin, A U; Samusev, I G; Slezhkin, V A; Bryukhanov, V V

    2016-01-01

    The study of Raman and fluorescence spectra for Rhodamine 6G molecules in a film of polyvinyl alcohol on the modified by silver nanoparticles (NPs) porous glass and without the porous glass has been done. The gain of the scattering intensity and fluorescence emission has been obtained in the presence of silver nanoparticles. The gain order was obtained as ∼ 10"1"1 (paper)

  12. Application of STEM/EELS to Plasmon-Related Effects in Optical Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Camden, Jon [Univ. of Notre Dame, IN (United States). Dept. of Chemistry and Biochemistry

    2017-08-15

    In this project we employed EELS/STEM to understand the near-field enhancements that drive current applications of plasmonic nanostructures. In particular, we explore the connection between optical and electron excitation of plasmon modes in metallic nanostructures: (1) Probing the structural parameters and dielectric properties of multimetallic nanoparticles; (2) Characterization of the near-electric-field enhancements obtained upon excitation of the localized surface plasmon resonance and understand the connection between electron- and photon-driven plasmons; (3) Understanding the behavior of molecules in plasmon-enhanced fields which is essential to emerging applications such as plasmon-assisted catalysis and solar energy harvesting.

  13. Determination of mercury (II) ions based on silver-nanoparticles-assisted growth of gold nanostructures: UV-Vis and surface enhanced Raman scattering approaches

    Science.gov (United States)

    Chen, Jun-Liang; Yang, Pei-Chia; Wu, Tsunghsueh; Lin, Yang-Wei

    2018-06-01

    Innovative dual detection methods for mercury(II) ions (Hg(II)) have been developed based on the formation of gold nanostructures (AuNSs) following the addition of mercury-containing solution to a mixture containing an optimized amount of Au(III), H2O2, HCl, and silver nanoparticles (AgNPs). In the absence of Hg(II), the addition of Au(III), H2O2, and HCl to the AgNP solution changes the solution's color from yellow to red, and the absorption peak shifts from 400 to 526 nm, indicating the dissolution of AgNPs and the formation of gold nanoparticles (AuNPs). Because of the spontaneous redox reaction of Hg(II) toward AgNPs, the change in the amount of remaining AgNP seed facilitates the generation of irregular AuNSs, resulting in changes in absorption intensity and shifting the peak within the range from 526 to 562 nm depending on the concentration of Hg(II). Under optimal conditions, the limit of detection (LOD) for Hg(II) at a signal-to-noise ratio (S/N) of 3 was 0.3 μM. We further observed that AgNP-assisted catalytic formation of Au nanomaterials deposited on a surface enhanced Raman scattering active substrate significantly reduced the Raman signal of 4-mercaptobenzoic acid, dependent on the Hg(II) concentration. A linear relationship was observed in the range 0.1 nM-100 μM with a LOD of 0.05 nM (S/N 3.0). As a simple, accurate and precise method, this SERS-based assay has demonstrated its success in determining levels of Hg(II) in real water samples.

  14. Synthesis of dendritic silver nanostructures supported by graphene nanosheets and its application for highly sensitive detection of diazepam

    International Nuclear Information System (INIS)

    Majidi, Mir Reza; Ghaderi, Seyran; Asadpour-Zeynali, Karim; Dastangoo, Hossein

    2015-01-01

    In this paper, preparation, characterization and application of a new sensor for fast and simple determination of trace amount of diazepam were described. This sensor is based on Ag nanodendrimers (AgNDs) supported by graphene nanosheets modified glassy carbon electrode (GNs/GCE). The AgNDs were directly electrodeposited on the surface of electrode via potentiostatic method without using any templates, surfactants, or stabilizers. The structure of the synthesized AgNDs/GNs was characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS) techniques. The nanodendrimers with tree-like and hierarchical structures have a fascinating structure for fabrication of effective electrocatalysts. The experimental results confirmed that AgNDs/GNs/GC electrode has good electrocatalytic activity toward the reduction of diazepam. A low detection limit of 8.56 × 10 −8 M and a wide linear detection range of 1.0 × 10 −7 to 1.0 × 10 −6 M and 1.0 × 10 −6 to 20 × 10 −6 M were achieved via differential pulse voltammetry (DPV). The proposed electrode displayed excellent repeatability and long-term stability and it was satisfactorily used for determination of diazepam in real samples (commercially tablet, injection and human blood plasma) with high recovery. - Graphical abstract: The typical images for bare GC electrode, GNs/GCE and AgNDs/GNs/GCE and electrocatalytic reduction of diazepam on the surface of modified electrode. - Highlights: • Applying a simple, fast and cost-effective method for synthesis of silver nanodendrimers • Characterization of AgNDs/GNs/GCE surface by SEM, EDX, XRD, EIS and CV methods • Successful application of this sensor for diazepam determination with an excellent detection limit • Calculation of diffusion coefficient, electron transfer coefficient and standard heterogeneous rate constant for diazepam • Satisfactorily using of this

  15. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles.

    Science.gov (United States)

    Hu, Li; Tian, Xiaorui; Huang, Yingzhou; Fang, Liang; Fang, Yurui

    2016-02-14

    Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecules was analyzed. The giant extrinsic circular dichroism of a plasmonic splitting rectangle ring was quantitatively investigated from a theoretical standpoint. The interplay of the electric and magnetic modes of the meta-structure is proposed to explain the giant CD. We analyzed the interplay using both an analytical coupled electric-magnetic dipole model and a finite element method model. The surface charge distributions showed that the circular current yielded by the splitting rectangle ring causes the ring to behave like a magneton at some resonant modes, which then interact with the electric modes, resulting in a mixing of the two types of modes. The strong interplay of the two mode types is primarily responsible for the giant CD. The analysis of the chiral near-field of the structure shows potential applications for chiral molecule sensing.

  16. Synthesis of dendritic silver nanostructures supported by graphene nanosheets and its application for highly sensitive detection of diazepam

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Mir Reza, E-mail: sr.majidi@gmail.com; Ghaderi, Seyran; Asadpour-Zeynali, Karim; Dastangoo, Hossein

    2015-12-01

    In this paper, preparation, characterization and application of a new sensor for fast and simple determination of trace amount of diazepam were described. This sensor is based on Ag nanodendrimers (AgNDs) supported by graphene nanosheets modified glassy carbon electrode (GNs/GCE). The AgNDs were directly electrodeposited on the surface of electrode via potentiostatic method without using any templates, surfactants, or stabilizers. The structure of the synthesized AgNDs/GNs was characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS) techniques. The nanodendrimers with tree-like and hierarchical structures have a fascinating structure for fabrication of effective electrocatalysts. The experimental results confirmed that AgNDs/GNs/GC electrode has good electrocatalytic activity toward the reduction of diazepam. A low detection limit of 8.56 × 10{sup −8} M and a wide linear detection range of 1.0 × 10{sup −7} to 1.0 × 10{sup −6} M and 1.0 × 10{sup −6} to 20 × 10{sup −6} M were achieved via differential pulse voltammetry (DPV). The proposed electrode displayed excellent repeatability and long-term stability and it was satisfactorily used for determination of diazepam in real samples (commercially tablet, injection and human blood plasma) with high recovery. - Graphical abstract: The typical images for bare GC electrode, GNs/GCE and AgNDs/GNs/GCE and electrocatalytic reduction of diazepam on the surface of modified electrode. - Highlights: • Applying a simple, fast and cost-effective method for synthesis of silver nanodendrimers • Characterization of AgNDs/GNs/GCE surface by SEM, EDX, XRD, EIS and CV methods • Successful application of this sensor for diazepam determination with an excellent detection limit • Calculation of diffusion coefficient, electron transfer coefficient and standard heterogeneous rate constant for diazepam

  17. Quenching of TiO2 photo catalysis by silver nanoparticles

    DEFF Research Database (Denmark)

    Di Vece, Marcel; Laursen, Anders Bo; Bech, Lone

    2012-01-01

    The plasmon resonance of metal nanostructures affects neighboring semiconductors, quenching or enhancing optical transitions depending on various parameters. These plasmonic properties are currently investigated with respect to topics such as photovoltaics and optical detection and could also hav...

  18. Quenching of TiO2 photo catalysis by silver nanoparticles

    NARCIS (Netherlands)

    Di Vece, M.; Laursen, A.B.; Bech, L.; Maden, C.N.; Duchamp, M.; Mateiu, R.V.; Dahl, S.; Chorkendorff, I.

    2013-01-01

    The plasmon resonance of metal nanostructures affects neighboring semiconductors, quenching or enhancing optical transitions depending on various parameters. These plasmonic properties are currently investigated with respect to topics such as photovoltaics and optical detection and could also have

  19. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.

    Science.gov (United States)

    Chou, Yu-Hsun; Hong, Kuo-Bin; Chang, Chun-Tse; Chang, Tsu-Chi; Huang, Zhen-Ting; Cheng, Pi-Ju; Yang, Jhen-Hong; Lin, Meng-Hsien; Lin, Tzy-Rong; Chen, Kuo-Ping; Gwo, Shangjr; Lu, Tien-Chang

    2018-02-14

    Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits.

  20. Modern plasmonics

    CERN Document Server

    Maradudin, Alexei A; Barnes, William L

    2014-01-01

    Plasmonics is entering the curriculum of many universities, either as a stand alone subject, or as part of some course or courses. Nanotechnology institutes have been, and are being, established in universities, in which plasmonics is a significant topic of research. Modern Plasmonics book offers a comprehensive presentation of the properties of surface plasmon polaritons, in systems of different structures and various natures, e.g. active, nonlinear, graded, theoretical/computational and experimental techniques for studying them, and their use in a variety of applications. Contains materia

  1. Quasi-static method and finite element method for obtaining the modifications of the spontaneous emission rate and energy level shift near a plasmonic nanostructure.

    Science.gov (United States)

    Zhao, Yun-Jin; Tian, Meng; Wang, Xiao-Yun; Yang, Hong; Zhao, Heping; Huang, Yong-Gang

    2018-01-22

    We provide numerical demonstrations of the applicability and accuracy of the quasi-static method and the finite-element method in the investigation of the modifications of the spontaneous emission rate and the energy level shift of an emitter placed near a silver-air interface or a silver nano-sphere. The analytical results are presented as a reference. Our calculations show that the finite element method is an accurate and general method. For frequency away from the radiative mode, the quasi-static method can be applied more effectively for calculating the energy level shift than the spontaneous emission rate. But for frequency around, there is a blue shift for both and this shift increases with the increasing of emitter-silver distance. Applying the theory to the nanosphere dimmer, we see similar phenomenon and find extremely large modifications of the spontaneous emission rate and energy level shift. These findings are instructive in the fields of quantum light-matter interactions.

  2. Surface-enhanced absorption by self-organized silver films with aciniform-like nanoaggregates at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo, E-mail: swkim@kist.re.kr [Korea Institute of Science and Technology, Clean Energy Research Center (Korea, Republic of)

    2012-01-15

    Morphological evolution of silver nanocomposite films prepared by the wet colloidal route and surface-enhanced phenomena on aggregate nanostructures evolved during annealing were investigated. Dramatic changes in morphologies of particles and pores incurred by rearragement, coarsening, premelting, and dewetting of the silver clusters at different concentrations (i.e., mass thicknesses). At a higher mass thickness, the morphological transitions from self-organized nanoaggregates with aciniform pattern at 300 Degree-Sign C to elongated and coarsened particles with circular holes at 400 Degree-Sign C to island clusters at 500 Degree-Sign C occurred in the films. The peculiar absorption with a much redder and broader surface plasmon feature, which gone far beyond the theoretical prediction, induced by the formation of aciniform nanoaggregates embedded in the porous polymer matrix at a critical mass thickness of 9.6 nm during partial degradation of the PVP polymer and rearrangement of silver clusters at 300 Degree-Sign C. The surface-enhanced absorption was dramatically reduced by the elemination of the aggregate nanostructures and the spontaneous formation of the silver nanoisland film at the dewetting temperature of 500 Degree-Sign C.

  3. Synthesis and antimicrobial evaluation of nanostructures ZrO2:AG against staphylococcus aureus by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Nova, C.V.; Reis, K.H.; Galico, D.A.; Venturini, J.; Pontes, F.M.L.; Pinheiro, A.L. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil); Longo, E. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Nanostructures of zirconia (ZrO2) has shown great prominence in the area of advanced materials and shows excellent properties such as chemical stability, mechanical strength, electrical and optical properties. When certain metals are supported on the compound, such as Fe, Ag, Au and Al, a potentiation of some properties, such as bactericide and fungicide can occur. Thus, this work deals with the synthesis and characterization of ZrO2 and ZrO2:Ag (1% and 10 % of Ag) nanostructures and the study of the influence of the antimicrobial activity against Staphylococcus aureus. X-ray powder diffractograms of the zirconia and silver with zirconia shown the formation of well defined peaks of tetragonal zirconia in all the samples. Although the ZrO2:Ag (10 % of Ag) shown the characteristics peaks of cubic silver, these peaks do not appear in ZrO2:Ag (1 % of Ag) due to the small amount of silver in comparison with zirconium. The crystal size was estimated by the Scherrer equation and the calculated values for zirconia were 12.84, 12.27 and 12.61 nm for ZrO2, ZrO2 : Ag (1%) and ZrO2 : Ag (10%) respectively and the silver crystal size was 8,09 nm. Diffuse reflectance of the silver particles shown a broad plasmon band at 405 and 424 nm for the ZrO2 : Ag (1%) and ZrO2 : Ag (10%). Antimicrobial assay demonstrated that ZrO2 showed a bacteriostatic effect (61 %) and the inclusion of the silver in the ZrO2 matrix enhanced this effect to 65-72 %. Both particles with different silver content shown similar effect {[ZrO2:Ag 1%] = [ZrO2:Ag 10%]>[ZrO2]}.(author)

  4. 2D of hexagonal plasmonic necklaces for enhanced second harmonic generation

    DEFF Research Database (Denmark)

    Gómez-Tornero, Alejandro; Tserkezis, Christos; Mateos, Luis

    2017-01-01

    Hexagonal plasmonic necklaces of silver nanoparticles organized in 2D superlattices on functional ferroelectric templates are fabricated in large-scale spatial regions by using a surfactant-free photo-deposition process. The plasmonic necklaces support broad radiative plasmonic resonances allowing...

  5. Quasistatic limit for plasmon-enhanced optical chirality

    Science.gov (United States)

    Finazzi, Marco; Biagioni, Paolo; Celebrano, Michele; Duò, Lamberto

    2015-05-01

    We discuss the possibility of enhancing the chiroptical response from molecules uniformly distributed around nanostructures that sustain localized plasmon resonances. We demonstrate that the average optical chirality in the near field of any plasmonic nanostructure cannot be significantly higher than that in a plane wave. This conclusion stems from the quasistatic nature of the nanoparticle-enhanced electromagnetic fields and from the fact that, at optical frequencies, the magnetic response of matter is much weaker than the electric one.

  6. Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Anderson, William J; Nowinska, Kamila; Hutter, Tanya; Mahajan, Sumeet; Fischlechner, Martin

    2018-04-19

    Surface-enhanced Raman spectroscopy (SERS) is well known for its high sensitivity that emerges due to the plasmonic enhancement of electric fields typically on gold and silver nanostructures. However, difficulties associated with the preparation of nanostructured substrates with uniform and reproducible features limit reliability and quantitation using SERS measurements. In this work we use layer-by-layer (LbL) self-assembly to incorporate multiple functional building blocks of collaborative assemblies of nanoparticles on colloidal spheres to fabricate SERS sensors. Gold nanoparticles (AuNPs) are packaged in discrete layers, effectively 'freezing nano-gaps', on spherical colloidal cores to achieve multifunctionality and reproducible sensing. Coupling between layers tunes the plasmon resonance for optimum SERS signal generation to achieve a 10 nM limit of detection. Significantly, using the layer-by-layer construction, SERS-active AuNP layers are spaced out and thus optically isolated. This uniquely allows the creation of an internal standard within each colloidal sensor to enable highly reproducible self-calibrated sensing. By using 4-mercaptobenzoic acid (4-MBA) as the internal standard adenine concentrations are quantified to an accuracy of 92.6-99.5%. Our versatile approach paves the way for rationally designed yet quantitative colloidal SERS sensors and their use in a variety of sensing applications.

  7. Electron energy-loss spectroscopy of branched gap plasmon resonators

    DEFF Research Database (Denmark)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen

    2016-01-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabl...

  8. From classical to quantum plasmonics: Classical emitter and SPASER

    Science.gov (United States)

    Balykin, V. I.

    2018-02-01

    The key advantage of plasmonics is in pushing our control of light down to the nanoscale. It is possible to envision lithographically fabricated plasmonic devices for future quantum information processing or cryptography at the nanoscale in two dimensions. A first step in this direction is a demonstration of a highly efficient nanoscale light source. Here we demonstrate two types of nanoscale sources of optical fields: 1) the classical metallic nanostructure emitter and 2) the plasmonic nanolaser - SPASER.

  9. Homogeneous nano-patterning using plasmon-assisted photolithography

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kosei [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan); Takabatake, Satoaki; Onishi, Ko; Itoh, Hiroko; Nishijima, Yoshiaki [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021 (Japan); Misawa, Hiroaki [PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan)

    2011-07-04

    We report an innovative lithography system appropriate for fabricating sharp-edged nanodot patterns with nanoscale accuracy using plasmon-assisted photolithography. The key technology is two-photon photochemical reactions of a photoresist induced by plasmonic near-field light and the scattering component of the light in a photoresist film. The scattering component of the light is a radiation mode from higher order localized surface plasmon resonances scattered by metallic nanostructures.

  10. Design of Novel Metal Nanostructures for Broadband Solar Energy Conversion

    Directory of Open Access Journals (Sweden)

    Kristine A. Zhang

    2015-01-01

    Full Text Available Solar power holds great potential as an alternative energy source, but current photovoltaic cells have much room for improvement in cost and efficiency. Our objective was to develop metal nanostructures whose surface plasmon resonance (SPR spectra closely match the solar spectrum to enhance light absorption and scattering. We employed the finite-difference time-domain simulation method to evaluate the effect of varying key parameters. A novel nanostructure with SPR absorption matching a region of the solar spectrum (300 to 1500 nm that contains 90% of solar energy was successfully designed. This structure consists of a large gold-silica core-shell structure with smaller gold nanoparticles and nanorods on its surface. Such complex nanostructures are promising for broad and tunable absorption spectra. In addition, we investigated the SPR of silver nanoparticle arrays, which can achieve scattering close to the solar spectrum. We demonstrated an improvement in efficiency of over 30% with optimal nanoparticle radius and periods of 75 nm and 325 nm, respectively. In combination, our studies enable high-efficiency, tunable, and cost-effective enhancement of both light absorption and scattering, which has potential applications in solar energy conversion as well as biomedical imaging.

  11. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    Science.gov (United States)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  12. Plasmonic Metallurgy Enabled by DNA.

    Science.gov (United States)

    Ross, Michael B; Ku, Jessie C; Lee, Byeongdu; Mirkin, Chad A; Schatz, George C

    2016-04-13

    Mixed silver and gold plasmonic nanoparticle architectures are synthesized using DNA-programmable assembly, unveiling exquisitely tunable optical properties that are predicted and explained both by effective thin-film models and explicit electrodynamic simulations. These data demonstrate that the manner and ratio with which multiple metallic components are arranged can greatly alter optical properties, including tunable color and asymmetric reflectivity behavior of relevance for thin-film applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Magneto-plasmonic nanoantennas: Basics and applications

    Directory of Open Access Journals (Sweden)

    Ivan S. Maksymov

    2016-11-01

    Full Text Available Plasmonic nanoantennas are a hot and rapidly expanding research field. Here we overview basic operating principles and applications of novel magneto-plasmonic nanoantennas, which are made of ferromagnetic metals and driven not only by light, but also by external magnetic fields. We demonstrate that magneto-plasmonic nanoantennas enhance the magneto-optical effects, which introduces additional degrees of freedom in the control of light at the nano-scale. This property is used in conceptually new devices such as magneto-plasmonic rulers, ultra-sensitive biosensors, one-way subwavelength waveguides and extraordinary optical transmission structures, as well as in novel biomedical imaging modalities. We also point out that in certain cases ‘non-optical’ ferromagnetic nanostructures may operate as magneto-plasmonic nanoantennas. This undesigned extra functionality capitalises on established optical characterisation techniques of magnetic nanomaterials and it may be useful for the integration of nanophotonics and nanomagnetism on a single chip.

  14. Studies on metal-dielectric plasmonic structures.

    Energy Technology Data Exchange (ETDEWEB)

    Chettiar, Uday K. (Purdue University, West Lafayette, IN); Liu, Zhengtong (Purdue University, West Lafayette, IN); Thoreson, Mark D. (Purdue University, West Lafayette, IN); Shalaev, Vladimir M. (Purdue University, West Lafayette, IN); Drachev, Vladimir P. (Purdue University, West Lafayette, IN); Pack, Michael Vern; Kildishev, Alexander V. (Purdue University, West Lafayette, IN); Nyga, Piotr (Purdue University, West Lafayette, IN)

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  15. Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Peng Liu; Cong-hua Zhou; Bing-chu Yang; Gang Liu; Run-sheng Wu; Chu-jun Zhang; Fang Wan; Shui-gen Li; Jun-liang Yang; Yong-li Gao

    2017-01-01

    Enhancing optical and electrical performances is effective in improving power conversion efficiency of photovoltaic devices.Here,gold and silver dual nanoparticles were imported and embedded in the hole transport layer of perovskite solar cells.Due to the cooperative localized surface plasmon resonance of these two kinds of metal nanostructures,light harvest of perovskite material layer and the electrical performance of device were improved,which finally upgraded short circuit current density by 10.0%,and helped to increase power conversion efficiency from 10.4% to 11.6% under AM 1.5G illumination with intensity of 100 mW/cm2.In addition,we explored the influence of silver and gold nanoparticles on charge carrier generation,dissociation,recombination,and transportation inside perovskite solar cells.

  16. Combined antenna and localized plasmon resonance in Raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes.

    Science.gov (United States)

    Dawson, P; Duenas, J A; Boyle, M G; Doherty, M D; Bell, S E J; Kern, A M; Martin, O J F; Teh, A-S; Teo, K B K; Milne, W I

    2011-02-09

    The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multiwalled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.

  17. Green, one-step and template-free synthesis of silver spongelike networks via a solvothermal method

    International Nuclear Information System (INIS)

    Yi, Zao; Xu, Xibin; Zhang, Kuibao; Tan, Xiulan; Li, Xibo; Luo, Jiangshan; Ye, Xin; Wu, Weidong; Wu, Jie; Yi, Yougen; Tang, Yongjian

    2013-01-01

    Silver spongelike networks were synthesized from an alkaline pH solution of silver nitrate and glucose under solvothermal conditions. The products were characterized by X-ray powder diffraction, UV–visible spectroscopy, transmission electron microscopy, scanning electron microscopy and selected area electron diffraction. These Ag nanoparticles (NPs) appear to undergo sequentially linear aggregation and welding initially, and then, they randomly cross link into self-supporting, three-dimensional (3D) networks with time. The carboxylate groups, generated by glucose oxidation, interacted with the Ag nanostructures, resulting in formation of silver spongelike networks having very uniform wire diameters distributions (about 20 nm in diameter). A new plasmon band was observed in the longer-wavelengths region (565–912 nm) of the conventional transverse plasmon resonance band at 430 nm. In principle, this one-step, template-free approach can also be extended to large-scale 3D organizations of other transition/noble metal NPs. - Graphical abstract: Silver spongelike networks were synthesized from an alkaline pH solution of silver nitrate and glucose under solvothermal conditions, with any other reducing or capping agent. These Ag nanoparticles appear to undergo sequentially linear aggregation and welding initially, and then, they randomly cross link into self-supporting, three-dimensional spongelike networks with time. Highlights: ► Silver spongelike networks were synthesized using eco-friendly glucose. ► This synthesis was a seedless process, and did not need any other surfactant or capping agent. ► The process was initial reduction – nucleation – adsorption – growth – branching

  18. Surface-Enhanced Raman Spectroscopy of Dye and Thiol Molecules Adsorbed on Triangular Silver Nano structures: A Study of Near-Field Enhancement, Localization of Hot-Spots, and Passivation of Adsorbed Carbonaceous Species

    International Nuclear Information System (INIS)

    Goncalves, M.R.; Marti, O.; Fabian Enderle, F.

    2012-01-01

    Surface-enhanced Raman spectroscopy (SERS) of thiols and dye molecules adsorbed on triangular silver nanostructures was investigated. The SERS hot-spots are localized at the edges and corners of the silver triangular particles. AFM and SEM measurements permit to observe many small clusters formed at the edges of triangular particles fabricated by nanosphere lithography. Finite-element calculations show that near-field enhancements can reach values of more than 200 at visible wavelengths, in the gaps between small spherical particles and large triangular particles, although for the later no plasmon resonance was found at the wavelengths investigated. The regions near the particles showing strong near-field enhancement are well correlated with spatial localization of SERS hot-spots done by confocal microscopy. Silver nanostructures fabricated by thermal evaporation present strong and fast fluctuating SERS activity, due to amorphous carbon contamination. Thiols and dye molecules seem to be able to passivate the undesired SERS activity on fresh evaporated silver. excitation: by far-field illumination of metal nanostructures or rough metal Raman scattering cross-section of gold-palladium target Temporal Fluctuation in SERS Temporal and spectral fluctuations.

  19. Synthesis and optical properties of silver nanoparticles

    Science.gov (United States)

    Singh, Jaiveer; Kaurav, Netram; Choudhary, K. K.; Okram, Gunadhor S.

    2015-07-01

    The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.

  20. STM Imaging of Localized Surface Plasmons on Individual Gold Nanoislands.

    Science.gov (United States)

    Nguyen, Huy A; Banerjee, Progna; Nguyen, Duc; Lyding, Joseph W; Gruebele, Martin; Jain, Prashant K

    2018-04-19

    An optically modulated scanning tunneling microscopy technique developed for measurement of single-molecule optical absorption is used here to image the light absorption by individual Au nanoislands and Au nanostructures. The technique is shown to spatially map, with nanometer resolution, localized surface plasmons (LSPs) excited within the nanoislands. Electrodynamic simulations demonstrate the correspondence of the measured images to plasmonic near-field intensity maps. The optical STM imaging technique captures the wavelength, polarization, and geometry dependence of the LSP resonances and their corresponding near-fields. Thus, we introduce a tool for real-space, nanometer-scale visualization of optical energy absorption, transport, and dissipation in complex plasmonic nanostructures.

  1. 3D plasmonic nanostar structures for recyclable SERS applications

    DEFF Research Database (Denmark)

    Chirumamilla, Manohar; Gopalakrishnan, Anisha; Toma, Andrea

    2015-01-01

    Nanofabrication of metallic nanostructures/nanoparticles enables the detection of analyte molecules at ultra-low concentrations with the aid of plasmon induced hot-spots. The high fabrication cost and large fabrication time of nanostructures limit their usage in practical applications. Here we pr...

  2. Highly Ordered Periodic Au/TiO₂ Hetero-Nanostructures for Plasmon-Induced Enhancement of the Activity and Stability for Ethanol Electro-oxidation.

    Science.gov (United States)

    Jin, Zhao; Wang, Qiyu; Zheng, Weitao; Cui, Xiaoqiang

    2016-03-02

    The catalytic electro-oxidation of ethanol is the essential technique for direct alcohol fuel cells (DAFCs) in the area of alternative energy for the ability of converting the chemical energy of alcohol into the electric energy directly. Developing highly efficient and stable electrode materials with antipoisoning ability for ethanol electro-oxidation remains a challenge. A highly ordered periodic Au-nanoparticle (NP)-decorated bilayer TiO2 nanotube (BTNT) heteronanostructure was fabricated by a two-step anodic oxidation of Ti foil and the subsequent photoreduction of HAuCl4. The plasmon-induced charge separation on the heterointerface of Au/TiO2 electrode enhances the electrocatalytic activity and stability for the ethanol oxidation under visible light irradiation. The highly ordered periodic heterostructure on the electrode surface enhanced the light harvesting and led to the greater performance of ethanol electro-oxidation under irradiation compared with the ordinary Au NPs-decorated monolayer TiO2 nanotube (MTNT). This novel Au/TiO2 electrode also performed a self-cleaning property under visible light attributed to the enhanced electro-oxidation of the adsorbed intermediates. This light-driven enhancement of the electrochemical performances provides a development strategy for the design and construction of DAFCs.

  3. Silver nanoplates with ground or metastable structures obtained from template-free two-phase aqueous/organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhelev, Doncho V., E-mail: dontcho.jelev@nih.gov; Zheleva, Tsvetanka S. [Army Research Laboratory, 2800 Adelphi, Maryland 20783 (United States)

    2014-01-28

    Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we report template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.

  4. Plasmonic Solar Cells: From Rational Design to Mechanism Overview.

    Science.gov (United States)

    Jang, Yoon Hee; Jang, Yu Jin; Kim, Seokhyoung; Quan, Li Na; Chung, Kyungwha; Kim, Dong Ha

    2016-12-28

    Plasmonic effects have been proposed as a solution to overcome the limited light absorption in thin-film photovoltaic devices, and various types of plasmonic solar cells have been developed. This review provides a comprehensive overview of the state-of-the-art progress on the design and fabrication of plasmonic solar cells and their enhancement mechanism. The working principle is first addressed in terms of the combined effects of plasmon decay, scattering, near-field enhancement, and plasmonic energy transfer, including direct hot electron transfer and resonant energy transfer. Then, we summarize recent developments for various types of plasmonic solar cells based on silicon, dye-sensitized, organic photovoltaic, and other types of solar cells, including quantum dot and perovskite variants. We also address several issues regarding the limitations of plasmonic nanostructures, including their electrical, chemical, and physical stability, charge recombination, narrowband absorption, and high cost. Next, we propose a few potentially useful approaches that can improve the performance of plasmonic cells, such as the inclusion of graphene plasmonics, plasmon-upconversion coupling, and coupling between fluorescence resonance energy transfer and plasmon resonance energy transfer. This review is concluded with remarks on future prospects for plasmonic solar cell use.

  5. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    Science.gov (United States)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  6. RETRACTED: Investigation of plasmonic studies on morphology of deposited silver thin films having different thicknesses by soft computing methodologies-A comparative study

    Science.gov (United States)

    Zakaria, Rozalina; Noh, Siti Munirah Che; Petković, Dalibor; Shamshirband, Shahaboddin; Penny, Richard

    2014-09-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor. After a thorough investigation, the Editor has concluded that the acceptance of this article was based upon the positive advice of at least one faked reviewer report. The report was submitted from a fictitious email account which was provided to the journal as a suggested reviewer by the corresponding author during the submission of the paper. This manipulation of the peer-review process represents a clear violation of the fundamentals of peer review, our publishing policies, and publishing ethics standards. Apologies are offered to the readers of the journal that this deception was not detected during the submission process. Section 3 of the article plagiarizes part of the text that appeared in the article published by R. Maity et al in Hydrological Processes 24 (2010) 917-923, http://dx.doi.org/10.1002/hyp.7535. The article also duplicates parts of the articles previously published by the authors in the Journal of the Optical Society of America A 31 (2014) 1023-1030, http://dx.doi.org/10.1364/JOSAA.31.001023, Infrared Physics & Technology 65 (2014) 94-102, http://dx.doi.org/10.1016/j.infrared.2014.04.005 and Plasmonics 9 (2014) 1189-1196, http://dx.doi.org/10.1007/s11468-014-9730-3.

  7. Demonstration of a variable plasmonic beam splitter

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Israelsen, Niels Møller; Andersen, Ulrik Lund

    2014-01-01

    In this contribution, we excite surface plasmon polaritons propagating along a silver nano-wire by a single nitrogen-vacancy center located in a diamond nano-crystal. By using the tip of an atomic force microscope, a second nano-wire is brought into the evanescent field of the first wire such tha......In this contribution, we excite surface plasmon polaritons propagating along a silver nano-wire by a single nitrogen-vacancy center located in a diamond nano-crystal. By using the tip of an atomic force microscope, a second nano-wire is brought into the evanescent field of the first wire...... such that surface plasmons can evanescently couple. In our experiment, we are able to tune the coupling strength from one nano-wire to another by adjusting the gap with the aid of the atomic force microscope. Numerical calculations of the coupling strength are carried out, which support the values found...

  8. Tailoring the Optical Properties of Silicon with Ion Beam Created Nanostructures for Advanced Photonics Applications

    Science.gov (United States)

    Akhter, Perveen

    light trapping in poly-Si thin films using ion implantation induced surface texturing. In addition to surface texturing produced by H and Ar ion implantations, metal nanostructures are also added to the surface to further suppress light reflection at the plasmonic resonance of metal nanostructures. Remarkable suppression has been achieved resulting in reflection from the air/Si interface to below ˜5%. In the second part, optical properties of embedded metal nanostructures in silicon matrix gettered into the ion implantation created nanocavities are studied. Embedded nanostructures can have a huge impact in future photonics applications by replacing the existing electronic and photonic components such as interconnects, waveguides, modulators and amplifiers with their plasmonic counterparts. This new method of encapsulating metal nanostructures in silicon is cost-effective and compatible with silicon fabrication technology. Spectroscopic ellipsometry is used to study the dielectric properties of silicon with embedded silver nanostructures. High absorption regions around 900 nm, corresponding to plasmonic absorption of Ag nanoparticles in Si, have been observed and compared to theoretical calculations and simulation results. The possibility of modifying the dielectric function of Si with metal nanostructures can lay the foundation for functional base structures for advanced applications in silicon photonics, photovoltaics and plasmonics.

  9. Ressonàncies en plasmons sobre grafè

    OpenAIRE

    Alcaraz Iranzo, David

    2014-01-01

    Treball final de màster oficial fet en col·laboració amb Universitat Autònoma de Barcelona (UAB), Universitat de Barcelona (UB) i Institut de Ciències Fotòniques (ICFO) [ANGLÈS] Graphene is used as a novel, versatile plasmonic material. The most common way to implement resonant light-plasmon coupling is to etch graphene into periodic nanostructures, which is invasive. Here, we study a non-invasive way to engineer graphene plasmon resonances, based on periodic doping profiles. The plasmon r...

  10. Label-Free Detection of Sequence-Specific DNA Based on Fluorescent Silver Nanoclusters-Assisted Surface Plasmon-Enhanced Energy Transfer.

    Science.gov (United States)

    Ma, Jin-Liang; Yin, Bin-Cheng; Le, Huynh-Nhu; Ye, Bang-Ce

    2015-06-17

    We have developed a label-free method for sequence-specific DNA detection based on surface plasmon enhanced energy transfer (SPEET) process between fluorescent DNA/AgNC string and gold nanoparticles (AuNPs). DNA/AgNC string, prepared by a single-stranded DNA template encoded two emitter-nucleation sequences at its termini and an oligo spacer in the middle, was rationally designed to produce bright fluorescence emission. The proposed method takes advantage of two strategies. The first one is the difference in binding properties of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) toward AuNPs. The second one is SPEET process between fluorescent DNA/AgNC string and AuNPs, in which fluorescent DNA/AgNC string can be spontaneously adsorbed onto the surface of AuNPs and correspondingly AuNPs serve as "nanoquencher" to quench the fluorescence of DNA/AgNC string. In the presence of target DNA, the sensing probe hybridized with target DNA to form duplex DNA, leading to a salt-induced AuNP aggregation and subsequently weakened SPEET process between fluorescent DNA/AgNC string and AuNPs. A red-to-blue color change of AuNPs and a concomitant fluorescence increase were clearly observed in the sensing system, which had a concentration dependent manner with specific DNA. The proposed method achieved a detection limit of ∼2.5 nM, offering the following merits of simple design, convenient operation, and low experimental cost because of no chemical modification, organic dye, enzymatic reaction, or separation procedure involved.

  11. Plasmon Geometric Phase and Plasmon Hall Shift

    Science.gov (United States)

    Shi, Li-kun; Song, Justin C. W.

    2018-04-01

    The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.

  12. Spectroscopic properties of triangular silver nanoplates immobilized on polyelectrolyte multilayer-modified glass substrates

    Science.gov (United States)

    Rabor, Janice B.; Kawamura, Koki; Muko, Daiki; Kurawaki, Junichi; Niidome, Yasuro

    2017-07-01

    Fabrication of surface-immobilized silver nanostructures with reproducible plasmonic properties by dip-coating technique is difficult due to shape alteration. To address this challenge, we used a polyelectrolyte multilayer to promote immobilization of as-received triangular silver nanoplates (TSNP) on a glass substrate through electrostatic interaction. The substrate-immobilized TSNP were characterized by absorption spectrophotometry and scanning electron microscopy. The bandwidth and peak position of localized surface plasmon resonance (LSPR) bands can be tuned by simply varying the concentration of the colloidal solution and immersion time. TSNP immobilized from a higher concentration of colloidal solution with longer immersion time produced broadened LSPR bands in the near-IR region, while a lower concentration with shorter immersion time produced narrower bands in the visible region. The shape of the nanoplates was retained even at long immersion time. Analysis of peak positions and bandwidths also revealed the point at which the main species of the immobilization had been changed from isolates to aggregates.

  13. Plasmonic nanoparticle scattering for color holograms.

    Science.gov (United States)

    Montelongo, Yunuen; Tenorio-Pearl, Jaime Oscar; Williams, Calum; Zhang, Shuang; Milne, William Ireland; Wilkinson, Timothy David

    2014-09-02

    This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field.

  14. Understanding and controlling plasmon-induced convection

    Science.gov (United States)

    Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.

  15. Fast optoelectric printing of plasmonic nanoparticles into tailored circuits

    Science.gov (United States)

    Rodrigo, José A.

    2017-04-01

    Plasmonic nanoparticles are able to control light at nanometre-scale by coupling electromagnetic fields to the oscillations of free electrons in metals. Deposition of such nanoparticles onto substrates with tailored patterns is essential, for example, in fabricating plasmonic structures for enhanced sensing. This work presents an innovative micro-patterning technique, based on optoelectic printing, for fast and straightforward fabrication of curve-shaped circuits of plasmonic nanoparticles deposited onto a transparent electrode often used in optoelectronics, liquid crystal displays, touch screens, etc. We experimentally demonstrate that this kind of plasmonic structure, printed by using silver nanoparticles of 40 nm, works as a plasmonic enhanced optical device allowing for polarized-color-tunable light scattering in the visible. These findings have potential applications in biosensing and fabrication of future optoelectronic devices combining the benefits of plasmonic sensing and the functionality of transparent electrodes.

  16. Synthesis and characterization of monodispersed silver nanoparticles

    Science.gov (United States)

    Jegatha Christy, A.; Umadevi, M.

    2012-09-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO3), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM).

  17. Synthesis and characterization of monodispersed silver nanoparticles

    International Nuclear Information System (INIS)

    Christy, A Jegatha; Umadevi, M

    2012-01-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO 3 ), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM). (paper)

  18. One-pot silver nanoring synthesis.

    OpenAIRE

    Drogat , Nicolas; Granet , Robert; Sol , Vincent; Krausz , Pierre

    2009-01-01

    Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH...

  19. Single-Molecule Plasmon Sensing: Current Status and Future Prospects.

    Science.gov (United States)

    Taylor, Adam B; Zijlstra, Peter

    2017-08-25

    Single-molecule detection has long relied on fluorescent labeling with high quantum-yield fluorophores. Plasmon-enhanced detection circumvents the need for labeling by allowing direct optical detection of weakly emitting and completely nonfluorescent species. This review focuses on recent advances in single molecule detection using plasmonic metal nanostructures as a sensing platform, particularly using a single particle-single molecule approach. In the past decade two mechanisms for plasmon-enhanced single-molecule detection have been demonstrated: (1) by plasmonically enhancing the emission of weakly fluorescent biomolecules, or (2) by monitoring shifts of the plasmon resonance induced by single-molecule interactions. We begin with a motivation regarding the importance of single molecule detection, and advantages plasmonic detection offers. We describe both detection mechanisms and discuss challenges and potential solutions. We finalize by highlighting the exciting possibilities in analytical chemistry and medical diagnostics.

  20. Large circular dichroism and optical rotation in titanium doped chiral silver nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Titus, Jitto; Perera, A.G. Unil [Department of Physics and Astronomy, Optoelectronics Laboratory, GSU, Atlanta, GA (United States); Larsen, George; Zhao, Yiping [Department of Physics and Astronomy, Nanolab, UGA, Athens, GA (United States)

    2016-10-15

    The circular dichroism of titanium-doped silver chiral nanorod arrays grown using the glancing angle deposition (GLAD) method is investigated in the visible and near infrared ranges using transmission ellipsometry and spectroscopy. These films are found to have significant circular polarization effects across broad ranges of the visible to NIR spectrum, including large values for optical rotation. The characteristics of these circular polarization effects are strongly influenced by the morphology of the deposited arrays. Thus, the morphological control of the optical activity in these nanostructures demonstrates significant optimization capability of the GLAD technique for fabricating chiral plasmonic materials. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)