WorldWideScience

Sample records for plasmonic coupling interference

  1. Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings.

    Science.gov (United States)

    Wan, Mingli; Song, Yueli; Zhang, Liufang; Zhou, Fengqun

    2015-10-19

    Plasmon-induced transparency (PIT) is a result of destructive interference of different plasmonic resonators. Due to the extreme dispersion within the narrow transparency window, PIT metamaterials are utilized to realize slow light and nonlinear effect. However, other applications such as broadband filtering more desire a broad transmission frequency band at the PIT resonance. In this paper, a broadband PIT effect is demonstrated theoretically in a planar terahertz metamaterial, consisting of a U-shaped ring (USR) supporting electric and magnetic dipole modes as the bright resonator and a cut wire pair (CWP) possessing planar electric quadrupole and magnetic dipole modes as the dark resonator. The dark resonant modes of the CWP can be excited simultaneously via near-field by both the electric and magnetic dipole modes of the USR. When the electric as well as magnetic excitation pathways constructively interact with each other, the enhanced near-field coupling between bright and dark resonators gives rise to an ultra-broad transparency window across a frequency range greater than 0.61 THz in the transmittance spectrum.

  2. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect

    DEFF Research Database (Denmark)

    Zhu, Zhihong; García Ortíz, César Eduardo; Han, Zhanghua;

    2013-01-01

    We theoretically, numerically, and experimentally demonstrate that a directional coupling function can be realized with a wide bandwidth (greater than 200 nm) in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect. The functional size of the structure...

  3. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect

    DEFF Research Database (Denmark)

    Zhu, Zhihong; García Ortíz, César Eduardo; Han, Zhanghua

    2013-01-01

    We theoretically, numerically, and experimentally demonstrate that a directional coupling function can be realized with a wide bandwidth (greater than 200 nm) in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect. The functional size of the structures...... is in the range of several micrometers, which is much shorter than traditional directional couplers consisting of two parallel dielectric or plasmonic metallic waveguides. In addition, 1 × 2 beam splitting and demultiplexing function was realized. Such devices with wide bandwidth and small size indicate potential...

  4. Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation.

    Science.gov (United States)

    Jeong, Hye Yun; Kim, Un Jeong; Kim, Hyun; Han, Gang Hee; Lee, Hyangsook; Kim, Min Su; Jin, Youngjo; Ly, Thuc Hue; Lee, Si Young; Roh, Young-Geun; Joo, Won-Jae; Hwang, Sung Woo; Park, Yeonsang; Lee, Young Hee

    2016-09-27

    Despite the direct band gap of monolayer transition metal dichalcogenides (TMDs), their optical gain remains limited because of the poor light absorption in atomically thin, layered materials. Most approaches to improve the optical gain of TMDs mainly involve modulation of the active materials or multilayer stacking. Here, we report a method to enhance the optical absorption and emission in MoS2 simply through the design of a nanostructured substrate. The substrate consisted of a dielectric nanofilm spacer (TiO2) and metal film. The overall photoluminescence intensity from monolayer MoS2 on the nanostructured substrate was engineered based on the TiO2 thickness and amplified by Fabry-Perot interference. In addition, the neutral exciton emission was selectively amplified by plasmonic excitations from the local field originating from the surface roughness of the metal film with spacer thicknesses of less than 10 nm. We further demonstrate that the quality factor of the device can also be engineered by selecting a spacer material with a different refractive index.

  5. Interference effects with surface plasmons

    NARCIS (Netherlands)

    Kuzmin, Nikolay Victorovich

    2008-01-01

    A surface plasmon is a purely two-dimensional electromagnetic excitation bound to the interface between metal and dielectric and quickly decaying away from it. A surface plasmon is able to concentrate light on sub-wavelength scales – a feature that is attractive for nano-photonics and integrated

  6. Plasmonic Coupled Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) coupled cavity modes on Moire surfaces. An experimental study has been made of the propagation of SPPs on a thin silver surface that is textured with Moire surface pattern using interference lithography. The Moire surface contains periodic array of one dimensional cavities. The distance between the cavities can be controlled by changing the periodicities of Moire surface. When the SPP cavity separation is sufficiently small, we show splitting of strongly coupled plasmonic cavity modes through numerical simulations. Conversely, when the SPP cavity separation is sufficiently large, SPP cavity modes are found to be localized and do not show splitting of SPP cavity modes . This splitting of SPP cavity modes are well explained with a tight binding model that has been succesfully applied in photonic coupled cavities. Reflection measurements and numerical simulation of a large number of adjacent SPP cavities have shown a coupled resonator optical waveguide (CROW) type plasmonic waveguide band formation within the band gap region of unperturbed uniform grating.

  7. Imaging and controlling plasmonic interference fields at buried interfaces

    Science.gov (United States)

    Lummen, Tom T. A.; Lamb, Raymond J.; Berruto, Gabriele; Lagrange, Thomas; Dal Negro, Luca; García de Abajo, F. Javier; McGrouther, Damien; Barwick, B.; Carbone, F.

    2016-10-01

    Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ~0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films.

  8. Transverse spin with coupled plasmons

    CERN Document Server

    Mukherjee, Samyobrata

    2016-01-01

    We study theoretically the transverse spin associated with the eigenmodes of a thin metal film embedded in a dielectric. We show that the transverse spin has a direct dependence on the nature and strength of the coupling leading to two distinct branches for the long- and short- range modes. We show that the short-range mode exhibits larger extraordinary spin because of its more 'structured' nature due to higher decay in propagation. In contrast to some of the earlier studies, calculations are performed retaining the full lossy character of the metal. In the limit of vanishing losses we present analytical results for the extraordinary spin for both the coupled modes. The results can have direct implications for enhancing the elusive transverse spin exploiting the coupled plasmon structures.

  9. Transverse spin with coupled plasmons

    Indian Academy of Sciences (India)

    SAMYOBRATA MUKHERJEE; A V GOPAL; S DUTTA GUPTA

    2017-08-01

    We study theoretically the transverse spin associated with the eigenmodes of a thinmetal film embedded in a dielectric. We show that the transverse spin has a direct dependence on the nature and strength of the coupling leading to two distinct branches for the long- and short-range modes. We show that the short-range mode exhibits larger extraordinary spin because of its more ‘structured’ nature due to higher decay in propagation. In contrast to some of the earlier studies, calculations are performed retaining the full lossy character of the metal. In the limit of vanishing losses, we present analytical results for the extraordinary spin for both the coupled modes. The results can have direct implications for enhancing the elusive transverse spin exploiting the coupled plasmon structures.

  10. Surface plasmon interference excited by tightly focused laser beams.

    Energy Technology Data Exchange (ETDEWEB)

    Bouhelier, A.; Ignatovich, F.; Bruyant, A.; Huang, C.; Colas des Francs, G.; Weeber, J.-C.; Dereux, A.; Wiederrecht, G. P.; Novotny, L.; Center for Nanoscale Materials; Univ de Bourgogne; Univ. of Rochester; Univ Technologique de Troyes

    2007-09-01

    We show that interfering surface plasmon polaritons can be excited with a focused laser beam at normal incidence to a plane metal film. No protrusions or holes are needed in this excitation scheme. Depending on the axial position of the focus, the intensity distribution on the metal surface is either dominated by interferences between counterpropagating plasmons or by a two-lobe pattern characteristic of localized surface plasmon excitation. Our experiments can be accurately explained by use of the angular spectrum representation and provide a simple means for locally exciting standing surface plasmon polaritons.

  11. Energy Levels of Coupled Plasmonic Cavities

    Institute of Scientific and Technical Information of China (English)

    Chuan-Pu Liu; Xin-Li Zhu; Jia-Sen Zhang; Jun Xu; Yamin Leprince-Wang; Da-Peng Yu

    2016-01-01

    We demonstrate the hybridization of the plasmonic modes in directly coupled whispering gallery cavities fabricated on silver films and present the mode patterns and energy levels using cathodoluminescence spectroscopy.Although the energy of the most antisymmetrically coupled modes is higher than that of the corresponding symmetrically coupled ones,the contrary cases happen for small quantum number modes.We attribute the phenomenon to the different surface plasmon polariton paths between the symmetrically and antisymmetrically coupled modes.These results provide an understanding of the resonant properties in coupled plasmonic cavities,which have potential applications in nanophotonic devices.

  12. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa

    2014-05-01

    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  13. Coupling Bright and Dark Plasmonic Lattice Resonances

    CERN Document Server

    Rodriguez, S R K; Maes, B; Janssen, O T A; Vecchi, G; Rivas, J Gomez

    2011-01-01

    We demonstrate the coupling of bright and dark Surface Lattice Resonances (SLRs), which are collective Fano resonances in 2D plasmonic crystals. As a result of this coupling, a frequency stop-gap in the dispersion relation of SLRs is observed. The different field symmetries of the low and high frequency SLR bands lead to pronounced differences in their coupling to free space radiation. Standing waves of very narrow spectral width compared to localized surface plasmon resonances are formed at the high frequency band edge, while subradiant damping onsets at the low frequency band edge leading the resonance into darkness. We introduce a coupled oscillator analog to the plasmonic crystal, which serves to elucidate the physics of the coupled plasmonic resonances and to estimate very high quality factors (Q>700) for SLRs, which are the highest known for any 2D plasmonic crystal.

  14. Plasmonic solutions for coupling and modulation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Babicheva, Viktoriia; Malureanu, Radu;

    We present our design results for efficient coupling and modulation in plasmonic structures. Fiber coupling to a plasmonic slot waveguide is significantly increased by a metallic nanoantenna with additional reflectors or by the configuration of several connected antennas. We also show that the pl......We present our design results for efficient coupling and modulation in plasmonic structures. Fiber coupling to a plasmonic slot waveguide is significantly increased by a metallic nanoantenna with additional reflectors or by the configuration of several connected antennas. We also show...... that the plasmonic four-layer waveguide with patterned ITO layer can modulate light with higher transmission and the same modulation depth as a waveguide with a uniform ITO layer....

  15. Photon tunneling via surface plasmon coupling

    Science.gov (United States)

    Passian, A.; Wig, A.; Lereu, A. L.; Meriaudeau, F.; Thundat, T.; Ferrell, T. L.

    2004-10-01

    The measurement of a photonic signal via plasmon-plasmon coupling in curved thin metal films is presented. In domains of subwavelength dimension, we calculate the resonant dispersion relations by modeling the curved thin film as a single sheeted hyperboloid of revolution. We show that several such surface modes are accessible optically at frequencies below the plasma frequency of the metal.

  16. Two-photon quantum interference in plasmonics: theory and applications.

    Science.gov (United States)

    Gupta, S Dutta; Agarwal, G S

    2014-01-15

    We report perfect two-photon quantum interference with near-unity visibility in a resonant tunneling plasmonic structure in folded Kretschmann geometry. This is despite absorption-induced loss of unitarity in plasmonic systems. The effect is traced to perfect destructive interference between the squares of amplitude reflection and transmission coefficients. We further highlight yet another remarkable potential of coincidence measurements as a probe with better resolution as compared to standard spectroscopic techniques. The finer features show up in both angle resolved and frequency resolved studies.

  17. Molecular coupling of light with plasmonic waveguides

    CERN Document Server

    Kuzyk, Anton; Toppari, J Jussi; Hakala, Tommi K; Tikkanen, Hanna; Kunttu, Henrik; Torma, Paivi

    2007-01-01

    We use molecules to couple light into and out of microscale plasmonic waveguides. Energy transfer, mediated by surface plasmons, from donor molecules to acceptor molecules over ten micrometer distances is demonstrated. Also surface plasmon coupled emission from the donor molecules is observed at similar distances away from the excitation spot. The lithographic fabrication method we use for positioning the dye molecules allows scaling to nanometer dimensions. The use of molecules as couplers between far-field and near-field light offers the advantages that no special excitation geometry is needed, any light source can be used to excite plasmons and the excitation can be localized below the diffraction limit. Moreover, the use of molecules has the potential for integration with molecular electronics and for the use of molecular self-assembly in fabrication. Our results constitute a proof-of-principle demonstration of a plasmonic waveguide where signal in- and outcoupling is done by molecules.

  18. Generalized circuit model for coupled plasmonic systems

    CERN Document Server

    Benz, Felix; Tserkezis, Christos; Chikkaraddy, Rohit; Sigle, Daniel O; Pukenas, Laurynas; Evans, Stephen D; Aizpurua, Javier; Baumberg, Jeremy J

    2015-01-01

    We develop an analytic circuit model for coupled plasmonic dimers separated by small gaps that provides a complete account of the optical resonance wavelength. Using a suitable equivalent circuit, it shows how partially conducting links can be treated and provides quantitative agreement with both experiment and full electromagnetic simulations. The model highlights how in the conducting regime, the kinetic inductance of the linkers set the spectral blue-shifts of the coupled plasmon.

  19. Critical coupling in plasmonic resonator arrays

    Science.gov (United States)

    Balci, Sinan; Kocabas, Coskun; Aydinli, Atilla

    2011-08-01

    We report critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moiré surfaces. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. The critical coupling conditions depend on the superperiod of the Moiré surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have a relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Analytical and finite difference time domain calculations support the experimental observations.

  20. Quantum analysis of plasmonic coupling between quantum dots and nanoparticles

    Science.gov (United States)

    Ahmad, SalmanOgli

    2016-10-01

    In this study, interaction between core-shells nanoparticles and quantum dots is discussed via the full-quantum-theory method. The electromagnetic field of the nanoparticles is derived by the quasistatic approximation method and the results for different regions of the nanoparticles are quantized from the time-harmonic to the wave equation. Utilizing the optical field quantization, the nanoparticles' and quantum dots' deriving amplitudes contributing to the excitation waves are determined. In the current model, two counterpropagating waves with two different frequencies are applied. We derived the Maxwell-Bloch equations from the Heisenberg-Langevin equations; thus the nanoparticles-quantum dots interaction is perused. Moreover, by full quantum analyzing of the analytical expression, the quantum-plasmonic coupling relation and the Purcell factor are achieved. We show that the spontaneous emission of quantum dots can be dramatically manipulated by engineering the plasmon-plasmon interaction in the core-shells nanoparticles. This issue is a very attractive point for designing a wide variety of quantum-plasmonic sensors. Through the investigation of the nanoparticle plasmonic interaction effects on absorbed power, the results show that the nanoparticles' and quantum dots' absorption saturation state can be switched to each other just by manipulation of their deriving amplitudes. In fact, we manage the interference between the two waves' deriving amplitudes just by the plasmonic interactions effect.

  1. Mesoscopic quantum emitters coupled to plasmonic nanostructures

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke

    This thesis reports research on quantum dots coupled to dielectric and plasmonic nano-structures by way of nano-structure fabrication, optical measurements, and theoretical modeling. To study light-matter interaction, plasmonic gap waveguides with nanometer dimensions as well as samples for studies...... of quantum dots in proximity to semiconductor/air and semiconductor/metal interfaces, were fabricated. We measured the decay dynamics of quantum dots near plasmonic gap waveguides and observed modied decay rates. The obtainable modications with the fabricated structures are calculated to be too small...... for the spontaneous emission of mesoscopic quantum emitters is developed. The light-matter interaction is in this model modied beyond the dipole expectancy and found to both suppress and enhance the coupling to plasmonic modes in excellent agreement with our measurements. We demonstrate that this mesoscopic effect...

  2. Improving plasmonic waveguides coupling efficiency using nanoantennas

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien;

    2012-01-01

    Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas....... The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than...

  3. Coupling single emitters to quantum plasmonic circuits

    DEFF Research Database (Denmark)

    Huck, Alexander; Andersen, Ulrik Lund

    2016-01-01

    In recent years, the controlled coupling of single-photon emitters to propagating surface plasmons has been intensely studied, which is fueled by the prospect of a giant photonic nonlinearity on a nanoscaled platform. In this article, we will review the recent progress on coupling single emitters...

  4. Visualizing hybridized quantum plasmons in coupled nanowires

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Jensen, Kristian Lund; Mortensen, N. Asger

    2013-01-01

    We present full quantum-mechanical calculations of the hybridized plasmon modes of two nanowires at small separation, providing real-space visualization of the modes in the transition from the classical to the quantum tunneling regime. The plasmon modes are obtained as certain eigenfunctions...... of the dynamical dielectric function, which is computed using time-dependent density functional theory (TDDFT). For freestanding wires, the energy of both surface and bulk plasmon modes deviate from the classical result for low wire radii and high momentum transfer due to effects of electron spill-out, nonlocal...... response, and coupling to single-particle transitions. For the wire dimer, the shape of the hybridized plasmon modes are continuously altered with decreasing separation, and below 6 A˚, the energy dispersion of the modes deviate from classical results due to the onset of weak tunneling. Below 2-3 A...

  5. Detecting Plasmon Resonance Energy Transfer with Differential Interference Contrast Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Augspurger, Ashley E. [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Stender, Anthony S. [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Han, Rui [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Fang, Ning [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)

    2013-12-30

    Gold nanoparticles are ideal probes for studying intracellular environments and energy transfer mechanisms due to their plasmonic properties. Plasmon resonance energy transfer (PRET) relies on a plasmonic nanoparticle to donate energy to a nearby resonant acceptor molecule, a process which can be observed due to the plasmonic quenching of the donor nanoparticle. In this study, a gold nanosphere was used as the plasmonic donor, while the metalloprotein cytochrome c was used as the acceptor molecule. Differential interference contrast (DIC) microscopy allows for simultaneous monitoring of complex environments and noble metal nanoparticles in real time. Using DIC and specially designed microfluidic channels, we were able to monitor PRET at the single gold particle level and observe the reversibility of PRET upon the introduction of phosphate-buffered saline to the channel. In an additional experiment, single gold particles were internalized by HeLa cells and were subsequently observed undergoing PRET as the cell hosts underwent morphological changes brought about by ethanol-induced apoptosis.

  6. Plasmonic-photonic crystal coupled nanolaser

    CERN Document Server

    Zhang, Taiping; Jamois, Cecile; Chevalier, Celine; Feng, Di; Belarouci, Ali

    2014-01-01

    We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. In that purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using fully top down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices.

  7. Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pang Zhaoguang; Zhang Xinping, E-mail: zhangxinping@bjut.edu.cn [Institute of Information Photonics Technology and College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China)

    2011-04-08

    We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 deg. C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90{sup 0} after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.

  8. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles

    CERN Document Server

    Pennanen, Antti M; 10.1364/OE.21.000A23

    2012-01-01

    Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

  9. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems

    DEFF Research Database (Denmark)

    Badalyan, S. M.; Shylau, A. A.; Jauho, Antti-Pekka

    2017-01-01

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon...

  10. A method for achieving larger enhancement in Four-Wave Mixing via plasmonic path interference effects

    CERN Document Server

    Singh, Shailendra Kumar; Tasgin, Mehmet Emre

    2016-01-01

    Enhancement and suppression of nonlinear processes in coupled systems of plasmonic converters and quantum emitters are well-studied theoretically, numerically and experimentally, in the past decade. Here, in difference, we explicitly demonstrate --with a single equation-- how the presence of a Fano resonance leads to cancellation of nonresonant terms in a four-wave mixing process. Cancellation in the denominator gives rise to enhancement in the nonlinearity. The explicit demonstration, we present here, guides us to the method for achieving more and more orders of magnitude enhancement factors via path interference effects. We also study the coupled system of a plasmonic converter with two quantum emitters. We show that the potential for the enhancement increases dramatically due to better cancellation of the terms in the denominator.

  11. Coupled resonator induced transparency in surface plasmon polariton gap waveguide with two side-coupled cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengren, E-mail: zhrenzhang@126.com [School of Science, Chongqing Jiaotong University, Chongqing 400074 (China); Zhang, Liwei [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Yin, Pengfei; Han, Xiangyu [School of Science, Chongqing Jiaotong University, Chongqing 400074 (China)

    2014-08-01

    We investigate theoretically the generation process of coupled resonator-induced transparency (CRIT) in surface plasmon polariton gap waveguide system containing two side-coupled cavities, which locate at a symmetric position. The CRIT is original from the destructive interference of the two detuned cavities. In contrast with the existing electromagnetically induced transparency (EIT) schemes, the occurrence of the CRIT is caused by the two radiative cavities in waveguide, instead of interference between a dark cavity and radiative cavity. This behavior mimics the quantum interference between two direct excitation pathways in a three-level V-type atom. The transmission lineshape can be tuned between an EIT-like resonant peak and a Lorentzian-like resonant dip by tailoring the detuning of the two cavities. Moreover, we also find that the transparency peak moves to high frequency with a line shift and its Q factor decreases with the increase of coupling distance between the cavities and waveguide.

  12. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems

    Science.gov (United States)

    Badalyan, S. M.; Shylau, A. A.; Jauho, A. P.

    2017-09-01

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q . Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.

  13. Coupling single emitters to quantum plasmonic circuits

    Science.gov (United States)

    Huck, Alexander; Andersen, Ulrik L.

    2016-09-01

    In recent years, the controlled coupling of single-photon emitters to propagating surface plasmons has been intensely studied, which is fueled by the prospect of a giant photonic nonlinearity on a nanoscaled platform. In this article, we will review the recent progress on coupling single emitters to nanowires towards the construction of a new platform for strong light-matter interaction. The control over such a platform might open new doors for quantum information processing and quantum sensing at the nanoscale and for the study of fundamental physics in the ultrastrong coupling regime.

  14. Coupling single emitters to quantum plasmonic circuits

    CERN Document Server

    Huck, Alexander

    2016-01-01

    In recent years the controlled coupling of single photon emitters to propagating surface plasmons has been intensely studied, which is fueled by the prospect of a giant photonic non-linearity on a nano-scaled platform. In this article we will review the recent progress on coupling single emitters to nano-wires towards the construction of a new platform for strong light-matter interaction. The control over such a platform might open new doors for quantum information processing and quantum sensing at the nanoscale, and for the study of fundamental physics in the ultra-strong coupling regime.

  15. Plasmonic Antenna Coupling for QWIPs

    Science.gov (United States)

    Hong, John

    2007-01-01

    In a proposed scheme for coupling light into a quantum-well infrared photodetector (QWIP), an antenna or an array of antennas made of a suitable metal would be fabricated on the face of what would otherwise be a standard QWIP. This or any such coupling scheme is required to effect polarization conversion: Light incident perpendicularly to the face is necessarily polarized in the plane of the face, whereas, as a matter of fundamental electrodynamics and related quantum selection rules, light must have a non-zero component of perpendicular polarization in order to be absorbed in the photodetection process. In a prior coupling scheme, gratings in the form of surface corrugations diffract normally gles, thereby imparting some perpendicular polarization. Unfortunately, the corrugation- fabrication process increases the overall nonuniformity of a large QWIP array. The proposed scheme is an alternative to the use of surface corrugations.

  16. Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Passian, A.; Wig, A.; Lereu, A.L.; Evans, P.G.; Meriaudeau, F.; Thundat, T.; Ferrell, T.L

    2004-08-15

    The interference of surface plasmons can provide important information regarding the surface features of the hosting thin metal film. We present an investigation of the interference of optically excited surface plasmons in the Kretschmann configuration in the visible spectrum. Large area surface plasmon interference regions are generated at several wavelengths and imaged with the photon scanning tunneling microscope. Furthermore, we discuss the non-retarded dispersion relations for the surface plasmons in the probe-metal system modeled as confocal hyperboloids of revolution in the spheroidal coordinate systems.

  17. Imaging of surface plasmon polariton interference using phase-sensitive scanning tunneling microscope

    NARCIS (Netherlands)

    Jose, J.; Segerink, Franciscus B.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2011-01-01

    We report the surface plasmon polariton interference, generated via a ‘buried’ gold grating, and imaged using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM). The phase-resolved PSTM measurement unravels the complex surface plasmon polariton interference fields at the gold-air

  18. Coupling of Quantum Emitters in Nanodiamonds to Plasmonic Structures

    DEFF Research Database (Denmark)

    Kumar, Shailesh

    applications such as sensing of the magnetic field. In this work, NV-centers in nanodiamond crystals smaller than 100 nm were used. For enhancing and channeling emission from the NV-centers, metallic waveguides are used in this work. In such waveguides, electromagnetic waves are guided at the interface between...... structure used for the coupling is two nanowires placed in parallel, which supports plasmonic modes in the gap between nanowires. The distribution of electromagnetic field in the plasmonic mode depends on the structure of the waveguide. The coupling between an emitter and the plasmonic mode, in turn...... a plasmonic waveguide and a dielectric waveguide made of silicon nitride suggest that the two waveguides can be coupled with a coupling loss of around 30 percent. Evanescent coupling between two plasmonic waveguides is also studied which can be useful for all integrated quantum plasmonic circuits....

  19. Characteristics of surface plasmon coupled quantum well infrared photodetectors

    Science.gov (United States)

    Hsu, Wei-Cheng; Ling, Hong-Shi; Wang, Shiang-Yu; Lee, Chien-Ping

    2017-06-01

    Quantum Well Infrared Photodetectors (QWIPs) with different structures were characterized for the study of surface plasmon wave coupling. Detailed comparisons between surface plasmon coupled and etched grating coupled devices were investigated. A bias dependence for the enhancement of the responsivity of surface plasmon coupled devices was found, especially for the samples with non-uniform quantum wells. The non-uniform QWIPs with surface plasmon coupling showed an asymmetric enhancement with respect to the bias directions. Stronger enhancements were shown under the biases when a higher effective electric field region is close to the collector. The change of the photocarrier escape probability due to the narrow coupling bandwidth of the surface plasmon wave is attributed to this unexpected bias dependence.

  20. Surface Plasmon-Coupled Enhanced Transmission

    CERN Document Server

    Djalalian-Assl, Amir

    2016-01-01

    Investigations show a strong coupling between a dipole and the surface wave occurs when a dipole is positioned within 10 nm from a metallic surface. This is in contrast to what was thought previously with surface plasmon-coupled emission where the emission of a dipole was claimed to be quenched when positioned within 10 nm from a metallic surface. In fact, the quenching distance is related to the energy transfer between the dipole that acts as a donor and the metallic surface acting as an acceptor. For distances less 10 nm away from a flat metallic surface a total energy transfer occurs, producing evanescent surface waves that are plasmonic in nature. When investigating a metallic nanohole on an optically dense substrate (such as diamond with NV-), the scattering occured preferentially from the diamond substrate towards the air for dipole distances less 10 nm from the aperture. In addition, an enhancement to the dipole's radiative decay rate was observed. The relationship between an emitter and a nearby reson...

  1. Slowing surface plasmon polaritons on plasmonic coupled cavities by tuning grating grooves

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Kocabas, Coskun; Aydinli, Atilla

    2010-09-01

    We investigate slow surface plasmon polaritons (SPPs) in plasmonic waveguiding bands formed by coupled plasmonic cavities on Moiré surfaces. We demonstrate controlling the group velocity and dispersion of the SPPs by varying the depth of the plasmonic Bragg grating groove. Changing the grating depth results in modification of coupling coefficients between the cavities and hence the SPPs group velocity is altered. Variation in the group velocity and dispersion of SPPs can be measured with polarization dependent spectroscopic reflection measurements. Dispersion of SPPs has been calculated by finite-difference time-domain method in agreement with the experimental data.

  2. Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping

    Science.gov (United States)

    Balci, Sinan; Kocabas, Coskun; Ates, Simge; Karademir, Ertugrul; Salihoglu, Omer; Aydinli, Atilla

    2012-12-01

    In this paper, we report experimental and theoretical investigations on tuning of the surface plasmon-exciton coupling by controlling the plasmonic mode damping, which is defined by the plasmonic layer thickness. The results reveal the formation of plasmon-exciton hybrid state characterized by a tunable Rabi splitting with energies ranging from 0 to 150 meV. Polarization-dependent spectroscopic reflection measurements were employed to probe the dispersion of the coupled system. The transfer matrix method and analytical calculations were used to model the self-assembled J-aggregate/metal multilayer structures in excellent agreement with experimental observations.

  3. Ubiquitous electron-plasmon coupling in doped semiconductors

    Science.gov (United States)

    Caruso, Fabio; Giustino, Feliciano

    The interplay between electrons and bosonic excitations [as, e.g., phonons, collective charge-density fluctuations (plasmons), and magnons] is pervasive in matter and underlies an extremely broad spectrum of physical phenomena, as, for instance, current dissipation, superconductivity, hot-carrier thermalisation, and band structure replicas. At variance with phonons, however, questions pertaining the strength of electron-plasmon coupling in solids are still awaiting further investigations. We developed and implemented a first-principles theory of electron-plasmon coupling based on many-body perturbation theory. Our first-principles calculations reveal that electron-plasmon coupling alters ubiquitously the dynamical and optical properties of semiconductors at high doping concentrations. This behaviour stems from the emergence of low-energy extrinsic plasmons which may couple electronic states in the vicinity of the Fermi energy

  4. Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures

    Science.gov (United States)

    Golmakaniyoon, Sepideh; Hernandez-Martinez, Pedro Ludwig; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism. The overlaps of the surface plasmon modes at the metal-dielectric and dielectric-metal interfaces allow for strong cross-coupling in comparison with the single metal film configuration. The proposed architecture has been demonstrated through the analytical modeling and numerical simulation of an oscillating dipole near the stratified nanostructure of metal-dielectric-metal-acceptor. Consistent with theoretical and numerical results, experimental measurements confirm at least 50% plasmon resonance energy transfer enhancement in the donor-metal-dielectric-metal-acceptor compared to the donor-metal-acceptor structure. Cascaded plasmon-plasmon coupling enables record high efficiency for exciton transfer through metallic structures. PMID:27698422

  5. Nanoscale photonics using coupled hybrid plasmonic architectures

    Science.gov (United States)

    Lin, Charles; Su, Yiwen; Helmy, Amr S.

    2016-04-01

    Plasmonic waveguides, which support surface plasmon polaritons (SPP) propagating along metal-dielectric interfaces, offer strong field confinement and are ideal for the design of integrated nano-scale photonic devices. However, due to free-carrier absorption in the metal, the enhanced mode confinement inevitably entails an increase in the waveguide loss. This lowers the device figure-of-merit achievable with passive plasmonic components and in turn hinders the performance of active plasmonic components such as optical modulators.

  6. Plasmon-Polaron Coupling in Conjugated Polymer on Infrared Nanoantennas.

    Science.gov (United States)

    Wang, Zilong; Zhao, Jun; Frank, Bettina; Ran, Qiandong; Adamo, Giorgio; Giessen, Harald; Soci, Cesare

    2015-08-12

    We propose and demonstrate a novel type of coupling between polarons in a conjugated polymer and localized surface plasmons in infrared (IR) nanoantennas. The near-field interaction between plasmons and polarons is revealed by polarized photoinduced absorption measurements, probing mid-IR polaron transitions, and infrared-active vibrational modes of the polymer, which directly gauge the density of photogenerated charge carriers. This work proves the possibility of tuning the polaronic properties of organic semiconductors with plasmonic nanostructures.

  7. Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers

    Energy Technology Data Exchange (ETDEWEB)

    Le, Khai Q., E-mail: khai.lequang@hoasen.edu.vn [Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh (Viet Nam); Department of Electrical Engineering, University of Minnesota, Duluth, Minnesota 55812 (United States); Alù, Andrea [Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 77812 (United States); Bai, Jing [Department of Electrical Engineering, University of Minnesota, Duluth, Minnesota 55812 (United States)

    2015-01-14

    We theoretically explore signatures of plasmonic Fano interferences in a subwavelength plasmonic metamolecule consisting of closely packed asymmetric gold nanodimers, which lead to the possibility of generating multiple Fano resonances in the scattering spectrum. This spectral feature is attributed to the interference between bright and dark plasmonic modes sustained by the constituent nanodimers. The excited Fano dips are highly sensitive in both wavelength and amplitude to geometry and background dielectric medium. The tunability of induced Fano resonances associated with enhanced electric fields from the visible to infrared region provides promising applications, particularly in refractive index sensing, light-trapping, and photon up-converting.

  8. Laser Induced Periodic Surface Structures induced by surface plasmons coupled via roughness

    Science.gov (United States)

    Gurevich, E. L.; Gurevich, S. V.

    2014-05-01

    In this paper the formation mechanisms of the femtosecond laser-induced periodic surface structures (LIPSS) are discussed. One of the most frequently used theories explains the structures by interference between the incident laser beam and surface plasmon-polariton waves. The latter is most commonly attributed to the coupling of the incident laser light to the surface roughness. We demonstrate that this excitation of surface plasmons contradicts the results of laser-ablation experiments. As an alternative approach to the excitation of LIPSS we analyse development of hydrodynamic instabilities in the melt layer.

  9. Laser Induced Periodic Surface Structures induced by surface plasmons coupled via roughness

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, E.L., E-mail: gurevich@lat.rub.de [Chair of Applied Laser Technology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum (Germany); Gurevich, S.V., E-mail: gurevics@uni-muenster.de [Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Straße 9, 48149 Münster (Germany)

    2014-05-01

    In this paper the formation mechanisms of the femtosecond laser-induced periodic surface structures (LIPSS) are discussed. One of the most frequently used theories explains the structures by interference between the incident laser beam and surface plasmon-polariton waves. The latter is most commonly attributed to the coupling of the incident laser light to the surface roughness. We demonstrate that this excitation of surface plasmons contradicts the results of laser-ablation experiments. As an alternative approach to the excitation of LIPSS we analyse development of hydrodynamic instabilities in the melt layer.

  10. Modulation of surface plasmon coupling-in by one-dimensional surface corrugation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Tejeira, F; Rodrigo, Sergio G; Martin-Moreno, L [Departamento de Fisica de la Materia Condensada, Facultad de Ciencas-ICMA, Universidad de Zaragoza-CSIC, E-50009 Zaragoza (Spain); Garcia-Vidal, F J [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Devaux, E; Dintinger, J; Ebbesen, T W [Laboratoire de Nanostructures, ISIS, Universite Louis Pasteur, F-67000 Strasbourg (France); Krenn, J R [Institute of Physics, Karl Franzens University, A-8010 Graz (Austria); Radko, I P; Bozhevolnyi, S I [Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg (Denmark); Gonzalez, M U; Weeber, J C; Dereux, A [Laboratoire de Physique de l' Universite de Bourgogne, UMR CNRS 5027, F-21078 Dijon (France)], E-mail: lmm@unizar.es

    2008-03-15

    Surface plasmon-polaritons have recently attracted renewed interest in the scientific community for their potential in sub-wavelength optics, light generation and non-destructive sensing. Given that they cannot be directly excited by freely propagating light due to their intrinsic binding to the metal surface, the light-plasmon coupling efficiency becomes of crucial importance for the success of any plasmonic device. Here, we present a comprehensive study on the modulation (enhancement or suppression) of such a coupling efficiency by means of one-dimensional surface corrugation. Our approach is based on simple wave interference and enables us to make quantitative predictions which have been experimentally confirmed at both the near-infrared and telecom ranges.

  11. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.

    Science.gov (United States)

    Petefish, Joseph W; Hillier, Andrew C

    2014-03-04

    Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating surface plasmons as a method for SEIRA excitation. In this report, we demonstrate angle-tunable enhancement of vibrational stretching modes associated with a thin poly(methyl methacrylate) (PMMA) film that is coupled to a silver-coated diffraction grating. Gratings are fabricated using laser interference lithography to achieve precise surface periodicities, which can be used to generate surface plasmons that overlap with specific vibrational modes in the polymer film. Infrared reflection absorption spectra are presented for both bare silver and PMMA-coated silver gratings at a range of angles and polarization states. In addition, spectra were obtained with the grating direction oriented perpendicular and parallel to the infrared source in order to isolate plasmon enhancement effects. Optical simulations using the rigorous coupled-wave analysis method were used to identify the origin of the plasmon-induced enhancement. Angle-dependent absorption measurements achieved signal enhancements of more than 10-times the signal in the absence of the plasmon.

  12. Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Pérot cavity.

    Science.gov (United States)

    Yang, Zhong-Jian; Wang, Qu-Quan; Lin, Hai-Qing

    2012-09-07

    We investigate the cooperative effects of two optical dipole antennas that are coupled to a finite Au nanowire acting as plasmonic Fabry-Pérot (F-P) cavity. The coherent coupling between one single antenna and the F-P cavity can result in Fano resonance, and the coupling strength is antenna position dependent. For two antennas coupled to the F-P cavity, constructive or destructive interference between antennas could be achieved by adjusting their positions along the F-P cavity. Consequently, the Fano resonance will become stronger or weaker correspondingly.

  13. A plasmonic dipole optical antenna coupled quantum dot infrared photodetector

    Science.gov (United States)

    Mojaverian, Neda; Gu, Guiru; Lu, Xuejun

    2015-12-01

    In this paper, we report a full-wavelength plasmonic dipole optical antenna coupled quantum dot infrared photodetector (QDIP). The plasmonic dipole optical antenna can effectively modify the EM wave distribution and convert free-space propagation infrared light to localized surface plasmonic resonance (SPR) within the nanometer (nm) gap region of the full-wavelength dipole antenna. The plasmonic dipole optical antenna coupled QDIP shows incident-angle-dependent photocurrent enhancement. The angular dependence follows the far-field pattern of a full-wavelength dipole antenna. The directivity of the plasmonic dipole optical antenna is measured to be 1.8 dB, which agrees well with the antenna simulation. To our best knowledge, this is the first report of the antenna far-field and directivity measurement. The agreement of the detection pattern and the directivity with antenna theory confirms functions of an optical antenna are similar to that of a RF antenna.

  14. Surface Plasmon Coupling and Control Using Spherical Cap Structures

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; Zhang, Xin; El-Khoury, Patrick Z.; Hess, Wayne P.

    2017-06-05

    Propagating surface plasmons (PSPs) launched from a protruded silver spherical cap structure are investigated using photoemission electron microscopy (PEEM) and finite difference time domain (FDTD) calculations. Our combined experimental and theoretical findings reveal that PSP coupling efficiency is comparable to conventional etched-in plasmonic coupling structures. Additionally, plasmon propagation direction can be varied by a linear rotation of the driving laser polarization. A simple geometric model is proposed in which the plasmon direction selectivity is proportional to the projection of the linear laser polarization on the surface normal. An application for the spherical cap coupler as a gate device is proposed. Overall, our results indicate that protruded cap structures hold great promise as elements in emerging surface plasmon applications.

  15. Coherent phenomena in terahertz 2D plasmonic structures: strong coupling, plasmonic crystals, and induced transparency by coupling of localized modes

    Science.gov (United States)

    Dyer, Gregory C.; Aizin, Gregory R.; Allen, S. James; Grine, Albert D.; Bethke, Don; Reno, John L.; Shaner, Eric A.

    2014-05-01

    The device applications of plasmonic systems such as graphene and two dimensional electron gases (2DEGs) in III-V heterostructures include terahertz detectors, mixers, oscillators and modulators. These two dimensional (2D) plasmonic systems are not only well-suited for device integration, but also enable the broad tunability of underdamped plasma excitations via an applied electric field. We present demonstrations of the coherent coupling of multiple voltage tuned GaAs/AlGaAs 2D plasmonic resonators under terahertz irradiation. By utilizing a plasmonic homodyne mixing mechanism to downconvert the near field of plasma waves to a DC signal, we directly detect the spectrum of coupled plasmonic micro-resonator structures at cryogenic temperatures. The 2DEG in the studied devices can be interpreted as a plasmonic waveguide where multiple gate terminals control the 2DEG kinetic inductance. When the gate tuning of the 2DEG is spatially periodic, a one-dimensional finite plasmonic crystal forms. This results in a subwavelength structure, much like a metamaterial element, that nonetheless Bragg scatters plasma waves from a repeated crystal unit cell. A 50% in situ tuning of the plasmonic crystal band edges is observed. By introducing gate-controlled defects or simply terminating the lattice, localized states arise in the plasmonic crystal. Inherent asymmetries at the finite crystal boundaries produce an induced transparency-like phenomenon due to the coupling of defect modes and crystal surface states known as Tamm states. The demonstrated active control of coupled plasmonic resonators opens previously unexplored avenues for sensitive direct and heterodyne THz detection, planar metamaterials, and slow-light devices.

  16. Coupling of individual quantum emitters to channel plasmons

    CERN Document Server

    Bermúdez-Ureña, Esteban; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain

    2015-01-01

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.

  17. Three types of couplings between asymmetric plasmonic dimers.

    Science.gov (United States)

    Chao, Yen-Chun; Tseng, Hsuan-Chi; Chang, Kao-Der; Chang, Chih-Wei

    2012-01-30

    We report extensive numerical studies on plasmonic dimers of different configurations and find that their coupling effects can be categorized into three types of phenomena. First, like ordinary mechanical systems, the plasmonic dimers can exhibit positive couplings that show anti-crossing behavior. Second, they can also be arranged to exhibit negative couplings that display opposite trends in resonant frequency shifts. Third, when there are surface currents in proximity to each other, the resonance frequencies of the dimers exhibit unusual redshifts that do not have any analogies in conventional systems. Our work suggests that in addition to the well-known electric and magnetic dipolar interactions, contributions from the inductance of displacement currents in the near field cannot be ignored. Overall, asymmetric plasmonic dimers exhibit better sensitivities than the symmetric counterparts and our extensive studies also enable us to identify the plasmonic dimer with the highest sensing capabilities.

  18. Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems.

    Science.gov (United States)

    Adato, Ronen; Artar, Alp; Erramilli, Shyamsunder; Altug, Hatice

    2013-06-12

    Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach's key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications.

  19. Detection of biomolecules and bioconjugates by monitoring rotated grating-coupled surface plasmon resonance

    CERN Document Server

    Szalai, Aniko; Somogyi, Aniko; Szenes, Andras; Banhelyi, Balazs; Csapo, Edit; Dekany, Imre; Csendes, Tibor; Csete, Maria

    2016-01-01

    Plasmonic biosensing chips were prepared by fabricating wavelength-scaled dielectric-metal interfacial gratings on thin polycarbonate films covered bimetal layers via two-beam interference laser lithography. Lysozyme (LYZ) biomolecules and gold nanoparticle (AuNP-LYZ) bioconjugates with 1:5 mass ratio were seeded onto the biochip surfaces. Surface plasmon resonance spectroscopy was performed before and after biomolecule seeding in a modified Kretschmann-arrangement by varying the azimuthal and polar angles to optimize the conditions for rotated grating-coupling. The shift of secondary and primary resonance peaks originating from rotated grating-coupling phenomenon was monitored to detect the biomolecule and bioconjugate adherence. Numerical calculations were performed to reproduce the measured reflectance spectra and the resonance peak shifts caused by different biocoverings. Comparison of measurements and calculations proved that monitoring the narrower secondary peaks under optimal rotated-grating coupling ...

  20. Enhanced Second Harmonic Generation from Coupled Asymmetric Plasmonic Metal Nanostructures

    CERN Document Server

    Yildiz, Bilge Can; Abak, Musa Kurtulus; Coskun, Sahin; Unalan, Husnu Emrah; Bek, Alpan

    2014-01-01

    We show that second harmonic generation can be enhanced by Fano resonant coupling of asymmetric plasmonic metal nanostructures. We develop a theoretical model examining the effects of electromagnetic interaction between two metal nanostructures on the second harmonic generation. We compare the second harmonic generation efficiency of a single plasmonic metal nanostructure with that of two coupled ones. We show that second harmonic generation from a single metal nanostructure can be enhanced about 30 times by attaching a second metal nanostructure with a 10 times higher quality factor than that of the first one. The origin of this enhancement is Fano resonant coupling of the two metal nanostructures. We support our findings on Fano enhancement of second harmonic generation by an experimental study of a coupled plasmonic system composed of a silver nanoparticle and a silver nanowire on glass surface in which the ratio of the quality factors are also estimated to be around 10 times.

  1. Coupled metal gap waveguides as plasmonic wavelength sorters.

    Science.gov (United States)

    Kang, Zhiwen; Wang, Guo Ping

    2008-05-26

    We propose a coupled metal gap waveguide structure for realizing plasmonic wavelength sorters. Theoretical analysis from the coupled-wave theory reveals that wavelength dependent coupling length of guided surface plasmon polaritons contributes to the routing of different wavelengths to different output ports with reasonable high extinction ratio. The analytical results are confirmed by the finite-difference time-domain numerical simulations. Our result may provide an alternative way to construct nanoscale frequency multiplexers, routers, and sorters for nanophotonic integration and optical communication.

  2. Coupling of Surface Plasmons and Semiconductor Nanocrystals for Nanophotonics Applications

    Science.gov (United States)

    Jayanti, Sriharsha V.

    emission wavelengths, photostability, and high quantum yields. Here, we focus on studying the emission from CdSe nanocrystals near plasmonic structures in the weak and strong coupling regimes. In the weak coupling regime, plasmonic structures can be used to selectively modify the radiative rates at the desired wavelengths. We tailor plasmonic structures to enhance and tune the emission from the surface states of CdSe nanocrystals throughout the visible. Due to their size, a significant fraction of atoms are on the surface; however, electron-hole recombination via surface states is typically dark. We further use electrochemistry to probe the energy levels of the surface states. In the strong coupling regime, the energy levels of the surface plasmons and nanocrystals hybridize to form polariton states. In this regime, we demonstrate polariton emission from CdSe/CdSZnS core/shell/shell nanocrystals on silver hole arrays. Emission from these polariton states should be coherent and has implications for thresholdless lasing. While the above studies focus on the change in nanocrystal behavior near metals, these nanocrystals can also be used to improve plasmonic performance. We study the potential of thin layers of CdSe nanocrystals to amplify surface plasmons and enhance their propagation lengths. When the nanocrystals are excited using an external pump, propagating surface plasmons can stimulate emission from these nanocrystals and amplify. If more surface plasmons are generated than lost, then surface-plasmon signals can propagate over extremely long distances and even amplified. We calculate the gain provided and discuss the importance of key parameters such as the absorption and emission cross section, spacer layer thickness, nanocrystal lifetime, and temperature. Finally, we systematically study the emission properties and exciton decay in Ag-doped CdSe nanocrystals, which were recently shown to exhibit enhanced photoluminescence. Overall, this thesis aims to improve

  3. Coherent phenomena in terahertz 2D plasmonic structures: strong coupling, plasmonic crystals, and induced transparency by coupling of localized modes

    CERN Document Server

    Dyer, Gregory C; Allen, S James; Grine, Albert D; Bethke, Don; Reno, John L; Shaner, Eric A

    2016-01-01

    The device applications of plasmonic systems such as graphene and two dimensional electron gases (2DEGs) in III-V heterostructures include terahertz detectors, mixers, oscillators and modulators. These two dimensional (2D) plasmonic systems are not only well-suited for device integration, but also enable the broad tunability of underdamped plasma excitations via an applied electric field. We present demonstrations of the coherent coupling of multiple voltage tuned GaAs/AlGaAs 2D plasmonic resonators under terahertz irradiation. By utilizing a plasmonic homodyne mixing mechanism to downconvert the near field of plasma waves to a DC signal, we directly detect the spectrum of coupled plasmonic micro-resonator structures at cryogenic temperatures. The 2DEG in the studied devices can be interpreted as a plasmonic waveguide where multiple gate terminals control the 2DEG kinetic inductance. When the gate tuning of the 2DEG is spatially periodic, a one-dimensional finite plasmonic crystal forms. This results in a sub...

  4. Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

    CERN Document Server

    Shi, L; Rekola, H T; Martikainen, J -P; Moerland, R J; Törmä, P

    2014-01-01

    We study spatial coherence properties of a system composed of periodic silver nanoparticle arrays covered with a fluorescent organic molecule (DiD) film. The evolution of spatial coherence of this composite structure from the weak to the strong coupling regime is investigated by systematically varying the coupling strength between the localized DiD excitons and the collective, delocalized modes of the nanoparticle array known as surface lattice resonances. A gradual evolution of coherence from the weak to the strong coupling regime is observed, with the strong coupling features clearly visible in interference fringes. A high degree of spatial coherence is demonstrated in the strong coupling regime, even when the mode is very excitonlike (80%), in contrast to the purely localized nature of molecular excitons. We show that coherence appears in proportion to the weight of the plasmonic component of the mode throughout the weak-to-strong coupling crossover, providing evidence for the hybrid nature of the normal m...

  5. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    KAUST Repository

    Xu, Quan

    2016-11-29

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  6. Inducing an Incipient Terahertz Finite Plasmonic Crystal in Coupled Two Dimensional Plasmonic Cavities

    CERN Document Server

    Dyer, Gregory C; Preu, Sascha; Vinh, N Q; Allen, S James; Reno, John L; Shaner, Eric A

    2016-01-01

    We measured a change in the current transport of an antenna-coupled, multi-gate, GaAs/AlGaAs field-effect transistor when terahertz electromagnetic waves irradiated the transistor and attribute the change to bolometric heating of the electrons in the two-dimensional electron channel. The observed terahertz absorption spectrum indicates coherence between plasmons excited under adjacent biased device gates. The experimental results agree quantitatively with a theoretical model we developed that is based on a generalized plasmonic transmission line formalism and describes an evolution of the plasmonic spectrum with increasing electron density modulation from homogeneous to the crystal limit. These results demonstrate an electronically induced and dynamically tunable plasmonic band structure.

  7. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    Science.gov (United States)

    Xu, Quan; Zhang, Xueqian; Xu, Yuehong; Li, Quan; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Wentao; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-11-01

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  8. Plasmon coupling in vertical split-ring resonator metamolecules

    Science.gov (United States)

    Wu, Pin Chieh; Hsu, Wei-Lun; Chen, Wei Ting; Huang, Yao-Wei; Liao, Chun Yen; Liu, Ai Qun; Zheludev, Nikolay I.; Sun, Greg; Tsai, Din Ping

    2015-01-01

    The past decade has seen a number of interesting designs proposed and implemented to generate artificial magnetism at optical frequencies using plasmonic metamaterials, but owing to the planar configurations of typically fabricated metamolecules that make up the metamaterials, the magnetic response is mainly driven by the electric field of the incident electromagnetic wave. We recently fabricated vertical split-ring resonators (VSRRs) which behave as magnetic metamolecules sensitive to both incident electric and magnetic fields with stronger induced magnetic dipole moment upon excitation in comparison to planar SRRs. The fabrication technique enabled us to study the plasmon coupling between VSRRs that stand up side by side where the coupling strength can be precisely controlled by varying the gap in between. The resulting wide tuning range of these resonance modes offers the possibility of developing frequency selective functional devices such as sensors and filters based on plasmon coupling with high sensitivity. PMID:26043931

  9. Exploring plasmonic coupling in hole-cap arrays

    Directory of Open Access Journals (Sweden)

    Thomas M. Schmidt

    2015-01-01

    Full Text Available The plasmonic coupling between gold caps and holes in thin films was investigated experimentally and through finite-difference time-domain (FDTD calculations. Sparse colloidal lithography combined with a novel thermal treatment was used to control the vertical spacing between caps and hole arrays and compared to separated arrays of holes or caps. Optical spectroscopy and FDTD simulations reveal strong coupling between the gold caps and both Bloch Wave-surface plasmon polariton (BW-SPP modes and localized surface plasmon resonance (LSPR-type resonances in hole arrays when they are in close proximity. The interesting and complex coupling between caps and hole arrays reveals the details of the field distribution for these simple to fabricate structures.

  10. Theory of electron-plasmon coupling in semiconductors

    Science.gov (United States)

    Caruso, Fabio; Giustino, Feliciano

    2016-09-01

    The ability to manipulate plasmons is driving new developments in electronics, optics, sensing, energy, and medicine. Despite the massive momentum of experimental research in this direction, a predictive quantum-mechanical framework for describing electron-plasmon interactions in real materials is still missing. Here, starting from a many-body Green's function approach, we develop an ab initio approach for investigating electron-plasmon coupling in solids. As a first demonstration of this methodology, we show that electron-plasmon scattering is the primary mechanism for the cooling of hot carriers in doped silicon, it is key to explaining measured electron mobilities at high doping, and it leads to a quantum zero-point renormalization of the band gap in agreement with experiment.

  11. Enhanced Surface-Plasmon-Polariton Interference for Nanolithography by a Micro-Cylinder-Lens Array

    Institute of Scientific and Technical Information of China (English)

    LIANG Hui-Min; WANG Jing-Quan; FAN Feng; QIN Ai-Li; ZHANG Chun-Yuan; CHENG Hui

    2010-01-01

    @@ A practical interference lithography scheme based on surface plasmon polaritions (SPPs) is suggested.In this scheme,a micro-cylinder-lens array is employed to generate the evanescent wave (EW) carrying much energy.When the top of the cylinder lenses are in dose contact with a metal film coated on a resist,the energy of EW will launch strong SPPs and form enhanced interference nanopatterns in the resist.

  12. Controlling plasmon coupling in biomolecule-linked metal nanoparticle assemblies

    Science.gov (United States)

    Sebba, David S.

    Molecular control of plasmon coupling is investigated in biomolecule-linked nanoparticle assemblies in two-particle, small cluster, and extended network formats. The relationship between structure and optical properties is explored through comparison of measured spectra with simulated spectra calculated using structural models based upon measured structural parameters. A variety of techniques are used to characterize nanoparticle assemblies, including ensemble extinction and elastic scattering spectroscopy, single-assembly scattering spectroscopy, transmission electron microscopy, and dynamic light scattering. Initially, molecular control of plasmon coupling is investigated in ˜100 nm assemblies composed of 13 nm gold "satellite" particles tethered by duplex DNA to a 50 nm gold "core" particle. Comparison of core-satellite assemblies formed with duplex DNA tethers of varying length demonstrates that, while core-satellite separation is controlled by the number of base pairs in the DNA tether, structural properties such as core:satellite ratio and yield are independent of DNA tether length. Thus, plasmon coupling within these assemblies is determined by the number of base pairs in the duplex DNA tether; compact assemblies in which tethers are composed of fewer base pairs exhibit plasmon bands that are red-shifted relative to the bands of extended assemblies, indicating increased plasmon coupling in the compact assemblies. Subsequently, core-satellite assemblies are formed with reconfigurable DNA nanostructure tethers that modulate interparticle separation in response to a molecular stimulus. Assembly reconfiguration from a compact to an extended state results in blue-shifting of the assembly plasmon resonance, indicating reduced interparticle coupling and lengthening of the core-satellite tether. Comparison between measured and simulated spectra revealed a close correspondence and provided validation of the structural models that link assembly plasmonic properties

  13. UV Nano Lights - Nonlinear Quantum Dot-Plasmon Coupling

    Science.gov (United States)

    2016-06-20

    AFRL-AFOSR-JP-TR-2016-0072 UV Nano-Lights - Nonlinear Quantum Dot-Plasmon Coupling Eric Waclawik QUEENSLAND UNIVERSITY OF TECHNOLOGY Final Report 06...Final 3.  DATES COVERED (From - To)  03 Feb 2014 to 02 Feb 2016 4.  TITLE AND SUBTITLE UV Nano-Lights - Nonlinear Quantum Dot-Plasmon Coupling 5a...CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4056 5c.   PROGRAM ELEMENT NUMBER 61102F 6.  AUTHOR(S) Eric Waclawik 5d.  PROJECT NUMBER 5e.  TASK NUMBER 5f

  14. Plasmonic coupling in single flower-like gold nanoparticle assemblies

    Institute of Scientific and Technical Information of China (English)

    Yi Luo; Lacie Dube; Yadong Zhou; Shengli Zou; Jing Zhao

    2016-01-01

    Localized surface plasmon resonance (LSPR) arises when light interacts with metallic nanoparticles (NPs). When nanoparticles (NPs) assemble together, the plasmon coupling effect between the NPs often leads to new features in the LSPR of the assembled structure. Understanding the plasmon coupling in the complex assemblies will greatly benefit the development of new plasmonic devices. Here we demonstrate the fabrication of a 3D structure using two different sized Au NPs as building blocks. This 3D structure was achieved by manipulating the binding efficiency of ligands linking the NPs, and proper choice of the NP size. The assembled structure is flower-like structure, with one 130 nm Au NP in the center, and several 40 nm Au NPs attaching as“petals”. Single particle dark-field scattering measurements of the individual assemblies were performed, together with electrodynamics simulations. The experimental and theoretical studies show that, the plasmonic coupling lead to broadening of the LSPR and additional peaks, depending on the number and 3D arrangement of the 40 nm NPs around the center 130 nm NP.

  15. Plasmonic coupling in single flower-like gold nanoparticle assemblies

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2016-10-01

    Full Text Available Localized surface plasmon resonance (LSPR arises when light interacts with metallic nanoparticles (NPs. When nanoparticles (NPs assemble together, the plasmon coupling effect between the NPs often leads to new features in the LSPR of the assembled structure. Understanding the plasmon coupling in the complex assemblies will greatly benefit the development of new plasmonic devices. Here we demonstrate the fabrication of a 3D structure using two different sized Au NPs as building blocks. This 3D structure was achieved by manipulating the binding efficiency of ligands linking the NPs, and proper choice of the NP size. The assembled structure is flower-like structure, with one 130 nm Au NP in the center, and several 40 nm Au NPs attaching as “petals”. Single particle dark-field scattering measurements of the individual assemblies were performed, together with electrodynamics simulations. The experimental and theoretical studies show that, the plasmonic coupling lead to broadening of the LSPR and additional peaks, depending on the number and 3D arrangement of the 40 nm NPs around the center 130 nm NP.

  16. Quantum interference of highly-dispersive surface plasmons (Conference Presentation)

    Science.gov (United States)

    Tokpanov, Yury S.; Fakonas, James S.; Atwater, Harry A.

    2016-09-01

    Previous experiments have shown that surface plasmon polaritons (SPPs) preserve their entangled state and do not cause measurable decoherence. However, essentially all of them were done using SPPs whose dispersion was in the linear "photon-like" regime. We report in this presentation on experiments showing how transition to "true-plasmon" non-linear dispersion regime, which occurs near SPP resonance frequency, will affect quantum coherent properties of light. To generate a polarization-entangled state we utilize type-I parametric down-conversion, occurring in a pair of non-linear crystals (BiBO), glued together and rotated by 90 degrees with respect to each other. For state projection measurements, we use a pair of polarizers and single-photon avalanche diode coincidence count detectors. We interpose a plasmonic hole array in the path of down-converted light before the polarizer. Without the hole array, we measure visibility V=99-100% and Bell's number S=2.81±0.03. To study geometrical effects we fabricated plasmonic hole arrays (gold on optically polished glass) with elliptical holes (axes are 190nm and 240nm) using focused ion beam. When we put this sample in our system we measured the reduction of visibility V=86±5% using entangled light. However, measurement using classical light gave exactly the same visibility; hence, this reduction is caused only by the difference in transmission coefficients of different polarizations. As samples with non-linear dispersion we fabricated two-layer (a-Si - Au) and three-layer (a-Si - Au - a-Si) structures on optically polished glass with different pitches and circular holes. The results of measurements with these samples will be discussed along with the theoretical investigations.

  17. Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides

    Science.gov (United States)

    Lu, Jiahui; Wang, Guanghui

    2016-11-01

    We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton (SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding. With Maxwell’s equations and Maxwell stress tensor, we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides. The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters. Importantly, an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation. These special optical properties will open the door for potential optomechanical applications, such as optical tweezers and actuators. Project supported by the National Natural Science Foundation of China (Grant No. 11474106) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313439).

  18. Coupled dipole plasmonics of nanoantennas in discontinuous, complex dielectric environments

    Science.gov (United States)

    Forcherio, Gregory T.; Blake, Phillip; Seeram, Manoj; DeJarnette, Drew; Roper, D. Keith

    2015-11-01

    Two-dimensional metamaterials support both plasmonic and coupled lattice (Fano) resonant modes that together could enhance optoelectronics. Descriptions for plasmon excitation in Fano resonant lattices in non-vacuum environments typically use idealized, homogeneous matrices due to computational expense and limitations of common approaches. This work described both localized and coupled resonance activity of two-dimensional, square lattices of gold (Au) nanospheres (NS) in discontinuous, complex dielectric media using compact synthesis of discrete and coupled dipole approximations. This multi-scale approach supported attribution of experimentally observed spectral resonance energy and bandwidth to interactions between metal and dielectric substrate(s) supporting the lattices. Effective polarizabilities of single AuNS, either in vacuo or supported by glass and/or indium tin oxide (ITO) substrates, were obtained with discrete dipole approximation (DDA). This showed plasmon energy transport varied with type of substrate: glass increased scattering, while ITO increased absorption and energy confinement. Far-field lattice interactions between AuNS with/without substrates were computed by coupled dipole approximation (CDA) using effective polarizabilities. This showed glass enhanced diffractive features (e.g., coupled lattice resonance), while ITO supported plasmon modes. This compact, multiscale approach to describe metasurfaces in complex environments could accelerate their development and application.

  19. Perfect coupling of light to surface plasmons by coherent absorption

    CERN Document Server

    Noh, Heeso; Stone, A Douglas; Cao, Hui

    2011-01-01

    We show theoretically that coherent light can be completely absorbed in a two-dimensional or three-dimensional metallic nanostructure by matching the frequency and field pattern of an incident wave to that of a localized surface plasmon resonance. This can be regarded as critical coupling to a nano-plasmonic cavity, or as an extension of the concept of time-reversed laser to the spaser. Light scattering is completely suppressed via impedance matching to the nano-objects, and the energy of incoming wave is fully transferred to surface plasmon oscillations and evanescent electromagnetic fields. Perfect coupling of light to nanostructures has potential applications to nanoscale probing as well as background-free spectroscopy and ultrasensitive detection of environmental changes.

  20. Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources

    Science.gov (United States)

    Colas des Francs, G.; Barthes, J.; Bouhelier, A.; Weeber, J. C.; Dereux, A.; Cuche, A.; Girard, C.

    2016-09-01

    The Purcell factor F p is a key quantity in cavity quantum electrodynamics (cQED) that quantifies the coupling rate between a dipolar emitter and a cavity mode. Its simple form {F}{{p}}\\propto Q/V unravels the possible strategies to enhance and control light-matter interaction. Practically, efficient light-matter interaction is achieved thanks to either (i) high quality factor Q at the basis of cQED or (ii) low modal volume V at the basis of nanophotonics and plasmonics. In the last decade, strong efforts have been done to derive a plasmonic Purcell factor in order to transpose cQED concepts to the nanocale, in a scale-law approach. In this work, we discuss the plasmonic Purcell factor for both delocalized (SPP) and localized (LSP) surface-plasmon-polaritons and briefly summarize the expected applications for nanophotonics. On the basis of the SPP resonance shape (Lorentzian or Fano profile), we derive closed form expression for the coupling rate to delocalized plasmons. The quality factor factor and modal confinement of both SPP and LSP are quantified, demonstrating their strongly subwavelength behavior.

  1. Plasmonic harvesting of light energy for Suzuki coupling reactions.

    Science.gov (United States)

    Wang, Feng; Li, Chuanhao; Chen, Huanjun; Jiang, Ruibin; Sun, Ling-Dong; Li, Quan; Wang, Jianfang; Yu, Jimmy C; Yan, Chun-Hua

    2013-04-17

    The efficient use of solar energy has received wide interest due to increasing energy and environmental concerns. A potential means in chemistry is sunlight-driven catalytic reactions. We report here on the direct harvesting of visible-to-near-infrared light for chemical reactions by use of plasmonic Au-Pd nanostructures. The intimate integration of plasmonic Au nanorods with catalytic Pd nanoparticles through seeded growth enabled efficient light harvesting for catalytic reactions on the nanostructures. Upon plasmon excitation, catalytic reactions were induced and accelerated through both plasmonic photocatalysis and photothermal conversion. Under the illumination of an 809 nm laser at 1.68 W, the yield of the Suzuki coupling reaction was ~2 times that obtained when the reaction was thermally heated to the same temperature. Moreover, the yield was also ~2 times that obtained from Au-TiOx-Pd nanostructures under the same laser illumination, where a 25-nm-thick TiOx shell was introduced to prevent the photocatalysis process. This is a more direct comparison between the effect of joint plasmonic photocatalysis and photothermal conversion with that of sole photothermal conversion. The contribution of plasmonic photocatalysis became larger when the laser illumination was at the plasmon resonance wavelength. It increased when the power of the incident laser at the plasmon resonance was raised. Differently sized Au-Pd nanostructures were further designed and mixed together to make the mixture light-responsive over the visible to near-infrared region. In the presence of the mixture, the reactions were completed within 2 h under sunlight, while almost no reactions occurred in the dark.

  2. Enhanced magneto-plasmonic effect in Au/Co/Au multilayers caused by exciton–plasmon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, S.M., E-mail: m_hamidi@sbu.ac.ir; Ghaebi, O.

    2016-09-15

    In this paper, we have investigated magneto optical Kerr rotation using the strong coupling of exciton–plasmon. For this purpose, we have demonstrated strong coupling phenomenon using reflectometry measurements. These measurements revealed the formation of two split polaritonic extrema in reflectometry as a function of wavelength. Then we have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. To assure the readers of strong coupling, we have shown an enhanced magneto-optical Kerr rotation by comparing the reflectometry results of strong coupling of surface Plasmon polariton of Au/Co/Au multilayer and R6G excitons with surface Plasmon polariton magneto-optical kerr effect experimental setup. - Highlights: • The magneto optical Kerr rotation has been investigated by using the strong coupling of exciton–plasmon. • We have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. • Strong coupling of surface plasmon polariton and exciton have been yielded to the enhanced magneto-optical Kerr effect. • Plasmons in Au/Co/Au multilayer and exciton in R6G have been coupled to enhance magneto-optical activity.

  3. Strong Coupling between Surface Plasmon Polaritons and Molecular Vibrations

    Science.gov (United States)

    Memmi, H.; Benson, O.; Sadofev, S.; Kalusniak, S.

    2017-03-01

    We report on the strong coupling of surface plasmon polaritons and molecular vibrations in an organic-inorganic plasmonic hybrid structure consisting of a ketone-based polymer deposited on top of a silver layer. Attenuated-total-reflection spectra of the hybrid reveal an anticrossing in the dispersion relation in the vicinity of the carbonyl stretch vibration of the polymer with an energy splitting of the upper and lower polariton branch up to 15 meV. The splitting is found to depend on the molecular layer thickness and saturates for micrometer-thick films. This new hybrid state holds a strong potential for application in chemistry and optoelectronics.

  4. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    Science.gov (United States)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2016-06-01

    Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as "nanomatryoshka" (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.

  5. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    Directory of Open Access Journals (Sweden)

    Arash Ahmadivand

    2016-06-01

    Full Text Available Here, we examine the electromagnetic (EM energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as “nanomatryoshka” (NM units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer, plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer, due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.

  6. Enhancement of four-wave mixing via interference of multiple plasmonic conversion paths

    Science.gov (United States)

    Singh, Shailendra K.; Abak, M. Kurtulus; Tasgin, Mehmet Emre

    2016-01-01

    Recent experiments demonstrate that plasmonic resonators can enhance the four-wave mixing (FWM) process by several orders of magnitude, due to the localization of the incident fields. We show that, when the plasmonic resonator is coupled to two quantum emitters, a three orders of magnitude enhancement can be obtained on top of the enhancement due to the localization. We explicitly demonstrate—on an expression for the steady-state FWM amplitude—how the presence of a Fano resonance leads to the cancellation of nonresonant terms in a FWM process. A cancellation in the denominator gives rise to an enhancement in the nonlinearity. The explicit demonstration we present here guides one to a method for achieving even larger enhancement factors by introducing additional coupling terms. The method is also applicable to Fano resonances induced by all-plasmonic couplings, which are easier to control in experiments.

  7. Coupling between plasmonic films and nanostructures: from basics to applications

    Directory of Open Access Journals (Sweden)

    Maurer Thomas

    2015-11-01

    Full Text Available Plasmonic film-nanoparticles coupled systems have had a renewed interest for the past 5 years both for the richness of the provided plasmonic modes and for their high technological potential. Many groups started to investigate the optical properties of film-nanoparticles coupled systems, as to whether the spacer layer thickness is tens of nanometers thick or goes down to a few nanometers or angstroms, even reaching contact. This article reviews the recent breakthroughs in the physical understanding of such coupled systems and the different systems where nanoparticles on top of the spacer layer are either isolated/random or form regular arrays. The potential for applications, especially as perfect absorbers or transmitters is also put into evidence.

  8. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance.

    Science.gov (United States)

    Liu, C H; Hong, M H; Cheung, H W; Zhang, F; Huang, Z Q; Tan, L S; Hor, T S A

    2008-07-07

    Tuning of surface plasmon resonance by gold and silver bimetallic thin film and bimetallic dot array is investigated. Laser interference lithography is applied to fabricate the nanostructures. A bimetallic dot structure is obtained by a lift-off procedure after gold and silver thin film deposition by an electron beam evaporator. Surface plasmon behaviors of these films and nanostructures are studied using UV-Vis spectroscopy. It is observed that for gold thin film on quartz substrate, the optical spectral peak is blue shifted when a silver thin film is coated over it. Compared to the plasmon band in single metal gold dot array, the bimetallic nanodot array shows a similar blue shift in its spectral peak. These shifts are both attributed to the interaction between gold and silver atoms. Electromagnetic interaction between gold and silver nanostructures is discussed using a simplified spring model.

  9. Theoretical study of ultra-wideband slow light in dual-stub-coupled plasmonic waveguide

    Science.gov (United States)

    Li, Chunlei; Su, Runzhou; Wang, Yuxiao; Zhang, Xueru

    2016-10-01

    We propose and demonstrate a metal-insulator-metal (MIM) waveguide side coupled double stubs to realize broadband slow surface plasmon polaritons (SPPs) around the telecom frequency 193.5 THz. When the depth of single stub is approximately equal to integral multiple of half plasmon wavelength, owing to the constructive interferences between the electromagnetic wave propagating through the MIM waveguide and that reflected from the stubs, wideband slow light effect appears. The improved transmission line theory calculation indicates that the group velocity of SPPs in the plasmonic waveguide system for stub depth 1111 nm is 0.1c (c is light speed in vacuum.) over a broad bandwidth of 69 THz. Exploiting the finite-difference time-domain (FDTD) numerical simulation, the group velocity of pulse for width 20 fs (Full width at half high) is calculated. The result agrees well with that predicted by the transmission line theory. This plasmonic waveguide for slow light effect has important potential application in optical delay lines.

  10. Dynamic Control of Plasmon-Exciton Coupling in Au Nanodisk–J-Aggregate Hybrid Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-01-01

    We report the dynamic control of plasmon-exciton coupling in Au nanodisk arrays adsorbed with J-aggregate molecules by incident angle of light. The angle-resolved spectra of an array of bare Au nanodisks exhibit continuous shifting of localized surface plasmon resonances. This characteristic enables the production of real-time, controllable spectral overlaps between molecular and plasmonic resonances, and the efficient measurement of plasmon-exciton coupling as a function of wavelength with one or fewer nanodisk arrays. Experimental observations of varying plasmon-exciton coupling match with coupled dipole approximation calculations.

  11. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer

    Science.gov (United States)

    Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis

    2015-12-01

    Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon

  12. Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles.

    Science.gov (United States)

    Crow, Matthew J; Seekell, Kevin; Ostrander, Julie H; Wax, Adam

    2011-11-22

    The dimerization of receptors on the cell membrane is an important step in the activation of cell signaling pathways. Several methods exist for observing receptor dimerization, including coimmunoprecipitation, chemical cross-linking, and fluorescence resonance energy transfer (FRET). These techniques are limited in that only FRET is appropriate for live cells, but even that method suffers from photobleaching and bleed-through effects. In this study, we implement an alternative method for the targeting of HER-2 homodimer formation based on the plasmonic coupling of gold nanoparticles functionalized with HER-2 Ab. In the presented studies, SK-BR-3 cells, known to overexpress HER-2, are labeled with these nanoparticles and receptor colocalization is observed using plasmonic coupling. HER-2 targeted nanoparticles bound to these cells exhibit a peak resonance that is significantly red-shifted relative to those bound to similar receptors on A549 cells, which have significantly lower levels of HER-2 expression. This significant red shift indicates plasmonic coupling is occurring and points to a new avenue for assessing dimerization by monitoring their colocalization. To determine that dimerization is occurring, the refractive index of the nanoenvironment of the labels is assessed using a theoretical analysis based on the Mie coated sphere model. The results indicate scattering by single, isolated nanoparticles for the low HER-2 expressing A549 cell line, but the scattering observed for the HER-2 overexpressing SK-BR-3 cell line may only be explained by plasmonic-coupling of proximal nanoparticle pairs. To validate the conformation of nanoparticles bound to HER-2 receptors undergoing dimerization, discrete dipole approximation (DDA) models are used to assess spectra of scattering by coupled nanoparticles. Comparison of the experimental results with theoretical models indicates that NP dimers are formed for the labeling of SK-BR-3 cells, suggesting that receptor

  13. Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna

    OpenAIRE

    López-Tejeira, F.; Paniagua-Domínguez, R.; Rodríguez-Oliveros, R.; Sánchez-Gil, J. A.

    2011-01-01

    Single metallic nanorods acting as half-wave antennas in the optical range exhibit an asymmetric, multi-resonant scattering spectrum that strongly depends on both their length and dielectric properties. Here we show that such spectral features can be easily understood in terms of Fano-like interference between adjacent plasmon resonances. On the basis of analytical and numerical results for different geometries, we demonstrate that Fano resonances may appear for such single-particle nanoanten...

  14. Improved Coupling to Plasmonic Slot Waveguide via a Resonant Nanoantenna

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Zenin, Vladimir A.; Malureanu, Radu;

    -limited optical waves into deep-subwavelength plasmonic waveguides. In this contribution we provide a systematic approach to design, fabricate and characterize an efficient, broadband, and compact dipole antenna nanocoupler for the telecom wavelength range around 1.55 µm. We consider the vertical coupling...... configuration with a realistic excitation directly from an optical fiber. The scattering-type scanning near-field optical microscope (s-SNOM) characterization allows us not only to make relative comparison of the efficiencies (in terms of the effective area) of different couplers, but also to measure......Plasmonic waveguides are considered as a future generation of optical interconnects in integrated circuits for datacom technologies due to their extreme field confinement performance. Inevitably, when using nanoscale waveguides, a new challenge emerges: how to effectively couple the diffraction...

  15. Optical properties of surface plasmon resonances of coupled metallic nanorods.

    Science.gov (United States)

    Smythe, Elizabeth J; Cubukcu, Ertugrul; Capasso, Federico

    2007-06-11

    We present a systematic study of optical antenna arrays, in which the effects of coupling between the antennas, as well as of the antenna length, on the reflection spectra are investigated and compared. Such arrays can be fabricated on the facet of a fiber, and we propose a photonic device, a plasmonic optical antenna fiber probe, that can potentially be used for in-situ chemical and biological detection and surface-enhanced Raman scattering.

  16. Resonance Coupling in Plasmonic Nanomatryoshka Homo- and Heterodimers

    Science.gov (United States)

    2016-08-16

    breaking and conductive contact on the plasmon coupling in gold nanorod dimers,” ACS Nano 4, 4657-4666 (2010). 19 B. Luk’yanchuk, N. I. Zheludev, S. A...gold nanorods,” ACS Nano 5, 5976-5986 (2011). 21 Y, -I. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573-4588 (1995). 22

  17. Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates.

    Science.gov (United States)

    Obara, Go; Maeda, Naoki; Miyanishi, Tomoya; Terakawa, Mitsuhiro; Nedyalkov, Nikolay N; Obara, Minoru

    2011-09-26

    We present experimental and theoretical results on plasmonic control of far-field interference for regular ripple formation on semiconductor and metal. Experimental observation of interference ripple pattern on Si substrate originating from the gold nanosphere irradiated by femtosecond laser is presented. Gold nanosphere is found to be an origin for ripple formation. Arbitrary intensity ripple patterns are theoretically controllable by depositing desired plasmonic and Mie scattering far-field pattern generators. The plasmonic far-field generation is demonstrated not only by metallic nanostructures but also by the controlled surface structures such as ridge and trench structures on various material substrates.

  18. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer.

    Science.gov (United States)

    Sotiriou, Georgios A; Blattmann, Christoph O; Deligiannakis, Yiannis

    2016-01-14

    Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol(-1) and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.

  19. Coupling single quantum dots to plasmonic nanocones: optical properties.

    Science.gov (United States)

    Meixner, Alfred J; Jäger, Regina; Jäger, Sebastian; Bräuer, Annika; Scherzinger, Kerstin; Fulmes, Julia; Krockhaus, Sven zur Oven; Gollmer, Dominik A; Kern, Dieter P; Fleischer, Monika

    2015-01-01

    Coupling a single quantum emitter, such as a fluorescent molecule or a quantum dot (QD), to a plasmonic nanostructure is an important issue in nano-optics and nano-spectroscopy, relevant for a wide range of applications, including tip-enhanced near-field optical microscopy, plasmon enhanced molecular sensing and spectroscopy, and nanophotonic amplifiers or nanolasers, to mention only a few. While the field enhancement of a sharp nanoantenna increasing the excitation rate of a very closely positioned single molecule or QD has been well investigated, the detailed physical mechanisms involved in the emission of a photon from such a system are, by far, less investigated. In one of our ongoing research projects, we try to address these issues by constructing and spectroscopically analysing geometrically simple hybrid heterostructures consisting of sharp gold cones with single quantum dots attached to the very tip apex. An important goal of this work is to tune the longitudinal plasmon resonance by adjusting the cones' geometry to the emission maximum of the core-shell CdSe/ZnS QDs at nominally 650 nm. Luminescence spectra of the bare cones, pure QDs and hybrid systems were distinguished successfully. In the next steps we will further investigate, experimentally and theoretically, the optical properties of the coupled systems in more detail, such as the fluorescence spectra, blinking statistics, and the current results on the fluorescence lifetimes, and compare them with uncoupled QDs to obtain a clearer picture of the radiative and non-radiative processes.

  20. Theoretical Analysis of Interference Nanolithography of Surface Plasmon Polaritons without a Match Layer

    Institute of Scientific and Technical Information of China (English)

    WANG Jing-quan; LIANG Hui-Min; SHI Sha; DU Jing-Lei

    2009-01-01

    Interference nanolithography techniques based on long-range surface plasmon polaritons (LR-SPP) are hardly ever achieved by experiments at present.One key reason is that suitable liquid materials are difficult to find as the match layer connects the metal film and the resist.We redesign a Kretschmann-Raether structure for interference lithography.A polymer layer is coated under the metal film,and an air layer is placed between the polymer layer and the resist layer.This design not only avoids the above-mentioned question of the match layer,but also can form a soft contact between the polymer layer and the resist layer and can protect the exposure pattern.Simulation results confirm that a device with an appropriately thick polymer layer can form high intensity and contrast interference fringes with a critical dimension of about λ/7 in the resist.In addition,the fabrication of the device is very easy.

  1. Suppression of crosstalk in coupled plasmonic waveguides

    CERN Document Server

    Kuznetsov, E V; Zyablovsky, A A; Vinogradov, A P; Lisyansky, A A

    2016-01-01

    We demonstrate the suppression of crosstalk between two dielectric nanowaveguides by placing an auxiliary linear waveguide between loaded waveguides spaced by one wavelength. The total cross-sectional dimension of the system containing two transmission lines is less than two microns that is hundred times smaller than a cross-section of a system made of dielectric fiber. The propagating modes in these waveguides are the sum and the difference of symmetric and antisymmetric modes of the coupled system. Crosstalk is suppressed by matching the wavenumbers of these modes. The analytically obtained results are confirmed by numerical simulation.

  2. Asymmetric excitation of surface plasmons by dark mode coupling.

    Science.gov (United States)

    Zhang, Xueqian; Xu, Quan; Li, Quan; Xu, Yuehong; Gu, Jianqiang; Tian, Zhen; Ouyang, Chunmei; Liu, Yongmin; Zhang, Shuang; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-02-01

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  3. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.

    2016-02-19

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  4. Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains

    Science.gov (United States)

    Xiong, Min; Jin, Xiulong; Ye, Jian

    2016-02-01

    Construction of ordered patterns of plasmonic nanoparticles is greatly important for nanophotonics relevant applications. We have reported a facile and low-cost magnetic field induced self-assembly approach to construct plasmonic superparamagnetic nanoshell (SN) chains up to several hundred micrometers in a few seconds in a large area without templates or other assistance processes. Experimental and theoretical investigations of the near- and far-field optical properties indicate that the super- and sub-radiant modes of the SN chains continuously redshift with the increase of SN number and the Fano resonance emerges in the infinite double- and triple-line SN chains. Strong plasmon coupling effects in the SN chains result in great electric field enhancements at visible and infrared wavelengths, which indicates that these chain structures potentially can be used as a common substrate for both surface enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) application. This fabrication method also offers a general strategy alternative to top-down processing that enables the construction of nanostructures for metamaterials, electromagnetic energy transport, and optical waveguide.Construction of ordered patterns of plasmonic nanoparticles is greatly important for nanophotonics relevant applications. We have reported a facile and low-cost magnetic field induced self-assembly approach to construct plasmonic superparamagnetic nanoshell (SN) chains up to several hundred micrometers in a few seconds in a large area without templates or other assistance processes. Experimental and theoretical investigations of the near- and far-field optical properties indicate that the super- and sub-radiant modes of the SN chains continuously redshift with the increase of SN number and the Fano resonance emerges in the infinite double- and triple-line SN chains. Strong plasmon coupling effects in the SN chains result in great electric field enhancements at visible

  5. Electromagnetic plasmon propagation and coupling through gold nanoring heptamers: a route to design optimized telecommunication photonic nanostructures.

    Science.gov (United States)

    Ahmadivand, Arash; Golmohammadi, Saeed

    2014-06-20

    In this work, a configuration of bulk gold nanorings with certain geometrical sizes has been utilized for designing efficient photonic subwavelength nanostructures. We verify that adjacent heptamers based on gold nanorings are able to couple and transport magnetic plasmon resonance along a nanoring array in chrysene and triphenylene molecule orientations. This magnetic resonance transmission is caused by an antiphase circular current through the heptamer arrays. An orientation model of nanoring heptamers helps us to provide efficient optical structures with a remarkable decay length and a trivial ratio of destructive interferences. Exploiting the robust magnetic plasmon resonance coupling effect between heptamers arrays, we would be able to propose a practical plasmonic waveguide, a Y-shaped optical power divider (splitter), and an ON/OFF router that is operating based on destructive and constructive interferences. The quality of power splitting has been discussed comprehensively and also, the effect of undesirable occasions on the functioning performance of the proposed router has been investigated numerically. Ultimately, we verify that employing heptamers based on gold nanorings leads us to propose efficient plasmonic nanostructures and devices that are able to work in the telecommunication spectrum.

  6. Strong coupling of in-plane plasmon modes and their control

    OpenAIRE

    Kasture, Sachin; Mandal, Prasanta; Gupta, S. Dutta; Achanta, Venu Gopal

    2012-01-01

    We show anti-crossings due to strong in-plane coupling of plasmon modes in dielectric-metal-dielectric structure with top 2D dielectric pattern. Experimentally measured anti-crossing widths are compared with those calculated by coupled mode theory. It is shown that the coupling strength of the plasmon modes can be controlled by the orientation of the sample.

  7. Tunable 1 × 2 plasmonic splitter of dielectric-loaded graphene waveguide based on multimode interference

    Science.gov (United States)

    Wang, YueKe; Hong, XiaoRong; Sang, Tian; Yang, GuoFeng

    2016-12-01

    We study the multimode interference (MMI) effect in a dielectric-loaded graphene waveguide (DLGW) numerically by the finite element method. By conducting the dispersion relation of graphene plasmon (GP) modes, a 1 × 2 splitter of GPs is proposed. Structure parameters are designed on the basis of the self-imaging principle, and the calculation of electrical field distributions illustrates two-wavelength splitting. Owing to the tunable permittivity of graphene by bias voltages, the active control of wavelength routing is achieved. High extinction ratios can also be obtained, which proves good splitting performance. It is considered that our findings provide a smart way of designing a tunable plasmonic splitter in the infrared region.

  8. Variable Optical Attenuator Based on Long-Range Surface Plasmon Polariton Multimode Interference Coupler

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Sun

    2014-01-01

    Full Text Available The fabrication and characterization of a thermal variable optical attenuator based on long-range surface plasmon polariton (LRSPP waveguide with multimode interference architecture were investigated. The surface morphology and waveguide configuration of Au stripe were studied by atomic force microscopy. The fluctuation of refractive index of poly(methyl-methacrylate-glycidyl-methacrylate polymer cladding was confirmed to be less than 3×10-4 within 8 h curing at 120°C. The end-fire excitation of LRSPP mode guiding at 1550 nm along Au stripe indicated that the extinction ratio of attenuator was about 12 dB at a driving power of 69 mW. The measured optical rise time and fall time are 0.57 and 0.87 ms, respectively. These favorable properties promise potentials of this plasmonic device in the application of optical interconnection.

  9. Photon echo in exciton-plasmon nanomaterials: a signature of strong coupling

    CERN Document Server

    Blake, Adam

    2016-01-01

    The results of rigorous numerical simulations of photon echoes in exciton-plasmon systems are presented. Using a self-consistent model based on coupled Maxwell-Bloch equations we investigate femtosecond time dynamics of ensembles of interacting molecules and molecular aggregates optically coupled to surface-plasmon supporting materials. It is shown that observed photon echoes under two pulse pump-probe sequence are highly dependent on various material parameters such as molecular concentration and periodicity. Simulations of photon echoes in exciton-plasmon materials reveal a unique signature of the strong exciton-plasmon coupling, namely a double-peak structure in spectra of recorded echo signals. This phenomenon is shown to be related to hybrid states (upper and lower polaritons) in exciton-plasmon systems under strong coupling conditions. It is also demonstrated that the double-peak echo is highly sensitive to mild deviations of the coupling from the resonance between molecules and plasmons making it a gre...

  10. Reversible Gating of Plasmonic Coupling for Optical Signal Amplification.

    Science.gov (United States)

    Khoury, Christopher G; Fales, Andrew M; Vo-Dinh, Tuan

    2016-07-20

    Amplification of optical signals is useful for a wide variety of applications, ranging from data signal transmission to chemical sensing and biomedical diagnostics. One such application in chemical sensing is surface-enhanced Raman scattering (SERS), an important technique for increasing the Raman signal using the plasmonic effect of enhanced electromagnetic fields associated with metallic nanostructures. One of the most important limitations of SERS-based amplification is the difficulty to reproducibly control the SERS signal. Here, we describe the design and implementation of a unique hybrid system capable of producing reversible gating of plasmonic coupling for Raman signal amplification. The hybrid system is composed of two subsystems: (1) colloidal magneto-plasmonic nanoparticles for SERS enhancement and (2) a micromagnet substrate with an externally applied magnetic field to modulate the colloidal nanoparticles. For this proof of concept demonstration, the nanoparticles were labeled with a Raman-active dye, and it was shown that the detected SERS signal could be reproducibly modulated by controlling the externally applied magnetic field. The developed system provides a simple, robust, inexpensive, and reusable device for SERS signal modulation. These properties will open up new possibilities for optical signal amplification and gating as well for high-throughput, reproducible SERS detection.

  11. A ``plasmonic cuvette'': dye chemistry coupled to plasmonic interferometry for glucose sensing

    Science.gov (United States)

    Siu, Vince S.; Feng, Jing; Flanigan, Patrick W.; Palmore, G. Tayhas R.; Pacifici, Domenico

    2014-06-01

    A non-invasive method for the detection of glucose is sought by millions of diabetic patients to improve personal management of blood glucose over a lifetime. In this work, the synergistic advantage of combining plasmonic interferometry with an enzyme-driven dye assay yields an optical sensor capable of detecting glucose in saliva with high sensitivity and selectivity. The sensor, coined a "plasmonic cuvette," is built around a nano-scale groove-slit-groove (GSG) plasmonic interferometer coupled to an Amplex-red/Glucose-oxidase/Glucose (AR/GOx/Glucose) assay. The proposed device is highly sensitive, with a measured intensity change of 1.7×105%/m (i.e., one order of magnitude more sensitive than without assay) and highly specific for glucose sensing in picoliter volumes, across the physiological range of glucose concentrations found in human saliva (20-240 μm). Real-time glucose monitoring in saliva is achieved by performing a detailed study of the underlying enzyme-driven reactions to determine and tune the effective rate constants in order to reduce the overall assay reaction time to ˜2 min. The results reported suggest that by opportunely choosing the appropriate dye chemistry, a plasmonic cuvette can be turned into a general, real-time sensing scheme for detection of any molecular target, with high sensitivity and selectivity, within extremely low volumes of biological fluid (down to femtoliters). Hereby, we present the results on glucose detection in artificial saliva as a notable and clinically relevant case study.

  12. Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna

    CERN Document Server

    López-Tejeira, F; Rodríguez-Oliveros, R; Sánchez-Gil, J A

    2011-01-01

    Single metallic nanorods acting as half-wave antennas in the optical range exhibit an asymmetric, multi-resonant scattering spectrum that strongly depends on both their length and dielectric properties. Here we show that such spectral features can be easily understood in terms of Fano-like interference between adjacent plasmon resonances. On the basis of analytical and numerical results for different geometries, we demonstrate that Fano resonances may appear for such single-particle nanoantennas provided that interacting resonances overlap in both spatial and frequency domains.

  13. INTERFERENCE REFRACTOMETRY OF TERAHERTZ SURFACE PLASMON-POLARITONS LAUNCHED BY A FREE-ELECTRON LASER

    OpenAIRE

    2013-01-01

    The problem of terahertz (THz) surface plasmon-polaritons (SPP) refractometry, i.e. determination of their complex refractive index κ = κ′ + i ⋅ κ′′ employing interferometric measurements, is considered in the paper. It is stated that one can determine both parts of κ provided the interference pattern formed by a reference bulk wave and the wave produced by the SPP is recorded. The idea was tested for SPP generated by monochromatic radiation (wavelength 140 μm) of Novosibirsk THz free-electro...

  14. Capacitive-coupled Series Spoof Surface Plasmon Polaritons

    Science.gov (United States)

    Yin, Jia Yuan; Ren, Jian; Zhang, Hao Chi; Zhang, Qian; Cui, Tie Jun

    2016-04-01

    A novel method to realize stopband within the operating frequency of spoof surface plasmon polaritons (SPPs) is presented. The stopband is introduced by a new kind of capacitive-coupled series spoof SPPs. Two conventional H-shaped unit cells are proposed to construct a new unit cell, and every two new unit cells are separated by a gap with certain distance, which is designed to implement capacitive coupling. The original surface impedance matching is disturbed by the capacitive coupling, leading to the stopband during the transmission of SPPs. The proposed method is verified by both numerical simulations and experiments, and the simulated and measured results have good agreements. It is shown that the proposed structure exhibits a stopband in 9-9.5 GHz while the band-pass feature maintains in 5-9 GHz and 9.5-11 GHz. In the passband, the reflection coefficient is less than -10 dB, and the transmission loss is around 3 dB in the stopband, the reflection coefficient is -2 dB, and the transmission coefficient is less than -30 dB. The compact size, easy fabrication and good band-pass and band-stop features make the proposed structure a promising plasmonic device in SPP communication systems.

  15. Coupling light to a localized surface plasmon-polariton

    Science.gov (United States)

    Agio, Mario; Zumofen, Gert; Mojarad, Nassiredin M.; Sandoghdar, Vahid

    2009-08-01

    We investigate the interaction of focused Gaussian and radially-polarized beams with a silver nanosphere, with emphasis on the coupling to localized surface plasmon-polaritons. We discuss the overall efficiency, including the effect of the entrance pupil and of absorption in the nanosphere, showing that a Gaussian beam performs better than a radially-polarized beam, when focused by an aplanatic system. We find that more than 50% of the photons in the incident beam can be reflected using realistic focusing parameters.

  16. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing

    OpenAIRE

    Lepage Dominic; Carrier Dominic; Jiménez Alvaro; Beauvais Jacques; Dubowski Jan

    2011-01-01

    Abstract A surface plasmon resonance (SPR) scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral r...

  17. Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides.

    Science.gov (United States)

    Briggs, Ryan M; Grandidier, Jonathan; Burgos, Stanley P; Feigenbaum, Eyal; Atwater, Harry A

    2010-12-08

    The realization of practical on-chip plasmonic devices will require efficient coupling of light into and out of surface plasmon waveguides over short length scales. In this letter, we report on low insertion loss for polymer-on-gold dielectric-loaded plasmonic waveguides end-coupled to silicon-on-insulator waveguides with a coupling efficiency of 79 ± 2% per transition at telecommunication wavelengths. Propagation loss is determined independently of insertion loss by measuring the transmission through plasmonic waveguides of varying length, and we find a characteristic surface-plasmon propagation length of 51 ± 4 μm at a free-space wavelength of λ = 1550 nm. We also demonstrate efficient coupling to whispering-gallery modes in plasmonic ring resonators with an average bending-loss-limited quality factor of 180 ± 8.

  18. Optical modulator based on propagating surface plasmon coupled fluorescent thin film: proof-of-concept studies

    Science.gov (United States)

    Cao, Shuo-Hui; Wang, Zheng-Chuang; Weng, Yu-Hua; Xie, Kai-Xin; Chen, Min; Zhai, Yan-Yun; Li, Yao-Qun

    2017-06-01

    We demonstrate that the propagating surface plasmon coupled fluorescent thin film can be utilized as a fluorescence modulator to mimic multiple representative Boolean logic operations. Surface plasmon mediated fluorescence presents characteristic properties including directional and polarized emission, which hold the feasibility in creating a universal optical modulator. In this work, through constructing the thin layer with the specific thickness, surface plasmon mediated fluorescence can be modulated with an ON-OFF ratio by more than 5-fold, under a series of coupling configurations.

  19. Polarization-tailored Fano interference in plasmonic crystals: A Mueller matrix model of anisotropic Fano resonance

    CERN Document Server

    Ray, S K; Singh, A K; Kumar, A; Misra, A Mandal S; Mitra, P; Ghosh, N

    2016-01-01

    We present a simple yet elegant Mueller matrix approach for controlling the Fano interference effect and engineering the resulting asymmetric spectral line shape in anisotropic optical system. The approach is founded on a generalized model of anisotropic Fano resonance, which relates the spectral asymmetry to two physically meaningful and experimentally accessible parameters of interference, namely, the Fano phase shift and the relative amplitudes of the interfering modes. The differences in these parameters between orthogonal linear polarizations in an anisotropic system are exploited to desirably tune the Fano spectral asymmetry using pre- and post-selection of optimized polarization states. Experimental control on the Fano phase and the relative amplitude parameters and resulting tuning of spectral asymmetry is demonstrated in waveguided plasmonic crystals using Mueller matrix-based polarization analysis. The approach enabled tailoring of several exotic regimes of Fano resonance including the complete reve...

  20. Nanoantenna-induced fringe splitting of Fabry-Perot interferometer: a model study of plasmonic/photonic coupling.

    Science.gov (United States)

    Liu, Huanhuan; Erouel, Mohsen; Gerelli, Emmanuel; Harouri, Abdelmounaim; Benyattou, Taha; Orobtchouk, Régis; Milord, Laurent; Belarouci, Ali; Letartre, Xavier; Jamois, Cécile

    2015-11-30

    In this paper, we present a simple approach to study the coupling mechanisms between a plasmonic system consisting of bowtie nanoantennas and a photonic structure based on a Fabry-Perot interferometer. The nanoantenna array is represented by an equivalent homogeneous layer placed at the interferometer surface and yielding the effective dielectric function of the NA resonance. A phase matching model based on thin film interference is developed to describe the multi-layer interferences in the device and to analyze the fringe variations induced by the introduction of the plasmonic layer. The general model is validated by an experimental system consisting of a bowtie nanoantenna array and a porous-silicon-based interferometer. The optical response of this hybrid device exhibits both the enhancement induced by the nanoantenna resonance and the fringe pattern of the interferometer. Using the phase matching model, we demonstrate that strong coupling can occur in such a system, leading to fringe splitting. A study of the splitting strength and of the coupling behavior is given. The model study performed in this work enables to gain deeper understanding of the optical behavior of plasmonic/photonic hybrid devices.

  1. Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode.

    Science.gov (United States)

    Chen, Xi; Yang, Fan; Zhang, Cheng; Zhou, Jing; Guo, L Jay

    2016-04-26

    Plasmonic lithography, which utilizes subwavelength confinement of surface plasmon polartion (SPP) waves, has the capability of breaking the diffraction limit and delivering high resolution. However, all previously reported results suffer from critical issues, such as shallow pattern depth and pattern nonuniformity even over small exposure areas, which limit the application of the technology. In this work, periodic patterns with high aspect ratios and a half-pitch of about 1/6 of the wavelength were achieved with pattern uniformity in square centimeter areas. This was accomplished by designing a special mask and photoresist (PR) system to select a single high spatial frequency mode and incorporating the PR into a waveguide configuration to ensure uniform light exposure over the entire depth of the photoresist layer. In addition to the experimental progress toward large-scale applications of plasmonic interference lithography, the general criteria of designing such an exposure system is also discussed, which can be used for nanoscale fabrication in this fashion for various applications with different requirements for wavelength, pitch, aspect ratio, and structure.

  2. Ultrafast surface plasmon-polariton interference and switching in multiple crossing dielectric waveguides

    Science.gov (United States)

    Birr, Tobias; Zywietz, Urs; Fischer, Tim; Chhantyal, Parva; Evlyukhin, Andrey B.; Chichkov, Boris N.; Reinhardt, Carsten

    2016-06-01

    In this paper, we investigate propagation effects and interference switching of surface plasmon-polaritons (SPPs) in a junction of multiple crossed waveguides. These waveguides are produced on a thin gold layer by a simple photolithographic procedure. The waveguide dimensions are optimized for SPP excitation and propagation along two crossed input waveguides. At the waveguide intersection, different possibilities for SPP propagation into multiple output waveguides are offered. Using leakage radiation microscopy, we find that the SPPs preferably propagate into only one specific direction different from the direction of the input waveguides with avoidance of signal backscattering into the input direction. Furthermore, it is demonstrated that the SPP intensity at the output waveguide can be tuned by interference effects induced by a phase shift of the excitation laser beams. Additionally, we study the influence of different angles between the two input and the one specific output waveguides of the junction structure on the propagation properties of SPP modes in order to demonstrate a highest possible energy flux into the output waveguide. The experimental investigations are supported by finite-difference time-domain simulations. Good agreement between experimental results and numerical simulations is obtained. Applications of this effect are discussed for realization of ultrafast optical/plasmonic switches and optical logic gate structures with potential for integration and cascading.

  3. Hyperbolic Metamaterials and Coupled Surface Plasmon Polaritons: comparative analysis

    CERN Document Server

    Li, Tengfei

    2016-01-01

    We investigate the optical properties of sub-wavelength layered metal/dielectric structures, also known as hyperbolic metamaterials (HMMs), using exact analytical Kronig Penney (KP) model. We show that hyperbolic isofrequency surfaces exist for all combinations of layer permittivities and thicknesses, and the largest Purcell enhancements (PE) of spontaneous radiation are achieved away from the nominally hyperbolic region. Detailed comparison of field distributions, dispersion curves, and Purcell factors (PF) between the HMMs and Surface Plasmon Polaritons (SPPs) guided modes in metal/dielectric waveguides demonstrates that HMMs are nothing but weakly coupled gap or slab SPPs modes. Broadband PE is not specific to the HMMs and can be easily attained in single thin metallic layers. Furthermore, large wavevectors and PE are always combined with high loss, short propagation distances and large impedances; hence PE in HMMs is essentially a direct coupling of the energy into the free electron motion in the metal, o...

  4. Direct and indirect coupling mechanisms in a chiral plasmonic system

    Science.gov (United States)

    Wang, Yongkai; Wen, Xiaojing; Qu, Yu; Fu, Tong; Zhang, Zhongyue

    2016-10-01

    Artificial chiral plasmonic nanostructures (ACPNs) are widely studied and used in biological monitoring, analytical chemistry, and negative-refractive-index media. The mechanism of direct coupling between two twist metal nanorods has been obtained in usual ACPNs. In this work, we proposed a nanosystem of twist nanorods separated by a metal film (TNMF). By analyzing the charge distributions, a new indirect coupling mechanism is found. According to the equivalent LC resonant circuits, gold nanorods on the two sides of the gold film can be regarded as a receiver and an emitter. These components enhanced transmittance and provided direct and indirect coupling mechanisms for the circular dichroism (CD). The direct coupling mode cannot be explained by impedance matching and can be tuned monotonously by monotonously varying geometric dimensions. However, the CD signal of indirect coupling can be explained by impedance matching and can be tuned to its maximum by varying geometric dimensions when the impedances of both sides of the gold film match. These results can help design novel chiral optical structures and promote combined applications between photons and electrons when a gold film is powered on.

  5. Coupled interference based rate adaptation in ad hoc networks

    CSIR Research Space (South Africa)

    Awuor, F

    2011-09-01

    Full Text Available on Karush-Kuhn-Tucker (KKT) conditions. The users determine data rates based on their local observations (i.e. coupled interference). Both pricing and limited message passing mechanisms are employed in the NUM wherein pricing restrict users from self...

  6. Direct Photonic-Plasmonic Coupling and Routing in Single Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Rouxue; Pausauskie, Peter; Huang, Jiaxing; Yang, Piedong

    2009-10-20

    Metallic nanoscale structures are capable of supporting surface plasmon polaritons (SPPs), propagating collective electron oscillations with tight spatial confinement at the metal surface. SPPs represent one of the most promising structures to beat the diffraction limit imposed by conventional dielectric optics. Ag nano wires have drawn increasing research attention due to 2D sub-100 nm mode confinement and lower losses as compared with fabricated metal structures. However, rational and versatile integration of Ag nanowires with other active and passive optical components, as well as Ag nanowire based optical routing networks, has yet to be achieved. Here, we demonstrate that SPPs can be excited simply by contacting a silver nanowire with a SnO2 nanoribbon that serves both as an unpolarized light source and a dielectric waveguide. The efficient coupling makes it possible to measure the propagation-distance-dependent waveguide spectra and frequency-dependent propagation length on a single Ag nanowire. Furthermore, we have demonstrated prototypical photonic-plasmonic routing devices, which are essential for incorporating low-loss Ag nanowire waveguides as practical components into high-capacity photonic circuits.

  7. Enhancing carrier generation in TiO2 by a synergistic effect between plasmon resonance in Ag nanoparticles and optical interference

    Science.gov (United States)

    Cacciato, Giuseppe; Bayle, Maxime; Pugliara, Alessandro; Bonafos, Caroline; Zimbone, Massimo; Privitera, Vittorio; Grimaldi, Maria Grazia; Carles, Robert

    2015-08-01

    Silver nanoparticles have been embedded at a few nanometer distance from the free surface of titania/silica multilayers using low energy ion beam synthesis. Transmission electron microscopy shows the presence of 3 nm-sized crystalline particles. Reflectance spectroscopy on these composite substrates shows an increase of the light capture efficiency in the visible range. This behaviour is interpreted as a synergistic effect between plasmon polariton resonance and Fabry-Perot interferences. Plasmon-resonant Raman spectroscopy is deeply used to analyze, on one hand confinement of vibrations and electronic excitations in Ag NPs, and on the other hand coupling of polar TiO2 phonons with injected photo-generated carriers. It is shown how these new Ag/TiO2 nanocomposite films appear as very promising to enhance the efficiency and enlarge the spectral sensitivity of plasmo-electronics devices.Silver nanoparticles have been embedded at a few nanometer distance from the free surface of titania/silica multilayers using low energy ion beam synthesis. Transmission electron microscopy shows the presence of 3 nm-sized crystalline particles. Reflectance spectroscopy on these composite substrates shows an increase of the light capture efficiency in the visible range. This behaviour is interpreted as a synergistic effect between plasmon polariton resonance and Fabry-Perot interferences. Plasmon-resonant Raman spectroscopy is deeply used to analyze, on one hand confinement of vibrations and electronic excitations in Ag NPs, and on the other hand coupling of polar TiO2 phonons with injected photo-generated carriers. It is shown how these new Ag/TiO2 nanocomposite films appear as very promising to enhance the efficiency and enlarge the spectral sensitivity of plasmo-electronics devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02406d

  8. Nonlinear optics of complex plasmonic structures: linear and third-order optical response of orthogonally coupled metallic nanoantennas

    Science.gov (United States)

    Metzger, Bernd; Hentschel, Mario; Nesterov, Maxim; Schumacher, Thorsten; Lippitz, Markus; Giessen, Harald

    2016-04-01

    We investigate the polarization-resolved linear and third-order optical response of plasmonic nanostructure arrays that consist of orthogonally coupled gold nanoantennas. By rotating the incident light polarization direction, either one of the two eigenmodes of the coupled system or a superposition of the eigenmodes can be excited. We find that when an eigenmode is driven by the external light field, the generated third-harmonic signals exhibit the same polarization direction as the fundamental field. In contrast, when a superposition of the two eigenmodes is excited, third-harmonic can efficiently be radiated at the perpendicular polarization direction. Furthermore, the interference of the coherent third-harmonic signals radiated from both nanorods proves that the phase between the two plasmonic oscillators changes in the third-harmonic signal over 3π when the laser is spectrally tuned over the resonance, rather than over π as in the case of the fundamental field. Finally, almost all details of the linear and the nonlinear spectra can be described by an anharmonic coupled oscillator model, which we discuss in detail and which provides deep insight into the linear and the nonlinear optical response of coupled plasmonic nanoantennas.

  9. Multiple plasmonic-photonic couplings in the Au nanobeaker arrays: enhanced robustness and wavelength tunability.

    Science.gov (United States)

    Lin, Linhan; Zheng, Yuebing

    2015-05-01

    Diffractive coupling in the plasmonic nanoparticle arrays introduces the collective plasmon resonances with high scattering efficiency and narrow linewidth. However, the collective plasmon resonances can be suppressed when the arrays are supported on the solid-state substrates with different superstrates because of the different dispersion relations between the substrate and the superstrate. Herein, we develop a general concept which seeks to synergize the subnanoparticle engineering of "hot spots" with the far-field coupling behavior, for the versatile control of plasmonic-photonic couplings in an asymmetric environment. To demonstrate our concept, we choose as an example the Au nanobeaker arrays (NBAs), which are the conformally coated Au thin layers on the interior sidewalls and bottoms of nanohole arrays in SiO2 substrates. Using the finite-difference time-domain simulations, we show that engineering the plasmonic "hot spots" in the NBAs by simply controlling the depth-to-diameter aspect ratio of individual units enables multiple plasmonic-photonic couplings in an asymmetric environment. These couplings are robust with a wide range of resonance wavelengths from visible to infrared. Furthermore, the angle-dependent transmission spectra of the arrays reveal a transition from band-edge to propagating state for the orthogonal coupling and a splitting of diffraction waves in the parallel coupling. The proposed NBAs will find enhanced applications in plasmonic lasers and biosensing.

  10. Population Swap of a Pair of Quantum Dots Coupling to a Plasmonic Nanocavity

    Institute of Scientific and Technical Information of China (English)

    LI Jian-Bo; CHENG Mu-Tian; YANG Zhong-Jian; HAO Zhong-Hua

    2009-01-01

    We theoretically design a single-mode plasmonic ring nanocavity. Based on the plasmonic cavity, the exciton dynamics between two identical quantum dots (QD-p, QD-q) coupled to the nanocavity are investigated. It is shown that the coupling factors gi (i=p, q) between QD-i and surface plasmons are both equal to 12.53meV in our model and exciton population swap between the two QDs can be realized. The periods and amplitudes of population oscillations can be modified by the coupling factors. Our results may have potential applications in quantum information and quantum computation on a chip.

  11. Robust Phonon-Plasmon Coupling in Quasifreestanding Graphene on Silicon Carbide.

    Science.gov (United States)

    Koch, R J; Fryska, S; Ostler, M; Endlich, M; Speck, F; Hänsel, T; Schaefer, J A; Seyller, Th

    2016-03-11

    Using inelastic electron scattering in combination with dielectric theory simulations on differently prepared graphene layers on silicon carbide, we demonstrate that the coupling between the 2D plasmon of graphene and the surface optical phonon of the substrate cannot be quenched by modification of the interface via intercalation. The intercalation rather provides additional modes like, e.g., the silicon-hydrogen stretch mode in the case of hydrogen intercalation or the silicon-oxygen vibrations for water intercalation that couple to the 2D plasmons of graphene. Furthermore, in the case of bilayer graphene with broken inversion symmetry due to charge imbalance between the layers, we observe a similar coupling of the 2D plasmon to an internal infrared-active mode, the LO phonon mode. The coupling of graphene plasmons to vibrational modes of the substrate surface and internal infrared active modes is envisioned to provide an excellent tool for tailoring the plasmon band structure of monolayer and bilayer graphene for plasmonic devices such as plasmon filters or plasmonic waveguides. The rigidity of the effect furthermore suggests that it may be of importance for other 2D materials as well.

  12. Standing wave plasmon modes interact in an antenna-coupled nanowire

    Science.gov (United States)

    Day, Jared; Large, Nicolas; Nordlander, Peter; Halas, Naomi

    2015-03-01

    In a standing wave optical cavity, the coupling of cavity modes, e.g. through a nonlinear medium, results in a rich variety of nonlinear dynamical phenomena, such as frequency pushing and pulling, mode-locking and pulsing, and modal instabilities. Metallic nanowires of finite length support a hierarchy of longitudinal surface plasmon modes with standing wave properties: the plasmonic analog of a Fabry-Pérot cavity. Here we show that positioning the nanowire within the gap of a plasmonic nanoantenna introduces a passive, hybridization-based coupling of the standing-wave nanowire plasmon modes with the antenna structure, mediating an interaction between the nanowire plasmon modes themselves. Frequency pushing and pulling, and the enhancement and suppression of specific plasmon modes, can be controlled and manipulated by nanoantenna position and shape. Dark-field spectroscopy, CL spectroscopy and imaging, and finite-difference time-domain calculations are performed to investigate these surface plasmon ``drift.'' Near-field coupling of nanoantennas to nanowire optical cavities shows that plasmon hybridization is a powerful strategy for controlling the radiative LDOS of nanowires, and could ultimately enable strategies for active control of emission properties in nanowire-based devices. Work funded by the Welch Foundation (C-1220, C-1222), the NSSEFF (N00244-09-1-0067), the ONR (N00014-10-1-0989), and the NSF (ECCS-1040478, CNS-0821727).

  13. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  14. Exciton-plasmon Coupling and Electromagnetically Induced Transparency in Monolayer Semiconductors Hybridized with Ag Nanoparticles

    CERN Document Server

    Weijie, Zhao; Bo, Liu; Ivan, Verzhbitskiy; Shisheng, Li; Francesco, Giustiniano; Daichi, Kozawa; Ping, Loh Kian; Kazunari, Matsuda; Koichi, Okamoto; Rupert, Oulton F; Goki, Eda

    2016-01-01

    Hybrid systems of excitons strongly coupled to localized surface plasmons supported by metallic nanoparticles define a new approach to control light-matter interactions. Here, we report exciton-plasmon coupling in two-dimensional (2D) semiconductors, such as MoS2 and WS2, hybridized with silver nanoparticles. Prominent photoluminescence enhancement in monolayer MoS2 was observed with localized surface plasmon resonance (LSPR) tuned to the exciton resonance. By tuning the excitation energy, the contributions from near field enhancement and radiative emission rate enhancement via Purcell effect were resolved. Strong coherent dipole-dipole coupling between excitons and LSPR in resonant condition manifests as an electromagnetically induced transparency window in the extinction spectra of the localized surface plasmon. In this strong coupling regime a new quasi-particle, known as a plexciton, is expected to exhibit distinct properties, which exist in neither of the original particles. Our results demonstrate that ...

  15. Quantum transport through a Coulomb blockaded quantum emitter coupled to a plasmonic dimer.

    Science.gov (United States)

    Goker, A; Aksu, H

    2016-01-21

    We study the electron transmission through a Coulomb blockaded quantum emitter coupled to metal nanoparticles possessing plasmon resonances by employing the time-dependent non-crossing approximation. We find that the coupling of the nanoparticle plasmons with the excitons results in a significant enhancement of the conductance through the discrete state with higher energy beyond the unitarity limit while the other discrete state with lower energy remains Coulomb blockaded. We show that boosting the plasmon-exciton coupling well below the Kondo temperature increases the enhancement adding another quantum of counductance upon saturation. Finite bias and increasing emitter resonance energy tend to reduce this enhancement. We attribute these observations to the opening of an additional transport channel via the plasmon-exciton coupling.

  16. Coupling of self-assembled InAs quantum dots to surface plasmon polaritons

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke; Stobbe, Søren; Johansen, Jeppe;

    2008-01-01

    InAs quantum dots have been placed at different distances to a silver mirror. We extract the coupling of quantum dots to surface plasmon polaritons as a function of the distance by time-resolved spontaneous emission measurements.......InAs quantum dots have been placed at different distances to a silver mirror. We extract the coupling of quantum dots to surface plasmon polaritons as a function of the distance by time-resolved spontaneous emission measurements....

  17. Efficient Coupling and Transport of a Surface Plasmon at 780 nm in a Gold Nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-08-28

    We studied plasmonic nanostructures in single-crystal gold with scanning electron and femtosecond photoemission electron microscopies. We designed an integrated laser coupling and nanowire waveguide structure by focused ion beam lithography in single-crystal gold flakes. The photoemission results show that the laser field is efficiently coupled into a propagating surface plasmon by a simple hole structure and propagates efficiently in an adjacent nano-bar waveguide. A strong local field is created by the propagating surface plasmon at the nano-bar tip. A similar structure, with a decreased waveguide width and thickness, displayed significantly more intense photoemission indicating enhanced local electric field at the sharper tip.

  18. Directional out-coupling of light from a plasmonic nanowire-nanoparticle junction

    CERN Document Server

    Singh, Danveer; G., Aswathy V; Tripathi, Ravi; Kumar, G V Pavan

    2015-01-01

    We experimentally show how a single Ag nanoparticle (NP) coupled to an Ag nanowire (NW) can convert propagating surface plasmon polaritons to directional photons. By employing dual-excitation Fourier microscopy with spatially filtered collection-optics, we show single- and dual-directional out-coupling of light from NW-NP junction for plasmons excited through glass-substrate and air-superstrate. Furthermore, we show NW-NP junction can influence the directionality of molecular-fluorescence emission, thus functioning as an optical antenna. The results discussed herein may have implications in realizing directional single-photon sources and quantum plasmon circuitry.

  19. Directional out-coupling of light from a plasmonic nanowire-nanoparticle junction.

    Science.gov (United States)

    Singh, Danveer; Dasgupta, Arindam; Aswathy, V G; Tripathi, Ravi P N; Pavan Kumar, G V

    2015-03-15

    We experimentally show how a single Ag nanoparticle (NP) coupled to an Ag nanowire (NW) can convert propagating surface plasmon polaritons to directional photons. By employing dual-excitation Fourier microscopy with spatially filtered collection-optics, we show single- and dual-directional out-coupling of light from NW-NP junction for plasmons excited through glass-substrate and air-superstrate. Furthermore, we show NW-NP junction can influence the directionality of molecular-fluorescence emission, thus functioning as an optical antenna. The results discussed herein may have implications in realizing directional single-photon sources and quantum plasmon circuitry.

  20. Plasmonic-exciton coupling in synthesized metal/semiconductor hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Gadalla, A.; Hamad, D. A. [Physics Department, Assiut University, Assiut (Egypt); Mohamed, M. B. [National Institute of Laser Enhanced science (NIELS), Cairo University, Cairo (Egypt)

    2015-12-31

    A new method has been developed to grow plasmonic semiconductor nanocomposites of Au/CdSe and Ag/CdSe. Their chemical composition and crystal structure are determined by X-ray diffraction. The collective optical properties of the prepared semiconductor nanohybrid have been measured using spectrophotometer techniques and compared to those of the individual components. The electron transfer processes from CdSe to the gold are faster than that of the silver. Au/CdSe has a strong plasmonic-excitonic coupling, but Ag/CdSe has a weak plasmonic-excitonic coupling.

  1. Strong coupling in porphyrin J-aggregate excitons and plasmons in nano-void arrays

    Science.gov (United States)

    Ferdele, Stefano; Jose, Bincy; Foster, Robert; Keyes, Tia E.; Rice, James H.

    2017-10-01

    Active plasmonic nano-void arrays made through colloidal lithography (a cost effective and rapid process) potentially offers opportunities for scalable device design. In this work we demonstrate strong coupling between Bragg-like quadrupole surface plasmon modes in nano-void substrate designs with Frankel excitons in a molecular J-aggregate layer though angular tuning. The enhanced exciton-plasmon coupling creates a Fano like line shape in the differential reflection spectra associated with the formation of new hybrid states, leading to anti-crossing of the upper and lower polaritons with a Rabi frequency of 120 meV.

  2. Coupling of individual quantum emitters to channel plasmons

    DEFF Research Database (Denmark)

    Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael

    2015-01-01

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution...... of efficient and long distance transfer of energy for integrated solid-state quantum systems...

  3. Coupling of individual quantum emitters to channel plasmons

    DEFF Research Database (Denmark)

    Bermúdez-Urena, E.; Gonzalez-Ballestero, C.; Geiselmann, M.

    2015-01-01

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution...

  4. Electromagnetically induced transparency and absorption in plasmonic metasurfaces based on near-field coupling

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Ming-li, E-mail: mlwan@pdsu.edu.cn [College of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467000 (China); He, Jin-na [College of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467000 (China); Song, Yue-li [College of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467000 (China); New PV-energy Engineering Research Center, Pingdingshan University, Pingdingshan 467000 (China); Zhou, Feng-qun [College of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467000 (China)

    2015-09-04

    We theoretically investigate optical properties of a plasmonic metasurface consisting of a dipolar wire as the bright antenna stacked above a quadrupolar wire as the dark antenna. It is demonstrated that by adjusting the lateral displacement between the two resonators, the spectral feature of the metasurface can be evolved from the plasmonic electromagnetically-induced transparency to electromagnetically-induced absorption. The extracted physical parameters based on the two-coupled-oscillator model reveal that the near-field coupling strength plays a key role for the transition behavior in the plasmonic metasurface. - Highlights: • We study spectral response of metamaterial in dependence on near-field coupling. • Coupled two-oscillator is adopted to explain the spectral behavior. • For weak coupling, metamaterials exhibit an EIA-like feature. • For strong coupling, metamaterials exhibit an EIT-like profile.

  5. Electromagnetic origins of negative refraction in coupled plasmonic waveguide metamaterials

    Science.gov (United States)

    Aghanejad, Iman; Chau, Kenneth J.; Markley, Loïc

    2016-10-01

    A metamaterial composed of stacked plasmonic waveguides which support backward propagation along the layers has been shown to exhibit a nearly spherical equifrequency contour (EFC) in which the Floquet-Bloch wave vector kFB and Poynting vector S point in opposite directions everywhere on this surface. Experiments performed on this structure have also shown that polarized light beams incident from free space refract to the same side of normal over a wide range of incidence angles. Together, these observations have led researchers to describe this structure as a homogeneous medium with three-dimensionally isotropic negative refractive index; however, a close inspection of the fields throughout the structure as provided in this paper would suggest otherwise. Here, we rigorously analyze the relationship between phase and power flow within the structure by introducing a method to calculate the power flow of all Floquet-Bloch harmonics, information which cannot be obtained from either conventional analysis of EFCs or effective medium theory. Access to power flow of all harmonics enables us to demonstrate the origin of backward power (defined with respect to the direction of kFB), and in doing so, verify the validity of the claimed three-dimensionally isotropic left-handed response and the validity of describing the medium by a simple negative effective index of refraction n =-1 . Knowledge regarding the distribution of power flow across the harmonics can also be used to design highly efficient methods to couple light into and out of these structures. As an example, we show that tailored wave excitation can achieve coupling efficiencies of up to 96%, over 5 times greater than that achieved by normal-incidence plane-wave excitation.

  6. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    Science.gov (United States)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  7. Optical impedance matching using coupled plasmonic nanoparticle arrays.

    Science.gov (United States)

    Spinelli, P; Hebbink, M; de Waele, R; Black, L; Lenzmann, F; Polman, A

    2011-04-13

    Silver nanoparticle arrays placed on top of a high-refractive index substrate enhance the coupling of light into the substrate over a broad spectral range. We perform a systematic numerical and experimental study of the light incoupling by arrays of Ag nanoparticle arrays in order to achieve the best impedance matching between light propagating in air and in the substrate. We identify the parameters that determine the incoupling efficiency, including the effect of Fano resonances in the scattering, interparticle coupling, as well as resonance shifts due to variations in the near-field coupling to the substrate and spacer layer. The optimal configuration studied is a square array of 200 nm wide, 125 nm high spheroidal Ag particles, at a pitch of 450 nm on a 50 nm thick Si(3)N(4) spacer layer on a Si substrate. When integrated over the AM1.5 solar spectral range from 300 to 1100 nm, this particle array shows 50% enhanced incoupling compared to a bare Si wafer, 8% higher than a standard interference antireflection coating. Experimental data show that the enhancement occurs mostly in the spectral range near the Si band gap. This study opens new perspectives for antireflection coating applications in optical devices and for light management in Si solar cells.

  8. Efficient optical coupling into ultra-compact plasmonic slot waveguides using dipole nanoantennas

    Science.gov (United States)

    Gao, Qian; Ren, Fanghui; Wang, Alan X.

    2016-03-01

    Nanoantenna is used for coupling free space radiation to subwavelength plasmonic waveguide. We provide a theoretical design of ultra-compact dipole nanoantennas --- Yagi-Uda antenna with a reflector in telecom range and experimentally demonstrate efficient optical coupling between lensed fiber and plasmonic slot waveguide by utilizing our designed nanoantenna. We also prove that the couple-in efficiency of 8% from the lensed fiber does not equal to the couple-out efficiency of 50% from the plasmonic slot waveguide using the same nanoantenna design, which is different than many published and experimental results. We also study the relationship between couple in efficiency and the incident light spot size, which is experimentally characterized.

  9. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing

    Directory of Open Access Journals (Sweden)

    Lepage Dominic

    2011-01-01

    Full Text Available Abstract A surface plasmon resonance (SPR scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral regions. The surface roughness of the substrate layer is examined for different dielectrics and deposition methods. The Au layer, on which the plasmonic modes are propagating and the biosensing occurs, is also examined. The surface roughness and dielectric values for various deposition rates of very thin Au films are measured. We also investigate an interferometric SPR setup where, due to the power flux transfer between plasmon modes, the specific choice of grating coupler can either decrease or increase the plasmon propagation length.

  10. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing.

    Science.gov (United States)

    Lepage, Dominic; Carrier, Dominic; Jiménez, Alvaro; Beauvais, Jacques; Dubowski, Jan J

    2011-05-17

    A surface plasmon resonance (SPR) scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral regions. The surface roughness of the substrate layer is examined for different dielectrics and deposition methods. The Au layer, on which the plasmonic modes are propagating and the biosensing occurs, is also examined. The surface roughness and dielectric values for various deposition rates of very thin Au films are measured. We also investigate an interferometric SPR setup where, due to the power flux transfer between plasmon modes, the specific choice of grating coupler can either decrease or increase the plasmon propagation length.

  11. Probing ultrafast energy transfer between excitons and plasmons in the ultrastrong coupling regime

    Science.gov (United States)

    Balci, Sinan; Kocabas, Coskun; Küçüköz, Betül; Karatay, Ahmet; Akhüseyin, Elif; Gul Yaglioglu, H.; Elmali, Ayhan

    2014-08-01

    We investigate ultrafast energy transfer between excitons and plasmons in ensembles of core-shell type nanoparticles consisting of metal core covered with a concentric thin J-aggregate (JA) shell. The high electric field localization by the Ag nanoprisms and the high oscillator strength of the JAs allow us to probe this interaction in the ultrastrong plasmon-exciton coupling regime. Linear and nonlinear optical properties of the coupled system have been measured using transient absorption spectroscopy revealing that the hybrid system shows half-plasmonic and half-excitonic properties. The tunability of the nanoprism plasmon resonance provides a flexible platform to study the dynamics of the hybrid state in a broad range of wavelengths.

  12. Grating-coupled surface plasmon resonance in conical mounting with polarization modulation.

    Science.gov (United States)

    Ruffato, G; Romanato, F

    2012-07-01

    A grating-coupled surface plasmon resonance (GCSPR) technique based on polarization modulation in conical mounting is presented. A metallic grating is azimuthally rotated to support double-surface plasmon polariton excitation and exploit the consequent sensitivity enhancement. Corresponding to the resonance polar angle, a polarization scan of incident light is performed, and reflectivity data are collected before and after functionalization with a dodecanethiol self-assembled monolayer. The output signal exhibits a harmonic dependence on polarization, and the phase term is used as a parameter for sensing. This technique offers the possibility of designing extremely compact, fast, and cheap high-resolution plasmonic sensors based on GCSPR.

  13. Octave-wide photonic band gap in three-dimensional plasmonic Bragg structures and limitations of radiative coupling.

    Science.gov (United States)

    Taubert, Richard; Dregely, Daniel; Stroucken, Tineke; Christ, Andre; Giessen, Harald

    2012-02-21

    Radiative coupling between oscillators is one of the most fundamental subjects of research in optics, where particularly a Bragg-type arrangement is of interest and has already been applied to atoms and excitons in quantum wells. Here we explore this arrangement in a plasmonic structure. We observe the emergence of an octave-wide photonic band gap in the optical regime. Compared with atomic or excitonic systems, the coupling efficiency of the particle plasmons utilized here is several orders of magnitude larger and widely tunable by changing the size and geometry of the plasmonic nanowires. We are thus able to explore the regime where the coupling distance is even limited by the large radiative decay rate of the oscillators. This Bragg-stacked coupling scheme will open a new route for future plasmonic applications such as far-field coupling to quantum emitters without quenching, plasmonic cavity structures and plasmonic distributed gain schemes for spasers.

  14. Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement

    OpenAIRE

    2014-01-01

    We investigate coherent single surface-plasmon transport in a metal nanowire strongly coupled to two colloidal quantum dots. Analytical expressions are obtained for the transmission and reflection coefficients by solving the corresponding eigenvalue equation. Remote entanglement of the wave functions of the two quantum dots can be created if the inter-dot distance is equal to a multiple half-wavelength of the surface plasmon. Furthermore, by applying classical laser pulses to the quantum dots...

  15. Correlation Effects on the Coupled Plasmon Modes of a Double Quantum Well

    DEFF Research Database (Denmark)

    Hill, N. P. R.; Nicholls, J. T.; Linfield, E. H.;

    1997-01-01

    At temperatures comparable to the Fermi temperature, we have measured a plasmon enhanced Coulomb drag in a GaAs/AlGaAs double quantum well electron system. This measurement provides a probe of the many-body corrections to the coupled plasmon modes, and we present a detailed comparison between...... experiment and theory testing the validity of local field theories. Using a perpendicular magnetic field to raise the magnetoplasmon energy we can induce a crossover to single-particle Coulomb scattering....

  16. Localized surface plasmons selectively coupled to resonant light in tubular microcavities

    CERN Document Server

    Yin, Yin; Böttner, Stefan; Yuan, Feifei; Giudicatti, Silvia; Naz, Ehsan Saei Ghareh; Ma, Libo; Schmidt, Oliver G

    2016-01-01

    Vertical gold-nanogaps are created on microtubular cavities to explore the coupling between resonant light supported by the microcavities and surface plasmons localized at the nanogaps. Selective coupling of optical axial modes and localized surface plasmons critically depends on the exact location of the gold-nanogap on the microcavities which is conveniently achieved by rolling-up specially designed thin dielectric films into three dimensional microtube ring resonators. The coupling phenomenon is explained by a modified quasi-potential model based on perturbation theory. Our work reveals the coupling of surface plasmon resonances localized at the nanoscale to optical resonances confined in microtubular cavities at the microscale, implying a promising strategy for the investigation of light-matter interactions.

  17. Tunable narrow band source via the strong coupling between optical emitter and nanowire surface plasmons

    CERN Document Server

    Yang, J; Niu, Y P; Qi, Y H; Zhou, F X; Gong, S Q

    2014-01-01

    The spectrum width can be narrowed to a certain degree by decreasing the coupling strength for the two-level emitter coupled to the propagating surface plasmon. But the width can not be narrowed any further because of the loss of the photon out of system by spontaneous emission from the emitter. Here we propose a new scheme to construct a narrow-band source via a one-dimensional waveguide coupling with a three-level emitter. It is shown that the reflective spectrum width can be narrowed avoiding the impact of the loss. This approach opens up the possibility of plasmonic ultranarrow single-photon source.

  18. Dynamic Tuning of Plasmon-Exciton Coupling in Arrays of Nanodisk-J-aggregate Complexes

    KAUST Repository

    Zheng, Yue Bing

    2010-07-21

    Figure Presented Dynamic tuning of plasmon-exclton resonant coupling in arrays of nanodisk-J-aggregate complexes is demonstrated. The angle-resolved spectra of an array of bare gold nanodisks exhibit continuous shifting of localized surface plasmon resonance. This characteristic enables the production of real-time, controllable spectral overlap between molecular resonance and plasmóme resonance. The resonant interaction strength as a function of spectral overlap is explored and the coupling strength changes with the incident angle of a probe light, in accord with simulations based on coupled dipóle approximation method. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics

    Science.gov (United States)

    Suárez, Isaac; Ferrando, Albert; Marques-Hueso, Jose; Díez, Antonio; Abargues, Rafael; Rodríguez-Cantó, Pedro J.; Martínez-Pastor, Juan P.

    2017-08-01

    In this work, the unique optical properties of surface plasmon polaritons (SPPs), i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height), respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs) dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate) waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (super)modes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs) over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.

  20. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics

    Directory of Open Access Journals (Sweden)

    Suárez Isaac

    2017-02-01

    Full Text Available In this work, the unique optical properties of surface plasmon polaritons (SPPs, i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height, respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (supermodes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.

  1. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.

    Science.gov (United States)

    Long, Ran; Li, Yu; Song, Li; Xiong, Yujie

    2015-08-26

    Enabled by surface plasmons, noble metal nanostructures can interact with and harvest incident light. As such, they may serve as unique media to generate heat, supply energetic electrons, and provide strong local electromagnetic fields for chemical reactions through different mechanisms. This solar-to-chemical pathway provides a new approach to solar energy utilization, alternative to conventional semiconductor-based photocatalysis. To provide readers with a clear picture of this newly recognized process, this review presents coupling solar energy into chemical reactions through plasmonic nanostructures. It starts with a brief introduction of surface plasmons in metallic nanostructures, followed by a demonstration of tuning plasmonic features by tailoring their physical parameters. Owing to their tunable plasmonic properties, metallic materials offer a platform to trigger and drive chemical reactions at the nanoscale, as systematically overviewed in this article. The design rules for plasmonic materials for catalytic applications are further outlined based on existing examples. At the end of this article, the challenges and opportunities for further development of plasmonic-mediated catalysis toward energy and environmental applications are discussed.

  2. Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons.

    Science.gov (United States)

    Wersäll, Martin; Cuadra, Jorge; Antosiewicz, Tomasz J; Balci, Sinan; Shegai, Timur

    2017-01-11

    Plasmon-exciton interactions are important for many prominent spectroscopic applications such as surface-enhanced Raman scattering, plasmon-mediated fluorescence, nanoscale lasing, and strong coupling. The case of strong coupling is analogous to quantum optical effects studied in solid state and atomic systems previously. In plasmonics, similar observations have been almost exclusively made in elastic scattering experiments; however, the interpretation of these experiments is often cumbersome. Here, we demonstrate mode splitting not only in scattering, but also in photoluminescence of individual hybrid nanosystems, which manifests a direct proof of strong coupling in plasmon-exciton nanoparticles. We achieved these results due to saturation of the mode volume with molecular J-aggregates, which resulted in splitting up to 400 meV, that is, ∼20% of the resonance energy. We analyzed the correlation between scattering and photoluminescence and found that splitting in photoluminescence is considerably less than that in scattering. Moreover, we found that splitting in both photoluminescence and scattering signals increased upon cooling to cryogenic temperatures. These findings improve our understanding of strong coupling phenomena in plasmonics.

  3. Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism

    Science.gov (United States)

    Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang

    Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.

  4. Design of Highly Sensitive Surface Plasmon Resonance Sensors Using Planar Metallic Films Closely Coupled to Nanogratings

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Yan; XIE Wen-Chong; LIU De-Ming

    2008-01-01

    We investigate the sensitivity enhancement of surface plasmon resonance(SPR)sensors using planar metallic films closely coupled to nanogratings.The strong coupling between localized surface plasmon resonances(LSPRs)presenting in metallic nanostructures and surface plasmon polaritons(SPPs)propagating at the metallic film surface leads to changes of resonance reflection properties,resulting in enhanced sensitivity of SPR sensors.The effects of thickness of the metallic films,grating period and metal materials on the refractive index sensitivity of the device are investigated.The refractive index sensitivity of nanograting-based SPR sensors is predicted to be about 543 nm/RIU(refractive index unit)using optimized structure parameters.Our study on SPR sensors using planar metallic films closely coupled to nanogratings demonstrates the potential for significant improvement in refractive index sensitivity.

  5. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    Science.gov (United States)

    Liu, Peter Q.; Luxmoore, Isaac J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.

    2015-11-01

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ~60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  6. A double-strip plasmonic waveguide coupled to an electrically driven nanowire LED.

    Science.gov (United States)

    No, You-Shin; Choi, Jae-Hyuck; Ee, Ho-Seok; Hwang, Min-Soo; Jeong, Kwang-Yong; Lee, Eun-Khwang; Seo, Min-Kyo; Kwon, Soon-Hong; Park, Hong-Gyu

    2013-02-13

    We demonstrate the efficient integration of an electrically driven nanowire (NW) light source with a double-strip plasmonic waveguide. A top-down-fabricated GaAs NW light-emitting diode (LED) is placed between two straight gold strip waveguides with the gap distance decreasing to 30 nm at the end of the waveguide and operated by current injection through the p-contact electrode acting as a plasmonic waveguide. Measurements of polarization-resolved images and spectra show that the light emission from the NW LED was coupled to a plasmonic waveguide mode, propagated through the waveguide, and was focused onto a subwavelength-sized spot of surface plasmon polaritons at the tapered end of the waveguide. Numerical simulation agreed well with these experimental results, confirming that a symmetric plasmonic waveguide mode was excited on the top surface of the waveguide. Our demonstration of a plasmonic waveguide coupled to an electrically driven NW LED represents important progress toward further miniaturization and practical implementation of ultracompact photonic integrated circuits.

  7. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.

    Science.gov (United States)

    Liu, Peter Q; Luxmoore, Isaac J; Mikhailov, Sergey A; Savostianova, Nadja A; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R

    2015-11-20

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ∼60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  8. Plexcitonics: Coupled and Plasmon-Exciton Systems with Tailorable Properties

    Science.gov (United States)

    2013-11-14

    up a wide range of novel compact solar energy applications such as distillation , desalination, and sterilization and sanitation applications in... distillation and sanitation have been demonstrated. Plasmons, Plexitonic nanostructures, photocatalysis, Fano Resonance, Four wave mixing, SECARS U U U UU 5...solutions without heating the bulk volume of the liquid. Applications in ethanol distillation and sanitation have been demonstrated. Key Accomplishments

  9. Enhancement of the Modulation Bandwidth for surface Plasmon coupled LEDs for Visible Light Communication

    DEFF Research Database (Denmark)

    Li, Jiehui; Fadil, Ahmed; Ou, Haiyan

    2016-01-01

    The modulation bandwidth of surface plasmon coupled GaN-based LEDs is increased by ~1.2 times to 434.5 MHz compared with normal LED by applying Ag nanoparticles. These findings will help for the industrialization of VLC system.......The modulation bandwidth of surface plasmon coupled GaN-based LEDs is increased by ~1.2 times to 434.5 MHz compared with normal LED by applying Ag nanoparticles. These findings will help for the industrialization of VLC system....

  10. Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities

    Science.gov (United States)

    Li, Rui-Qi; Hernángomez-Pérez, D.; García-Vidal, F. J.; Fernández-Domínguez, A. I.

    2016-09-01

    We investigate the conditions yielding plasmon-exciton strong coupling at the single emitter level in the gap between two metal nanoparticles. Inspired by transformation optics ideas, a quasianalytical approach is developed that makes possible a thorough exploration of this hybrid system incorporating the full richness of its plasmonic spectrum. This allows us to reveal that by placing the emitter away from the cavity center, its coupling to multipolar dark modes of both even and odd parity increases remarkably. This way, reversible dynamics in the population of the quantum emitter takes place in feasible implementations of this archetypal nanocavity.

  11. From near-field to far-field coupling in the third dimension: retarded interaction of particle plasmons.

    Science.gov (United States)

    Taubert, Richard; Ameling, Ralf; Weiss, Thomas; Christ, André; Giessen, Harald

    2011-10-12

    We study the transition from the near-field to the far-field coupling regime of particle plasmons in a three-dimensional geometry. In the far-field regime, retardation plays the dominant role and the plasmonic resonances are radiatively coupled. When the spatial arrangement of the oscillators is matched to their resonance wavelength, superradiant-like effects are observed.

  12. Coupling of surface plasmons and excited optical modes in metal/dielectric grating stacks.

    Science.gov (United States)

    Fan, Ren-Hao; Qi, Dong-Xiang; Hu, Qing; Qin, Ling; Peng, Ru-Wen; Wang, Mu

    2013-02-01

    In this work, we investigate the coupling of surface plasmons and excited optical modes in metal/dielectric grating stacks theoretically and experimentally. We have observed three kinds of modes in these structures: the cavity mode, the propagated surface plasmon (PSP) mode and the localized surface plasmon (LSP) mode, which can enhance the optical transmission. Firstly, it is shown that the cavity mode is excited in the grating stacks. And the cavity mode has redshift if we enhance the thickness of metal layers, while it has blueshift when we increase the thickness of dielectric layers. The redshift of the cavity mode also occurs when the number of repeating layers is increased. Secondly, the PSP mode is also excited, which can be described by the effective permittivity method. It is found that the PSP modes are coupled with each other, which leads to a modified dispersion relation of surface plasmon polaritons (SPP). The theoretical analysis is in good agreement with the observed transmission enhancement in the grating stacks. And the coupling of PSPs also leads to a blueshift when the number of metal layers is increased. Thirdly, the LSP mode, generated in single metal strip, can also enhance the optical transmission of the grating stacks. Yet the transmission intensity induced by LSP decreases rapidly with increasing the number of metal layers. The investigations here may have potential applications in designing plasmonic metamaterials and subwavelength optical devices.

  13. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    Science.gov (United States)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  14. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials

    Science.gov (United States)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S.; Zhang, Lin

    2016-10-01

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  15. Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry-Pérot Resonator.

    Science.gov (United States)

    Konrad, Alexander; Kern, Andreas M; Brecht, Marc; Meixner, Alfred J

    2015-07-08

    A major aim in experimental nano- and quantum optics is observing and controlling the interaction between light and matter on a microscopic scale. Coupling molecules or atoms to optical microresonators is a prominent method to alter their optical properties such as luminescence spectra or lifetimes. Until today strong coupling of optical resonators to such objects has only been observed with atom-like systems in high quality resonators. We demonstrate first experiments revealing strong coupling between individual plasmonic gold nanorods (GNR) and a tunable low quality resonator by observing cavity-length-dependent nonlinear dephasing and spectral shifts indicating spectral anticrossing of the luminescent coupled system. These phenomena and experimental results can be described by a model of two coupled oscillators representing the plasmon resonance of the GNR and the optical fields of the resonator. The presented reproducible and accurately tunable resonator allows us to precisely control the optical properties of individual particles.

  16. Plasmon-phonon coupling in graphene-hyperbolic bilayer heterostructures

    Science.gov (United States)

    Yin, Ge; Yuan, Jun; Jiang, Wei; Zhu, Jianfei; Ma, Yungui

    2016-11-01

    Polar dielectrics are important optical materials enabling the subwavelength manipulation of light in infrared due to their capability to excite phonon polaritons. In practice, it is highly desired to actively modify these hyperbolic phonon polaritons (HPPs) to optimize or tune the response of the device. In this work, we investigate the plasmonic material, a monolayer graphene, and study its hybrid structure with three kinds of hyperbolic thin films grown on SiO2 substrate. The inter-mode hybridization and their tunability have been thoroughly clarified from both the band dispersions and the mode patterns numerically calculated through a transfer matrix method. Our results show that these hybrid multilayer structures are of strong potentials for applications in plasmonic waveguides, modulators and detectors in infrared. Project supported by the National Natural Science Foundation of China (Grant No. 61271085) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR15F050001).

  17. Coupling-induced excitation of a forbidden surface plasmon mode of a gold nanorod

    Institute of Scientific and Technical Information of China (English)

    YAO HaoMin; LI Zhi; GONG QiHuang

    2009-01-01

    Using the finite-difference time-domain (FDTD) method, we simulate the coupling between a gold nanorod and gold nanoparticles with different plasmonic resonant frequencies/volumes as well as that between the nanorod and a dielectric nanosphere. The influences of coupling with different nanoparti-cles on the excitation of a forbidden longitudinal surface plasmon mode of the nanorod under normal incidence are investigated. It is found that the cause of this excitation is the broken symmetry of the local electric field experienced by the nanorod resulting from the charge pileup on the other nanopar-ticle. This result is valuable for understanding the near-field optical characterization of plasmonic metal nanoparticles.

  18. Coupling-induced excitation of a forbidden surface plasmon mode of a gold nanorod

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using the finite-difference time-domain(FDTD) method,we simulate the coupling between a gold nanorod and gold nanoparticles with different plasmonic resonant frequencies/volumes as well as that between the nanorod and a dielectric nanosphere.The influences of coupling with different nanoparticles on the excitation of a forbidden longitudinal surface plasmon mode of the nanorod under normal incidence are investigated.It is found that the cause of this excitation is the broken symmetry of the local electric field experienced by the nanorod resulting from the charge pileup on the other nanoparticle.This result is valuable for understanding the near-field optical characterization of plasmonic metal nanoparticles.

  19. Plasmon Coupling Enhanced Raman Scattering Nanobeacon for Single-Step, Ultrasensitive Detection of Cholera Toxin.

    Science.gov (United States)

    Zhang, Chong-Hua; Liu, Ling-Wei; Liang, Ping; Tang, Li-Juan; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-08-02

    We report the development of a novel plasmon coupling enhanced Raman scattering (PCERS) method, PCERS nanobeacon, for ultrasensitive, single-step, homogeneous detection of cholera toxin (CT). This method relies on our design of the plasmonic nanoparticles, which have a bilayer phospholipid coating with embedded Raman indicators and CT-binding ligands of monosialoganglioside (GM1). This design allows a facile synthesis of the plasmonic nanoparticle via two-step self-assembly without any specific modification or chemical immobilization. The realization of tethering GM1 on the surface imparts the plasmonic nanoparticles with high affinity, excellent specificity, and multivalence for interaction with CT. The unique lipid-based bilayer coated structure also affords excellent biocompatibility and stability for the plasmonic nanoparticles. The plasmonic nanoparticles are able to show substantial enhancement of the surface-enhanced Raman scattering (SERS) signals in a single-step interaction with CT, because of their assembly into aggregates in response to the CT-sandwiched interactions. The results reveal that the developed nanobeacon provides a simple but ultrasensitive sensor for rapid detection of CT with a large signal-to-background ratio and excellent reproducibility in a wide dynamic range, implying its potential for point-of-care applications in preventive and diagnostic monitoring of cholera.

  20. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors

    Directory of Open Access Journals (Sweden)

    Zhidong Zhang

    2016-05-01

    Full Text Available A refractive index sensor based on metal-insulator-metal (MIM waveguides coupled double rectangular cavities is proposed and investigated numerically using the finite element method (FEM. The transmission properties and refractive index sensitivity of various configurations of the sensor are systematically investigated. An asymmetric Fano resonance lineshape is observed in the transmission spectra of the sensor, which is induced by the interference between a broad resonance mode in one rectangular and a narrow one in the other. The effect of various structural parameters on the Fano resonance and the refractive index sensitivity of the system based on Fano resonance is investigated. The proposed plasmonic refractive index sensor shows a maximum sensitivity of 596 nm/RIU.

  1. Tailoring alphabetical metamaterials in optical frequency: plasmonic coupling, dispersion, and sensing.

    Science.gov (United States)

    Zhang, Jun; Cao, Cuong; Xu, Xinlong; Liow, Chihao; Li, Shuzhou; Tan, Pingheng; Xiong, Qihua

    2014-04-22

    Tailoring optical properties of artificial metamaterials, whose optical properties go beyond the limitations of conventional and naturally occurring materials, is of importance in fundamental research and has led to many important applications such as security imaging, invisible cloak, negative refraction, ultrasensitive sensing, and transformable and switchable optics. Herein, by precisely controlling the size, symmetry, and topology of alphabetical metamaterials with U, S, Y, H, U-bar, and V shapes, we have obtained highly tunable optical response covering visible-to-infrared (vis-NIR) optical frequency. In addition, we show a detailed study on the physical origin of resonance modes, plasmonic coupling, the dispersion of resonance modes, and the possibility of negative refraction. We have found that all the electronic and magnetic modes follow the dispersion of surface plasmon polaritons; thus, essentially they are electronic- and magnetic-surface-plasmon-polaritons-like (ESPP-like and MSPP-like) modes resulted from diffraction coupling between localized surface plasmon and freely propagating light. On the basis of the fill factor and formula of magnetism permeability, we predict that the alphabetical metamaterials should show the negative refraction capability in visible optical frequency. Furthermore, we have demonstrated the specific ultrasensitive surface enhanced Raman spectroscopy (SERS) sensing of monolayer molecules and femtomolar food contaminants by tuning their resonance to match the laser wavelength, or by tuning the laser wavelength to match the plasmon resonance of metamaterials. Our tunable alphabetical metamaterials provide a generic platform to study the electromagnetic properties of metamaterials and explore the novel applications in optical frequency.

  2. Excitation Enhancement of a Quantum Dot Coupled to a Plasmonic Antenna

    CERN Document Server

    Urena, E Bermudez; Itzhakov, S; Rigneault, H; Quidant, R; Oron, D; Wenger, J; 10.1002/adma.201202783

    2012-01-01

    Plasmonic antennas are key elements to control the luminescence of quantum emitters. However, the antenna's influence is often hidden by quenching losses. Here, the luminescence of a quantum dot coupled to a gold dimer antenna is investigated. Detailed analysis of the multiply excited states quantifies the antenna's influence on the excitation intensity and the luminescence quantum yield separately.

  3. Active control of the strong coupling regime between porphyrin excitons and surface plasmon polaritons

    NARCIS (Netherlands)

    Berrier, A.; Cools, R.; Arnold, C.; Offermans, P.; Crego-Calama, M.; Brongersma, S.H.; Gomez-Rivas, J.

    2011-01-01

    We experimentally demonstrate the active control of the coupling strength between porphyrin dyes and surface plasmon polaritons supported by a thin gold layer. This control is externally exerted by a gas flow and is reversible. The hybridized exciton-polariton branches resulting from the

  4. Optical cavity coupled surface plasmon resonance sensing for enhanced sensitivity

    Institute of Scientific and Technical Information of China (English)

    Zheng Zheng; Xin Zhao; Jinsong Zhu; Jim Diamond

    2008-01-01

    A surface plasmon resonance (SPR) sensing system based on the optical cavity enhanced detection tech-nique is experimentally demonstrated. A fiber-optic laser cavity is built with a SPR sensor inside. By measuring the laser output power when the cavity is biased near the threshold point, the sensitivity, defined as the dependence of the output optical intensity on the sample variations, can be increased by about one order of magnitude compared to that of the SPR sensor alone under the intensity interrogation scheme. This could facilitate ultra-high sensitivity SPR biosensing applications. Further system miniaturization is possible by using integrated optical components and waveguide SPR sensors.

  5. Phonon-Plasmon Interaction in Metal-Insulator-Metal Localized Surface Plasmon Systems

    CERN Document Server

    Mrabti, Abdelali; Nicolas, Rana; Maurer, Thomas; Adam, Pierre-Michel; Akjouj, Abdellatif; Pennec, Yan; Djafari-Rouhani, Bahram

    2016-01-01

    We investigate theoretically and numerically the coupling between elastic and localized surface plasmon modes in a system of gold nanocylinders separated from a thin gold film by a dielectric spacer of few nanometers thickness. That system supports plasmon modes confined in between the bottom of the nanocylinder and the top of the gold film, which arise from the formation of interference patterns by short-wavelength metal-insulator-metal propagating plasmon. First we present the plasmonic properties of the system though computer-simulated extinction spectra and field maps associated to the different optical modes. Next a simple analytical model is introduced, which allows to correctly reproduce the shape and wavelengths of the plasmon modes. This model is used to investigate the efficiency of the coupling between an elastic deformation and the plasmonic modes. In the last part of the paper, we present the full numerical simulations of the phononic properties of the system, and then compute the acousto-plasmon...

  6. Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Danveer; Raghuwanshi, Mohit; Pavan Kumar, G. V. [Photonics and Optical Nanoscopy Laboratory, Department of Physics and Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008 (India)

    2012-09-10

    We experimentally studied plasmon-polariton-assisted light propagation in serially coupled silver nanowire (Ag-NW) dimers and probed their dependence on bending-angle between the nanowires and polarization of incident light. From the angle-dependence study, we observed that obtuse angles between the nanowires resulted in better transmission than acute angles. From the polarization studies, we inferred that light emission from junction and distal ends of Ag-NW dimers can be systematically controlled. Further, we applied this property to show light routing and polarization beam splitting in obtuse-angled Ag-NW dimer. The studied geometry can be an excellent test-bed for plasmonic circuitry.

  7. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    Energy Technology Data Exchange (ETDEWEB)

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang; Lin, Jingquan, E-mail: linjingquan@cust.edu.cn [School of Science, Changchun University of Science and Technology, Changchun 130022 (China)

    2015-09-21

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.

  8. Mode Modification of Plasmonic Gap Resonances induced by Strong Coupling with Molecular Excitons

    CERN Document Server

    Chen, Xingxing; Qin, Jian; Zhao, Ding; Ding, Boyang; Blaikie, Richard J; Qiu, Min

    2016-01-01

    Plasmonic cavities can be used to control the atom-photon coupling process at the nanoscale, since they provide ultrahigh density of optical states in an exceptionally small mode volume. Here we demonstrate strong coupling between molecular excitons and plasmonic resonances (so-called plexcitonic coupling) in a film-coupled nanocube cavity, which can induce profound and significant spectral and spatial modifications to the plasmonic gap modes. Within the spectral span of a single gap mode in the nanotube-film cavity with a 3-nm wide gap, the introduction of narrow-band J-aggregate dye molecules not only enables an anti-crossing behavior in the spectral response, but also splits the single spatial mode into two distinct modes that are easily identified by their far-field scattering profiles. Simulation results confirm the experimental findings and the sensitivity of the plexcitonic coupling is explored using digital control of the gap spacing. Our work opens up a new perspective to study the strong coupling pr...

  9. Plasmon hybridization in silver nanoislands as semishell arrays coupled to a thin metallic film

    DEFF Research Database (Denmark)

    Maaroof, Abbas; Nygaard, Jens Vinge; Sutherland, Duncan S

    2011-01-01

    interactions for such a nanosystem exhibits two pronounced resonances and interpret the coupling in terms of Fano resonances. The higher energy resonance is identified as a symmetric hybridization mode between localized plasmon resonances in the island semishell array and surface plasmon polaritons...... in the metal film and while the lower energy resonance is identified as a corresponding anti-symmetric hybridization mode. Increasing the size of the particle arrays enhances and red shifts the resonances. We show that adding a dielectric spacer between the semishell island array and the metal film results...... in a red shifting of the resonances and introduce an additional high energy spectral peak. The effect of the spacer layer is interpreted as a reduced hybridization and the generation of additional localized surface plasmon resonances....

  10. A BIOSENSOR USING COUPLED PLASMON WAVEGUIDE RESONANCE COMBINED WITH HYPERSPECTRAL FLUORESCENCE ANALYSIS

    Directory of Open Access Journals (Sweden)

    CHAN DU

    2014-01-01

    Full Text Available We developed a biosensor that is capable for simultaneous surface plasmon resonance (SPR sensing and hyperspectral fluorescence analysis in this paper. A symmetrical metal-dielectric slab scheme is employed for the excitation of coupled plasmon waveguide resonance (CPWR in the present work. Resonance between surface plasmon mode and the guided waveguide mode generates narrower full width half-maximum of the reflective curves which leads to increased precision for the determination of refractive index over conventional SPR sensors. In addition, CPWR also offers longer surface propagation depths and higher surface electric field strengths that enable the excitation of fluorescence with hyperspectral technique to maintain an appreciable signal-to-noise ratio. The refractive index information obtained from SPR sensing and the chemical properties obtained through hyperspectral fluorescence analysis confirm each other to exclude false-positive or false-negative cases. The sensor provides a comprehensive understanding of the biological events on the sensor chips.

  11. Shifting molecular localization by plasmonic coupling in a single-molecule mirage

    Science.gov (United States)

    Raab, Mario; Vietz, Carolin; Stefani, Fernando Daniel; Acuna, Guillermo Pedro; Tinnefeld, Philip

    2017-01-01

    Over the last decade, two fields have dominated the attention of sub-diffraction photonics research: plasmonics and fluorescence nanoscopy. Nanoscopy based on single-molecule localization offers a practical way to explore plasmonic interactions with nanometre resolution. However, this seemingly straightforward technique may retrieve false positional information. Here, we make use of the DNA origami technique to both control a nanometric separation between emitters and a gold nanoparticle, and as a platform for super-resolution imaging based on single-molecule localization. This enables a quantitative comparison between the position retrieved from single-molecule localization, the true position of the emitter and full-field simulations. We demonstrate that plasmonic coupling leads to shifted molecular localizations of up to 30 nm: a single-molecule mirage.

  12. Enhanced Luminescence Performance of Quantum Wells by Coupling Piezo-Phototronic with Plasmonic Effects.

    Science.gov (United States)

    Huang, Xin; Jiang, Chunyan; Du, Chunhua; Jing, Liang; Liu, Mengmeng; Hu, Weiguo; Wang, Zhong Lin

    2016-12-27

    With a promising prospect of light-emitting diodes as an attractive alternative to conventional light sources, remaining challenges still cannot be addressed owing to their limited efficiency. Among the continued scientific efforts, significant improvement on the emission efficiency has been achieved via either piezo-phototronic effect-based strain modulation or resonant excitation of plasmons in metallic nanostructures. Here, we present the investigation on the coupling process between piezo-phototronic effect and localized surface plasmonic resonance for enhancing the photoluminescence of InGaN/GaN quantum wells coated with Ag nanoparticles. The underlying physical mechanism of experimental results originates from tuning plasmonic resonance controlled by the shift of emission wavelength via piezo-phototronic effect, and it is further confirmed with the support of theoretical calculations. As a result, our research provides an approach to the integration of plasmonics with piezo-phototronic effect and brings widespread applications to high-efficiency artificial lighting, on-chip integrated plasmonic circuits, subwavelength optical communication, and micro-optoelectronic mechanical systems.

  13. UV Nano-Lights - Nonlinear Quantum Dot-Plasmon Coupling

    Science.gov (United States)

    2016-06-20

    nanomaterials systems for nonlinear optics. PROJECT TIMELINE The project timeline was segmented into 3 monthly intervals. The PhD students, assisted by...technique to remove the scattering component of light from the fluorescence emission with commonly-used fluorometers [Shortell, Optics Express...nanostructure light interaction and also has helped understand and remove unwanted signal contamination through optical element interference effects as

  14. The plasmonic coupling of metal nanoparticles and its implication for scanning near-field optical microscope characterization

    Institute of Scientific and Technical Information of China (English)

    LI Zhi; GONG QiHuang

    2009-01-01

    @@ Researchers at State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University (PKU), have recently shown that an otherwise forbid-den longitudinal surface plasmon mode of a gold nanorod can be excited by nor-mally incident linearly-polarized light if it is coupled with a nanoparticle with proper plasmonic resonant frequency, volume, and composition~([1]).

  15. Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide.

    Science.gov (United States)

    Kim, Sangsik; Qi, Minghao

    2015-04-20

    We present a polarization rotation and coupling scheme that rotates a TE(0) mode in a silicon waveguide and simultaneously couples the rotated mode to a hybrid plasmonic (HP(0)) waveguide mode. Such a polarization rotation can be realized with a partially etched asymmetric hybrid plasmonic waveguide consisting of a silicon strip waveguide, a thin oxide spacer, and a metal cap made from copper, gold, silver or aluminum. Two implementations, one with and one without the tapering of the metal cap are presented, and different taper shapes (linear and exponential) are also analyzed. The devices have large 3 dB conversion bandwidths (over 200 nm at near infrared) and short length (< 5 μm), and achieve a maximum coupling factor of ∼ 78% with a linearly tapered silver metal cap.

  16. Mid-infrared surface plasmon coupled emitters utilizing intersublevel transitions in InAs quantum dots.

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Stephen A. (Princeton University, Princeton, NJ); Chow, Weng Wah; Passmore, Brandon Scott; Ribaudo, Troy (University of Massachusetts Lowell, Lowell, MA); Adams, David (University of Massachusetts Lowell, Lowell, MA); Wasserman, Daniel (University of Massachusetts Lowell, Lowell, MA); Shaner, Eric Arthur

    2010-08-01

    We demonstrate mid-infrared electroluminescence from intersublevel transitions in self-assembled InAs quantum dots coupled to surface plasmon modes on metal hole arrays. Subwavelength metal hole arrays with different periodicity are patterned into the top contact of the broadband (9-15 {micro}m) quantum dot material and the measured electroluminescence is compared to devices without a metal hole array. The resulting normally directed emission is narrowed and a splitting in the spectral structure is observed. By applying a coupled quantum electrodynamic model and using reasonable values for quantum dot distributions and plasmon linewidths we are able to reproduce the experimentally measured spectral characteristics of device emission when using strong coupling parameters.

  17. Beaming photons with spin and orbital angular momentum via a dipole-coupled plasmonic spiral antenna.

    Science.gov (United States)

    Rui, Guanghao; Nelson, Robert L; Zhan, Qiwen

    2012-08-13

    We analytically and numerically study the emission properties of an electric dipole coupled to a plasmonic spiral structure with different pitch. As a transmitting antenna, the spiral structure couples the radiation from the electric dipole into circularly polarized emitted photons in the far field. The spin carried by the emitted photons is determined by the handedness of the spiral antenna. By increasing the spiral pitch in the unit of surface plasmon wavelength, these circularly polarized photons also gain orbital angular momentum with different topological charges. This phenomenon is attributed to the presence of a geometric phase arising from the interaction of light from point source with the anisotropic spiral structure. The circularly polarized vortex emission from such optically coupled spiral antenna also has high directivity, which may find important applications in quantum optical information, single molecule sensing, and integrated photonic circuits.

  18. Low noise patch-clamp current amplification by nanoparticles plasmonic-photonic coupling (analysis and modelling).

    Science.gov (United States)

    Haberal, E O; SalmanOgli, A; Nasseri, B

    2016-10-01

    In this article, a patch-clamp low noise current amplification based on nanoparticles plasmonic radiation is analyzed. It is well-known, a very small current is flowing from different membrane channels and so, for extra processing the current amplification is necessary. It is notable that there are some problems in traditional electronic amplifier due to its noise and bandwidth problem. Because of the important role of the patch-clamp current in cancer research and especially its small amplitude, it is vital to intensify it without adding any noises. In this study, the current amplification is performed firstly: from the excitement of nanoparticles by the patch-clamp pico-ampere current and then, the effect of nanoparticles plasmonic far-field radiation on conductor's carriers, which will cause the current amplification. This relates to the plasmonic-photonic coupling and their effect on conductor carriers as the current perturbation agent. In the steady state, the current amplification can reach to 1000 times of initial level. Furthermore, we investigated the nanoparticles morphology changing effect such as size, nanoparticles inter-distance, and nanoparticles distance from the conductor on the amplifier parameters. Finally, it should note that the original aim is to use nanoparticles plasmonic engineering and their coupling to photonics for output current manipulating.

  19. Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide

    Science.gov (United States)

    Kim, Nam-Chol; Ko, Myong-Chol; Choe, Song-Il; Hao, Zhong-Hua; Zhou, Li; Li, Jian-Bo; Im, Song-Jin; Ko, Yong-Hae; Jo, Chon-Gyu; Wang, Qu-Quan

    2016-11-01

    The transport properties of a single plasmon interacting with a hybrid system composed of a semiconductor quantum dot (SQD) and a metal nanoparticle (MNP) coupled to a one-dimensional surface plasmonic waveguide are investigated theoretically via the real-space approach. We considered that the MNP-SQD interaction leads to the formation of a hybrid exciton and the transmission and reflection of a single incident plasmon could be controlled by adjusting the frequency of the classical control field applied to the MNP-SQD hybrid nanosystem, the kinds of MNPs and the background media. The transport properties of a single plasmon interacting with such a hybrid nanosystem discussed here could find applications in the design of next-generation quantum devices, such as single-photon switching and nanomirrors, and in quantum information processing.

  20. Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide.

    Science.gov (United States)

    Kim, Nam-Chol; Ko, Myong-Chol; Choe, Song-Il; Hao, Zhong-Hua; Zhou, Li; Li, Jian-Bo; Im, Song-Jin; Ko, Yong-Hae; Jo, Chon-Gyu; Wang, Qu-Quan

    2016-11-18

    The transport properties of a single plasmon interacting with a hybrid system composed of a semiconductor quantum dot (SQD) and a metal nanoparticle (MNP) coupled to a one-dimensional surface plasmonic waveguide are investigated theoretically via the real-space approach. We considered that the MNP-SQD interaction leads to the formation of a hybrid exciton and the transmission and reflection of a single incident plasmon could be controlled by adjusting the frequency of the classical control field applied to the MNP-SQD hybrid nanosystem, the kinds of MNPs and the background media. The transport properties of a single plasmon interacting with such a hybrid nanosystem discussed here could find applications in the design of next-generation quantum devices, such as single-photon switching and nanomirrors, and in quantum information processing.

  1. Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate-Au Nanoshell Complex Provides a Mechanism for Nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Fofang, Nche T. [Rice Univ., Houston, TX (United States); Grady, Nathaniel K. [Rice Univ., Houston, TX (United States); Fan, Zhiyuan [Ohio Univ., Athens, OH (United States); Govorov, Alexander [Ohio Univ., Athens, OH (United States); Halas, Naomi J. [Rice Univ., Houston, TX (United States)

    2011-03-18

    Coherently coupled plasmons and excitons give rise to new optical excitations- plexcitons - due to the strong coupling of these two oscillator systems. Time-resolved studies of J-aggregate-Au nanoshell complexes when the nanoshell plasmon and J-aggregate exciton energies are degenerate probe the dynamical behavior of this coupled system. Transient absorption of the interacting plasmon-exciton system is observed, in dramatic contrast to the photoinduced transmission of the pristine J-aggregate. An additional, transient Fano-shaped modulation within the Fano dip is also observable. The behavior of the J-aggregate-Au nanoshell complex is described by a combined one-exciton and two-exciton state model coupled to the nanoshell plasmon.

  2. Ultra-compact and broadband tunable mid-infrared multimode interference splitter based on graphene plasmonic waveguide

    CERN Document Server

    Zheng, Ruiqi; Dong, Jianji

    2015-01-01

    We propose and design an ultra-compact and broadband tunable multimode interference (MMI) splitter in mid-infrared based on graphene plasmonic waveguides. The size of the device is only 0.56{\\mu}m*1.2{\\mu}m, which corresponds to device area of only about 0.014{\\lambda}^2, where {\\lambda} is the vacuum wavelength. And the center wavelength of the device can be tuned in a broad band from 7{\\mu}m to 9{\\mu}m with the Fermi level of graphene varied from 0.5eV to 1eV. Furthermore, the device is easy to be fabricated on chip.

  3. Coupled plasmon-exciton induced transparency and slow light in plexcitonic metamaterials

    DEFF Research Database (Denmark)

    Panahpour, Ali; Silani, Yaser; Farrokhian, Marzieh

    2012-01-01

    effects in low-loss nanostructures, and development of low-loss metamaterials. A large variety of plasmonic structures has been proposed for producing classical EIT-like effects in different spectral ranges. The current approach for producing plasmon-induced transparency is usually based on precise design...... effects in metamaterials composed of such coupled NPs. To reveal more details of the wave-particle and particle-particle interactions, the electric field distribution and field lines of Poynting vector inside and around the NPs are calculated using the finite element method. Finally, using extended...... Maxwell Garnett theory, we study the coupled-NP-induced transparency and slow light effects in a metamaterial comprising random mixture of silver and copper chloride (CuCl) NPs, and more effectively in a metamaterial consisting of random distribution of coated NPs with CuCl cores and aluminum shells...

  4. Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system.

    Science.gov (United States)

    Luo, Weiwei; Cai, Wei; Xiang, Yinxiao; Wang, Lei; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun

    2016-03-21

    General actively tunable near-field plasmon-induced transparency (PIT) systems based on couplings between localized plasmon resonances of graphene nanostructures not only suffer from interantenna separations of smaller than 20 nm, but also lack switchable effect about the transparency window. Here, the performance of an active PIT system based on graphene grating-sheet with near-field coupling distance of more than 100 nm is investigated in mid-infrared. The transparency window in spectrum is analyzed objectively and proved to be more likely stemmed from Aulter-Townes splitting. The proposed system exhibits flexible tunability in slow-light and electro-optical switches, promising for practical active photonic devices.

  5. Effect of plasmonic losses on light emission enhancement in quantum-wells coupled to metallic gratings

    Science.gov (United States)

    Sadi, Toufik; Oksanen, Jani; Tulkki, Jukka

    2013-12-01

    Recent experimental work has shown significant luminescence enhancement from near-surface quantum-well (QW) structures using metallic grating to convert surface plasmon (SP) modes into radiative modes. This work introduces a detailed theoretical study of plasmonic losses and the role of SPs in improving light extraction from grated light-emitting QW structures, using the fluctuational electrodynamics method. The method explains experimental results demonstrating emission enhancement, light scattering, and plasmonic coupling in the structures. We study these effects in angle-resolved reflectometry and luminescence setups in InGaN QW structures with silver grating. In contrast to experiments, our model allows direct calculation of the optical losses. The model predicts that the plasmonic coupling and scattering increases light emission by a factor of up to three compared to a flat semiconductor structure. This corresponds to reducing the absorption losses from approximately 93% in the ungrated metallic structure to 75% in the grated structure. Lower losses are associated with a significant emission enhancement enabled by the SPs of silver/GaN interfaces, which are present in the blue/green wavelength range, and can be optimized by carefully nanostructuring the metal layer and by the positioning of the QW. In general, the enhancement results from the interplay of mode scattering, conversion of SP energy directly into light, and losses in the metallic grating. The reported losses are very high when compared to the losses present in modern light-emitting diodes (LEDs). Albeit, our work provides tools needed for further optimization of plasmonic light extraction, eventually leading to highly efficient LEDs.

  6. Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem

    Science.gov (United States)

    Koch, R. J.; Seyller, Th.; Schaefer, J. A.

    2010-11-01

    We report on strong coupling of the charge-carrier plasmon ωPL in graphene with the surface-optical phonon ωSO of the underlying SiC(0001) substrate with low-electron concentration (n=1.2×1015cm-3) in the long-wavelength limit (q∥→0) . Energy-dependent energy-loss spectra give clear evidence of two coupled phonon-plasmon modes ω± separated by a gap between ωSO(q∥→0) and ωTO(q∥≫0) , the transverse-optical-phonon mode, in particular, for higher primary electron energies (E0≥20eV) . A simplified model based on dielectric theory is able to simulate our energy-loss spectra as well as the dispersion of the two coupled phonon-plasmon modes ω± . In contrast, Liu and Willis [Phys. Rev. B 81, 081406(R) (2010)]10.1103/PhysRevB.81.081406 postulate in their recent publication no gap and a discontinuous dispersion curve with a one-peak structure from their energy-loss data.

  7. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots

    Science.gov (United States)

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-11-01

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.

  8. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots.

    Science.gov (United States)

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-11-22

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.

  9. Directional coupling in channel plasmon-polariton waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr; Volkov, Valentyn S.; Han, Zhanghua

    2012-01-01

    ) technique in a 2-μm-thick gold film and characterized at telecom wavelengths (1425-1630 nm) with near-field optical microscopy. Experimental results reveal strong coupling, resulting in approximately equal power splitting between DC-CPPWs, for small CPPW separations (0.08 and 0.25 µm). The coupling...... gradually deteriorates with the increase of separation between V-grooves and practically vanishes for the separation of 2 µm. The DC-CPPW characteristics observed are found in good agreement with finite-element method (implemented in COMSOL) simulations....

  10. Electron energy-loss spectroscopy of coupled plasmonic systems: beyond the standard electron perspective

    Science.gov (United States)

    Bernasconi, G. D.; Flauraud, V.; Alexander, D. T. L.; Brugger, J.; Martin, O. J. F.; Butet, J.

    2016-09-01

    Electron energy-loss spectroscopy (EELS) has become an experimental method of choice for the investigation of localized surface plasmon resonances, allowing the simultaneous mapping of the associated field distributions and their resonant energies with a nanoscale spatial resolution. The experimental observations have been well-supported by numerical models based on the computation of the Lorentz force acting on the impinging electrons by the scattered field. However, in this framework, the influence of the intrinsic properties of the plasmonic nanostructures studied with the electron energy-loss (EEL) measurements is somehow hidden in the global response. To overcome this limitation, we propose to go beyond this standard, and well-established, electron perspective and instead to interpret the EELS data using directly the intrinsic properties of the nanostructures, without regard to the force acting on the electron. The proposed method is particularly well-suited for the description of coupled plasmonic systems, because the role played by each individual nanoparticle in the observed EEL spectrum can be clearly disentangled, enabling a more subtle understanding of the underlying physical processes. As examples, we consider different plasmonic geometries in order to emphasize the benefits of this new conceptual approach for interpreting experimental EELS data. In particular, we use it to describe results from samples made by traditional thin film patterning and by arranging colloidal nanostructures.

  11. Molecular Plasmonics

    Science.gov (United States)

    Wilson, Andrew J.; Willets, Katherine A.

    2016-06-01

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics.

  12. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.

    Science.gov (United States)

    Zhou, Ning; Yuan, Meng; Gao, Yuhan; Li, Dongsheng; Yang, Deren

    2016-04-26

    Strong coupling between semiconductor excitons and localized surface plasmons (LSPs) giving rise to hybridized plexciton states in which energy is coherently and reversibly exchanged between the components is vital, especially in the area of quantum information processing from fundamental and practical points of view. Here, in photoluminescence spectra, rather than from common extinction or reflection measurements, we report on the direct observation of Rabi splitting of approximately 160 meV as an indication of strong coupling between excited states of CdSe/ZnS quantum dots (QDs) and LSP modes of silver nanoshells under nonresonant nanosecond pulsed laser excitation at room temperature. The strong coupling manifests itself as an anticrossing-like behavior of the two newly formed polaritons when tuning the silver nanoshell plasmon energies across the exciton line of the QDs. Further analysis substantiates the essentiality of high pump energy and collective strong coupling of many QDs with the radiative dipole mode of the metallic nanoparticles for the realization of strong coupling. Our finding opens up interesting directions for the investigation of strong coupling between LSPs and excitons from the perspective of radiative recombination under easily accessible experimental conditions.

  13. Improving the sensitivity limit of surface plasmon resonance biosensors by detecting mixed interference signals

    Science.gov (United States)

    Yuan, W.; Ho, H. P.; Suen, Y. K.; Kong, S. K.; Lin, Chinlon

    2007-11-01

    We demonstrate that the sensitivity limit of intensity-based surface plasmon resonance (SPR) biosensors can be enhanced when we combine the effects of the phase and amplitude contributions instead of detecting the amplitude variation only. Experimental results indicate that an enhancement factor of as much as 20 times is achievable, yet with no compromise in measurement dynamic range. While existing SPR biosensor systems are predominantly based on the angular scheme, which relies on detecting intensity variations associated with amplitude changes only, the proposed scheme may serve as a direct system upgrade approach for these systems. The new measurement scheme may therefore lead to a strong impact in the design of SPR biosensors.

  14. Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures

    Science.gov (United States)

    Bourke, Levi; Blaikie, Richard J.

    2017-09-01

    Grating coupled near-field interference lithography has the ability to produce deep-subwavelength interference patterns. Simulations of these systems is very computationally intensive. An inverse design procedure employing a genetic algorithm is utilized here to massively reduce the computational load and allow for the design of systems capable of interfering extremely high numerical apertures. This method is used to optimize systems with an interference patterns with a half pitch of λ /40 corresponding to a numerical aperture of 20. It is also used to demonstrate interference of higher | m| diffraction orders.

  15. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides

    CERN Document Server

    Verhagen, Ewold; L.,; Kuipers,; Polman, Albert

    2010-01-01

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. By properly controlling coupling between adjacent waveguides, a metamaterial consisting of a one-dimensional multilayer stack exhibiting an isotropic index of -1 can be achieved at a free-space wavelength of 400 nm. The general concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  16. Three-Dimensional Negative Index of Refraction at Optical Frequencies by Coupling Plasmonic Waveguides

    Science.gov (United States)

    Verhagen, Ewold; de Waele, René; Kuipers, L.; Polman, Albert

    2010-11-01

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  17. Optical isolator based on nonreciprocal coupling of two Tamm plasmon polaritons

    Science.gov (United States)

    Fang, Yun-Tuan; Zheng, Jing

    2014-12-01

    In this paper, we have studied the one-dimensional photonic crystal (PC) including a magneto-optical metal defect using the developed transfer matrix method for magnetic materials. Around the two interfaces between metal and one-dimensional PC, two nonsymmetric Tamm magneto-plasmon polaritons may be excited and coupled. The coupled states take on a clear nonreciprocal behavior and result in nonreciprocal transmission. The results are demonstrated through electromagnetic field distribution simulations based on finite element software. It provides a useful reference to realize optical isolator design.

  18. Mie Plasmons: Modes Volumes, Quality Factors, and Coupling Strengths (Purcell Factor to a Dipolar Emitter

    Directory of Open Access Journals (Sweden)

    G. Colas des Francs

    2012-01-01

    Full Text Available Using either quasistatic approximation or exact Mie expansion, we characterize the localized surface plasmons supported by a metallic spherical nanoparticle. We estimate the quality factor Qn and define the effective volume Vn of the nth mode in such a way that coupling strength with a neighbouring dipolar emitter is proportional to the ratio Qn/Vn (Purcell factor. The role of Joule losses, far-field scattering, and mode confinement in the coupling mechanism is introduced and discussed with simple physical understanding, with particular attention paid to energy conservation.

  19. Mie plasmons: modes volumes, quality factors and coupling strengths (Purcell factor) to a dipolar emitter

    CERN Document Server

    Francs, G Colas des; Vincent, R; Bouhelier, A; Dereux, A

    2011-01-01

    Using either quasi-static approximation or exact Mie expansion, we characterize the localized surface plasmons supported by a metallic spherical nanoparticle. We estimate the quality factor $Q_n$ and define the effective volume $V_n$ of the $n^{th}$ mode in a such a way that coupling strength with a neighbouring dipolar emitter is proportional to the ratio $Q_n/V_n$ (Purcell factor). The role of Joule losses, far-field scattering and mode confinement in the coupling mechanism are introduced and discussed with simple physical understanding, with particular attention paid to energy conservation.

  20. A vertically-coupled liquid-crystal long-range plasmonic optical switch

    CERN Document Server

    Zografopoulos, Dimitrios C

    2012-01-01

    An optical switch based on liquid-crystal tunable long-range metal stripe waveguides is proposed and theoretically investigated. A nematic liquid crystal layer placed between a vertical configuration consisting of two gold stripes is shown to allow for the extensive electro-optic tuning of the coupler's waveguiding characteristics. Rigorous liquid-crystal switching studies are coupled with the investigation of the optical properties of the proposed plasmonic structure, taking into account different excitation conditions and the impact of LC-scattering losses. A directional coupler optical switch is demonstrated, which combines low power consumption, low cross-talk, short coupling lengths, along with sufficiently reduced insertion losses.

  1. Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, M.; Ho, Y.-L. D.; Taverne, M. P. C.; Chen, L.-F.; Rarity, J. G.; Oulton, R. [Department of Electrical and Electronic Engineering, University of Bristol, Faculty of Engineering, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom); Murshidy, M. M. [Department of Physics and Mathematics, University of Hull, Cottingham Road, HU6 7RX Hull (United Kingdom); Department of Physics, Faculty of Science, Helwan University, Helwan (Egypt); Yousef Jameel Science and Technology Research Center, The American University in Cairo (Egypt); Edwards, A. P.; Adawi, A. M. [Department of Physics and Mathematics, University of Hull, Cottingham Road, HU6 7RX Hull (United Kingdom); Serry, M. Y. [Yousef Jameel Science and Technology Research Center, The American University in Cairo (Egypt)

    2014-06-09

    We present evidence of optical Tamm states to surface plasmon polariton (SPP) coupling. We experimentally demonstrate that for a Bragg stack with a thin metal layer on the surface, hybrid Tamm-SPP modes may be excited when a grating on the air-metal interface is introduced. Out-coupling via the grating to free space propagation is shown to enhance the transmission as well as the directionality and polarization selection for the transmitted beam. We suggest that this system will be useful on those devices, where a metallic electrical contact as well as beaming and polarization control is needed.

  2. Coupling effect of surface plasmon polaritons in single-negative lamellar heterostructure

    Institute of Scientific and Technical Information of China (English)

    Lin Zhou; Yongyuan Zhu

    2008-01-01

    Propagation characteristics of surface plasmon polaritons (SPPs) in the lamellar heterostructure, which is actually a SPP waveguide array, constructed by two kinds of single negative (SNG) material layers stacked alternatively are investigated. Based on the finite element method (FEM), the negative-refraction (NR) property is demonstrated when the electromagnetic wave penetrates through free space into such SNG lamellar structure. A clear view of the underlying physics of NR is presented qualitatively that is mainly related to the coupled SPPs. The strong coupling effect leads to the novel SPP dispersion curves and then the anomalous propagation characteristics.

  3. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.

    Science.gov (United States)

    Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert

    2010-11-26

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  4. Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials.

    Science.gov (United States)

    Chen, Jing; Mao, Peng; Xu, Rongqing; Tang, Chaojun; Liu, Yuanjian; Wang, Qiugu; Zhang, Labao

    2015-06-15

    We have demonstrated a straightforward strategy to realize magnetic field enhancement through diffraction coupling of magnetic plasmon (MP) resonances by embedding the metamaterials consisting of a planar rectangular array of U-shaped metallic split-ring resonators (SRRs) into the substrate. Our method provides a more homogeneous dielectric background allowing stronger diffraction coupling of MP resonances among SRRs leading to strong suppression of the radiative damping. We observe that compared to the on-substrate metamaterials, the embedded ones lead to a narrow-band hybridized MP mode, which results from the interference between MP resonances in individual SRRs and an in-plane propagating collective surface mode arising from light diffraction. Associated with the excitation of this hybridized MP mode, a twenty-seven times enhancement of magnetic fields within the inner area of the SRRs is achieved as compared with the pure MP resonance. Moreover, we also found that besides the above requirement of homogeneous dielectric background, only a collective surface mode with its magnetic field of the same direction as the induced magnetic moment in the SRRs could mediate the excitation of such a hybridized MP mode.

  5. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna.

    Science.gov (United States)

    Aouani, Heykel; Rahmani, Mohsen; Navarro-Cía, Miguel; Maier, Stefan A

    2014-04-01

    The ability to convert low-energy quanta into a quantum of higher energy is of great interest for a variety of applications, including bioimaging, drug delivery and photovoltaics. Although high conversion efficiencies can be achieved using macroscopic nonlinear crystals, upconverting light at the nanometre scale remains challenging because the subwavelength scale of materials prevents the exploitation of phase-matching processes. Light-plasmon interactions that occur in nanostructured noble metals have offered alternative opportunities for nonlinear upconversion of infrared light, but conversion efficiency rates remain extremely low due to the weak penetration of the exciting fields into the metal. Here, we show that third-harmonic generation from an individual semiconductor indium tin oxide nanoparticle is significantly enhanced when coupled within a plasmonic gold dimer. The plasmonic dimer acts as a receiving optical antenna, confining the incident far-field radiation into a near field localized at its gap; the indium tin oxide nanoparticle located at the plasmonic dimer gap acts as a localized nonlinear transmitter upconverting three incident photons at frequency ω into a photon at frequency 3ω. This hybrid nanodevice provides third-harmonic-generation enhancements of up to 10(6)-fold compared with an isolated indium tin oxide nanoparticle, with an effective third-order susceptibility up to 3.5 × 10(3) nm V(-2) and conversion efficiency of 0.0007%. We also show that the upconverted third-harmonic emission can be exploited to probe the near-field intensity at the plasmonic dimer gap.

  6. Plasmonic band-pass filter device using coupled asymmetric cross-shaped cavity

    Science.gov (United States)

    Geng, Xiao-Meng; Mi, Si-Chen; Wang, Tie-Jun; He, Lin-Yan; Wang, Chuan

    2017-01-01

    In this paper, a novel plasmonic band-pass filter by using the system consisting four waveguides and an asymmetric cross-shaped resonator is proposed. The plasmonic system is based on the metal-insulator-metal (MIM) structure which could overcome the diffraction limit and exhibit various promising applications. Here, we investigate the transmission spectra of the cross-shaped resonator by using finite-different-time-domain (FDTD) method and we find that the peak-wavelength on different ports show redshift or blueshift behaviors which are linearly changed with the length of cavity or the coupling distance. Moreover, the wavelength filter could be achieved and further applied in optical signal integrated circuits.

  7. Surface plasmon coupled chemiluminescence during adsorption of oxygen on magnesium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Ulrich [Interdisciplinary Center for the Analytics on the Nanoscale (ICAN) and Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Str. 199, 47057 Duisburg (Germany); Nienhaus, Hermann, E-mail: hermann.nienhaus@uni-due.de [Faculty of Physics, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstr. 1, 47048 Duisburg (Germany)

    2015-12-28

    The dissociative adsorption of oxygen molecules on magnesium surfaces represents a non-adiabatic reaction exhibiting exoelectron emission, chemicurrent generation, and weak chemiluminescence. Using thin film Mg/Ag/p-Si(111) Schottky diodes with 1 nm Mg on a 10-60 nm thick Ag layer as 2π-photodetectors, the chemiluminescence is internally detected with a much larger efficiency than external methods. The chemically induced photoyield shows a maximum for a Ag film thickness of 45 nm. The enhancement is explained by surface plasmon coupled chemiluminescence, i.e., surface plasmon polaritons are effectively excited in the Ag layer by the oxidation reaction and decay radiatively leading to the observed photocurrent. Model calculations of the maximum absorption in attenuated total reflection geometry support the interpretation. The study demonstrates the extreme sensitivity and the practical usage of internal detection schemes for investigating surface chemiluminescence.

  8. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors

    Directory of Open Access Journals (Sweden)

    Kunal Tiwari

    2016-04-01

    Full Text Available Hafnium dioxide has been recognized as an excellent dielectric for microelectronics. However, its usefulness for the surface plasmon based sensors has not yet been tested. Here we investigate its usefulness for waveguide-coupled bi-metallic surface plasmon resonance sensors. Several Ag/HfO2/Au multilayer structure sensors were fabricated and evaluated by optical measurements and computer simulations. The resulting data establish correlations between the growth parameters and sensor performance. The sensor sensitivity to refractive index of analytes is determined to be S n = ∂ θ SPR ∂ n ≥ 4 7 0 . The sensitivity data are supported by simulations, which also predict 314 nm for the evanescent field decay length in air.

  9. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals

    CERN Document Server

    Brown, Ana M; Narang, Prineha; Goddard, William A; Atwater, Harry A

    2016-01-01

    Ultrafast laser measurements probe the non-equilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semi-empirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously-neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phon...

  10. Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons.

    Science.gov (United States)

    Zeng, Peng; Cadusch, Jasper; Chakraborty, Debadi; Smith, Trevor A; Roberts, Ann; Sader, John E; Davis, Timothy J; Gómez, Daniel E

    2016-04-13

    Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light-matter states where material properties such as the work function [ Hutchison et al. Adv. Mater. 2013 , 25 , 2481 - 2485 ], chemical reactivity [ Hutchison et al. Angew. Chem., Int. Ed. 2012 , 51 , 1592 - 1596 ], ultrafast energy relaxation [ Salomon et al. Angew. Chem., Int. Ed. 2009 , 48 , 8748 - 8751 ; Gomez et al. J. Phys. Chem. B 2013 , 117 , 4340 - 4346 ], and electrical conductivity [ Orgiu et al. Nat. Mater. 2015 , 14 , 1123 - 1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light-matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.

  11. Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system

    Science.gov (United States)

    Huang, Y. D.; Yu, Y.; Qin, H.; Sun, J. D.; Zhang, Z. P.; Li, X. X.; Huang, J. J.; Cai, Y.

    2016-11-01

    Electrically driven broadband modulator with large modulation depth and high speed is in high demand to meet the technical advancing and applications in terahertz fields recently. So far, the single-particle non-resonant absorption mechanism described by the Drude conductivity has been utilized in most of the related researches but is still not efficient enough. Here we proposed and demonstrated a terahertz modulator based on the collective electron plasma excitations (plasmons) in a grating-coupled two-dimensional electron gas in GaN/AlGaN heterostructure. By switching between the resonant and non-resonant conditions of the 2D plasmon excitation enabled by applying proper gate biases, the transmission of terahertz electromagnetic waves can be efficiently manipulated. Taking advantage of its resonant characteristic combined with the strong electric field enhancement in the active region, we experimentally achieved a maximum intensity modulation depth of 93%, a 3 dB operation bandwidth of ˜400 kHz, and a small required driving voltage amplitude of 2 V at a cryogenic temperature of 8.7 K. Owing to its excellent performances, this active plasmon-based terahertz modulator may offer some promising solutions in several fields of terahertz technology in the future.

  12. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach.

    Science.gov (United States)

    Ding, Wendu; Hsu, Liang-Yan; Schatz, George C

    2017-02-14

    This paper presents a new real-time electrodynamics approach for determining the rate of resonance energy transfer (RET) between two molecules in the presence of plasmonic or other nanostructures (inhomogeneous absorbing and dispersive media). In this approach to plasmon-coupled resonance energy transfer (PC-RET), we develop a classical electrodynamics expression for the energy transfer matrix element which is evaluated using the finite-difference time-domain (FDTD) method to solve Maxwell's equations for the electric field generated by the molecular donor and evaluated at the position of the molecular acceptor. We demonstrate that this approach yields RET rates in homogeneous media that are in precise agreement with analytical theory based on quantum electrodynamics (QED). In the presence of gold nanoparticles, our theory shows that the long-range decay of the RET rates can be significantly modified by plasmon excitation, with rates increased by as much as a factor of 10(6) leading to energy transfer rates over hundreds of nm that are comparable to that over tens of nm in the absence of the nanoparticles. These promising results suggest important future applications of the PC-RET in areas involving light harvesting or sensing, where energy transfer processes involving inhomogeneous absorbing and dispersive media are commonplace.

  13. Wideband helicity dependent spoof surface plasmon polaritons coupling metasurface based on dispersion design

    Science.gov (United States)

    Dong, Guoxiang; Shi, Hongyu; He, Yuchen; Zhang, Anxue; Wei, Xiaoyong; Zhuang, Yongyong; Du, Bai; Xia, Song; Xu, Zhuo

    2016-12-01

    The surface plasmon polaritons (SPPs) have many potential application due to their local field enhancement and sub-wavelength characteristics. Recently, the gradient metasurface is introduced to couple the spoof SPPs in microwave frequency band. One of the most important issue which should be solved is the narrowband of spoof SPPs coupling on the gradient metasurface. Here, the metasurface is proposed to achieve the wideband helicity dependent directional spoof SPPs coupling for circular polarized light. Our research show that the coupling frequency of spoof SPPs on the gradient metasurface is determined by the dispersion of the metasurface, so the coupling frequency can be controlled by dispersion design. The careful design of each cell geometric parameters has provided many appropriate dispersion relations possessed by just one metasurface. The wave vector matching between the propagating wave and the spoof SPPs has been achieved at several frequencies for certain wave vector provided by the metasurface, which leads to wideband spoof SPPs coupling. This work has shown that wideband helicity dependent directional spoof SPPs coupling has been achieved with a high efficiency. Hence, the proposed wideband spoof SPPs coupling presents the improvement in practice applications.

  14. Mid-infrared surface plasmon polariton chemical sensing on fiber-coupled ITO coated glass

    CERN Document Server

    Martinez, Javier; Aguilo, Magdalena; Fernandez, Toney; Solis, Javier; Diaz, Francesc

    2016-01-01

    A novel fiber-coupled ITO coated glass slide sensor for performing surface plasmon polariton chemical monitoring in the 3.5 um mid-IR range is reported. Efficient mid-IR fiber coupling is achieved with 3D laser written waveguides, and the coupling of glass waveguide modes to ITO SPPs is driven by the varying phase matching conditions of different aqueous analytes across the anomalous dispersion range determined by their molecular fingerprints. By means of using both a mid-IR fiber supercontinuum source and a diode laser the excitation of SPPs is demonstrated. The efficient optical monitoring of mid-IR SPPs in smart glass could have a broad range of applications in biological and chemical sensing.

  15. Phonon interaction with coupled photonic-plasmonic modes in a phoxonic cavity

    Directory of Open Access Journals (Sweden)

    S. El-Jallal

    2016-12-01

    Full Text Available We present a theoretical investigation of the acousto-optic interaction in a two-dimensional phoxonic crystal cavity containing a metallic nanowire. The crystal is constituted by a square array of cylindrical holes in a TiO2 matrix containing a cavity inside which a gold nanowire is introduced. The optical modes of the cavity are therefore of combined photonic-plasmonic character. We calculate the strength of coupling between these modes and the localized phonons of the cavity, based on the “Moving Interface” mechanism of acousto-optic coupling. We discuss the coupling strength as a function of the size and position of the metallic nanowire and compare the results with those of a cavity without metallic particle.

  16. Graphene-Hexagonal Boron Nitride Heterostructure as a Tunable Phonon–Plasmon Coupling System

    Directory of Open Access Journals (Sweden)

    Sheng Qu

    2017-02-01

    Full Text Available The layered van der Waals (vdW heterostructure, assembled from monolayer graphene, hexagonal boron nitride (h-BN and other atomic crystals in various combinations, is emerging as a new paradigm with which to attain desired electronic and optical properties. In this paper, we study theoretically the mid-infrared optical properties of the vdW heterostructure based on the graphene–h-BN system. The light–matter interaction of this heterostructure system is described by the hyperbolic phonon–plasmon polaritons which originate from the coupling modes of surface plasmon polaritons (SPPs in graphene with hyperbolic phonon polaritons (HPPs in h-BN. By numerical simulation, we find that the coupling modes are governed by the Fermi level of monolayer graphene, the thickness of the h-BN slab and the mode excitation sequence of SPPs and HPPs. Moreover, the response of the coupling modes of the graphene–h-BN heterostructure on a noble metal layer is also proposed in this paper.

  17. Deterministic radiative coupling between plasmonic nanoantennas and semiconducting nanowire quantum dots

    CERN Document Server

    Jeannin, Mathieu; Bellet-Amalric, Edith; Kheng, Kuntheak; Nogues, Gilles

    2016-01-01

    We report on the deterministic coupling between single semiconducting nanowire quantum dots emitting in the visible and plasmonic Au nanoantennas. Both systems are separately carefully characterized through microphotoluminescence and cathodoluminescence. A two-step realignment process using cathodoluminescence allows for electron beam lithography of Au antennas near individual nanowire quantum dots with a precision of 50 nm. A complete set of optical properties are measured before and after antenna fabrication. They evidence both an increase of the NW absorption, and an improvement of the quantum dot emission rate up to a factor two in presence of the antenna.

  18. The role of interference in unraveling the ZZ-couplings of the newly discovered boson at the LHC

    CERN Document Server

    Chen, Mingshui; Gainer, James S; Korytov, Andrey; Matchev, Konstantin T; Milenovic, Predrag; Mitselmakher, Guenakh; Park, Myeonghun; Rinkevicius, Aurelijus; Snowball, Matthew

    2014-01-01

    We present a general procedure for measuring the tensor structure of the coupling of the scalar Higgs-like boson recently discovered at the LHC to two Z bosons, including the effects of interference among different operators. To motivate our concern with this interference, we explore the parameter space of the couplings in the effective theory describing these interactions and illustrate the effects of interference on the differential dilepton mass distributions. Kinematic discriminants for performing coupling measurements that utilize the effects of interference are developed and described. We present projections for the sensitivity of coupling measurements that use these discriminants in future LHC operation in a variety of physics scenarios.

  19. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.

    Science.gov (United States)

    Popp, Paul S; Herrmann, Janning F; Fritz, Eva-Corinna; Ravoo, Bart Jan; Höppener, Christiane

    2016-03-23

    Coupling of plasmon resonances in metallic gap antennas is of interest for a wide range of applications due to the highly localized strong electric fields supported by these structures, and their high sensitivity to alterations of their structure, geometry, and environment. Morphological alterations of asymmetric nanoparticle dimer antennas with (sub)-nanometer size gaps are assigned to changes of their optical response in correlative dark-field spectroscopy and high-resolution transmission electron microscopy (HR-TEM) investigations. This multimodal approach to investigate individual dimer structures clearly demonstrates that the coupling of the plasmon modes, in addition to well-known parameters such as the particle geometry and the gap size, is also affected by the relative alignment of both nanoparticles. The investigations corroborate that the alignment of the gap forming facets, and with that the gap area, is crucial for their scattering properties. The impact of a flat versus a rounded gap structure on the optical properties of equivalent dimers becomes stronger with decreasing gap size. These results hint at a higher confinement of the electric field in the gap and possibly a different onset of quantum transport effects for flat and rounded gap antennas in corresponding structures for very narrow gaps.

  20. Enhanced optical second harmonic generation in hybrid polymer nanoassemblies based on coupled surface plasmon resonance of a gold nanoparticle array

    Science.gov (United States)

    Ishifuji, Miki; Mitsuishi, Masaya; Miyashita, Tokuji

    2006-07-01

    Effective utilization of coupled surface plasmon resonance from gold nanoparticles was demonstrated experimentally for optoelectronic applications based on second-order nonlinear optics. Hybrid polymer nanoassemblies were constructed by manipulating gold nanoparticle arrays with nonlinear optical active polymer nanosheets to investigate the second harmonic generation. The gold nanoparticle arrays were assembled on heterodeposited polymer nanosheets. The second harmonic light intensity was enhanced by a factor of 8. The observed enhancement was attributed to coupling of surface plasmons between two adjacent gold nanoparticles, thereby enhancing the surface electromagnetic field around the nanoparticles at the fundamental light wavelength (1064nm).

  1. Multiple plasmon-induced transparency effects in a multimode-cavity-coupled metal-dielectric-metal waveguide

    Science.gov (United States)

    Chen, Zhiquan; Li, Hongjian; He, Zhihui; Xu, Hui; Zheng, Mingfei; Zhao, Mingzhuo

    2017-09-01

    We numerically and theoretically investigate multiple plasmon-induced transparency (PIT) effects in a multimode-cavity-coupled metal-dielectric-metal (MDM) waveguide system. The introduced multimode coupled-radiating oscillator theory (MC-ROT) gives a clear understanding of multiple PIT effects in the proposed system. Two and three PIT peaks appear in the transmission spectra corresponding to the symmetrical and asymmetrical structures, respectively. Evolution of the PIT peaks can be effectively tuned by adjusting the geometric dimensions and asymmetry of the structure. The ultra-compact plasmonic waveguide structure may have important applications for multichannel filters, optical switches, and other devices in integrated optical circuits.

  2. Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides

    CERN Document Server

    Hassan, K; Bernardin, T; Colas-des-Francs, G; Weeber, Jean-Claude; de Lamestre, R Espiau; Dereux, Alain

    2013-01-01

    We perform advanced radiation leakage microscopy of routing dielectric-loaded plasmonic waveguiding structures. By direct plane imaging and momentum-space spectroscopy, we analyze the energy transfer between coupled waveguides as a function of gap distance and reveal the momentum distribution of curved geometries. Specifically, we observed a clear degeneracy lift of the effective indices for strongly interacting waveguides in agreement with coupled-mode theory. We use momentum-space representations to discuss the effect of curvature on dielectric-loaded waveguides. The experimental images are successfully reproduced by a numerical and an analytical model of the mode propagating in a curved plasmonic waveguide.

  3. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons

    CERN Document Server

    Hu, Tao; Wu, Lin; Zhang, Long; Shan, Yuwei; Lu, Jian; Wang, Jun; Luo, Song; Zhang, Zhe; Liao, Liming; Wu, Shiwei; Shen, S C; Chen, Zhanghai

    2016-01-01

    Two dimensional (2D) semiconductor materials of transition-metal dichalcogenides (TMDCs) manifest many peculiar physical phenomena in the light-matter interaction. Due to their ultrathin property, strong interaction with light and the robust excitons at room temperature, they provide a perfect platform for studying the physics of strong coupling in low dimension and at room temperature. Here we report the strong coupling between 2D semiconductor excitons and Tamm plasmon polaritons (TPPs). We observe a Rabi splitting of about 54 meV at room temperature by measuring the angle resolved differential reflectivity spectra and simulate the theoretical results by using the transfer matrix method. Our results will promote the realization of the TPP based ultrathin polariton devices at room temperature.

  4. Ultracompact beam splitters based on plasmonic nanoslits

    Science.gov (United States)

    Zhou, Chuanhong; Kohli, Punit

    2011-01-01

    An ultracompact plasmonic beam splitter is theoretically and numerically investigated. The splitter consists of a V-shaped nanoslit in metal films. Two groups of nanoscale metallic grooves inside the slit (A) and at the small slit opening (B) are investigated. We show that there are two energy channels guiding light out by the splitter: the optical and the plasmonic channels. Groove A is used to couple incident light into the plasmonic channel. Groove B functions as a plasmonic scatter. We demonstrate that the energy transfer through plasmonic path is dominant in the beam splitter. We find that more than four times the energy is transferred by the plasmonic channel using structures A and B. We show that the plasmonic waves scattered by B can be converted into light waves. These light waves redistribute the transmitted energy through interference with the field transmitted from the nanoslit. Therefore, different beam splitting effects are achieved by simply changing the interference conditions between the scattered waves and the transmitted waves. The impact of the width and height of groove B are also investigated. It is found that the plasmonic scattering of B is changed into light scattering with increase of the width and the height of B. These devices have potential applications in optical sampling, signal processing, and integrated optical circuits. PMID:21647248

  5. Managing multiple roles - Personality, stress, and work-family interference in dual-earner couples

    NARCIS (Netherlands)

    Wierda-Boer, H.H.; Gerris, J.R.M.; Vermulst, A.A.

    2009-01-01

    Today many parents have multiple roles. This study examined how personality, domain-specific stress, and work-family interference are interrelated. Questionnaire data of 276 Dutch dual-earner couples with young children were analyzed using structural equation modeling. Findings demonstrated that job

  6. Single-molecule strong coupling at room temperature in plasmonic nanocavities

    Science.gov (United States)

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host-guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light-matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

  7. Mode-evolution-based polarization rotation and coupling between silicon and hybrid plasmonic waveguides

    Science.gov (United States)

    Kim, Sangsik; Qi, Minghao

    2015-12-01

    Hybrid plasmonic (HP) modes allow strong optical field confinement and simultaneously low propagation loss, offering a potentially compact and efficient platform for on-chip photonic applications. However, their implementation is hampered by the low coupling efficiency between dielectric guided modes and HP modes, caused by mode mismatch and polarization difference. In this work, we present a mode-evolution-based polarization rotation and coupling structure that adiabatically rotates the TE mode in a silicon waveguide and couples it to the HP mode in a strip silicon-dielectric-metal waveguide. Simulation shows that high coupling factors of 92%, 78%, 75%, and 73% are achievable using Ag, Au, Al, and Cu as the metal cap, respectively, at a conversion length of about 5 μm. For an extremely broad wavelength range of 1300-1800 nm, the coupling factor is >64% with a Ag metal cap, and the total back-reflection power, including all the mode reflections and backscattering, is below -40 dB, due to the adiabatic mode transition. Our device does not require high-resolution lithography and is tolerant to fabrication variations and imperfections. These attributes together make our device suitable for optical transport systems spanning all telecommunication bands.

  8. Coupling of guided Surface Plasmon Polaritons to proximal self-assembled InGaAs Quantum Dots

    CERN Document Server

    Bracher, Gregor; Blauth, Mäx; Jakubeit, Clemens; Müller, Kai; Koblmüller, Gregor; Bichler, Max; Kaniber, Michael; Finley, Jonathan J

    2012-01-01

    We present investigations of the propagation length of guided surface plasmon polaritons along Au waveguides on GaAs and their coupling to near surface InGaAs self-assembled quantum dots. Our results reveal surface plasmon propagation lengths ranging from 13.4 {\\pm} 1.7 {\\mu}m to 27.5 {\\pm} 1.5 {\\mu}m as the width of the waveguide increases from 2-5 {\\mu}m. Experiments performed on active structures containing near surface quantum dots clearly show that the propagating plasmon mode excites the dot, providing a new method to spatially image the surface plasmon mode. We use low temperature confocal microscopy with polarization control in the excitation and detection channel. After excitation, plasmons propagate along the waveguide and are scattered into the far field at the end. By comparing length and width evolution of the waveguide losses we determine the plasmon propagation length to be 27.5 {\\pm} 1.5 {\\mu}m at 830 nm (for a width of 5 {\\mu}m), reducing to 13.4 {\\pm} 1.7 {\\mu}m for a width of 2 {\\mu}m. For ...

  9. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.

    Science.gov (United States)

    Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H

    2016-01-13

    Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.

  10. Photo-induced electron transfer in the strong coupling regime: Waveguide-plasmon polaritons

    CERN Document Server

    Zeng, Peng; Chakraborty, Debadi; Smith, Trevor A; Roberts, Ann; Sader, John E; Davis, Timothy J; Gomez, Daniel E

    2015-01-01

    Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light--matter states where material properties such as the work function\\cite{Hutchison_AM2013a}, chemical reactivity\\cite{Hutchison_ACIE2012a}, ultra--fast energy relaxation \\cite{Salomon_ACIE2009a,Gomez_TJOPCB2012a} and electrical conductivity\\cite{Orgiu_NM2015a} of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light--matter coupling between confined photons on a semiconductor waveguide and localised plasmon resonances on metal nanowires modifies the efficiency of the photo--induced charge--transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultra--fast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor, and the hybridization of waveguide an...

  11. Surface second-harmonic generation from coupled spherical plasmonic nanoparticles: Eigenmode analysis and symmetry properties

    Science.gov (United States)

    Butet, Jérémy; Dutta-Gupta, Shourya; Martin, Olivier J. F.

    2014-06-01

    The surface second-harmonic generation from interacting spherical plasmonic nanoparticles building different clusters (symmetric and asymmetric dimers, trimers) is theoretically investigated. The plasmonic eigenmodes of the nanoparticle clusters are first determined using an ab initio approach based on the Green's functions method. This method provides the properties, such as the resonant wavelengths, of the modes sustained by a given cluster. The fundamental and second-harmonic responses of the corresponding clusters are then calculated using a surface integral method. The symmetry of both the linear and nonlinear responses is investigated, as well as their relationship. It is shown that the second-harmonic generation can be significantly enhanced when the fundamental field is such that its second harmonic matches modes with suitable symmetry. The role played by the nanogaps in second-harmonic generation is also underlined. The results presented in this article demonstrate that the properties of the second-harmonic generation from coupled metallic nanoparticles cannot be fully predicted from their linear response only, while, on the other hand, a detailed knowledge of the underlying modal structure can be used to optimize the generation of the second harmonic.

  12. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals

    Science.gov (United States)

    Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A.; Atwater, Harry A.

    2016-08-01

    Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments.

  13. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons

    Science.gov (United States)

    Zhou, You; Scuri, Giovanni; Wild, Dominik S.; High, Alexander A.; Dibos, Alan; Jauregui, Luis A.; Shu, Chi; de Greve, Kristiaan; Pistunova, Kateryna; Joe, Andrew Y.; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip; Lukin, Mikhail D.; Park, Hongkun

    2017-09-01

    Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin-orbit coupling and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe2 monolayer is placed on top of a single-crystal silver film, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication.

  14. A study of the coupling between LO phonons and plasmons in InP p-i-n diodes

    Science.gov (United States)

    Thao, Dinh Nhu

    2017-03-01

    This paper reports a study investigating the coupling between longitudinal optical (LO) phonons and plasmons in InP p-i-n diodes by a numerical simulation. A significant change is observed in the Fourier transform spectra of transient electric field when taking the coupling into account. The findings show two separate peaks instead of a single plasma peak as for non-coupling case. In addition, the bulk-like dispersion relations of the frequencies of those two peaks on the carrier density are found. Therefore, it is proposed that those behaviors manifest the LO phonon-plasmon coupling in the diodes. Also, there is evidence of the peak clipping by the diode itself, a phenomenon not being seen in the bulk InP semiconductor.

  15. Coupling between Surface Plasmon Resonance and electric current in Au stripes

    Science.gov (United States)

    Garcia, Miguel Angel; Serrano, Aida; de La Venta, Jose

    2009-03-01

    Surface Plasmon Resonance (SPR) is the most outstanding feature of noble metal films. SPR consists on a collective oscillation of the conduction electrons when excited optically in the appropriate geometrical and energy conditions. The electrical current passing trough the metal film involves also the movement of conduction electrons. Thus, coupling effects are expected between SPR and electrical resistivity. A modification of the SPR when a electrical current passes through the film, could allow the modulation of an optical signal by a electrical one. Similarly, when the film is illuminated at the SPR conditions, the oscillation of the conduction electrons and local heating can induce an enhancement of the electric resistivity that can be used to translate an optical signal into a electric one. Those effects could be useful in the development of new fast optoelectronic transducers. We present here results on Au stripes illuminated to induce the SPR while electric currents flow with different orientation with respect to the light polarization

  16. Space Quantization of Light Transmission by Strong Coupling of Plasmonic Cavity Modes with Photosynthetic Complexes

    CERN Document Server

    Carmeli, Itai; Hieflero, Omri; Liliach, Igal; Zalevsky, Zeev; Mujica, Vladimiro; Richeter, Shachar

    2014-01-01

    The interaction between molecules and surface plasmons in defined geometries can lead to new light mater hybrid states where light propagation is strongly influenced by molecular photon absorption. Their application range from lasing LEDs to controlling chemical reactions and are relevant in light harvesting. The coupling between the electromagnetic field and molecular excitations may also lead to macroscopic extended coherent states characterized by an increase in temporal and spatial coherency. In this respect, it is intriguing to explore the coherency of the hybrid system for molecules that possess highly efficient exciton energy transfer. Such a molecule, is the photosynthetic light harvesting complex photosystem I which has an extended antenna system dedicated for efficient light harvesting. In this work, we demonstrate space quantization of light transmission through a single slit in free standing Au film coated with several layers of PS I. A self assembly technique for multilayer fabrication is used, e...

  17. Single-band high absorption and coupling between localized surface plasmons modes in a metamaterials absorber

    Science.gov (United States)

    Zhong, Min; Liu, Shui Jie; Xu, Bang Li; Wang, Jie; Huang, Hua Qing

    2017-10-01

    In this paper, we design and simulate a metamaterials absorbers based on the resonance of the local surface plasmon (LSP) mode. The damping constant of gold layer is optimized in simulations to eliminate the effect of the inappropriate material parameters on the electromagnetic properties of the proposed metamaterial absorber. The horizontal distance between two metal particles is optimized in simulations and a perfect absorption resonance peak is achieved due to the strong coupling of LSP modes. A new absorption peak is obtained when the horizontal distance is 0 nm. The vertical distance between the new metal particles and the bottom metal layer is reduced, which leads to the absorption peak reduce based on the reduction of the intensity of LSP modes. A new absorption peak is obtained when the new metallic particle and the bottom gold layer form a whole structure.

  18. Tunable Plasmonic Band-Pass Filter with Dual Side-Coupled Circular Ring Resonators

    Directory of Open Access Journals (Sweden)

    Dongdong Liu

    2017-03-01

    Full Text Available A wavelength band-pass filter with asymmetric dual circular ring resonators in a metal-insulator-metal (MIM structure is proposed and numerically simulated. For the interaction of the local discrete state and the continuous spectrum caused by the side-coupled resonators and the baffle, respectively, the transmission spectrum exhibits a sharp and asymmetric profile. By adjusting the radius and material imbedded in one ring cavity, the off-to-on plasmon-induced absorption (PIA optical response can be tunable achieved. In addition, the structure can be easily extended to other similar compact structures to realize the filtering task. Our structures have important potential applications for filters and sensors at visible and near-infrared regions.

  19. Dynamically coupled plasmon-phonon modes in GaP: An indirect-gap polar semiconductor

    Science.gov (United States)

    Ishioka, Kunie; Brixius, Kristina; Höfer, Ulrich; Rustagi, Avinash; Thatcher, Evan M.; Stanton, Christopher J.; Petek, Hrvoje

    2015-11-01

    The ultrafast coupling dynamics of coherent optical phonons and the photoexcited electron-hole plasma in the indirect gap semiconductor GaP are investigated by experiment and theory. For below-gap excitation and probing by 800-nm light, only the bare longitudinal optical (LO) phonons are observed. For above-gap excitation with 400-nm light, the photoexcitation creates a high density, nonequilibrium e -h plasma, which introduces an additional, faster decaying oscillation due to an LO phonon-plasmon coupled (LOPC) mode. The LOPC mode frequency exhibits very similar behavior for both n - and p -doped GaP, downshifting from the LO to the transverse optical (TO) phonon frequency limits with increasing photoexcited carrier density. We assign the LOPC mode to the LO phonons coupled with the photoexcited multicomponent plasma. For the 400-nm excitation, the majority of the photoexcited electrons are scattered from the Γ valley into the satellite X valley, while the light and spin-split holes are scattered into the heavy hole band, within 30 fs. The resulting mixed plasma is strongly damped, leading to the LOPC frequency appearing in the reststrahlen gap. Due to the large effective masses of the X electrons and heavy holes, the coupled mode appears most distinctly at carrier densities ≳5 ×1018cm-3 . We perform theoretical calculations of the nuclear motions and the electronic polarizations following an excitation with an ultrashort optical pulse to obtain the transient reflectivity responses of the coupled modes. We find that, while the longitudinal diffusion of photoexcited carriers is insignificant, the lateral inhomogeneity of the photoexcited carriers due to the laser intensity profile should be taken into account to reproduce the major features of the observed coupled mode dynamics.

  20. Plasmonic Metamaterials

    CERN Document Server

    Yao, Kan

    2013-01-01

    Plasmonics and metamaterials have attracted considerable attention over the past decade, owing to the revolutionary impacts that they bring to both the fundamental physics and practical applications in multiple disciplines. Although the two fields initially advanced along their individual trajectories in parallel, they started to interfere with each other when metamaterials reached the optical regime. The dynamic interplay between plasmonics and metamaterials has generated a number of innovative concepts and approaches, which are impossible with either area alone. This review presents the fundamentals, recent advances and future perspectives in the emerging field of plasmonic metamaterials, aiming to open up new exciting opportunities for nanoscience and nanotechnology.

  1. Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals

    CERN Document Server

    Dyer, Gregory C; Allen, S James; Grine, Albert D; Bethke, Don; Reno, John L; Shaner, Eric A

    2016-01-01

    Photonic crystals and metamaterials have emerged as two classes of tailorable materials that enable precise control of light. Plasmonic crystals, which can be thought of as photonic crystals fabricated from plasmonic materials, Bragg scatter incident electromagnetic waves from a repeated unit cell. However, plasmonic crystals, like metamaterials, are composed of subwavelength unit cells. Here, we study terahertz plasmonic crystals of several periods in a two dimensional electron gas. This plasmonic medium is both extremely subwavelength ($\\approx \\lambda/100$) and reconfigurable through the application of voltages to metal electrodes. Weakly localized crystal surface states known as Tamm states are observed. By introducing an independently controlled plasmonic defect that interacts with the Tamm states, we demonstrate a frequency agile electromagnetically induced transparency phenomenon. The observed 50% ${\\it in-situ}$ tuning of the plasmonic crystal band edges should be realizable in materials such as graph...

  2. Electron energy-loss spectroscopy of branched gap plasmon resonators

    Science.gov (United States)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen; Mortensen, N. Asger; Brongersma, Mark L.; Bozhevolnyi, Sergey I.

    2016-12-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons.

  3. Hybrid plasmonic-photonic resonators (Conference Presentation)

    Science.gov (United States)

    Koenderink, A. Femius; Doeleman, Hugo M.; Ruesink, Freek; Verhagen, Ewold; Osorio, Clara I.

    2016-09-01

    Hybrid nanophotonic structures are structures that integrate different nanoscale platforms to harness light-matter interaction. We propose that combinations of plasmonic antennas inside modest-Q dielectric cavities can lead to very high Purcell factors, yielding plasmonic mode volumes at essentially cavity quality factors. The underlying physics is subtle: for instance, how plasmon antennas with large cross sections spoil or improve cavities and vice versa, contains physics beyond perturbation theory, depending on interplays of back-action, and interferences. This is evident from the fact that the local density of states of hybrid systems shows the rich physics of Fano interferences. I will discuss recent scattering experiments performed on toroidal microcavities coupled to plasmon particle arrays that probe both cavity resonance shifts and particle polarizability changes illustrating these insights. Furthermore I will present our efforts to probe single plasmon antennas coupled to emitters and complex environments using scatterometry. An integral part of this approach is the recently developed measurement method of `k-space polarimetry', a microscopy technique to completely classify the intensity and polarization state of light radiated by a single nano-object into any emission direction that is based on back focal plane imaging and Stokes polarimetry. I show benchmarks of this technique for the cases of scattering, fluorescence, and cathodoluminescence applied to directional surface plasmon polariton antennas.

  4. Metal-Semiconductor Nanoparticle Hybrids Formed by Self-Organization: A Platform to Address Exciton-Plasmon Coupling.

    Science.gov (United States)

    Strelow, Christian; Theuerholz, T Sverre; Schmidtke, Christian; Richter, Marten; Merkl, Jan-Philip; Kloust, Hauke; Ye, Ziliang; Weller, Horst; Heinz, Tony F; Knorr, Andreas; Lange, Holger

    2016-08-10

    Hybrid nanosystems composed of excitonic and plasmonic constituents can have different properties than the sum of of the two constituents, due to the exciton-plasmon interaction. Here, we report on a flexible model system based on colloidal nanoparticles that can form hybrid combinations by self-organization. The system allows us to tune the interparticle distance and to combine nanoparticles of different sizes and thus enables a systematic investigation of the exciton-plasmon coupling by a combination of optical spectroscopy and quantum-optical theory. We experimentally observe a strong influence of the energy difference between exciton and plasmon, as well as an interplay of nanoparticle size and distance on the coupling. We develop a full quantum theory for the luminescence dynamics and discuss the experimental results in terms of the Purcell effect. As the theory describes excitation as well as coherent and incoherent emission, we also consider possible quantum optical effects. We find a good agreement of the observed and the calculated luminescence dynamics induced by the Purcell effect. This also suggests that the self-organized hybrid system can be used as platform to address quantum optical effects.

  5. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    Science.gov (United States)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  6. Plasmon Resonance Energy Transfer: Coupling between Chromophore Molecules and Metallic Nanoparticles.

    Science.gov (United States)

    Cao, Yue; Xie, Tao; Qian, Ruo-Can; Long, Yi-Tao

    2017-01-01

    Plasmon resonance energy transfer (PRET) from a single metallic nanoparticle to the molecules adsorbed on its surface has attracted more and more attentions in recent years. Here, a molecular beacon (MB)-regulated PRET coupling system composed of gold nanoparticles (GNPs) and chromophore molecules has been designed to study the influence of PRET effect on the scattering spectra of GNPs. In this system, the chromophore molecules are tagged to the 5'-end of MB, which can form a hairpin structure and modified on the surface of GNPs by its thiol-labeled 3'-end. Therefore, the distance between GNPs and chromophore molecules can be adjusted through the open and close of the MB loop. From the peak shift, the PRET interactions of different GNPs-chromophore molecules coupling pairs have been calculated by discrete dipole approximation and the fitting results match well with the experimental data. Therefore, the proposed system has been successfully applied for the analysis of PRET situation between various metallic nanoparticles and chromophore molecules, and provides a useful tool for the potential application in screening the PRET-based nanoplasmonic sensors.

  7. Raman scattering by coupled plasmon-LO phonons in InN nanocolumns

    Energy Technology Data Exchange (ETDEWEB)

    Lazic, S.; Gallardo, E.; Calleja, J.M. [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Agullo-Rueda, F. [Materials Science Institute of Madrid, CSIC, 288049 Madrid (Spain); Grandal, J.; Sanchez-Garcia, M.A.; Calleja, E. [ISOM and Departamento de Ingenieria Electronica, ETSIT, Universidad Politecnica de Madrid, 28040 Madrid (Spain)

    2008-07-01

    Raman measurements on high quality, relaxed InN nanocolumns grown on Si(001) and Si(111) substrates by plasma-assisted molecular beam epitaxy are reported. A coupled LO phonon-plasmon mode around 430 cm{sup -1}, together with the uncoupled LO phonon appears in the nanocolumnar samples. The coupled mode is attributed to spontaneous accumulation of electrons at the lateral surfaces of the nanocolumns, while the uncoupled phonon originates from their inner part. Infrared reflectance measurements confirm the presence of electrons in the nanocolumns. The electron density in the accumulation layer depends on the growth temperature and is sensitive to exposure of HCl. Our results indicate that accumulation of intrinsic electrons occurs not only at the polar surfaces of InN layers, but also on non-polar lateral surfaces of InN nanocolumns. Its origin is attributed to an In-rich surface reconstruction of the nanocolumns sidewalls. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    OpenAIRE

    Liu, Peter Q.; Luxmoore, Isaac. J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.

    2015-01-01

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light–matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-co...

  9. Plasmonic Light Trapping in an Ultrathin Photovoltaic Layer with Film-Coupled Metamaterial Structures

    CERN Document Server

    Wang, Hao

    2014-01-01

    A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above the bandgap, but also practically serve as electrical contacts for photon-generated charge collection. The energy absorbed by the active layer is greatly enhanced in the film-coupled metamaterial structure, resulting in significant enhancement on the short-circuit current density by three times over a free-standing GaAs layer at the same thickness. The results would facilitate the development of next-generation ultrathin solar cells with lower cost and higher efficiency.

  10. Resolution Enhancement in Surface Plasmon Resonance Sensor Based on Waveguide Coupled Mode by Combining a Bimetallic Approach

    Directory of Open Access Journals (Sweden)

    Won Mok Kim

    2010-12-01

    Full Text Available In this study, we present and demonstrate a new route to a great enhancement in resolution of surface plasmon resonance sensors. Basically, our approach combines a waveguide coupled plasmonic mode and a kind of Au/Ag bimetallic enhancement concept. Theoretical modeling was carried out by solving Fresnel equations for the multilayer stack of prism/Ag inner-metal layer/dielectric waveguide/Au outer-metal layer. The inner Ag layer couples incident light to a guided wave and makes more fields effectively concentrated on the outer Au surface. A substantial enhancement in resolution was experimentally verified for the model stack using a ZnS-SiO2 waveguide layer.

  11. Collective dark states controlled transmission in plasmonic slot waveguide with a stub coupled to a cavity dimer

    CERN Document Server

    Liu, Zhenzhen; Zhang, Qiang; Zhang, Xiaoming; Tao, Keyu

    2015-01-01

    We report collective dark states controlled transmission in metal-dielectric-metal waveguides with a stub coupled to two twin cavities, namely, plasmonic waveguide-stub-dimer systems. In absence of one individual cavity in the dimer, plasmon induced transparency (PIT) is possible when the cavity and the stub have the same resonance frequency. However, it is shown that the hybridized modes in the dimer collectively generate two dark states which make the stub-dimer "invisible" to the straight waveguide, splitting the original PIT peak into two in the transmission spectrum. Simultaneously, the original PIT peak becomes a dip due to dark state interaction, yielding anti-PIT-like modulation of the transmission. With full-wave electromagnetic simulation, we demonstrate that this transition is controlled by the dimer-stub separation and the dimer-stub relative position. All results are analytically described by the temporal coupled mode theory. Our results may be useful in designing densely integrated optical circu...

  12. Two-color, laser excitation improves temporal resolution for detecting the dynamic, plasmonic coupling between metallic nanoparticles.

    Science.gov (United States)

    Wiener, Diane M; Lionberger, Troy A

    2013-05-21

    The ability of two, scattering gold nanoparticles (GNPs) to plasmonically couple in a manner that is dependent on the interparticle separation has been exploited to measure nanometer-level displacements. However, despite broad applicability to monitoring biophysical dynamics, the long time scales (dynamic molecular processes, generally occurring over several milliseconds. Here, we introduce a new technique intended to overcome this technical limitation: ratiometric analysis using monochromatic, evanescent darkfield illumination (RAMEDI). As a proof-of-principle, we monitored dynamic, plasmonic coupling arising from the binding of single biotin- and neutravidin-GNPs with a temporal resolution of 38 ms. We also show that the observable bandwidth is extendable to faster time scales by demonstrating that RAMEDI is capable of achieving a signal-to-noise ratio greater than 20 from individual GNPs observed with 200 Hz bandwidth.

  13. Dynamical analysis of a weakly coupled nonlinear dielectric waveguide -- surface-plasmon model as a new type of Josephson Junction

    CERN Document Server

    Ekşioğlu, Yasa; Güven, Kaan

    2011-01-01

    We propose that a weakly-coupled nonlinear dielectric waveguide -- surface-plasmon system can be formulated as a new type of Josephson junction. Such a system can be realized along a metal - dielectric interface where the dielectric medium hosts a nonlinear waveguide (e.g. fiber) for soliton propagation. We demonstrate that the system is in close analogy to the bosonic Josephson-Junction (BJJ) of atomic condensates at very low temperatures, yet exhibits different dynamical features. In particular, the inherently dynamic coupling parameter between soliton and surface-plasmon generates self-trapped oscillatory states at nonzero fractional populations with zero and $\\pi$ time averaged phase difference. The salient features of the dynamics are presented in the phase space.

  14. Two-photon interference from independent cavity-coupled emitters on-a-chip

    CERN Document Server

    Kim, Je-Hyung; Leavitt, Richard P; Waks, Edo

    2016-01-01

    Interactions between solid-state quantum emitters and cavities are important for a broad range of applications in quantum communication, linear optical quantum computing, nonlinear photonics, and photonic quantum simulation. These applications often require combining many devices on a single chip with identical emission wavelengths in order to generate two-photon interference, the primary mechanism for achieving effective photon-photon interactions. Such integration remains extremely challenging due to inhomogeneous broadening and fabrication errors that randomize the resonant frequencies of both the emitters and cavities. In this letter we demonstrate two-photon interference from independent cavity-coupled emitters on the same chip, providing a potential solution to this long-standing problem. We overcome spectral mismatch between different cavities due to fabrication errors by depositing and locally evaporating a thin layer of condensed nitrogen. We integrate optical heaters to tune individual dots within e...

  15. Asymmetric coupling and dispersion of surface-plasmon-polariton waves on a periodically patterned anisotropic metal film

    OpenAIRE

    Dutta, Jhuma; Ramakrishna, S. Anantha; Lakhtakia, Akhlesh

    2014-01-01

    The morphology of a columnar thin film (CTF) of silver renders it an effectively biaxially anisotropic continuum. CTFs of silver deposited on one-dimensional gratings of photoresist showed strong blazing action and asymmetrically coupled optical radiation to surface plasmon-polariton (SPP) waves propagating only along one direction supported by either the CTF/photoresist or the CTF/air interfaces. Homogenization of the CTFs using the Bruggeman formalism revealed them to display hyperbolic dis...

  16. Surface plasmon polariton assisted optical pulling force

    CERN Document Server

    Petrov, M I; Bogdanov, A A; Shalin, A S; Dogariu, A

    2016-01-01

    We demonstrate both analytically and numerically the existence of optical pulling forces acting on particles located near plasmonic interfaces. Two main factors contribute to the appearance of this negative reaction force. The interference between the incident and reflected waves induces a rotating dipole with an asymmetric scattering pattern while the directional excitation of surface plasmon polaritons (SPP) enhances the linear momentum of scattered light. The strongly asymmetric SPP excitation is determined by spin-orbit coupling of the rotating dipole and surface plasmon polariton. As a result of the total momentum conservation, the force acting on the particle points in a direction opposite to the incident wave propagation. We derive analytical expressions for the force acting on a dipolar particles placed in the proximity of plasmonic surfaces. Analytical expressions for this pulling force are derived within the dipole approximation and are in excellent agreement with results of electromagnetic numerica...

  17. Mechanical control of the plasmon coupling with Au nanoparticle arrays fixed on the elastomeric film via chemical bond

    Science.gov (United States)

    Bedogni, Elena; Kaneko, Satoshi; Fujii, Shintaro; Kiguchi, Manabu

    2017-03-01

    We have fabricated Au nanoparticle arrays on the flexible poly(dimethylsiloxane) (PDMS) film. The nanoparticles were bound to the film via a covalent bond by a ligand exchange reaction. Thanks to the strong chemical bonding, highly stable and uniformly dispersed Au nanoparticle arrays were fixed on the PDMS film. The Au nanoparticle arrays were characterized by the UV–vis, scanning electron microscope (SEM) and surface enhanced Raman scattering (SERS). The UV–vis and SEM measurements showed the uniformity of the surface-dispersed Au nanoparticles, and SERS measurement confirmed the chemistry of the PDMS film. Reflecting the high stability and the uniformity of the Au nanoparticle arrays, the plasmon wavelength of the Au nanoparticles reversely changed with modulation of the interparticle distance, which was induced by the stretching of the PDMS film. The plasmon wavelength linearly decreased from 664 to 591 nm by stretching of 60%. The plasmon wavelength shift can be explained by the change in the strength of the plasmon coupling which is mechanically controlled by the mechanical strain.

  18. Amplification of resonant field enhancement by plasmonic lattice coupling in metallic slit arrays

    Science.gov (United States)

    Klarskov, Pernille; Tarekegne, Abebe T.; Iwaszczuk, Krzysztof; Zhang, X.-C.; Jepsen, Peter Uhd

    2016-11-01

    Nonlinear spectroscopic investigation in the terahertz (THz) range requires significant field strength of the light fields. It is still a challenge to obtain the required field strengths in free space from table-top laser systems at sufficiently high repetition rates to enable quantitative nonlinear spectroscopy. It is well known that local enhancement of the THz field can be obtained for instance in narrow apertures in metallic films. Here we show by simulation, analytical modelling and experiment that the achievable field enhancement in a two-dimensional array of slits with micrometer dimensions in a metallic film can be increased by at least 60% compared to the enhancement in an isolated slit. The additional enhancement is obtained by optimized plasmonic coupling between the lattice modes and the resonance of the individual slits. Our results indicate a viable route to sensitive schemes for THz spectroscopy with slit arrays manufactured by standard UV photolithography, with local field strengths in the multi-ten-MV/cm range at kHz repetition rates, and tens of kV/cm at oscillator repetition rates.

  19. Coupling of light from microdisk lasers into plasmonic nano-antennas.

    Science.gov (United States)

    Hattori, Haroldo T; Li, Ziyuan; Liu, Danyu; Rukhlenko, Ivan D; Premaratne, Malin

    2009-11-09

    An optical dipole nano-antenna can be constructed by placing a sub-wavelength dielectric (e.g., air) gap between two metallic regions. For typical applications using light in the infrared region, the gap width is generally in the range between 50 and 100 nm. Owing to the close proximity of the electrodes, these antennas can generate very intense electric fields that can be used to excite nonlinear effects. For example, it is possible to trigger surface Raman scattering on molecules placed in the vicinity of the nano-antenna, allowing the fabrication of biological sensors and imaging systems in the nanometric scale. However, since nano-antennas are passive devices, they need to receive light from external sources that are generally much larger than the antennas. In this article, we numerically study the coupling of light from microdisk lasers into plasmonic nano-antennas. We show that, by using micro-cavities, we can further enhance the electric fields inside the nano-antennas.

  20. Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.

    Science.gov (United States)

    Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang

    2015-02-14

    Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.

  1. Electric field controlled spin interference in a system with Rashba spin-orbit coupling

    Directory of Open Access Journals (Sweden)

    Orion Ciftja

    2016-05-01

    Full Text Available There have been intense research efforts over the last years focused on understanding the Rashba spin-orbit coupling effect from the perspective of possible spintronics applications. An important component of this line of research is aimed at control and manipulation of electron’s spin degrees of freedom in semiconductor quantum dot devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system embedded in a host semiconducting material that lacks inversion-symmetry. This way, the Rashba spin-orbit coupling effect may potentially lead to fabrication of a new generation of spintronic devices where control of spin, thus magnetic properties, is achieved via an electric field and not a magnetic field. In this work we investigate theoretically the electron’s spin interference and accumulation process in a Rashba spin-orbit coupled system consisting of a pair of two-dimensional semiconductor quantum dots connected to each other via two conducting semi-circular channels. The strength of the confinement energy on the quantum dots is tuned by gate potentials that allow “leakage” of electrons from one dot to another. While going through the conducting channels, the electrons are spin-orbit coupled to a microscopically generated electric field applied perpendicular to the two-dimensional system. We show that interference of spin wave functions of electrons travelling through the two channels gives rise to interference/conductance patterns that lead to the observation of the geometric Berry’s phase. Achieving a predictable and measurable observation of Berry’s phase allows one to control the spin dynamics of the electrons. It is demonstrated that this system allows use of a microscopically generated electric field to control Berry’s phase, thus, enables one to tune the spin-dependent interference pattern and spintronic properties with no

  2. Distinguishing between whole cells and cell debris using surface plasmon coupled emission (Conference Presentation)

    Science.gov (United States)

    Talukder, Muhammad A.; Menyuk, Curtis R.; Kostov, Yordan

    2017-02-01

    Distinguishing between intact cells, dead but still whole cells, and cell debris is an important but difficult task in life sciences. The most common way to identify dead cells is using a cell-impermeant DNA binding dye, such as propidium iodide. A healthy living cell has an intact cell membrane and will act as a barrier to the dye so that it cannot enter the cell. A dead cell has a compromised cell membrane, and it will allow the dye into the cell to bind to the DNA and become fluorescent. The dead cells therefore will be positive and the live cells will be negative. The dead cells later deteriorate quickly into debris. Different pieces of debris from a single cell can be incorrectly identified as separate dead cells. Although a flow cytometer can quickly perform numerous quantitative, sensitive measurements on each individual cell to determine the viability of cells within a large, heterogeneous population, it is bulky, expensive, and only large hospitals and laboratories can afford them. In this work, we show that the distance-dependent coupling of fluorophore light to surface plasmon coupled emission (SPCE) from fluorescently-labeled cells can be used to distinguish whole cells from cell debris. Once the fluorescent labels are excited by a laser, the fluorescently-labeled whole cells create two distinct intensity rings in the far-field, in contrast to fluorescently-labeled cell debris, which only creates one ring. The distinct far-field patterns can be captured by camera and used to distinguish between whole cells and cell debris.

  3. Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO2-Ag Core-shell Dimers

    OpenAIRE

    Quanshui Li; Zhili Zhang

    2016-01-01

    Bonding and anti-bonding modes of plasmon coupling effects are numerically investigated in TiO2-Ag core-shell nano dimers. First, splitting phenomena of the coupled anti-bonding modes are observed under the longitudinal polarization when the distance between the monomers decreases to a certain level. Second, one of the split resonance modes is identified to be formed by the dipole anti-bonding mode of the monomers from charge density distribution patterns. Those split modes have similar redsh...

  4. Rabi-like splitting from large area plasmonic microcavity

    Directory of Open Access Journals (Sweden)

    Fatemeh Hosseini Alast

    2017-08-01

    Full Text Available Rabi-like splitting was observed from a hybrid plasmonic microcavity. The splitting comes from the coupling of cavity mode with the surface plasmon polariton mode; anti-crossing was observed alongside the modal conversional channel on the reflection light measurement. The hybrid device consists of a 10x10 mm2 ruled metal grating integrated onto the Fabry-Perot microcavity. The 10x10 mm2 ruled metal grating fabricated from laser interference and the area is sufficiently large to be used in the practical optical device. The larger area hybrid plasmonic microcavity can be employed in polariton lasers and biosensors.

  5. Quantum Plasmonics

    OpenAIRE

    Diego Martin-Cano, Paloma A. Huidobro, Esteban Moreno; Diego Martin-Cano; Huidobro, Paloma A.; Esteban Moreno; Garcia-Vidal, F.J.

    2014-01-01

    Quantum plasmonics is a rapidly growing field of research that involves the study of the quantum properties of light and its interaction with matter at the nanoscale. Here, surface plasmons - electromagnetic excitations coupled to electron charge density waves on metal-dielectric interfaces or localized on metallic nanostructures - enable the confinement of light to scales far below that of conventional optics. In this article we review recent progress in the experimental and theoretical inve...

  6. Multiple Resonances Induced by Plasmonic Coupling between Gold Nanoparticle Trimers and Hexagonal Assembly of Gold-Coated Polystyrene Microspheres.

    Science.gov (United States)

    Uchida, Takako; Yoshikawa, Takayasu; Tamura, Mamoru; Iida, Takuya; Imura, Kohei

    2016-09-15

    Optical properties of a gold nanoparticle trimer assembly coupled with gold-coated hexagonally close-packed polystyrene microspheres were investigated by linear and nonlinear spectroscopy. The observed reflection spectrum shows multiple peaks from the visible to near-infrared spectral regions. The spectroscopic properties were also examined by a finite-difference time-domain simulation. We found that the optical response of plasmons excited in the gold nanoparticle trimers was significantly modulated by strong coupling of the plasmons and the photonic mode induced in the gold-coated polystyrene assembly. Two-photon induced photoluminescence and Raman scattering from the sample were investigated, and both signals were significantly enhanced at the gold nanoparticle assembly. The simulations reveal that the electric fields can be enhanced site-selectively, not only at the interstitial sites in the nanoparticle assembly but also at the gaps between the particle and the gold film due to plasmonic interactions, by tuning the wavelength and are responsible for the strong optical responses.

  7. Influence of the interlayer on coupling of surface plasmons in a sandwiched structure with periodic array of nanoapertures.

    Science.gov (United States)

    Sun, Liu-Yang; Qin, Ling; Zhu, Li-Hao; Fan, Ren-Hao; Li, De; Peng, Ru-Wen

    2013-02-01

    In this work, we investigate the optical properties of a multilayer structure, where a SiO2 film is sandwiched by silver films with periodic array of sub-wavelength apertures. Due to the coupling of surface plasmons (SPs) between different layers, electric and magnetic resonances have been observed. By varying the thickness of the interlayer SiO2, we can modify relative phase of the SPs resonance and control the shifts of transmission peaks. Experimentally the multilayers are fabricated by magnetron sputtering and the array of apertures is milled by focused-ion-beam facility. The measured optical transmission spectra reasonably agree with our numerical calculation, which bases on three-dimensional finite-difference time-domain method. To understand the shifts of the peaks, we present a phenomenological explanation, considering the transmission peaks as energy levels, and the coupling of localized surface plasmons as perturbation. These results may have potential applications in designing plasmonic devices and tuning electromagnetic wave in nanophotonics.

  8. Enhancement of near-field radiative heat transfer via multiple coupling of surface waves with graphene plasmon

    Directory of Open Access Journals (Sweden)

    Ting Zhou

    2017-05-01

    Full Text Available Coated silicon carbide (SiC thin films can efficiently enhance near-field radiative heat transfer among metamaterials. In this study, the near-field heat transfer among graphene–SiC–metamaterial (GSM multilayer structures was theoretically investigated. Graphene plasmons could be coupled both with electric surface plasmons supported by the metamaterial and with symmetric and anti-symmetric surface phonon polaritons (SPhPs supported by SiC. The heat transfer among GSM structures was considerably improved compared to that among SiC-coated metamaterials when the chemical potential of graphene was not very high. In addition, the near-field heat transfer was enhanced among SiC–graphene–metamaterial multilayer structures, though the heat transfer among these structures was less than that among GSMs owing to the absence of coupling between symmetric SPhPs and graphene plasmons. Hence, heat transfer could be flexibly tuned by modifying the chemical potential of graphene in both configurations. These results provide a basis for active control of the near-field radiative heat transfer in the far-infrared region.

  9. Actively phase-controlled coupling between plasmonic waveguides via in-between gain-assisted nanoresonator: nanoscale optical logic gates.

    Science.gov (United States)

    Ho, Kum-Song; Han, Yong-Ha; Ri, Chol-Song; Im, Song-Jin

    2016-08-15

    The development of nanoscale optical logic gates has attracted immense attention due to increasing demand for ultrahigh-speed and energy-efficient optical computing and data processing, however, suffers from the difficulty in precise control of phase difference of the two optical signals. We propose a novel conception of nanoscale optical logic gates based on actively phase-controlled coupling between two plasmonic waveguides via an in-between gain-assisted nanoresonator. Precise control of phase difference between the two plasmonic signals can be performed by manipulating pumping rate at an appropriate frequency detuning, enabling a high contrast between the output logic states "1" and "0." Without modification of the structural parameters, different logic functions can be provided. This active nanoscale optical logic device is expected to be quite energy-efficient with ideally low energy consumption on the order of 0.1 fJ/bit. Analytical calculations and numerical experiments demonstrate the validity of the proposed concept.

  10. C60 as an active smart spacer material on silver thin film substrates for enhanced surface plasmon coupled emission.

    Science.gov (United States)

    Mulpur, Pradyumna; Podila, Ramakrishna; Ramamurthy, Sai Sathish; Kamisetti, Venkataramaniah; Rao, Apparao M

    2015-04-21

    In this study, we present the use of C60 as an active spacer material on a silver (Ag) based surface plasmon coupled emission (SPCE) platform. In addition to its primary role of protecting the Ag thin film from oxidation, the incorporation of C60 facilitated the achievement of a 30-fold enhancement in the emission intensity of rhodamine B (RhB) fluorophore. The high signal yield was attributed to the unique π-π interactions between C60 thin films and RhB, which enabled efficient transfer of energy of RhB emission to Ag plasmon modes. Furthermore, minor variations in the C60 film thickness yielded large changes in the enhancement and angularity properties of the SPCE signal, which can be exploited for sensing applications. Finally, the low-cost fabrication process of the Ag-C60 thin film stacks render C60 based SPCE substrates ideal, for the economic and simplistic detection of analytes.

  11. Three-mode coupling interference patterns in the dynamic structure factor of a relaxor ferroelectric

    Science.gov (United States)

    Manley, M. E.; Abernathy, D. L.; Sahul, R.; Stonaha, P. J.; Budai, J. D.

    2016-09-01

    A longstanding controversy for relaxor ferroelectrics has been the origin of the "waterfall" effect in the phonon dispersion curves, in which low-energy transverse phonons cascade into vertical columns. Originally interpreted as phonons interacting with polar nanoregions (PNRs), it was later explained as an interference effect of coupling damped optic and acoustic phonons. In light of a recently discovered PNR vibrational mode near the "waterfall" wave vector [M. E. Manley, J. W. Lynn, D. L. Abernathy, E. D. Specht, O. Delaire, A. R. Bishop, R. Sahul, and J. D. Budai, Nat. Commun. 5, 3683 (2014), 10.1038/ncomms4683], we have reexamined this feature using neutron scattering on [100]-poled PMN-30%PT [0.6 Pb (M g1 /3N b2 /3 ) O3-0.3 PbTi O3] . We find that the PNR mode couples to both optic and acoustic phonons and that this results in complex patterns in the dynamic structure factor, including intensity pockets and peaks localized in momentum-energy space. These features are fully explained by extending the mode-coupling model to include three coupled damped harmonic oscillators representing the transverse optic, acoustic, and PNR modes.

  12. Orbital-selective single molecule excitation and spectroscopy based on plasmon-exciton coupling

    CERN Document Server

    Imada, Hiroshi; Imai-Imada, Miyabi; Kawahara, Shota; Kimura, Kensuke; Kim, Yousoo

    2016-01-01

    The electronic excitation of molecules triggers diverse phenomena such as luminescence and photovoltaic effects, which are the bases of various energy-converting devices. Understanding and control of the excitations at the single-molecule level are long standing targets, however, they have been hampered by the limited spatial resolution in optical probing techniques. Here we investigate the electronic excitation of a single molecule with sub-molecular precision using a localised plasmon at the tip apex of a scanning tunnelling microscope (STM) as an excitation probe. Coherent energy transfer between the plasmon and molecular excitons is discovered when the plasmon is located in the proximity of isolated molecules, which is corroborated by a theoretical analysis. The polarised plasmonic field enables selective excitation of an electronic transition between anisotropic frontier molecular orbitals. Our findings have established the foundation of a novel single-molecule spectroscopy with STM, providing an integra...

  13. An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons

    Science.gov (United States)

    Schröder, Benjamin; Sivis, Murat; Bormann, Reiner; Schäfer, Sascha; Ropers, Claus

    2015-12-01

    We demonstrate multiphoton photoelectron emission from gold nanotips induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a grating coupler. The tip is integrated into an electron gun assembly, which facilitates control over the spatial emission sites and allows us to disentangle direct grating emission from plasmon-triggered apex emission. The nanoscale source size of this electron gun concept enables highly coherent electron pulses with applications in ultrafast electron imaging and diffraction.

  14. An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Benjamin; Sivis, Murat; Bormann, Reiner; Schäfer, Sascha; Ropers, Claus, E-mail: cropers@gwdg.de [4th Physical Institute - Solids and Nanostructures, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2015-12-07

    We demonstrate multiphoton photoelectron emission from gold nanotips induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a grating coupler. The tip is integrated into an electron gun assembly, which facilitates control over the spatial emission sites and allows us to disentangle direct grating emission from plasmon-triggered apex emission. The nanoscale source size of this electron gun concept enables highly coherent electron pulses with applications in ultrafast electron imaging and diffraction.

  15. Compact surface plasmonic waveguide component for integrated optical processor

    Science.gov (United States)

    Gogoi, Nilima; Sahu, Partha Pratim

    2015-06-01

    A compact surface plasmonic two mode interference waveguide component having silicon core and silver and GaAsInP side cladding is proposed for optical processor elements. Coupling operation is obtained by using index modulation of GaAsInP cladding with applied optical pulse.

  16. The Physics and Applications of a 3D Plasmonic Nanostructure

    Science.gov (United States)

    Terranova, Brandon B.

    In this work, the dynamics of electromagnetic field interactions with free electrons in a 3D metallic nanostructure is evaluated theoretically. This dissertation starts by reviewing the relevant fundamentals of plasmonics and modern applications of plasmonic systems. Then, motivated by the need to have a simpler way of understanding the surface charge dynamics on complex plasmonic nanostructures, a new plasmon hybridization tree method is introduced. This method provides the plasmonicist with an intuitive way to determine the response of free electrons to incident light in complex nanostructures within the electrostatic regime. Next, a novel 3D plasmonic nanostructure utilizing reflective plasmonic coupling is designed to perform biosensing and plasmonic tweezing applications. By applying analytical and numerical methods, the effectiveness of this nanostructure at performing these applications is determined from the plasmonic response of the nanostructure to an excitation beam of coherent light. During this analysis, it was discovered that under certain conditions, this 3D nanostructure exhibits a plasmonic Fano resonance resulting from the interference of an in-plane dark mode and an out-of-plane bright mode. In evaluating this nanostructure for sensing changes in the local dielectric environment, a figure of merit of 68 is calculated, which is competitive with current localized surface plasmon resonance refractometric sensors. By evaluating the Maxwell stress tensor on a test particle in the vicinity of the nanostructure, it was found that under the right conditions, this plasmonic nanostructure design is capable of imparting forces greater than 10.5 nN on dielectric objects of nanoscale dimensions. The results obtained in these studies provides new routes to the design and engineering of 3D plasmonic nanostructures and Fano resonances in these systems. In addition, the nanostructure presented in this work and the design principles it utilizes have shown

  17. Arbitrary coupling ratio multimode interference couplers in Silicon-on-Insulator

    CERN Document Server

    Doménech, José David; Gargallo, Bernardo; Muñoz, Pascual

    2014-01-01

    In this paper we present the design, manufacturing, characterization and analysis of the coupling ratio spectral response for Multimode Interference (MMI) couplers in Silicon-on-Insulator (SOI) technology. The couplers were designed using a Si rib waveguide with SiO 2 cladding, on a regular 220 nm film and 2 {\\mu}m buried oxide SOI wafer. A set of eight different designs, three canonical and five using a widened/narrowed coupler body, have been subject of study, with coupling ratios 50:50, 85:15 and 72:28 for the former, and 95:05, 85:15, 75:25, 65:35 and 55:45 for the latter. Two wafers of devices were fabricated, using two different etch depths for the rib waveguides. A set of six dies, three per wafer, whose line metrology matched the design, were retained for characterization. The coupling ratios obtained in the experimental results match, with little deviations, the design targets for a wavelength range between 1525 and 1575 nm, as inferred from spectral measurements and statistical analyses. Excess loss...

  18. Role of inter-tube coupling and quantum interference on electrical transport in carbon nanotube junctions

    Science.gov (United States)

    Tripathy, Srijeet; Bhattacharyya, Tarun Kanti

    2016-09-01

    Due to excellent transport properties, Carbon nanotubes (CNTs) show a lot of promise in sensor and interconnect technology. However, recent studies indicate that the conductance in CNT/CNT junctions are strongly affected by the morphology and orientation between the tubes. For proper utilization of such junctions in the development of CNT based technology, it is essential to study the electronic properties of such junctions. This work presents a theoretical study of the electrical transport properties of metallic Carbon nanotube homo-junctions. The study focuses on discerning the role of inter-tube interactions, quantum interference and scattering on the transport properties on junctions between identical tubes. The electronic structure and transport calculations are conducted with an Extended Hückel Theory-Non Equilibrium Green's Function based model. The calculations indicate conductance to be varying with a changing crossing angle, with maximum conductance corresponding to lattice registry, i.e. parallel configuration between the two tubes. Further calculations for such parallel configurations indicate onset of short and long range oscillations in conductance with respect to changing overlap length. These oscillations are attributed to inter-tube coupling effects owing to changing π orbital overlap, carrier scattering and quantum interference of the incident, transmitted and reflected waves at the inter-tube junction.

  19. Plasmon-exciton coupling at Ag nanocluster decorated TiO2(110) surface studied by time-resolved two-photon photoemission spectroscopy

    Science.gov (United States)

    Tan, Shijing; Argondizzo, Adam; Petek, Hrvoje

    We study the spectroscopy and electron dynamics at Ag nanocluster decorated TiO2(110) surface upon photoexcitation of plasmonic modes by two-photon photoemission spectroscopy (2PP). Depositing Ag onto a reduced rutile TiO2(110) surface at room temperature forms pancake-like Ag particles with an average diameter of 4 nm and height of 1.5 nm. Measurements of the 2PP yield from Ag/TiO2 surface with tunable femtosecond laser excitation show enhancement at plasmonic resonances. Exciting with s-polarization (S -->) the plasmonic resonance enhancement has a single peak at 3.1 eV, whereas with p-polarization (P -->) there is an additional more intense resonance at 3.8 eV. We attribute the 3.1 and 3.8 eV peaks to the in-plane and the surface-normal plasmon modes respectively. Crystal azimuth orientation dependent excitation with (S -->) shows an anisotropy in the 2PP spectra for the 3.1 eV in-plane plasmon mode when the laser electric field is aligned in the [001] vs. [ 1 1 0 ] directions. The existence of two plasmon modes and the in-plane plasmon anisotropy imply that the plasmon modes are perturbed by coherent coupling with excitons in the rutile TiO2 substrate. We speculate that plasmon-exciton resonant energy transfer could play an important role in the plasmonically enhanced photocatalysis at the Ag/TiO2 surface.

  20. Non-linear behaviour of a Superconducting Quantum Interference Device coupled to a radio frequency oscillator

    CERN Document Server

    Murrell, J K J

    2001-01-01

    previously unexplored regions of parameter space. We show that these calculations predict a range of previously unreported dynamical I-V characterises for SQUID rings in the strongly hysteretic regime. Finally, we present the successful realisation of a novel experimental technique that permits the weak link of a SQUID to be probed independently of the associated ring structure by mechanically opening and closing the ring. We demonstrate that this process can be completed during the same experimental run without the need for warming and re-cooling of the sample. This thesis is concerned with the investigation of the non-linear behaviour of a Superconducting Quantum Interference Device (SQUID) coupled to a RF tank circuit. We consider two regimes, one where the underlying SQUID behaviour is non-hysteretic with respect to an externally applied magnetic flux, and the other where hysteretic (dissipative) behaviour is observed. We show that, by following non-linearities induced in the tank circuit response, the un...

  1. Constructive interference between disordered couplings enhances multiparty entanglement in quantum Heisenberg spin glass models

    Science.gov (United States)

    Mishra, Utkarsh; Rakshit, Debraj; Prabhu, R.; Sen(De, Aditi; Sen, Ujjwal

    2016-08-01

    Disordered systems form one of the centrestages of research in many body sciences and lead to a plethora of interesting phenomena and applications. A paradigmatic disordered system consists of a one-dimensional array of quantum spin-1/2 particles, governed by the Heisenberg spin glass Hamiltonian with natural or engineered quenched disordered couplings in an external magnetic field. These systems allow disorder-induced enhancement for bipartite and multipartite observables. Here we show that simultaneous application of independent quenched disorders results in disorder-induced enhancement, while the same is absent with individual application of the same disorders. We term the phenomenon as constructive interference and the corresponding parameter stretches as the Venus regions. Interestingly, it has only been observed for multiparty entanglement and is absent for the single- and two-party physical quantities.

  2. Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings.

    Science.gov (United States)

    Xu, Fang; Poon, Andrew W

    2008-06-09

    We report silicon cross-connect filters using microring resonator coupled multimode-interference (MMI) based waveguide crossings. Our experiments reveal that the MMI-based cross-connect filters impose lower crosstalk at the crossing than the conventional cross-connect filters using plain crossings, while offering a nearly symmetric resonance line shape in the drop-port transmission. As a proof-of-concept for cross-connection applications, we demonstrate on a silicon-on-insulator substrate (i) a 4-channel 1 x 4 linear-cascaded MMI-based cross-connect filter, and (ii) a 2-channel 2 x 2 array-cascaded MMI-based cross-connect filter.

  3. Plasmonics in buried structures

    OpenAIRE

    Romero, I. T.; García de Abajo, Francisco Javier

    2009-01-01

    We describe plasmon propagation in silica-filled coupled nanovoids fully buried in gold. Propagation bands and band gaps are shown to be tunable through the degree of overlap and plasmon hybridization between contiguous voids. The effect of disorder and fabrication imperfections is thoroughly investigated. Our work explores a novel paradigm for plasmon photonics relying on plasmon modes in metal-buried structures, which can benefit from long propagation distances, cancelation of radiative los...

  4. Phonon spectral functions of photo-generated hot carrier plasmas: effects of carrier screening and plasmon-phonon coupling

    Science.gov (United States)

    Yi, Kyung-Soo; Kim, Hye-Jung

    2017-02-01

    We investigate spectral behavior of phonon spectral functions in an interacting multi-component hot carrier plasma. Spectral analysis of various phonon spectral functions is performed considering carrier-phonon channels of polar and nonpolar optical phonons, acoustic deformation-potential, and piezoelectric Coulomb couplings. Effects of phonon self-energy corrections are examined at finite temperature within a random phase approximation extended to include the effects of dynamic screening, plasmon-phonon coupling, and local-field corrections of the plasma species. We provide numerical data for the case of a photo-generated electron-hole plasma formed in a wurtzite GaN. Our result shows the clear significance of the multiplicity of the plasma species in the phonon spectral functions of a multi-component plasma giving rise to a variety of spectral behaviors of carrier-phonon coupled collective modes. A useful sum rule on the plasma-species-resolved dielectric functions is also found.

  5. Eigenmodes of coupled plasmons-excitons in a system of adjoining spherical metallic-J-aggregate nanoshells

    Science.gov (United States)

    Manassah, Jamal T.

    2013-08-01

    Using the spherical modes of the full-Maxwell equations, I compute the eigenfrequencies of the complex consisting of concentric passive inner core, a metallic nanoshell, molecular J-aggregate adsorped to the surface of the metal, immersed in a passive solution. The coupling of the plasmons of the metal to the excitons of the J-aggregate is incorporated in the formalism through the continuity conditions for the tangential components of the electric field and magnetic flux density at the materials interfaces. Comparison with results obtained using the electrostatic approximation shows deviations in both the values of the resonance frequencies and their decay-rates.

  6. Asymmetric coupling and dispersion of surface-plasmon-polariton waves on a periodically patterned anisotropic metal film

    CERN Document Server

    Dutta, Jhuma; Lakhtakia, Akhlesh

    2014-01-01

    The morphology of a columnar thin film (CTF) of silver renders it an effectively biaxially anisotropic continuum. CTFs of silver deposited on one-dimensional gratings of photoresist showed strong blazing action and asymmetrically coupled optical radiation to surface plasmon-polariton (SPP) waves propagating only along one direction supported by either the CTF/photoresist or the CTF/air interfaces. Homogenization of the CTFs using the Bruggeman formalism revealed them to display hyperbolic dispersion, and the dispersion of SPP waves was adequately described thereby.

  7. Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Iida, Daisuke; Chen, Yuntian

    2014-01-01

    for InGaN/GaN quantum-well structures. By using a thin SiN dielectric layer between Ag and GaN we manage to modify and improve surface plasmon coupling effects, and we attribute this to the improved scattering of the nanoparticles at the quantum-well emission wavelength. The results are interpreted using...... numerical simulations, where absorption and scattering cross-sections are studied for different sized particles on GaN and GaN/SiN substrates....

  8. Asymmetric coupling and dispersion of surface-plasmon-polariton waves on a periodically patterned anisotropic metal film

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Jhuma; Ramakrishna, S. Anantha [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Lakhtakia, Akhlesh, E-mail: akhlesh@psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-01-07

    The morphology of a columnar thin film (CTF) of silver renders it an effectively biaxially anisotropic continuum. CTFs of silver deposited on one-dimensional gratings of photoresist showed strong blazing action and asymmetrically coupled optical radiation to surface-plasmon-polariton (SPP) waves propagating only along one direction supported by either the CTF/photoresist or the CTF/air interfaces. Homogenization of the CTFs using the Bruggeman formalism revealed them to display hyperbolic dispersion, and the dispersion of SPP waves was adequately described thereby.

  9. Critical coupling of surface plasmons in graphene attenuated total reflection geometry

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas, Mauro, E-mail: cuevas@df.uba.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires (Argentina); Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires (Argentina)

    2016-12-09

    We study the optical response of an attenuated total reflection (ATR) structure in Otto configuration with graphene sheet, paying especial attention to the occurrence of total absorption. Our results show that due to excitation of surface plasmons on the graphene sheet, two different conditions of total absorption may occur. At these conditions, the energy loss of the surface plasmon by radiation is equal to its energy loss by absorption into the graphene sheet. We give necessary conditions on ATR parameters for the existence of total absorption. - Highlights: • Attenuated total reflection (ATR) structure with graphene sheet. • Surface plasmons and power matched condition. • Necessary conditions on ATR parameters for the existence of total absorption.

  10. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas

    Science.gov (United States)

    Manchon, Delphine; Lermé, Jean; Zhang, Taiping; Mosset, Alexis; Jamois, Cécile; Bonnet, Christophe; Rye, Jan-Michael; Belarouci, Ali; Broyer, Michel; Pellarin, Michel; Cottancin, Emmanuel

    2014-12-01

    In this article, we show for the first time, both theoretically and empirically, that plasmonic coupling can be used to generate Localized Surface Plasmon Resonances (LSPRs) in transition metal dimeric nano-antennas (NAs) over a broad spectral range (from the visible to the near infrared) and that the spectral position of the resonance can be controlled through morphological variation of the NAs (size, shape, interparticle distance). First, accurate calculations using the generalized Mie theory on spherical dimers demonstrate that we can take advantage of the plasmonic coupling to enhance LSPRs over a broad spectral range for many transition metals (Pt, Pd, Cr, Ni etc.). The LSPR remains broad for low interparticle distances and masks the various hybridized modes within the overall resonance. However, an analysis of the charge distribution on the surface of the nanoparticles reveals these modes and their respective contributions to the observed LSPR. In the case of spherical dimers, the transfer of the oscillator strengths from the ``dipolar'' mode to higher orders involves a maximum extinction cross-section for intermediate interparticle distances of a few nanometers. The emergence of the LSPR has been then experimentally illustrated with parallelepipedal NAs (monomers and dimers) made of various transition metals (Pt, Pd and Cr) and elaborated by nanolithography. Absolute extinction cross-sections have been measured with the spatial modulation spectroscopy technique over a broad spectral range (300-900 nm) for individual NAs, the morphology of which has been independently characterized by electron microscopy imaging. A clear enhancement of the LSPR has been revealed for a longitudinal excitation and plasmonic coupling has been clearly evidenced in dimers by an induced redshift and broadening of the LSPR compared to monomers. Furthermore, the LSPR has been shown to be highly sensitive to slight modifications of the interparticle distance. All the experimental

  11. Demonstrating the capability of the high-performance plasmonic gallium-graphene couple.

    Science.gov (United States)

    Losurdo, Maria; Yi, Congwen; Suvorova, Alexandra; Rubanov, Sergey; Kim, Tong-Ho; Giangregorio, Maria M; Jiao, Wenyuan; Bergmair, Iris; Bruno, Giovanni; Brown, April S

    2014-03-25

    Metal nanoparticle (NP)-graphene multifunctional platforms are of great interest for exploring strong light-graphene interactions enhanced by plasmons and for improving performance of numerous applications, such as sensing and catalysis. These platforms can also be used to carry out fundamental studies on charge transfer, and the findings can lead to new strategies for doping graphene. There have been a large number of studies on noble metal Au-graphene and Ag-graphene platforms that have shown their potential for a number of applications. These studies have also highlighted some drawbacks that must be overcome to realize high performance. Here we demonstrate the promise of plasmonic gallium (Ga) nanoparticle (NP)-graphene hybrids as a means of modulating the graphene Fermi level, creating tunable localized surface plasmon resonances and, consequently, creating high-performance surface-enhanced Raman scattering (SERS) platforms. Four prominent peculiarities of Ga, differentiating it from the commonly used noble (gold and silver) metals are (1) the ability to create tunable (from the UV to the visible) plasmonic platforms, (2) its chemical stability leading to long-lifetime plasmonic platforms, (3) its ability to n-type dope graphene, and (4) its weak chemical interaction with graphene, which preserves the integrity of the graphene lattice. As a result of these factors, a Ga NP-enhanced graphene Raman intensity effect has been observed. To further elucidate the roles of the electromagnetic enhancement (or plasmonic) mechanism in relation to electron transfer, we compare graphene-on-Ga NP and Ga NP-on-graphene SERS platforms using the cationic dye rhodamine B, a drug model biomolecule, as the analyte.

  12. Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot-Cavity System

    CERN Document Server

    Tang, Jing; Xu, Xiulai

    2015-01-01

    We propose an experimental scheme to implement a strong photon blockade with a single quantum dot coupled to a nanocavity. The photon blockade effect can be tremendously enhanced by driving the cavity and the quantum dot simultaneously with two classical laser fields. This enhancement of photon blockade is ascribed to the quantum interference effect to avoid two-photon excitation of the cavity field. Comparing with Jaynes-Cummings model, the second-order correlation function at zero time delay $g^{(2)}(0)$ in our scheme can be reduced by two orders of magnitude and the system sustains a large intracavity photon number. A red (blue) cavity-light detuning asymmetry for photon quantum statistics with bunching or antibunching characteristics is also observed. The photon blockade effect has a controllable flexibility by tuning the relative phase between the two pumping laser fields and the Rabi coupling strength between the quantum dot and the pumping field. Moreover, the photon blockade scheme based on quantum in...

  13. Partial Polarization in Interfered Plasmon Fields

    Directory of Open Access Journals (Sweden)

    P. Martínez Vara

    2014-01-01

    Full Text Available We describe the polarization features for plasmon fields generated by the interference between two elemental surface plasmon modes, obtaining a set of Stokes parameters which allows establishing a parallelism with the traditional polarization model. With the analysis presented, we find the corresponding coherence matrix for plasmon fields incorporating to the plasmon optics the study of partial polarization effects.

  14. Coulomb Drag as a Probe of Coupled Plasmon Modes in Parallel Quantum Wells

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Hu, Ben Yu-Kuang

    1994-01-01

    parameters. The acoustic mode causes a sharp upturn in the scaled drag rate with increasing temperature at T≈0.2TF. Other experimental signatures of the plasmon-dominated drag rate are a d-3 dependence on the well separation d and a peak as a function of relative densities at matched Fermi velocities....

  15. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells.

    Science.gov (United States)

    Baba, Akira; Aoki, Nobutaka; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2011-06-01

    In this study, we demonstrate the fabrication of grating-coupled surface plasmon resonance (SPR) enhanced organic thin-film photovoltaic cells and their improved photocurrent properties. The cell consists of a grating substrate/silver/P3HT:PCBM/PEDOT:PSS structure. Blu-ray disk recordable substrates are used as the diffraction grating substrates on which silver films are deposited by vacuum evaporation. P3HT:PCBM films are spin-coated on silver/grating substrates. Low conductivity PEDOT:PSS/PDADMAC layer-by-layer ultrathin films deposited on P3HT:PCBM films act as the hole transport layer, whereas high conductivity PEDOT:PSS films deposited by spin-coating act as the anode. SPR excitations are observed in the fabricated cells upon irradiation with white light. Up to a 2-fold increase in the short-circuit photocurrent is observed when the surface plasmon (SP) is excited on the silver gratings as compared to that without SP excitation. The finite-difference time-domain simulation indicates that the electric field in the P3HT:PCBM layer can be increased using the grating-coupled SP technique. © 2011 American Chemical Society

  16. Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Inampudi, Sandeep; Nazari, Mina; Forouzmand, Ali; Mosallaei, Hossein, E-mail: hosseinm@coe.neu.edu [Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 (United States)

    2016-01-14

    We present a comprehensive analysis of surface plasmon polariton dispersion characteristics associated with isotropic and anisotropic two-dimensional atomically thin layered materials (2D sheets) coupled to h-BN heterostructures. A scattering matrix based approach is presented to compute the electromagnetic fields and related dispersion characteristics of stacked layered systems composed of anisotropic 2D sheets and uniaxial bulk materials. We analyze specifically the surface plasmon polariton (SPP) dispersion characteristics in case of isolated and coupled two-dimensional layers with isotropic and anisotropic conductivities. An analysis based on residue theorem is utilized to identify optimum optical parameters (surface conductivity) and geometrical parameters (separation between layers) to maximize the SPP field at a given position. The effect of type and degree of anisotropy on the shapes of iso-frequency curves and propagation characteristics is discussed in detail. The analysis presented in this paper gives an insight to identify optimum setup to enhance the SPP field at a given position and in a given direction on the surface of two-dimensional materials.

  17. Interference of Two-Component Bose-Einstein Condensates with a Coupling Drive in Presence of Dissipation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The interference of the two-component Bose-Einstein condensates with a coupling drive in the presence of the dissipation is studied. We find that when the two-component Bose-Einstein condensates are initially in the coherent states, for the smaller dissipation parameters compared with that of the rf frequency ωrf, the interference intensity exhibits damply oscillation behavior, whereas when the dissipation parameters are larger than that of the ωrf, the interference intensity exhibits a fast attenuation behavior. As a comparison, the interference intensity in the absence of the dissipation is also studied. We conclude that the dissipation of the system can be evaluated by selecting the ωrf experimentally.

  18. Relaxation-allowed nuclear magnetic resonance transitions by interference between the quadrupolar coupling and the paramagnetic interaction.

    Science.gov (United States)

    Ling, Wen; Jerschow, Alexej

    2007-02-14

    Of the various ways in which nuclear spin systems can relax to their ground states, the processes involving an interference between different relaxation mechanisms, such as dipole-dipole coupling and chemical shift anisotropy, have become of great interest lately. The authors show here that the interference between the quadrupolar coupling and the paramagnetic interaction (cross-correlated relaxation) gives rise to nuclear spin transitions that would remain forbidden otherwise. In addition, frequency shifts arise. These would be reminiscent of residual anisotropic interactions when there are none. While interesting from a fundamental point of view, these processes may become relevant in magnetic resonance imaging experiments which involve quadrupolar spins, such as (23)Na, in the presence of contrast agents. Geometrical constraints in paramagnetic molecule structures may likewise be derived from these interference effects.

  19. Invisibility Dips of Near-Field Energy Transport in a Spoof Plasmonic Metadimer

    CERN Document Server

    Gao, Fei; Luo, Yu; Zhang, Baile

    2016-01-01

    Invisibility dips, minima in scattering spectrum associated with asymmetric Fano-like line-shapes, have been predicted with transformation optics in studying strong coupling between two plasmonic nanoparticles. This feature of strongly coupled plasmonic nanoparticles holds promise for sensor cloaking. It requires an extremely narrow gap between the two nanoparticles, though, preventing its experimental observation at optical frequencies. Here, the concept of spoof surface plasmons is utilized to facilitate the strong coupling between two spoof-localized-surface-plasmon (SLSP) resonators. Instead of observing in far field, the near-field energy transport is probed through the two SLSP resonators. By virtue of enhanced coupling between the two resonators stacked vertically, a spectral transmission dip with asymmetric Fano-like line-shape, similar to the far-field invisibility dips predicted by transformation optics, is observed. The underlying mode interference mechanism is further demonstrated by directly imag...

  20. Interferometric Plasmonic Lensing with Nanohole Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-12-18

    Nonlinear photoemission electron microscopy (PEEM) of nanohole arrays in gold films maps propagating surface plasmons (PSPs) launched from lithographically patterned structures. Strong near field photoemission patterns are observed in the PEEM images, recorded following low angle of incidence irradiation of nanohole arrays with sub-15 fs laser pulses centered at 780 nm. The recorded photoemission patterns are attributed to constructive and destructive interferences between PSPs launched from the individual nanoholes which comprise the array. By exploiting the wave nature of PSPs, we demonstrate how varying the array geometry (hole diameter, pitch, and number of rows/columns) ultimately yields intense localized photoemission. Through a combination of PEEM and finite-difference time-domain simulations, we identify the optimal array geometry for efficient light coupling and interferometric plasmonic lensing. We show a preliminary application of inteferometric plasmonic lensing by enhancing the photoemission from the vertex of a gold triangle using nanohole array.

  1. Periodic Arrays of Film-Coupled Cubic Nanoantennas as Tunable Plasmonic Metasurfaces

    Directory of Open Access Journals (Sweden)

    Vassilios Yannopapas

    2015-03-01

    Full Text Available We show theoretically that a two-dimensional periodic array of metallic nanocubes in close proximity to a metallic film acts as a metasurface with tunable absorbance. The presence of a metallic film underneath the array of plasmonic nanocubes leads to an impedance matched plasmonic metasurface enhancing up to 4 times the absorbance of incident radiation, in the spectral region below 500 nm. The absorbance spectrum is weakly dependent on the angle of incidence and state of polarization of incident light a functionality which can find application in thermo-photovoltaics. Our calculations are based on a hybrid layer-multiple-scattering (hLMS method based on a discrete-dipole approximation (DDA/T-matrix point matching method.

  2. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors

    KAUST Repository

    Alrasheed, Salma

    2017-09-05

    We present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity. Such high field enhancement has potential applications in optics, including sensors and high resolution imaging devices. In addition, the resonance splitting allows for greater flexibility in using the same array at different wavelengths. We then further propose a practical design to realize such a device and include dimers of different shapes and materials.

  3. Plasmonic Demultiplexer and Guiding

    CERN Document Server

    Zhao, Chenglong

    2010-01-01

    Two-dimensional plasmonic demultiplexers for surface plasmon polaritons (SPPs), which consist of concentric grooves on a gold film, are proposed and experimentally demonstrated to realize light-SPP coupling, effective dispersion and multiple-channel SPP guiding. A resolution as high as 10 nm is obtained. The leakage radiation microscopy imaging shows that the SPPs of different wavelengths are focused and routed into different SPP strip waveguides. The plasmonic demultiplexer can thus serve as a wavelength division multiplexing element for integrated plasmonic circuit and also as a plasmonic spectroscopy or filter.

  4. Quantum Rod Emission Coupled to Plasmonic Lattice Resonances: A Collective Directional Source of Polarized Light

    CERN Document Server

    Rodriguez, S R K; Verschuuren, M A; Gomes, R; Lambert, K; De Geyter, B; Hassinen, A; Van Thourhout, D; Hens, Z; Rivas, J Gomez

    2013-01-01

    We demonstrate that an array of optical antennas may render a thin layer of randomly oriented semiconductor nanocrystals into an enhanced and highly directional source of polarized light. The array sustains collective plasmonic lattice resonances which are in spectral overlap with the emission of the nanocrystals over narrow angular regions. Consequently, di?fferent photon energies of visible light are enhanced and beamed into def?nite directions.

  5. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures.

    Science.gov (United States)

    Filter, Robert; Bösel, Christoph; Toscano, Giuseppe; Lederer, Falk; Rockstuhl, Carsten

    2014-11-01

    The spontaneous emission rate of dipole emitters close to plasmonic dimers are theoretically studied within a nonlocal hydrodynamic model. A nonlocal model has to be used since quantum emitters in the immediate environment of a metallic nanoparticle probe its electronic structure. Compared to local calculations, the emission rate is significantly reduced. The influence is mostly pronounced if the emitter is located close to sharp edges. We suggest to use quantum emitters to test nonlocal effects in experimentally feasible configurations.

  6. Spin-dependent quantum interference in photoemission process from spin-orbit coupled states

    Science.gov (United States)

    Yaji, Koichiro; Kuroda, Kenta; Toyohisa, Sogen; Harasawa, Ayumi; Ishida, Yukiaki; Watanabe, Shuntaro; Chen, Chuangtian; Kobayashi, Katsuyoshi; Komori, Fumio; Shin, Shik

    2017-01-01

    Spin–orbit interaction entangles the orbitals with the different spins. The spin–orbital-entangled states were discovered in surface states of topological insulators. However, the spin–orbital-entanglement is not specialized in the topological surface states. Here, we show the spin–orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin–orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin–orbit interaction. PMID:28232721

  7. Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy

    Science.gov (United States)

    Li, Guang-Can; Zhang, Yong-Liang; Lei, Dang Yuan

    2016-03-01

    Plasmonic gap modes sustained by metal film-coupled nanostructures have recently attracted extensive research attention due to flexible control over their spectral response and significantly enhanced field intensities at the particle-film junction. In this work, by adopting an improved dark field spectroscopy methodology - polarization resolved spectral decomposition and colour decoding - we are able to ``visualize'' and distinguish unambiguously the spectral and far field radiation properties of the complex plasmonic gap modes in metal film-coupled nanosphere monomers and dimers. Together with full-wave numerical simulation results, it is found that while the monomer-film system supports two hybridized dipole-like plasmon modes having different oscillating orientations and resonance strengths, the scattering spectrum of the dimer-film system features two additional peaks, one strong yet narrow resonant mode corresponding to a bonding dipolar moment and one hybridized higher order resonant mode, both polarized along the dimer axis. In particular, we demonstrate that the polarization dependent scattering radiation of the film-coupled nanosphere dimer can be used to optically distinguish from monomers and concurrently determine the spatial orientation of the dimer with significantly improved accuracy at the single-particle level, illustrating a simple yet highly sensitive plasmon resonance based nanometrology method.Plasmonic gap modes sustained by metal film-coupled nanostructures have recently attracted extensive research attention due to flexible control over their spectral response and significantly enhanced field intensities at the particle-film junction. In this work, by adopting an improved dark field spectroscopy methodology - polarization resolved spectral decomposition and colour decoding - we are able to ``visualize'' and distinguish unambiguously the spectral and far field radiation properties of the complex plasmonic gap modes in metal film-coupled

  8. Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method.

    Science.gov (United States)

    Liu, Gui-qiang; Hu, Ying; Liu, Zheng-qi; Chen, Yuan-hao; Cai, Zheng-jie; Zhang, Xiang-nan; Huang, Kuan

    2014-03-07

    We propose a robust multispectral transparent plasmonic structure and calculate its transparency response by using the three-dimensional finite-difference time-domain (FDTD) method. The proposed structure is composed of a continuous ultrathin metal film sandwiched by double two-dimensional (2D) hexagonal non-close-packed metal-dielectric multilayer core-shell nanoparticle arrays. The top and bottom plasmonic arrays in such a structure, respectively, act as the light input and output couplers to carry out the efficient trapping and release of light. Near-perfect multispectral optical transparency in the visible and near-infrared regions is achieved theoretically. The calculated electric field distribution patterns show that the near-perfect multispectral optical transparency mainly originates from the excitation and hybridization of shell and core plasmon modes, strong near-field coupling of dipole plasmon modes between adjacent nanoparticles as well as the excitation of surface plasmon waves of the metal film. The robust transparency bands can be efficiently tuned in a large range by varying the structural parameters and the surrounding dielectric environment. The proposed structure also shows additional merits such as a deep sub-wavelength size and fully retained electrical and mechanical properties of the natural metal. These features might provide promising applications in highly integrated optoelectronic devices including plasmonic filters, nanoscale multiplexers, and non-linear optics.

  9. High-Order Interference Effect Introduced by Polarization Mode Coupling in Polarization—Maintaining Fiber and Its Identification

    Directory of Open Access Journals (Sweden)

    Chuang Li

    2016-03-01

    Full Text Available The high-order interference (HOI—The interferogram introduced by polarization mode couplings (PMC of multiple perturbations—Will cause misjudgment of the realistic coupling points in polarization-maintaining fiber (PMF which is tested with a white light interferometer (WLI with large dynamic range. We present an optical path tracking (OPT method for simplifying the analysis of HOI, and demonstrate the enhancement and suppression conditions for the HOIs. A strategy is proposed to readily identify HOI by altering the spliced angle between polarizers’ pigtails and the PMF under test. Moreover, a PMF experiment with two perturbation points, for simplicity, is given as an example. As a result, all the characteristic interferograms including HOIs can be distinguished through just four measurements. Utilizing this identification method, we can estimate the realistic coupling points in PMFs and distinguish them from the interference signals including numerous HOIs.

  10. High-Order Interference Effect Introduced by Polarization Mode Coupling in Polarization--Maintaining Fiber and Its Identification.

    Science.gov (United States)

    Li, Chuang; Yang, Jun; Yu, Zhangjun; Yuan, Yonggui; Zhang, Jianzhong; Wu, Bing; Peng, Feng; Yuan, Libo

    2016-01-01

    The high-order interference (HOI)-The interferogram introduced by polarization mode couplings (PMC) of multiple perturbations-Will cause misjudgment of the realistic coupling points in polarization-maintaining fiber (PMF) which is tested with a white light interferometer (WLI) with large dynamic range. We present an optical path tracking (OPT) method for simplifying the analysis of HOI, and demonstrate the enhancement and suppression conditions for the HOIs. A strategy is proposed to readily identify HOI by altering the spliced angle between polarizers' pigtails and the PMF under test. Moreover, a PMF experiment with two perturbation points, for simplicity, is given as an example. As a result, all the characteristic interferograms including HOIs can be distinguished through just four measurements. Utilizing this identification method, we can estimate the realistic coupling points in PMFs and distinguish them from the interference signals including numerous HOIs.

  11. High-Order Interference Effect Introduced by Polarization Mode Coupling in Polarization—Maintaining Fiber and Its Identification

    Science.gov (United States)

    Li, Chuang; Yang, Jun; Yu, Zhangjun; Yuan, Yonggui; Zhang, Jianzhong; Wu, Bing; Peng, Feng; Yuan, Libo

    2016-01-01

    The high-order interference (HOI)—The interferogram introduced by polarization mode couplings (PMC) of multiple perturbations—Will cause misjudgment of the realistic coupling points in polarization-maintaining fiber (PMF) which is tested with a white light interferometer (WLI) with large dynamic range. We present an optical path tracking (OPT) method for simplifying the analysis of HOI, and demonstrate the enhancement and suppression conditions for the HOIs. A strategy is proposed to readily identify HOI by altering the spliced angle between polarizers’ pigtails and the PMF under test. Moreover, a PMF experiment with two perturbation points, for simplicity, is given as an example. As a result, all the characteristic interferograms including HOIs can be distinguished through just four measurements. Utilizing this identification method, we can estimate the realistic coupling points in PMFs and distinguish them from the interference signals including numerous HOIs. PMID:27011191

  12. When “small” terms matter: Coupled interference features in the transport properties of cross-conjugated molecules

    Directory of Open Access Journals (Sweden)

    Gemma C. Solomon

    2011-12-01

    Full Text Available Quantum interference effects offer opportunities to tune the electronic and thermoelectric response of a quantum-scale device over orders of magnitude. Here we focus on single-molecule devices, in which interference features may be strongly affected by both chemical and electronic modifications to the system. Although not always desirable, such a susceptibility offers insight into the importance of “small” terms, such as through-space coupling and many-body charge–charge correlations. Here we investigate the effect of these small terms using different Hamiltonian models with Hückel, gDFTB and many-body theory to calculate the transport through several single-molecule junctions, finding that terms that are generally thought to only slightly perturb the transport instead produce significant qualitative changes in the transport properties. In particular, we show that coupling of multiple interference features in cross-conjugated molecules by through-space coupling will lead to splitting of the features, as can correlation effects. The degeneracy of multiple interference features in cross-conjugated molecules appears to be significantly more sensitive to perturbations than those observed in equivalent cyclic systems and this needs to be considered if such supernodes are required for molecular thermoelectric devices.

  13. Localized surface plasmons modulated nonlinear optical processes in metal film-coupled and upconversion nanocrystals-coated nanoparticles (Conference Presentation)

    Science.gov (United States)

    Lei, Dangyuan

    2016-09-01

    In the first part of this talk, I will show our experimental investigation on the linear and nonlinear optical properties of metal film-coupled nanosphere monomers and dimers both with nanometric gaps. We have developed a new methodology - polarization resolved spectral decomposition and color decoding to "visualizing" unambiguously the spectral and radiation properties of the complex plasmonic gap modes in these hybrid nanostructures. Single-particle spectroscopic measurements indicate that these hybrid nanostructures can simultaneously enhance several nonlinear optical processes, such as second harmonic generation, two-photon absorption induced luminescence, and hyper-Raman scattering. In the second part, I will show how the polarization state of the emissions from sub-10 nm upconversion nanocrystals (UCNCs) can be modulated when they form a hybrid complex with a gold nanorod (GNR). Our single-particle scattering experiments expose how an interplay between excitation polarization and GNR orientation gives rise to an extraordinary polarized nature of the upconversion emissions from an individual hybrid nanostructure. We support our results by numerical simulations and, using Förster resonance energy transfer theory, we uncover how an overlap between the UCNC emission and GNR extinction bands as well as the mutual orientation between emission and plasmonic dipoles jointly determine the polarization state of the UC emissions.

  14. Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO2-Ag Core-shell Dimers

    Science.gov (United States)

    Li, Quanshui; Zhang, Zhili

    2016-01-01

    Bonding and anti-bonding modes of plasmon coupling effects are numerically investigated in TiO2-Ag core-shell nano dimers. First, splitting phenomena of the coupled anti-bonding modes are observed under the longitudinal polarization when the distance between the monomers decreases to a certain level. Second, one of the split resonance modes is identified to be formed by the dipole anti-bonding mode of the monomers from charge density distribution patterns. Those split modes have similar redshift behaviors as the coupled dipole bonding modes in the same situations. Furthermore, the intensities of those anti-bonding modes weaken with decreasing distance between the monomers, because of the interaction of the induced dipole moment in the monomers and the charge distribution variation on the facing surfaces of the gap by the coulomb attraction. Other split bands are the higher-order mode (octupole-like or triakontadipole-like), which do not have obvious peak-shift behavior, and the intensities have very little attenuation with decreasing distance. Finally, the coupling of the bonding and anti-bonding modes under the longitudinal polarization is symmetric (bonding).

  15. Plasmon reflections by topological electronic boundaries in bilayer graphene.

    Science.gov (United States)

    Jiang, Bor-Yuan; Ni, Guangxin; Addison, Zachariah; Shi, Jing K; Liu, Xiaomeng; Zhao, Shu-Yang; Kim, Philip; Mele, Eugene J; Basov, Dimitri N; Fogler, Michael M

    2017-10-02

    Domain walls separating regions of AB and BA interlayer stacking in bilayer graphene have attracted attention as novel examples of structural solitons, topological electronic boundaries, and nanoscale plasmonic scatterers. We show that strong coupling of domain walls to surface plasmons observed in infrared nanoimaging experiments is due to topological chiral modes confined to the walls. The optical transitions among these chiral modes and the band continua enhance the local conductivity, which leads to plasmon reflection by the domain walls. The imaging reveals two kinds of plasmonic standing-wave interference patterns, which we attribute to shear and tensile domain walls. We compute the electronic structure of both wall varieties and show that the tensile wall contains additional confined bands which produce a structure-specific contrast of the local conductivity, in agreement with the experiment. The coupling between the confined modes and the surface plasmon scattering unveiled in this work is expected to be common to other topological electronic boundaries found in van der Waals materials. This coupling provides a qualitatively new pathway toward controlling plasmons in nanostructures.

  16. Growth mechanisms and origin of localized surface plasmon resonance coupled exciton effects in Cu2_xS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savariraj, Dennyson A.; Kim, Hee-Je; Viswanathan, Kodakkal K.; Vijayakumar, M.; Prabakar, Kandasamy

    2016-02-15

    Cu2-xS thin films prepared by template free single step wet chemical method on fluorine doped tin oxide substrate without any surfactant exhibts localized surface plasmon resonance (LSPR) coupled exciton effects. Cu2-xS thin films of unique surface morphology and free carrier density due to copper vacancy is controlled by the growth temperature and time. These selectively grown Cu2-xS thin films possess tunable band gap (2.6 - 1.4 eV) due to quantum size effect. Eventhough, all the samples show satellite peak in the X-ray photoelectron spectra due to Cu vacancies, only the samples with higher oxygen concentration show LSPR in the near infrared region.

  17. Identification of surface oxygen vacancy-related phonon-plasmon coupling in TiO2 single crystal

    Science.gov (United States)

    Guo, Jun-Hong; Li, Ting-Hui; Hu, Fang-Ren; Liu, Li-Zhe

    2016-12-01

    Oxygen vacancies (OVs) play a critical role in the physical properties and applications of titanium dioxide nanostructures, which are widely used in electrochemistry and photo catalysis nowadays. In this work, OVs were artificially introduced in the surface of a pure TiO2 single crystal by pulsed laser irradiation. Raman spectra showed that the intensity of Eg mode was enhanced. Theoretical calculations disclose that this was caused by the strong coupling effect between the phonon vibration and plasmon induced by the OVs-related surface deformation, and good agreement was achieved between the experiments and theory. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574080, 11404162, 61505085, and 61264008) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130549).

  18. A proposal and a theoretical analysis of an enhanced surface plasmon coupled emission structure for single molecule detection

    Science.gov (United States)

    Uddin, Shiekh Zia; Tanvir, Mukhlasur Rahman; Talukder, Muhammad Anisuzzaman

    2016-05-01

    We propose a structure that can be used for enhanced single molecule detection using surface plasmon coupled emission (SPCE). In the proposed structure, instead of a single metal layer on the glass prism of a typical SPCE structure for fluorescence microscopy, a metal-dielectric-metal structure is used. We theoretically show that the proposed structure significantly decreases the excitation volume of the fluorescently labeled sample, and simultaneously increases the peak SPCE intensity and SPCE power. Therefore, the signal-to-noise ratio and sensitivity of an SPCE based fluorescence microscopy system can be significantly increased using the proposed structure, which will be helpful for enhanced single molecule detection, especially, in a less pure biological sample.

  19. Observation of flat band for terahertz coupled plasmon in metallic kagom\\'e lattice

    CERN Document Server

    Nakata, Yosuke; Nakanishi, Toshihiro; Kitano, Masao

    2012-01-01

    We study the dispersion relation of a metamaterial composed of metallic discs and bars arranged to have kagom\\'{e} symmetry and find that a plasmonic flat band is formed by the topological nature of the kagom\\'{e} lattice. To confirm the flat band formation, we fabricate the metamaterial and make transmission measurements in the terahertz regime. Two bands formed by transmission minima that depend on the polarization of the incident terahertz beams are observed. One of the bands corresponds to the flat band as confirmed by the fact that the resonant frequency is almost independent of the incident angle.

  20. Compact wavelength add-drop multiplexers using Bragg gratings in coupled dielectric-loaded plasmonic waveguides

    CERN Document Server

    Biagi, Giulio; Radko, Ilya P; Rubahn, Horst-Günter; Pedersen, Kjeld; Bozhevolnyi, Sergey I

    2016-01-01

    We report a novel design of a compact wavelength add-drop multiplexer utilizing dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs). The DLSPPW-based configuration exploits routing properties of directional couplers and filtering abilities of Bragg gratings. We present practical realization of a 20-$\\mu$m-long device operating at telecom wavelengths that can reroute optical signals separated by approximately 70 nm in the wavelength band. We characterize the performance of the fabricated structures using scanning near-field optical microscopy as well as leakage-radiation microscopy and support our findings with numerical simulations.

  1. Photoluminescence Mechanism of DNA-Templated Silver Nanoclusters: Coupling between Surface Plasmon and Emitter and Sensing of Lysozyme.

    Science.gov (United States)

    Liu, Xiaorong; Hu, Ruoxin; Gao, Zhidan; Shao, Na

    2015-06-02

    DNA-templated silver nanoclusters (DNA-AgNCs) have now been thrust into the limelight with their superior optical properties and potential biological applications. However, the origin of photoluminescence from DNA-AgNCs still remains unclear. In this work, DNA-AgNCs were synthesized and the photoluminescence properties as well as the biosensing applications of the designed DNA-AgNCs were investigated. The photoluminescence properties of the DNA-AgNCs were studied under three regions of excitation wavelength based on the UV-visible absorption spectra. It was deemed that the photoluminescence originated from coupling between the surface plasmon and the emitter in AgNCs when they were excited by visible light above 500 nm, and thus the emission wavelength varied with changing the excitation wavelength. The photoluminescence of the red-emitting-only AgNCs was the intrinsic fluorescence when excited from 200 to 400 nm, which was only related to the emitter; but for two components of blue- and red-emitting AgNCs, the emission wavelength varied with the excitation wavelength ranging from 300 to 360 nm, and the photoluminescence was a coupling between the surface plasmon and the emitter. The photoluminescence was only related to the surface plasmon when the AgNCs were excited from 400 to 500 nm. Four DNA probes were designed and each contained two parts: one part was the template used to synthesize AgNCs and it was same to all, and the other part was the lysozyme binding DNA (LBD) used to bind lysozyme and two kinds of LBD were studied. It was deemed that the difference in DNA bases, sequence, and secondary structure caused the synthesized DNA-AgNCs to be different in photoluminescence properties and sensing ability to lysozyme, and the sensing mechanism based on photoluminescence enhancement was also presented. This work explored the origin of photoluminescence and the sensing ability of DNA-AgNCs, and is hoped to make a better understanding of this kind of

  2. Plasmon enhanced light harvesting: multiscale modeling of the FMO protein coupled with gold nanoparticles.

    Science.gov (United States)

    Andreussi, Oliviero; Caprasecca, Stefano; Cupellini, Lorenzo; Guarnetti-Prandi, Ingrid; Guido, Ciro A; Jurinovich, Sandro; Viani, Lucas; Mennucci, Benedetta

    2015-05-28

    Plasmonic systems, such as metal nanoparticles, are becoming increasingly important in spectroscopies and devices because of their ability to enhance, even by several orders of magnitude, the photophysical properties of neighboring systems. In particular, it has been shown both theoretically and experimentally that combining nanoplasmonic devices with natural light-harvesting proteins substantially increases the fluorescence and absorption properties of the system. This kind of biohybrid device can have important applications in the characterization and design of efficient light-harvesting systems. In the present work, the FMO light-harvesting protein was combined with gold nanoparticles of different sizes, and its photophysical properties were characterized using a multiscale quantum-mechanical classical-polarizable and continuum model (QM/MMPol/PCM). By optimal tuning of the plasmon resonance of the metal nanoparticles, fluorescence enhancements of up to 2 orders of magnitude were observed. Orientation effects were found to be crucial: amplifications by factors of up to 300 were observed for the absorption process, while the radiative decay of the emitting state increased at most by a factor of 10, mostly as a result of poor alignment of the emitting state with the considered metal aggregates. Despite being a limiting factor for high-fluorescence-enhancement devices, the strong orientation dependence may represent an important feature of the natural light-harvesting system that could allow selective enhancement of a specific excited state of the complex.

  3. Observation of Rabi Splitting from Surface-plasmon Coupled Conduction-state Transitions in Electrically-excited InAs Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Passmore, Brian S.; Adams, David C.; Ribaudo, Troy; Wasserman, Daniel; Lyon, Stephen; Chow, Weng W.; Shaner, Eric A.

    2011-02-09

    We demonstrate strong coupling between a surface plasmon and intersublevel transitions in self-assembled InAs quantum dots. The surface plasmon mode exists at the interface between the semiconductor emitter structure and a periodic array of holes perforating a metallic Pd/Ge/Au film that also serves as the top electrical contact for the emitters. Spectrally narrowed quantum-dot electroluminescence was observed for devices with varying subwavelength hole spacing. Devices designed for 9, 10, and 11 μm wavelength emission also exhibit a significant spectral splitting. The association of the splitting with quantum-dot Rabi oscillation is consistent with results from a calculation of spontaneous emission from an interacting plasmonic field and quantum-dot ensemble. The fact that this Rabi oscillation can be observed in an incoherently excited, highly inhomogeneously broadened system demonstrates the utility of intersublevel transitions in quantum dots for investigations of coherent transient and quantum coherence phenomena.

  4. Demonstration of beam steering via dipole-coupled plasmonic spiral antenna.

    Science.gov (United States)

    Rui, Guanghao; Abeysinghe, Don C; Nelson, Robert L; Zhan, Qiwen

    2013-01-01

    Optical antennas have been utilized to tailor the emission properties of nanoscale emitters in terms of the intensity, directivity and polarization. In this letter, we further explore the capability of beam steering via the use a spiral plasmonic structure as a transmitting antenna. According to both numerical simulation and experimental observations, the beaming direction can be steered through introducing a displacement of the feeding point to the spiral antenna from the geometrical center. For a 3-turn Archimedes' spiral antenna, experimental results show that steering angles of 3° and 7° are obtainable when the excitation location is transversally shifted from the center by a displacement of 200 nm and 500 nm, respectively. Furthermore, the emitted photons carry spin angular momentum determined by the chirality of the spiral optical antenna. A steerable nanoscale spin photon source may find important applications in single molecule sensing, quantum optical information processing and integrated photonic circuits.

  5. Emotional Stroop interference for threatening words is related to reduced EEG δ-β coupling and low attentional control.

    Science.gov (United States)

    Putman, Peter; Arias-Garcia, Elsa; Pantazi, Ioanna; van Schie, Charlotte

    2012-05-01

    Previously, electroencephalographic (EEG) delta-beta coupling (positive correlation between power in the fast beta and slow delta frequency bands) has been related to affective processing. For instance, differences in delta-beta coupling have been observed between people in a psychological stress condition and controls. We previously reported relationships between attentional threat processing and delta-beta coupling and individual differences in attentional control. The present study extended and replicated these findings in a large mixed gender sample (N=80). Results demonstrated that emotional Stroop task interference for threatening words was related to self-reported attentional inhibition capacity and frontal delta-beta coupling. There was no clear gender difference for delta-beta coupling (only a non-significant trend) and the relationship between delta-beta coupling and attentional threat-processing was not affected by gender. These results replicate and extend an earlier finding concerning delta-beta coupling and cognitive affect regulation and further clarify relationships between delta-beta coupling, attentional control, and threat-processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A highly efficient surface plasmon polaritons excitation achieved with a metal-coupled metal-insulator-metal waveguide

    Directory of Open Access Journals (Sweden)

    Hongyan Yang

    2014-12-01

    Full Text Available We propose a novel metal-coupled metal-insulator-metal (MC-MIM waveguide which can achieve a highly efficient surface plasmon polaritons (SPPs excitation. The MC-MIM waveguide is formed by inserting a thin metal film in the insulator of an MIM. The introduction of the metal film, functioning as an SPPs coupler, provides a space for the interaction between SPPs and a confined electromagnetic field of the intermediate metal surface, which makes energy change and phase transfer in the metal-dielectric interface, due to the joint action of incomplete electrostatic shielding effect and SPPs coupling. Impacts of the metal film with different materials and various thickness on SPPs excitation are investigated. It is shown that the highest efficient SPPs excitation is obtained when the gold film thickness is 60 nm. The effect of refractive index of upper and lower symmetric dielectric layer on SPPs excitation is also discussed. The result shows that the decay value of refractive index is 0.3. Our results indicate that this proposed MC-MIM waveguide may offer great potential in designing a new SPPs source.

  7. Efficient coupling of a single diamond color center to propagating plasmonic gap modes

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Huck, Alexander; Andersen, Ulrik L

    2013-01-01

    We report on coupling of a single nitrogen-vacancy (NV) center in a nanodiamond to the propagating gap mode of two parallel placed chemically grown silver nanowires. The coupled NV-center nanowire system is made by manipulating nanodiamonds and nanowires with the tip of an atomic force microscope...

  8. Coupling of Surface Plasmon Polariton in Al-Doped ZnO with Fabry-Pérot Resonance for Total Light Absorption

    Directory of Open Access Journals (Sweden)

    David George

    2017-04-01

    Full Text Available Al-doped ZnO (AZO can be used as an electrically tunable plasmonic material in the near infrared range. This paper presents finite-difference time-domain (FDTD simulations on total light absorption (TLA resulting from the coupling of a surface plasmon polariton (SPP with Fabry-Pérot (F-P resonance in a three-layer structure consisting of an AZO square lattice hole array, a spacer, and a layer of silver. Firstly, we identified that the surface plasmon polariton (SPP that will couple to the F-P resonance because of an SPP standing wave in the (1,0 direction of the square lattice. Two types of coupling between SPP and F-P resonance are observed in the simulations. In order to achieve TLA, an increase in the refractive index of the spacer material leads to a decrease in the thickness of the spacer. Additionally, it is shown that the replacement of silver by other, more cost-effective metals has no significance influence on the TLA condition. It is observed in the simulations that post-fabrication tunability of the TLA wavelength is possible via the electrical tunability of the AZO. Finally, electric field intensity distributions at specific wavelengths are computed to further prove the coupling of SPP with F-P resonance. This work will contribute to the design principle for future device fabrication for TLA applications.

  9. Kondo Resonance versus Fano Interference in Double Quantum Dots Coupled to a Two-Lead One-Ring System

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiong-Wen; SHI Zhen-Gang; CHEN Bao-Ju; SONG Ke-Hui

    2007-01-01

    We analyse the transport properties of a coupled double quantum dot (DQD) device with one of the dots (QD1) coupled to metallic leads and the other (QD2) embedded in an Aharonov-Bhom (A-B) ring by means of the slave-boson mean-Geld theory. It is found that in this system, the Kondo resonance and the Fano interference exist simultaneously, the enhancing Kondo effect and the increasing hopping of the QD2-Ring destroy the localized electron state in the QD2 for the QD1-leads, and accordingly, the Fano interference between the DQD-leads and the QD1-leads are suppressed. Under some conditions, the Fano interference can be quenched fully and the single Kondo resonance of the QD1-leads comes into being. Moreover, when the magnetic flux of the A-B ring is zero, the influence of the parity of the A-B ring on the transport properties is very weak, but this inSuence becomes more obvious with non-zero magnetic flux. Thus this model may be a candidate for future device applications.

  10. Plasmonics in buried structures.

    Science.gov (United States)

    Romero, I; García de Abajo, F J

    2009-10-12

    We describe plasmon propagation in silica-filled coupled nanovoids fully buried in gold. Propagation bands and band gaps are shown to be tunable through the degree of overlap and plasmon hybridization between contiguous voids. The effect of disorder and fabrication imperfections is thoroughly investigated. Our work explores a novel paradigm for plasmon photonics relying on plasmon modes in metal-buried structures, which can benefit from long propagation distances, cancelation of radiative losses, minimum crosstalk between neighboring waveguides, and maximum optical integration in three-dimensional arrangements.

  11. Near-field coupling of gold plasmonic antennas for sub-100 nm magneto-thermal microscopy

    Directory of Open Access Journals (Sweden)

    Jonathan C. Karsch

    2017-08-01

    Full Text Available The development of spintronic technology with increasingly dense, high-speed, and complex devices will be accelerated by accessible microscopy techniques capable of probing magnetic phenomena on picosecond time scales and at deeply sub-micron length scales. A recently developed time-resolved magneto-thermal microscope provides a path towards this goal if it is augmented with a picosecond, nanoscale heat source. We theoretically study adiabatic nanofocusing and near-field heat induction using conical gold plasmonic antennas to generate sub-100 nm thermal gradients for time-resolved magneto-thermal imaging. Finite element calculations of antenna-sample interactions reveal focused electromagnetic loss profiles that are either peaked directly under the antenna or are annular, depending on the sample’s conductivity, the antenna’s apex radius, and the tip-sample separation. We find that the thermal gradient is confined to 40 nm to 60 nm full width at half maximum for realistic ranges of sample conductivity and apex radius. To mitigate this variation, which is undesirable for microscopy, we investigate the use of a platinum capping layer on top of the sample as a thermal transduction layer to produce heat uniformly across different sample materials. After determining the optimal capping layer thickness, we simulate the evolution of the thermal gradient in the underlying sample layer and find that the temporal width is below 10 ps. These results lay a theoretical foundation for nanoscale, time-resolved magneto-thermal imaging.

  12. Guided-mode-resonance coupled localized surface plasmons for dually resonance enhanced Raman scattering sensing

    Science.gov (United States)

    Wang, Zheng; Liu, Chao; Li, Erwen; Chakravarty, Swapnajit; Xu, Xiaochuan; Wang, Alan X.; Fan, D. L.; Chen, Ray T.

    2017-02-01

    Raman scattering spectroscopy is a unique tool to probe vibrational, rotational, and other low-frequency modes of a molecular system and therefore could be utilized to identify chemistry and quantity of molecules. However, the ultralow efficient Raman scattering, which is only 1/109 1/1014 of the excitation light due to the small Raman scattering cross-sections of molecules, have significantly hindered its development in practical sensing applications. The discovery of surface-enhanced Raman scattering (SERS) in the 1970s and the significant progress in nanofabrication technique, provide a promising solution to overcome the inherent issues of Raman spectroscopy. It is found that In the vicinity of nanoparticles and their junctions, the Raman signals of molecules can be significantly improved by an enhancement factor as high as 1010, due to the ultrahigh electric field generated by the localized surface plasmons resonance (LSPR), where the intensity of Raman scattering is proportional to the |E|4. In this work, we propose and demonstrate a new approach combining LSPR from nanocapsules with densely assembled silver nanoparticles (NC-AgNPs) and guidemode- resonance (GMR) from dielectric photonic crystal slabs (PCSs) for SERS substrates with robustly high performance.

  13. Modal interference in spiky nanoshells.

    Science.gov (United States)

    Hastings, Simon P; Qian, Zhaoxia; Swanglap, Pattanawit; Fang, Ying; Engheta, Nader; Park, So-Jung; Link, Stephan; Fakhraai, Zahra

    2015-05-04

    Near-field enhancement of the electric field by metallic nanostructures is important in non-linear optical applications such as surface enhanced Raman scattering. One approach to producing strong localization of the electric field is to couple a dark, non-radiating plasmonic mode with a broad dipolar resonator that is detectable in the far-field. However, characterizing or predicting the degree of the coupling between these modes for a complicated nanostructure can be quite challenging. Here we develop a robust method to solve the T-matrix, the matrix that predicts the scattered electric fields of the incident light, based on finite-difference time-domain (FDTD) simulations and least square fitting algorithms. This method allows us to simultaneously calculate the T-matrix for a broad spectral range. Using this method, the coupling between the electric dipole and quadrupole modes of spiky nanoshells is evaluated. It is shown that the built-in disorder in the structure of these nanoshells allows for coupling between the dipole modes of various orientations as well as coupling between the dipole and the quadrupole modes. A coupling strength of about 5% between these modes can explain the apparent interference features observed in the single particle scattering spectrum. This effect is experimentally verified by single particle backscattering measurements of spiky nanoshells. The modal interference in disordered spiky nanoshells can explain the origin of the spectrally broad quadrupole resonances that result in strong Quadrupole Enhanced Raman Scattering (QERS) in these nanoparticles.

  14. Potential of Solid Sampling Electrothermal Vaporization for solving spectral interference in Inductively Coupled Plasma Optical Emission Spectrometry

    Science.gov (United States)

    Asfaw, Alemayehu; Wibetoe, Grethe

    2009-05-01

    Spectral interference is one of the main causes of erroneous results in Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). This paper describes some cases of spectral interferences with conventional nebulization ICP-OES and the potential of solving them utilizing electrothermal vaporization for volatility-based separation. The cases studied were, the well-known spectral overlap between the As and Cd lines at 228.8 nm that are only 10 pm apart, and the interference of Fe on the main emission lines of As, Cd and Pb. The spectral interferences were studied by monitoring the typical signals of solutions that contain the analytes and the potential interferent, by studying the spectra and calculating Background Equivalent Concentration (BEC)-values. A three step temperature program was developed to be used for direct analysis of solid soil samples by Electrothermal Vaporization (ETV)-ICP-OES: step 1 (760 °C, 40 s), step 2 (1620 °C, 20 s) and a cleaning step (2250 °C, 10 s) where Cd vaporizes in step 1, As, Pb and part of Fe in step 2 and the major part of Fe in the cleaning step. Because As and Cd were time-separated using this program, their prominent lines at 228.8 nm, could be used for determination of each element by ETV-ICP-OES, in spite of the serious wavelength overlap. Selective vaporization was also shown to reduce or eliminate the Fe background emission on As, Cd and Pb lines. To confirm the applicability of the method, a solid soil certified reference materials was analyzed directly without any sample treatment. Good or reasonable accuracy was obtained for the three elements.

  15. Ultrasensitive detection of deltamethrin by immune magnetic nanoparticles separation coupled with surface plasmon resonance sensor.

    Science.gov (United States)

    Liu, Xia; Li, Lei; Liu, You-Qian; Shi, Xing-Bo; Li, Wen-Jin; Yang, Yang; Mao, Lu-Gang

    2014-09-15

    Small molecules or analytes present in trace level are difficult to be detected directly using conventional surface plasmon resonance (SPR) sensor, due to its small changes in the refractive index induced by the binding of these analytes on the sensor surface. In this paper, a new approach that combines SPR sensor technology with Fe3O4 magnetic nanoparticles (MNPs) assays is developed for directly detecting of deltamethrin in soybean. The Fe3O4 MNPs conjugated with antibodies specific to antigen serves as both labels for enhancing refractive index change due to the capture of target analyte, and "vehicles" for the rapid delivery of analyte from a sample solution to the sensor surface. Meanwhile, SPR direct detection format without Fe3O4 MNPs and gas chromatography (GC) analysis were conducted for detection of deltamethrin in soybean to demonstrate the amplification effect of Fe3O4 MNPs. A good linear relationship was obtained between SPR responses and deltamethrin concentrations over a range of 0.01-1 ng/mL with the lowest measurable concentration of 0.01 ng/mL. The results reveal that the detection sensitivity for deltamethrin was improved by 4 orders of magnitude compared with SPR direct detection format. The recovery of 95.5-119.8% was obtained in soybean. The excellent selectivity of the present biosensor is also confirmed by two kinds of pesticides (fenvalerate and atrazine) as controls. This magnetic separation and amplification strategy has great potential for detection of other small analytes in trace level concentration, with high selectivity and sensitivity by altering the target-analyte-capture agent labeled to the carboxyl-coated Fe3O4 MNPs.

  16. Nonlinear plasmonic dispersion and coupling analysis in the symmetric graphene sheets waveguide

    Science.gov (United States)

    Jiang, Xiangqian; Yuan, Haiming; Sun, Xiudong

    2016-12-01

    We study the nonlinear dispersion and coupling properties of the graphene-bounded dielectric slab waveguide at near-THz/THz frequency range, and then reveal the mechanism of symmetry breaking in nonlinear graphene waveguide. We analyze the influence of field intensity and chemical potential on dispersion relation, and find that the nonlinearity of graphene affects strongly the dispersion relation. As the chemical potential decreases, the dispersion properties change significantly. Antisymmetric and asymmetric branches disappear and only symmetric one remains. A nonlinear coupled mode theory is established to describe the dispersion relations and its variation, which agrees with the numerical results well. Using the nonlinear couple model we reveal the reason of occurrence of asymmetric mode in the nonlinear waveguide.

  17. Flexible Ag-C60 nano-biosensors based on surface plasmon coupled emission for clinical and forensic applications.

    Science.gov (United States)

    Mulpur, Pradyumna; Yadavilli, Sairam; Mulpur, Praharsha; Kondiparthi, Neeharika; Sengupta, Bishwambhar; Rao, Apparao M; Podila, Ramakrishna; Kamisetti, Venkataramaniah

    2015-10-14

    The relatively low sensitivity of fluorescence detection schemes, which are mainly limited by the isotropic nature of fluorophore emission, can be overcome by utilizing surface plasmon coupled emission (SPCE). In this study, we demonstrate directional emission from fluorophores on flexible Ag-C60 SPCE sensor platforms for point-of-care sensing, in healthcare and forensic sensing scenarios, with at least 10 times higher sensitivity than traditional fluorescence sensing schemes. Adopting the highly sensitive Ag-C60 SPCE platform based on glass and novel low-cost flexible substrates, we report the unambiguous detection of acid-fast Mycobacterium tuberculosis (Mtb) bacteria at densities as low as 20 Mtb mm(-2); from non-acid-fast bacteria (e.g., E. coli and S. aureus), and the specific on-site detection of acid-fast sperm cells in human semen samples. In combination with the directional emission and high-sensitivity of SPCE platforms, we also demonstrate the utility of smartphones that can replace expensive and cumbersome detectors to enable rapid hand-held detection of analytes in resource-limited settings; a much needed critical advance to biosensors, for developing countries.

  18. Relaxation dynamics of a quantum emitter resonantly coupled to a coherent state of a localized surface plasmon.

    Science.gov (United States)

    Nerkararyan, Khachatur V; Bozhevolnyi, Sergey I

    2015-01-01

    We investigate the relaxation dynamics of a quantum dipole emitter (QDE), e.g., a molecule or quantum dot, located near a metal nanoparticle (MNP) exhibiting a dipolar localized surface plasmon (LSP) resonance at the frequency of the QDE radiative transition. A generic three-level QDE, which is pumped with an external laser pulse and thereby brought into an optically active excited state, is considered to be weakly coupled to the resonant LSP described by a coherent state. It is shown that, under the condition of the QDE-MNP characteristic relaxation time being much shorter than that of the QDE in free space but much longer than the LSP lifetime, the QDE relaxation dynamics can be described analytically and feature, in general, non-exponential decay with complicated transient behaviour. The main physical consequence of this relaxation process is that the emission, being largely determined by the MNP, comes out with a substantial delay. It is also shown that energy dissipation in the QDE-MNP system is relatively weak with the probability of the photon emission being ∼0.75, a number which, rather surprisingly, does not explicitly depend on the metal absorption characteristics. A large number of QDE-MNP system parameters in our analytical description open new possibilities for controlling quantum emitter dynamics.

  19. Cavity spatial mode-locking and high controllability of radial output coupling for circular/square plasmonic nano-resonator lasers.

    Science.gov (United States)

    Chen, Xi; Huang, Yingyan; Ho, Seng-Tiong

    2015-02-01

    We proposed and investigated a novel output coupling scheme for a circular and a square plasmonic nano-ring laser based on a T-shaped radial coupler that is easier to realize than a tangential coupler. The amount of coupling efficiency is shown to be highly controllable from a few percent to tens of percents. This is due to the fact that the standing-wave lasing mode pattern will rotate to give the minimal cavity loss at the T-coupler's location, making the amount of output coupling surprisingly low and hence, controllable. For a non-circular cavity, other symmetry-breaking and geometry-induced scattering could result in separate mode-pattern locking. These give a few main ways to control and optimize the coupling efficiency: via widening/narrowing or rotating the T-coupler's waveguide, or, for the case of a non-circular cavity, via shifting the location of the T-coupler. We observed increased unidirectional lasing induced by either rotating the waveguide or shifting it (for non-circular cases). We simulated the coupling using Maxwell's equations based on the multi-level multi-electron FDTD (MLME-FDTD) method to realistically model the lasing and output coupling behaviors of such plasmonic semiconductor lasers.

  20. Coupling of InAs/InP quantum dots to the plasmon resonance of In nanoparticles grown by metal-organic vapor phase epitaxy

    Science.gov (United States)

    Yuan, Jiayue; Jin, C. Y.; Skacel, Matthias; Urbańczyk, Adam; Xia, Tian; van Veldhoven, P. J.; Nötzel, Richard

    2013-05-01

    We report strongly modified optical emission of InAs/InP quantum dots (QDs) coupled to the surface plasmon resonance (SPR) of In nanoparticles grown by metal-organic vapor phase epitaxy. With increasing In deposition time, the In nanoparticle size increases and the SPR redshifts significantly. When overlapping with the SPR, the excited state photoluminescence of the QDs is strongly enhanced due to QD-SPR coupling while the ground state photoluminescence is quenched due to non-radiative energy transfer. This is underpinned by the wavelength dependence of the spontaneous emission decay time which shows an opposite trend compared to that of bare QDs.

  1. Graphene plasmonics: physics and potential applications

    Directory of Open Access Journals (Sweden)

    Huang Shenyang

    2016-10-01

    Full Text Available Plasmon in graphene possesses many unique properties. It originates from the collective motion of massless Dirac fermions, and the carrier density dependence is distinctively different from conventional plasmons. In addition, graphene plasmon is highly tunable and shows strong energy confinement capability. Most intriguingly, as an atom-thin layer, graphene and its plasmon are very sensitive to the immediate environment. Graphene plasmons strongly couple to polar phonons of the substrate, molecular vibrations of the adsorbates, and lattice vibrations of other atomically thin layers. In this review, we present the most important advances in graphene plasmonics field. The topics include terahertz plasmons, mid-infrared plasmons, plasmon-phonon interactions, and potential applications. Graphene plasmonics opens an avenue for reconfigurable metamaterials and metasurfaces; it is an exciting and promising new subject in the nanophotonics and plasmonics research field.

  2. Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna.

    Science.gov (United States)

    Rui, Guanghao; Chen, Weibin; Abeysinghe, Don C; Nelson, Robert L; Zhan, Qiwen

    2012-08-13

    Coupling nanoscale emitters via optical antennas enables comprehensive control of photon emission in terms of intensity, directivity and polarization. In this work we report highly directional emission of circularly polarized photons from quantum dots coupled to a spiral optical antenna. The structural chirality of the spiral antenna imprints spin state to the emitted photons. Experimental results reveal that a circular polarization extinction ratio of 10 is obtainable. Furthermore, increasing the number of turns of the spiral gives rise to higher antenna gain and directivity, leading to higher field intensity and narrower angular width of emission pattern in the far field. For a five-turn Archimedes' spiral antenna, field intensity increase up to 70-fold simultaneously with antenna directivity of 11.7 dB has been measured in the experiment. The highly directional circularly polarized photon emission from such optically coupled spiral antenna may find important applications in single molecule sensing, quantum optics information processing and integrated photonic circuits as a nanoscale spin photon source.

  3. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles

    Science.gov (United States)

    Bakhti, Saïd; Tishchenko, Alexandre V.; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Dhuey, Scott D.; Schuck, P. James; Cabrini, Stefano; Alayoglu, Selim; Destouches, Nathalie

    2016-09-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.

  4. RNA interference against transcription elongation factor SII does not support its role in transcription-coupled nucleotide excision repair.

    Science.gov (United States)

    Mackinnon-Roy, Christine; Stubbert, Lawton J; McKay, Bruce C

    2011-01-10

    RNA polymerase II is unable to bypass bulky DNA lesions induced by agents like ultraviolet light (UV light) and cisplatin that are located in the template strand of active genes. Arrested polymerases form a stable ternary complex at the site of DNA damage that is thought to pose an impediment to the repair of these lesions. Transcription-coupled nucleotide excision repair (TC-NER) preferentially repairs these DNA lesions through an incompletely defined mechanism. Based on elegant in vitro experiments, it was hypothesized that the transcription elongation factor IIS (TFIIS) may be required to couple transcription to repair by catalyzing the reverse translocation of the arrested polymerase, allowing access of repair proteins to the site of DNA damage. However the role of TFIIS in this repair process has not been tested in vivo. Here, silencing TFIIS using an RNA interference strategy did not affect the ability of cells to recover nascent RNA synthesis following UV exposure or the ability of cells to repair a UV-damaged reporter gene while a similar strategy to decrease the expression Cockayne syndrome group B protein (CSB) resulted in the expected repair defect. Furthermore, RNA interference against TFIIS did not increase the sensitivity of cells to UV light or cisplatin while decreased expression of CSB did. Taken together, these results indicate that TFIIS is not limiting for the repair of transcription-blocking DNA lesions and thus the present work does not support a role for TFIIS in TC-NER.

  5. Quantum interference and radiative coupling in two-atom single-photon emission

    Science.gov (United States)

    Kurizki, G.; Ben-Reuven, A.

    1985-10-01

    The recent experiment by Grangier, Aspect, and Vigue on interference in the emission from fragments of electronically photodissociated molecules is treated as a special case of cooperative fluorescence (CF) from products of various molecular processes. This treatment relates time-resolved features of the CF to characteristics (such as orbital symmetry) of the dissociating parent molecule (PM), suggests various PM state preparations (including formation of subradiant states), and discusses the persistence of CF in systems of nonidentical fragments. The diagnostic potentialities of such studies are emphasized.

  6. ‘Squeezed’ interparticle properties for plasmonic coupling and SERS characteristics of duplex DNA conjugated/linked gold nanoparticles of homo/hetero-sizes

    Science.gov (United States)

    Skeete, Zakiya; Cheng, Han-Wen; Ngo, Quang Minh; Salazar, Christian; Sun, Winny; Luo, Jin; Zhong, Chuan-Jian

    2016-08-01

    The formation of interparticle duplex DNA conjugates with gold nanoparticles constitutes the basis for interparticle plasmonic coupling responsible for surface-enhanced Raman scattering signal amplification, but understanding of its correlation with interparticle spatial properties and particle sizes, especially in aqueous solutions, remains elusive. This report describes findings of an investigation of interparticle plasmonic coupling based on experimental measurements of localized surface plasmon resonance and surface enhanced Raman scattering characteristics for gold nanoparticles in aqueous solutions upon introduction of interparticle duplex DNA conjugates to define the interparticle spatial properties. Theoretical simulations of the interparticle optical properties and electric field enhancement based on a dimer model have also been performed to aid the understanding of the experimental results. The results have revealed a ‘squeezed’ interparticle spatial characteristic in which the duplex DNA-defined distance is close or shorter than A-form DNA conformation, which are discussed in terms of the interparticle interactions, providing fresh insight into the interparticle double-stranded DNA-defined interparticle spatial properties for the design of highly-sensitive nanoprobes in solutions for biomolecular detection.

  7. Covellite CuS nanocrystals: realizing rapid microwave-assisted synthesis in air and unravelling the disappearance of their plasmon resonance after coupling with carbon nanotubes

    Science.gov (United States)

    Kim, Mee Rahn; Hafez, Hassan A.; Chai, Xin; Besteiro, Lucas V.; Tan, Long; Ozaki, Tsuneyuki; Govorov, Alexander O.; Izquierdo, Ricardo; Ma, Dongling

    2016-06-01

    Semiconductor nanocrystals that show plasmonic resonance represent an emerging class of highly promising plasmonic materials with potential applications in diverse fields, such as sensing and optical and optoelectronic devices. We report a new approach to synthesizing homogeneous covellite CuS nanoplatelets in air and the almost complete disappearance of their plasmonic resonance once coupled with multiwalled carbon nanotubes (MWCNTs). These nanoplatelets were rapidly synthesized by a simple microwave-assisted approach at a relatively low reaction temperature in air, instead of under N2 as reported previously. These less severe synthesis conditions were enabled by appropriately selecting a Cu precursor and preparing a precursor sulfur solution (instead of using solid sulfur) and by using microwave radiation as the heat source. The advantages of utilizing microwave irradiation, including uniform and rapid heating, became clear after comparing the results of the synthesis with those achieved using a conventional oil-bath method under N2. The CuS nanoplatelets prepared in this way showed very strong plasmon resonance at c. 1160 nm as a result of their free charge carriers at the calculated density of nh = 1.5 × 1022 cm-3 based on the Drude model. With the aim of exploring their potential for near-infrared responsive optoelectronic devices, they were hybridized with functionalized MWCNTs. Their strong plasmon resonance almost completely disappeared on hybridization. Detailed investigations excluded the effect of possible structural changes in the CuS nanoplatelets during the hybridization process and a possible effect on the plasmon resonance arising from the chemical bonding of surface ligands. Charge transfer was considered to be the main reason for the almost complete disappearance of the plasmon resonance, which was further confirmed by terahertz (THz) time-domain spectrometry and THz time-resolved spectrometry measurements performed on the CuS-MWCNT nanohybrids

  8. Coherent control of the optical absorption in a plasmonic lattice coupled to a luminescent layer

    CERN Document Server

    Pirruccio, Giuseppe; Rodriguez, Said Rahimzadeh-Kalaleh; Rivas, Jaime Gomez

    2016-01-01

    We experimentally demonstrate the coherent control, i.e., phase-dependent enhancement and suppression, of the optical absorption in an array of metallic nanoantennas covered by a thin lu- minescent layer. The coherent control is achieved by using two collinear, counter-propagating and phase-controlled incident waves with wavelength matching the absorption spectrum of dye molecules coupled to the array. Symmetry arguments shed light on the relation between the relative phase of the incident waves and the excitation efficiency of the optical resonances of the system. This coherent control is associated with a phase-dependent distribution of the electromagnetic near-fields in the structure which enables a significant reduction of the unwanted dissipation in the metallic structures.

  9. Surface Plasmon Based Spectrometer

    Science.gov (United States)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  10. Influence of plasmon coupling on the photoluminescence of ZnS/Ag nanoparticles obtained by laser irradiation in liquid

    Science.gov (United States)

    Moos, Rafaela; Graff, Ismael L.; de Oliveira, Vinicius S.; Schreiner, Wido H.; Bezerra, Arandi G.

    2017-10-01

    We investigate the photoluminescence, optical absorption and structural properties of ZnS submitted to laser irradiation in water and isopropyl alcohol. Nanoparticles were produced by irradiating micro-sized ZnS particles dispersed in both liquids, with and without the addition of Ag nanoparticles, taking advantage of the laser-assisted fragmentation effect. When ZnS microparticles are irradiated either in pure water or isopropyl alcohol a considerable size reduction is achieved (from micra to few nanometers). The photoluminescence of these nanoparticles mainly occurs in the UV, centered at 350 nm, and with smaller intensity in the visible, centered at 600 nm. Irradiation of ZnS microparticles dispersed in colloidal silver triggers a reaction between both materials, modifying its optical absorption and photoluminescent properties. After irradiation of ZnS in alcohol containing Ag nanoparticles, a giant increase of the UV photoluminescence is observed. Interestingly, when the irradiation is performed in aqueous Ag nanoparticles colloids, the photoluminescence suffers a red-shift towards the violet-blue. The data show that core-shell (Ag-ZnO) nanostructures are formed after irradiation and the visible emission likely originates from the ZnO shell grown around silver nanoparticles. The presence of Ag nanoparticles in the liquid medium promotes a stronger absorption of the laser beam during irradiation due to the coupling with the surface plasmon resonance, fostering intense reactions among ZnS, Ag nanoparticles, and the liquid medium. Our study shows that with a simple change of the liquid medium wherein the irradiation is conducted the photoluminescence can be tuned from UV to visible and core-shell nanostructures can be obtained.

  11. Pathophysiological interference with neurovascular coupling - when imaging based on hemoglobin might go blind

    Directory of Open Access Journals (Sweden)

    Ute Lindauer

    2010-10-01

    Full Text Available Assessing neuronal activity by noninvasive functional brain imaging techniques which are based on the hemodynamic response depends totally on the physiological cascade of metabolism and blood flow. At present, functional brain imaging with near infrared spectroscopy (NIRS or BOLD-fMRI is widely used in cognitive neuroscience in healthy subjects where neurovascular coupling and cerebrovascular reactivity can be assumed to be intact. Local activation studies as well as studies investigating functional connectivity between brain regions of the resting brain provide a rapidly increasing body of knowledge on brain function in humans and animals. Furthermore, functional NIRS and MRI techniques are increasingly being used in patients with severe brain diseases and this use might gain more and more importance for establishing their use in the clinical routine. However, more and more experimental evidence shows that changes in baseline physiological parameters, pharmacological interventions or disease-related vascular changes may significantly alter the normal response of blood flow and blood oxygenation and thus may lead to misinterpretation of neuronal activity. In this article we present examples of recent experimental findings on pathophysiological changes of neurovascular coupling parameters in animals and discuss their potential implications for functional imaging based on hemodynamic signals such as fNIRS or BOLD-fMRI. To enable correct interpretation of neuronal activity by vascular signals, future research needs to deepen our understanding of the basic mechanisms of neurovascular coupling and the specific characteristics of disturbed neurovascular coupling in the diseased brain.

  12. Cooperative biexciton generation and destructive interference in coupled quantum dots using adiabatic rapid passage

    NARCIS (Netherlands)

    Renaud, N.; Grozema, F.C.

    2014-01-01

    We report numerical simulations of biexciton generation in coupled quantum dots (CQDs) placed in a static electric field and excited by a chirped laser pulse. Our simulations explicitly account for exciton-phonon interactions at finite temperature using a non-Markovian quantum jump approach to solve

  13. Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide

    Science.gov (United States)

    Chen, Fang; Yao, Duanzheng

    2016-06-01

    A larger number of complicated plasmonic nanostructures have been realized to exhibit Fano interference. In this paper, we demonstrate a simple nanostructure, side coupled waveguide resonator system with a metal nanowall located in the metal-insulator-metal waveguide (MIM), which can also achieve multiple plasmonic Fano resonance. In the proposed nanostructure, the asymmetric line shape originates from the interference between the slot resonator and the new resonator. Therefore, the Fano line shape can be actively controlled by the phase difference of the two resonators and the thickness of the metal nanowall. A scattering matrix method is used to calculate the transmission spectra. Results obtained by the scattering matrix theory are consistent with those from the finite-difference time-domain simulations (FDTD). Moreover, Fano resonances in the proposed structure show high sensitivity, which may have important application in plasmonic nanosensor and modulator.

  14. Reduction of plyatomic ion interferences in indictively coupled plasma mass spectrometry with cryogenic desolvation

    Energy Technology Data Exchange (ETDEWEB)

    Alves, L.C.

    1993-09-01

    A desolvation scheme for introducing aqueous and organic samples into an argon inductively coupled plasma is described; the aerosol generated by nebulizer is heated (+140 C) and cooled ({minus}80 C) repeatedly, and the dried aerosol is then injected into the mass spectrometer. Polyatomic ions are greatly suppressed. This scheme was validated with analysis of seawater and urine reference samples. Finally, the removal of organic solvents by cryogenic desolvation was studied.

  15. Unconventional Geometric Phase-Shift Gates Based on Superconducting Quantum Interference Devices Coupled to a Single-Mode Cavity

    Institute of Scientific and Technical Information of China (English)

    SONG Ke-Hui; ZHOU Zheng-Wei; GUO Guang-Can

    2006-01-01

    We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum logic in SQUID-system.

  16. Corrosion Behavior of X80 Steel with Coupled Coating Defects under Alternating Current Interference in Alkaline Environment

    Science.gov (United States)

    Li, Zhong; Li, Caiyu; Qian, Hongchang; Li, Jun; Huang, Liang; Du, Cuiwei

    2017-01-01

    The corrosion behavior of X80 steel in the presence of coupled coating defects was simulated and studied under the interference of alternating current (AC) in an alkaline environment. The results from electrochemical measurements showed that the electrode potential of the coating defect with the smaller exposed area was lower than that with the larger area, which indicated that the steel with the smaller coating defect was more prone to corrosion. The result of weight loss tests also showed that the smaller coating defect had induced a higher corrosion rate. However, the corrosion rate of X80 steel at the larger coating defect decreased gradually with the increase of the larger defect area at a constant smaller defect area. The corrosion morphology images showed that the coating defects with smaller areas suffered from more severe pitting corrosion. PMID:28773078

  17. Plasmonics in Topological Insulators

    Directory of Open Access Journals (Sweden)

    Yi-Ping Lai

    2014-04-01

    Full Text Available With strong spin-orbit coupling, topological insulators have an insulating bulk state, characterized by a band gap, and a conducting surface state, characterized by a Dirac cone. Plasmons in topological insulators show high frequency-tunability in the mid-infrared and terahertz spectral regions with transverse spin oscillations, also called “spin-plasmons”. This paper presents a discussion and review of the developments in this field from the fundamental theory of plasmons in bulk, thin-film, and surface-magnetized topological insulators to the techniques of plasmon excitation and future applications.

  18. Quantum Plasmonics: Quantum Information at the Nanoscale 122054

    Science.gov (United States)

    2016-11-06

    of our research programme include the demonstration of Hong-Ou- Mandel interference of surface plasmon polaritons, proving directly the bosonic nature...Hong-Ou- Mandel interference of surface plasmon polaritons [1], proving directly the bosonic nature of surface plasmons. This constitutes a first step...of the well-known Hong-Ou- Mandel interference experiment (Figure 1). This experiment forms the basis of our understanding of single SPPs, and further

  19. Transmission-type SPR sensor based on coupling of surface plasmons to radiation modes using a dielectric grating

    Institute of Scientific and Technical Information of China (English)

    Changkui HU; Deming LIU

    2009-01-01

    A transmission-type surface plasmon resonance (SPR) sensor is presented. In the transmission-type SPR structure, surface plasmon waves are outcoupled to radia-tion modes by the use of dielectric grating on a thin-film layer of Ag. Compared with the traditional reflection-type SPR sensor, the new method provides larger detectable range, which might be useful to investigate thick targets such as in cell analysis. Theoretical simulations show that the structures provide high transmission efficiency for surface plasmon resonance and the devices present extre-mely linear sensing characteristics. Furthermore, it is found that the transmission efficiency and the refractive index detection sensitivity of the SPR sensor can be improved by the use of a lower refractive index glass prism.

  20. Plasmon-Exciton-Polariton Lasing

    CERN Document Server

    Ramezani, Mohammad; Fernández-Domínguez, Antonio I; Feist, Johannes; Rodriguez, Said Rahimzadeh-Kalaleh; Garcia-Vidal, Francisco J; Gómez-Rivas, Jaime

    2016-01-01

    Strong coupling of Frenkel excitons with surface plasmons leads to the formation of bosonic quasi-particles known as plasmon-exciton-polaritons (PEPs).Localized surface plasmons in nanoparticles are lossy due to radiative and nonradiative decays, which has hampered the realization of polariton lasing in a plasmonic system, i.e., PEP lasing. These losses can be reduced in collective plasmonic resonances supported by arrays of nanoparticles. Here we demonstrate PEP lasing in arrays of silver nanoparticles by showing the emergence of a threshold in the photoluminescence accompanied by both a superlinear increase of the emission and spectral narrowing. We also observe a reduction of the threshold by increasing the coupling between the molecular excitons and the resonances supported by the array despite the reduction of the quantum efficiency of the emitters. The coexistence of bright and dark collective modes in this plasmonic system allows for a 90?-change of polarization in the emission beyond the threshold.

  1. Studies of Hot Photoluminescence in Plasmonically Coupled Silicon via Variable Energy Excitation and Temperature-Dependent Spectroscopy

    Science.gov (United States)

    2015-01-01

    By integrating silicon nanowires (∼150 nm diameter, 20 μm length) with an Ω-shaped plasmonic nanocavity, we are able to generate broadband visible luminescence, which is induced by high order hybrid nanocavity-surface plasmon modes. The nature of this super bandgap emission is explored via photoluminescence spectroscopy studies performed with variable laser excitation energies (1.959 to 2.708 eV) and finite difference time domain simulations. Furthermore, temperature-dependent photoluminescence spectroscopy shows that the observed emission corresponds to radiative recombination of unthermalized (hot) carriers as opposed to a resonant Raman process. PMID:25120156

  2. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  3. Hybrid silicon-plasmonics: efficient waveguide interfacing for low-loss integrated switching components

    Science.gov (United States)

    Tsilipakos, Odysseas; Pitilakis, Alexandros; Kriezis, Emmanouil E.

    2012-04-01

    We present a thorough numerical investigation of end-fire coupling between dielectric-loaded surface plasmon polariton (DLSPP) and compact rib/wire silicon-on-insulator (SOI) waveguides. Simulations are based on the three-dimensional vector finite element method. The interface geometrical parameters leading to optimum performance, i.e., maximum coupling efficiency or, equivalently, minimum insertion loss (IL), are identified. We show that coupling efficiencies as high as 85 % are possible. In addition, we quantify the fabrication tolerances about the optimum parameter values. In the same context, we assess the effect of a metallic stripe gap and that of a horizontal offset between waveguides on insertion loss. Finally, we demonstrate that by benefiting form the low-loss coupling between the two waveguides, hybrid silicon-plasmonic 2 x 2 thermo-optic switching elements can outperform their all-plasmonic counterparts in terms of IL. Specifically, we examine two hybrid SOI-DLSPP switching elements, namely, a Mach-Zehnder Interferometer (MZI) and a Multi-Mode-Interference (MMI) switch. In particular, in the MZI case the IL improvement compared to the all-plasmonic counterpart is 4.5 dB. Moreover, the proposed hybrid components maintain the high extinction ratio, small footprint, and efficient tuning traits of plasmonic technology.

  4. The influence of edge and corner evolution on plasmon properties and resonant edge effect in gold nanoplatelets.

    Science.gov (United States)

    Xu, Xi-Bin; Luo, Jiang-Shan; Liu, Miao; Wang, Yu-Ying; Yi, Zao; Li, Xi-Bo; Yi, You-Gen; Tang, Yong-Jian

    2015-01-28

    In this paper a simulation of the properties of surface plasmons on gold nanoplatelets with various cross-sections inscribed in a circle and an investigation of their field distributions to assign multiple SPRs are described. The manipulated propagation can be obtained through the evolution of edges and corners. Furthermore, the particle morphology and the associated spectral positions alone do not uniquely reflect the important details of the local field distribution or the resonance modes. The plasmon modes were investigated and found to be mainly excited along the edges and in the side and sloped side surfaces. The strong field distributions can generally be found around the corners and how the plasmons transmit through the corners to adjacent edges was also investigated. Besides the plasmons excited along the edges as were found for the triangular nanoplatelets, plasmons were excited in the interior region of the triangular surfaces and were also investigated. Despite this in the infrared region, plasmon modes were found to be along the edges for the hexagonal nanoplatelets. Also, it can be seen that the change of nanoplatelet thickness can support different plasmon modes ranging from dipolar resonance mode to quadrupole resonance mode. The thickness far below the skin depth can display complex plasmon modes along the edges and on the side and sloping side surfaces as well as the strong coupling between the top and bottom surfaces. The observed plasmon resonance modes in this simulation reflect the interference of all these contributions including the plasmons along the edges and on the side surfaces. This is an essential step towards a thorough understanding of plasmon modes and the effect of edge and corner evolution in polygonous nanoplatelets.

  5. The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in two types of asymmetric dimer

    Science.gov (United States)

    Li, Quanshui; Hu, Jianling; Wang, Ziya; Wang, Fengping; Bao, Yongjun

    2014-07-01

    The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in asymmetric dimers are illustrated by two types of configuration, one formed by a gold nanoparticle and a TiO2-Ag core-shell nanoparticle and the other formed by two TiO2-Ag core-shell nanoparticles with suitable sizes. The redshift and blueshift behaviours of the coupled bonding modes with decreasing gap are found under longitudinal and transverse polarization of light for these dimers in the resonant situation, respectively. Under the near-resonant situation, the redshift behaviours of the coupled bonding modes still remain under longitudinal polarization, whereas the two separated modes of monomers after coupling under transverse polarization exhibit no obvious peak-shift behaviours, and the one on the lower frequency side shows an apparent attenuation in the strength. Under the off-resonant situation, the redshift behaviours not only occur in the coupled modes under longitudinal polarization, but also occur in two separated modes under transverse polarization.

  6. Core-Shell Structured Dielectric-Metal Circular Nanodisk Antenna: Gap Plasmon Assisted Magnetic Toroid-like Cavity Modes

    CERN Document Server

    Zhang, Qiang; Zhang, Xiao Ming; Han, Dezhuan; Gao, Lei

    2014-01-01

    Plasmonic nanoantennas, the properties of which are essentially determined by their resonance modes, are of interest both fundamentally and for various applications. Antennas with various shapes, geometries and compositions have been demonstrated, each possessing unique properties and potential applications. Here, we propose the use of a sidewall coating as an additional degree of freedom to manipulate plasmonic gap cavity modes in strongly coupled metallic nanodisks. It is demonstrated that for a dielectric middle layer with a thickness of a few tens of nanometers and a sidewall plasmonic coating of more than ten nanometers, the usual optical magnetic resonance modes are eliminated, and only magnetic toroid-like modes are sustainable in the infrared and visible regime. All of these deep-subwavelength modes can be interpreted as an interference effect from the gap surface plasmon polaritons. Our results will be useful in nanoantenna design, high-Q cavity sensing, structured light-beam generation, and photon e...

  7. Plasmonic Biosensors

    OpenAIRE

    Hill, Ryan T.

    2014-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and ...

  8. Integrated plasmonic refractometric sensor using Fano resonance

    Science.gov (United States)

    Sherif, S. M.; Zografopoulos, D. C.; Shahada, L. A.; Beccherelli, R.; Swillam, M.

    2017-02-01

    We propose a plasmonic refractometric sensor that is based on Fano resonances excited in a resonant rectangular cavity coupled to a metal-insulator-metal bus waveguide. The properties of the resonances are controlled by varying the dimensions of the rectangular resonator and the observed Fano profile stems from the multimode interference of resonant cavity modes. We theoretically investigate the device’s performance as a highly sensitive refractometric plasmonic sensor which operates on gases, water and organic solvent solutions with tens of femtoliters of analyte. The sensor is studied in a wide operational range (0.7-2.7 μm) covering the entire near infrared spectral range, and is characterized by large sensitivity, which reaches 1550 nm RIU-1, and sensitivity per unit volume higher than 107 nm (RIU · nl)-1 at the resonant wavelength of 1.55 μm. The proposed plasmonic structure is very promising for integrated sensing applications owing to its small footprint and surprisingly simple layout.

  9. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    Science.gov (United States)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    , Zhengtong Liu, Hsiao-Kuan Yuan, Rasmus H Pedersen, Alexandra Boltasseva, Jiji Chen, Joseph Irudayaraj, Alexander V Kildishev and Vladimir M Shalaev Confinement and propagation characteristics of subwavelength plasmonic modes R F Oulton, G Bartal, D F P Pile and X Zhang Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film F de León-Pérez, G Brucoli, F J García-Vidal and L Martín-Moreno Shaping and manipulation of light fields with bottom-up plasmonic structures C Girard, E Dujardin, G Baffou and R Quidant Gold nanorods and nanospheroids for enhancing spontaneous emission A Mohammadi, V Sandoghdar and M Agio Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon J-Y Laluet, A Drezet, C Genet and T W Ebbesen Mode mapping of plasmonic stars using TPL microscopy P Ghenuche, S Cherukulappurath and R Quidant Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field G A Wurtz, W Hendren, R Pollard, R Atkinson, L Le Guyader, A Kirilyuk, Th Rasing, I I Smolyaninov and A V Zayats Nanoplasmonic renormalization and enhancement of Coulomb interactions M Durach, A Rusina, V I Klimov and M I Stockman Bulk and surface sensitivities of surface plasmon waveguides Pierre Berini Mapping plasmons in nanoantennas via cathodoluminescence R Gómez-Medina, N Yamamoto, M Nakano and F J García de Abajo Theoretical analysis of gold nano-strip gap plasmon resonators T Søndergaard, J Jung, S I Bozhevolnyi and G Della Valle Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings J Gómez Rivas, G Vecchi and V Giannini Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit Mark W Knight and Naomi J Halas Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency T H Taminiau, F D Stefani and N F van Hulst Green

  10. Nonlinear plasmonic amplification via dissipative soliton-plasmon resonances

    Science.gov (United States)

    Ferrando, Albert

    2017-01-01

    In this contribution we introduce a strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasiparticle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a mechanism of quasiresonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling, and gain give rise to a scenario for the excitation of long-range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.

  11. Plasmonic atoms and plasmonic molecules

    CERN Document Server

    Klimov, V V

    2007-01-01

    The proposed paradigm of plasmonic atoms and plasmonic molecules allows one to describe and predict the strongly localized plasmonic oscillations in the clusters of nanoparticles and some other nanostructures in uniform way. Strongly localized plasmonic molecules near the contacting surfaces might become the fundamental elements (by analogy with Lego bricks) for a construction of fully integrated opto-electronic nanodevices of any complexity and scale of integration.

  12. Plasmonic atoms and plasmonic molecules

    Science.gov (United States)

    Klimov, V. V.; Guzatov, D. V.

    2007-11-01

    The proposed paradigm of plasmonic atoms and plasmonic molecules allows one to describe and predict the strongly localized plasmonic oscillations in the clusters of nanoparticles and some other nanostructures in uniform way. Strongly localized plasmonic molecules near the contacting surfaces might become the fundamental elements (by analogy with Lego bricks) for the construction of fully integrated opto-electronic nanodevices of any complexity and scale of integration.

  13. Enhanced piezo/solar-photocatalytic activity of Ag/ZnO nanotetrapods arising from the coupling of surface plasmon resonance and piezophototronic effect

    Science.gov (United States)

    Zhang, Linlin; Zhu, Dan; He, Haoxuan; Wang, Qiang; Xing, Lili; Xue, Xinyu

    2017-03-01

    Ag/ZnO nanotetrapods are synthesized in mass production via a simple thermal-evaporation/hydrothermal route, and Ag nanoparticles are randomly coated on ZnO nanotetrapods. Ag/ZnO nanotetrapods can co-use the solar and mechanical energy to degrade various organic pollutants, and the solar-photocatalytic activity is significantly enhanced by the piezo-assistance. For instance, under ultrasonic stimulation (200 W) and solar illumination (500 W), Ag/ZnO nanotetrapods can completely degrade methyl orange (MO) within 25 min. The high piezo/solar-photocatalytic efficiency of Ag/ZnO nanotetrapods can be ascribed to the coupling of surface plasmon resonance and piezophototronic effect in the solar-photocatalytic process. The localized surface plasmon resonance effect of Ag nanoparticles can increase the visible light absorption. Ag/ZnO interface can facilitate the interfacial charge transfer and induce the separation of photo-induced charge carriers. The piezoelectric field originated from the deformation of ZnO nanotetrapods can further enhance the separation of photo-induced electron/hole pairs. Our results imply that Ag/ZnO nanotetrapods have great potentials of using sustainable energy in the nature for environmental remediation.

  14. Enhancement of ZnO ultraviolet emission by surface plasmon coupling using a rough NiSi2 layer synthesized by ion implantation

    Institute of Scientific and Technical Information of China (English)

    Tan Hairen; You Jingbi; Zhang Shuguang; Gao Hongli; Yin Zhigang; Bai Yiming; Zhang Xiulan; Zhang Xingwang; Qu Sheng

    2011-01-01

    The calculation results of the surface plasmon (SP) energy and Purcell factor of ZnO/NiSi2 demonstrate the possibility of using NiSi2 to enhance the UV emission of ZnO by SP coupling.Experimentally,ZnO films were deposited on NiSi2 layers synthesized by ion implantation,and the roughness of the NiSi2 layers spans a large range from 3 to 38 nm,providing favorable conditions for investigating SP-mediated emission.An 1 1-fold emission enhancement from the ZnO film on the roughest NiSi2 layer was obtained,which indicates the possibility that metal silicide layers can be used both as an electrical contact and for emission enhancement.

  15. Sensitive Glycoprotein Sandwich Assays by the Synergistic Effect of In Situ Generation of Raman Probes and Plasmonic Coupling of Ag Core-Au Satellite Nanostructures.

    Science.gov (United States)

    Bi, Xiaoshuang; Li, Xueyuan; Chen, Dong; Du, Xuezhong

    2016-05-01

    Sensitive surface-enhanced Raman scattering (SERS) assays of glycoproteins have been proposed using p-aminothiophenol (PATP)-embedded Ag core-Au satellite nanostructures modified with p-mercaptophenylboronic acid (PMBA) and the self-assembled monolayer of PMBA on a smooth gold-coated wafer. The apparent Raman probe PATP on the surfaces of the Ag cores underwent a photodimerization to generate 4,4'-dimercaptoazobenzene (DMAB) in situ upon excitation of laser, and the in situ generated DMAB acted as the actual Raman probe with considerably strong SERS signals, which was further enhanced by the plasmonic coupling of the Ag core-Au satellite nanostructures due to the synergistic effect. The sandwich assays of glycoproteins showed high sensitivity and excellent selectivity against nonglycoproteins. The Ag core-Au satellite SERS nanostructures can be used for highly sensitive SERS assays of other analytes.

  16. Carbon nanotubes as novel spacer materials on silver thin-films for generating superior fluorescence enhancements via surface plasmon coupled emission

    Science.gov (United States)

    Mulpur, Pradyumna; Podila, Ramakrishna; Rao, Apparao M.; Kamisetti, Venkataramaniah

    2016-06-01

    In this study, we report the first time implementation of single/multi-walled carbon nanotubes, as novel spacer materials, on a silver (Ag) thin-film based surface plasmon coupled emission (SPCE) platform. The engineered Ag-CNT SPCE substrates enabled the realization of up to ∼10-fold enhancement in fluorescence signal intensity, of the rhodamine b dye. This study addresses the issue that, while many of the biochemical sensing strategies are based on fluorescence, they are all fundamentally limited by the isotropic nature of the phenomenon that results in low signal collection efficiency (50% signal collection efficiency. Considering the easy functionalization of these carbon nano-allotropes, and their high sensitivity; the economical Ag-CNT SPCE platforms can be effectively extended towards sensing applications.

  17. Effects of plasmonic coupling and electrical current on persistent photoconductivity of single-layer graphene on pristine and silver-nanoparticle-coated SiO2/Si.

    Science.gov (United States)

    Liu, Chih-Yi; Liang, Kengchih; Chang, Chun-Cheng; Tzeng, Yonhua

    2012-09-24

    Effects and mechanisms of conductivity variation of chemically vapor deposited single-layer graphene covering silver nanoparticles on SiO(2)/Si are reported based on blue-light (405 nm) induced plasmonic coupling and electrical current induced annealing and desorption of surface adsorbates. With 1V applied voltage, photoconductivity is positive except a brief negative period when the graphene is first illuminated by light. At 10 mV applied voltage, negative photoconductivity persists for hours. In comparison, negative photoconductivity of graphene on pristine SiO(2)/Si persists for tens of hours. When the applied voltage is increased to 1V, it takes tens of hours of light illumination to change to positive photoconductivity.

  18. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    DEFF Research Database (Denmark)

    Sobolewska, Elzbieta; Leißner, Till; Jozefowski, Leszek

    Recent research on hybrid plasmonic systems has shown the existence of a loss channel for energy transfer between organic materials and plasmonic/metallic structured substrates. This work focuses on the exciton-plasmon coupling between para-Hexaphenylene (p-6P) organic nanofibers (ONFs) and surfa...

  19. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    DEFF Research Database (Denmark)

    Sobolewska, Elzbieta; Leißner, Till; Jozefowski, Leszek

    2016-01-01

    Recent research on hybrid plasmonic systems has shown the existence of a loss channel for energy transfer between organic materials and plasmonic/metallic structured substrates. This work focuses on the exciton-plasmon coupling between para-Hexaphenylene (p-6P) organic nanofibers (ONFs) and surfa...

  20. Enhanced visible fluorescence in highly transparent Al-doped ZnO film by surface plasmon coupling of Ag nanoparticles

    Science.gov (United States)

    Bishnoi, Swati; Das, Rupali; Phadke, Parikshit; Kotnala, R. K.; Chawla, Santa

    2014-10-01

    ZnO:Al (AZO) film has been deposited on quartz substrate by Pulsed laser deposition and showed monophasic hexagonal structure of c-axis oriented nanorods upto 80 nm in height. AZO film was optimally conjugated with Ag nanoparticles (Ag NPs) in a hybrid nanostructure to achieve significant enhancement in the visible fluorescence emission. Augmented near field and extinction spectra of shape tailored Ag NPs and their dimers are simulated through FDTD method, and a direct association with fluorescence enhancement is established. Such plasmon- enhanced visible emission from a transparent conducting oxide could be very important for solar cell applications.

  1. Hybrid Airy Plasmons with Dynamically Steerable Trajectories

    CERN Document Server

    Li, Rujiang; Lin, Xiao; Wang, Huaping; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    With the intriguing properties of diffraction-free, self-accelerating, and self-healing, Airy plasmons are promising to be used in the trapping, transporting, and sorting of micro-objects, imaging, and chip scale signal processing. However, the high dissipative loss and the lack of dynamical steerability restrict the implementation of Airy plasmons in these applications. Here we reveal the hybrid Airy plasmons for the first time by taking a hybrid graphene-based plasmonic waveguide in the terahertz (THz) domain as an example. Due to the coupling between an optical mode and a plasmonic mode, the hybrid Airy plasmons can have large propagation lengths and effective transverse deflections, where the transverse waveguide confinements are governed by the hybrid modes with moderate quality factors. Meanwhile, the propagation trajectories of hybrid Airy plasmons are dynamically steerable by changing the chemical potential of graphene. These hybrid Airy plasmons may promote the further discovery of non-diffracting be...

  2. Hybrid Airy plasmons with dynamically steerable trajectories.

    Science.gov (United States)

    Li, Rujiang; Imran, Muhammad; Lin, Xiao; Wang, Huaping; Xu, Zhiwei; Chen, Hongsheng

    2017-01-26

    With their intriguing diffraction-free, self-accelerating, and self-healing properties, Airy plasmons show promise for use in the trapping, transporting, and sorting of micro-objects, imaging, and chip scale signal processing. However, high dissipative loss and lack of dynamical steerability restrict the implementation of Airy plasmons in these applications. Here we reveal hybrid Airy plasmons for the first time by taking a hybrid graphene-based plasmonic waveguide in the terahertz (THz) domain as an example. Due to coupling between optical modes and plasmonic modes, the hybrid Airy plasmons can have large propagation lengths and effective transverse deflections, where the transverse waveguide confinements are governed by the hybrid modes with moderate quality factors. Meanwhile, the propagation trajectories of the hybrid Airy plasmons are dynamically steerable by changing the chemical potential of graphene. These hybrid Airy plasmons may promote the further discovery of non-diffracting beams along with the emerging developments of optical tweezers and tractor beams.

  3. Plasmonics: Manipulating Light at the Subwavelength Scale

    Directory of Open Access Journals (Sweden)

    Yong-Yuan Zhu

    2007-12-01

    Full Text Available The coupling of light to collective oscillation of electrons on the metal surface allows the creation of surface plasmon-polariton wave. This surface wave is of central interest in the field of plasmonics. In this paper, we will present a brief review of this field, focusing on the plasmonic waveguide and plasmonic transmission. In the plasmonic waveguide, the light can be guided along the metal surface with subwavelength lateral dimensions, enabling the possibility of high-density integration of the optical elements. On the other hand, in the plasmonic transmission, the propagation of light through a metal surface can be tailored with the subwavelength holes, leading to the anomalous transmission behaviors which have received extensive investigations in recent years. In addition, as a supplement to plasmonics in the visible and near-infrared region, the study of THz plasmonics has also been discussed.

  4. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    Science.gov (United States)

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-03

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy.

  5. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES)

    Science.gov (United States)

    Karadjov, Metody; Velitchkova, Nikolaya; Veleva, Olga; Velichkov, Serafim; Markov, Pavel; Daskalova, Nonka

    2016-05-01

    This paper deals with spectral interferences of complex matrix containing Mo, Al, Ti, Fe, Mg, Ca and Cu in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). By radial viewing 40.68 MHz ICP equipped with a high resolution spectrometer (spectral bandwidth = 5 pm) the hyperfine structure (HFS) of the most prominent lines of rhenium (Re II 197.248 nm, Re II 221.426 nm and Re II 227.525 nm) was registered. The HFS components under high resolution conditions were used as separate prominent line in order to circumvent spectral interferences. The Q-concept was applied for quantification of spectral interferences. The quantitative databases for the type and the magnitude of the spectral interferences in the presence of above mentioned matrix constituents were obtained by using a radial viewing 40.68 MHz ICP with high resolution and an axial viewing 27.12 MHz ICP with middle resolution. The data for the both ICP-OES systems were collected chiefly with a view to spectrochemical analysis for comparing the magnitude of line and wing (background) spectral interference and the true detection limits with spectroscopic apparatus with different spectral resolution. The sample pretreatment methods by sintering with magnesium oxide and oxidizing agents as well as a microwave acid digestion were applied. The feasibility, accuracy and precision of the analytical results were experimentally demonstrated by certified reference materials.

  6. Cathodoluminescence plasmon microscopy

    NARCIS (Netherlands)

    Kuttge, M.

    2009-01-01

    Surface plasmon polaritons (SPPs) are electromagnetic waves that are strongly coupled to the collective oscillation of free electrons at an interface between a dielectric and a metal. Strong confinement of the electromagnetic field and tunability of SPP dispersion allow two-dimensional optics. This

  7. Active tunable plasmonically induced polarization conversion in the THz regime

    Science.gov (United States)

    Ling, Furi; Yao, Gang; Yao, Jianquan

    2016-01-01

    A plasmon-induced polarization conversion (PIPC) structure based on periodically patterned graphene was demonstrated in the THz regime. By varying the Fermi level of two connected T-shape graphene strips through the electrostatic gating, the peak frequency and the group index in the transparency window can be tuned, which is good agreement with the coupled Lorentz oscillator model. Due to interference between two polarization selective graphene plasmonic resonances coexisting in the planar metamaterial, polarization conversion can be achieved. The linearly polarized THz wave can be converted to elliptically and right circularly polarized THz wave through varying the relaxation time of electrons in graphene. This novel chip-scale active terahertz device promises essential application opportunities in terahertz sensing and terahertz communications. PMID:27734912

  8. Graphene on Pt3Ni(1 1 1): a suitable platform for tunable charge doping, electron-phonon coupling and plasmonic excitations

    Science.gov (United States)

    Politano, Antonio; Chiarello, Gennaro

    2017-09-01

    Despite intensive investigations, the comprehension of the mechanisms ruling the interplay of charge doping, electron-phonon coupling and dynamic screening in supported graphene remains elusive yet. Using a combination of surface-science spectroscopies, we have studied these phenomena for graphene on both Pt-skin-terminated and nickel-oxide-skin-terminated Pt3Ni(1 1 1). Graphene epitaxially grown on the (1 1 1)-oriented Pt skin behaves as a charge-neutral graphene/metal contact, exhibiting a reduced coupling of the out-of-plane optical phonon with Dirac-cone electrons. Conversely, p-doped graphene/Pt(1 1 1) exhibits giant Kohn anomalies arising from the electron-phonon coupling. Upon oxidation, the Pt skin of Pt3Ni(1 1 1) evolves into a nickel-oxide skin, which results into a p-type doped graphene sheet. The plasmonic spectrum shows dramatic changes when going from a graphene/Pt-skin/Pt3Ni to a graphene/nickel-oxide/Pt3Ni configuration. Finally, we show that the presence of Ni atoms in the metal alloy does not affect the temperature at which the graphene phase is formed, contrarily to the interpretation of previous experiments.

  9. Signature of a Fano-resonance in a plasmonic meta-molecule's local density of optical states

    CERN Document Server

    Frimmer, Martin; Koenderink, A Femius

    2011-01-01

    We present measurements on plasmonic meta-molecules under local excitation using cathodoluminescence which show a spatial redistribution of the local density of optical states (LDOS) at the same frequency where a sharp spectral Fano-feature in the extinction cross section has been observed. Our analytical model shows that both near- and far-field effects arise due to interference of the same two eigenmodes of the system. We present quantitative insights both in a bare state, and in a dressed state picture that describe plasmonic Fano interference either as near-field amplitude transfer between three coupled bare states, or as interference of two uncoupled eigenmodes in the far field. We identify the same eigenmode causing a dip in extinction to strongly enhance the radiative LDOS, making it a promising candidate for spontaneous emission control.

  10. Template-stripped asymmetric metallic pyramids for tunable plasmonic nanofocusing.

    Science.gov (United States)

    Cherukulappurath, Sudhir; Johnson, Timothy W; Lindquist, Nathan C; Oh, Sang-Hyun

    2013-01-01

    We demonstrate a novel scheme for plasmonic nanofocusing with internally illuminated asymmetric metallic pyramidal tips using linearly polarized light. A wafer-scale array of sharp metallic pyramids is fabricated via template stripping with films of different thicknesses on opposing pyramid facets. This structural asymmetry is achieved through a one-step angled metal deposition that does not require any additional lithography processing and when internally illuminated enables the generation of plasmons using a Kretschmann-like coupling method on only one side of the pyramids. Plasmons traveling toward the tip on one side will converge at the apex, forming a nanoscale "hotspot." The asymmetry is necessary for these focusing effects since symmetric pyramids display destructive plasmon interference at the tip. Computer simulations confirm that internal illumination with linearly polarized light at normal incidence on these asymmetric pyramids will focus optical energy into nanoscale volumes. Far-field optical experiments demonstrate large field enhancements as well as angle-dependent spectral tuning of the reradiated light. Because of the low background light levels, wafer-scale fabrication, and a straightforward excitation scheme, these asymmetric pyramidal tips will find applications in near-field optical microscopy and array-based optical trapping.

  11. Direct imaging of localized surface plasmon polaritons

    Science.gov (United States)

    Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun; Aydinli, Atilla

    2011-09-01

    In this Letter, we report on dark field imaging of localized surface plasmon polaritons (SPPs) in plasmonic waveguiding bands formed by plasmonic coupled cavities. We image the light scattered from SPPs in the plasmonic cavities excited by a tunable light source. Tuning the excitation wavelength, we measure the localization and dispersion of the plasmonic cavity mode. Dark field imaging has been achieved in the Kretschmann configuration using a supercontinuum white-light laser equipped with an acoustooptic tunable filter. Polarization dependent spectroscopic reflection and dark field imaging measurements are correlated and found to be in agreement with finite-difference time-domain calculations.

  12. Tunable Omnidirectional Surface Plasmon Resonance in Cylindrical Plasmonic Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; WANG Bing; ZHOU Zhi-Ping

    2008-01-01

    @@ The tunable omnidirectional surface plasmon resonance in the optical range is theoretically demonstrated in a cylindrical plasmonic crystal by using rigorous coupled-wave analysis.The cylindrical plasmonic crystal consists of an infinite chain of two-dimensional cylindrical metal-dielectric-dielectric-metal structures.The dispersion relation of the cylindrical plasmonic crystal is obtained by calculating the absorptance as a function of a TM-polarized incident plane wave and its in-plane wave vector.The omnidirectional surface plasmon resonance can be tuned from UV region to visible region by adjusting the thickness of the cylindrical dielectric layers.The absorption spectrum of the infinite chain of nanocylinders is also investigated for comparison.

  13. Modern plasmonics

    CERN Document Server

    Maradudin, Alexei A; Barnes, William L

    2014-01-01

    Plasmonics is entering the curriculum of many universities, either as a stand alone subject, or as part of some course or courses. Nanotechnology institutes have been, and are being, established in universities, in which plasmonics is a significant topic of research. Modern Plasmonics book offers a comprehensive presentation of the properties of surface plasmon polaritons, in systems of different structures and various natures, e.g. active, nonlinear, graded, theoretical/computational and experimental techniques for studying them, and their use in a variety of applications. Contains materia

  14. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity

    Science.gov (United States)

    Zhang, Yao; Meng, Qiu-Shi; Zhang, Li; Luo, Yang; Yu, Yun-Jie; Yang, Ben; Zhang, Yang; Esteban, Ruben; Aizpurua, Javier; Luo, Yi; Yang, Jin-Long; Dong, Zhen-Chao; Hou, J. G.

    2017-05-01

    The coherent interaction between quantum emitters and photonic modes in cavities underlies many of the current strategies aiming at generating and controlling photonic quantum states. A plasmonic nanocavity provides a powerful solution for reducing the effective mode volumes down to nanometre scale, but spatial control at the atomic scale of the coupling with a single molecular emitter is challenging. Here we demonstrate sub-nanometre spatial control over the coherent coupling between a single molecule and a plasmonic nanocavity in close proximity by monitoring the evolution of Fano lineshapes and photonic Lamb shifts in tunnelling electron-induced luminescence spectra. The evolution of the Fano dips allows the determination of the effective interaction distance of ~1 nm, coupling strengths reaching ~15 meV and a giant self-interaction induced photonic Lamb shift of up to ~3 meV. These results open new pathways to control quantum interference and field-matter interaction at the nanoscale.

  15. EIT-like transmission by interaction between multiple Bragg scattering and local plasmonic resonances

    CERN Document Server

    Liu, Z Z; Xiao, J J

    2015-01-01

    We study the optical properties associated to both the polariton gap and the Bragg gap in periodic resonator-waveguide coupled system, based on the temporal coupled mode theory and the transfer matrix method. By the complex band and the transmission spectrum, it is feasible to tune the interaction between multiple Bragg scattering and the local resonance, which may give rise to analogous phenomena of electromagnetically induced transparency (EIT). We further design a plasmonic slot waveguide side-coupled with local plasmonic resonator to demonstrate the EIT-like effects in the near-infared band. Numerical calculations show that realistic amount of metal Joule loss may destroy the interference and the total absorption is enhanced in the transparency windwo due to the near zero group velocity of the guiding wave.

  16. 87Sr/86Sr isotope ratio measurements by laser ablation multicollector inductively coupled plasma mass spectrometry: Reconsidering matrix interferences in bioapatites and biogenic carbonates

    Science.gov (United States)

    Irrgeher, Johanna; Galler, Patrick; Prohaska, Thomas

    2016-11-01

    This study is dedicated to the systematic investigation of the effect of interferences on Sr isotopic analyses in biological apatite and carbonate matrices using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC ICP-MS). Trends towards higher 87Sr/86Sr ratios for LA-MC ICP-MS compared to solution-nebulization based MC ICP-MS when analysing bioapatite matrices (e.g. human teeth) and lower ratios in case of calcium carbonates (e.g. fish ear stones) were observed. This effect can be related to the presence of significant matrix-related interferences such as molecular ions (e.g. (40Ca-31P-16O)+, (40Ar-31P-16O)+, (42Ca-44Ca)+, (46Ca40Ar)+) as well as in many cases concomitant atomic ions (e.g. 87Rb+, 174Hf2 +). Direct 87Sr/86Sr ratio measurements in Ca-rich samples are conducted without the possibility of prior sample separation, which can be accomplished routinely for solution-based analysis. The presence of Ca-Ar and Ca-Ca molecular ion interferences in the mass range of Sr isotopes is shown using the mass resolving capabilities of a single collector inductively coupled plasma sector field mass spectrometer operated in medium mass resolution when analysing bioapatites and calcium carbonate samples. The major focus was set on analysing human tooth samples, fish hard parts and geological carbonates. Potential sources of interferences were identified and corrected for. The combined corrections of interferences and adequate instrumental isotopic fractionation correction procedures lead to accurate data even though increased uncertainties have to be taken into account. The results are discussed along with approaches presented in literature for data correction in laser ablation analysis.

  17. Non-spectral interferences due to the presence of sulfuric acid in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    García-Poyo, M. Carmen; Grindlay, Guillermo; Gras, Luis [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, P.O. Box 99, 03080 – Alicante (Spain); Loos-Vollebregt, Margaretha T.C. de, E-mail: margaretha.deloos@ugent.be [Delft University of Technology, Faculty of Applied Sciences, Analytical Biotechnology, Julianalaan 67, 2628 BC Delft (Netherlands); Ghent University, Department of Analytical Chemistry, Krijgslaan 281 - S12, 9000 Ghent (Belgium); Mora, Juan, E-mail: juan.mora@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, P.O. Box 99, 03080 – Alicante (Spain)

    2015-03-01

    Results of a systematic study concerning non-spectral interferences from sulfuric acid containing matrices on a large number of elements in inductively coupled plasma–mass spectrometry (ICP-MS) are presented in this work. The signals obtained with sulfuric acid solutions of different concentrations (up to 5% w w{sup −1}) have been compared with the corresponding signals for a 1% w w{sup −1−} nitric acid solution at different experimental conditions (i.e., sample uptake rates, nebulizer gas flows and r.f. powers). The signals observed for {sup 128}Te{sup +}, {sup 78}Se{sup +} and {sup 75}As{sup +} were significantly higher when using sulfuric acid matrices (up to 2.2-fold for {sup 128}Te{sup +} and {sup 78}Se{sup +} and 1.8-fold for {sup 75}As{sup +} in the presence of 5 w w{sup -1} sulfuric acid) for the whole range of experimental conditions tested. This is in agreement with previously reported observations. The signal for {sup 31}P{sup +} is also higher (1.1-fold) in the presence of sulfuric acid. The signal enhancements for {sup 128}Te{sup +}, {sup 78}Se{sup +}, {sup 75}As{sup +} and {sup 31}P{sup +} are explained in relation to an increase in the analyte ion population as a result of charge transfer reactions involving S{sup +} species in the plasma. Theoretical data suggest that Os, Sb, Pt, Ir, Zn and Hg could also be involved in sulfur-based charge transfer reactions, but no experimental evidence has been found. The presence of sulfuric acid gives rise to lower ion signals (about 10–20% lower) for the other nuclides tested, thus indicating the negative matrix effect caused by changes in the amount of analyte loading of the plasma. The elemental composition of a certified low-density polyethylene sample (ERM-EC681K) was determined by ICP-MS after two different sample digestion procedures, one of them including sulfuric acid. Element concentrations were in agreement with the certified values, irrespective of the acids used for the digestion. These

  18. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna

    Science.gov (United States)

    Matsuzaki, Korenobu; Vassant, Simon; Liu, Hsuan-Wei; Dutschke, Anke; Hoffmann, Björn; Chen, Xuewen; Christiansen, Silke; Buck, Matthew R.; Hollingsworth, Jennifer A.; Götzinger, Stephan; Sandoghdar, Vahid

    2017-01-01

    Multiexcitonic transitions and emission of several photons per excitation comprise a very attractive feature of semiconductor quantum dots for optoelectronics applications. However, these higher-order radiative processes are usually quenched in colloidal quantum dots by Auger and other nonradiative decay channels. To increase the multiexcitonic quantum efficiency, several groups have explored plasmonic enhancement, so far with moderate results. By controlled positioning of individual quantum dots in the near field of gold nanocone antennas, we enhance the radiative decay rates of monoexcitons and biexcitons by 109 and 100 folds at quantum efficiencies of 60 and 70%, respectively, in very good agreement with the outcome of numerical calculations. We discuss the implications of our work for future fundamental and applied research in nano-optics. PMID:28195140

  19. Localized surface plasmon enhanced emission of organic light emitting diode coupled to DBR-cathode microcavity by using silver nanoclusters.

    Science.gov (United States)

    Khadir, Samira; Chakaroun, Mahmoud; Belkhir, Abderrahmane; Fischer, Alexis; Lamrous, Omar; Boudrioua, Azzedine

    2015-09-01

    In this work, we aim to increase the emission of the standard guest-host organic light emitting diode (OLED) thanks to localized surface plasmon and to investigate this effect in a microcavity. As a first step, we consider thermal deposition of silver clusters within an OLED guest-host stack. We investigate both the influence of the size of silver nanoparticles (Ag-NPs) and their position within the OLED heterostructure. Secondly, we study the optimized OLED within a microcavity formed by Al-cathode top mirror and a Distributed Bragg Reflector (DBR) bottom mirror. The experimental results show a substantial enhancement of the electroluminescence (EL) intensity as well as a reduction of the spectral width at a half maximum.

  20. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna

    CERN Document Server

    Matsuzaki, Korenobu; Liu, Hsuan-Wei; Dutschke, Anke; Hoffmann, Björn; Chen, Xuewen; Christiansen, Silke; Buck, Matthew R; Hollingsworth, Jennifer A; Götzinger, Stephan; Sandoghdar, Vahid

    2016-01-01

    Multiexcitonic transitions and emission of several photons per excitation comprise a very attractive feature of semiconductor quantum dots for optoelectronics applications. However, these higher-order radiative processes are usually quenched in colloidal quantum dots by Auger and other non-radiative decay channels. To increase the multiexcitonic quantum efficiency, several groups have explored plasmonic enhancement, so far with moderate results. By controlled positioning of individual quantum dots in the near field of gold nanocone antennas, we enhance the radiative decay rates of monoexcitons and biexcitons by 109 and 100 folds at quantum efficiencies of 60% and 70%, respectively, in very good agreement with the outcome of numerical calculations. We discuss the implications of our work for future fundamental and applied research in nano-optics.

  1. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna

    Science.gov (United States)

    Matsuzaki, Korenobu; Vassant, Simon; Liu, Hsuan-Wei; Dutschke, Anke; Hoffmann, Björn; Chen, Xuewen; Christiansen, Silke; Buck, Matthew R.; Hollingsworth, Jennifer A.; Götzinger, Stephan; Sandoghdar, Vahid

    2017-02-01

    Multiexcitonic transitions and emission of several photons per excitation comprise a very attractive feature of semiconductor quantum dots for optoelectronics applications. However, these higher-order radiative processes are usually quenched in colloidal quantum dots by Auger and other nonradiative decay channels. To increase the multiexcitonic quantum efficiency, several groups have explored plasmonic enhancement, so far with moderate results. By controlled positioning of individual quantum dots in the near field of gold nanocone antennas, we enhance the radiative decay rates of monoexcitons and biexcitons by 109 and 100 folds at quantum efficiencies of 60 and 70%, respectively, in very good agreement with the outcome of numerical calculations. We discuss the implications of our work for future fundamental and applied research in nano-optics.

  2. Fundamental mechanism underlying subwavelength optics of metamaterials: Charge oscillation-induced light emission and interference

    CERN Document Server

    Huang, X R; Wang, Mu

    2009-01-01

    Interactions between light and conducting nanostructures can result in a variety of novel and fascinating phenomena. These properties may have wide applications, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture about coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., spoof surface plasmons but without the dispersion property of classical surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms (e.g. resonance), is mainly a geometrical effect that can be universally involved in light scattering from all periodic and nonperiodic structures containing free electrons, including perfect conductors. The spoof surface ...

  3. Single Nanoparticle Plasmonic Sensors

    Directory of Open Access Journals (Sweden)

    Manish Sriram

    2015-10-01

    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  4. A Plasmonic Coupling Substrate Based on Sandwich Structure of Ultrathin Silica-Coated Silver Nanocubes and Flower-Like Alumina-Coated Etched Aluminum for Sensitive Detection of Biomarkers in Urine.

    Science.gov (United States)

    Nguyen, Minh-Kha; Su, Wei-Nien; Hwang, Bing-Joe

    2017-05-01

    Interactions between substrate and plasmonic nanostructures can give rise to unique optical properties and influence performance in plasmonic biosensing applications. In this study, a substrate with low refractive index and roughness based on flower-like alumina-coated etched aluminum foil (f-Al2 O3 /e-Al) has been fabricated. Silver@silica (Ag@SiO2 ) nanocubes (NCs) assemble in an edge-edge configuration when deposited on this substrate. The rough surface texture of f-Al2 O3 /e-Al provides a pathway for coupling of incident light to surface plasmons. The Ag@SiO2 /f-Al2 O3 /e-Al substrate exhibits a coupling efficiency of laser light sources into surface plasmon hotspots for both surface-enhanced Raman scattering (SERS) and metal-enhanced photoluminescence (MEPL). Moreover, the shelf life of this substrate is significantly improved due to a reduction in oxygen diffusion rate mediated by the ultrathin silica spacer and the flower-like Al2 O3 dielectric layer. Creatinine and flavin adenine dinucleotide are biomolecules present in human blood and urine. With advanced label-free SERS and MEPL techniques, it is possible to detect these biomarkers in urine, allowing cheap, noninvasive, yet sensitive analysis. The approach explored in this work can be developed into a powerful encoding tool for high-throughput bioanalysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Improved surface plasmon enhanced photodetection at an Au-GaAs Schottky junction using a novel molecular beam epitaxy grown Otto coupling structure

    Energy Technology Data Exchange (ETDEWEB)

    Daboo, C.; Baird, M.J.; Hughes, H.P. (PCS Group, Cavendish Lab., Cambridge (UK)); Apsley, N.; Emeny, M.T. (Royal Signals and Radar Establishment, Great Malvern (UK))

    1991-06-05

    Measurements of reflectivity and photocurrent as a function of angle of incidence and wavelength have been made for a GaAs-AlAs-GaAs-Au Schottky structure based on an Otto coupling geometry which allows incident p-polarized radiation to couple to the surface plasmon (SP) mode at the Au-GaAs interface. At resonance, E fields associated with the SP excitation are concentrated at the GaAs-Au Schottky interface itself, enabling strong enhancement of the internal photoemission photocurrent across the Schottky barrier. Enhancement factors of the order of 20 have been achieved. A direct comparison between the resonant effects of exciting the SP at the GaAs-Au Schottky junction itself and at the outer Au-air interface has been made. A simple model for the photocurrent in the device indicates that the excited photocarriers created in the gold film have a very short scattering length {delta}{approx equal}10 nm, which emphasizes the importance of exciting the SP at the Schottky interface. (orig.).

  6. Plasmonic nanopatch array for optical integrated circuit applications.

    Science.gov (United States)

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  7. Plasmonic nanopatch array for optical integrated circuit applications

    Science.gov (United States)

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-01-01

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle. PMID:24201454

  8. Digital Plasmonics

    CERN Document Server

    Gjonaj, Bergin; Johnson, Patrick M; Mosk, Allard P; Kuipers, Kobus; Lagendijk, Ad

    2010-01-01

    The field of plasmonics offers a route to control light fields with metallic nanostructures through the excitation of Surface Plasmon Polaritons (SPPs). These surface waves, bound to a metal dielectric interface, tightly confine electromagnetic energy. Active control over SPPs has potential for applications in sensing, photovoltaics, quantum communication, nano circuitry, metamaterials and super-resolution microscopy. We achieve here a new level of control of plasmonic fields using a digital spatial light modulator. Optimizing the plasmonic phases via feedback we focus SPPs at a freely pre-chosen point on the surface of a nanohole array with high resolution. Digital addressing and scanning of SPPs without mechanical motion will enable novel interdisciplinary applications of advanced plasmonic devices in cell microscopy, optical data storage and sensing.

  9. Photoluminescence of a Plasmonic Molecule.

    Science.gov (United States)

    Huang, Da; Byers, Chad P; Wang, Lin-Yung; Hoggard, Anneli; Hoener, Ben; Dominguez-Medina, Sergio; Chen, Sishan; Chang, Wei-Shun; Landes, Christy F; Link, Stephan

    2015-07-28

    Photoluminescent Au nanoparticles are appealing for biosensing and bioimaging applications because of their non-photobleaching and non-photoblinking emission. The mechanism of one-photon photoluminescence from plasmonic nanostructures is still heavily debated though. Here, we report on the one-photon photoluminescence of strongly coupled 50 nm Au nanosphere dimers, the simplest plasmonic molecule. We observe emission from coupled plasmonic modes as revealed by single-particle photoluminescence spectra in comparison to correlated dark-field scattering spectroscopy. The photoluminescence quantum yield of the dimers is found to be surprisingly similar to the constituent monomers, suggesting that the increased local electric field of the dimer plays a minor role, in contradiction to several proposed mechanisms. Aided by electromagnetic simulations of scattering and absorption spectra, we conclude that our data are instead consistent with a multistep mechanism that involves the emission due to radiative decay of surface plasmons generated from excited electron-hole pairs following interband absorption.

  10. Investigation of surface-plasmon coupled red light emitting InGaN/GaN multi-quantum well with Ag nanostructures coated on GaN surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Liu, Bin, E-mail: bliu@nju.edu.cn, E-mail: rzhang@nju.edu.cn; Zhang, Rong, E-mail: bliu@nju.edu.cn, E-mail: rzhang@nju.edu.cn; Xie, Zili; Zhuang, Zhe; Dai, JiangPing; Tao, Tao; Zhi, Ting; Zhang, Guogang; Chen, Peng; Ren, Fangfang; Zhao, Hong; Zheng, Youdou [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People' s Republic of China and Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-04-21

    Surface-plasmon (SP) coupled red light emitting InGaN/GaN multiple quantum well (MQW) structure is fabricated and investigated. The centre wavelength of 5-period InGaN/GaN MQW structure is about 620 nm. The intensity of photoluminescence (PL) for InGaN QW with naked Ag nano-structures (NS) is only slightly increased due to the oxidation of Ag NS as compared to that for the InGaN QW. However, InGaN QW with Ag NS/SiO{sub 2} structure can evidently enhance the emission efficiency due to the elimination of surface oxide layer of Ag NS. With increasing the laser excitation power, the PL intensity is enhanced by 25%–53% as compared to that for the SiO{sub 2} coating InGaN QW. The steady-state electric field distribution obtained by the three-dimensional finite-difference time-domain method is different for both structures. The proportion of the field distributed in the Ag NS for the GaN/Ag NS/SiO{sub 2} structure is smaller as compared to that for the GaN/naked Ag NS structure. As a result, the energy loss of localized SP modes for the GaN/naked Ag NS structure will be larger due to the absorption of Ag layer.

  11. Significant improvement of near-UV electroluminescence from ZnO quantum dot LEDs via coupling with carbon nanodot surface plasmons.

    Science.gov (United States)

    Zhang, Cen; Zhu, Feifei; Xu, Haiyang; Liu, Weizhen; Yang, Liu; Wang, Zhongqiang; Ma, Jiangang; Kang, Zhenhui; Liu, Yichun

    2017-10-05

    Short-wavelength LEDs, a hot research topic in modern optoelectronics, have attracted tremendous attention in recent years because of their great application potential in both civil and military domains. Compared to conventional metallic surface-plasmons (SPs), carbon nanodot (CD) SPs with less optical loss and low cost, broader SP resonant frequency and good biocompatibility are expected to provide more prominent luminescence enhancement for light emitters. Herein, SP-enhanced near-UV emission quantum dot LEDs (Q-LED) were fabricated via introducing CDs into p-GaN/Al2O3/ZnO Q-LEDs by optimizing the molar ratio of ZnO quantum dots to CDs and a significant enhancement (∼20-fold) of the near-UV electroluminescence (EL) intensity from the ZnO-based Q-LEDs was achieved. Time-resolved spectroscopy studies reveal that the observed luminescence enhancement arises due to the resonant coupling between ZnO excitons and CD SPs. The current study not only demonstrates a feasible way to acquire near-UV emission from all-inorganic Q-LEDs, but also provides an effective strategy to enhance the EL intensity of these QD light emitters, which can further be extended to other types of light-emitting devices to improve EL efficiency.

  12. Slanted gold mushroom array: a switchable bi/tridirectional surface plasmon polariton splitter.

    Science.gov (United States)

    Shen, Yang; Fang, Guisheng; Cerjan, Alexander; Chi, Zhenguo; Fan, Shanhui; Jin, Chongjun

    2016-08-25

    Surface plasmon polaritons (SPPs) show great promise in providing an ultracompact platform for integrated photonic circuits. However, challenges remain in easily and efficiently coupling light into and subsequently routing SPPs. Here, we theoretically propose and experimentally demonstrate a switchable bi/tridirectional beam splitter which can simultaneously perform both tasks. The photonic device consists of a periodic array of slanted gold 'mushrooms' composed of angled dielectric pillars with gold caps extruding from a periodic array of perforations in a gold film. The unidirectional coupling results from the interference of the in-plane guided modes scattered by a pair of dislocated gold gratings, while the output channel is determined by the polarization of the incident beam. This device, in combination with dynamic polarization modulation techniques, has the potential to serve as a router or switch in plasmonic integrated circuits.

  13. Modal theory of modified spontaneous emission for a hybrid plasmonic photonic-crystal cavity system

    CERN Document Server

    Dezfouli, Mohsen Kamandar; Hughes, Stephen

    2016-01-01

    We present an analytical modal description of the rich physics involved in hybrid plasmonic-photonic devices that is confirmed by full dipole solutions of Maxwell's equations. Strong frequency-dependence for the spontaneous emission decay rate of a quantum dipole emitter coupled to these hybrid structures is predicted. In particular, it is shown that the Fano-type resonances reported experimentally in hybrid plasmonic systems, arise from a very large interference between dominant quasinormal modes of the systems in the frequency range of interest. The presented model forms an efficient basis for modelling quantum light-matter interactions in these complex hybrid systems and also enables the quantitativ prediction and understanding of non-radiative coupling losses.

  14. Effect of out-of-plane directional intra-layer coupling from graphene monolayer on sp3 type defect with gap-plasmonic structures

    Science.gov (United States)

    Park, Won-Hwa

    2016-09-01

    The author investigates an intra-layer coupling effect through transverse acoustic (TA) phonon modes along the z-direction at Au nanoparticle (NP)-graphene monolayer (GM)-Au thin film (TF) plasmonic junctions in regard with sp3 type defect effect. The oxidation and resulting disorder of GM with breaking of six-fold symmetry have been explored. Because a Raman-forbidden D peak can be activated due to unwanted single-phonon inter-valley and intra-valley scattering processes, the quantitative estimation of the sp3 type defect is being performed by the intensity ratio between G and D peaks. By exploring the difference of the maximum peak position (TA3-TA1) and the intensity ratio, (TA1/TA3) the author can reveal that a lower z-protruded GM accompanied with weak intra-coupling and a weaker RBLM intensity show relatively high D/G. It means that larger surface area of a GM to be functionalized by oxidization can secure more easily than the higher z-protruded. This investigation presents the importance of controlling the degree of z-protrusion of GM surface in terms of not only the presence of high D/G but also its related and detailed nano-structural surface shape, leading to the enhancement of electrical properties such as a carrier mobility and sheet resistance value. The out-of-plane phonon modes will be considered as a key factor in further exploring nano-physical deformation of 2D materials in sync with its electrical performance.

  15. Temperature dependence of exciton-surface plasmon polariton coupling in Ag, Au, and Al films on In{sub x}Ga{sub 1−x}N/GaN quantum wells studied with time-resolved cathodoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Estrin, Y.; Rich, D. H., E-mail: danrich@bgu.ac.il [Department of Physics and The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B 653, Beer-Sheva 84105 (Israel); Keller, S.; DenBaars, S. P. [Electrical and Computer Engineering and Materials Departments, University of California, Santa Barbara, California 93111 (United States)

    2015-01-28

    The optical properties and coupling of excitons to surface plasmon polaritons (SPPs) in Ag, Au, and Al-coated In{sub x}Ga{sub 1−x}N/GaN multiple and single quantum wells (SQWs) were probed with time-resolved cathodoluminescence. Excitons were generated in the metal coated SQWs by injecting a pulsed high-energy electron beam through the thin metal films. The Purcell enhancement factor (F{sub p}) was obtained by direct measurement of changes in the temperature-dependent radiative lifetime caused by the SQW exciton-SPP coupling. Three chosen plasmonic metals of Al, Ag, and Au facilitate an interesting comparison of the exciton-SPP coupling for energy ranges in which the SP energy is greater than, approximately equal to, and less than the excitonic transition energy for the InGaN/GaN QW emitter. A modeling of the temperature dependence of the Purcell enhancement factor, F{sub p}, included the effects of ohmic losses of the metals and changes in the dielectric properties due to the temperature dependence of (i) the intraband behavior in the Drude model and (ii) the interband critical point transition energies which involve the d-bands of Au and Ag. We show that an inclusion of both intraband and interband effects is essential when calculating the ω vs k SPP dispersion relation, plasmon density of states (DOS), and the dependence of F{sub p} on frequency and temperature. Moreover, the “back bending” in the SPP dispersion relation when including ohmic losses can cause a finite DOS above ω{sub sp} and lead to a measurable F{sub p} in a limited energy range above ω{sub sp}, which can potentially be exploited in plasmonic devices utilizing Ag and Au.

  16. Surface plasmon coupled emission studies on engineered thin film hybrids of nano α−Al{sub 2}O{sub 3} on silver

    Energy Technology Data Exchange (ETDEWEB)

    Mulpur, Pradyumna; Chunduri, Avinash; Rattan, Tanu Mimani; Kamisetti, Venkataramaniah [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India 515134 (India); Lingam, Kiran; Rao, Apparao M. [Department of Physics and Astronomy, 202C Kinard Laboratory, Clemson University, Clemson, SC 29634 (United States)

    2014-01-28

    We report the first time engineering and fabrication of a novel thin film hybrid of nano α-alumina doped in a polyvinyl alcohol (PVA) matrix along with rhodamine b (Rh.B) on a silver thin film. Silver films of 50 nm thickness on glass slides were fabricated by thermal evaporation. Nano α-alumina was synthesized through the combustion route and characterized by XRD. The α-alumina was dispersed in the PVA-Rh.B matrix by tip sonication. The resultant solution was spin coated on the Ag thin film at 3000 rpm to generate an overcoat of ∼30 nm. We have designed and constructed an opto-mechanical setup for performing the SPCE studies. Excitation with a 532 nm continuous laser, led to the coupling of the energy of Rh.B emission to the surface plasmon modes of silver. The emission @ 580 nm was recorded using an Ocean Optics(copyright, serif) fiber optic spectrometer. Calculation of the ratio of signal intensity between the directional SPCE and isotropic fluorescence gives us the factor of signal enhancements which SPCE offers. We report an '8 fold' signal enhancement attributed to SPCE arising from the metal oxide doped thin film hybrid. We observed only a '5 fold' signal enhancement in the case of a thin film hybrid without α-alumina. The emission was also 92% P-polarized which is in coherence with the theory of SPCE. The greater degree of signal enhancement observed in the α-alumina doped thin film substrate can be attributed to the surface roughness which alumina offers to silver, which along with the porous nature of alumina enables a greater degree of adsorption of Rh.B which results in a higher emission intensity. Computational modeling was also performed, based on surface plasmon resonance (SPR) calculations to provide theoretical background to observed experimental data. The α-alumina thin film hybrid can be extended as an economical sensing platform towards the high sensitive detection of analytes.

  17. Plasmonic photocatalysis.

    Science.gov (United States)

    Zhang, Xuming; Chen, Yu Lim; Liu, Ru-Shi; Tsai, Din Ping

    2013-04-01

    Plasmonic photocatalysis has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible light irradiation, increasing the prospect of using sunlight for environmental and energy applications such as wastewater treatment, water splitting and carbon dioxide reduction. Plasmonic photocatalysis makes use of noble metal nanoparticles dispersed into semiconductor photocatalysts and possesses two prominent features-a Schottky junction and localized surface plasmonic resonance (LSPR). The former is of benefit to charge separation and transfer whereas the latter contributes to the strong absorption of visible light and the excitation of active charge carriers. This article aims to provide a systematic study of the fundamental physical mechanisms of plasmonic photocatalysis and to rationalize many experimental observations. In particular, we show that LSPR could boost the generation of electrons and holes in semiconductor photocatalysts through two different effects-the LSPR sensitization effect and the LSPR-powered bandgap breaking effect. By classifying the plasmonic photocatalytic systems in terms of their contact form and irradiation state, we show that the enhancement effects on different properties of photocatalysis can be well-explained and systematized. Moreover, we identify popular material systems of plasmonic photocatalysis that have shown excellent performance and elucidate their key features in the context of our proposed mechanisms and classifications.

  18. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hestand, Nicholas J.; Spano, Frank C. [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2015-12-28

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

  19. Physical nature of volume plasmon polaritons in hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Kidwai, Omar; Sipe, J. E.

    2013-01-01

    We investigate electromagnetic wave propagation in multilayered metal-dielectric hyperbolic metamaterials (HMMs). We demonstrate that high-k propagating waves in HMMs are volume plasmon polaritons. The volume plasmon polariton band is formed by coupling of short-range surface plasmon polariton...

  20. Electron energy-loss spectroscopy of branched gap plasmon resonators

    DEFF Research Database (Denmark)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen

    2016-01-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale...... microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons....

  1. Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics

    OpenAIRE

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Wangperawong, Artit; Roelofs, Katherine E.; Bent, Stacey F.

    2016-01-01

    When optical resonances interact strongly, hybridized modes are formed with mixed properties inherited from the basic modes. Strong coupling therefore tends to equalize properties such as damping and oscillator strength of the spectrally separate resonance modes. This effect is here shown to be very useful for the realization of near perfect dual-band absorption with ultrathin (~10 nm) layers in a simple geometry. Absorber layers are constructed by atomic layer deposition of the heavy-damping...

  2. Generation of Subwavelength Plasmonic Nanovortices via Helically Corrugated Metallic Nanowires

    CERN Document Server

    Huang, Changming; Oladipo, Abiola O; Panoiu, Nicolae C; Ye, Fangwei

    2015-01-01

    We demonstrate that plasmonic helical gratings consisting of metallic nanowires imprinted with helical grooves or ridges can be used efficiently to generate plasmonic vortices with radius much smaller than the operating wavelength. In our proposed approach, these helical surface gratings are designed so that plasmon modes with different azimuthal quantum numbers (topological charge) are phase-matched, thus allowing one to generate optical plasmonic vortices with arbitrary topological charge. The general principles for designing plasmonic helical gratings that facilitate efficient generation of such plasmonic vortices are derived and their applicability to the conversion of plasmonic vortices with zero angular momentum into plasmonic vortices with arbitrary angular momentum is illustrated in several particular cases. Our analysis, based both on the exact solutions for the electromagnetic field propagating in the helical plasmonic grating and a coupled-mode theory, suggests that even in the presence of metal lo...

  3. Development, Integration, and Testing of a Nano-Satellite Coupling Mechanism Using Shape Memory Alloy for an Interference Joint

    Science.gov (United States)

    2012-12-01

    R, measured in Ohms) Density (g/cm3) Density (lb/in3) Tensile Yield Strength (Mpa) Tensile Yield Strength (x 106 psi) Melting Point (Deg...separation testing (not fresh unused NiTi ring samples) were measured and then matched to the six AL 7075 -T6 bushings selected to have an interference...on the bottom of the AL 7075 -T6 bushing and on top of the PC washer (Figure 45). Measurements were taken using the OMEGA HH147U data logger

  4. Infrared nanoantenna couplers for plasmonic slot waveguide

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    A slot plasmonic waveguide is promising solution as a replacement of electrical interconnects in the future optical integrated circuits. In this contribution we consider a set of compact solutions for coupling the infrared light from free space to the plasmonic slot waveguide. We systematically...

  5. Surface plasmon lifetime in metal nanoshells

    Science.gov (United States)

    Kirakosyan, Arman S.; Stockman, Mark I.; Shahbazyan, Tigran V.

    2016-10-01

    The lifetime of localized surface plasmon plays an important role in many aspects of plasmonics and its applications. In small metal nanostructures, the dominant mechanism of plasmon decay is size-dependent Landau damping. We performed quantum-mechanical calculations of Landau damping for the bright surface plasmon mode in a metal nanoshell with dielectric core. In contrast to the conventional model based on the electron surface scattering, we found that the damping rate decreases as the nanoshell thickness is reduced. The origin of this behavior is traced to the spatial distribution of plasmon local field in the metal shell. We also found that, due to the interference of electron scattering amplitudes from the two nanoshell metal surfaces, the damping rate exhibits pronounced quantum beats with changing shell thickness.

  6. Superradiance and subradiance in plasmonic nanochannels

    CERN Document Server

    Li, Ying

    2016-01-01

    We demonstrate a plasmonic route to superradiance and subradiance effects over distances comparable to the operating wavelength. Superradiant and subradiant modes are excited by a collection of two-level quantum emitters inside plasmonic nanochannels. These channels can provide an effective epsilon-near-zero operation in their cut-off frequency and Fabry-P\\'erot resonances at higher frequencies. The related plasmonic resonant modes are found to efficiently enhance the constructive (superradiance) or destructive (subradiance) interference between different quantum emitters located inside the nanochannels. By increasing the number of emitters located in the elongated plasmonic channel, the superradiance effect is enhanced at the epsilon-near-zero operation, leading to a strong increase in the collective spontaneous emission rate. In addition, the separation distance between neighboring emitters and their emission wavelengths can be changed to dynamically control the collective emission properties of the plasmon...

  7. Culturing photosynthetic bacteria through surface plasmon resonance

    Science.gov (United States)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David

    2012-12-01

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 μm thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  8. Culturing photosynthetic bacteria through surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David [Department of Mechanical and Industrial Engineering and Centre for Sustainable Energy, University of Toronto, Toronto M5S 3G8 (Canada)

    2012-12-17

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 {mu}m thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  9. Modeling of plasmon mediated single-photon devices

    DEFF Research Database (Denmark)

    Chen, Yuntian

    The thesis describes the theoretical study of optical plasmons mediated light-matter interaction. We develop a finite element method to study spontaneous emission from emitters coupled to plasmonic waveguides. The numerical method is applied to calculate the coupling of a emitter coupled to a cyl......-based reconfigurable antenna to controllably distribute emission from a single emitter in spatially separated channels....

  10. Surface plasmon polariton amplification in metal-semiconductor structures.

    Science.gov (United States)

    Fedyanin, Dmitry Yu; Arsenin, Aleksey V

    2011-06-20

    We propose a novel scheme of surface plasmon polariton (SPP) amplification that is based on a minority carrier injection in a Schottky diode. This scheme uses compact electrical pumping instead of bulky optical pumping. Compact size and a planar structure of the proposed amplifier allow one to utilize it in integrated plasmonic circuits and couple it easily to passive plasmonic devices. Moreover, this technique can be used to obtain surface plasmon lasing.

  11. Imaging standing surface plasmons by photon tunneling

    Science.gov (United States)

    Passian, A.; Lereu, A. L.; Wig, A.; Meriaudeau, F.; Thundat, T.; Ferrell, T. L.

    2005-04-01

    We present a direct method for optically exciting and imaging delocalized standing surface plasmons in thin metal films. We show theoretically that when imaging the field of the plasmons with a photon scanning tunneling microscope, the presence of the dielectric probe has a negligible effect on the surface modes of the metal film. We demonstrate that plasmon interference can be sustained in arbitrarily large regions of the metal film in comparison to the excitation wavelength. This knowledge can be important when seeking the relative distance between two scattering centers such as the presence of micron or submicron structures.

  12. Ultra-compact plasmonic waveguide modulators

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia

    -compatible materials, both passive and active plasmonic waveguide components are important. Among other proposed plasmonic waveguides and modulators, the structures where the dielectric core is sandwiched between metal plates have been shown as one of the most compact and efficient layout. Because of the tight mode...... confinement that can be achieved in metal-insulator-metal structures, they provide a base for extremely fast and efficient ultracompact plasmonic devices, including modulators, photodetectors, lasers and amplifiers. The main result of this thesis is a systematic study of various designs of plasmonic......Metal-dielectric interfaces can support the waves known as surface plasmon polaritons, which are tightly coupled to the interface and allow manipulation of light at the nanoscale. Plasmonics as a subject which studies such waves enables the merge between two major technologies: nanometer...

  13. Gold nanodisk array surface plasmon resonance sensor

    Science.gov (United States)

    Tian, Xueli

    Surface plasmon resonances in periodic metal nanostructures have been investigated for sensing applications over the last decade. The resonance wavelengths of the nanostructures are usually measured in the transmission or reflection spectrum for chemical and biological sensing. In this thesis, I introduce a nanoscale gap mediated surface plasmon resonance nanodisk array for displacement sensing and a super-period gold nanodisk grating enabled surface plasmon resonance spectrometer sensor. The super-period gold nanodisk grating has a small subwavelength period and a large diffraction grating period. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD). A surface plasmon resonance sensor for the bovine serum albumin (BSA) protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  14. Quantum interference and Kondo effects in an Aharonov-Bohm-Casher interferometer containing a laterally coupled double quantum dot

    Science.gov (United States)

    Kubo, T.; Tokura, Y.; Tarucha, S.

    2010-01-01

    We theoretically investigate spin-dependent electron transport through an Aharonov-Bohm-Casher interferometer containing a laterally coupled double quantum dot. In particular, we numerically calculate the Aharonov-Bohm and Aharonov-Casher oscillations of the linear conductance in the Kondo regime. We show that the AC oscillation in the Kondo regime deviates from the sinusoidal form.

  15. Development of a Nano-Satellite Micro-Coupling Mechanism with Characterization of a Shape Memory Alloy Interference Joint

    Science.gov (United States)

    2010-12-01

    3 Endothermic for martensite to austenite transformation. Exothermic for austenite to martensite transformation. 4 Note that the...original work by definition . Unique contributions to the related art of coupling devices and shape memory alloys are as follows: 1) A zero impact

  16. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.

    Science.gov (United States)

    Yi, Zi; Li, Xiao-Yan; Liu, Feng-Juan; Jin, Pei-Yan; Chu, Xia; Yu, Ru-Qin

    2013-05-15

    Surface-enhanced Raman scattering (SERS) has emerged as a promising spectroscopic technique for biosensing. However, to design a SERS-based biosensor, almost all currently used methods involve the time-consuming and complicated modification of the metallic nanoparticles with the Raman active dye and biorecognition element, which restricts their widespread applications. Herein, we report a label-free, homogeneous and easy-to-operate biosensing platform for the rapid, simple and sensitive SERS detection by using the unmodified gold nanoparticles (Au NPs). This strategy utilizes the difference in adsorption property of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) on citrate-coated Au NPs. In the presence of dsDNA, the aggregation of Au NPs takes place after adding salt solution because the dsDNA cannot adsorb on the Au NPs to protect them from salt-induced aggregation. Such aggregation gives rise to the plasmonic coupling of adjacent metallic NPs and turns on the enhancement of the Raman scattering, displaying a strong SERS signal. In contrast, the ssDNA can adsorb on the Au NPs surface through strong electrostatic attraction and protect them from salt-induced aggregation, showing a weak SERS signal. This approach is not only straightforward and simple in design but also rapid and convenient in operation. The feasibility and universality of the design have been demonstrated successfully by the detection of DNA and Hg(2+), and the assay possesses the superior signal-to-background ratio as high as ∼30 and excellent selectivity. The method can be extended to detect various analytes, such as other metal ions, proteins and small molecules by using the oligonucleotides that can selectively bind the analytes. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Slow-plasmon resonant nano-strip antennas

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Beermann, Jonas; Boltasseva, Alexandra

    2008-01-01

    Resonant scattering by gold nanostrip antennas due to constructive interference of counterpropagating slow surface plasmon polaritons SPPs is analyzed, including the quasistatic limit of ultrasmall antennas, and experimentally demonstrated. The phase of slow SPP reflection by strip ends is found...

  18. Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Beermann, J.; Boltasseva, Alexandra;

    2008-01-01

    Resonant scattering by gold nanostrip antennas due to constructive interference of counterpropagating slow surface plasmon polaritons (SPPs) is analyzed, including the quasistatic limit of ultrasmall antennas, and experimentally demonstrated. The phase of slow SPP reflection by strip ends is found...

  19. Nonlinear plasmonic amplification via dissipative soliplasmons

    CERN Document Server

    Ferrando, Albert

    2016-01-01

    In this contribution we introduce a new strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasi-particle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a new mechanism of quasi-resonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling and gain give rise to a new scenario for the excitation of long- range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.

  20. Coalescence and anti-coalescence of surface plasmons on a lossy beamsplitter

    CERN Document Server

    Vest, Benjamin; Devaux, Éloïse; Ebbesen, Thomas W; Baron, Alexandre; Rousseau, Emmanuel; Hugonin, Jean-Paul; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-01-01

    Surface plasma waves are collective oscillations of electrons that propagate along a metal-dielectric interface. In the last ten years, several groups have reproduced fundamental quantum optics experiments with surface plasmons. Observation of single-plasmon states, waveparticle duality, preservation of entanglement of photons in plasmon-assisted transmission, and more recently, two-plasmon interference have been reported. While losses are detrimental for the observation of squeezed states, they can be seen as a new degree of freedom in the design of plasmonic devices, thus revealing new quantum interference scenarios. Here we report the observation of two-plasmon quantum interference between two freely-propagating, non-guided SPPs interfering on lossy plasmonic beamsplitters. As discussed in the article "Quantum optics of lossy beam splitters" by Barnett et al. (Phys. Rev. A 57, 2134 (1998)) , the presence of losses (scattering or absorption) relaxes constraints on the reflection and transmission factors of ...

  1. A Variable Single Photon Plasmonic Beamsplitter

    DEFF Research Database (Denmark)

    Israelsen, Niels Møller; Kumar, Shailesh; Huck, Alexander

    Plasmonic structures can both be exploited for scaling down optical components beyond the diffraction limit and enhancing andcollecting the emission from a single dipole emitter. Here, we experimentally demonstrate adiabatic coupling between two silvernanowires using a nitrogen vacancy center...

  2. Surface dispersion engineering for subwavelength plasmonic components on-a-chip

    Science.gov (United States)

    Gan, Qiaoqiang

    Surface Plasmon Polaritons (SPP) are surface modes that propagate at metal-dielectric interfaces and constitute an electromagnetic field coupled to oscillations of the conduction electrons at the metal surface. The fields associated with the SPP are enhanced at the surface and decay exponentially into the media on either side of the interface. Recently, it was proposed that plasmonic structures and devices operating in the optical domain offer advantages for applications such as on-chip integration of optical circuits, data storages, and bio-sensing. By varying the surface nanotopology, the optical properties of SPPs can be tailored via so-called Surface Dispersion Engineering. This thesis is largely focused on the development of plasmonic components on a chip using surface dispersion engineering technology, including systematic investigations on (1) coupling, (2) waveguiding, (3) manipulation and (4) application of engineered SPP modes. More specifically, in Chapter 2, novel SPP coupling mechanisms will be investigated. Compared with the bulky conventional SPR coupling mechanism, nanopatterns are employed as miniaturized plasmonic surface wave couplers to couple the light to SPP modes. In Chapter 3, nanopatterned metallic surface are employed for waveguiding. By properly designing the geometric parameters of the structures, surface bandgaps can be created to realize a novel bidirectional surface wave splitter. In Chapter 4, the slow-light properties of SPP modes supported by the nanopatterned surfaces will be investigated. Using a graded grating structure, multi-wavelengths could be slow down and trapped at different positions along the metal surface, which is so called "rainbow" trapping effect. In Chapter 5, the structures investigated in the previous chapters are combined to design a novel plasmonic sensing architecture, e.g. vertical plasmonic Mach-Zehnder Interferometer. Such a novel integrated biosensing platform is promising for miniaturized, low cost

  3. Plasmonic Properties of Bimetallic Nanostructures and Their Applications in Hydrogen Sensing and Chemical Reactions

    Science.gov (United States)

    Jiang, Ruibin

    seeds plays a significant role on the final morphologies of multimetallic nanostructures, while the seed shape has a prominent effect on the growth kinetics. Four plasmon resonance bands were observed in Au/Ag bimetallic nanocrystals. I then studied the evolution and nature of the four plasmon bands during the silver coating on Au nanorods both experimentally and theoretically. Electrodynamic simulations revealed that the lowest-energy peak belongs to the longitudinal dipolar plasmon mode, the second-lowest-energy peak is the transverse dipolar plasmon mode, and the two highest-energy peaks can be attributed to octupolar plasmon modes. The retardation effect and the interference between two perpendicularly polarized excitations along the edge directions are important for the formation of the distinct highest-energy and second-highest-energy octupolar plasmon modes, respectively. As the Ag shell thickness is increased, the longitudinal plasmon mode blue-shifts, the transverse plasmon mode first blue-shifts and then red-shifts slightly, and the two octupolar plasmon modes stay at nearly constant wavelengths. The extinction intensities of all the four plasmon bands increase with the increase of the overall particle size. Palladium is widely used in hydrogen sensing and catalysis. I therefore studied the applications of Au/Pd bimetallic nanostructures in hydrogen sensing and photocatalysis. Two types of Au/Pd bimetallic nanostructures, nanostructures with continuous and discontinuous Pd shells, were employed to study their hydrogen sensing performances. For the nanostructures with continuous Pd shell, the hydrogen sensing performances were improved with the increase in the Pd shell thickness. A plasmon shift of 56 nm was observed when the hydrogen concentration was 4%. The nanostructures with discontinuous Pd shell exhibited smaller plasmon shifts compared with those with continuous Pd shell. For the photocatalytic application of Au/Pd bimetallic nanostructures, I studied

  4. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R < 5 nm) that can result in a great incr...

  5. Plasmonic Solar Cells: From Rational Design to Mechanism Overview.

    Science.gov (United States)

    Jang, Yoon Hee; Jang, Yu Jin; Kim, Seokhyoung; Quan, Li Na; Chung, Kyungwha; Kim, Dong Ha

    2016-12-28

    Plasmonic effects have been proposed as a solution to overcome the limited light absorption in thin-film photovoltaic devices, and various types of plasmonic solar cells have been developed. This review provides a comprehensive overview of the state-of-the-art progress on the design and fabrication of plasmonic solar cells and their enhancement mechanism. The working principle is first addressed in terms of the combined effects of plasmon decay, scattering, near-field enhancement, and plasmonic energy transfer, including direct hot electron transfer and resonant energy transfer. Then, we summarize recent developments for various types of plasmonic solar cells based on silicon, dye-sensitized, organic photovoltaic, and other types of solar cells, including quantum dot and perovskite variants. We also address several issues regarding the limitations of plasmonic nanostructures, including their electrical, chemical, and physical stability, charge recombination, narrowband absorption, and high cost. Next, we propose a few potentially useful approaches that can improve the performance of plasmonic cells, such as the inclusion of graphene plasmonics, plasmon-upconversion coupling, and coupling between fluorescence resonance energy transfer and plasmon resonance energy transfer. This review is concluded with remarks on future prospects for plasmonic solar cell use.

  6. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators.

    Science.gov (United States)

    Zhuang, Huawei; Kong, Fanmin; Li, Kang; Sheng, Shiwei

    2015-08-20

    We investigate the plasmonic analog of electromagnetically induced transparency (EIT) using two adjacent graphene-based Fabry-Perot (F-P) resonators side coupling to a nanoribbon waveguide. By the coupling mode theory in time and F-P resonant model, the destructive interference from the coupling of the two F-P resonators results in the EIT-like optical response. The induced peak and width of the transparency window can be dynamically manipulated by varying the coupling distance of the two resonators, and the transparent window is easily shifted by tuning the resonator length or the chemical potential of the graphene nanoribbon. In order to verify the characteristics of slow light, the group index profile is analyzed at different coupling distances. The proposed graphene-based EIT-like system could open up new opportunities for potential applications in plasmonic slow light and optical information buffering devices.

  7. Plasmon polaritons in cubic lattices of spherical metallic nanoparticles

    CERN Document Server

    Lamowski, Simon; Mariani, Eros; Weick, Guillaume; Pauly, Fabian

    2016-01-01

    We investigate theoretically plasmon polaritons in cubic lattices of interacting spherical metallic nanoparticles. Dipolar localized surface plasmons on each nanoparticle couple through the near field dipole-dipole interaction and form collective plasmons which extend over the whole metamaterial. Coupling these collective plasmons in turn to photons leads to plasmon polaritons. We derive within a quantum model general semi-analytical expressions to evaluate both plasmon and plasmon-polariton dispersions that fully account for nonlocal effects in the dielectric function of the metamaterial. Within this model, we discuss the influence of different lattice symmetries and predict related polaritonic gaps within the near-infrared to the visible range of the spectrum that depend on wavevector direction and polarization.

  8. Tailoring the energy distribution and loss of 2D plasmons

    Science.gov (United States)

    Lin, Xiao; Rivera, Nicholas; López, Josué J.; Kaminer, Ido; Chen, Hongsheng; Soljačić, Marin

    2016-10-01

    The ability to tailor the energy distribution of plasmons at the nanoscale has many applications in nanophotonics, such as designing plasmon lasers, spasers, and quantum emitters. To this end, we analytically study the energy distribution and the proper field quantization of 2D plasmons with specific examples for graphene plasmons. We find that the portion of the plasmon energy contained inside graphene (energy confinement factor) can exceed 50%, despite graphene being infinitely thin. In fact, this very high energy confinement can make it challenging to tailor the energy distribution of graphene plasmons just by modifying the surrounding dielectric environment or the geometry, such as changing the separation distance between two coupled graphene layers. However, by adopting concepts of parity-time symmetry breaking, we show that tuning the loss in one of the two coupled graphene layers can simultaneously tailor the energy confinement factor and propagation characteristics, causing the phenomenon of loss-induced plasmonic transparency.

  9. Electrically Controlled Plasmonic Lasing Resonances with Silver Nanoparticles Embedded in Amplifying Nematic Liquid Crystals

    CERN Document Server

    Wang, Chin

    2014-01-01

    We demonstrate an electrically controlled coherent random lasing with silver nano-particles dispersed in a dye-doped nematic liquid crystal (NLC), in which external electric field dependent emission intensity and frequency-splitting are recorded. A modified rate equation model is proposed to interpret the observed coherent lasing, which is a manifestation of double enhancements, caused by the plasmon-polariton near-fields of Ag particles, on the population inversion of laser dye molecules and the optical energy density of lasing modes. The noticeable quenching of lasing resonances in a weak applied field is due to the dynamic light scattering by irregular director fluctuations of the NLC host, which wash out the coherent interference among different particle palsmon-polariton fields. This provides a proof to support that the present lasing resonances are very sensitive to the dielectric perturbations in the host medium and thus are likely associated with some coupled plasmonic oscillations of metal nanopartic...

  10. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  11. Plasmonic colour generation

    DEFF Research Database (Denmark)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.

    2016-01-01

    Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic...

  12. 2-μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography

    Science.gov (United States)

    Cheng-Ao, Yang; Yu, Zhang; Yong-Ping, Liao; Jun-Liang, Xing; Si-Hang, Wei; Li-Chun, Zhang; Ying-Qiang, Xu; Hai-Qiao, Ni; Zhi-Chuan, Niu

    2016-02-01

    We report a type-I GaSb-based laterally coupled distributed-feedback (LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings are fabricated alongside the ridge waveguide by interference lithography. Index-coupled LC-DFB laser with a cavity of 1500 μm achieves single longitudinal mode continuous-wave operation at 20 °C with side mode suppression ratio (SMSR) as high as 24 dB. The maximum single mode continuous-wave output power is about 10 mW at room temperature (uncoated facet). A low threshold current density of 230 A/cm2 is achieved with differential quantum efficiency estimated to be 93 mW/A. The laser shows a good wavelength stability against drive current and working temperature. Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB643903 and 2013CB932904), the National Special Funds for the Development of Major Research Equipment and Instruments, China (Grant No. 2012YQ140005), the National Natural Science Foundation of China (Grant Nos. 61435012, 61274013, 61306088, and 61290303), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB01010200).

  13. Down-regulation of G protein-coupled receptor 137 by RNA interference inhibits cell growth of two hepatoma cell lines.

    Science.gov (United States)

    Shao, Xin; Liu, Yong; Huang, Hai; Zhuang, Linyuan; Luo, Tianping; Huang, Huping; Ge, Xinguo

    2015-04-01

    G protein-coupled receptors (GPCRs) are important signal transduction mediators and pharmacological therapeutic targets. G protein-coupled receptor 137 (GPR137) was initially reported as a novel orphan GPCR around 10 years ago. Some orphan GPCRs have been implicated in cancer cell proliferation and migration. The aim of this study is to investigate the role of GPR137 in hepatocellular carcinoma (HCC). GPR137 is widely expressed in several human HCC cell lines, as determined by real-time PCR. We then applied lentivirus mediated RNA interference (RNAi) to knock down GPR137 expression in two HCC cell lines HepG2 and Bel7404. Depletion of GPR137 remarkably inhibited cell proliferation and colony formation capacity. Knockdown of GPR137 in HepG2 cells led to cell cycle arrest at G0/G1 phase and G2/M phase, and induced cell apoptosis, as determined by flow cytometry analysis, which contributed to cell growth inhibition. Our findings suggested that GPR137 could facilitate HCC cell proliferation and thus promote hepatocarcinogenesis.

  14. Amplitude and phase of surface plasmon polaritons excited at a step edge

    DEFF Research Database (Denmark)

    Klick, Alwin; de la Cruz, Sergio; Lemke, Christoph

    2016-01-01

    A combined experimental and theoretical study on the laser-induced excitation of surface plasmon polaritons (SPP) at well-defined step edges of a gold–vacuum interface is presented. As a relevant parameter determining the coupling efficiency between laser field and SPP, we identify the ratio...... between step height h and excitation wavelength λ. For specific values of h/λ, an almost complete suppression of SPP excitation is observed, which corresponds to a condition of constructive interference between the waves reflected at the top and bottom of the step. Experiment and theory show, furthermore...

  15. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...... and satellite communication interference simultaneously. Both the cutoff frequency and the notch frequency are sensitive to the structure parameters, and the cut-off frequency can reach 20 GHz. An adiabatic transition relying on gradient hole-size and flaring ground is designed to effectively couple energy...

  16. Influence of near-field coupling from Ag surface plasmons on InGaN/GaN quantum-well photoluminescence

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Iida, Daisuke; Chen, Yuntian

    2016-01-01

    We have investigated the borderline between photoluminescence quenching and enhancement of InGaN/GaN quantum-wells due to Ag nanoparticles and their surface plasmon modes. By embedding Ag nanoparticles inside nanohole structures on the p-type layer GaN, luminescence quenching is observed.Increasi......We have investigated the borderline between photoluminescence quenching and enhancement of InGaN/GaN quantum-wells due to Ag nanoparticles and their surface plasmon modes. By embedding Ag nanoparticles inside nanohole structures on the p-type layer GaN, luminescence quenching is observed...

  17. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NARCIS (Netherlands)

    Vesseur, P.C.

    2011-01-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide r

  18. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai

    2013-01-09

    A visible light responsive plasmonic photocatalytic composite material is designed by rationally selecting Au nanocrystals and assembling them with the TiO2-based photonic crystal substrate. The selection of the Au nanocrystals is so that their surface plasmonic resonance (SPR) wavelength matches the photonic band gap of the photonic crystal and thus that the SPR of the Au receives remarkable assistance from the photonic crystal substrate. The design of the composite material is expected to significantly increase the Au SPR intensity and consequently boost the hot electron injection from the Au nanocrystals into the conduction band of TiO2, leading to a considerably enhanced water splitting performance of the material under visible light. A proof-of-concept example is provided by assembling 20 nm Au nanocrystals, with a SPR peak at 556 nm, onto the photonic crystal which is seamlessly connected on TiO2 nanotube array. Under visible light illumination (>420 nm), the designed material produced a photocurrent density of ∼150 μA cm-2, which is the highest value ever reported in any plasmonic Au/TiO2 system under visible light irradiation due to the photonic crystal-assisted SPR. This work contributes to the rational design of the visible light responsive plasmonic photocatalytic composite material based on wide band gap metal oxides for photoelectrochemical applications. © 2012 American Chemical Society.

  19. Terahertz Optoelectronic Property of Graphene: Substrate-Induced Effects on Plasmonic Characteristics

    Directory of Open Access Journals (Sweden)

    I-Tan Lin

    2014-02-01

    Full Text Available The terahertz plasmon dispersion of a multilayer system consisting of graphene on dielectric and/or plasma thin layers is systematically investigated. We show that graphene plasmons can couple with other quasiparticles such as phonons and plasmons of the substrate; the characteristics of the plasmon dispersion of graphene are dramatically modified by the presence of the coupling effect. The resultant plasmon dispersion of the multilayer system is a strong function of the physical parameters of the spacer and the substrate, signifying the importance of the substrate selection in constructing graphene-based plasmonic devices.

  20. Plasmonic effects in metal-semiconductor nanostructures

    CERN Document Server

    Toropov, Alexey A

    2015-01-01

    Metal-semiconductor nanostructures represent an important new class of materials employed in designing advanced optoelectronic and nanophotonic devices, such as plasmonic nanolasers, plasmon-enhanced light-emitting diodes and solar cells, plasmonic emitters of single photons, and quantum devices operating in infrared and terahertz domains. The combination of surface plasmon resonances in conducting structures, providing strong concentration of an electromagnetic optical field nearby, with sharp optical resonances in semiconductors, which are highly sensitive to external electromagnetic fields, creates a platform to control light on the nanoscale. The design of the composite metal-semiconductor system imposes the consideration of both the plasmonic resonances in metal and the optical transitions in semiconductors - a key issue being their resonant interaction providing a coupling regime. In this book the reader will find descriptions of electrodynamics of conducting structures, quantum physics of semiconducto...

  1. Plasmonic coaxial waveguide-cavity devices.

    Science.gov (United States)

    Mahigir, Amirreza; Dastmalchi, Pouya; Shin, Wonseok; Fan, Shanhui; Veronis, Georgios

    2015-08-10

    We theoretically investigate three-dimensional plasmonic waveguide-cavity structures, built by side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length, to a plasmonic coaxial waveguide. The resonators are terminated either in a short or an open circuit. We show that the properties of these waveguide-cavity systems can be accurately described using a single-mode scattering matrix theory. We also show that, with proper choice of their design parameters, three-dimensional plasmonic coaxial waveguide-cavity devices and two-dimensional metal-dielectric-metal devices can have nearly identical transmission spectra. Thus, three-dimensional plasmonic coaxial waveguides offer a platform for practical implementation of two-dimensional metal-dielectric-metal device designs.

  2. Preservation of plasmonic interactions in DLC protected robust organic-plasmonic hybrid systems

    DEFF Research Database (Denmark)

    Cielecki, Pawel Piotr; Sobolewska, Elżbieta Karolina; Kostiučenko, Oksana

    response of organic nanofibers. Subsequently, we experimentally characterize the plasmonic coupling between organic nanofibers and underlying substrates by time-resolved photoluminescence spectroscopy. Our findings reveal that the optimal thickness for DLC coating, in terms of mechanical protection while...

  3. Hidden progress: broadband plasmonic invisibility

    CERN Document Server

    Renger, Jan; Dupont, Guillaume; Aćimović, Srdjan S; Guenneau, Sébastien; Quidant, Romain; Enoch, Stefan

    2010-01-01

    The key challenge in current research into electromagnetic cloaking is to achieve invisibility over an extended bandwidth. There has been significant progress towards this using the idea of cloaking by sweeping under the carpet of Li and Pendry, with dielectric structures superposed on a mirror. Here, we show that we can harness surface plasmon polaritons at a metal surface structured with a dielectric material to obtain a unique control of their propagation. We exploit this to control plasmonic coupling and demonstrate both theoretically and experimentally cloaking over an unprecedented bandwidth (650-900 nm). Our non-resonant plasmonic metamaterial allows a curved reflector to mimic a flat mirror. Our theoretical predictions are validated by experiments mapping the surface light intensity at the wavelength 800 nm.

  4. On-chip plasmonic spectrometer.

    Science.gov (United States)

    Tsur, Yuval; Arie, Ady

    2016-08-01

    We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 μm×100 μm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings.

  5. Molecular Orbital Rule for Quantum Interference in Weakly Coupled Dimers: Low-Energy Giant Conductivity Switching Induced by Orbital Level Crossing.

    Science.gov (United States)

    Nozaki, Daijiro; Lücke, Andreas; Schmidt, Wolf Gero

    2017-02-16

    Destructive quantum interference (QI) in molecular junctions has attracted much attention in recent years. It can tune the conductance of molecular devices dramatically, which implies numerous potential applications in thermoelectric and switching applications. There are several schemes that address and rationalize QI in single molecular devices. Dimers play a particular role in this respect because the QI signal may disappear, depending on the dislocation of monomers. We derive a simple rule that governs the occurrence of QI in weakly coupled dimer stacks of both alternant and nonalternant polyaromatic hydrocarbons (PAHs) and extends the Tada-Yoshizawa scheme. Starting from the Green's function formalism combined with the molecular orbital expansion approach, it is shown that QI-induced antiresonances and their energies can be predicted from the amplitudes of the respective monomer terminal molecular orbitals. The condition is illustrated for a toy model consisting of two hydrogen molecules and applied within density functional calculations to alternant dimers of oligo(phenylene-ethynylene) and nonalternant PAHs. Minimal dimer structure modifications that require only a few millielectronvolts and lead to an energy crossing of the essentially preserved monomer orbitals are shown to result in giant conductance switching ratios.

  6. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr

    2014-01-01

    This PhD thesis presents investigation of plasmonic waveguides and waveguiding components by means of scanning near-field optical microscopy characterizations, far-field optical observations, and numerical simulations. The plasmonic waveguiding attracts huge interest due to several reasons: 1...... simply by changing geometric parameters of the waveguide, keeping in mind the trade-off between confinement and propagation losses. A broad variety of plasmonic waveguides and waveguide components, including antennas for coupling the light in/out of the waveguide, requires correspondent characterization...

  7. Molecular plasmonics

    CERN Document Server

    Fritzsche, Wolfgang

    2014-01-01

    Adopting a novel approach, this book provides a unique ""molecular perspective"" on plasmonics, concisely presenting the fundamentals and applications in a way suitable for beginners entering this hot field as well as for experienced researchers and practitioners. It begins by introducing readers to the optical effects that occur at the nanoscale and particularly their modification in the presence of biomolecules, followed by a concise yet thorough overview of the different methods for the actual fabrication of nanooptical materials. Further chapters address the relevant nanooptics, as well as

  8. Plasmonics based VLSI processes

    Directory of Open Access Journals (Sweden)

    Shreya Bhattacharya

    2013-04-01

    Full Text Available In continuum to my previous paper titled‘Implementation of plasmonics in VLSI’, this paperattempts to explore further, the actual physicalrealization of an all-plasmonic chip. In this paper,various methods of plasmon-basedphotolithography have been discussed and anobservation is made w.r.t the cost effectiveness andease of adaptability. Also, plasmonics based activeelement has been discussed which would helpunravel further arenas ofapproaches and methodstowards the realization of an all-plasmonic chip.

  9. Tailoring the energy distribution and loss of 2D plasmons

    CERN Document Server

    Lin, Xiao; López, Josué J; Kaminer, Ido; Chen, Hongsheng; Soljačić, Marin

    2016-01-01

    The ability to tailor the energy distribution of plasmons at the nanoscale has many applications in nanophotonics, such as designing plasmon lasers, spasers, and quantum emitters. To this end, we analytically study the energy distribution and the proper field quantization of 2D plasmons with specific examples for graphene plasmons. We find that the portion of the plasmon energy contained inside graphene (energy confinement factor) can exceed 50%, despite graphene being infinitely thin. In fact, this very high energy confinement can make it challenging to tailor the energy distribution of graphene plasmons just by modifying the surrounding dielectric environment or the geometry, such as changing the separation distance between two coupled graphene layers. However, by adopting concepts of parity-time symmetry breaking, we show that tuning the loss in one of the two coupled graphene layers can simultaneously tailor the energy confinement factor and propagation characteristics, causing the phenomenon of loss-indu...

  10. High-density array of Au nanowires coupled by plasmon modes%基于表面等离子体耦合的高密度金纳米线阵列

    Institute of Scientific and Technical Information of China (English)

    闫红丹; Meinhard Schilling; Peter Lemmens; Johannes Ahrens; Martin Broring; Sven Burger; Winfried Daum; Gerhard Lilienkamp; Sandra Korte; Aidin Lak

    2012-01-01

    利用电化学沉积法在阳极氧化铝模板中制备了高长径比(20-100)金纳米线阵列,并用扫描俄歇电子显微镜对其结构进行了表征.紫外可见吸收光谱显示金纳米线的表面等离子共振包含横向吸收峰(transverse mode)和纵向吸收峰(longitudinalmode),具有很强的各向异性特征.纵向吸收峰的强度与入射光的偏振方向和入射角度有关,随着长径比的增加纵向吸收峰位置向高能方向移动.将纳米线之间的表面等离子体能量耦合与分子H聚合体的吸收光谱行为做了比较,认为相邻纳米线间的多重耦合使纵向吸收峰出现蓝移.利用有限元分析法模拟了电场在纳米线阵列和单根纳米线表面的不同分布.%Au nanowire arrays with high aspect ratios are prepared in anode aluminum oxide templates by electrochemical deposition. The obtained structures are investigated by scanning Auger microscopy. Surface plasmon resonances of Au nanowire arrays induce a transverse mode (T mode) and a longitudinal mode (L mode) in the optical absorption, which indicates the strong anisotropy of the Au nanowires. The L mode intensity is related to the angle and polarization of the incident light. The L mode position shows a shift with the increase of aspect ratio of the nanowires. The plasmon coupling between Au nanowires is compared with the H-aggregation of organic chromophores. The blue shift of the L mode in the arrays compared with a single nanowire is induced by multi-coupling of the electromagnetic field between neighbouring nanowires. A finite element method is used to simulate the electric field distributions of a single Au nanowire and an array of plasmonically coupled wires.

  11. Dark Field Imaging of Plasmonic Resonator Arrays

    Science.gov (United States)

    Aydinli, Atilla; Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun

    2012-02-01

    We present critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moir'e surfaces. The critical coupling condition depends on the superperiod of Moir'e surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. We image the light scattered from SPPs in the plasmonic cavities excited by a tunable light source. Tuning the excitation wavelength, we measure the localization and dispersion of the plasmonic cavity mode. Dark field imaging has been achieved in the Kretschmann configuration using a supercontinuum white light laser equipped with an acoustooptic tunable filter. Polarization dependent spectroscopic reflection and dark field imaging measurements are correlated and found to be in agreement with FDTD simulations.

  12. Surface-plasmon-polariton-assisted dissipative backaction cooling and amplification

    Science.gov (United States)

    Hassani nia, Iman; Mohseni, Hooman

    2015-11-01

    We evaluate a method, based on the near-field properties of surface-plasmon polaritons, to significantly enhance the dissipative optomechanical backaction mechanism. Although the large momentum of the surface-plasmon-polariton modes leads to the enhanced sensitivity of the scattering to the mechanical displacement, the overall efficiency will not improve unless an optical antenna efficiently couples the plasmonic modes to the far field. The predicted improvements in both efficiency and bandwidth make this approach uniquely suitable for many new applications.

  13. Finite element modeling of plasmon based single-photon sources

    DEFF Research Database (Denmark)

    Chen, Yuntian; Gregersen, Niels; Nielsen, Torben Roland;

    2011-01-01

    A finite element method (FEM) approach of calculating a single emitter coupled to plasmonic waveguides has been developed. The method consists of a 2D model and a 3D model: (I) In the 2D model, we have calculated the spontaneous emission decay rate of a single emitter into guided plasmonic modes...... waveguides with different geometries, as long as only one guided plasmonic mode is predominantly excited....

  14. Plasmon Field Effect Transistor for Plasmon to Electric Conversion and Amplification.

    Science.gov (United States)

    Shokri Kojori, Hossein; Yun, Ju-Hyung; Paik, Younghun; Kim, Joondong; Anderson, Wayne A; Kim, Sung Jin

    2016-01-13

    Direct coupling of electronic excitations of optical energy via plasmon resonances opens the door to improving gain and selectivity in various optoelectronic applications. We report a new device structure and working mechanisms for plasmon resonance energy detection and electric conversion based on a thin film transistor device with a metal nanostructure incorporated in it. This plasmon field effect transistor collects the plasmonically induced hot electrons from the physically isolated metal nanostructures. These hot electrons contribute to the amplification of the drain current. The internal electric field and quantum tunneling effect at the metal-semiconductor junction enable highly efficient hot electron collection and amplification. Combined with the versatility of plasmonic nanostructures in wavelength tunability, this device architecture offers an ultrawide spectral range that can be used in various applications.

  15. Plasmon resonance energy transfer and plexcitonic solar cell.

    Science.gov (United States)

    Nan, Fan; Ding, Si-Jing; Ma, Liang; Cheng, Zi-Qiang; Zhong, Yu-Ting; Zhang, Ya-Fang; Qiu, Yun-Hang; Li, Xiaoguang; Zhou, Li; Wang, Qu-Quan

    2016-08-11

    Plasmon-mediated energy transfer is highly desirable in photo-electronic nanodevices, but the direct injection efficiency of "hot electrons" in plasmonic photo-detectors and plasmon-sensitized solar cells (plasmon-SSCs) is poor. On another front, Fano resonance induced by strong plasmon-exciton coupling provides an efficient channel of coherent energy transfer from metallic plasmons to molecular excitons, and organic dye molecules have a much better injection efficiency in exciton-SSCs than "hot electrons". Here, we investigate enhanced light-harvesting of chlorophyll-a molecules strongly coupled to Au nanostructured films via Fano resonance. The enhanced local field and plasmon resonance energy transfer are experimentally revealed by monitoring the ultrafast dynamical processes of the plexcitons and the photocurrent flows of the assembled plexciton-SSCs. By tuning the Fano factor and anti-resonance wavelengths, we find that the local field is largely enhanced and the efficiency of plexciton-SSCs consisting of ultrathin TiO2 films is significantly improved. Most strikingly, the output power of the plexciton-SSCs is much larger than the sum of those of the individual plasmon- and exciton-SSCs. Our observations provide a practical approach to monitor energy and electron transfer in plasmon-exciton hybrids at a strong coupling regime and also offer a new strategy to design photovoltaic nanodevices.

  16. Ag doped silicon nitride nanocomposites for embedded plasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, M.; Bonafos, C., E-mail: bonafos@cemes.fr; Benzo, P.; Benassayag, G.; Pécassou, B.; Carles, R. [CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse, Cedex 04 (France); Khomenkova, L.; Gourbilleau, F. [CIMAP, CNRS/CEA/ENSICAEN/UCBN, 6 Boulevard Maréchal Juin, 14050 Caen, Cedex 4 (France)

    2015-09-07

    The localized surface plasmon-polariton resonance (LSPR) of noble metal nanoparticles (NPs) is widely exploited for enhanced optical spectroscopies of molecules, nonlinear optics, photothermal therapy, photovoltaics, or more recently in plasmoelectronics and photocatalysis. The LSPR frequency depends not only of the noble metal NP material, shape, and size but also of its environment, i.e., of the embedding matrix. In this paper, Ag-NPs have been fabricated by low energy ion beam synthesis in silicon nitride (SiN{sub x}) matrices. By coupling the high refractive index of SiN{sub x} to the relevant choice of dielectric thickness in a SiN{sub x}/Si bilayer for an optimum antireflective effect, a very sharp plasmonic optical interference is obtained in mid-range of the visible spectrum (2.6 eV). The diffusion barrier property of the host SiN{sub x} matrix allows for the introduction of a high amount of Ag and the formation of a high density of Ag-NPs that nucleate during the implantation process. Under specific implantation conditions, in-plane self-organization effects are obtained in this matrix that could be the result of a metastable coarsening regime.

  17. High power terahertz emission from a single gate AlGaN/GaN field effect transistor with periodic Ohmic contacts for plasmon coupling

    Science.gov (United States)

    Onishi, Toshikazu; Tanigawa, Tatsuya; Takigawa, Shinichi

    2010-08-01

    We report on room temperature terahertz (THz) emission by a single, short gate AlGaN/GaN field effect transistor with grating Ohmic contacts. The fingers of metal contacts are fabricated at the nanoscale in length and spacing in order to work as a radiation coupler of electron plasmons in the THz range. Spectrum analysis revealed a broadband emission centered at 1.5 THz with a controlled polarization by the grating contacts. The measured output power is linearly increased with the drain input power and reached up to 1.8 μW.

  18. Reviews in plasmonics 2010

    CERN Document Server

    Geddes, Chris D

    2011-01-01

    Reviews in Plasmonics 2010, the first volume of the new book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year's progress in surface plasmon phenomena and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential reference material for any lab working in the Plasmonic

  19. CALCULATION AND APPLICATION OF TORQUE TRANSMISSION IN INTERFERENCE GEAR COUPLING WITHOUT KEYS%无键过盈齿式联轴节传递扭矩核算及应用

    Institute of Scientific and Technical Information of China (English)

    王正文

    2012-01-01

    This paper described the assembly principle,common failure modes and calculation method on interference torque aiming at high speed interference gear coupling without keys.This paper provided detailed instructions about the application of the calculation method in the maintenance,combining with the usage of VT101 steam turbine coupling in phthalic anhydride unit of Qilu olefin plant.%介绍高速无键过盈齿式联轴节的装配原理、常见破坏形式及过盈扭矩的核算方法,并结合中国石化齐鲁分公司烯烃厂苯酐装置VT101汽轮机联轴节的使用情况,对计算方法在检修中的应用进行详细的说明。

  20. Subwavelength Plasmonic Waveguides and Plasmonic Materials

    Directory of Open Access Journals (Sweden)

    Ruoxi Yang

    2012-01-01

    Full Text Available With the fast development of microfabrication technology and advanced computational tools, nanophotonics has been widely studied for high-speed data transmission, sensitive optical detection, manipulation of ultrasmall objects, and visualization of nanoscale patterns. As an important branch of nanophotonics, plasmonics has enabled light-matter interactions at a deep subwavelength length scale. Plasmonics, or surface plasmon based photonics, focus on how to exploit the optical property of metals with abundant free electrons and hence negative permittivity. The oscillation of free electrons, when properly driven by electromagnetic waves, would form plasmon-polaritons in the vicinity of metal surfaces and potentially result in extreme light confinement. The objective of this article is to review the progress of subwavelength or deep subwavelength plasmonic waveguides, and fabrication techniques of plasmonic materials.