WorldWideScience

Sample records for plasmon resonance technology

  1. Bayesian Estimation of the Active Concentration and Affinity Constants Using Surface Plasmon Resonance Technology.

    Directory of Open Access Journals (Sweden)

    Feng Feng

    Full Text Available Surface plasmon resonance (SPR has previously been employed to measure the active concentration of analyte in addition to the kinetic rate constants in molecular binding reactions. Those approaches, however, have a few restrictions. In this work, a Bayesian approach is developed to determine both active concentration and affinity constants using SPR technology. With the appropriate prior probabilities on the parameters and a derived likelihood function, a Markov Chain Monte Carlo (MCMC algorithm is applied to compute the posterior probability densities of both the active concentration and kinetic rate constants based on the collected SPR data. Compared with previous approaches, ours exploits information from the duration of the process in its entirety, including both association and dissociation phases, under partial mass transport conditions; do not depend on calibration data; multiple injections of analyte at varying flow rates are not necessary. Finally the method is validated by analyzing both simulated and experimental datasets. A software package implementing our approach is developed with a user-friendly interface and made freely available.

  2. Electrically Tunable Plasmonic Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Ni, Xingjie

    2012-01-01

    Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance.......Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance....

  3. Surface plasmon resonance in super-periodic metal nanostructures

    Science.gov (United States)

    Leong, Haisheng

    Surface plasmon resonances in periodic metal nanostructures have been investigated over the past decade. The periodic metal nanostructures have served as new technology platforms in fields such as biological and chemical sensing. An existing method to determine the surface plasmon resonance properties of these metal nanostructures is the measurement of the light transmission or reflection from these nanostructures. The measurement of surface plasmon resonances in either the transmission or reflection allows one to resolve the surface plasmon resonance in metal nanostructures. In this dissertation, surface plasmon resonances in a new type of metal nanostructures were investigated. The new nanostructures were created by patterning traditional periodic nanohole and nanoslit arrays into diffraction gratings. The patterned nanohole and 11anoslit arrays have two periods in the structures. The new nanostructures are called "super-periodic" nanostructures. With rigorous finite difference time domain (FDTD) numerical simulations, surface plasmon resonances in super-periodic nanoslit and nanohole arrays were investigated. It was found that by creating a super-period in periodic metal nanostructures, surface plasmon radiations can be observed in the non-zero order diffractions. This discovery presents a new method of characterizing the surface plasmon resonances in metal nanostructures. Super-periodic gold nanoslit and nanohole arrays were fabricated with the electron beam lithography technique. The surface plasmon resonances were measured in the first order diffraction by using a CCD. The experimental results confirm well with the FDTD numerical simulations.

  4. Gold nanodisk array surface plasmon resonance sensor

    Science.gov (United States)

    Tian, Xueli

    Surface plasmon resonances in periodic metal nanostructures have been investigated for sensing applications over the last decade. The resonance wavelengths of the nanostructures are usually measured in the transmission or reflection spectrum for chemical and biological sensing. In this thesis, I introduce a nanoscale gap mediated surface plasmon resonance nanodisk array for displacement sensing and a super-period gold nanodisk grating enabled surface plasmon resonance spectrometer sensor. The super-period gold nanodisk grating has a small subwavelength period and a large diffraction grating period. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD). A surface plasmon resonance sensor for the bovine serum albumin (BSA) protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  5. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing

    OpenAIRE

    Lepage Dominic; Carrier Dominic; Jiménez Alvaro; Beauvais Jacques; Dubowski Jan

    2011-01-01

    Abstract A surface plasmon resonance (SPR) scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral r...

  6. Laser printing of resonant plasmonic nanovoids

    Science.gov (United States)

    Kuchmizhak, A.; Vitrik, O.; Kulchin, Yu.; Storozhenko, D.; Mayor, A.; Mirochnik, A.; Makarov, S.; Milichko, V.; Kudryashov, S.; Zhakhovsky, V.; Inogamov, N.

    2016-06-01

    Hollow reduced-symmetry resonant plasmonic nanostructures possess pronounced tunable optical resonances in the UV-vis-IR range, being a promising platform for advanced nanophotonic devices. However, the present fabrication approaches require several consecutive technological steps to produce such nanostructures, making their large-scale fabrication rather time-consuming and expensive. Here, we report on direct single-step fabrication of large-scale arrays of hollow parabolic- and cone-shaped nanovoids in silver and gold thin films, using single-pulse femtosecond nanoablation at high repetition rates. The lateral and vertical size of such nanovoids was found to be laser energy-tunable. Resonant light scattering from individual nanovoids was observed in the visible spectral range, using dark-field confocal microspectroscopy, with the size-dependent resonant peak positions. These colored geometric resonances in far-field scattering were related to excitation and interference of transverse surface plasmon modes in nanovoid shells. Plasmon-mediated electromagnetic field enhancement near the nanovoids was evaluated via finite-difference time-domain calculations for their model shapes simulated by three-dimensional molecular dynamics, and experimentally verified by means of photoluminescence microscopy and Raman spectroscopy.Hollow reduced-symmetry resonant plasmonic nanostructures possess pronounced tunable optical resonances in the UV-vis-IR range, being a promising platform for advanced nanophotonic devices. However, the present fabrication approaches require several consecutive technological steps to produce such nanostructures, making their large-scale fabrication rather time-consuming and expensive. Here, we report on direct single-step fabrication of large-scale arrays of hollow parabolic- and cone-shaped nanovoids in silver and gold thin films, using single-pulse femtosecond nanoablation at high repetition rates. The lateral and vertical size of such nanovoids was

  7. Nonlinear plasmonic amplification via dissipative soliton-plasmon resonances

    Science.gov (United States)

    Ferrando, Albert

    2017-01-01

    In this contribution we introduce a strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasiparticle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a mechanism of quasiresonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling, and gain give rise to a scenario for the excitation of long-range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.

  8. Plasmon resonant liposomes for controlled drug delivery

    Science.gov (United States)

    Knights-Mitchell, Shellie S.; Romanowski, Marek

    2015-03-01

    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  9. Spatial filtering with surface plasmon resonance systems

    Science.gov (United States)

    Ghosh, A. K.; Siddharth, V.; Bhagat, M.; Aggarwal, S.; Anurag, P.; Jain, M.

    2007-09-01

    Surface plasmon resonance based sensors are most useful in measuring the refractive indices of biochemicals. In such sensors a beam of light obliquely incident at an interface of glass and metallic thin film excites resonant plasmon waves in the metal if the angle of incidence or the wavelength is selected properly. The resonance conditions are changed by the refractive indices of any material in contact with the metal film. When resonance occurs the light beam is absorbed strongly. We can easily show that the phenomenon of surface plasmon resonance in such a system acts as a high quality spatial notch or band rejection filter.

  10. Coupling Bright and Dark Plasmonic Lattice Resonances

    CERN Document Server

    Rodriguez, S R K; Maes, B; Janssen, O T A; Vecchi, G; Rivas, J Gomez

    2011-01-01

    We demonstrate the coupling of bright and dark Surface Lattice Resonances (SLRs), which are collective Fano resonances in 2D plasmonic crystals. As a result of this coupling, a frequency stop-gap in the dispersion relation of SLRs is observed. The different field symmetries of the low and high frequency SLR bands lead to pronounced differences in their coupling to free space radiation. Standing waves of very narrow spectral width compared to localized surface plasmon resonances are formed at the high frequency band edge, while subradiant damping onsets at the low frequency band edge leading the resonance into darkness. We introduce a coupled oscillator analog to the plasmonic crystal, which serves to elucidate the physics of the coupled plasmonic resonances and to estimate very high quality factors (Q>700) for SLRs, which are the highest known for any 2D plasmonic crystal.

  11. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing

    Directory of Open Access Journals (Sweden)

    Lepage Dominic

    2011-01-01

    Full Text Available Abstract A surface plasmon resonance (SPR scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral regions. The surface roughness of the substrate layer is examined for different dielectrics and deposition methods. The Au layer, on which the plasmonic modes are propagating and the biosensing occurs, is also examined. The surface roughness and dielectric values for various deposition rates of very thin Au films are measured. We also investigate an interferometric SPR setup where, due to the power flux transfer between plasmon modes, the specific choice of grating coupler can either decrease or increase the plasmon propagation length.

  12. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing.

    Science.gov (United States)

    Lepage, Dominic; Carrier, Dominic; Jiménez, Alvaro; Beauvais, Jacques; Dubowski, Jan J

    2011-05-17

    A surface plasmon resonance (SPR) scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral regions. The surface roughness of the substrate layer is examined for different dielectrics and deposition methods. The Au layer, on which the plasmonic modes are propagating and the biosensing occurs, is also examined. The surface roughness and dielectric values for various deposition rates of very thin Au films are measured. We also investigate an interferometric SPR setup where, due to the power flux transfer between plasmon modes, the specific choice of grating coupler can either decrease or increase the plasmon propagation length.

  13. Tunable Omnidirectional Surface Plasmon Resonance in Cylindrical Plasmonic Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; WANG Bing; ZHOU Zhi-Ping

    2008-01-01

    @@ The tunable omnidirectional surface plasmon resonance in the optical range is theoretically demonstrated in a cylindrical plasmonic crystal by using rigorous coupled-wave analysis.The cylindrical plasmonic crystal consists of an infinite chain of two-dimensional cylindrical metal-dielectric-dielectric-metal structures.The dispersion relation of the cylindrical plasmonic crystal is obtained by calculating the absorptance as a function of a TM-polarized incident plane wave and its in-plane wave vector.The omnidirectional surface plasmon resonance can be tuned from UV region to visible region by adjusting the thickness of the cylindrical dielectric layers.The absorption spectrum of the infinite chain of nanocylinders is also investigated for comparison.

  14. Distributed optical fiber surface plasmon resonance sensors

    Institute of Scientific and Technical Information of China (English)

    Zhenxin Cao; Lenan Wu; Dayong Li

    2006-01-01

    @@ The relationships of the resonant wavelength of optical fiber surface plasmon resonance (SPR) sensors to the modulation layer refractive index, thickness and the refractive index of the bulk medium are obtained by using theoretical calculation model of optical fiber SPR sensors under certain conditions, which indicates that resonant wavelength of the sensors is approximately linear with modulation layer thickness. Based on the linear relationship, multiple SPR sensors with different resonant wavelengths can be fabricated in a single optical fiber named as distributed optical fiber surface plasmon resonance sensors (DOFSPRSs).Experimental results are presented, showing that it is practical to fabricate more than one SPR sensors in a single optical fiber.

  15. Surface plasmon resonance biosensors: advances and applications

    Science.gov (United States)

    Homola, Jirí

    2009-10-01

    Surface plasmon resonance (SPR) biosensors represent the most advanced label-free optical affinity biosensor technology. In the last decade numerous SPR sensor platforms have been developed and applied in the life sciences and bioanalytics. This contribution reviews the state of the art in the development of SPR (bio)sensor technology and presents selected results of research into SPR biosensors at the Institute of Photonics and Electronics, Prague. The developments discussed in detail include a miniature fiber optic SPR sensor for localized measurements, a compact SPR sensor for field use and a multichannel SPR sensor for high-throughput screening. Examples of applications for the detection of analytes related to medical diagnostics (biomarkers, hormones, antibodies), environmental monitoring (endocrine disrupting compounds), and food safety (pathogens and toxins) are given.

  16. Critical coupling in plasmonic resonator arrays

    Science.gov (United States)

    Balci, Sinan; Kocabas, Coskun; Aydinli, Atilla

    2011-08-01

    We report critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moiré surfaces. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. The critical coupling conditions depend on the superperiod of the Moiré surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have a relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Analytical and finite difference time domain calculations support the experimental observations.

  17. Nanometrology using localized surface plasmon resonance spectroscopy

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel N.; Laurberg, Asger V.;

    2013-01-01

    A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed in a tra......A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed...... in a transmission spectrum and it is very sensitive to the constituent materials as well as both lateral and vertical dimensions of the structures. This makes LSPR spectroscopy interesting for a number of applications including nanometrology. Like scatterometry, LSPR spectroscopy requires test structures...

  18. Triple plasmon resonance of bimetal nanoshell

    Energy Technology Data Exchange (ETDEWEB)

    Shirzaditabar, Farzad [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Saliminasab, Maryam, E-mail: m.saliminasab@yahoo.com [Young Researchers Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Arghavani Nia, Borhan [Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of)

    2014-07-15

    In this paper, light absorption spectra properties of a bimetal multilayer nanoshell based on quasi-static approach are investigated. Comparing with silver-dielectric-silver and silver-dielectric-gold nanoshells, gold-dielectric-silver nanoshells have three intense and separated plasmon peaks which are more suitable for multiplex biosensing. Calculations show that relatively small thickness of outer silver shell and large dielectric constant of middle dielectric layer of gold-dielectric-silver nanoshell are suitable to obtain the triple plasmon resonance.

  19. Triple plasmon resonance of bimetal nanoshell

    Science.gov (United States)

    Shirzaditabar, Farzad; Saliminasab, Maryam; Arghavani Nia, Borhan

    2014-07-01

    In this paper, light absorption spectra properties of a bimetal multilayer nanoshell based on quasi-static approach are investigated. Comparing with silver-dielectric-silver and silver-dielectric-gold nanoshells, gold-dielectric-silver nanoshells have three intense and separated plasmon peaks which are more suitable for multiplex biosensing. Calculations show that relatively small thickness of outer silver shell and large dielectric constant of middle dielectric layer of gold-dielectric-silver nanoshell are suitable to obtain the triple plasmon resonance.

  20. Dark Field Imaging of Plasmonic Resonator Arrays

    Science.gov (United States)

    Aydinli, Atilla; Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun

    2012-02-01

    We present critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moir'e surfaces. The critical coupling condition depends on the superperiod of Moir'e surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. We image the light scattered from SPPs in the plasmonic cavities excited by a tunable light source. Tuning the excitation wavelength, we measure the localization and dispersion of the plasmonic cavity mode. Dark field imaging has been achieved in the Kretschmann configuration using a supercontinuum white light laser equipped with an acoustooptic tunable filter. Polarization dependent spectroscopic reflection and dark field imaging measurements are correlated and found to be in agreement with FDTD simulations.

  1. Fano resonance Rabi splitting of surface plasmons.

    Science.gov (United States)

    Liu, Zhiguang; Li, Jiafang; Liu, Zhe; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2017-08-14

    Rabi splitting and Fano resonance are well-known physical phenomena in conventional quantum systems as atoms and quantum dots, arising from strong interaction between two quantum states. In recent years similar features have been observed in various nanophotonic and nanoplasmonic systems. Yet, realization of strong interaction between two or more Fano resonance states has not been accomplished either in quantum or in optical systems. Here we report the observation of Rabi splitting of two strongly coupled surface plasmon Fano resonance states in a three-dimensional plasmonic nanostructure consisting of vertical asymmetric split-ring resonators. The plasmonic system stably supports triple Fano resonance states and double Rabi splittings can occur between lower and upper pairs of the Fano resonance states. The experimental discovery agrees excellently with rigorous numerical simulations, and is well explained by an analytical three-oscillator model. The discovery of Fano resonance Rabi splitting could provide a stimulating insight to explore new fundamental physics in analogous atomic systems and could be used to significantly enhance light-matter interaction for optical sensing and detecting applications.

  2. Plasmon resonance in multilayer graphene nanoribbons

    DEFF Research Database (Denmark)

    Emani, Naresh Kumar; Wang, Di; Chung, Ting Fung

    2015-01-01

    Plasmon resonances in nanopatterned single-layer graphene nanoribbons (SL-GNRs), double-layer graphene nanoribbons (DL-GNRs) and triple-layer graphene nanoribbons (TL-GNRs) are studied experimentally using 'realistic' graphene samples. The existence of electrically tunable plasmons in stacked...... multilayer graphene nanoribbons was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL-GNRs when compared to SL-GNRs. However, further increase was not observed in TL-GNRs when compared to DL-GNRs. We carried out systematic full......-wave simulations using a finite-element technique to validate and fit experimental results, and extract the carrier-scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for an unpatterned SLG sheet, and a qualitative agreement for a patterned graphene sheet...

  3. Plasmon Resonance in Multilayer Graphene Nanoribbons

    CERN Document Server

    Emani, Naresh Kumar; Chung, Ting-Fung; Prokopeva, Ludmila J; Kildishev, Alexander V; Shalaev, Vladimir M; Chen, Yong P; Boltasseva, Alexandra

    2015-01-01

    Plasmon resonance in nanopatterned single layer graphene nanoribbon (SL-GNR), double layer graphene nanoribbon (DL-GNR) and triple layer graphene nanoribbon (TL-GNR) structures is studied both experimentally and by numerical simulations. We use 'realistic' graphene samples in our experiments to identify the key bottle necks in both experiments and theoretical models. The existence of electrical tunable plasmons in such stacked multilayer GNRs was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL-GNR when compared to SL-GNRs. However, we do not find a further such increase in TL-GNRs compared to DL-GNRs. We carried out systematic full wave simulations using finite element technique to validate and fit experimental results, and extract the carrier scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for unpatterned SLG sheet, and a qualitative agreement for patterned graphene sheet. W...

  4. Surface Plasmon Resonance Studies on Molecular Imprinting

    Directory of Open Access Journals (Sweden)

    Baoping Lin

    2002-01-01

    Full Text Available The molecular imprinted polymer (MIP members were fabricated with the print molecule L-phenylalanine ethyl ester. The elution and adsorption procedures were investigated by surface plasmon resonance in situ. The changes of refractive angle during elution procedure suggest that the MIP is prepared on the base of the non-covalent interactions. This MIP member sensor can achieve enantioselective recognition.

  5. Nanostructured imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, Sweccha

    2017-01-01

    The testing and further development of a prototype nanostructured imaging surface plasmon resonance (iSPR) biosensor, with a focus on surface modification and detailed characterization of the biosensor chip and in-field and at-line applicability in the food industry is described. Furthermore, a simp

  6. Nanostructured imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, Sweccha

    2017-01-01

    The testing and further development of a prototype nanostructured imaging surface plasmon resonance (iSPR) biosensor, with a focus on surface modification and detailed characterization of the biosensor chip and in-field and at-line applicability in the food industry is described. Furthermore, a

  7. Hybrid plasmonic-photonic resonators (Conference Presentation)

    Science.gov (United States)

    Koenderink, A. Femius; Doeleman, Hugo M.; Ruesink, Freek; Verhagen, Ewold; Osorio, Clara I.

    2016-09-01

    Hybrid nanophotonic structures are structures that integrate different nanoscale platforms to harness light-matter interaction. We propose that combinations of plasmonic antennas inside modest-Q dielectric cavities can lead to very high Purcell factors, yielding plasmonic mode volumes at essentially cavity quality factors. The underlying physics is subtle: for instance, how plasmon antennas with large cross sections spoil or improve cavities and vice versa, contains physics beyond perturbation theory, depending on interplays of back-action, and interferences. This is evident from the fact that the local density of states of hybrid systems shows the rich physics of Fano interferences. I will discuss recent scattering experiments performed on toroidal microcavities coupled to plasmon particle arrays that probe both cavity resonance shifts and particle polarizability changes illustrating these insights. Furthermore I will present our efforts to probe single plasmon antennas coupled to emitters and complex environments using scatterometry. An integral part of this approach is the recently developed measurement method of `k-space polarimetry', a microscopy technique to completely classify the intensity and polarization state of light radiated by a single nano-object into any emission direction that is based on back focal plane imaging and Stokes polarimetry. I show benchmarks of this technique for the cases of scattering, fluorescence, and cathodoluminescence applied to directional surface plasmon polariton antennas.

  8. Integrated plasmonic refractometric sensor using Fano resonance

    Science.gov (United States)

    Sherif, S. M.; Zografopoulos, D. C.; Shahada, L. A.; Beccherelli, R.; Swillam, M.

    2017-02-01

    We propose a plasmonic refractometric sensor that is based on Fano resonances excited in a resonant rectangular cavity coupled to a metal-insulator-metal bus waveguide. The properties of the resonances are controlled by varying the dimensions of the rectangular resonator and the observed Fano profile stems from the multimode interference of resonant cavity modes. We theoretically investigate the device’s performance as a highly sensitive refractometric plasmonic sensor which operates on gases, water and organic solvent solutions with tens of femtoliters of analyte. The sensor is studied in a wide operational range (0.7-2.7 μm) covering the entire near infrared spectral range, and is characterized by large sensitivity, which reaches 1550 nm RIU-1, and sensitivity per unit volume higher than 107 nm (RIU · nl)-1 at the resonant wavelength of 1.55 μm. The proposed plasmonic structure is very promising for integrated sensing applications owing to its small footprint and surprisingly simple layout.

  9. Nonlinear plasmonic resonances in graphene nanostructures

    Science.gov (United States)

    You, Jian Wei; Weismann, Martin; Panoiu, Nicolae C.

    2016-09-01

    Peculiar physical properties of graphene offer remarkable potential for advanced photonics, particularly in the area of nonlinear optics at deep-subwavelength scale. In this article, we use a theoretical and computational analysis to demonstrate an efficient mechanism for enhancing the third-harmonic generation in graphene diffraction gratings. By taking advantage of the relation between the resonance wavelength of localized surface-plasmon polaritons of graphene ribbons and disks their specific geometry, we can engineer the spectral response of graphene gratings so as strong plasmonic resonances exist at both the fundamental frequency and third-harmonic (TH). As a result of this dual resonance mechanism for optical near-field enhancement, the intensity of the TH can be increased greatly.

  10. Technological studies for plasmonic metasurfaces

    Science.gov (United States)

    Tomescu, Roxana; Kusko, Cristian; Dinescu, Adrian; Bita, Bogdan; Popescu, Marian

    2016-12-01

    This work will present the technological processes necessary to experimentally obtain plasmonic metasurfaces for developing flat optical components or diffractive optical elements (DOE) which have reflexion functionalities. This class of metasurfaces offers the possibility to manipulate the beam shape using an array of metallic nanoscale elements patterned on a substrate. The main feature of these structures is that one can manipulate the phase behavior by modifying some of the geometrical parameters of the nano-antennas in order to achieve the required phase shift values for the desired applications. The first important step in experimentally obtaining a plasmonic metasurface structures is the electron beam lithography (EBL) followed by the lift-off method. Due to the small sizes of the gold nano-antennas and tight periodicity of the array a number of impediments can emerge in experimentally obtaining such geometries which can be overcome by the parameter optimization of the employed technologies.

  11. Large-area nanogap plasmon resonator arrays for plasmonics applications

    Science.gov (United States)

    Jin, Mingliang; van Wolferen, Henk; Wormeester, Herbert; van den Berg, Albert; Carlen, Edwin T.

    2012-07-01

    Large-area (~8000 mm2) Au nanogap plasmon resonator array substrates manufactured using maskless laser interference lithography (LIL) with high uniformity are presented. The periodically spaced subwavelength nanogap arrays are formed between adjacent nanopyramid (NPy) structures with precisely defined pitch and high length density (~1 km cm-2), and are ideally suited as scattering sites for surface enhanced Raman scattering (SERS), as well as refractive index sensing. The two-dimensional grid arrangement of NPy structures renders the excitation of the plasmon resonators minimally dependent on the incident polarization. The SERS average enhancement factor (AEF) has been characterized using over 30 000 individual measurements of benzenethiol (BT) chemisorbed on the Au NPy surfaces. From the 1(a1), βCCC + νCS ring mode (1074 cm-1) of BT on surfaces with pitch λg = 200 nm, AEF = 0.8 × 106 and for surfaces with λg = 500 nm, AEF = 0.3 × 107 from over 99% of the imaged spots. Maximum AEFs > 108 have been measured in both cases.

  12. Plasmonics for emerging quantum technologies

    CERN Document Server

    Bozhevolnyi, Sergey I

    2016-01-01

    Expanding the frontiers of information processing technologies and, in particular, computing with ever increasing speed and capacity has long been recognized an important societal challenge, calling for the development of the next generation of quantum technologies. With its potential to exponentially increase computing power, quantum computing opens up possibilities to carry out calculations that ordinary computers could not finish in the lifetime of the Universe, while optical communications based on quantum cryptography become completely secure. At the same time, the emergence of Big Data and the ever increasing demands of miniaturization and energy saving technologies bring about additional fundamental problems and technological challenges to be addressed in scientific disciplines dealing with light-matter interactions. In this context, quantum plasmonics represents one of the most promising and fundamental research directions and, indeed, the only one that enables ultimate miniaturization of photonic com...

  13. Plasmonics for emerging quantum technologies

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Mortensen, N. Asger

    2017-01-01

    to exponentially increase computing power, quantum computing opens up possibilities to carry out calculations that ordinary computers could not finish in the lifetime of the Universe, while optical communications based on quantum cryptography become completely secure. At the same time, the emergence of Big Data......Expanding the frontiers of information processing technologies and, in particular, computing with ever increasing speed and capacity has long been recognized an important societal challenge, calling for the development of the next generation of quantum technologies. With its potential...... and the ever increasing demands of miniaturization and energy saving technologies bring about additional fundamental problems and technological challenges to be addressed in scientific disciplines dealing with light-matter interactions. In this context, quantum plasmonics represents one of the most promising...

  14. Plasmonics for emerging quantum technologies

    Science.gov (United States)

    Bozhevolnyi, Sergey I.; Mortensen, N. Asger

    2017-01-01

    Expanding the frontiers of information processing technologies and, in particular, computing with ever-increasing speed and capacity has long been recognized as an important societal challenge, calling for the development of the next generation of quantum technologies. With its potential to exponentially increase computing power, quantum computing opens up possibilities to carry out calculations that ordinary computers could not finish in the lifetime of the universe, whereas optical communications based on quantum cryptography become completely secure. At the same time, the emergence of Big Data and the ever-increasing demands of miniaturization and energy-saving technologies bring about additional fundamental problems and technological challenges to be addressed in scientific disciplines dealing with light-matter interactions. In this context, quantum plasmonics represents one of the most promising and fundamental research directions and, indeed, the only one that enables the ultimate miniaturization of photonic components for quantum optics when being taken to extreme limits in light-matter interactions.

  15. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing

    Science.gov (United States)

    Ozhikandathil, J.; Badilescu, S.; Packirisamy, M.

    2015-01-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold–MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a “coffee ring” pattern that is found to contain gold–MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold–MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml. PMID:26282187

  16. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing

    Science.gov (United States)

    Ozhikandathil, J.; Badilescu, S.; Packirisamy, M.

    2015-08-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold-MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a “coffee ring” pattern that is found to contain gold-MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold-MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml.

  17. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    Science.gov (United States)

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  18. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    Science.gov (United States)

    Guddala, Sriram; Dwivedi, Vindesh K.; Vijaya Prakash, G.; Narayana Rao, D.

    2013-12-01

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm-1) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies.

  19. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Guddala, Sriram; Narayana Rao, D., E-mail: dnr.laserlab@gmail.com, E-mail: dnrsp@uohyd.ernet.in [School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Dwivedi, Vindesh K.; Vijaya Prakash, G. [Nanophotonics Laboratory, Department of Physics, IIT Delhi, New Delhi 110 016 (India)

    2013-12-14

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm{sup −1}) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies.

  20. Collective resonances in plasmonic crystals: Size matters

    CERN Document Server

    Rodriguez, S R K; Berrier, A; Rivas, J Gomez

    2013-01-01

    Periodic arrays of metallic nanoparticles may sustain Surface Lattice Resonances (SLRs), which are collective resonances associated with the diffractive coupling of Localized Surface Plasmon Resonances (LSPRs). By investigating a series of arrays with varying number of particles, we traced the evolution of SLRs to its origins. Polarization resolved extinction spectra of arrays formed by a few nanoparticles were measured, and found to be in very good agreement with calculations based on a coupled dipole model. Finite size effects on the optical properties of the arrays are observed, and our results provide insight into the characteristic length scales for collective plasmonic effects: for arrays smaller than 5 x 5 particles, the Q-factors of SLRs are lower than those of LSPRs; for arrays larger than 20 x 20 particles, the Q-factors of SLRs saturate at a much larger value than those of LSPRs; in between, the Q-factors of SLRs are an increasing function of the number of particles in the array.

  1. Mapping of plasmonic resonances in nanotriangles

    Directory of Open Access Journals (Sweden)

    Simon Dickreuter

    2013-09-01

    Full Text Available Plasmonic resonances in metallic nano-triangles have been investigated by irradiating these structures with short laser pulses and imaging the resulting ablation and melting patterns. The triangular gold structures were prepared on Si substrates and had a thickness of 40 nm and a side length of ca. 500 nm. Irradiation was carried out with single femtosecond and picosecond laser pulses at a wavelength of 800 nm, which excited higher order plasmon modes in these triangles. The ablation distribution as well as the local melting of small parts of the nanostructures reflect the regions of large near-field enhancement. The observed patterns are reproduced in great detail by FDTD simulations with a 3-dimensional model, provided that the calculations are not based on idealized, but on realistic structures. In this realistic model, details like the exact shape of the triangle edges and the dielectric environment of the structures are taken into account. The experimental numbers found for the field enhancement are typically somewhat smaller than the calculated ones. The results demonstrate the caveats for FDTD simulations and the potential and the limitations of “near field photography” by local ablation and melting for the mapping of complex plasmon fields and their applications.

  2. Proximity Resonance and Localized Surface Plasmons

    Science.gov (United States)

    Liu, Bo; Heller, Eric

    2014-03-01

    The collective excitation of conduction electrons in subwavelength nanostructures is known as Localized Surface Plasmon(LSP)[1]. Such plasmon modes has been intensively studied using noble nanoparticles . More recently, the possibility of building terahertz metamaterials supporting such LSP modes has been explored in graphene microribbons and microdisks. Unlike Surface Plasmon Polaritons(SPPs) at metal-insulator interface, LSP can be directly excited by light illumination and holds promise for applications in ultrasensitive biosensing, nano-optical tweezers and improved photovoltaic devices. In this paper, we consider the interaction of two LSPs in the weak coupling regime and show how an effect similar to the proximity resonance in the quantum scattering theory) gives rise to an asymmetric(quadrupole) mode with increased damping rate. The existence of this asymmetric mode relies on a small phase retardation between the two LSPs. This phase retardation, though small, is key to both increased damping rate for the asymmetric mode and reduced damping rate for the symmetric mode. When this small phase retardation is removed by changing the polarization of the exciting light,we show that the asymmetric mode can not be excited and the symmetric mode shows increased damping.

  3. Plasmonic colour generation

    DEFF Research Database (Denmark)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.

    2016-01-01

    Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic...

  4. Photothermal probing of plasmonic hotspots with nanomechanical resonator

    DEFF Research Database (Denmark)

    Schmid, Silvan; Wu, Kaiyu; Rindzevicius, Tomas

    2014-01-01

    Plasmonic nanostructures (hotspots) are key components e.g. in plasmon-enhanced spectroscopy, plasmonic solar cells, or as nano heat sources. The characterization of single hotspots is still challenging due to a lack of experimental tools. We present the direct photothermal probing and mapping...... of single plasmonic nanoslits via the thermally induced detuning of nanomechanical string resonators. A maximum relative frequency detuning of 0.5 % was measured for a single plasmonic nanoslit for a perpendicularly polarized laser with a power of 1350 nW. Finally, we show the photothermal scan over...

  5. Molecular active plasmonics: controlling plasmon resonances with molecular machines

    KAUST Repository

    Zheng, Yue Bing

    2009-08-26

    The paper studies the molecular-level active control of localized surface plasmon resonances (LSPRs) of Au nanodisk arrays with molecular machines. Two types of molecular machines - azobenzene and rotaxane - have been demonstrated to enable the reversible tuning of the LSPRs via the controlled mechanical movements. Azobenzene molecules have the property of trans-cis photoisomerization and enable the photo-induced nematic (N)-isotropic (I) phase transition of the liquid crystals (LCs) that contain the molecules as dopant. The phase transition of the azobenzene-doped LCs causes the refractive-index difference of the LCs, resulting in the reversible peak shift of the LSPRs of the embedded Au nanodisks due to the sensitivity of the LSPRs to the disks\\' surroundings\\' refractive index. Au nanodisk array, coated with rotaxanes, switches its LSPRs reversibly when it is exposed to chemical oxidants and reductants alternatively. The correlation between the peak shift of the LSPRs and the chemically driven mechanical movement of rotaxanes is supported by control experiments and a time-dependent density functional theory (TDDFT)-based, microscopic model.

  6. Plasmon resonance energy transfer and plexcitonic solar cell.

    Science.gov (United States)

    Nan, Fan; Ding, Si-Jing; Ma, Liang; Cheng, Zi-Qiang; Zhong, Yu-Ting; Zhang, Ya-Fang; Qiu, Yun-Hang; Li, Xiaoguang; Zhou, Li; Wang, Qu-Quan

    2016-08-11

    Plasmon-mediated energy transfer is highly desirable in photo-electronic nanodevices, but the direct injection efficiency of "hot electrons" in plasmonic photo-detectors and plasmon-sensitized solar cells (plasmon-SSCs) is poor. On another front, Fano resonance induced by strong plasmon-exciton coupling provides an efficient channel of coherent energy transfer from metallic plasmons to molecular excitons, and organic dye molecules have a much better injection efficiency in exciton-SSCs than "hot electrons". Here, we investigate enhanced light-harvesting of chlorophyll-a molecules strongly coupled to Au nanostructured films via Fano resonance. The enhanced local field and plasmon resonance energy transfer are experimentally revealed by monitoring the ultrafast dynamical processes of the plexcitons and the photocurrent flows of the assembled plexciton-SSCs. By tuning the Fano factor and anti-resonance wavelengths, we find that the local field is largely enhanced and the efficiency of plexciton-SSCs consisting of ultrathin TiO2 films is significantly improved. Most strikingly, the output power of the plexciton-SSCs is much larger than the sum of those of the individual plasmon- and exciton-SSCs. Our observations provide a practical approach to monitor energy and electron transfer in plasmon-exciton hybrids at a strong coupling regime and also offer a new strategy to design photovoltaic nanodevices.

  7. Toxin Detection by Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available Significant efforts have been invested in the past years for the development of analytical methods for fast toxin detection in food and water. Immunochemical methods like ELISA, spectroscopy and chromatography are the most used in toxin detection. Different methods have been linked, e.g. liquid chromatography and mass spectrometry (LC-MS, in order to detect as low concentrations as possible. Surface plasmon resonance (SPR is one of the new biophysical methods which enables rapid toxin detection. Moreover, this method was already included in portable sensors for on-site determinations. In this paper we describe some of the most common methods for toxin detection, with an emphasis on SPR.

  8. Generalized Landau damping due to multi-plasmon resonances

    CERN Document Server

    Brodin, Gert; Zamanian, Jens

    2016-01-01

    We study wave-particle interaction of Langmuir waves in a fully degenerate plasma using the Wigner-Moyal equation. As is well known, in the short wavelength regime the resonant velocity is shifted from the phase velocity due to the finite energy and momentum of individual plasmon quanta. In the present work we focus on the case when the resonant velocity lies outside the background distribution, i.e. when it is larger than the Fermi velocity. Going beyond the linearized theory we show that we can still have nonlinear wave-particle damping associated with multi-plasmon resonances. Sets of evolution equations are derived for the case of two-plasmon resonance and for the case of three-plasmon resonance. The damping rates of the Langmuir waves are deduced for both cases, and the implications of the results are discussed.

  9. Nanostructured surfaces for surface plasmon resonance spectroscopy and imaging

    Science.gov (United States)

    Petefish, Joseph W.

    Surface plasmon resonance (SPR) has achieved widespread recognition as a sensitive, label-free, and versatile optical method for monitoring changes in refractive index at a metal-dielectric interface. Refractive index deviations of 10-6 RIU are resolvable using SPR, and the method can be used in real-time or ex-situ. Instruments based on carboxymethyl dextran coated SPR chips have achieved commercial success in biological detection, while SPR sensors can also be found in other fields as varied as food safety and gas sensing. Chapter 1 provides a physical background of SPR sensing. A brief history of the technology is presented, and publication data are included that demonstrate the large and growing interest in surface plasmons. Numerous applications of SPR sensors are listed to illustrate the broad appeal of the method. Surface plasmons (SPs) and surface plasmon polaritions (SPPs) are formally defined, and important parameters governing their spatial behavior are derived from Maxwell's equations and appropriate boundary conditions. Physical requirements for exciting SPs with incident light are discussed, and SPR imaging is used to illustrate the operating principle of SPR-based detection. Angle-tunable surface enhanced infrared absorption (SEIRA) of polymer vibrational modes via grating-coupled SPR is demonstrated in Chapter 2. Over 10-fold enhancement of C-H stretching modes was found relative to the absorbance of the same film in the absence of plasmon excitation. Modeling results are used to support and explain experimental observations. Improvements to the grating coupler SEIRA platform in Chapter 2 are explored in Chapters 3 and 4. Chapter 3 displays data for two sets of multipitch gratings: one set with broadly distributed resonances with the potential for multiband IR enhancement and the other with finely spaced, overlapping resonances to form a broadband IR enhancement device. Diffraction gratings having multiple periods were fabricated using a Lloyd

  10. On the mechanism of electrochemical modulation of plasmonic resonances

    Science.gov (United States)

    Shao, L.-H.; Ruther, M.; Linden, S.; Wegener, M.; Weissmüller, J.

    2012-09-01

    Recent electrochemical experiments on gold-based photonic metamaterials have shown a sizable reversible tuning and modulation of plasmonic resonances. Here, we study the mechanism of the electrochemical modulation by measuring the change of the resonance transmittance and resonance frequency during underpotential deposition of Pb, Cu, and electrosorption of OH. The electric resistance change of the resonators is identified as decisive for the resonance transmittance change, while the space-charge layer at the metal surface shifts the resonance frequency.

  11. All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator

    Science.gov (United States)

    Perron, David; Wu, Marcelo; Horvath, Cameron; Bachman, Daniel; van, Vien

    2011-07-01

    We experimentally investigated thermal nonlinear effects in a hybrid Au/SiO2/SU-8 plasmonic microring resonator for nonlinear switching. Large ohmic loss in the metal layer gave rise to a high rate of light-to-heat conversion in the plasmonic waveguide, causing an intensity-dependent thermo-optic shift in the microring resonance. We obtained 30 times larger resonance shift in the plasmonic microring than in a similar SU-8 dielectric microring. Using an in-plane pump-and-probe configuration, we also demonstrated all-plasmonic nonlinear switching in the plasmonic microring with an on--off switching contrast of 4dB over 50mW input power.

  12. Plasmonic Biosensors

    OpenAIRE

    Hill, Ryan T.

    2014-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and ...

  13. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NARCIS (Netherlands)

    Vesseur, P.C.

    2011-01-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide r

  14. Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches

    KAUST Repository

    Zheng, Yue Bing

    2009-02-11

    A gold nanodisk array, coated with bistable, redox-controllable [2]rotaxane molecules, when exposed to chemical oxidants and reductants, undergoes switching of its plasmonic properties reversibly. By contrast, (i) bare gold nanodisks and (ii) disks coated with a redox-active, but mechanically inert, control compound do not display surface-plasmon-based switching. Along with calculations based on time-dependent density functional theory, these experimental observations suggest that the nanoscale movements within surface-bound “molecular machines” can be used as the active components in plasmonic devices.

  15. Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides

    CERN Document Server

    Han, Zhanghua

    2010-01-01

    Among various plasmonic waveguides, the metal-insulator-metal (MIM) type is the most promising for true subwavelength photonic integration. To date, many photonic devices based on MIM waveguides have been investigated, including resonators. However, most of the reported MIM ring resonators suffer from low extinction ratios. In this paper, we present a comprehensive analysis of the intrinsic reasons for the low performance of MIM ring resonators, and give the analytical transmission relation for a universal all-pass ring resonator which has coupling loss. Based on the analysis we propose the plasmonic racetrack resonators in MIM waveguides and show that the performance can be greatly improved.

  16. Slow-plasmon resonant nano-strip antennas

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Beermann, Jonas; Boltasseva, Alexandra

    2008-01-01

    Resonant scattering by gold nanostrip antennas due to constructive interference of counterpropagating slow surface plasmon polaritons SPPs is analyzed, including the quasistatic limit of ultrasmall antennas, and experimentally demonstrated. The phase of slow SPP reflection by strip ends is found...

  17. Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Beermann, J.; Boltasseva, Alexandra;

    2008-01-01

    Resonant scattering by gold nanostrip antennas due to constructive interference of counterpropagating slow surface plasmon polaritons (SPPs) is analyzed, including the quasistatic limit of ultrasmall antennas, and experimentally demonstrated. The phase of slow SPP reflection by strip ends is found...

  18. Quantum plasmonics for next-generation optical and sensing technologies

    Science.gov (United States)

    Moaied, Modjtaba; Ostrikov, Kostya (Ken)

    2015-12-01

    Classical plasmonics has mostly focused on structures characterized by large dimension, for which the quantummechanical effects have nearly no impact. However, recent advances in technology, especially on miniaturized plasmonics devices at nanoscale, have made it possible to imagine experimental applications of plasmons where the quantum nature of free charge carriers play an important role. Therefore, it is necessary to use quantum mechanics to model the transport of charge carriers in solid state plasma nanostructures. Here, a non-local quantum model of permittivity is presented by applying the Wigner equation with collision term in the kinetic theory of solid state plasmas where the dominant electron scattering mechanism is the electron-lattice collisions. The surface plasmon resonance of ultra-small nanoparticles is investigated using this non-local quantum permittivity and its dispersion relation is obtained. The successful application of this theory in ultra-small plasmonics structures such as surface plasmon polariton waveguides, doped semiconductors, graphene, the metamaterials composed of alternating layers of metal and dielectric, and the quantum droplets is anticipated.

  19. Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Kildishev, Alexander V.;

    2014-01-01

    Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant......-element simulations. Our approach can be used for development of next generation of tunable plasmonic and hybrid nanophotonic devices....

  20. Interacting Dark Resonances with Plasmonic Meta-Molecules

    Science.gov (United States)

    2014-09-17

    Interacting dark resonances with plasmonic meta-molecules Pankaj K. Jha,1 Michael Mrejen,1 Jeongmin Kim,1 Chihhui Wu,1 Xiaobo Yin,1 Yuan Wang,1 and...accepted 6 September 2014; published online 17 September 2014) Dark state physics has led to a variety of remarkable phenomena in atomic physics, quantum...optics, and information theory. Here, we investigate interacting dark resonance type physics in multi-layered plasmonic meta-molecules. We

  1. Broadband converging plasmon resonance at a conical nanotip

    OpenAIRE

    Wang, Yunshan; Plouraboué, Franck; Chang, Hsueh-Chia

    2013-01-01

    International audience; We propose an analytical theory which predicts that Converging Plasmon Resonance (CPR) at conical nanotips exhibits a red-shifted and continuous band of resonant frequencies and suggests potential application of conical nanotips in various fields, such as plasmonic solar cells, photothermal therapy, tip-enhanced Raman and other spectroscopies. The CPR modes exhibit superior confinement and ten times broader scattering bandwidth over the entire solar spectrum than smoot...

  2. Plasmon resonances in nanoparticles, their applications to magnetics and relation to the Riemann hypothesis

    Science.gov (United States)

    Mayergoyz, I. D.

    2012-05-01

    The review of the mathematical treatment of plasmon resonances as an eigenvalue problem for specific boundary integral equations is presented and general properties of plasmon spectrum are outlined. Promising applications of plasmon resonances to magnetics are described. Interesting relation of eigenvalue treatment of plasmon resonances to the Riemann hypothesis is discussed.

  3. Electron energy-loss spectroscopy of branched gap plasmon resonators

    Science.gov (United States)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen; Mortensen, N. Asger; Brongersma, Mark L.; Bozhevolnyi, Sergey I.

    2016-12-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons.

  4. Multi-hole Optical Fiber Surface Plasmon Resonance Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Guan Chunying; Wang Yang; Yuan Libo, E-mail: cyguan@163.com [College of Science, Harbin Engineering University, Harbin 150001 (China)

    2011-02-01

    A microstructured-fiber containing six large air holes is proposed to construct the surface plasmon resonance (SPR) sensor. The finite element method is used to analyze characteristics of the surface plasmon resonance sensor. The effects of the thickness of metal films, pitch between air holes, diameter of air hole, and refractive index of liquid on the resonance wavelength are elucidated. The results show that the resonance wavelength is sensitive to the thickness of metal film and refractive index of liquid, while the resonance wavelength doesn't change basically when the pitch between air holes and diameter of air holes vary. The proposed surface plasmon resonance sensor exhibits high sensitivity up to 10{sup -4}.

  5. Spectrometer sensor using patterned nano-structure plasmon resonance grating (Conference Presentation)

    Science.gov (United States)

    Guo, Hong; Tian, Xueli; Guo, Junpeng

    2016-03-01

    Localized surface plasmon resonance has been extensively investigated for biochemical sensor applications. In traditional localized surface plasmon resonance biosensors, resonance spectra were measured in the reflection or transmission from the nanostructure devices. In this work, we demonstrate a new surface plasmon resonance sensor platform with which the localized surface plasmon resonance and shift were measured by using a CCD imager instead of using an optical spectrometer. In additional to the metal nanostructures which support localized plasmon resonance, we pattern the nanostructures into diffraction gratings with super-wavelength grating periods. The nanostructure diffraction gratings support localized plasmon resonance and also diffract localized plasmon resonance radiations into non-zeroth order diffractions. Plasmon resonance spectrum and shift are measured with a CCD imager in one of the diffraction orders. The new plasmon resonance spectrometer sensor combines the functions of sensing and spectral analysis into one apparatus and is capable of real-time visualization of the biochemical bonding process with an imager.

  6. Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Byoungho Lee

    2011-01-01

    Full Text Available The performance of bio-chemical sensing devices has been greatly improved by the development of surface plasmon resonance (SPR based sensors. Advancements in micro- and nano-fabrication technologies have led to a variety of structures in SPR sensing systems being proposed. In this review, SPR sensors (from typical Kretschmann prism configurations to fiber sensor schemes with micro- or nano-structures for local light field enhancement, extraordinary optical transmission, interference of surface plasmon waves, plasmonic cavities, etc. are discussed. We summarize and compare their performances and present guidelines for the design of SPR sensors.

  7. Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Shastri, Kunal Krishnaraj; Zhang, Baile

    2016-01-01

    Localized spoof surface plasmon polaritons (spoof-SPPs) in a graded spoof-plasmonic resonator chain with linearly increasing spacing are experimentally investigated at microwave frequencies. Transmission measurements and direct near-field mappings on this graded chain show that the propagation of localized spoof-SPPs can be cutoff at different positions along the graded chain under different frequencies due to the graded coupling between adjacent resonators. This mechanism can be used to guide localized spoof-SPPs in the graded chain to specific positions depending on the frequency and thereby implement a device that can work as a selective switch in integrated plasmonic circuits. PMID:27149656

  8. Synthesis and characterization of plasmonic resonant guided wave networks.

    Science.gov (United States)

    Burgos, Stanley P; Lee, Ho W; Feigenbaum, Eyal; Briggs, Ryan M; Atwater, Harry A

    2014-06-11

    Composed of optical waveguides and power-splitting waveguide junctions in a network layout, resonant guided wave networks (RGWNs) split an incident wave into partial waves that resonantly interact within the network. Resonant guided wave networks have been proposed as nanoscale distributed optical networks (Feigenbaum and Atwater, Phys. Rev. Lett. 2010, 104, 147402) that can function as resonators and color routers (Feigenbaum et al. Opt. Express 2010, 18, 25584-25595). Here we experimentally characterize a plasmonic resonant guided wave network by demonstrating that a 90° waveguide junction of two v-groove channel plasmon polariton (CPP) waveguides operates as a compact power-splitting element. Combining these plasmonic power splitters with CPP waveguides in a network layout, we characterize a prototype plasmonic nanocircuit composed of four v-groove waveguides in an evenly spaced 2 × 2 configuration, which functions as a simple, compact optical logic device at telecommunication wavelengths, routing different wavelengths to separate transmission ports due to the resulting network resonances. The resonant guided wave network exhibits the full permutation of Boolean on/off values at two output ports and can be extended to an eight-port configuration, unlike other photonic crystal and plasmonic add/drop filters, in which only two on/off states are accessible.

  9. Culturing photosynthetic bacteria through surface plasmon resonance

    Science.gov (United States)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David

    2012-12-01

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 μm thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  10. Culturing photosynthetic bacteria through surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David [Department of Mechanical and Industrial Engineering and Centre for Sustainable Energy, University of Toronto, Toronto M5S 3G8 (Canada)

    2012-12-17

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 {mu}m thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  11. Plasmon resonances in atomic-scale gaps

    CERN Document Server

    Kern, Johannes; Tarakina, Nadezda V; Häckel, Tim; Emmerling, Monika; Kamp, Martin; Huang, Jer-Shing; Biagioni, Paolo; Prangsma, Jord C; Hecht, Bert

    2011-01-01

    Gap modes in resonant plasmonic nanostructures exhibit optical fields whose spatial confinement and near-field enhancement strongly increases for smaller gaps[1]. In the context of augmented light-matter interaction, gap modes are of high interest for various applications such as single-emitter spectroscopy[2-4], quantum optics[5,6], extreme nonlinear optics[7,8], efficient optical switching[9], optical trapping10, and molecular opto-electronics[11]. By means of reproducible self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust gaps reaching well below 0.5 nm. For such atomic-scale gaps extreme splitting of the symmetric and anti-symmetric dimer eigenmodes of more than 800 meV is observed in white-light scattering experiments. Besides providing evidence for atomic-scale gap modes at visible wavelengths with correspondingly small mode volumes and strong field enhancement, our experimental results can serve as a benchmark for electromagnetic modeling beyond local Maxwell theory[12,...

  12. Exploiting Surface Plasmon Resonance (SPR Technology for the Identification of Fibroblast Growth Factor-2 (FGF2 Antagonists Endowed with Antiangiogenic Activity

    Directory of Open Access Journals (Sweden)

    Marco Presta

    2009-08-01

    Full Text Available Angiogenesis, the process of new blood vessel formation, is implicated in various physiological/pathological conditions, including embryonic development, inflammation and tumor growth. Fibroblast growth factor-2 (FGF2 is a heparin-binding angiogenic growth factor involved in various physiopathological processes, including tumor neovascularization. Accordingly, FGF2 is considered a target for antiangiogenic therapies. Thus, numerous natural/synthetic compounds have been tested for their capacity to bind and sequester FGF2 in the extracellular environment preventing its interaction with cellular receptors. We have exploited surface plasmon resonance (SPR technique in search for antiangiogenic FGF2 binders/antagonists. In this review we will summarize our experience in SPR-based angiogenesis research, with the aim to validate SPR as a first line screening for the identification of antiangiogenic compounds.

  13. Controlling light with resonant plasmonic nanostructures

    NARCIS (Netherlands)

    Waele, R. de

    2009-01-01

    Plasmons are collective oscillations of free electrons in a metal. At optical frequencies plasmons enable nanoscale confinement of light in metal nanostructures. This ability has given rise to many applications in e.g. photothermal cancer treatment, light trapping in photovoltaic cells, and sensing.

  14. Broadband converging plasmon resonance at a conical nanotip.

    Science.gov (United States)

    Wang, Yunshan; Plouraboue, Franck; Chang, Hsueh-Chia

    2013-03-11

    We propose an analytical theory which predicts that Converging Plasmon Resonance (CPR) at conical nanotips exhibits a red-shifted and continuous band of resonant frequencies and suggests potential application of conical nanotips in various fields, such as plasmonic solar cells, photothermal therapy, tip-enhanced Raman and other spectroscopies. The CPR modes exhibit superior confinement and ten times broader scattering bandwidth over the entire solar spectrum than smooth nano-structures. The theory also explicitly connects the optimal angles and resonant optical frequencies to the material permittivities, with a specific optimum half angle that depends only on the real permittivity for high-permittivity and low-loss materials.

  15. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    Science.gov (United States)

    Liu, Peter Q.; Luxmoore, Isaac J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.

    2015-11-01

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ~60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  16. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.

    Science.gov (United States)

    Liu, Peter Q; Luxmoore, Isaac J; Mikhailov, Sergey A; Savostianova, Nadja A; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R

    2015-11-20

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ∼60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  17. Detection of mycotoxins using imaging surface plasmon resonance (iSPR)

    Science.gov (United States)

    Significant progress has been made in the development of biosensors that can be used to detect mycotoxins. One technology that has been extensively tested is surface plasmon resonance (SPR). In 2003 a multi-toxin method was reported that detected aflatoxin B1 (AFB1), zearalenone (ZEA), fumonisin B1 ...

  18. Plasmon ruler with gold nanorod dimers: utilizing the second-order resonance

    CERN Document Server

    Le, Anton T; Dubrovina, Natalia; Lupu, Anatole; Fedyanin, Andrey A

    2014-01-01

    The idea of utilizing the second-order plasmon resonance of the gold nanorod {\\pi}-dimers for plasmon rulers is introduced. We report on a qualitatively different dependence of the plasmon resonance shift on the interparticle distance for the first- and second-order longitudinal modes, extending the working range of plasmon rulers up to the distance values of 400 nm.

  19. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    KAUST Repository

    Xu, Quan

    2016-11-29

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  20. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    Science.gov (United States)

    Xu, Quan; Zhang, Xueqian; Xu, Yuehong; Li, Quan; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Wentao; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-11-01

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  1. Young's modulus measurement based on surface plasmon resonance

    Science.gov (United States)

    Lotfalian, Ali; Jandaghian, Ali; Saghafifar, Hossein; Mohajerani, Ezzedin

    2017-09-01

    In this paper, Young's modulus of polymers is experimentally measured using pressure sensors based on surface plasmon polariton. Theoretical relationships of changes in polymer reflective index due to applying pressure are investigated as well as the dependence of surface plasmon to the polymer reflective index. For the purpose of investigating the effects of the layers thicknesses, numerical simulation is performed using transfer matrix. Changes in resonance angle of surface plasmon due to applying pressure are experimentally studied as well. Practically, a sample of silicon rubber, as one of the most widely-used polymers, is checked and its Young's modulus is measured as 8.1 MPa.

  2. Interferometric Measurement of Far Infrared Plasmons via Resonant Homodyne Mixing

    CERN Document Server

    Dyer, Gregory C; Allen, S James; Grine, Albert D; Bethke, Don; Reno, John L; Shaner, Eric A

    2016-01-01

    We present an electrically tunable terahertz two dimensional plasmonic interferometer with an integrated detection element that down converts the terahertz fields to a DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field functioning as the local oscillator. Plasmonic interferometers with two independently tuned paths are studied. These devices demonstrate a means for developing a spectrometer-on-a-chip where the tuning of electrical length plays a role analogous to that of physical path length in macroscopic Fourier transform interferometers.

  3. Metal nanoparticles with sharp corners: Universal properties of plasmon resonances

    CERN Document Server

    Sturman, B; Gorkunov, M

    2012-01-01

    We predict the simultaneous occurrence of two fundamental phenomena for metal nanoparticles possessing sharp corners: First, the main plasmonic dipolar mode experiences strong red shift with decreasing corner curvature radius; its resonant frequency is controlled by the apex angle of the corner and the normalized (to the particle size) corner curvature. Second, the split-off plasmonic mode experiences strong localization at the corners. Altogether, this paves the way for tailoring of metal nano-structures providing wavelength-selective excitation of localized plasmons and a strong near-field enhancement of linear and nonlinear optical phenomena.

  4. Metal nanoparticles with sharp corners: Universal properties of plasmon resonances

    Science.gov (United States)

    Sturman, B.; Podivilov, E.; Gorkunov, M.

    2013-03-01

    We predict the simultaneous occurrence of two fundamental phenomena for metal nanoparticles possessing sharp corners with variable curvature: First, the main dipolar plasmonic mode experiences a strong red shift with increasing corner curvature; for large values of the curvature, the resonant frequency is controlled by the apex angle of the corner. Second, the split-off plasmonic mode experiences a strong localization at the corners. Altogether, this paves the way for the tailoring of metal nanostructures providing a wavelength-selective excitation of localized plasmons and a strong near-field enhancement of linear and nonlinear optical phenomena.

  5. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    CERN Document Server

    Guddala, Sriram; Ramakrishna, S Anantha

    2016-01-01

    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminium layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C-60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than from C60 on metamaterials with off-resonant absorption bands peaked at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by...

  6. Fano coil-type resonances: a plasmonic tool for magnetic field enhancement (Conference Presentation)

    Science.gov (United States)

    Panaro, Simone; Proietti Zaccaria, Remo; Toma, Andrea

    2016-09-01

    Spintronics and spin-based technology rely on the ultra-fast unbalance of the electronic spin population in quite localized spatial regions. However, as a matter of fact, the low susceptibility of conventional materials at high frequencies strongly limits these phenomena, rendering the efficiency of magnetically active devices insufficient for application purposes. Among the possible strategies which can be envisaged, plasmonics offers a direct approach to increase the effect of local electronic unbalancing processes. By confining and enhancing free radiation in nm-size spatial regions, plasmonic nano-assemblies have demonstrated to support very intense electric and magnetic hot-spots. In particular, very recent studies have proven the fine control of magnetic fields in Fano resonance condition. The near-field-induced out-of-phase oscillation of localized surface plasmons has manifested itself with the arising of magnetic sub-diffractive hot-spots. Here, we show how this effect can be further boosted in the mid-infrared regime via the introduction of higher order plasmonic modes. The investigated system, namely Moon Trimer Resonator, combines the high efficiency of a strongly coupled nano-assembly in Fano interferential condition with the elevated tunability of the quadrupolar resonance supported by a moon-like geometry. The fine control of the apical gap in this unique nanostructure, characterizes a plasmonic device able to tune its resonance without any consequence on the magnetic hot-spot size, thus enabling an efficient squeezing in the infrared.

  7. Fano coil-type resonances: a plasmonic tool for the magnetic field manipulation (Conference Presentation)

    Science.gov (United States)

    Panaro, Simone; Proietti Zaccaria, Remo; Toma, Andrea

    2017-02-01

    Spintronics and spin-based technology rely on the ultra-fast unbalance of the electronic spin population in quite localized spatial regions. However, as a matter of fact, the low susceptibility of conventional materials at high frequencies strongly limits these phenomena, rendering the efficiency of magnetically active devices insufficient for application purposes. Among the possible strategies which can be envisaged, plasmonics offers a direct approach to increase the effect of local electronic unbalancing processes. By confining and enhancing free radiation in nm-size spatial regions, plasmonic nano-assemblies have demonstrated to support very intense electric and magnetic hot-spots. In particular, very recent studies have proven the fine control of magnetic fields in Fano resonance condition. The near-field-induced out-of-phase oscillation of localized surface plasmons has manifested itself with the arising of magnetic sub-diffractive hot-spots. Here, we show how this effect can be further boosted in the mid-infrared regime via the introduction of higher order plasmonic modes. The investigated system, namely Moon Trimer Resonator (MTR), combines the high efficiency of a strongly coupled nano-assembly in Fano interferential condition with the elevated tunability of the quadrupolar resonance supported by a moon-like geometry. The fine control of the apical gap in this unique nanostructure, characterizes a plasmonic device able to tune its resonance without any consequence on the magnetic hot-spot size, thus enabling an efficient squeezing in the infrared.

  8. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  9. Noble metal nanostructures for double plasmon resonance with tunable properties

    Science.gov (United States)

    Petr, M.; Kylián, O.; Kuzminova, A.; Kratochvíl, J.; Khalakhan, I.; Hanuš, J.; Biederman, H.

    2017-02-01

    We report and compare two vacuum-based strategies to produce Ag/Au materials characterized by double plasmon resonance peaks: magnetron sputtering and method based on the use of gas aggregation sources (GAS) of nanoparticles. It was observed that the double plasmon resonance peaks may be achieved by both of these methods and that the intensities of individual localized surface plasmon resonance peaks may be tuned by deposition conditions. However, in the case of sputter deposition it was necessary to introduce a separation dielectric interlayer in between individual Ag and Au nanoparticle films which was not the case of films prepared by GAS systems. The differences in the optical properties of sputter deposited bimetallic Ag/Au films and coatings consisted of individual Ag and Au nanoparticles produced by GAS is ascribed to the divers mechanisms of nanoparticles formation.

  10. Quantum electrodynamics and plasmonic resonance of metallic nanostructures

    Science.gov (United States)

    Zhang, Mingliang; Xiang, Hongping; Zhang, Xu; Lu, Gang

    2016-04-01

    Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by incident light. At the resonance, the induced dipole in the nanostructure is proportional to the number of the conduction electrons, hence 107 times larger than that in an atom. The interaction energy between the induced dipole and fluctuating virtual field of the incident light can reach a few tenths of an eV. Therefore, the classical electromagnetism dominating the field may become inadequate. We propose that quantum electrodynamics (QED) may be used as a fundamental theory to describe the interaction between the virtual field and the oscillating electrons. Based on QED, we derive analytic expressions for the plasmon resonant frequency, which depends on three easily accessible material parameters. The analytic theory reproduces very well the experimental data, and can be used in rational design of materials for plasmonic applications.

  11. Quantum electrodynamics and plasmonic resonance of metallic nanostructures.

    Science.gov (United States)

    Zhang, Mingliang; Xiang, Hongping; Zhang, Xu; Lu, Gang

    2016-04-20

    Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by incident light. At the resonance, the induced dipole in the nanostructure is proportional to the number of the conduction electrons, hence 10(7) times larger than that in an atom. The interaction energy between the induced dipole and fluctuating virtual field of the incident light can reach a few tenths of an eV. Therefore, the classical electromagnetism dominating the field may become inadequate. We propose that quantum electrodynamics (QED) may be used as a fundamental theory to describe the interaction between the virtual field and the oscillating electrons. Based on QED, we derive analytic expressions for the plasmon resonant frequency, which depends on three easily accessible material parameters. The analytic theory reproduces very well the experimental data, and can be used in rational design of materials for plasmonic applications.

  12. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  13. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    Surface plasmon resonance imaging has in the past been applied to the characterization of thin films. In this study we apply the surface plasmon technique not to determine macroscopic spatial variations but rather to determine average microscopic information. Specifically, we deduce the dielectric properties of the surrounding gel matrix and information concerning the dynamics of the gelation process from the visible absorption characteristics of colloidal metal nanoparticles contained in aerogel pores. We have fabricated aerogels containing gold and silver nanoparticles. Because the dielectric constant of the metal particles is linked to that of the host matrix at the surface plasmon resonance, any change 'in the dielectric constant of the material surrounding the metal nanoparticles results in a shift in the surface plasmon wavelength. During gelation the surface plasmon resonance shifts to the red as the average or effective dielectric constant of the matrix increases. Conversely, formation of an aerogel or xerogel through supercritical extraction or evaporation of the solvent produces a blue shift in the resonance indicating a decrease in the dielectric constant of the matrix. From the magnitude of this shift we deduce the average fraction of air and of silica in contact with the metal particles. The surface area of metal available for catalytic gas reaction may thus be determined.

  14. Resonant plasmonic nanoparticles for multicolor second harmonic imaging

    Science.gov (United States)

    Accanto, Nicolò; Piatkowski, Lukasz; Hancu, Ion M.; Renger, Jan; van Hulst, Niek F.

    2016-02-01

    Nanoparticles capable of efficiently generating nonlinear optical signals, like second harmonic generation, are attracting a lot of attention as potential background-free and stable nano-probes for biological imaging. However, second harmonic nanoparticles of different species do not produce readily distinguishable optical signals, as the excitation laser mainly defines their second harmonic spectrum. This is in marked contrast to other fluorescent nano-probes like quantum dots that emit light at different colors depending on their sizes and materials. Here, we present the use of resonant plasmonic nanoparticles, combined with broadband phase-controlled laser pulses, as tunable sources of multicolor second harmonic generation. The resonant plasmonic nanoparticles strongly interact with the electromagnetic field of the incident light, enhancing the efficiency of nonlinear optical processes. Because the plasmon resonance in these structures is spectrally narrower than the laser bandwidth, the plasmonic nanoparticles imprint their fingerprints on the second harmonic spectrum. We show how nanoparticles of different sizes produce different colors in the second harmonic spectra even when excited with the same laser pulse. Using these resonant plasmonic nanoparticles as nano-probes is promising for multicolor second harmonic imaging while keeping all the advantages of nonlinear optical microscopy.

  15. The role of the plasmon resonance for enhanced optical forces

    Science.gov (United States)

    Ploschner, Martin

    Optical manipulation of nanoscale objects is studied with particular emphasis on the role of plasmon resonance for enhancement of optical forces. The thesis provides an introduction to plasmon resonance and its role in confinement of light to a sub-diffraction volume. The strong light confinement and related enhancement of optical forces is then theoretically studied for a special case of nanoantenna supporting plasmon resonances. The calculation of optical forces, based on the Maxwell stress tensor approach, reveals relatively weak optical forces for incident powers that are used in typical realisations of trapping with nanoantenna. The optical forces are so weak that other non-optical effects should be considered to explain the observed trapping. These effects include heating induced convection, thermoporesis and chemical binding. The thesis also studies the optical effects of plasmon resonances for a fundamentally different application - size-based optical sorting of gold nanoparticles. Here, the plasmon resonances are not utilised for sub-diffraction light confinement but rather for their ability to increase the apparent cross-section of the particles for their respective resonant sizes. Exploiting these resonances, we realise sorting in a system of two counter-propagating evanescent waves, each at different wavelength that selectively guide gold nanoparticles of different sizes in opposite directions. The method is experimentally demonstrated for bidirectional sorting of gold nanoparticles of either 150 or 130 nm in diameter from those of 100 nm in diameter within a mixture. We conclude the thesis with a numerical study of the optimal beam-shape for optical sorting applications. The developed theoretical framework, based on the force optical eigenmode method, is able to find an illumination of the back-focal plane of the objective such that the force difference between nanoparticles of various sizes in the sample plane is maximised.

  16. Non-blinking quantum dot with a plasmonic nanoshell resonator

    Science.gov (United States)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  17. Plasmon coupling in vertical split-ring resonator metamolecules

    Science.gov (United States)

    Wu, Pin Chieh; Hsu, Wei-Lun; Chen, Wei Ting; Huang, Yao-Wei; Liao, Chun Yen; Liu, Ai Qun; Zheludev, Nikolay I.; Sun, Greg; Tsai, Din Ping

    2015-01-01

    The past decade has seen a number of interesting designs proposed and implemented to generate artificial magnetism at optical frequencies using plasmonic metamaterials, but owing to the planar configurations of typically fabricated metamolecules that make up the metamaterials, the magnetic response is mainly driven by the electric field of the incident electromagnetic wave. We recently fabricated vertical split-ring resonators (VSRRs) which behave as magnetic metamolecules sensitive to both incident electric and magnetic fields with stronger induced magnetic dipole moment upon excitation in comparison to planar SRRs. The fabrication technique enabled us to study the plasmon coupling between VSRRs that stand up side by side where the coupling strength can be precisely controlled by varying the gap in between. The resulting wide tuning range of these resonance modes offers the possibility of developing frequency selective functional devices such as sensors and filters based on plasmon coupling with high sensitivity. PMID:26043931

  18. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays

    CERN Document Server

    Guo, R; Törmä, P

    2016-01-01

    Plasmonic nanoarrays which support collective surface lattice resonances (SLRs) have become an exciting frontier in plasmonics. Compared with the localized surface plasmon resonance (LSPR) in individual particles, these collective modes have appealing advantages such as angle-dependent dispersions and much narrower linewidths. Here, we investigate systematically how the geometry of the lattice affects the SLRs supported by metallic nanoparticles. We present a general theoretical framework from which the various SLR modes of a given geometry can be straightforwardly obtained by a simple comparison of the diffractive order (DO) vectors and orientation of the nanoparticle dipole given by the polarization of the incident field. Our experimental measurements show that while square, hexagonal, rectangular, honeycomb and Lieb lattice arrays have similar spectra near the $\\Gamma$-point ($k=0$), they have remarkably different SLR dispersions. Furthermore, their dispersions are highly dependent on the polarization. Num...

  19. Tunable plasmon resonances in anisotropic metal nanostructures

    NARCIS (Netherlands)

    Penninkhof, J.J.

    2006-01-01

    Coherent oscillations of free electrons in a metal, localized in a small volume or at an interface between a metal and a dielectric medium, have attracted a lot of attention in the past decades. These so-called surface plasmons have special optical properties that can be used in many applications ra

  20. Tunable plasmon resonances in anisotropic metal nanostructures

    NARCIS (Netherlands)

    Penninkhof, J.J.

    2006-01-01

    Coherent oscillations of free electrons in a metal, localized in a small volume or at an interface between a metal and a dielectric medium, have attracted a lot of attention in the past decades. These so-called surface plasmons have special optical properties that can be used in many applications

  1. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, I.; Schasfoort, R.B.M.; Terstappen, L.W.M.M.

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  2. Optimization of Pd Surface Plasmon Resonance sensors for hydrogen detection

    NARCIS (Netherlands)

    Perrotton, C.; Javahiraly, N.; Slaman, M.; Schreuders, H.; Dam, B.; Meyrueis, P.

    2011-01-01

    A design to optimize a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, the sensitive layer is deposited on the core of a multimode fiber, after removing the optical cladding. The light is injected in the f

  3. Manipulation of plasmonic resonances in graphene coated dielectric cylinders

    KAUST Repository

    Ge, Lixin

    2016-11-16

    Graphene sheets can support surface plasmon as the Dirac electrons oscillate collectively with electromagnetic waves. Compared with the surface plasmon in conventional metal (e.g., Ag and Au), graphene plasmonic owns many remarkable merits especially in Terahertz and far infrared frequencies, such as deep sub-wavelength, low loss, and high tunability. For graphene coated dielectric nano-scatters, localized surface plasmon (LSP)exist and can be excited under specific conditions. The LSPs are associated with the Mie resonance modes, leading to extraordinary large scattering and absorption cross section. In this work, we study systematically the optical scattering properties for graphene coated dielectric cylinders. It is found that the LSP can be manipulated by geometrical parameters and external electric gating. Generally, the resonance frequencies for different resonance modes are not the same. However, under proper design, we show that different resonance modes (e.g., dipole mode, quadruple mode etc.) can be excited at the same frequency. Thus, the scattering and absorption by graphene coated dielectric cylinders can indeed overcome the single channel limit. Our finding may open up new avenues in applications for the graphene-based THz optoelectronic devices.

  4. Single cell targeting using plasmon resonant gold-coated liposomes

    Science.gov (United States)

    Leung, Sarah J.; Romanowski, Marek

    2012-03-01

    We have developed an experimental system with the potential for the delivery and localized release of an encapsulated agent with high spatial and temporal resolution. We previously introduced liposome-supported plasmon resonant gold nanoshells; in this composite structure, the liposome allows for the encapsulation of substances, such as therapeutic agents, neurotransmitters, or growth factors, and the plasmon resonant structure facilitates the rapid release of encapsulated contents upon laser light illumination. More recently, we demonstrated that these gold-coated liposomes are capable of releasing their contents in a spectrally-controlled manner, where plasmon resonant nanoparticles only release content upon illumination with a wavelength of light matching their plasmon resonance band. We now show that this release mechanism can be used in a biological setting to deliver a peptide derivative of cholecystokinin to HEK293 cells overexpressing the CCK2 receptor. Using directed laser light, we may enable localized release from gold-coated liposomes to enable accurate perturbation of cellular functions in response to released compounds; this system may have possible applications in signaling pathways and drug discovery.

  5. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, Ivan; Schasfoort, Richardus B.M.; Terstappen, Leonardus Wendelinus Mathias Marie

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  6. A Surface Plasmon Resonance Immunobiosensor for Detection of Phytophthora infestans

    DEFF Research Database (Denmark)

    Skottrup, Peter; Frøkiær, Hanne; Hejgaard, Jørn;

    In this study we focused on the development of a Surface Plasmon Resonance (SPR) immunosensor for Phytophthora infestans detection. The fungus-like organism is the cause of potato late blight and is a major problem in potato growing regions of the world. Efficient control is dependent on early...

  7. Surface Plasmon Resonance Spectroscopy: A Versatile Technique in a

    Science.gov (United States)

    Bakhtiar, Ray

    2013-01-01

    Surface plasmon resonance (SPR) spectroscopy is a powerful, label-free technique to monitor noncovalent molecular interactions in real time and in a noninvasive fashion. As a label-free assay, SPR does not require tags, dyes, or specialized reagents (e.g., enzymes-substrate complexes) to elicit a visible or a fluorescence signal. During the last…

  8. Optimization of Pd Surface Plasmon Resonance sensors for hydrogen detection

    NARCIS (Netherlands)

    Perrotton, C.; Javahiraly, N.; Slaman, M.; Schreuders, H.; Dam, B.; Meyrueis, P.

    2011-01-01

    A design to optimize a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, the sensitive layer is deposited on the core of a multimode fiber, after removing the optical cladding. The light is injected in the f

  9. Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chuanbo [University of California, Riverside; Lu, Zhenda [University of California, Riverside; Chi, Miaofang [ORNL; Liu, ying [University of California, Riverside; Cheng, Quan [University of California, Riverside; Yin, Yadong [University of California, Riverside

    2012-01-01

    An SPR biosensor was developed by employing highly stable Au-protected Ag nanoplates (NP) as enhancers (see picture). Superior performance was achieved by depositing a thin and uniform coating of Au on the Ag surface while minimizing disruptive galvanic replacement and retaining the strong surface plasmon resonance (SPR) of the silver nanoplates.

  10. Passive Infrared Sensing Using Plasmonic Resonant Dust Particles

    Directory of Open Access Journals (Sweden)

    Mark Mirotznik

    2012-01-01

    Full Text Available We present computational and experimental results of dust particles that can be tuned to preferentially reflect or emit IR radiation within the 8–14 μm band. The particles consist of thin metallic subwavelength gratings patterned on the surface of a simple quarter wavelength cavity. This design creates distinct IR absorption resonances by combining the plasmonic resonance of the grating with the natural resonance of the cavity. We show that the resonance peaks are easily tuned by varying either the geometry of the grating or the thickness of the cavity. Here, we present a computational design algorithm along with experimental results that validate the design methodology.

  11. Detecting Plasmon Resonance Energy Transfer with Differential Interference Contrast Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Augspurger, Ashley E. [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Stender, Anthony S. [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Han, Rui [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Fang, Ning [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)

    2013-12-30

    Gold nanoparticles are ideal probes for studying intracellular environments and energy transfer mechanisms due to their plasmonic properties. Plasmon resonance energy transfer (PRET) relies on a plasmonic nanoparticle to donate energy to a nearby resonant acceptor molecule, a process which can be observed due to the plasmonic quenching of the donor nanoparticle. In this study, a gold nanosphere was used as the plasmonic donor, while the metalloprotein cytochrome c was used as the acceptor molecule. Differential interference contrast (DIC) microscopy allows for simultaneous monitoring of complex environments and noble metal nanoparticles in real time. Using DIC and specially designed microfluidic channels, we were able to monitor PRET at the single gold particle level and observe the reversibility of PRET upon the introduction of phosphate-buffered saline to the channel. In an additional experiment, single gold particles were internalized by HeLa cells and were subsequently observed undergoing PRET as the cell hosts underwent morphological changes brought about by ethanol-induced apoptosis.

  12. Plasmonic resonant solitons in metallic nanosuspensions.

    Science.gov (United States)

    Fardad, Shima; Salandrino, Alessandro; Heinrich, Matthias; Zhang, Peng; Chen, Zhigang; Christodoulides, Demetrios N

    2014-05-14

    Robust propagation of self-trapped light over distances exceeding 25 diffraction lengths has been demonstrated for the first time in plasmonic nanosuspensions. This phenomenon results from the interplay between optical forces and enhanced polarizability that would have been otherwise impossible in conventional dielectric dispersions. Plasmonic nanostructures such as core-shell particles, nanorods, and spheres are shown to display tunable polarizabilities depending on their size, shape, and composition, as well as the wavelength of illumination. Here we discuss nonlinear light-matter dynamics arising from an effective positive Kerr effect, which in turn allows for deep penetration of long needles of light through dissipative colloidal media. Our findings may open up new possibilities toward synthesizing soft-matter systems with customized optical nonlinearities.

  13. Microfluidic transmission surface plasmon resonance enhancement for biosensor applications

    Science.gov (United States)

    Lertvachirapaiboon, Chutiparn; Baba, Akira; Ekgasit, Sanong; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2017-01-01

    The microfluidic transmission surface plasmon resonance (MTSPR) constructed by assembling a gold-coated grating substrate with a microchannel was employed for biosensor application. The transmission surface plasmon resonance spectrum obtained from the MTSPR sensor chip showed a strong and narrow surface plasmon resonance (SPR) peak located between 650 and 800 nm. The maximum SPR excitation was observed at an incident angle of 35°. The MTSPR sensor chip was employed for glucose sensor application. Gold-coated grating substrates were functionalized using 3-mercapto-1-propanesulfonic acid sodium salt and subsequently functionalized using a five-bilayer poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) to facilitate the coupling/decoupling of the surface plasmon and to prepare a uniform surface for sensing. The detection limit of our developed system for glucose was 2.31 mM. This practical platform represents a high possibility of further developing several biomolecules, multiplex systems, and a point-of-care assay for practical biosensor applications.

  14. Fano Resonance in an Electrically Driven Plasmonic Device

    Science.gov (United States)

    Vardi, Yuval; Cohen-Hoshen, Eyal; Shalem, Guy; Bar-Joseph, Israel

    Electrically driven plasmonic devices offer unique opportunities as a research tool and for practical applications. In such devices, current that flows across a metallic tunnel junction excites a plasmon, which gives rise to light emission. This local nature of the excitation allows access into ''dark'' modes, which are not easily excited by far field illumination. We present an electrically driven plasmonic device, based on a gold nanoparticle single-electron-transistor, and investigate the light emission due to the tunneling current. The applied voltage determines the emitted spectral lineshape, enables an excellent control of the plasmonic spectrum. We show that the use of this structure allows us to characterize the electrical properties of the two tunnel barriers, and determine their role in the light emission process. Furthermore, we find a Fano resonance, resulting from interference between the nanoparticle and electrodes dipoles. This resonance is seen due to the local nature of the excitation, and is manifested as a sharp asymmetrical spectral dip. We show that the spectral position of this resonance can be conveniently controlled by the design of the structural parameters. Such devices may be a step toward the realization of an on-chip nano-optical emitters and sensors.

  15. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    CERN Document Server

    Lei, Zeyu

    2015-01-01

    We report the design and experimental realization of a kind of miniaturized devices for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two dimensional launching efficiency of about 51%, under the normal illumination of a 5-{\\mu}m waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel and Airy profiles are launched and imaged with leakage radiation microscopy.

  16. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Science.gov (United States)

    George, David; Li, Li; Jiang, Yan; Lowell, David; Mao, Michelle; Hassan, Safaa; Ding, Jun; Cui, Jingbiao; Zhang, Hualiang; Philipose, Usha; Lin, Yuankun

    2016-07-01

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  17. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    George, David; Lowell, David; Mao, Michelle; Hassan, Safaa; Philipose, Usha [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Li, Li; Jiang, Yan; Cui, Jingbiao [Department of Physics and Materials Science, University of Memphis, Memphis, Tennessee 38152 (United States); Ding, Jun; Zhang, Hualiang [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lin, Yuankun [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  18. Mid-infrared plasmonic resonances exploiting heavily-doped Ge on Si

    Science.gov (United States)

    Biagioni, P.; Sakat, E.; Baldassarre, L.; Calandrini, E.; Samarelli, A.; Gallacher, K.; Frigerio, J.; Isella, G.; Paul, D. J.; Ortolani, M.

    2015-03-01

    We address the behavior of mid-infrared localized plasmon resonances in elongated germanium antennas integrated on silicon substrates. Calculations based on Mie theory and on the experimentally retrieved dielectric constant allow us to study the tunability and the figures of merit of plasmon resonances in heavily-doped germanium and to preliminarily compare them with those of the most established plasmonic material, gold.

  19. Localized spoof surface plasmon resonances at terahertz range

    Science.gov (United States)

    Chen, Lin; Xu, Mengjian; Zang, Xiaofei; Peng, Yan; Zhu, Yiming

    2016-11-01

    The influence of the inner disk radius r, the filling ratio α, numbers of sectors N, and the gap g on transmission response for corrugated metallic disk (CMD) with single C-shaped resonator(CSR) has been fully studied. The results indicate that varying parameters r can efficiently excite the higher order spoof localized surface plasmon modes in corrugated metallic disk. The relationship between the bright dipole and dark multipolar resonances presents the possibility of high Q dark resonances excitation. All results may be of great interest for diverse applications.

  20. Flexible, fibre-addressable surface-plasmon-resonance chip

    Science.gov (United States)

    Chowdhury, Faqrul; Chau, Kenneth J.

    2012-02-01

    Surface plasmon resonance (SPR) sensors exploit optical coupling to surface plasmons, light waves bound to a metal surface. In the most common configuration, a SPR sensor is used with an external light source, optical components to polarize incident light and guide light to and from a metal surface, a coupling device to convert free-space light into surface plasmons and back into free-space light, and a light detector. The light source, the optical components, and the light detector are external to the SPR device, and the coupling structure is often integrated directly with the surface-plasmon-sustaining metal surface. The requirement of several external components restricts the miniaturization of SPR devices and prohibits low-cost implementation. To address these limitations, we design, fabricate, and test a new SPR device chip that is fibre-addressable, does not require a discrete coupling structure, and integrates light delivery, light polarization control, surface plasmon coupling onto a thin, flexible substrate. Our SPR chip is constructed from a thin gold layer deposited on top of a clear plastic sheet, which is then optically connected from the bottom surface onto a plastic linear polarizer sheet. Two cleaved fibres, one to input light and the other to collect reflected light, are then optically attached to SPR device. We experimentally characterize the SPR device and find good agreement between our measurements and a theoretical model based on transfer matrix formalism.

  1. Recent Development of Plasmonic Resonance-Based Photocatalysis and Photovoltaics for Solar Utilization

    Directory of Open Access Journals (Sweden)

    Wenguang Fan

    2016-02-01

    Full Text Available Increasing utilization of solar energy is an effective strategy to tackle our energy and energy-related environmental issues. Both solar photocatalysis (PC and solar photovoltaics (PV have high potential to develop technologies of many practical applications. Substantial research efforts are devoted to enhancing visible light activation of the photoelectrocatalytic reactions by various modifications of nanostructured semiconductors. This review paper emphasizes the recent advancement in material modifications by means of the promising localized surface plasmonic resonance (LSPR mechanisms. The principles of LSPR and its effects on the photonic efficiency of PV and PC are discussed here. Many research findings reveal the promise of Au and Ag plasmonic nanoparticles (NPs. Continual investigation for increasing the stability of the plasmonic NPs will be fruitful.

  2. Recent Development of Plasmonic Resonance-Based Photocatalysis and Photovoltaics for Solar Utilization.

    Science.gov (United States)

    Fan, Wenguang; Leung, Michael K H

    2016-02-02

    Increasing utilization of solar energy is an effective strategy to tackle our energy and energy-related environmental issues. Both solar photocatalysis (PC) and solar photovoltaics (PV) have high potential to develop technologies of many practical applications. Substantial research efforts are devoted to enhancing visible light activation of the photoelectrocatalytic reactions by various modifications of nanostructured semiconductors. This review paper emphasizes the recent advancement in material modifications by means of the promising localized surface plasmonic resonance (LSPR) mechanisms. The principles of LSPR and its effects on the photonic efficiency of PV and PC are discussed here. Many research findings reveal the promise of Au and Ag plasmonic nanoparticles (NPs). Continual investigation for increasing the stability of the plasmonic NPs will be fruitful.

  3. Gallium arsenide based surface plasmon resonance for glucose monitoring

    Science.gov (United States)

    Patil, Harshada; Sane, Vani; Sriram, G.; Indumathi, T. S; Sharan, Preeta

    2015-07-01

    The recent trends in the semiconductor and microwave industries has enabled the development of scalable microfabrication technology which produces a superior set of performance as against its counterparts. Surface Plasmon Resonance (SPR) based biosensors are a special class of optical sensors that become affected by electromagnetic waves. It is found that bio-molecular recognition element immobilized on the SPR sensor surface layer reveals a characteristic interaction with various sample solutions during the passage of light. The present work revolves around developing painless glucose monitoring systems using fluids containing glucose like saliva, urine, sweat or tears instead of blood samples. Non-invasive glucose monitoring has long been simulated using label free detection mechanisms and the same concept is adapted. In label-free detection, target molecules are not labeled or altered, and are detected in their natural forms. Label-free detection mechanisms involves the measurement of refractive index (RI) change induced by molecular interactions. These interactions relates the sample concentration or surface density, instead of total sample mass. After simulation it has been observed that the result obtained is highly accurate and sensitive. The structure used here is SPR sensor based on channel waveguide. The tools used for simulation are RSOFT FULLWAVE, MEEP and MATLAB etc.

  4. Polymer-based chips for surface plasmon resonance sensors

    Science.gov (United States)

    Obreja, Paula; Cristea, Dana; Kusko, Mihai; Dinescu, Adrian

    2008-06-01

    This paper presents a design and low-cost techniques for polymer-based chips for surface plasmon resonance (SPR) sensors. To obtain a polymer chip with a prism, microchannels and a chamber at microscale dimensions, replication techniques in polymers with controlled refractive index have been developed. Photoresist, polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA) and epoxy resin were used. Silicon dioxide/silicon-based molds have been obtained by anisotropic etching of silicon, and glass prisms were used as masters for replication. The photoresist molds were obtained by optical lithography and were used to obtain the microchannels and the chamber. A liquid prepolymer (PDMS, Sylgard 184) with curing agent at a ratio of 10:1 was used, and a special technique was developed in order to fabricate the components of the structure at the same time. For the deposition and direct patterning of the metallic layers onto the polymer surface, different methods were experimented with, including sputtering. The materials and techniques used to achieve SPR sensors are presented, and the possibilities and limitations of the technology are discussed.

  5. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    Science.gov (United States)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2016-06-01

    Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as "nanomatryoshka" (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.

  6. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    Directory of Open Access Journals (Sweden)

    Arash Ahmadivand

    2016-06-01

    Full Text Available Here, we examine the electromagnetic (EM energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as “nanomatryoshka” (NM units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer, plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer, due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.

  7. Optical Twist Induced by Plasmonic Resonance

    Science.gov (United States)

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-06-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster.

  8. Plasmon resonance in warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, R; Bornath, T; Fortmann, C; Holl, A; Redmer, R; Reinholz, H; Ropke, G; Wierling, A; Glenzer, S H; Gregori, G

    2008-02-21

    Collective Thomson scattering with extreme ultraviolet light or x-rays is shown to allow for a robust measurement of the free electron density in dense plasmas. Collective excitations like plasmons appear as maxima in the scattering signal. Their frequency position can directly be related to the free electron density. The range of applicability of the standard Gross-Bohm dispersion relation and of an improved dispersion relation in comparison to calculations based on the dielectric function in random phase approximation is investigated. More important, this well-established treatment of Thomson scattering on free electrons is generalized in the Born-Mermin approximation by including collisions. We show that, in the transition region from collective to non-collective scattering, the consideration of collisions is important.

  9. Detection of Penicillin via Surface Plasmon Resonance Biosensor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; MU Ying; JIN Wei; YANG Meng-chao; ZHANG Ti-qiang; ZHOU Chao; XIE Fei; SONG Qi; REN Hao; JIN Qin-han

    2012-01-01

    A method of using Au colloid to capture the decomposed product of penicillin,penicillamine,on a surface plasmon resonance(SPR) biosensor for the quantitative determination of penicillin was developed.Based on the decomposition of penicillin to generate penicillamine and penilloaldehyde,a high seositive biosensor for detecting penicillin was also developed.In our experiment,it was penicillamine rather than penicillin that has been measured.This is because penicillamine contains a functional group that makes it self-assembling on Au colloid to increase the molecular weight so as to improve the surface plasmon resonance signal.On a UV-Vis spectrophotometer,a high concentration of penicilliamine-Au complex was determined,indicating that penicillamine was already well combined with Au colloid.The method,using the combination of Au colloid with penicillamine,proved to detect penicillin.

  10. Optical Torque from Enhanced Scattering by Multipolar Plasmonic Resonance

    CERN Document Server

    Lee, Yoonkyung E; Jin, Dafei; Fang, Nicholas

    2014-01-01

    We present a theoretical study of the optical angular momentum transfer from a circularly polarized plane wave to thin metal nanoparticles of different rotational symmetries. While absorption has been regarded as the predominant mechanism of torque generation on the nanoscale, we demonstrate numerically how the contribution from scattering can be enhanced by using multipolar plasmon resonance. The multipolar modes in non-circular particles can convert the angular momentum carried by the scattered field, thereby producing scattering-dominant optical torque, while a circularly symmetric particle cannot. Our results show that the optical torque induced by resonant scattering can contribute to 80% of the total optical torque in gold particles. This scattering-dominant torque generation is extremely mode-specific, and deserves to be distinguished from the absorption-dominant mechanism. Our findings might have applications in optical manipulation on the nanoscale as well as new designs in plasmonics and metamateria...

  11. Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances

    Science.gov (United States)

    Zhu, Hai; Yi, Fei; Cubukcu, Ertugrul

    2016-11-01

    Metamaterials are artificial materials that exhibit unusual properties for electromagnetic and sound waves. The quanta, namely photons and phonons, of these waves interact resonantly with these exotic man-made materials enabling many applications. For instance, resonant light absorption in photonic metamaterials can efficiently convert optical energy into heat based on the photothermal effect. Here, we present a plasmonic metamaterial that simultaneously supports thermomechanically coupled optical and mechanical resonances for controlling mechanical damping with light. In this metamaterial absorber with voltage-tunable Fano resonances, we experimentally achieve optically pumped coherent mechanical oscillations based on a plasmomechanical parametric gain mechanism over an ∼4 THz bandwidth. Through the reverse effect, optical damping of mechanical resonance is also achieved. Our results provide a metamaterial-based approach for optical manipulation of the dynamics of mechanical oscillators.

  12. Sub-micron surface plasmon resonance sensor systems

    Science.gov (United States)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2013-01-01

    Wearable or implantable devices combining microfluidic control of sample and reagent flow and micro-cavity surface plasmon resonance sensors functionalized with surface treatments or coatings capable of specifically binding to target analytes, ligands, or molecules in a bodily fluid are provided. The devices can be used to determine the presence and concentration of target analytes in the bodily fluids and thereby help diagnose, monitor or detect changes in disease conditions.

  13. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Asha; Jayabalan, J; Chari, Rama [Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Srivastava, Himanshu [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Oak, S M, E-mail: jjaya@rrcat.gov.i [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2010-08-25

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  14. New trends in instrumental design for surface plasmon resonance-based biosensors.

    Science.gov (United States)

    Abbas, Abdennour; Linman, Matthew J; Cheng, Quan

    2011-01-15

    Surface plasmon resonance (SPR)-based biosensing is one of the most advanced label free, real time detection technologies. Numerous research groups with divergent scientific backgrounds have investigated the application of SPR biosensors and studied the fundamental aspects of surface plasmon polaritons that led to new, related instrumentation. As a result, this field continues to be at the forefront of evolving sensing technology. This review emphasizes the new developments in the field of SPR-related instrumentation including optical platforms, chips design, nanoscale approach and new materials. The current tendencies in SPR-based biosensing are identified and the future direction of SPR biosensor technology is broadly discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Super-Period Gold Nanodisc Grating-Enabled Surface Plasmon Resonance Spectrometer Sensor.

    Science.gov (United States)

    Tian, Xueli; Guo, Hong; Bhatt, Ketan H; Zhao, Song Q; Wang, Yi; Guo, Junpeng

    2015-10-01

    We experimentally demonstrate a surface plasmon resonance spectrometer sensor by using an e-beam-patterned super-period gold nanodisc grating on a glass substrate. The super-period gold nanodisc grating has a small subwavelength period and a large diffraction grating period. The small subwavelength period enhances localized surface plasmon resonance, and the large diffraction grating period diffracts surface plasmon resonance radiation into different directions corresponding to different wavelengths. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD) in addition to the traditional way of measurement using an external optical spectrometer in the zeroth order transmission. A surface plasmon resonance sensor for the bovine serum albumin protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  16. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    Science.gov (United States)

    Guddala, Sriram; Narayana Rao, D.; Ramakrishna, S. Anantha

    2016-06-01

    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminum layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than C60 on metamaterials with off-resonant absorption bands peaking at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance-matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by numerical simulations.

  17. Resonant scattering of surface plasmon polaritons by dressed quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong; Cardimona, Dave [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Easter, Michelle [Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Maradudin, A. A. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lin, Shawn-Yu [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Zhang, Xiang [Department of Mechanical Engineering, 3112 Etcheverry Hall, University of California at Berkeley, Berkeley, California 94720 (United States)

    2014-06-23

    The resonant scattering of surface plasmon-polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In contrast to non-resonant scattering by a localized dielectric surface defect, a strong resonant peak in the spectrum of the scattered field is predicted that is accompanied by two side valleys. The peak height depends nonlinearly on the amplitude of SPP waves, reflecting the feedback dynamics from a photon-dressed electron-hole plasma inside the quantum dots. This unique behavior in the scattered field peak strength is correlated with the occurrence of a resonant dip in the absorption spectrum of SPP waves due to the interband photon-dressing effect. Our result on the scattering of SPP waves may be experimentally observable and applied to spatially selective illumination and imaging of individual molecules.

  18. Mathematical analysis of plasmonic resonances for nanoparticles: The full Maxwell equations

    Science.gov (United States)

    Ammari, Habib; Ruiz, Matias; Yu, Sanghyeon; Zhang, Hai

    2016-09-01

    In this paper we use the full Maxwell equations for light propagation in order to analyze plasmonic resonances for nanoparticles. We mathematically define the notion of plasmonic resonance and analyze its shift and broadening with respect to changes in size, shape, and arrangement of the nanoparticles, using the layer potential techniques associated with the full Maxwell equations. We present an effective medium theory for resonant plasmonic systems and derive a condition on the volume fraction under which the Maxwell-Garnett theory is valid at plasmonic resonances.

  19. Colorimetric plasmon resonance microfluidics on nanohole array sensors

    Directory of Open Access Journals (Sweden)

    Austin Hsiao

    2015-09-01

    Full Text Available We present the label-free colorimetric visualization in microfluidics using plasmon resonance on a large-area and over a wide field-of-view (>100 mm2 nanohole array device called nanoLycurgus Cup Array (nanoLCA. We demonstrate the spectral detection and colorimetric sensing of static solutions of different concentrations of glycerol–water confined in parallel microfluidic channels integrated with nanoLCA. Taking advantage of the large sensor area and the colorimetric sensing capability of nanoLCA, we visualize in real-time the modulation of two immiscible solutions (water and oil, generated with integrated flow-focus microfluidics, in a label-free manner. Finite Element Method (FEM based simulation tool (COMSOL was used to verify the droplet formation in the microfluidics. Finite Difference Time Domain (FDTD electromagnetic simulation was used to identify the resonance modes of the plasmonic sensor. Finally, we demonstrate the real-time monitoring of streptavidin–biotin biomolecular interaction with the plasmonic biosensor.

  20. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    Science.gov (United States)

    Serrano, A.; Rodríguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Monton, C.; Castro, G. R.; García, M. A.

    2012-08-01

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10-3 to 10-5, depending on the particular experiment.

  1. Simultaneous Surface Plasmon Resonance and X-ray Absorption Spectroscopy

    CERN Document Server

    Serrano, A; Collado, V; Rubio-Zuazo, J; Monton, C; Castro, G; García, M A

    2012-01-01

    We present here an experimental set-up to perform simultaneously measurements of surface plasmon resonance (SPR) and X-ray absorption spectroscopy (XAS) in a synchrotron beamline. The system allows measuring in situ and in real time the effect of X-ray irradiation on the SPR curves to explore the interaction of X-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to detect the changes in the electronic configuration of thin films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be carried out. The relative variations in the SPR and XAS spectra that can be detected with this set-up ranges from 10-3 to 10-5, depending on the particular experiment.

  2. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, A. [Instituto de Ceramica y Vidrio (ICV-CSIC), Cantoblanco, 28049 Madrid (Spain); Departamento de Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Rodriguez de la Fuente, O. [Departamento de Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Collado, V.; Rubio-Zuazo, J.; Castro, G. R. [SpLine, Spanish CRG Beamline at the ESRF, F-38043 Grenoble, Cedex 09, France and Instituto de Ciencia de Materiales de Madrid, (ICMM-CSIC), Cantoblanco, 28049 Madrid (Spain); Monton, C. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093 (United States); Garcia, M. A. [Instituto de Ceramica y Vidrio (ICV-CSIC), Cantoblanco, 28049 Madrid (Spain); IMDEA Nanociencia, Cantoblanco, 28049 Madrid (Spain)

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  3. Spoof surface plasmon Fabry-Perot open resonators in a surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen; Xu, Hongyi; Zhang, Youming; Zhang, Baile

    2016-01-01

    We report on the proposal and experimental realization of a spoof surface plasmon Fabry-Perot (FP) open resonator in a surface-wave photonic crystal. This surface-wave FP open resonator is formed by introducing a finite line defect in a surface-wave photonic crystal. The resonance frequencies of the surface-wave FP open resonator lie exactly within the forbidden band gap of the surface-wave photonic crystal and the FP open resonator uses this complete forbidden band gap to concentrate surface waves within a subwavelength cavity. Due to the complete forbidden band gap of the surface-wave photonic crystal, a new FP plasmonic resonance mode that exhibits monopolar features which is missing in traditional FP resonators and plasmonic resonators is demonstrated. Near-field response spectra and mode profiles are presented in the microwave regime to characterize properties of the proposed FP open resonator for spoof surface plasmons.

  4. Magnetic Plasmon Sensing in Twisted Split-Ring Resonators

    Directory of Open Access Journals (Sweden)

    J. X. Cao

    2012-01-01

    Full Text Available We studied the sensing properties of stereo-SRRs metamaterials composed from two twisted split-ring resonators (SRRs. Due to the strong hybridization effect in the system, the polarization state of the transmitted wave is greatly changed at resonances. Since the stereo-SRRs structure is strongly coupled to the surrounding medium, the polarization change of the transmitted waves is quite sensitive to the refractive index change of the environment medium. The polarization ratio PRtran = Ty/Tx is used as sensing parameter and its figure of merit can reach 22.3 at the hybridized magnetic plasmon resonance. The results showed that the stereo-SRRs metamaterial can be applied to optical sensors an or other related field.

  5. The nature of transmission resonances in plasmonic metallic gratings

    CERN Document Server

    D'Aguanno, G; Bloemer, M J; de Ceglia, D; Vincenti, M A; Alu', A

    2010-01-01

    Using the Fourier modal method (FMM) we report our analysis of the transmission resonances of a plasmonic grating with sub-wavelength period and extremely narrow slits for wavelengths of the incoming, transverse magnetic (TM)-polarized, radiation ranging from 240nm to 1500nm and incident angles from 0 degree to 90 degree. In particular, we study the case of a silver grating placed in vacuo. Consistent with previous studies on the topic, we highlight that the main mechanism for extraordinary transmission is a TM-Fabry-Perot (FP) branch supported by waveguide modes inside each slit. The TM-FP branch may also interact with surface plasmons (SPs) at the air/Ag interface through the reciprocal lattice vectors of the grating, for periods comparable with the incoming wavelength. When the TM-FP branch crosses a SP branch, a band gap is formed along the line of the SP dispersion. The gap has a Fano-Feshbach resonance at the low frequency band edge and a ridge resonance with extremely long lifetime at the high frequenc...

  6. Graphene plasmonics: multiple sharp Fano resonances in silver split concentric nanoring/disk resonator dimers on a metasurface

    Science.gov (United States)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2015-08-01

    We introduce a platform based on plasmonic metamaterials to design various optical devices. A simple structure brokenring with a nanodisk at the center is utilized to excite and hybridize the plasmon resonant modes. We show that the proposed nanoantenna is able to support strong sub- and superradiant plasmon resonances because of its unique geometrical features. Using the concentric ring/disk in a dimer orientation as a nanoantenna on a multilayer metasurface consisting of graphene monolayer, we induced double sharp plasmonic Fano resonant modes in the transmission window across the visible to the near-infrared region. Considering the strong polarization-dependency of the broken-ring/disk dimer antenna, it is shown that the proposed plasmonic metamaterial can be tailored as an optical router device for fast switching applications. This understanding opens new paths to employ plasmonic metamaterials with simple geometrical nanoscale blocks for sensing and switching applications.

  7. Nanoscale Plasmonic Devices Based on Metal-Dielectric-Metal Stub Resonators

    Directory of Open Access Journals (Sweden)

    Yin Huang

    2012-01-01

    Full Text Available We review some of the recent research activities on plasmonic devices based on metal-dielectric-metal (MDM stub resonators for manipulating light at the nanoscale. We first introduce slow-light subwavelength plasmonic waveguides based on plasmonic analogues of periodically loaded transmission lines and electromagnetically induced transparency. In both cases, the structures consist of a MDM waveguide side-coupled to periodic arrays of MDM stub resonators. We then introduce absorption switches consisting of a MDM plasmonic waveguide side-coupled to a MDM stub resonator filled with an active material.

  8. Formation of metal nanoparticles in silicon nanopores: Plasmon resonance studies

    Science.gov (United States)

    Polisski, S.; Goller, B.; Heck, S. C.; Maier, S. A.; Fujii, M.; Kovalev, D.

    2011-01-01

    We present a method for the formation of noble metal nanoparticle ensembles in nanostructured silicon. The key idea is based on the unique property of the large reduction potential of extended internal hydrogen-terminated porous silicon surfaces. The process of metal nanoparticle formation in porous silicon was experimentally traced using their optical plasmon resonance response. We also demonstrate that bimetallic compounds can be formed in porous silicon and that their composition can be controlled using this technique. Experimental results were found to contradict partially with considerations based on Mie theory.

  9. Surface plasmon resonance-enabled antibacterial digital versatile discs

    Science.gov (United States)

    Dou, Xuan; Chung, Pei-Yu; Jiang, Peng; Dai, Jianli

    2012-02-01

    We report the achievement of effective sterilization of exemplary bacteria including Escherichia coli and Geobacillus stearothermophilus spores on a digital versatile disc (DVD). The spiral arrangement of aluminum-covered pits generates strong surface plasmon resonance (SPR) absorption of near-infrared light, leading to high surface temperature that could even damage the DVD plastics. Localized protein denaturation and high sterilization efficiency have been demonstrated by using a fluorescence microscope and cell cultures. Numerical simulations have also been conducted to model the SPR properties and the surface temperature distribution of DVDs under laser illumination. The theoretical predictions agree reasonably well with the experimental results.

  10. Plasmonic resonances in optomagnetic metamaterials based on double dot arrays.

    Science.gov (United States)

    Kravets, Vasyl G; Schedin, Fred; Taylor, Shaun; Viita, David; Grigorenko, Alexander N

    2010-05-10

    We study optical properties of optomagnetic metamaterials produced by regular arrays of double gold dots (nanopillars). Using combined data of spectroscopic ellipsometry, transmission and reflection measurements, we identify localized plasmon resonances of a nanopillar pair and measure their dependences on dot sizes. We formulate the necessary condition at which an effective field theory can be applied to describe optical properties of a composite medium and employ interferometry to measure phase shifts for our samples. A negative phase shift for transmitted green light coupled to an antisymmetric magnetic mode of a double-dot array is observed. (c) 2010 Optical Society of America.

  11. Nanobiosensors Based on Localized Surface Plasmon Resonance for Biomarker Detection

    Directory of Open Access Journals (Sweden)

    Yoochan Hong

    2012-01-01

    Full Text Available Localized surface plasmon resonance (LSPR is induced by incident light when it interacts with noble metal nanoparticles that have smaller sizes than the wavelength of the incident light. Recently, LSPR-based nanobiosensors were developed as tools for highly sensitive, label-free, and flexible sensing techniques for the detection of biomolecular interactions. In this paper, we describe the basic principles of LSPR-based nanobiosensing techniques and LSPR sensor system for biomolecule sensing. We also discuss the challenges using LSPR nanobiosensors for detection of biomolecules as a biomarker.

  12. Encoded and multiplexed surface plasmon resonance sensor platform.

    Science.gov (United States)

    Kastl, Katja F; Lowe, Christopher R; Norman, Carl E

    2008-10-15

    We present a flexible new sensor system that combines the joint advantages of (i) discretely functionalized, code-bearing, microparticles and (ii) label-free detection using grating-coupled surface plasmon resonance. This system offers the possibility of simultaneously investigating the real-time binding kinetics of a variety of molecular interactions. One single multiplexed assay could employ a wide range of immobilization chemistries, surface preparation methods, and formats. Thus, the new system offers a very high level of assay conformability to the end user, particularly when compared to fixed microarrays.

  13. Surface plasmon resonance imaging for parallelized detection of protein biomarkers

    Science.gov (United States)

    Piliarik, Marek; Párová, Lucie; Vaisocherová, Hana; Homola, Jiří

    2009-05-01

    We report a novel high-throughput surface plasmon resonance (SPR) biosensor for rapid and parallelized detection of protein biomarkers. The biosensor is based on a high-performance SPR imaging sensor with polarization contrast and internal referencing which yields a considerably higher sensitivity and resolution than conventional SPR imaging systems (refractive index resolution 2 × 10-7 RIU). We combined the SPR imaging biosensor with microspotting to create an array of antibodies. DNA-directed protein immobilization was utilized for the spatially resolved attachment of antibodies. Using Human Chorionic Gonadotropin (hCG) as model protein biomarker, we demonstrated the potential for simultaneous detection of proteins in up to 100 channels.

  14. Surface Plasmon Resonance Sensors Based on Polymer Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    Rong-Sheng Zheng; Yong-Hua Lu; Zhi-Guo Xie; Jun Tao; Kai-Qun Lin; Hai Ming

    2008-01-01

    Surface Plasmon Resonance (SPR) is a powerful technique for directly sensing in biological studies, chemical detection and environmental pollution monitoring. In this paper, we present polymer optical fiber application in SPR sensors, including wavelength interrogation surface enhanced Raman scattering SPR sensor and surface enhanced Raman scattering (SERS) probe.Long-period fiber gratings are fabricated on single mode polymer optical fiber (POF) with 120 μm period and 50% duty cycle. The polarization characteristic of this kind of birefringent grating is studied. Theoretical analysis shows it will be advantageous in SPR sensing applications.

  15. Optical cavity coupled surface plasmon resonance sensing for enhanced sensitivity

    Institute of Scientific and Technical Information of China (English)

    Zheng Zheng; Xin Zhao; Jinsong Zhu; Jim Diamond

    2008-01-01

    A surface plasmon resonance (SPR) sensing system based on the optical cavity enhanced detection tech-nique is experimentally demonstrated. A fiber-optic laser cavity is built with a SPR sensor inside. By measuring the laser output power when the cavity is biased near the threshold point, the sensitivity, defined as the dependence of the output optical intensity on the sample variations, can be increased by about one order of magnitude compared to that of the SPR sensor alone under the intensity interrogation scheme. This could facilitate ultra-high sensitivity SPR biosensing applications. Further system miniaturization is possible by using integrated optical components and waveguide SPR sensors.

  16. Plasmon resonant gold-coated liposomes for spectrally coded content release

    OpenAIRE

    Leung, Sarah J.; Troutman, Timothy S.; Romanowski, Marek

    2009-01-01

    We have recently introduced liposome-supported plasmon resonant gold nanoshells (Troutman et al., Adv. Mater. 2008, 20, 2604–2608). These plasmon resonant gold-coated liposomes are degradable into components of a size compatible with renal clearance, potentially enabling their use as multifunctional agents in applications in nanomedicine, including imaging, diagnostics, therapy, and drug delivery. The present research demonstrates that laser illumination at the wavelength matching the plasmon...

  17. Transparency windows of the plasmonic nanostructure composed of C-shaped and U-shaped resonators

    Science.gov (United States)

    Zhou, Xin; Ouyang, Min; Tang, Bin; Wang, Zhibing; He, Jun

    2017-02-01

    We in this study investigated numerically the plasmon-induced transparency (PIT) effect on the plasmonic nanostructures composed of C-shaped and U-shaped resonators by using finite difference time domain (FDTD) method. The PIT effect in the nanosystem stemmed from the near field coupling between the bright and dark modes. The nanostructure composed of three resonators exhibited double PIT effect. And the PIT spectral response of the proposed nanostructures was demonstrated having a dependence on the parameters of the compound plasmonic system such as the widths of C-shaped resonator and U-shaped resonator, the resonators spatial arrangement and the edge-to-edge distance between the adjacent resonators. The electric and magnetic field distributions of certain resonance wavelengths were also given to discuss the underlying physics. The resonator design strategy opens up a rich pathway to develop the building block of systems for all optical switching, plasmonic sensing applications.

  18. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers.

    Science.gov (United States)

    Liu, Xiaotong; Li, Dabing; Sun, Xiaojuan; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren

    2015-07-28

    The tunability of surface plasmon resonance can enable the highest degree of localised surface plasmon enhancement to be achieved, based on the emitting or absorbing wavelength. In this article, tunable dipole surface plasmon resonances of Ag nanoparticles (NPs) are realized by modification of the SiO2 dielectric layer thicknesses. SiO2 layers both beneath and over the Ag NPs affected the resonance wavelengths of local surface plasmons (LSPs). By adjusting the SiO2 thickness beneath the Ag NPs from 5 nm to 20 nm, the dipole surface plasmon resonances shifted from 470 nm to 410 nm. Meanwhile, after sandwiching the Ag NPs by growing SiO2 before NPs fabrication and then overcoating the NPs with various SiO2 thicknesses from 5 nm to 20 nm, the dipole surface plasmon resonances changed from 450 nm to 490 nm. The SiO2 cladding dielectric layer can tune the Ag NP surface charge, leading to a change in the effective permittivity of the surrounding medium, and thus to a blueshift or redshift of the resonance wavelength. Also, the quadrupole plasmon resonances were suppressed by the SiO2 cladding layer because the dielectric SiO2 can suppress level splitting of surface plasmon resonances caused by the Ag NP coupling effect.

  19. Improved Coupling to Plasmonic Slot Waveguide via a Resonant Nanoantenna

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Zenin, Vladimir A.; Malureanu, Radu;

    -limited optical waves into deep-subwavelength plasmonic waveguides. In this contribution we provide a systematic approach to design, fabricate and characterize an efficient, broadband, and compact dipole antenna nanocoupler for the telecom wavelength range around 1.55 µm. We consider the vertical coupling...... configuration with a realistic excitation directly from an optical fiber. The scattering-type scanning near-field optical microscope (s-SNOM) characterization allows us not only to make relative comparison of the efficiencies (in terms of the effective area) of different couplers, but also to measure......Plasmonic waveguides are considered as a future generation of optical interconnects in integrated circuits for datacom technologies due to their extreme field confinement performance. Inevitably, when using nanoscale waveguides, a new challenge emerges: how to effectively couple the diffraction...

  20. Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing

    Science.gov (United States)

    Zhang, Yu; Wen, Fangfang; Zhen, Yu-Rong; Nordlander, Peter; Halas, Naomi J.

    2013-01-01

    Plasmonic nanoclusters, an ordered assembly of coupled metallic nanoparticles, support unique spectral features known as Fano resonances due to the coupling between their subradiant and superradiant plasmon modes. Within the Fano resonance, absorption is significantly enhanced, giving rise to highly localized, intense near fields with the potential to enhance nonlinear optical processes. Here, we report a structure supporting the coherent oscillation of two distinct Fano resonances within an individual plasmonic nanocluster. We show how this coherence enhances the optical four-wave mixing process in comparison with other double-resonant plasmonic clusters that lack this property. A model that explains the observed four-wave mixing features is proposed, which is generally applicable to any third-order process in plasmonic nanostructures. With a larger effective susceptibility χ(3) relative to existing nonlinear optical materials, this coherent double-resonant nanocluster offers a strategy for designing high-performance third-order nonlinear optical media. PMID:23690571

  1. Plasmonic-Resonant Bowtie Antenna for Carbon Nanotube Photodetectors

    Directory of Open Access Journals (Sweden)

    Hongzhi Chen

    2012-01-01

    Full Text Available The design of bowtie antennas for carbon nanotube (CNT photodetectors has been investigated. CNT photodetectors have shown outstanding performance by using CNT as sensing element. However, detection wavelength is much larger than the diameter of the CNT, resulting in small fill factor. Bowtie antenna can confine light into a subwavelength volume based on plasmonic resonance, thus integrating a bowtie antenna to CNT photodetectors can highly improve photoresponse of the detectors. The electric field enhancement of bowtie antennas was calculated using the device geometry by considering fabrication difficulties and photodetector structure. It is shown that the electric field intensity enhancement increased exponentially with distance reduction between the CNT photodetector to the antenna. A redshift of the peak resonance wavelength is predicted due to the increase of tip angles of the bowtie antennas. Experimental results showed that photocurrent enhancement agreed well with theoretical calculations. Bowtie antennas may find wide applications in nanoscale photonic sensors.

  2. Surface plasmon resonance phenomenon of the insulating state polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Umiati, Ngurah Ayu Ketut, E-mail: ngurahayuketutumiati@gmail.com [Jurusan Fisika FMIPA UGM, Sekip Utara Yogyakarta, 55281 (Indonesia); Jurusan Fisika FMIPA Universitas Diponegoro, Jalan Prof. Soedarto, SH Tembalang Semarang 50275 (Indonesia); Triyana, Kuwat; Kamsul [Jurusan Fisika FMIPA UGM, Sekip Utara Yogyakarta, 55281 (Indonesia)

    2015-04-16

    Surface Plasmon Resonance (SPR) phenomenon of the insulating polyaniline (PANI) is has been observed. Surface Plasmon (SP) is the traveled electromagnetic wave that passes through the interface of dielectric metal and excited by attenuated total reflection (ATR) method in Kretschmannn configuration (Au-PANI prism). The resonance condition is observed through the angle of SPR in such condition that SP wave is coupled by the evanescent constant of laser beam. In this research, the laser beam was generated by He–Ne and its wavelength (λ) was 632,8 nm. SPR curve is obtained through observation of incidence angles of the laser beam in prism. SPR phenomenon at the boundary between Au – PANI layer has showed by reflection dip when the laser beam passes through the prism. In this early study, the observation was carried out through simulation Winspall 3.02 software and preliminary compared with some experimental data reported in other referred literatures. The results shows that the optimum layer of Au and polyaniline are 50 and 1,5 nm thick respectively. Our own near future experimental work would be further performed and reported elsewhere.

  3. Scattering-Type Surface-Plasmon-Resonance Biosensors

    Science.gov (United States)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Seshadri, Suresh

    2005-01-01

    Biosensors of a proposed type would exploit scattering of light by surface plasmon resonance (SPR). Related prior biosensors exploit absorption of light by SPR. Relative to the prior SPR biosensors, the proposed SPR biosensors would offer greater sensitivity in some cases, enough sensitivity to detect bioparticles having dimensions as small as nanometers. A surface plasmon wave can be described as a light-induced collective oscillation in electron density at the interface between a metal and a dielectric. At SPR, most incident photons are either absorbed or scattered at the metal/dielectric interface and, consequently, reflected light is greatly attenuated. The resonance wavelength and angle of incidence depend upon the permittivities of the metal and dielectric. An SPR sensor of the type most widely used heretofore includes a gold film coated with a ligand a substance that binds analyte molecules. The gold film is thin enough to support evanescent-wave coupling through its thickness. The change in the effective index of refraction at the surface, and thus the change in the SPR response, increases with the number of bound analyte molecules. The device is illuminated at a fixed wavelength, and the intensity of light reflected from the gold surface opposite the ligand-coated surface is measured as a function of the angle of incidence. From these measurements, the angle of minimum reflection intensity is determined

  4. Synthesis and tuning of gold nanorods with surface plasmon resonance

    Science.gov (United States)

    Shajari, Daryush; Bahari, Ali; Gill, Pooria; Mohseni, Mojtaba

    2017-02-01

    Gold nanostructures in general and gold nanorods in particular due to their plasmon resonance has been employed for many applications, such as biosensors. For the biosensors uses, gold nanorods remain popular and reproducibility of them is the most important and critical. In the present work we used six different CTAB (Hexadecyltrimethylammonium bromide) products and one BDAC (Benzyldimethylhexadecylammonium chloride) with varying silver nitrate concentration in the seed-mediated growth of gold nanostructures. We synthesized gold nanorods with varying aspect ratio up to 5.5 with a longitudinal surface plasmon resonance peak from 670 to 950 nm. We obtained excellent rod-shape gold nanostructures witch were reliable and reproducible with our method based on common seed-mediated growth. The synthesized nanostructures were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD). Here, we report our method in more detail as a user-friendly guide for the production of gold nanorods and tuning of their aspect ratios.

  5. Nanostructure-enhanced surface plasmon resonance imaging (Conference Presentation)

    Science.gov (United States)

    Špašková, Barbora; Lynn, Nicholas S.; Slabý, Jiří Bocková, Markéta; Homola, Jiří

    2017-06-01

    There remains a need for the multiplexed detection of biomolecules at extremely low concentrations in fields of medical diagnostics, food safety, and security. Surface plasmon resonance imaging is an established biosensing approach in which the measurement of the intensity of light across a sensor chip is correlated with the amount of target biomolecules captured by the respective areas on the chip. In this work, we present a new approach for this method allowing for enhanced bioanalytical performance via the introduction of nanostructured sensing chip and polarization contrast measurement, which enable the exploitation of both amplitude and phase properties of plasmonic resonances on the nanostructures. Here we will discuss a complex theoretical analysis of the sensor performance, whereby we investigate aspects related to both the optical performance as well as the transport of the analyte molecules to the functionalized surfaces. This analysis accounts for the geometrical parameters of the nanostructured sensing surface, the properties of functional coatings, and parameters related to the detection assay. Based on the results of the theoretical analysis, we fabricated sensing chips comprised of arrays of gold nanoparticles (by electron-beam lithography), which were modified by a biofunctional coating to allow for the selective capturing of the target biomolecules in the regions with high sensitivity. In addition, we developed a compact optical reader with an integrated microfluidic cell, allowing for the measurement from 50 independent sensing channels. The performance of this biosensor is demonstrated through the sensitive detection of short oligonucleotides down to the low picomolar level.

  6. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  7. Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips.

    Science.gov (United States)

    Gómez-Díaz, J S; Esquius-Morote, M; Perruisseau-Carrier, J

    2013-10-21

    An approach to couple free-space waves and non-resonant plasmons propagating along graphene strips is proposed based on the periodic modulation of the graphene strip width. The solution is technologically very simple, scalable in frequency, and provides customized coupling angle and intensity. Moreover, the coupling properties can be dynamically controlled at a fixed frequency via the graphene electrical field effect, enabling advanced and flexible plasmon excitation-detection strategies. We combine a previously derived scaling law for graphene strips with leaky-wave theory borrowed from microwaves to achieve rigorous and efficient modeling and design of the structure. In particular we analytically derive its dispersion, predict its coupling efficiency and radiated field structure, and design strip configurations able to fulfill specific coupling requirements. The proposed approach and developed methods are essential to the recent and fundamental problem of the excitation-detection of non-resonant plasmons propagating along a continuous graphene strip, and could pave the way to smart all-graphene sensors and transceivers.

  8. Superradiant amplification of terahertz radiation by plasmons in inverted graphene with a planar distributed Bragg resonator

    Energy Technology Data Exchange (ETDEWEB)

    Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Popov, V. V., E-mail: popov-slava@yahoo.co.uk [Russian Academy of Sciences, Saratov Branch, Kotel’nikov Institute of Radioengineering and Electronics (Russian Federation); Otsuji, T. [Tohoku University, Research Institute for Electrical Communication (Japan)

    2015-11-15

    It is shown theoretically that stimulated generation of terahertz radiation by plasmons in graphene with a planar distributed Bragg resonator is possible at two different frequencies for each plasmon mode. This behavior may be attributed to the superradiance of the collective plasmon mode, which is associated with superlinear increase in the radiative damping of the plasmons with increase in pumping power. As a result, the curves of the radiative damping and the plasmon gain as a function of the pumping power intersect at two points corresponding to different generation conditions.

  9. Multi-bi- and tri-stability using nonlinear plasmonic Fano resonators

    KAUST Repository

    Amin, Muhammad

    2013-09-01

    A plasmonic Fano resonator embedding Kerr nonlinearity is used to achieve multi-bi- and tri-stability. Fano resonance is obtained by inducing higher-order plasmon modes on metallic surfaces via geometrical symmetry breaking. The presence of the multiple higher order plasmon modes provides the means for producing multi-bi- or tri-stability in the response of the resonator when it is loaded with a material with Kerr nonlinearity. The multi-stability in the response of the proposed resonator enables its use in three-state all optical memory and switching applications. © 2013 IEEE.

  10. Surface plasmon resonance biosensors for detection of foodborne pathogens and toxins

    Science.gov (United States)

    Homola, Jiří; Hegnerová, Kateřina; Vala, Milan

    2009-02-01

    In the last decade surface plasmon resonance (SPR) biosensors have made great strides both in terms of technology and its applications. SPR biosensors have become a central tool for study of molecular interactions and have been widely used for detection of chemical and biological analytes. Food analysis belongs to major areas of potential applications of SPR biosensors. Therefore, numerous SPR biosensors for detection of analytes implicated in food safety (e.g. pathogens, toxins, drug residues, vitamins, hormones, chemical contaminants, and allergens) have been developed. This paper reviews recent developments in the field of SPR biosensors for food safety, in particular, for detection of foodborne pathogens and toxins.

  11. Coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system.

    Science.gov (United States)

    Zhang, Kaibiao; Zhang, Hong; Li, Chikang

    2015-05-14

    Noble metal nanoparticles can modify the optical properties of graphene. Here we present a detailed theoretical analysis of the coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system by using time dependent density functional theory (TDDFT). This plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the graphene and the gold cluster. As a result, the optical response of the hybrid system exhibits a remarkably strong, selectable tuning and polarization dependent plasmon resonance enhanced in wide frequency regions. This investigation provides an improved understanding of the plasmon enhancement effect in a graphene-based photoelectric device.

  12. Quadrupole lattice resonances in plasmonic crystal excited by cylindrical vector beams

    Science.gov (United States)

    Sakai, Kyosuke; Nomura, Kensuke; Yamamoto, Takeaki; Omura, Tatsuya; Sasaki, Keiji

    2016-10-01

    We report a scheme to exploit low radiative loss plasmonic resonance by combining a dark (subradiant) mode and a lattice resonance. We theoretically demonstrate that such dark-mode lattice resonances in periodic arrays of nanodisks or plasmonic crystals can be excited by vertically incident light beams. We investigate the excitation of lattice resonances in a finite sized, square-lattice plasmonic crystal by two types of cylindrical vector beams and a linearly polarized Gaussian beam. Quadrupole lattice resonances are excited by all three beams, and the largest peak intensity is obtained by using a specific type of cylindrical vector beam. Because of their lower radiative losses with many hotspots, the quadrupole lattice resonances in plasmonic crystal may pave the way for photonic research and applications that require strong light-matter interactions.

  13. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  14. Tunable plasmon resonance in the nanobars and split ring resonator(SRR) composite structure

    Science.gov (United States)

    Xu, Haiqing; Li, Hongjian; Xiao, Gang; Chen, Qiao

    2016-10-01

    We have proposed a multi-band metamaterials composed of bars and planer SRR. There are three sharp peaks in the transmission spectra in the visible and near-infrared region, we find that the transmission spectra are highly tunable as the coupling and geometric parameters modifying, especially the third peak in the near-infrared region. When the gap distance between the two nanobar g1<14 nm, the original first peak will split, a new dip and peak will exist, which is results from the high-order plasmon resonance. When introducing asymmetry to the planer SRR, a new sharp peak accompany with a new sharp dip exists in the original second peak, which is originated from the strong electric field resonance. We also find that the proposed structures with sensing sensitivity of ~467 nm/RIU, which can be used for plasmonic sensor.

  15. Ultra-thin films for plasmonics: a technology overview

    DEFF Research Database (Denmark)

    Malureanu, Radu; Lavrinenko, Andrei

    2015-01-01

    Ultra-thin films with low surface roughness that support surface plasmon-polaritons in the infra-red and visible ranges are needed in order to improve the performance of devices based on the manipulation of plasmon propagation. Increasing amount of efforts is made in order not only to improve...... the quality of the deposited layers but also to diminish their thickness and to find new materials that could be used in this field. In this review, we consider various thin films used in the field of plasmonics and metamaterials in the visible and IR range. We focus our presentation on technological issues...

  16. Atomically precise gold nanocrystal molecules with surface plasmon resonance.

    Science.gov (United States)

    Qian, Huifeng; Zhu, Yan; Jin, Rongchao

    2012-01-17

    Since Faraday's pioneering work on gold colloids, tremendous scientific research on plasmonic gold nanoparticles has been carried out, but no atomically precise Au nanocrystals have been achieved. This work reports the first example of gold nanocrystal molecules. Mass spectrometry analysis has determined its formula to be Au(333)(SR)(79) (R = CH(2)CH(2)Ph). This magic sized nanocrystal molecule exhibits fcc-crystallinity and surface plasmon resonance at approximately 520 nm, hence, a metallic nanomolecule. Simulations have revealed that atomic shell closing largely contributes to the particular robustness of Au(333)(SR)(79), albeit the number of free electrons (i.e., 333 - 79 = 254) is also consistent with electron shell closing based on calculations using a confined free electron model. Guided by the atomic shell closing growth mode, we have also found the next larger size of extraordinarily stability to be Au(~530)(SR)(~100) after a size-focusing selection--which selects the robust size available in the starting polydisperse nanoparticles. This work clearly demonstrates that atomically precise nanocrystal molecules are achievable and that the factor of atomic shell closing contributes to their extraordinary stability compared to other sizes. Overall, this work opens up new opportunities for investigating many fundamental issues of nanocrystals, such as the formation of metallic state, and will have potential impact on condensed matter physics, nanochemistry, and catalysis as well.

  17. Enhancing Surface Plasmon Resonance Detection Using Nanostructured Au Chips

    Science.gov (United States)

    Indutnyi, Ivan; Ushenin, Yuriy; Hegemann, Dirk; Vandenbossche, Marianne; Myn'ko, Victor; Lukaniuk, Mariia; Shepeliavyi, Petro; Korchovyi, Andrii; Khrystosenko, Roman

    2016-12-01

    The increase of the sensitivity of surface plasmon resonance (SPR) refractometers was studied experimentally by forming a periodic relief in the form of a grating with submicron period on the surface of the Au-coated chip. Periodic reliefs of different depths and spatial frequency were formed on the Au film surface using interference lithography and vacuum chalcogenide photoresists. Spatial frequencies of the grating were selected close to the conditions of Bragg reflection of plasmons for the working wavelength of the SPR refractometer and the used environment (solution of glycerol in water). It was found that the degree of refractometer sensitivity enhancement and the value of the interval of environment refractive index variation, Δ n, in which this enhancement is observed, depend on the depth of the grating relief. By increasing the depth of relief from 13.5 ± 2 nm to 21.0 ± 2 nm, Δ n decreased from 0.009 to 0.0031, whereas sensitivity increased from 110 deg./RIU (refractive index unit) for a standard chip up to 264 and 484 deg./RIU for the nanostructured chips, respectively. Finally, it was shown that the working range of the sensor can be adjusted to the refractive index of the studied environment by changing the spatial frequency of the grating, by modification of the chip surface or by rotation of the chip.

  18. Hybridized plasmon resonant modes in molecular metallodielectric quad-triangles nanoantenna

    Science.gov (United States)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2015-11-01

    In this study, we examined the plasmon response for both metallic and metallodielectric nanoantennas composed of four gold (Au) triangles in a quadrumer orientation. Tailoring an artificial metallic quad-triangles nanoantenna, it is shown that the structure is able to support pronounced plasmon and Fano resonances in the visible spectrum. Using plasmon transmutation effect, we showed that the plasmonic response of the proposed cluster can be enhanced with the placement of carbon nanoparticles in the offset gaps between the proximal triangles. It is verified that this structural modification gives rise to formation of new collective magnetic antibonding (dark) plasmon modes. Excitation of these subradiant dark modes leads to formation of narrower and deeper Fano resonances in the spectral response of the metallodielectric nanoantenna. To investigate the practical applications of the metallodielectric structure, we immersed the nano-assembly in various liquids with different refractive indices to define its sensitivity to the environmental perturbation as a plasmonic biological sensor.

  19. Calibration of Surface Plasmon Resonance Imager for Biochemical Detection

    Directory of Open Access Journals (Sweden)

    T. Ktari

    2012-01-01

    Full Text Available We present a new Surface Plasmon Resonance imager (SPRi based on immobilized T4-phage for bacteria detection. First, we present the sensitivity of the SPR imager towards refractive index variation for biosensor application. The SPR imager can be calibrated versus different percentage of triethylene glycol mixture in ultrapure water. The system can be used as a refractometer with sensitivity below 5×10−5 in the range of 1.33300–1.34360. Second, bacteriophage (T4-phage can be physisorbed on gold microarray spots for bacteria detection. The kinetic physisorption of different concentrations of T4-phages can be observed in real time. Finally, two types of bacteria such as E. coli (gram negative and Lactobacillus (gram positive were used for positive and negative tests. The results show a selectivity of T4-phage toward E. coli with a detection limit below 104 CFU/mL and with good reproducibility.

  20. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis

    Directory of Open Access Journals (Sweden)

    Yuhki Yanase

    2014-03-01

    Full Text Available Non-invasive real-time observations and the evaluation of living cell conditions and functions are increasingly demanded in life sciences. Surface plasmon resonance (SPR sensors detect the refractive index (RI changes on the surface of sensor chips in label-free and on a real-time basis. Using SPR sensors, we and other groups have developed techniques to evaluate living cells’ reactions in response to stimuli without any labeling in a real-time manner. The SPR imaging (SPRI system for living cells may visualize single cell reactions and has the potential to expand application of SPR cell sensing for clinical diagnosis, such as multi-array cell diagnostic systems and detection of malignant cells among normal cells in combination with rapid cell isolation techniques.

  1. Optofluidic cellular immunofunctional analysis by localized surface plasmon resonance

    Science.gov (United States)

    Kurabayashi, Katsuo; Oh, Bo-Ram

    2014-08-01

    Cytokine secretion assays provide the means to quantify intercellular-signaling proteins secreted by blood immune cells. These assays allow researchers and clinicians to obtain valuable information on the immune status of the donor. Previous studies have demonstrated that localized surface plasmon resonance (LSPR) effects enable label-free, real-time biosensing on a nanostructured metallic surface with simple optics and sensing tunability. However, limited sensitivity coupled with a lack of sample handling capability makes it challenging to implement LSPR biosensing in cellular functional immunoanalysis based on cytokine secretion assay. This paper describes our recent progress towards full development of a label-free LSPR biosensing technique to detect cell-secreted tumor necrosis factor (TNF)-α cytokines in clinical blood samples. We integrate LSPR bionanosensors in an optofluidic platform capable of handling target immune cells in a microfluidic chamber while readily permitting optical access for cytokine detection.

  2. Noninvasive and Real-Time Plasmon Waveguide Resonance Thermometry

    Directory of Open Access Journals (Sweden)

    Pengfei Zhang

    2015-04-01

    Full Text Available In this paper, the noninvasive and real-time plasmon waveguide resonance (PWR thermometry is reported theoretically and demonstrated experimentally. Owing to the enhanced evanescent field and thermal shield effect of its dielectric layer, a PWR thermometer permits accurate temperature sensing and has a wide dynamic range. A temperature measurement sensitivity of 9.4 × 10−3 °C is achieved and the thermo optic coefficient nonlinearity is measured in the experiment. The measurement of water cooling processes distributed in one dimension reveals that a PWR thermometer allows real-time temperature sensing and has potential to be applied for thermal gradient analysis. Apart from this, the PWR thermometer has the advantages of low cost and simple structure, since our transduction scheme can be constructed with conventional optical components and commercial coating techniques.

  3. Polarization switching from plasmonic lattice mode to multipolar localized surface plasmon resonances in arrays of large nanoantennas

    Science.gov (United States)

    Wing, Waylin J.; Sadeghi, Seyed M.; Gutha, Rithvik R.

    2016-12-01

    We experimentally investigate plasmonic lattice modes of gold nanoantenna arrays that occur in asymmetric structures containing a silica substrate and either air or a thin layer of a high-index dielectric. Very distinct polarization switching is observed in the nanoantenna arrays wherein by rotating the incident light polarization by ninety degrees, the array can exhibit either a plasmonic lattice mode or a multipolar localized surface plasmon resonance of varying nature. A large range of nanoantenna lengths are studied, and since the length of the nanoantennas dictates the multipolar localized surface plasmon resonance, we find that the characteristics of the polarization switching are affected accordingly. We also investigate how the thin layer of the high-index dielectric on top of the nanoantenna arrays, in conjunction with varying nanoantenna length, impacts the generation of plasmonic lattice modes and the polarization switching in the arrays. The high-index dielectric is found to assist in the generation and optical coupling of the plasmonic lattice modes. By altering the angle of incidence, the polarization switching can become very large, and the arrays can be made to selectively transmit light of certain wavelengths.

  4. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Bilgen [Uludag University, Department of Chemistry, Bursa (Turkey); Uzun, Lokman [Hacettepe University, Department of Chemistry, Ankara (Turkey); Beşirli, Necati [Uludag University, Department of Chemistry, Bursa (Turkey); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, Ankara (Turkey)

    2013-10-15

    In this study, we prepared surface plasmon resonance (SPR) sensor using the molecular imprinting technique for myoglobin detection in human serum. For this purpose, we synthesized myoglobin imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tryptophan methyl ester) [poly(HEMA-MATrp)] nanofilm on the surface of SPR sensor. We also synthesized non-imprinted poly(HEMA-MATrp) nanofilm without myoglobin for the control experiments. The SPR sensor was characterized with contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, and ellipsometry. We investigated the effectiveness of the sensor using the SPR system. We evaluated the ability of SPR sensor to sense myoglobin with myoglobin solutions (pH 7.4, phosphate buffer) in different concentration range and in the serum taken from a patient with acute myocardial infarction. We found that the Langmuir adsorption model was the most suitable for the sensor system. The detection limit was 87.6 ng/mL. In order to show the selectivity of the SPR sensor, we investigated the competitive detection of myoglobin, lysozyme, cytochrome c and bovine serum albumin. The results showed that the SPR sensor has high selectivity and sensitivity for myoglobin. - Highlights: • Micro-contact imprinted surface plasmon resonance sensor. • Real-time myoglobin detection in the serum taken from a patient with acute myocardial infarction • Reproducible results for consecutive myoglobin solution supplement • LOD and LOQ values of the SPR sensor were determined to be 26.3 and 87.6 ng/mL. • The SPR sensor has potential for myoglobin sensing during acute MI cases.

  5. Plasmon resonances in a stacked pair of graphene ribbon arrays with a lateral displacement.

    Science.gov (United States)

    He, Meng-Dong; Zhang, Gui; Liu, Jian-Qiang; Li, Jian-Bo; Wang, Xin-Jun; Huang, Zhen-Rong; Wang, Lingling; Chen, Xiaoshuang

    2014-03-24

    We find that a stacked pair of graphene ribbon arrays with a lateral displacement can excite plasmon waveguide mode in the gap between ribbons, as well as surface plasmon mode on graphene ribbon surface. When the resonance wavelengthes of plasmon waveguide mode and surface plasmon mode are close to each other, there is a strong electromagnetic interaction between the two modes, and then they contribute together to transmission dip. The plasmon waveguide mode resonance can be manipulated by the lateral displacement and longitudinal interval between arrays due to their influence on the manner and strength of electromagnetic coupling between two arrays. The findings expand our understanding of electromagnetic resonances in graphene-ribbon array structure and may affect further engineering of nanoplasmonic devices and metamaterials.

  6. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    Directory of Open Access Journals (Sweden)

    Billy W. Day

    2010-11-01

    Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.

  7. Fiber-optic surface plasmon resonant sensor with low-index anti-oxidation coating

    Institute of Scientific and Technical Information of China (English)

    Yong Chen; Rongsheng Zheng; Yonghua Lu; Pei Wang; Hai Ming

    2011-01-01

    A multimode fiber-optic surface plasmon resonance (SPR) sensor with a MgF2 film as a modulated layer is studied. The fiber-optic SPR sensor is investigated theoretically, specifically the influence of the dielectric protecting layer, using a four-layer model. The sensor is then fabricated with the optimal parameters suggested by the theoretical simulation. The sensor has a high sensitivity in the analyte refractive index (RI) range of 1.33-1.40. The best sensitivity of 4464 nm/RIU is achieved in the experiment. The use of dielectric film (MgF2) can not only modulate the resonance wavelength of the sensor, but also protect the silver film from oxidation.%A multimode fiber-optic surface plasmon resonance (SPR) sensor with a MgF2 film as a modulated layer is studied.The fiber-optic SPR sensor is investigated theoretically,specifically the influence of the dielectric protecting layer,using a four-layer model.The sensor is then fabricated with the optimal parameters suggested by the theoretical simulation.The sensor has a high sensitivity in the analyte refractive index (RI) range of 1.33-1.40.The best sensitivity of 4 464 nm/RIU is achieved in the experiment.The use of dielectric film (MgF2) can not only modulate the resonance wavelength of the sensor,but also protect the silver film from oxidation.Surface plasmon resonance (SPR) is a kind of coherent oscillation between the free electrons at a metal/dielectric interface and the optical wave.The hybridized excitation,called surface plasmon polariton (SPP),is the electromagnetic excitation that propagates along the interface as a longitudinal wave.At a given wavelength and angle that satisfy the wave-vector matching condition,the incident light will be intensively absorbed.Due to its high sensitivity to the refractive index (RI) of the adjacent material,the SPR phenomenon was firstly applied to gas detection in 1983[1].The SPR sensing technology has been widely used in the detection of biological and chemical analytes

  8. Biosensor analysis of the molecular interactions of pentosan polysulfate and of sulfated glycosaminoglycans with immobilized elastase, hyaluronidase and lysozyme using surface plasmon resonance (SPR) technology.

    Science.gov (United States)

    Shen, Bojiang; Shimmon, Susan; Smith, Margaret M; Ghosh, Peter

    2003-02-01

    interactions between the sulfate esters of the polysaccharides and the cationic amino acids of the enzymes. Significantly, the SPR biosensor technology demonstrated that small differences among sulfated polysaccharides, even subtle variations among different NaPPS batches, could be readily detected. The SPR technology therefore offers not only a sensitive and reproducible method for ranking noncompetitive enzyme inhibitors for drug discovery but a rapid and quantitative bioassay for monitoring batch consistency of manufacture.

  9. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    DEFF Research Database (Denmark)

    Yu, X; Zhang, Y.; Pan, S.S.

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensi...

  10. Electron photoemission in plasmonic nanoparticle arrays: analysis of collective resonances and embedding effects

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei V.; Babicheva, Viktoriia; Uskov, Alexander

    2014-01-01

    effects in the formation of plasmonic resonance is diminished. We also show that 5-20 times increase of photoemission can be achieved on embedding of nanoparticles without taking into account dynamics of ballistic electrons. The results obtained can be used to increase efficiency of plasmon...

  11. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shi-Qiang; Bruce Buchholz, D. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); Zhou, Wei [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138 (United States); Ketterson, John B. [Department of Physics, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113 (United States); NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); Ocola, Leonidas E. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Ave., Lemont, Illinois 60439 (United States); Sakoda, Kazuaki [NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Chang, Robert P. H., E-mail: r-chang@northwestern.edu [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States)

    2014-06-09

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retained the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.

  12. Electron energy-loss spectroscopy of branched gap plasmon resonators

    DEFF Research Database (Denmark)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen

    2016-01-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale...... microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons....

  13. Coil-type Fano Resonances: a Plasmonic Approach to Magnetic Sub-diffraction Confinement

    KAUST Repository

    Panaro, Simone

    2015-05-10

    Matrices of nanodisk trimers are introduced as plasmonic platforms for the generation of localized magnetic hot-spots. In Fano resonance condition, the optical magnetic fields can be squeezed in sub-wavelength regions, opening promising scenarios for spintronics.

  14. Influence of nanoparticle-graphene separation on the localized surface plasmon resonances of metal nanoparticles

    CERN Document Server

    Saadabad, Reza Masoudian; Shirdel-Havar, Amir Hushang; Havar, Majid Shirdel

    2015-01-01

    We develop a theory to model the interaction of graphene substrate with localized plasmon resonances in metallic nanoparticles. The influence of a graphene substrate on the surface plasmon resonances is described using an effective background permittivity that is derived from a pseudoparticle concept using the electrostatic method. For this purpose, the interaction of metal nanoparticle with graphene sheet is studied to obtain the optical spectrum of gold nanoparticles deposited on a graphene substrate. Then, we introduce a factor based on dipole approximation to predict the influence of the separation of nanoparticles and graphene on the spectral position of the localized plasmon resonance of the nanoparticles. We applied the theory for a 4 nm radius gold nanosphere placed near 1.5 nm graphene layer. It is shown that a blue shift is emerged in the position of plasmon resonance when the nanoparticle moves away from graphene.

  15. Collective electric and magnetic plasmonic resonances in spherical nanoclusters.

    Science.gov (United States)

    Vallecchi, Andrea; Albani, Matteo; Capolino, Filippo

    2011-01-31

    We report an investigation on the optical properties of three-dimensional nanoclusters (NCs) made by spherical constellations of metallic nanospheres arranged around a central dielectric sphere, which can be realized and assembled by current state-of-the-art nanochemistry techniques. This type of NCs supports collective plasmon modes among which the most relevant are those associated with the induced electric and magnetic resonances. Combining a single dipole approximation for each nanoparticle and the multipole spherical-wave expansion of the scattered field, we achieve an effective characterization of the optical response of individual NCs in terms of their scattering, absorption, and extinction efficiencies. By this approximate model we analyze a few sample NCs identifying the electric and magnetic resonance frequencies and their dependence on the size and number of the constituent nanoparticles. Furthermore, we discuss the effective electric and magnetic polarizabilities of the NCs, and their isotropic properties. A homogenization method based on an extension of the Maxwell Garnett model to account for interaction effects due to higher order multipoles in dense packed arrays is applied to a distribution of NCs showing the possibility of obtaining metamaterials with very large, small, and negative values of permittivity and permeability, and even negative index.

  16. Highly sensitive surface plasmon resonance chemical sensor based on Goos-Hanchen effects

    Science.gov (United States)

    Yin, Xiaobo; Hesselink, Lambertus

    2006-08-01

    The resonance enhanced Goos-Hanchen shifts at attenuated total internal reflection enables the possibility for highly sensitive surface plasmon resonance sensor. The observed giant displacements result from the singular phase retardation at the resonance where the phase is continuous but changes dramatically. The phenomenon is proposed for chemical sensing and the superior sensitivity is demonstrated.

  17. Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches

    DEFF Research Database (Denmark)

    Dowd, Annette; Geisler, Mathias; Zhu, Shaoli;

    2016-01-01

    The enhancement of a Raman signal by multipolar plasmon resonances – as opposed to the more common practice of using dipolar resonances – is investigated. A wide range of gold stars, triangles, circles and squares with multipolar resonances in the visible region were designed and then produced...

  18. Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides

    DEFF Research Database (Denmark)

    Han, Zhanghua; García Ortíz, César Eduardo; Radko, Ilya P.;

    2013-01-01

    We report on the experimental demonstration of detuned-resonator induced transparency in the near-infrared (∼800  nm) using two detuned racetrack resonators side-coupled to a bus waveguide. Both resonators and the bus waveguide are in the form of dielectric-loaded surface plasmon polariton...

  19. Features of electromagnetic waves in a complex plasma due to surface plasmon resonances on macroparticles

    CERN Document Server

    Vladimirov, S V

    2015-01-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations significantly modifies plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The results are discussed in the context of dusty plasma experiments.

  20. Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide

    Science.gov (United States)

    Chen, Fang; Yao, Duanzheng

    2016-06-01

    A larger number of complicated plasmonic nanostructures have been realized to exhibit Fano interference. In this paper, we demonstrate a simple nanostructure, side coupled waveguide resonator system with a metal nanowall located in the metal-insulator-metal waveguide (MIM), which can also achieve multiple plasmonic Fano resonance. In the proposed nanostructure, the asymmetric line shape originates from the interference between the slot resonator and the new resonator. Therefore, the Fano line shape can be actively controlled by the phase difference of the two resonators and the thickness of the metal nanowall. A scattering matrix method is used to calculate the transmission spectra. Results obtained by the scattering matrix theory are consistent with those from the finite-difference time-domain simulations (FDTD). Moreover, Fano resonances in the proposed structure show high sensitivity, which may have important application in plasmonic nanosensor and modulator.

  1. Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping.

    Science.gov (United States)

    Shoji, Tatsuya; Tsuboi, Yasuyuki

    2014-09-04

    This Perspective describes recent progress in optical trappings of nanoparticles based on localized surface plasmon. This plasmonic optical trapping has great advantages over the conventional optical tweezers, being potentially applicable for a molecular manipulation technique. We review this novel trapping technique from the viewpoints of (i) plasmonic nanostructure, (ii) the light source for plasmon excitation, and (iii) the polarizability of the trapping target. These findings give us future outlook for plasmonic optical trapping. In addition to a brief review, recent developments on plasmonic optical trapping of soft nanomaterials such as proteins, polymer chains, and DNA will be discussed to point out the important issue for further development on this trapping method. Finally, we explore new directions of plasmonic optical trapping.

  2. Grating-coupled surface plasmon resonance in conical mounting with polarization modulation.

    Science.gov (United States)

    Ruffato, G; Romanato, F

    2012-07-01

    A grating-coupled surface plasmon resonance (GCSPR) technique based on polarization modulation in conical mounting is presented. A metallic grating is azimuthally rotated to support double-surface plasmon polariton excitation and exploit the consequent sensitivity enhancement. Corresponding to the resonance polar angle, a polarization scan of incident light is performed, and reflectivity data are collected before and after functionalization with a dodecanethiol self-assembled monolayer. The output signal exhibits a harmonic dependence on polarization, and the phase term is used as a parameter for sensing. This technique offers the possibility of designing extremely compact, fast, and cheap high-resolution plasmonic sensors based on GCSPR.

  3. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Wu, Chenyun; Yang, Hong [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-11-03

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures.

  4. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators

    Science.gov (United States)

    Gu, Ping; Wan, Mingjie; Wu, Wenyang; Chen, Zhuo; Wang, Zhenlin

    2016-05-01

    Fano resonances have been realized in plasmonic systems and have found intriguing applications, in which, however, precisely controlled symmetry breaking or particular arrangement of multiple constituents is usually involved. Although simple core-shell type architectures composed of a spherical dielectric core and a concentric metallic shell layer have been proposed as good candidates that support inherent Fano resonances, these theoretical predictions have rarely seen any detailed experimental investigation. Here, we report on the experimental investigation of the magnetic and electric-based multipolar plasmonic Fano resonances in the dielectric-metal core-shell resonators that are formed by wrapping a nearly perfect metal shell layer around a dielectric sphere. We demonstrate that these Fano resonances originate from the interference between the Mie cavity and sphere plasmon resonances. Moreover, we present that the variation on either the dielectric core size or core refractive index allows for easily tuning the observed Fano resonances over a wide spectral range. Our findings are supported by excellent agreement with analytical calculations, and offer unprecedented opportunities for realizing ultrasensitive bio-sensors, lasing and nonlinear optical devices.Fano resonances have been realized in plasmonic systems and have found intriguing applications, in which, however, precisely controlled symmetry breaking or particular arrangement of multiple constituents is usually involved. Although simple core-shell type architectures composed of a spherical dielectric core and a concentric metallic shell layer have been proposed as good candidates that support inherent Fano resonances, these theoretical predictions have rarely seen any detailed experimental investigation. Here, we report on the experimental investigation of the magnetic and electric-based multipolar plasmonic Fano resonances in the dielectric-metal core-shell resonators that are formed by wrapping a

  5. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    OpenAIRE

    Liu, Peter Q.; Luxmoore, Isaac. J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.

    2015-01-01

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light–matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-co...

  6. Guidelines for designing 2D and 3D plasmonic stub resonators

    CERN Document Server

    Naghizadeh, Solmaz

    2016-01-01

    In this work we compare the performance of plasmonic waveguide integrated stub resonators based on 2D metal-dielectric-metal (MDM) and 3D slot-waveguide (SWG) geometries. We show that scattering matrix theory can be extended to 3D devices, and by employing scattering matrix theory we provide the guidelines for designing plasmonic 2D and 3D single-stub and double-stub resonators with a desired spectral response at the design wavelength. We provide transmission maps of 2D and 3D double-stub resonators versus stub lengths, and we specify the different regions on these maps that result in a minimum, a maximum or a plasmonically induced transparency (PIT) shape in the transmission spectrum. Radiation loss from waveguide terminations leads to a degradation of the 3D slot-waveguide based resonators. We illustrate improved waveguide terminations that boost resonator properties. We verify our results with 3D FDTD simulations.

  7. Surface plasmon resonator using high sensitive resonance telecommunication wavelengths for DNA sensors of Mycobacterium tuberculosis with thiol-modified probes.

    Science.gov (United States)

    Hsu, Shih-Hsiang; Hung, Shao-Chiang; Chen, Yu-Kun; Jian, Zhi-Hao

    2014-12-25

    Various analytes can be verified by surface plasmon resonance, thus continuous improvement of this sensing technology is crucial for better sensing selection and higher sensitivity. The SPR sensitivity on the wavelength modulation is enhanced with increasing wavelengths. The telecommunication wavelength range was then utilized to detect Mycobacterium tuberculosis (MTB) deoxyribonucleic acid (DNA) under two situations, without immobilization and with 5'-thiol end labeled IS6100 DNA probes, for SPR sensitivity comparison. The experimental data demonstrated that the SPR sensitivity increased more than 13 times with the wavelength modulation after immobilization. Since the operating wavelength accuracy of a tunable laser source can be controlled within 0.001 nm, the sensitivity and resolution on immobilized MTB DNA were determined as 1.04 nm/(μg/mL) and 0.9 ng/mL, respectively.

  8. Surface plasmon resonance immunosensor for cortisol and cortisone determination.

    Science.gov (United States)

    Frasconi, Marco; Mazzarino, Monica; Botrè, Francesco; Mazzei, Franco

    2009-08-01

    In this paper, we present a surface-plasmon-resonance-based immunosensor for the real-time detection of cortisol and cortisone levels in urine and saliva samples. The method proposed here is simple, rapid, economic, sensitive, robust, and reproducible thanks also to the special features of the polycarboxylate-hydrogel-based coatings used for the antibody immobilization. The sensor surface displays a high level of stability during repeated regeneration and affinity reaction cycles. The immunosensor shows high specificity for cortisol and cortisone; furthermore, no significant interferences from other steroids with a similar chemical structure have been observed. The suitability of the hydrogel coating for the prevention of nonspecific binding is also investigated. A good correlation is noticed between the results obtained by the proposed method and the reference liquid chromatography/tandem mass spectrometry method for the analysis of cortisol and cortisone in urine and saliva samples. Standard curves for the detection of cortisol and cortisone in saliva and urine are characterized by a detection limit less than 10 microg l(-1), sufficiently sensitive for both clinical and forensic use.

  9. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-10

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  10. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  11. Immunosensor Based on Surface Plasmon Resonance for Antigen Recognition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel immunosensor based on surface plasmon resonance(SPR)has been developed for the recognition of antigen.The sensor was designed on the basis of the fixed angle of incidence and measuring the reflected intensities in a wavelength range of 430-750 nm in real-time. An ultra-bright white light-emitting diode(LED)was used as the light source. Molecular self-assembling in solution was used to form the sensing membrane on gold substrate. It has been seen that the sensitivity of the SPR sensor with 3-mercaptopropionic acid(MPA)/protein A(SPA) sensing membrane is considerably higher than that with MPA or SPA modified Sensing membrane. The kinetic processes on the sensing membrane were studied. The human B factor(Bf), an activator of complement 3(C3), was recognized among the other antigens. This sensor can also be used for other antigen/antibody or adaptor/receptor recognition. Under optimized experimental conditions, the sensor has good selectivity, repeatability, and reversibility.

  12. Surface plasmon resonance characterization of calspermin-calmodulin binding kinetics.

    Science.gov (United States)

    Murphy, Andrew J; Kemp, Fred; Love, John

    2008-05-01

    We cloned, expressed, and purified a chimeric fusion between a soluble green fluorescent protein (smGFP) and the calmodulin binding protein calspermin. We have shown that the fusion protein, labeled smGN, has a K(i) in the calmodulin-dependent cyclic nucleotide phosphodiesterase activity assay of 1.97 nM, i.e., 3800 times smaller than that of the commonly used calmodulin inhibitor W7. Association and dissociation rate constants (k(a) and k(d)) and the dissociation equilibrium constant (K(D)) of smGN for calmodulin were determined using surface plasmon resonance (SPR). The k(a)=1.24 x 10(6)M(-1)s(-1), the k(d)=5.49 x 10(-3)s(-1), and the K(D)=4.42 x 10(-9)M. We also found that the GFP moiety was important for successfully binding calspermin to the surface of the CM5 flow cell at a sufficiently high concentration for SPR, and that this procedure may be used for SPR analysis of other acidic polypeptides, whose pIliquid chromatography-tandem mass spectrometry, indicating a high level of specificity. We conclude that the high affinity and specific binding between smGN and calmodulin make it an easily localized recombinant alternative to chemical calmodulin inhibitors.

  13. Surface plasmon resonance biosensor for enzymatic detection of small analytes

    Science.gov (United States)

    Massumi Miyazaki, Celina; Makoto Shimizu, Flávio; Mejía-Salazar, J. R.; Oliveira, Osvaldo N., Jr.; Ferreira, Marystela

    2017-04-01

    Surface plasmon resonance (SPR) biosensing is based on the detection of small changes in the refractive index on a gold surface modified with molecular recognition materials, thus being mostly limited to detecting large molecules. In this paper, we report on a SPR biosensing platform suitable to detect small molecules by making use of the mediator-type enzyme microperoxidase-11 (MP11) in layer-by-layer films. By depositing a top layer of glucose oxidase or uricase, we were able to detect glucose or uric acid with limits of detection of 3.4 and 0.27 μmol l‑1, respectively. Measurable SPR signals could be achieved because of the changes in polarizability of MP11, as it is oxidized upon interaction with the analyte. Confirmation of this hypothesis was obtained with finite difference time domain simulations, which also allowed us to discard the possible effects from film roughness changes observed in atomic force microscopy images. The main advantage of this mediator-type enzyme approach is in the simplicity of the experimental method that does not require an external potential, unlike similar approaches for SPR biosensing of small molecules. The detection limits reported here were achieved without optimizing the film architecture, and therefore the performance can in principle be further enhanced, while the proposed SPR platform may be extended to any system where hydrogen peroxide is generated in enzymatic reactions.

  14. Surface plasmon resonance microscopy: Achieving a quantitative optical response

    Science.gov (United States)

    Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.

    2016-09-01

    Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based figuration. We carry out SPR imaging on a microscope by launching light into a sample and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy.

  15. Counterintuitive dispersion effect near surface plasmon resonances in Otto structures

    Science.gov (United States)

    Wang, Lin; Wang, Li-Gang; Ye, Lin-Hua; Al-Amri, M.; Zhu, Shi-Yao; Zubairy, M. Suhail

    2016-07-01

    In this paper, we investigate the counterintuitive dispersion effect associated with the poles and zeros of reflection and transmission functions in an Otto configuration when a surface plasmon resonance is excited. We show that the zeros and/or poles in the reflection and transmission functions may move into the upper-half complex-frequency plane (CFP), and these locations of the zeros and poles determine the dispersion properties of the whole structures (i.e., the frequency-dependent change of both reflected and transmitted phases). Meanwhile, we demonstrate various dispersion effects (both normal and abnormal) related to the changes of the poles and zeros in both reflection and transmission functions when considering the properties of metal substrates. For a realistic metal substrate in an Otto structure, there are the optimal thickness and incident angle, which correspond to the transitions of the zeros in the reflection function from the upper-half to lower-half CFP. These properties may be helpful to manipulate light propagation in optical devices.

  16. Fibre optic surface plasmon resonance sensor system designed for smartphones.

    Science.gov (United States)

    Bremer, Kort; Roth, Bernhard

    2015-06-29

    A fibre optic surface plasmon resonance (SPR) sensor system for smartphones is reported, for the first time. The sensor was fabricated by using an easy-to-implement silver coating technique and by polishing both ends of a 400 µm optical fibre to obtain 45° end-faces. For excitation and interrogation of the SPR sensor system the flash-light and camera at the back side of the smartphone were employed, respectively. Consequently, no external electrical components are required for the operation of the sensor system developed. In a first application example a refractive index sensor was realised. The performance of the SPR sensor system was demonstrated by using different volume concentrations of glycerol solution. A sensitivity of 5.96·10(-4) refractive index units (RIU)/pixel was obtained for a refractive index (RI) range from 1.33 to 1.36. In future implementations the reported sensor system could be integrated in a cover of a smartphone or used as a low-cost, portable point-of-care diagnostic platform. Consequently it offers the potential of monitoring a large variety of environmental or point-of-care parameters in combination with smartphones.

  17. Miniaturized Quantum Semiconductor Surface Plasmon Resonance Platform for Detection of Biological Molecules

    Directory of Open Access Journals (Sweden)

    Jan J. Dubowski

    2013-06-01

    Full Text Available The concept of a portable, inexpensive and semi-automated biosensing platform, or lab-on-a-chip, is a vision shared by many researchers and venture industries. Under this scope, we have investigated the application of optical emission from quantum well (QW microstructures for monitoring surface phenomena on gold layers remaining in proximity (<300 nm with QW microstructures. The uncollimated QW radiation excites surface plasmons (SP and through the surface plasmon resonance (SPR effect allows for detection of small perturbation in the density surface adsorbates. The SPR technology is already commonly used for biochemical characterization in pharmaceutical industries, but the reduction of the distance between the SP exciting source and the biosensing platform to a few hundreds of nanometers is an innovative approach enabling us to achieve an ultimate miniaturization of the device. We evaluate the signal quality of this nanophotonic QW-SPR device using hyperspectral-imaging technology, and we compare its performance with that of a standard prism-based commercial system. Two standard biochemical agents are employed for this characterization study: bovine serum albumin and inactivated influenza A virus. With an innovative conical method of SPR data collection, we demonstrate that individually collected SPR scan, each in less than 2.2 s, yield a resolution of the detection at 1.5 × 10−6 RIU.

  18. Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level.

    Science.gov (United States)

    Yan, Jiahao; Lin, Zhaoyong; Ma, Churong; Zheng, Zhaoqiang; Liu, Pu; Yang, Guowei

    2016-08-11

    Hot carriers, generated via the non-radiative decay of localized surface plasmon, can be utilized in photovoltaic and photocatalytic devices. In recent years, most studies have focused on conventional plasmon materials like Au and Ag. However, they suffer from several drawbacks like low energy of the generated hot carriers and a high charge-carrier recombination rate. To resolve these problems, here, we propose the plasmon resonances in heavily self-doped titanium oxide (TiO1.67) to realize effective hot carrier generation. Since the plasmon resonant energy of TiO1.67 nanoparticles (2.56 eV) is larger than the bandgap (2.15 eV), plasmon resonances through interband transition can realize both the generation and separation of hot carriers and bring a new strategy for visible-light photodegradation. The photodegradation rate for methyl orange was about 0.034 min(-1). More importantly, the combination of plasmonic and catalytic properties makes it feasible to investigate the degradation process of different materials and different structures at the single particle level in situ. By detecting the scattering shift, we demonstrated that the TiO1.67 dimer (Δλ/ΔλRIU = 0.16) possesses a higher photodegradation rate than an individual nanoparticle (Δλ/ΔλRIU = 0.09). We hope this finding may be a beginning, paving the way toward the development of semiconductor plasmonic materials for new applications beyond noble metals.

  19. Gas detection by means of surface plasmon resonance enhanced ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Nooke, Alida

    2012-11-01

    This thesis investigated gas sensing by means of surface plasmon resonance enhanced ellipsometry. Surface plasmons were excited in a 40 - 50 nm gold layer by a He-Ne-laser using the Kretschmann configuration, which was arranged on a self-made copper measuring cell. A fixed angle of incidence and the ellipsometric parameter {Delta} as the measured value were used to monitor changes in the gas phase. Different types of gases were investigated: flammable (hydrocarbons and hydrogen), oxidising (oxygen and ozone), toxic (carbon monoxide) and inert (helium and nitrogen). The gas types can be distinguished by their refractive indices, whereas the sensor responds instantly relative to the reference gas with an increase or a decrease in {Delta}. Diluting the analyte gas with a reference gas (nitrogen or air) allowed the detection limits to be determined, these lay in the low % range. The sensor stability was also enhanced as well as the sensitivity by modifying the gold layers with a 3-10 nm additional layer. These additional layers consisted of the inorganic materials TiO{sub 2}, ZrO{sub 2}, MgF{sub 2} and Fe: SnO{sub 2} which were deposited by different coating processes. Surface investigations were made of every utilised layer: scanning electron microscope and atomic force microscope measurements for surface topology and spectroscopic ellipsometry mapping to determine the optical constants and the layer thicknesses. All applied materials protected the gold layer from contaminations and thus prolonged the life span of the sensor. Furthermore, the detection limits were reduced significantly, to the low ppm range. The material Fe: SnO{sub 2} demonstrates a special behaviour in reaction with the toxic gas carbon monoxide: Due to the iron doping, the response to carbon monoxide is extraordinary and concentrations below 1 ppm were detected. In order to approach a future application in industry, the sensor system was adapted to a stainless steel tube. With this measuring

  20. Plasmonic resonances in nanostructured transparent conducting oxide films

    CERN Document Server

    Kim, Jongbum; Emani, Naresh K; Boltasseva, Alexandra

    2012-01-01

    Transparent conducting oxides (TCO) are emerging as possible alternative constituent materials to replace noble metals such as silver and gold for low-loss plasmonic and metamaterial (MMs) applications in the near infrared (NIR) regime. The optical characteristics of TCOs have been studied to evaluate the functionalities and potential of these materials as metal substitutes in plasmonic and MM devices, even apart from their usual use as electrode materials. However, patterning TCOs at the nanoscale, which is necessary for plasmonic and MM devices, is not well-studied. This paper investigates nanopatterning processes for TCOs, especially the lift-off technique with electron-beam lithography, and the realization of plasmonic nanostructures with TCOs. By employing the developed nanopatterning process, we fabricate 2D-periodic arrays of TCO nanodisks and characterize the material's plasmonic properties to evaluate the performance of TCOs as metal substitutes. Light-induced collective oscillations of the free elec...

  1. Low-cost, high performance surface plasmon resonance-compatible films characterized by the surface plasmon resonance technique

    Institute of Scientific and Technical Information of China (English)

    Li Song-Quan; Ye Hong-An; Liu Chun-Yu; Dou Yin-Feng; Huang Yan

    2013-01-01

    A new analytical method based on the surface plasmon resonance (SPR) technique is presented,with which SPR curves for both wavelength and angular modulations can be obtained simultaneously via only a single scan of the incident angle.Using this method,the SPR responses of TiO2-coated Cu films are characterized in the wavelength range from 600 nm to 900 nm.For the first time,we determine the effective optical constants and the thicknesses of TiO2-coated Cu films using the SPR curves of wavelength modulation.The sensitivities of prism-based SPR refractive index sensors using TiO2-coated Cu films are investigated theoretically for both wavelength and angular modulations,the results show that in the case of sensitivity with wavelength modulation,TiO2-coated Cu films are not as good as the Au film,however,they are more suitable than the Au film for SPR refractive index sensors with angular modulation because a higher sensitivity can be achieved.

  2. Near-infrared linewidth narrowing in plasmonic Fano-resonant metamaterials via tuning of multipole contributions

    Science.gov (United States)

    Lim, Wen Xiang; Han, Song; Gupta, Manoj; MacDonald, Kevin F.; Singh, Ranjan

    2017-08-01

    We report on an experimental and computational (multipole decomposition) study of Fano resonance modes in complementary near-IR plasmonic metamaterials. Resonance wavelengths and linewidths can be controlled by changing the symmetry of the unit cell so as to manipulate the balance among multipole contributions. In the present case, geometrically inverting one half of a four-slot (paired asymmetric double bar) unit cell design changes the relative magnitude of magnetic quadrupole and toroidal dipole contributions leading to the enhanced quality factor, figure of merit, and spectral tuning of the plasmonic Fano resonance.

  3. Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells

    CERN Document Server

    Zhukovsky, Sergei V; Uskov, Alexander V; Protsenko, Igor E; Lavrinenko, Andrei V

    2013-01-01

    We propose to use collective lattice resonances in plasmonic nanoparticle arrays to enhance photoelectron emission in Schottky-barrier photodetectors and solar cells. We show that the interaction of lattice resonances (the Rayleigh anomaly) and individual particle excitations (localized surface plasmon resonances) leads to stronger local field enhancement and significant increase of the photocurrent compared to the case when only individual particle excitations are present. The results can be used to design new photodetectors with highly selective, tunable spectral response, able to detect photons with the energy below the semiconductor bandgap, and to develop solar cells with increased efficiency.

  4. Resonant terahertz absorption by plasmons in grating-gate GaN HEMT structures

    Science.gov (United States)

    Muravjov, A. V.; Veksler, D. B.; Hu, X.; Gaska, R.; Pala, N.; Saxena, H.; Peale, R. E.; Shur, M. S.

    2009-05-01

    Pronounced resonant absorption and frequency dispersion associated with an excitation of collective 2D plasmons have been observed in terahertz (0.5-4THz) transmission spectra of grating-gate 2D electron gas AlGaN/GaN HEMT (high electron mobility transistor) structures at cryogenic temperatures. The resonance frequencies correspond to plasmons with wavevectors equal to the reciprocal-lattice vectors of the metal grating, which serves both as a gate electrode for the HEMT and a coupler between plasmons and incident terahertz radiation. The resonances are tunable by changing the applied gate voltage, which controls 2D electron gas concentration in the channel. The effect can be used for resonant detection of terahertz radiation and for "on-chip" terahertz spectroscopy.

  5. Localized surface plasmons selectively coupled to resonant light in tubular microcavities

    CERN Document Server

    Yin, Yin; Böttner, Stefan; Yuan, Feifei; Giudicatti, Silvia; Naz, Ehsan Saei Ghareh; Ma, Libo; Schmidt, Oliver G

    2016-01-01

    Vertical gold-nanogaps are created on microtubular cavities to explore the coupling between resonant light supported by the microcavities and surface plasmons localized at the nanogaps. Selective coupling of optical axial modes and localized surface plasmons critically depends on the exact location of the gold-nanogap on the microcavities which is conveniently achieved by rolling-up specially designed thin dielectric films into three dimensional microtube ring resonators. The coupling phenomenon is explained by a modified quasi-potential model based on perturbation theory. Our work reveals the coupling of surface plasmon resonances localized at the nanoscale to optical resonances confined in microtubular cavities at the microscale, implying a promising strategy for the investigation of light-matter interactions.

  6. Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Kadkhodazadeh, Shima

    2013-01-01

    We study the surface plasmon (SP) resonance energy of isolated spherical Ag nanoparticles dispersed on a silicon nitride substrate in the diameter range 3.5–26 nm with monochromated electron energy-loss spectroscopy. A significant blueshift of the SP resonance energy of 0.5 eV is measured when...

  7. Molecularly imprinted polymers for highly sensitive detection of morphine using surface plasmon resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Hong Xia Hao; Hong Zhou; Jing Chang; Jun Zhu; Tian Xin Wei

    2011-01-01

    Molecular imprinting technology is applied in surface plasmon resonance spectroscopy for highly sensitive and selective detection of morphine (MO). As SPR-based sensor of MO, the preparation of molecular imprinted polymer is as follows: methacrylic acids (MAA), ethylene glycol dimethacrylate (EGDMA), azodiisobutyronitrile (AIBN) were used as functional monomer, cross-linker and initiator, respectively. The experiment results showed that morphine imprinted polymer had the performance of high sensitivity and specificity, i.e. the relative signal of SPR response was proportional to the concentration of morphine in acetonitrile in the range of 10-9 mol/L to 10-6mol/L (1 ppb-1 ppm) with LOD of 10-10mol/L, and MO was distinguished from its analogs, such as codeine.

  8. Development of a molecularly imprinted polymer based surface plasmon resonance sensor for theophylline monitoring

    Science.gov (United States)

    Zheng, Rui; Cameron, Brent D.

    2011-03-01

    Molecularly imprinted polymer (MIP) thin films and surface plasmon resonance (SPR) sensing technologies were combined to develop a novel sensing platform for monitoring real-time theophylline concentration, which is a compound of interest in environmental monitoring and a molecular probe for phenotyping certain cytochrome P450 enzymes. The MIPs hydrogel is easy to synthesize and provides shape-selective recognition with high affinity to specific target molecules. Different polymerization formulas were tested and optimized. The influence of the monomer sensitive factors were addressed by SPR. SPR is an evanescent wave optics based sensing technique that is suitable for real-time and label free sensing purposes. Gold nanorods (Au NRs) were uniformly immobilized onto a SPR sensing surface for the construction of a fiber optics based prism-free localized SPR (LSPR) measurement. This technique can be also applied to assess the activities of other small organic molecules by adjusting the polymerization formula, thus, this approach also has many other potential applications.

  9. Development of a novel two dimensional surface plasmon resonance sensor using multiplied beam splitting optics.

    Science.gov (United States)

    Hemmi, Akihide; Mizumura, Ryosuke; Kawanishi, Ryuta; Nakajima, Hizuru; Zeng, Hulie; Uchiyama, Katsumi; Kaneki, Noriaki; Imato, Toshihiko

    2013-01-08

    A novel two dimensional surface plasmon resonance (SPR) sensor system with a multi-point sensing region is described. The use of multiplied beam splitting optics, as a core technology, permitted multi-point sensing to be achieved. This system was capable of simultaneously measuring nine sensing points. Calibration curves for sucrose obtained on nine sensing points were linear in the range of 0-10% with a correlation factor of 0.996-0.998 with a relative standard deviation of 0.090-4.0%. The detection limits defined as S/N = 3 were 1.98 × 10(-6) - 3.91 × 10(-5) RIU. This sensitivity is comparable to that of conventional SPR sensors.

  10. Development of a Novel Two Dimensional Surface Plasmon Resonance Sensor Using Multiplied Beam Splitting Optics

    Directory of Open Access Journals (Sweden)

    Akihide Hemmi

    2013-01-01

    Full Text Available A novel two dimensional surface plasmon resonance (SPR sensor system with a multi-point sensing region is described. The use of multiplied beam splitting optics, as a core technology, permitted multi-point sensing to be achieved. This system was capable of simultaneously measuring nine sensing points. Calibration curves for sucrose obtained on nine sensing points were linear in the range of 0–10% with a correlation factor of 0.996–0.998 with a relative standard deviation of 0.090–4.0%. The detection limits defined as S/N = 3 were 1.98 × 10−6–3.91 × 10−5 RIU. This sensitivity is comparable to that of conventional SPR sensors.

  11. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading

    Science.gov (United States)

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M.; Sendra, Jose Ramón; Lechuga, Laura M.

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  12. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading.

    Science.gov (United States)

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M; Sendra, Jose Ramón; Lechuga, Laura M

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  13. Localized surface plasmon resonance light-scattering detection of Hg(II) with 3-aminopropyltriethoxysilane-assisted synthesis of highly stabilized Ag nanoclusters.

    Science.gov (United States)

    Zhu, Jingjing; Mao, Qinli; Gao, Lang; He, Yu; Song, Gongwu

    2013-03-21

    We employed 3-aminopropyltriethoxysilane to assist the synthesis of Ag NCs using polyethyleneimine as the template for detecting Hg(2+) by localized surface plasmon resonance light-scattering technology. The developed selective and sensitive method presaged more opportunities for application in environmental systems.

  14. Towards Surface Plasmon Resonance biosensing combined with bioaffinity-assisted nano HILIC Liquid Chromatography / Time-of-flight Mass Spectrometry identification of Paralytic Shellfish Poisons

    NARCIS (Netherlands)

    Marchesini, G.R.; Hooijerink, H.; Haasnoot, W.; Buijs, J.; Campbell, K.; Elliott, C.T.; Nielen, M.W.F.

    2009-01-01

    The potential for coupling technologies to deliver new, improved forms of bioanalysis is still in its infancy. We review a number of examples in which coupling has been successful, with special emphasis on combining surface-plasmon-resonance biosensors with mass spectrometry. We give an overview of

  15. High resolution grating-assisted surface plasmon resonance fiber optic aptasensor.

    Science.gov (United States)

    Albert, Jacques; Lepinay, Sandrine; Caucheteur, Christophe; Derosa, Maria C

    2013-10-01

    A surface plasmon resonance biochemical sensor based on a tilted fiber Bragg grating imprinted in a single mode fiber core is demonstrated. A 30-50 nm thick gold coating on the cladding of the fiber provides the support for surface plasmon waves whose interaction with attached biomolecules is monitored at near infrared wavelengths near 1,550 nm. The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with the broader absorption of the surface plasmon and thus provide a unique tool to measure small shifts of the plasmon with high accuracy. The attachment on the gold surfaces of aptamers with specific affinities for proteins provides the required target-analyte system and is shown to be functional in the framework of our sensing device. The implementation of the sensor either as a stand-alone device or as part of a multi-sensor platform is also described. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots.

    Science.gov (United States)

    Ozel, Tuncay; Nizamoglu, Sedat; Sefunc, Mustafa A; Samarskaya, Olga; Ozel, Ilkem O; Mutlugun, Evren; Lesnyak, Vladimir; Gaponik, Nikolai; Eychmuller, Alexander; Gaponenko, Sergey V; Demir, Hilmi Volkan

    2011-02-22

    We propose and demonstrate a nanocomposite localized surface plasmon resonator embedded into an artificial three-dimensional construction. Colloidal semiconductor quantum dots are assembled between layers of metal nanoparticles to create a highly strong plasmon-exciton interaction in the plasmonic cavity. In such a multilayered plasmonic resonator architecture of isotropic CdTe quantum dots, we observed polarized light emission of 80% in the vertical polarization with an enhancement factor of 4.4, resulting in a steady-state anisotropy value of 0.26 and reaching the highest quantum efficiency level of 30% ever reported for such CdTe quantum dot solids. Our electromagnetic simulation results are in good agreement with the experimental characterization data showing a significant emission enhancement in the vertical polarization, for which their fluorescence decay lifetimes are substantially shortened by consecutive replication of our unit cell architecture design. Such strongly plasmon-exciton coupling nanocomposites hold great promise for future exploitation and development of quantum dot plasmonic biophotonics and quantum dot plasmonic optoelectronics.

  17. Sensitivity Dependence of Surface Plasmon Resonance Based Sensors on Prism Refractive Index

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We theoretically and experimentally demonstrate that refractive index of the prism used toload metal film has significant influence on sensitivity of surface plasmon resonance based sensors. Theprism with lower refractive index gives the sensors a higher sensitivity in detecting refractive index varia-tions of a sample. We attribute this effect to the fact that a prism with low refractive index will increasecoupling distance between surface plasmons and the medium under investigation.

  18. Surface Plasmon Resonance Immunosensor for the Detection of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Noor Azlina Masdor

    2017-05-01

    Full Text Available Campylobacteriosis is an internationally important foodborne disease caused by Campylobacter jejuni. The bacterium is prevalent in chicken meat and it is estimated that as much as 90% of chicken meat on the market may be contaminated with the bacterium. The current gold standard for the detection of C. jejuni is the culturing method, which takes at least 48 h to confirm the presence of the bacterium. Hence, the aim of this work was to investigate the development of a Surface Plasmon Resonance (SPR sensor platform for C. jejuni detection. Bacterial strains were cultivated in-house and used in the development of the sensor. SPR sensor chips were first functionalized with polyclonal antibodies raised against C. jejuni using covalent attachment. The gold chips were then applied for the direct detection of C. jejuni. The assay conditions were then optimized and the sensor used for C. jejuni detection, achieving a detection limit of 8 × 106 CFU·mL−1. The sensitivity of the assay was further enhanced to 4 × 104 CFU·mL−1 through the deployment of a sandwich assay format using the same polyclonal antibody. The LOD obtained in the sandwich assay was higher than that achieved using commercial enzyme-linked immunosorbent assay (ELISA (106–107 CFU·mL−1. This indicate that the SPR-based sandwich sensor method has an excellent potential to replace ELISA tests for C. jejuni detection. Specificity studies performed with Gram-positive and Gram-negative bacteria, demonstrated the high specific of the sensor for C. jejuni.

  19. Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting

    Directory of Open Access Journals (Sweden)

    Banshi D. Gupta

    2016-08-01

    Full Text Available Molecular imprinting is earning worldwide attention from researchers in the field of sensing and diagnostic applications, due to its properties of inevitable specific affinity for the template molecule. The fabrication of complementary template imprints allows this technique to achieve high selectivity for the analyte to be sensed. Sensors incorporating this technique along with surface plasmon or localized surface plasmon resonance (SPR/LSPR provide highly sensitive real time detection with quick response times. Unfolding these techniques with optical fiber provide the additional advantages of miniaturized probes with ease of handling, online monitoring and remote sensing. In this review a summary of optical fiber sensors using the combined approaches of molecularly imprinted polymer (MIP and the SPR/LSPR technique is discussed. An overview of the fundamentals of SPR/LSPR implementation on optical fiber is provided. The review also covers the molecular imprinting technology (MIT with its elementary study, synthesis procedures and its applications for chemical and biological anlayte detection with different sensing methods. In conclusion, we explore the advantages, challenges and the future perspectives of developing highly sensitive and selective methods for the detection of analytes utilizing MIT with the SPR/LSPR phenomenon on optical fiber platforms.

  20. Graphene-protected copper and silver plasmonics

    DEFF Research Database (Denmark)

    Kravets, V. G.; Jalil, R.; Kim, Y. J.

    2014-01-01

    suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered...... with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic...... waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate wide use of graphene-protected plasmonics....

  1. Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry-Pérot Resonator.

    Science.gov (United States)

    Konrad, Alexander; Kern, Andreas M; Brecht, Marc; Meixner, Alfred J

    2015-07-08

    A major aim in experimental nano- and quantum optics is observing and controlling the interaction between light and matter on a microscopic scale. Coupling molecules or atoms to optical microresonators is a prominent method to alter their optical properties such as luminescence spectra or lifetimes. Until today strong coupling of optical resonators to such objects has only been observed with atom-like systems in high quality resonators. We demonstrate first experiments revealing strong coupling between individual plasmonic gold nanorods (GNR) and a tunable low quality resonator by observing cavity-length-dependent nonlinear dephasing and spectral shifts indicating spectral anticrossing of the luminescent coupled system. These phenomena and experimental results can be described by a model of two coupled oscillators representing the plasmon resonance of the GNR and the optical fields of the resonator. The presented reproducible and accurately tunable resonator allows us to precisely control the optical properties of individual particles.

  2. Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna

    OpenAIRE

    López-Tejeira, F.; Paniagua-Domínguez, R.; Rodríguez-Oliveros, R.; Sánchez-Gil, J. A.

    2011-01-01

    Single metallic nanorods acting as half-wave antennas in the optical range exhibit an asymmetric, multi-resonant scattering spectrum that strongly depends on both their length and dielectric properties. Here we show that such spectral features can be easily understood in terms of Fano-like interference between adjacent plasmon resonances. On the basis of analytical and numerical results for different geometries, we demonstrate that Fano resonances may appear for such single-particle nanoanten...

  3. Influence of sodium hydroxide in enhancing the surface plasmon resonance of silver nanoparticles

    Science.gov (United States)

    Yadav, Vijay D.; Jain, Ratnesh; Dandekar, Prajakta

    2017-08-01

    Herein, we report green synthesis of silver nanoparticles, by confluence graph described previously using acetate as the stabilizer as well as a reducing agent. The process involves use of ‘green’ chemicals and benign synthesis conditions. The synthesized nanoparticles were tuned for their surface plasmon resonance by sodium hydroxide addition and scanned between 400 to 800 nm to study the hyperchromic effect. As the concentration of sodium hydroxide increased, the surface plasmon resonance of the silver nanoparticles at 420 nm increased (hyperchromic effect). The synthesized silver nanoparticles were further characterized by TEM, for morphology analysis and laser scattering for the electromagnetic properties of nanoparticles. Our method may provide a gateway for intensive exploration of innovative approaches in synthesizing silver nanoparticles and tuning (hyperchromic effect) their localized surface plasmon resonance by using sodium hydroxide, which has tremendous utility in diverse application sectors.

  4. Far-Field Plasmonic Resonance Enhanced Nano-Particle Image Velocimetry within a Micro Channel

    CERN Document Server

    Zhang, Zhili; Haque, Sara S; Zhang, Mingjun

    2010-01-01

    In this paper, a novel far-field plasmonic resonance enhanced nanoparticle-seeded Particle Image Velocimetry (nPIV) has been demonstrated to measure the velocity profile in a micro channel. Chemically synthesized silver nanoparticles have been used to seed the flow in the micro channel. By using Discrete Dipole Approximation (DDA), plasmonic resonance enhanced light scattering has been calculated for spherical silver nanoparticles with diameters ranging from 15nm to 200nm. Optimum scattering wavelength is specified for the nanoparticles in two media: water and air. The diffraction-limited plasmonic resonance enhanced images of silver nanoparticles at different diameters have been recorded and analyzed. By using standard PIV techniques, the velocity profile within the micro channel has been determined from the images.

  5. Scattering properties of vein induced localized surface plasmon resonances on a gold disk

    KAUST Repository

    Amin, Muhammad

    2011-12-01

    It is demonstrated via simulations that a gold nano-disk with a non-concentric cavity supports localized surface plasmon resonances over a frequency band that includes the visible and the near-infrared parts of the spectrum. The charge distribution on the disk indicates that the two distinct peaks in the scattering cross section are due to the (hybridized) higher-order plasmon modes; plasmon hybridization that involves the dipole modes of the disk and the cavity enforces the "coupling" of the plane-wave excitation to the originally-dark higher-order modes. It is further demonstrated that the resonance frequencies can be tuned by varying the radius of the embedded non-concentric cavity. The near-field enhancement observed at these two tunable resonance frequencies suggests that the proposed structure can be used as a substrate in surface enhanced spectroscopy applications. © 2011 IEEE.

  6. Design of Highly Sensitive Surface Plasmon Resonance Sensors Using Planar Metallic Films Closely Coupled to Nanogratings

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Yan; XIE Wen-Chong; LIU De-Ming

    2008-01-01

    We investigate the sensitivity enhancement of surface plasmon resonance(SPR)sensors using planar metallic films closely coupled to nanogratings.The strong coupling between localized surface plasmon resonances(LSPRs)presenting in metallic nanostructures and surface plasmon polaritons(SPPs)propagating at the metallic film surface leads to changes of resonance reflection properties,resulting in enhanced sensitivity of SPR sensors.The effects of thickness of the metallic films,grating period and metal materials on the refractive index sensitivity of the device are investigated.The refractive index sensitivity of nanograting-based SPR sensors is predicted to be about 543 nm/RIU(refractive index unit)using optimized structure parameters.Our study on SPR sensors using planar metallic films closely coupled to nanogratings demonstrates the potential for significant improvement in refractive index sensitivity.

  7. A BIOSENSOR USING COUPLED PLASMON WAVEGUIDE RESONANCE COMBINED WITH HYPERSPECTRAL FLUORESCENCE ANALYSIS

    Directory of Open Access Journals (Sweden)

    CHAN DU

    2014-01-01

    Full Text Available We developed a biosensor that is capable for simultaneous surface plasmon resonance (SPR sensing and hyperspectral fluorescence analysis in this paper. A symmetrical metal-dielectric slab scheme is employed for the excitation of coupled plasmon waveguide resonance (CPWR in the present work. Resonance between surface plasmon mode and the guided waveguide mode generates narrower full width half-maximum of the reflective curves which leads to increased precision for the determination of refractive index over conventional SPR sensors. In addition, CPWR also offers longer surface propagation depths and higher surface electric field strengths that enable the excitation of fluorescence with hyperspectral technique to maintain an appreciable signal-to-noise ratio. The refractive index information obtained from SPR sensing and the chemical properties obtained through hyperspectral fluorescence analysis confirm each other to exclude false-positive or false-negative cases. The sensor provides a comprehensive understanding of the biological events on the sensor chips.

  8. Toward an Enhancement of the Photoactivity of Multiphotochromic Dimers Using Plasmon Resonance: A Theoretical Study.

    Science.gov (United States)

    Fihey, Arnaud; Le Guennic, Boris; Jacquemin, Denis

    2015-08-06

    Building dimers of organic photochromic compounds paves the way to multifunctional switches, but such architectures often undergo partial photoreactivity only. Combining photochromism of molecules and plasmon resonance of gold nanoparticles (NPs) is known to affect the photochromism of monomers, yet the impact on multimers remains unknown. Here we propose a theoretical study of dimers of dithienylethenes by the mean of a hybrid calculation scheme (discrete-interaction model/quantum mechanics). We aim to assess how the optical properties of multiphotochromes are tuned by the influence of the plasmon resonances. We show that, for a typical chemisorption orientation on the NP, the absorption bands responsible for the photochromism are significantly enhanced for both the doubly open and mixed closed-open isomers of the dyad, hinting that plasmon resonance could be used to boost the generally poor photoactivity of dithienylethene dyads.

  9. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperaturas

    Science.gov (United States)

    Catalán-Gómez, S.; Redondo-Cubero, A.; Palomares, F. J.; Nucciarelli, F.; Pau, J. L.

    2017-10-01

    The effect of the oxidation of gallium nanoparticles (Ga NPs) on their plasmonic properties is investigated. Discrete dipole approximation has been used to study the wavelength of the out-of-plane localized surface plasmon resonance in hemispherical Ga NPs, deposited on silicon substrates, with oxide shell (Ga2O3) of different thickness. Thermal oxidation treatments, varying temperature and time, were carried out in order to increase experimentally the Ga2O3 shell thickness in the NPs. The optical, structural and chemical properties of the oxidized NPs have been studied by spectroscopic ellipsometry, scanning electron microscopy, grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy. A clear redshift of the peak wavelength is observed, barely affecting the intensity of the plasmon resonance. A controllable increase of the Ga2O3 thickness as a consequence of the thermal annealing is achieved. In addition, simulations together with ellipsometry results have been used to determine the oxidation rate, whose kinetics is governed by a logarithmic dependence. These results support the tunable properties of the plasmon resonance wavelength in Ga NPs by thermal oxidation at low temperatures without significant reduction of the plasmon resonance intensity.

  10. Handheld Chem/Biosensor Using Extreme Conformational Changes in Designed Binding Proteins to Enhance Surface Plasmon Resonance (SPR)

    Science.gov (United States)

    2016-04-01

    detection system for chemical and biological toxins . Surface Plasmon Resonance (SPR), protein design, protein engineering, supercharged protein ...chemical and biological toxins . Keywords: Surface Plasmon Resonance (SPR), protein design, protein engineering, supercharged protein , metamaterials...even this small index change, should be capable of detecting larger target molecules, such as proteins or even viral or bacterial pathogens, which

  11. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    Science.gov (United States)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  12. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials

    Science.gov (United States)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S.; Zhang, Lin

    2016-10-01

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  13. Photocurrent enhancement by surface plasmon resonance of gold nanoparticles in spray deposited large area dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chander, Nikhil; Singh, Puneet [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Khan, A.F. [Department of Electronics and Information Technology, Ministry of Communications and Information Technology, Government of India, New Delhi 110003 (India); Dutta, Viresh [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Komarala, Vamsi K., E-mail: vamsi@ces.iitd.ac.in [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2014-10-01

    A facile method for fabricating large area TiO{sub 2} and TiO{sub 2}–Au nanocomposite films for dye sensitized solar cells (DSSCs) is presented using a spray technique. Pre-synthesized gold nanoparticles (Au NPs) were sprayed together with the TiO{sub 2} NPs and composite films with brilliant coloration due to surface plasmon resonances of Au NPs were prepared. Composite films containing ∼ 15 nm sized Au NPs exhibited enhanced absorption in the visible region of the electromagnetic spectrum. DSSCs with a large area of ∼ 4.5 cm{sup 2} were fabricated and a photocurrent enhancement of ∼ 10% was obtained for plasmonic DSSC containing 0.3 wt.% of ∼ 15 nm Au NPs. Incident photon to current conversion efficiency data conclusively showed enhanced currents in the visible region of the polychromatic spectrum arising due to plasmon enhanced near-field effects of Au NPs around the absorbing dye molecules. - Highlights: • Preparation of TiO{sub 2} and TiO{sub 2}–Au films with a large area of ∼ 7.5 cm{sup 2} by a spray technique • An efficiency of ∼ 4.5% achieved by the large area plasmonic DSSC • Photocurrent enhancement due to SPR effects of gold NPs observed • Comparison of the spray and conventional doctor blade methods in DSSC performance • Demonstration of technological feasibility and versatility of a simple spray process.

  14. Probing the symmetry and phase of localised surface plasmon resonances with modified electron probes

    CERN Document Server

    Guzzinati, Giulio; Lourenço--Martins, Hugo; Martin, Jerôme; Kociak, Mathieu; Verbeeck, Jo

    2016-01-01

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light at the nanoscale. While the field is progressing swiftly thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the symmetries of the plasmonic excitations cannot be accessed by direct measurements, leading to a partial and sometimes incorrect understanding of their properties. Here we overcome this limitation by deliberately shaping the wave--function of a free electron beam to match the symmetry of the plasmonic excitations in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles while filtering out modes with other symmetries. This method shows some resemblance to the widespread use of polarised light for the selective excitation of plasmon modes but adds the advanta...

  15. A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide

    DEFF Research Database (Denmark)

    Soh, N; Tokuda, T.; Watanabe, T.

    2003-01-01

    A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2,4-dichloroph......A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2...

  16. Plasmonic resonance scattering from silver nanowire illuminated by tightly focused singular beam.

    Science.gov (United States)

    Normatov, Alexander; Spektor, Boris; Leviatan, Yehuda; Shamir, Joseph

    2010-08-15

    We investigate scattering features of tightly focused singular beams by placing a cylindrical nanowire in the vicinity of a line phase singularity. Applying an illumination wavelength corresponding to silver cylinder plasmonic resonance, we compare the scattering response with that of a perfect conductor. The rigorous modeling employs a 2D version of the Richards-Wolf focusing method and the source model technique. It is found that a cylinder with a plasmonic resonance produces a strong scattering response by deflecting the power flow toward the optical singularity region, where otherwise the power approaches zero.

  17. Optical bistability effect in plasmonic racetrack resonator with high extinction ratio.

    Science.gov (United States)

    Wang, Xiaolei; Jiang, Houqiang; Chen, Junxue; Wang, Pei; Lu, Yonghua; Ming, Hai

    2011-09-26

    In this paper, optical bistability effect in an ultracompact plasmonic racetrack resonator with nonlinear optical Kerr medium is investigated both analytically and numerically. The properties of optical bistability and pump threshold are studied at 1.55 µm with various detuning parameters by an analytical model. The transmission switch from the upper branch to the lower branch with a pulse is also demonstrated by a finite-difference time-domain method. An extinction ratio of 97.8% and a switching time of 0.38 ps can be achieved with proper detuning parameter. Such a plasmonic resonator design provides a promising realization for highly effective optical modulators and switch.

  18. Investigation of Real-Time Photorepair Activity on DNA via Surface Plasmon Resonance

    OpenAIRE

    2012-01-01

    4/24/2014 PLOS ONE: Investigation of Real-Time Photorepair Activity on DNA via Surface Plasmon Resonance http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0044392 1/9 Published: August 29, 2012 DOI: 10.1371/journal.pone.0044392 Investigation of Real-Time Photorepair Activity on DNA via Surface Plasmon Resonance Rıza Kizilel , Enis Demir, Selimcan Azizoglu, Hande Asımgi, Ibrahim Halil Kavakli , Seda Kizilel Corrections 25 Oct 2012: Kizilel R, Demir E, Aziz...

  19. Brightening gold nanoparticles: new sensing approach based on plasmon resonance energy transfer.

    Science.gov (United States)

    Shi, Lei; Jing, Chao; Gu, Zhen; Long, Yi-Tao

    2015-05-11

    Scattering recovered plasmonic resonance energy transfer (SR-PRET) was reported by blocking the plasmon resonance energy transfer (PRET) from gold nanoparticle (GNP) to the adsorbed molecules (RdBS). Due to the selective cleavage of the Si-O bond by F- ions, the quenching is switched off causing an increase in the brightness of the GNPs,detected using dark-field microscopy (DFM) were brightened. This method was successfully applied to the determination of fluoride ions in water. The SR-PRET provides a potential approach for a vitro/vivo sensing with high sensitivity and selectivity.

  20. Phase effects in guided mode resonances II: measuring the angular phase of a surface plasmon polariton

    Science.gov (United States)

    Theisen, M. J.; Brown, T. G.

    2015-02-01

    We show how the phase of a resonant interaction between a focused beam and a guided mode can be directly observed in a pupil imaging experiment, in which the irradiance leaving the pupil of a standard microscope is relayed to an image sensor through a combination Wollaston prism, calcite beam splitter and polarizer. We apply the method to the observation of a surface plasmon polariton resonance excited in a corrugated silver film fabricated using electron beam lithography. We discuss how this particular imaging configuration could be adapted for applications in plasmonic optical sensing.

  1. A single particle plasmon resonance study of 3D conical nanoantennas.

    Science.gov (United States)

    Schäfer, Christian; Gollmer, Dominik A; Horrer, Andreas; Fulmes, Julia; Weber-Bargioni, Alexander; Cabrini, Stefano; Schuck, P James; Kern, Dieter P; Fleischer, Monika

    2013-09-07

    Metallic nanocones are well-suited optical antennas for near-field microscopy and spectroscopy, exhibiting a number of different plasmonic modes. A major challenge in using nanocones for many applications is maximizing the signal at the tip while minimizing the background from the base. It is shown that nanocone plasmon resonance properties can be shifted over a wide range of wavelengths by variation of the substrate, material, size and shape, enabling potential control over specific modes and field distributions. The individual resonances are identified and studied by correlated single particle dark field scattering and scanning electron microscopy in combination with numerical simulations.

  2. Forty-Four Pass Fibre Optic Loop for Improving the Sensitivity of Surface Plasmon Resonance Sensors

    CERN Document Server

    Su, Chin B

    2007-01-01

    A forty-four pass fibre optic surface plasmon resonance sensor that enhances detection sensitivity according to the number of passes is demonstrated for the first time. The technique employs a fibre optic recirculation loop that passes the detection spot forty- four times, thus enhancing sensitivity by a factor of forty-four. Presently, the total number of passes is limited by the onset of lasing action of the recirculation loop. This technique offers a significant sensitivity improvement for various types of plasmon resonance sensors that may be used in chemical and biomolecule detections.

  3. Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.H. [Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT (China); Center for Environmental Sensing and Modeling, Singapore-MIT Alliance for Research and Technology (Singapore); Ho, H.P. [Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT (China); Kong, S.K. [Programme of Biochemistry, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT (China); Kabashin, A.V. [Laboratoire Lasers, Plasmas et Procedes Photoniques (LP3, UMR 7341 CNRS), Faculte des Sciences de Luminy, Aix-Marseille University, 163 Avenue de Luminy, C. P. 917, 13288 Marseille Cedex 09 (France)

    2012-11-15

    Surface Plasmon Resonance (SPR) has become a central tool for label-free characterization of biomolecular interactions. Based on monitoring of amplitude characteristics, conventional SPR sensors have been extensively explored, commercialized and applied for studies of many important interactions (antigen-antibody, protein-ligand etc), but this technology still lacks of sensitivity for the detection of relatively small and low copy number compounds. Phase-sensitive SPR has recently emerged as an upgrade of this technology to resolve the sensitivity issue. Profiting from a sharp phase jump under SPR and ultra-sensitive tools of its control, this technology offers up to 100-time improvement of the detection limit, giving access to the detection of trace amounts of small molecular weight analytes (drugs etc). This paper intends to provide a tutorial on basic concepts of phase detection in SPR sensing, compare the performance of phase- and amplitude-sensitive sensors, review recent progress in the development and applications of phase-sensitive SPR sensors, and outline future prospects and trends of this technology. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Tailoring the plasmonic whispering gallery modes of a metal-coated resonator for potential application as a refractometric sensor.

    Science.gov (United States)

    Guo, Chang-Lei; Che, Kai-Jun; Gu, Guo-Qiang; Cai, Guo-Xiong; Cai, Zhi-Ping; Xu, Hui-Ying

    2015-02-20

    Plasmonic whispering gallery (WG) modes confined in metal-coated resonators are theoretically investigated by electromagnetic analyses. The resonance can be tuned from internal surface plasmonic WG modes to the hybrid state of the plasmonic mode by an introduced isolation layer. As the coated metal is reduced in size, the optical resonance is shifted out by the mode coupling of the internal and external surface plasmonic WG modes. Based on the optical leak of the plasmonic WG mode, the optical influences led by the surroundings with a variable refractive index are considered. Device performance criteria such as optical power leak, resonant wavelength shift, and threshold gain are studied. Full wave simulations are also employed and the results present good consistency with analytic solutions. The metal-coated resonator assisted by an active material is expected to provide promising performance as a refractometric sensor.

  5. Unconventional Fano effect and off-resonance field enhancement in plasmonic coated spheres

    CERN Document Server

    Arruda, Tiago J; Pinheiro, Felipe A

    2013-01-01

    We investigate light scattering by coated spheres composed of a dispersive plasmonic core and a dielectric shell. By writing the absorption cross-section in terms of the internal electromagnetic fields, we demonstrate it is an observable sensitive to interferences that ultimately lead to the Fano effect. Specially, we show that unconventional Fano resonances, recently discovered for homogeneous spheres with large dielectric permittivities, can also occur for metallic spheres coated with single dielectric layers. These resonances arise from the interference between two electromagnetic modes with the same multipole moment inside the shell and not from interactions between various plasmon modes of different layers of the particle. In contrast to the case of homogeneous spheres, unconventional Fano resonances in coated spheres exist even in the Rayleigh limit. These resonances can induce an off-resonance field enhancement, which is approximately one order of magnitude larger than the one achieved with conventiona...

  6. Active Multiple Plasmon-Induced Transparency with Graphene Sheets Resonators in Mid-Infrared Frequencies

    Directory of Open Access Journals (Sweden)

    Jicheng Wang

    2016-01-01

    Full Text Available A multiple plasmon-induced transparency (PIT device operated in the mid-infrared region has been proposed. The designed model is comprised of one graphene ribbon as main waveguide and two narrow graphene sheets resonators. The phase coupling between two graphene resonators has been investigated. The multimode PIT resonances have been found in both cases and can be dynamically tuned via varying the chemical potential of graphene resonators without optimizing its geometric parameters. In addition, this structure can get multiple PIT effect by equipping extra two sheets on the symmetric positions of graphene waveguide. The simulation results based on finite element method (FEM are in good agreement with the resonance theory. This work may pave new way for graphene-based thermal plasmonic devices applications.

  7. Surface plasmon-polariton resonance at diffraction of THz radiation on semiconductor gratings

    CERN Document Server

    Spevak, I S; Gavrikov, V K; Shulga, V M; Feng, J; Sun, H B; Kamenev, Yu E; Kats, A V

    2013-01-01

    Resonance diffraction of THz HCN laser radiation on a semiconductor (InSb) grating is studied both experimentally and theoretically. The specular reflectivity suppression due to the resonance excitation of the THz surface plasmon-polariton is observed on a pure semiconductor grating and on semiconductor gratings covered with a thin striped layer of the residual photoresist. Presence of a thin dielectric layer on the grating surface leads to the shift and widening of the plasmon-polariton resonance. A simple analytical theory of the resonance diffraction on a shallow grating covered with a dielectric layer is presented. Its results are in a good accordance with the experimental data. Analytical expressions for the resonance shift and broadening can be useful for sensing data interpretation.

  8. Double-Slot Hybrid Plasmonic Ring Resonator Used for Optical Sensors and Modulators

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2015-11-01

    Full Text Available An ultra-high sensitivity double-slot hybrid plasmonic (DSHP ring resonator, used for optical sensors and modulators, is developed. Due to high index contrast, as well as plasmonic enhancement, a considerable part of the optical energy is concentrated in the narrow slots between Si and plasmonic materials (silver is used in this paper, which leads to high sensitivity to the infiltrating materials. By partial opening of the outer plasmonic circular sheet of the DSHP ring, a conventional side-coupled silicon on insulator (SOI bus waveguide can be used. Experimental results demonstrate ultra-high sensitivity (687.5 nm/RIU of the developed DSHP ring resonator, which is about five-times higher than for the conventional Si ring with the same geometry. Further discussions show that a very low detection limit (5.37 × 10−6 RIU can be achieved after loaded Q factor modifications. In addition, the plasmonic metal structures offer also the way to process optical and electronic signals along the same hybrid plasmonic circuits with small capacitance (~0.275 fF and large electric field, which leads to possible applications in compact high-efficiency electro-optic modulators, where no extra electrodes for electronic signals are required.

  9. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    Science.gov (United States)

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-03

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy.

  10. 表面等离子共振技术结合滚环扩增法检测丙型肝炎病毒%Surface plasmon resonance technology combined with rolling circle amplification for detection of hepatitis C virus

    Institute of Scientific and Technical Information of China (English)

    季明辉; 刘春晓; 赵纯中; 徐云庆; 徐华; 欧青叶; 孙秋香; 滕娟; 胡贵方; 郑义; 顾大勇; 龙军; 鲁卫平; 何建安; 谈书勤; 史蕾

    2012-01-01

    Objective To develop rolling circle amplification (RCA) method combined with specific surface plasmon resonance ( SPR) nucleic acid gold-chip for the deteclion of hepatitis C virus ( HCV). Methods According to the specific test sequence of HCV x-tail region, probes and primers for detecting HCV with RCA method were designed and synthesized, and were divided into test group, negative sample group and positive sample group for RCA experiments to detect HCV. The template concentration was diluted into ten gradients, and the detection limit of SPR combined with RCA method was evaluated. Based on the ordinary gold chip, through the surface chemical processing, the nucleic acid chip with high specificity was obtained, and the anti-protein capacity of protein chip was verified by anti-protein experiment. Real-time detection of RCA reaction and signal magnification reaction was conducted with double channel SPR apparatus. Sixty-three blood samples collected from clinics were delected by SPR combined with RCA method, comparisons were made with Real-Time PCR, and the sensitivity and specificity were evaluated. Results The minimum detection concentration of SPR combined with RCA method in HCV testing was 1 pmol/L, which was lower than the detection limit of Real-Time PCR (0. 1 nmol/L). SPR chip had the favorable anti-protein absorptive capacity. The signal-to-noise ratio of double channel SPR apparatus in detection of RCA chip system was 100, which achieved the detection of HCV. The sensitivity of SPR combined with RCA method in detection of clinical samples was 90.0% (27/30), and the specificity was 84. 8% (28/33) (x2 = 8-10, P = 0. 004). Conclusion SPR combined with RCA method combines biological sensing technology with in situ amplification technology, which may detect HCV in a fast, label-free and real-time way.%目的 研究滚环扩增(RCA)技术结合特异性表面等离子共振(SPR)金膜芯片检测丙型肝炎病毒(HCv)的方法.方法 根据丙型肝炎x-tail

  11. Radiation-Suppressed plasmonic open resonators designed by nonmagnetic transformation optics

    Science.gov (United States)

    Xu, Hongyi; Wang, Xingjue; Yu, Tianyuan; Sun, Handong; Zhang, Baile

    2012-01-01

    How to confine light energy associated with surface plasmon polaritons (SPPs) in a physical space with minimal radiation loss whereas creating maximum interacting section with surrounding environment is of particular interest in plasmonic optics. By virtue of transformation optics, we propose a design method of forming a polygonal surface-plasmonic resonator in fully open structures by applying the nonmagnetic affine transformation optics strategy. The radiation loss can be suppressed because SPPs that propagate in the designed open structures will be deceived as if they were propagating on a flat metal/dielectric interface without radiation. Because of the nonmagnetic nature of the transformation strategy, this design can be implemented with dielectric materials available in nature. An experimentally verifiable model is subsequently proposed for future experimental demonstration. Our design may find potential applications in omnidirectional sensing, light harvesting, energy storage and plasmonic lasing. PMID:23136641

  12. Scattering and Extinction Torques: How Plasmon Resonances Affect the Orientation Behavior of a Nanorod in Linearly Polarized Light.

    Science.gov (United States)

    Xu, Xiaohao; Cheng, Chang; Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2016-01-21

    Linearly polarized light can exert an orienting torque on plasmonic nanorods. The torque direction has generally been considered to change when the light wavelength passes through a plasmon longitudinal resonance. Here, we use the Maxwell stress tensor to evaluate this torque in general terms. According to distinct light-matter interaction processes, the total torque is decomposed into scattering and extinction torques. The scattering torque tends to orient plasmonic nanorods parallel to the light polarization, independent of the choice of light wavelength. The direction of the extinction torque is not only closely tied to the excitation of plasmon resonance but also depends on the specific plasmon mode around which the light wavelength is tuned. Our findings show that the conventional wisdom that simply associates the total torque with the plasmon longitudinal resonances needs to be replaced with an understanding based on the different torque components and the details of spectral distribution.

  13. Plasmon resonant gold-coated liposomes for spectrally coded content release

    Science.gov (United States)

    Leung, Sarah J.; Troutman, Timothy S.; Romanowski, Marek

    2009-02-01

    We have recently introduced liposome-supported plasmon resonant gold nanoshells (Troutman et al., Adv. Mater. 2008, 20, 2604-2608). These plasmon resonant gold-coated liposomes are degradable into components of a size compatible with renal clearance, potentially enabling their use as multifunctional agents in applications in nanomedicine, including imaging, diagnostics, therapy, and drug delivery. The present research demonstrates that laser illumination at the wavelength matching the plasmon resonance band of a gold-coated liposome leads to the rapid release of encapsulated substances, which can include therapeutic and diagnostic agents. Leakage of encapsulated contents is monitored through the release of self-quenched fluorescein, which provides an increase in fluorescence emission upon release. Moreover, the resonant peak of these gold-coated liposomes is spectrally tunable in the near infrared range by varying the concentration of gold deposited on the surface of liposomes. Varying the plasmon resonant wavelengths of gold-coated liposomes can provide a method for spectrally-coding their light-mediated content release, so that the release event is initiated by the specific wavelength of light used to illuminate the liposomes. The development of spectrally-coded release can find applications in controlled delivery of multiple agents to support complex diagnostic tests and therapeutic interventions.

  14. 基于表面等离子体共振传感技术检测小分子物质的研究进展%Research progress on detecting low molecular weight analytes based on surface plasmon resonance sensing technology

    Institute of Scientific and Technical Information of China (English)

    高志贤; 柳明

    2010-01-01

    Surface plasmon resonance (SPR) sensing technology is a high-tech optical detection technolo-gy developed quickly in recent years, which combines biology, polymer chemistry and sensing technologies to form a rapid, sensitive, specific, portable and easy to operate detection technology. This paper outlines the mech-anism of SPR sensing technology for detection of low molecular weight analytes, the main application methods and research progress, discusses the advantages and shortages of the method, and foretastes the development prospect of this technology.%表面等离子体共振(SPR)传感技术是近年发展起来的一种新的光学检测技术,它将生物学、高分子化学及传感技术结合,形成具有快速、灵敏、特异以及操作简便的榆测技术.概述了应用SPR传感技术进行小分子物质检测的原理、主要方法及研究进展,分析了该方法的优势与缺陷,并对其发展前景进行了展望.

  15. Tuneable and robust long range surface plasmon resonance for biosensing applications

    Science.gov (United States)

    Méjard, Régis; Dostálek, Jakub; Huang, Chun-Jen; Griesser, Hans; Thierry, Benjamin

    2013-10-01

    A multilayered biosensing architecture based on long range surface plasmons (LRSPs) is reported. LRSPs originate from the coupling of surface plasmons on the opposite sides of a thin metal film embedded in a symmetrical refractive index environment. With respect to regular SPs, LRSPs are characterized by extended electromagnetic field profiles and lower losses, making them of high interest in biosensing, especially for large biological entities. LRSPs-supporting layer structures are typically prepared by using fluoropolymers with refractive indices close to that of water. Unfortunately, fluoropolymers have low surface energies which can translate into poor adhesion to substrates and sub-optimal properties of coatings with surface plasmon resonance-active metal layers such as gold. In this work, a multilayered fluoropolymer structure with tuneable average refractive index is described and used to adjust the penetration depth of LRSP from the sensor surface. The proposed methodology also provides a simple solution to increase the adhesion of LRSP-supporting structures to glass substrates. Towards taking full advantage of long range surface plasmon resonance sensors, a novel approach based on the plasma-polymerization of allylamine is also described to improve the quality of gold layers on fluoropolymers such as Teflon AF. Through these advancements, long range surface plasmon resonance sensors were fabricated with figures of merit as high as 466 RIU-1. The remarkable performance of these sensors combined with their high stability is expected to foster applications of LRSPR in biosensing.

  16. Rational design of on-chip refractive index sensors based on lattice plasmon resonances (Presentation Recording)

    Science.gov (United States)

    Lin, Linhan; Zheng, Yuebing

    2015-08-01

    Lattice plasmon resonances (LPRs), which originate from the plasmonic-photonic coupling in gold or silver nanoparticle arrays, possess ultra-narrow linewidth by suppressing the radiative damping and provide the possibility to develop the plasmonic sensors with high figure of merit (FOM). However, the plasmonic-photonic coupling is greatly suppressed when the nanoparticles are immobilized on substrates because the diffraction orders are cut off at the nanoparticle-substrate interfaces. Here, we develop the rational design of LPR structures for the high-performance, on-chip plasmonic sensors based on both orthogonal and parallel coupling. Our finite-difference time-domain simulations in the core/shell SiO2/Au nanocylinder arrays (NCAs) reveal that new modes of localized surface plasmon resonances (LSPRs) show up when the aspect ratio of the NCAs is increased. The height-induced LSPRs couple with the superstrate diffraction orders to generate the robust LPRs in asymmetric environment. The high wavelength sensitivity and narrow linewidth in these LPRs lead to the plasmonic sensors with high FOM and high signal-to-noise ratio (SNR). Wide working wavelengths from visible to near-infrared are also achieved by tuning the parameters of the NCAs. Moreover, the wide detection range of refractive index is obtained in the parallel LPR structure. The electromagnetic field distributions in the NCAs demonstrate the height-enabled tunability of the plasmonic "hot spots" at the sub-nanoparticles resolution and the coupling between these "hot spots" with the superstrate diffraction waves, which are responsible for the high performance LPRs-based on-chip refractive index sensors.

  17. Guided-mode-resonance coupled localized surface plasmons for dually resonance enhanced Raman scattering sensing

    Science.gov (United States)

    Wang, Zheng; Liu, Chao; Li, Erwen; Chakravarty, Swapnajit; Xu, Xiaochuan; Wang, Alan X.; Fan, D. L.; Chen, Ray T.

    2017-02-01

    Raman scattering spectroscopy is a unique tool to probe vibrational, rotational, and other low-frequency modes of a molecular system and therefore could be utilized to identify chemistry and quantity of molecules. However, the ultralow efficient Raman scattering, which is only 1/109 1/1014 of the excitation light due to the small Raman scattering cross-sections of molecules, have significantly hindered its development in practical sensing applications. The discovery of surface-enhanced Raman scattering (SERS) in the 1970s and the significant progress in nanofabrication technique, provide a promising solution to overcome the inherent issues of Raman spectroscopy. It is found that In the vicinity of nanoparticles and their junctions, the Raman signals of molecules can be significantly improved by an enhancement factor as high as 1010, due to the ultrahigh electric field generated by the localized surface plasmons resonance (LSPR), where the intensity of Raman scattering is proportional to the |E|4. In this work, we propose and demonstrate a new approach combining LSPR from nanocapsules with densely assembled silver nanoparticles (NC-AgNPs) and guidemode- resonance (GMR) from dielectric photonic crystal slabs (PCSs) for SERS substrates with robustly high performance.

  18. Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli

    Directory of Open Access Journals (Sweden)

    Mlalila NG

    2016-12-01

    Full Text Available Nichrous G Mlalila,1,2 Hulda Shaidi Swai,1 Askwar Hilonga,3 Dattatreya M Kadam2 1School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania; 2ICAR-Central Institute of Post-Harvest Engineering and Technology (ICAR-CIPHET, Ludhiana, Punjab, India; 3Department of Materials Science and Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania Abstract: This study presents a simple and trouble-free method for determining the antimicrobial properties of silver nanoparticles (AgNPs based on the surface plasmon resonance (SPR bands. AgNPs were prepared by chemical reduction method using silver nitrates as a metallic precursor and formaldehyde (HCHO as a reducing agent and capped by polyethylene glycol. Effects of several processing variables on the size and shape of AgNPs were monitored using an ultraviolet–visible spectrophotometer based on their SPR bands. The formed particles showing various particle shapes and full width at half maximum (FWHM were tested against Escherichia coli by surface spreading using agar plates containing equal amounts of selected AgNPs samples. The NPs exhibited higher antimicrobial properties; however, monodispersed spherical NPs with narrow FWHM were more effective against E. coli growth. The NPs prepared are promising candidates in diverse applications such as antimicrobial agents in the food and biomedical industries. Keywords: antimicrobial agent, bandwidth, full width at half maximum, nanoparticles, particle size

  19. Research of photolithography technology based on surface plasmon

    Institute of Scientific and Technical Information of China (English)

    Li Hai-Hua; Chen Jian; Wang Qing-Kang

    2010-01-01

    This paper demonstrates a new process of the photolithography technology,used to fabricate simply fine patterns,by employing surface plasmon character.The sub-wavelength periodic silica structures with uniform silver film are used as the exposure mask.According to the traditional semiconductor process,the grating structures are fabricated at exposing wavelength of 436 nm.At the same time,it provides additional and quantitative support of this technique based on the finite-difference time-domain method.The results of the research show that surface plasmon characteristics of metals can be used to increase the optical field energy distribution differences through the silica structures with silver film,which directly impact on the exposure of following photosensitive layer in different regions.

  20. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Science.gov (United States)

    Mahmoodi, S.; Moradi, M.; Mohseni, S. M.

    2016-12-01

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism.

  1. Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism

    Science.gov (United States)

    Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang

    Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.

  2. Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers.

    Science.gov (United States)

    Verre, R; Yang, Z J; Shegai, T; Käll, M

    2015-03-11

    The possibility of achieving optical magnetism at visible frequencies using plasmonic nanostructures has recently been a subject of great interest. The concept is based on designing structures that support plasmon modes with electron oscillation patterns that imitate current loops, that is, magnetic dipoles. However, the magnetic resonances are typically spectrally narrow, thereby limiting their applicability in, for example, metamaterial designs. We show that a significantly broader magnetic response can be realized in plasmonic pentamers constructed from metal-insulator-metal (MIM) sandwich particles. Each MIM unit acts as a magnetic meta-atom and the optical magnetism is rendered quasi-broadband through hybridization of the in-plane modes. We demonstrate that scattering spectra of individual MIM pentamers exhibit multiple Fano resonances and a broad subradiant spectral window that signals the magnetic interaction and a hierarchy of coupling effects in these intricate three-dimensional nanoparticle oligomers.

  3. Reflectors and resonators for high-k bulk Bloch plasmonic waves in multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei

    2012-01-01

    We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength-scale struc......We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength......-scale structuring. This multiscale approach is shown to be a promising platform for using bulk plasmonic waves in complex multilayer metamaterials as a new kind of information carriers....

  4. Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance

    DEFF Research Database (Denmark)

    Emani, Naresh Kumar; Kildishev, Alexander V.; Shalaev, Vladimir M.

    2015-01-01

    Graphene has recently emerged as a viable platform for integrated optoelectronic and hybrid photonic devices because of its unique properties. The optical properties of graphene can be dynamically controlled by electrical voltage and have been used to modulate the plasmons in noble metal nanostru...

  5. Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems.

    Science.gov (United States)

    Adato, Ronen; Artar, Alp; Erramilli, Shyamsunder; Altug, Hatice

    2013-06-12

    Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach's key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications.

  6. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.

    Science.gov (United States)

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-05-15

    A successful approach for the fabrication and characterization of an optical fiber sensor for the detection of profenofos based on surface plasmon resonance (SPR) and molecular imprinting is introduced. Molecular imprinting technology is used for the creation of three dimensional binding sites having complementary shape and size of the specific template molecule over a polymer for the recognition of the same. Binding of template molecule with molecularly imprinted polymer (MIP) layer results in the change in the dielectric nature of the sensing surface (polymer) and is identified by SPR technique. Spectral interrogation method is used for the characterization of the sensing probe. The operating profenofos concentration range of the sensor is from 10(-4) to 10(-1)µg/L. A red shift of 18.7 nm in resonance wavelength is recorded for this profenofos concentration range. The maximum sensitivity of the sensor is 12.7 nm/log (µg/L) at 10(-4)µg/L profenofos concentration. Limit of detection (LOD) of the sensor is found to be 2.5×10(-6)µg/L. Selectivity measurements predict the probe highly selective for the profenofos molecule. Besides high sensitivity due to SPR technique and selectivity due to molecular imprinting, proposed sensor has numerous other advantages like immunity to electromagnetic interference, fast response, low cost and capability of online monitoring and remote sensing of analyte due to the fabrication of the probe on optical fiber.

  7. Sensing (un)binding events via surface plasmons: effects of resonator geometry

    Science.gov (United States)

    Antosiewicz, Tomasz J.; Claudio, Virginia; Käll, Mikael

    2016-04-01

    The resonance conditions of localized surface plasmon resonances (LSPRs) can be perturbed in any number ways making plasmon nanoresonators viable tools in detection of e.g. phase changes, pH, gasses, and single molecules. Precise measurement via LSPR of molecular concentrations hinge on the ability to confidently count the number of molecules attached to a metal resonator and ideally to track binding and unbinding events in real-time. These two requirements make it necessary to rigorously quantify relations between the number of bound molecules and response of plasmonic sensors. This endeavor is hindered on the one hand by a spatially varying response of a given plasmonic nanosensor. On the other hand movement of molecules is determined by stochastic effects (Brownian motion) as well as deterministic flow, if present, in microfluidic channels. The combination of molecular dynamics and the electromagnetic response of the LSPR yield an uncertainty which is little understood and whose effect is often disregarded in quantitative sensing experiments. Using a combination of electromagnetic finite-difference time-domain (FDTD) calculations of the plasmon resonance peak shift of various metal nanosensors (disk, cone, rod, dimer) and stochastic diffusion-reaction simulations of biomolecular interactions on a sensor surface we clarify the interplay between position dependent binding probability and inhomogeneous sensitivity distribution. We show, how the statistical characteristics of the total signal upon molecular binding are determined. The proposed methodology is, in general, applicable to any sensor and any transduction mechanism, although the specifics of implementation will vary depending on circumstances. In this work we focus on elucidating how the interplay between electromagnetic and stochastic effects impacts the feasibility of employing particular shapes of plasmonic sensors for real-time monitoring of individual binding reactions or sensing low concentrations

  8. A reconfigurable subwavelength plasmonic fano nano-antenna based on split ring resonator

    Science.gov (United States)

    Hosseinbeig, Ahmad; Pirooj, Azadeh; Zarrabi, Ferdows B.

    2017-02-01

    In this article, a reconfigurable subwavelength plasmonic nano-antenna with Fano resonance effect is presented based on the dual ring structure. In order to achieve reconfigurable characteristics, the interaction of gold with graphene is studied. SiN substrate with refractive index of 1.98 and gold with Palik optical characteristic modified for metal layer are utilized in the design of the proposed nano-antenna. Simulations are performed by using CST Microwave Studio. The biasing effect on extinction cross section is studied for 0 to 0.8 eV. It is shown that the gap method is useful for exciting the Fano resonance in the dual ring nano-antenna and there is only a plasmonic resonance in the simple dual ring antenna. The proposed nano-antenna is useful for THz medical spectroscopy due to its simple design and the ability to control the second resonance frequency by changing the bias of the graphene.

  9. Linear and nonlinear optics of hybrid plasmon-exciton nanomaterials in the presence of overlapping resonances

    CERN Document Server

    Sukharev, Maxim; Pachter, Ruth

    2015-01-01

    We consider a hybrid plasmon-exciton system comprised of a resonant molecular subsystem and three Au wires supporting a dipole mode which can be coupled to a dark mode in controllable fashion by variation of a symmetry parameter. The physics of such a system under strong coupling conditions is examined in detail. It is shown that if two wires supporting the dark mode are covered with molecular layers the system exhibits four resonant modes for a strong coupling regime due to asymmetry and lifted degeneracy of the molecular state in this case, while upon having molecular aggregates covering the top wire with dipolar mode, three resonant modes appear. Pump-probe simulations are performed to scrutinize the quantum dynamics and find possible ways to control plasmon-exciton materials. It is demonstrated that one can design hybrid nanomaterials with highly pronounced Fano-type resonances when excited by femtosecond lasers.

  10. Enhanced Sensitivity of Surface Plasmon Resonance Sensor Based on Bilayers of Silver-Barium Titanate

    Directory of Open Access Journals (Sweden)

    S. Fouad

    2016-12-01

    Full Text Available Surface plasmon resonance (SPR sensors have been widely adopted with various fields such as physics, chemistry, biology and biochemistry. SPR sensor has many advantages like the less number of sensing samples required, freedom of electromagnetic interference and higher sensitivity. This research investigates the phase interrogation technique of a surface plasmon resonance sensor based on silver and thin film dielectric material of Barium titanate layers. Barium titanate (BaTiO3 layer is adopted due to its excellent dielectric properties such as high dielectric constant and low dielectric loss. The numerical results demonstrate that the fusion of the proposed material BaTiO3 layer into surface plasmon resonance sensor yields a higher sensitivity of 280 degree/RIU in comparison with surface plasmon resonance sensor without BaTiO3 layer which shows only a sensitivity of 120 degree/RIU. As the thickness of this layer increases from 5 nm to 10 nm, the sensitivity is enhanced from 160 degree/RIU to 280 degree/RIU for a fixed metal layer of silver with a thickness of (70 nm.

  11. Studies on Interactions of Antibiotics with Serum Albumin by Surface Plasmon Resonance Biosensor

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Characterizing how chemical compounds binding to serum albumin is essential in evaluating drug candidates and is the focus of this study. A surface plasmon resonance biosensor developed in this laboratory was used to determine the binding constants of antibiotics with serum albumin. The binding constants of five antibiotics(azithromycin, spectinomycin, gentamycin, metacycline and kanamycin) with serum albumins were obtained.

  12. Surface plasmon resonance (SPR) detection of Staphylococcal Enterotoxin A in food samples

    Science.gov (United States)

    An automated and rapid method for detection of staphylococcal enterotoxins (SE) is needed. A sandwich assay was developed using a surface plasmon resonance (SPR) biosensor for detection of staphylococcal enterotoxin A (SEA) at subpicomolar concentration. Assay conditions were optimized for capturing...

  13. Thermal energy transfer by plasmon-resonant composite nanoparticles at pulse laser irradiation.

    Science.gov (United States)

    Avetisyan, Yuri A; Yakunin, Alexander N; Tuchin, Valery V

    2012-04-01

    Heating of composite plasmon-resonant nanoparticles (spherical gold nanoshells) under pulse laser illumination is considered. The numerical solution of the time-dependent heat conduction equation accounting for spatial inhomogeneities of absorbed laser radiation is performed. Important features of temperature kinetics and thermal flux inside nanoparticles are analyzed. Possible applications of the observed effects in nanotechnology and medicine are discussed.

  14. Improvement of the Specificity of Surface Plasmon Resonance with BSA-modified Chip

    Institute of Scientific and Technical Information of China (English)

    Li Hua CHEN

    2006-01-01

    A chip was modified with bovine serum albumin (BSA), then interaction between glutathione (GSH) immobilized on the top of BSA and glutathione-S-transferase (GST) was examined, using surface plasmon resonance (SPR). The SPR results showed that BSA-modified chip was effective not only in binding the target proteins but also in suppressing the nonspecific binding (NSB) of proteins.

  15. Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators

    CERN Document Server

    Kristensen, Philip Trøst; Hughes, Stephen

    2015-01-01

    We discuss three formally different formulas for normalization of quasinormal modes currently in use for modeling optical cavities and plasmonic resonators and show that they are complementary and provide the same result. Regardless of the formula used for normalization, one can use the norm to define an effective mode volume for use in Purcell factor calculations.

  16. Rapid Determination of Phytophthora infestans sporangia Using a Surface Plasmon Resonance Immunosensor

    DEFF Research Database (Denmark)

    Skottrup, Peter; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2007-01-01

    Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangia...

  17. Development of a biosensor microarray towards food screening using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Rebe, S.; Bremer, M.G.E.G.; Giesbers, M.; Norde, W.

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration c

  18. Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass

    Science.gov (United States)

    Chicken is one of the most popular meat products in the world. Salmonella Typhimurium is a common foodborne pathogens associated with the processing of poultry. An optical Surface Plasmon Resonance (SPR) biosensor was sensitive to the presence of Salmonella Typhimurium in chicken carcass. The Spr...

  19. Detection of benzimidazole carbamates and amino metabolites in liver by surface plasmon resonance-biosensor

    Science.gov (United States)

    Two surface plasmon resonance (SPR) biosensor screening assays were developed and validated to detect 11 benzimidazole carbamate (BZT) and four amino-benzimidazole veterinary drug residues in liver tissue. The assays used polyclonal antibodies, raised in sheep, to detect BZTs and amino-benzimidazole...

  20. Rapid Determination of Phytophthora infestans sporangia Using a Surface Plasmon Resonance Immunosensor

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2007-01-01

    Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangi...

  1. Detection of Fungal Spores Using a Generic Surface Plasmon Resonance Immunoassay

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Hearty, Stephen; Frøkiær, Hanne

    2007-01-01

    This paper describes a biosensor-based method for detection of fungal spores using Surface Plasmon Resonance (SPR). The approach involves the use of a mouse monoclonal antibody (Pst mAb8) and a SPR sensor for label-free detection of urediniospores from the model organism Puccinia striiformis f.sp...

  2. The application of neoglycopeptides in the development of sensitive surface plasmon resonance-based biosensors

    NARCIS (Netherlands)

    Maljaars, C.E.P.; de Souza, A.C.; Halkes, K.M.; Upton, P.J.; Reeman, S.M.; André, S.; Gabius, H.-J.; McDonnell, M.B.; Kamerling, J.P.

    2008-01-01

    The development of a biosensor based on surface plasmon resonance is described for the detection of carbohydrate-binding proteins in solution on a Biacore 2000 instrument, using immobilized glycopeptides as ligands. Their selection was based on previous screenings of solid-phase glycopeptide

  3. The application of neoglycopeptides in the development of sensitive surface plasmon resonance-based biosensors

    NARCIS (Netherlands)

    Maljaars, C.E.P.; de Souza, A.C.; Halkes, K.M.; Upton, P.J.; Reeman, S.M.; André, S.; Gabius, H.-J.; McDonnell, M.B.; Kamerling, J.P.

    2008-01-01

    The development of a biosensor based on surface plasmon resonance is described for the detection of carbohydrate-binding proteins in solution on a Biacore 2000 instrument, using immobilized glycopeptides as ligands. Their selection was based on previous screenings of solid-phase glycopeptide librari

  4. A Surface Plasmon Resonance Immunosensor for Detection of urediniospores from Puccinia striiformis f. sp. tritici

    DEFF Research Database (Denmark)

    Skottrup, Peter; Hearty, Stephen; Frøkiær, Hanne;

    2006-01-01

    This study describes a generic biosensing principle for detection of fungal spores using surface plasmon resonance (SPR). The approach involves the use of a mouse monoclonal antibody (mAb) and a SPR sensor for label-free detection of the model organism Puccinia striiformis f.sp. tritici (Pst). We...

  5. Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens

    Science.gov (United States)

    Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...

  6. Detection of egg yolk antibodies reflecting Salmonella enteritidis infections using a surface plasmon resonance biosensor

    NARCIS (Netherlands)

    Thomas, M.E.; Bouma, A.; Eerden, van E.; Landman, W.J.M.; Knapen, van F.; Stegeman, J.A.; Bergwerff, A.A.

    2006-01-01

    A surface plasmon resonance (SPR) biosensor assay was developed on the basis of a lipopolysaccharide antigen of Salmonella enterica serovar enteritidis (S. enterica serovar enteritidis) to detect egg yolk antibodies against S. enterica serovar enteritidis. This biosensor assay was compared to two co

  7. Nanopatterned submicron pores as a shield for nonspecific binding in surface plasmon resonance-based sensing

    NARCIS (Netherlands)

    Raz, Sabina Rebe; Marchesini, Gerardo R.; Bremer, Maria G. E. G.; Colpo, Pascal; Garcia, Cesar Pascual; Guidetti, Guido; Norde, Willem; Rossi, Francois

    2012-01-01

    We present a novel approach to tackle the most common drawback of using surface plasmon resonance for analyte screening in complex biological matrices - the nonspecific binding to the sensor chip surface. By using a perforated membrane supported by a polymeric gel structure at the evanescent wave pe

  8. Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Raz, Sabina Rebe; Bremer, Maria G. E. G.; Giesbers, Marcel; Norde, Willem

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration c

  9. Quantifying protein-protein interactions in the ubiquitin pathway by surface plasmon resonance

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2005-01-01

    The commercial availability of instruments, such as Biacore, that are capable of monitoring surface plasmon resonance (SPR) has greatly simplified the quantification of protein-protein interactions. Already, this technique has been used for some studies of the ubiquitin-proteasome system. Here we...

  10. Enhancing the gas sensitivity of surface plasmon resonance with a nanoporous silica matrix

    NARCIS (Netherlands)

    Berrier, A.; Offermans, P.; Cools, R.; Megen, B. van; Knoben, W.; Vecchi, G.; Rivas, J.G.; Crego-Calama, M.; Brongersma, S.H.

    2011-01-01

    The development of sensing schemes for the detection of health-threatening gases is an attractive subject for research towards novel integrated autonomous sensor systems. We report here on a novel way of sensing NO\\2 by surface plasmon resonance (SPR) using a gas-sensitive layer composed of

  11. Surface characterization and antifouling properties of nanostructured gold chips for imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, S.; Pellacani, P.; Beek, van T.A.; Zuilhof, H.; Nielen, M.W.F.

    2015-01-01

    Surface Plasmon Resonance (SPR) optical sensing is a label-free technique for real-time monitoring of biomolecular interactions. Recently, a portable imaging SPR (iSPR) prototype instrument, featuring a nanostructured gold chip, has been developed. In the present work, we investigated the crucial

  12. Broadening of Plasmonic Resonance Due to Electron Collisions with Nanoparticle Boundary: а Quantum Mechanical Consideration

    DEFF Research Database (Denmark)

    Uskov, Alexander; Protsenko, Igor E.; Mortensen, N. Asger

    2014-01-01

    We present a quantum mechanical approach to calculate broadening of plasmonic resonances in metallic nanostructures due to collisions of electrons with the surface of the structure. The approach is applicable if the characteristic size of the structure is much larger than the de Broglie electron ...

  13. Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths

    DEFF Research Database (Denmark)

    Garcia, Cesar; Coello, Victor; Han, Zhanghua

    2012-01-01

    Dielectric-loaded plasmonic waveguide-racetrack resonators (WRTRs) were designed and fabricated for operating at near-infrared wavelengths (750–850 nm) and characterized using leakage-radiation microscopy. The transmission spectra of the WRTRs are found experimentally and compared to the calculat...

  14. Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Babicheva, Viktoriia; Uskov, Alexander

    2014-01-01

    -particle excitations (localized surface plasmon resonances) leads to stronger local field enhancement. In turn, this causes a significant increase of the photocurrent compared to the case when only individual-particle excitations are present. The results can be used to design new photodetectors with highly selective...

  15. Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna

    CERN Document Server

    López-Tejeira, F; Rodríguez-Oliveros, R; Sánchez-Gil, J A

    2011-01-01

    Single metallic nanorods acting as half-wave antennas in the optical range exhibit an asymmetric, multi-resonant scattering spectrum that strongly depends on both their length and dielectric properties. Here we show that such spectral features can be easily understood in terms of Fano-like interference between adjacent plasmon resonances. On the basis of analytical and numerical results for different geometries, we demonstrate that Fano resonances may appear for such single-particle nanoantennas provided that interacting resonances overlap in both spatial and frequency domains.

  16. Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors

    Science.gov (United States)

    Rosenberg, Jessie; Shenoi, Rajeev V.; Krishna, Sanjay; Painter, Oskar

    2010-02-01

    We design a polarization-sensitive resonator for use in midinfrared photodetectors, utilizing a photonic crystal cavity and a single or double-metal plasmonic waveguide to achieve enhanced detector efficiency due to superior optical confinement within the active region. As the cavity is highly frequency and polarization-sensitive, this resonator structure could be used in chip-based infrared spectrometers and cameras that can distinguish among different materials and temperatures to a high degree of precision.

  17. Control of the plasmonic resonance of a graphene coated plasmonic nanoparticle array combined with a nematic liquid crystal

    Science.gov (United States)

    De Sio, Luciano; Cataldi, Ugo; Bürgi, Thomas; Tabiryan, Nelson; Bunning, Timothy J.

    2016-07-01

    We report on the fabrication and characterization of a switchable plasmonic device based on a conductive graphene oxide (cGO) coated plasmonic nanoparticle (NP) array, layered with nematic liquid crystal (NLC) as an active medium. A monolayer of NPs has been immobilized on a glass substrate through electrostatic interaction, and then grown in place using nanochemistry. This monolayer is then coated with a thin (less then 100nm) cGO film which acts simultaneously as both an electro-conductive and active medium. The combination of the conductive NP array with a separate top cover substrate having both cGO and a standard LC alignment layer is used for aligning a NLC film in a hybrid configuration. The system is analysed in terms of morphological and electro-optical properties. The spectral response of the sample characterized after each element is added (air, cGO, NLC) reveals a red-shift of the localized plasmonic resonance (LPR) frequency of approximately 62nm with respect to the NP array surrounded by air. The application of an external voltage (8Vpp) is suitable to modulate (blue shift) the LPR frequency by approximately 22nm.

  18. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.

    Science.gov (United States)

    Petefish, Joseph W; Hillier, Andrew C

    2014-03-04

    Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating surface plasmons as a method for SEIRA excitation. In this report, we demonstrate angle-tunable enhancement of vibrational stretching modes associated with a thin poly(methyl methacrylate) (PMMA) film that is coupled to a silver-coated diffraction grating. Gratings are fabricated using laser interference lithography to achieve precise surface periodicities, which can be used to generate surface plasmons that overlap with specific vibrational modes in the polymer film. Infrared reflection absorption spectra are presented for both bare silver and PMMA-coated silver gratings at a range of angles and polarization states. In addition, spectra were obtained with the grating direction oriented perpendicular and parallel to the infrared source in order to isolate plasmon enhancement effects. Optical simulations using the rigorous coupled-wave analysis method were used to identify the origin of the plasmon-induced enhancement. Angle-dependent absorption measurements achieved signal enhancements of more than 10-times the signal in the absence of the plasmon.

  19. Standing-wave resonances in plasmonic nanoumbrella cavities for color generation and colorimetric refractive index sensor

    Science.gov (United States)

    Fan, Jiaorong; Li, Zhongyuan; Chen, Zhuojie; Wu, Wengang

    2016-10-01

    We theoretically investigate the hybridization of the elemental surface plasmons in umbrella-shape plasmonic nanostructures and experimentally demonstrate the implementation of plasmonic multicolor metasurfaces as well as their application in colorimetric sensing. The three-dimension metallic umbrella arrays consist of a periodic canopy-capped-nanopillars with metal-coated sidewall and a backplane metal-film to form vertical nanocavity of canopy and film. Plasmonic coupling and energy confinement in nanocavity induce a noticeably resonance narrowing of multispectral reflection. The metasurfaced nanostructures appeared in vibrant and tunable colors with broad gamut derived from color blending mechanism due to multiple, narrow-band resonances. Vivid colors varied from red, yellow, green, blue to violet are easily achieved. It is also shown that such plasmonic metasurfaces can work as the feasible and real-time colorimetric refractive index sensor by measuring the distinct color variation to glucose concentration changes. Our sensor scheme shows its spectral sensitivity in the periodic umbrella array with respect to the refractive index change to be 242.5 nm/RIU with a figure of merit of 7.3. Furthermore, a refractive index resolution of colorimetric sensing up to 0.025 RIU has been accomplished.

  20. Optical properties of surface plasmon resonances of coupled metallic nanorods.

    Science.gov (United States)

    Smythe, Elizabeth J; Cubukcu, Ertugrul; Capasso, Federico

    2007-06-11

    We present a systematic study of optical antenna arrays, in which the effects of coupling between the antennas, as well as of the antenna length, on the reflection spectra are investigated and compared. Such arrays can be fabricated on the facet of a fiber, and we propose a photonic device, a plasmonic optical antenna fiber probe, that can potentially be used for in-situ chemical and biological detection and surface-enhanced Raman scattering.

  1. Resonance Coupling in Plasmonic Nanomatryoshka Homo- and Heterodimers

    Science.gov (United States)

    2016-08-16

    breaking and conductive contact on the plasmon coupling in gold nanorod dimers,” ACS Nano 4, 4657-4666 (2010). 19 B. Luk’yanchuk, N. I. Zheludev, S. A...gold nanorods,” ACS Nano 5, 5976-5986 (2011). 21 Y, -I. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573-4588 (1995). 22

  2. Study on Dielectric Function Models for Surface Plasmon Resonance Structure

    Directory of Open Access Journals (Sweden)

    Peyman Jahanshahi

    2014-01-01

    Full Text Available The most common permittivity function models are compared and identifying the best model for further studies is desired. For this study, simulations using several different models and an analytical analysis on a practical surface Plasmon structure were done with an accuracy of ∼94.4% with respect to experimental data. Finite element method, combined with dielectric properties extracted from the Brendel-Bormann function model, was utilized, the latter being chosen from a comparative study on four available models.

  3. Plasmonic resonators for enhanced diamond NV- center single photon sources

    OpenAIRE

    Bulu, Irfan; Babinec, Thomas; Hausmann, Birgit; Choy, Jennifer T.; Loncar, Marko

    2011-01-01

    We propose a novel source of non-classical light consisting of plasmonic aperture with single-crystal diamond containing a single Nitrogen-Vacancy (NV) color center. Theoretical calculations of optimal structures show that these devices can simultaneously enhance optical pumping by a factor of 7, spontaneous emission rates by Fp ~ 50 (Purcell factor), and offer collection efficiencies up to 40%. These excitation and collection enhancements occur over a broad range of wavelengths (~30nm), and ...

  4. High sensitivity detection of bacteria by surface plasmon resonance enhanced common path interferometry

    Science.gov (United States)

    Greef, Charles; Petropavlovskikh, Viatcheslav; Nilsen, Oyvind; Hacioglu, Bilge; Khattatov, Boris; Hall, John

    2007-04-01

    Real time monitoring of biowarfare agents (BWA) for military and civilian protection remains a high priority for homeland security and battlefield readiness. Available devices have adequate sensitivity, but the detection modules have limited periods of deployment, require frequent maintenance, employ single-use disposable components, and have limited multiplexing capability. Surface Plasmon Resonance enhanced Common Path Interferometry (SPR-CPI) is a label-free, high sensitivity biomolecular interaction measurement technology that allows multiplexed real-time measurement of biowarfare agents, including small molecules, proteins, and microbes. The technology permits continuous operation in a field-deployable detection module of an integrated BWA monitoring system. SPR-CPI measures difference in phase shift of polarized light reflected from the transducer interface caused by changes in refractive index induced by biomolecular interactions. The measurement is performed on a discrete 2-dimensional area functionalized with biomolecule capture reagents in a microarray format, allowing simultaneous measurement of up to 100 separate analytes. Output consists of simultaneous voltage measurements proportional to the phase differences resulting from the refractive index changes and is automatically processed and displayed graphically or delivered to a decision making algorithm. This enables a fully automatic field-deployable detection system capable of integration into existing modular BWA detection systems. Proof-of-concept experiments on surrogate models of anticipated BWA threats have demonstrated utility. Efforts are in progress for full development and deployment of the device.

  5. Analysis of plasmon resonances in metallic nanostructures in proximity to dielectric objects with application to heat-assisted magnetic recording

    Science.gov (United States)

    Hung, L.; McAvoy, P.; Bowen, D.; Krafft, C.; Mayergoyz, I.

    2014-05-01

    A novel approach to the calculation of plasmon resonance in metallic nanoparticle located nearby a dielectric object is presented. The plasmon resonance problem for such structure is formulated as a constrained eigenvalue problem for specific coupled boundary integral equations. By solving this eigenvalue problem, the resonance frequencies (wavelengths) of the metallic nanoparticle as well as the corresponding plasmon modes are computed. In this paper, two examples of application are considered and a good agreement between the computational results and analytical solution as well as with available experimental and numerical data is demonstrated.

  6. Interplay between out-of-plane magnetic plasmon and lattice resonance for modified resonance lineshape and near-field enhancement in double nanoparticles array

    CERN Document Server

    Ding, Pei; He, Jinna; Fan, Chunzhen; Cai, Genwang; Liang, Erjun

    2013-01-01

    Two-dimensional double nanoparticles (DNPs) arrays are demonstrated theoretically supporting the interaction of out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay of the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement of magnetic field enhancement. Simultaneous electric field and magnetic field enhancements can be obtained in the gap regions between neighboring particles at two resonance frequencies as the interplay occurs, which present open cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmons interactions in periodic nanostructure or metamaterials comprising multiple element...

  7. Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2014-03-01

    Silver nanoparticles were prepared using aqueous fruit extract of Ananas comosus as reducing agent. These silver nanoparticles showed surface plasmon peak at 439 nm. They were monodispersed and spherical in shape with an average particle size of 10 nm. The crystallinity of these nanoparticles was evident from clear lattice fringes in the HRTEM images and bright circular spots in the SAED pattern. The antibacterial activities of prepared nanoparticles were found to be size-dependent, the smaller nanoparticles showing more bactericidal effect. Aqueous Zn2+ and Cu4+ selectivity and sensitivity study of this green synthesized nanoparticle was performed by optical sensor based surface plasmon resonance (SPR) at room temperature.

  8. Novel piezoelectric effect and surface plasmon resonance-based elements for MEMS applications.

    Science.gov (United States)

    Ponelyte, Sigita; Palevicius, Arvydas

    2014-04-17

    This paper covers research on novel thin films with periodical microstructure--optical elements, exhibiting a combination of piezoelectric and surface plasmon resonance effects. The research results showed that incorporation of Ag nanoparticles in novel piezoelectric--plasmonic elements shift a dominating peak in the visible light spectrum. This optical window is essential in the design of optical elements for sensing systems. Novel optical elements can be tunable under defined bias and change its main grating parameters (depth and width) influencing the response of diffraction efficiencies. These elements allow opening new avenues in the design of more sensitive and multifunctional microdevices.

  9. A saccharides sensor developed by symmetrical optical waveguide-based surface plasmon resonance

    OpenAIRE

    Ang Li; Zhouyi Guo; Qing Peng; Chan Du; Xida Han; Le Liu; Jun Guo; Yonghong He; Yanhong Ji

    2015-01-01

    We proposed a new saccharides sensor developed by symmetrical optical waveguide (SOW)-based surface plasmon resonance (SPR). This unique MgF2/Au/MgF2/Analyte film structure results in longer surface plasmon wave (SPW) propagation lengths and depths, leading to an increment of resolution. In this paper, we managed to decorate the dielectric interface (MgF2 layer) by depositing a thin polydopamine film as surface-adherent that provides a platform for secondary reactions with the probe molecule....

  10. Coherent resonance of quantum plasmons in Stone-Wales defected graphene-silver nanowire hybrid system

    Science.gov (United States)

    Liu, Tong; Zhang, Hong; Cheng, Xin-Lu; Xu, Yang

    2017-10-01

    Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone-Wales (SW) defected graphene-silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone-Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene.

  11. Study of plasmon resonance in a gold nanorod with an LC circuit model

    CERN Document Server

    Huang, Cheng-ping; Huang, Huang; Zhu, Yong-yuan

    2009-01-01

    Gold nanorod has generated great research interest due to its tunable longitudinal plasmon resonance. However, little progress has been made in the understanding of the effect. A major reason is that, except for metallic spheres and ellipsoids, the interaction between light and nanoparticles is generally insoluble. In this paper, a new scheme has been proposed to study the plasmon resonance of gold nanorod, in which the nanorod is modeled as an LC circuit with an inductance and a capacitance. The obtained resonance wavelength is dependent on not only aspect ratio but also rod radius, suggesting the importance of self-inductance and the breakdown of linear scaling. Moreover, the cross sections for light scattering and absorption have been deduced analytically, giving rise to a Lorentzian line-shape for the extinction spectrum. The result provides us with new insight into the phenomenon.

  12. EIT-like transmission by interaction between multiple Bragg scattering and local plasmonic resonances

    CERN Document Server

    Liu, Z Z; Xiao, J J

    2015-01-01

    We study the optical properties associated to both the polariton gap and the Bragg gap in periodic resonator-waveguide coupled system, based on the temporal coupled mode theory and the transfer matrix method. By the complex band and the transmission spectrum, it is feasible to tune the interaction between multiple Bragg scattering and the local resonance, which may give rise to analogous phenomena of electromagnetically induced transparency (EIT). We further design a plasmonic slot waveguide side-coupled with local plasmonic resonator to demonstrate the EIT-like effects in the near-infared band. Numerical calculations show that realistic amount of metal Joule loss may destroy the interference and the total absorption is enhanced in the transparency windwo due to the near zero group velocity of the guiding wave.

  13. Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xianping; Wei, Zhongchao, E-mail: wzc@scnu.edu.cn; Liu, Yuebo; Zhong, Nianfa; Tan, Xiaopei; Shi, Songsong; Liu, Hongzhan; Liang, Ruisheng

    2016-01-08

    We have demonstrated the analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator. A reasonable analysis of the transmission feature based on the temporal coupled-mode theory is given and shows good agreement with the Finit-Difference Time-Domain simulation. The transparency window can be easily tuned by changing the geometrical parameters and the insulator filled in the resonator. The transmission of the resonator system is close to 80% and the full width at half maximum is less than 46 nm. The sensitivity of the structure is about 812 nm/RIU. These characteristics make the new system with potential to apply for optical storage, ultrafast plasmonic switch and slow-light devices.

  14. Detection of biomolecules and bioconjugates by monitoring rotated grating-coupled surface plasmon resonance

    CERN Document Server

    Szalai, Aniko; Somogyi, Aniko; Szenes, Andras; Banhelyi, Balazs; Csapo, Edit; Dekany, Imre; Csendes, Tibor; Csete, Maria

    2016-01-01

    Plasmonic biosensing chips were prepared by fabricating wavelength-scaled dielectric-metal interfacial gratings on thin polycarbonate films covered bimetal layers via two-beam interference laser lithography. Lysozyme (LYZ) biomolecules and gold nanoparticle (AuNP-LYZ) bioconjugates with 1:5 mass ratio were seeded onto the biochip surfaces. Surface plasmon resonance spectroscopy was performed before and after biomolecule seeding in a modified Kretschmann-arrangement by varying the azimuthal and polar angles to optimize the conditions for rotated grating-coupling. The shift of secondary and primary resonance peaks originating from rotated grating-coupling phenomenon was monitored to detect the biomolecule and bioconjugate adherence. Numerical calculations were performed to reproduce the measured reflectance spectra and the resonance peak shifts caused by different biocoverings. Comparison of measurements and calculations proved that monitoring the narrower secondary peaks under optimal rotated-grating coupling ...

  15. Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber

    Science.gov (United States)

    Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin

    2017-03-01

    Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies.

  16. Plasmon coupling of magnetic resonances in an asymmetric gold semishell

    Science.gov (United States)

    Ye, Jian; Kong, Yan; Liu, Cheng

    2016-05-01

    The generation of magnetic dipole resonances in metallic nanostructures is of great importance for constructing near-zero or even negative refractive index metamaterials. Commonly, planar two-dimensional (2D) split-ring resonators or relevant structures are basic elements of metamaterials. In this work, we introduce a three-dimensional (3D) asymmetric Au semishell composed of two nanocups with a face-to-face geometry and demonstrate two distinct magnetic resonances spontaneously in the visible-near infrared optical wavelength regime. These two magnetic resonances are from constructive and destructive hybridization of magnetic dipoles of individual nanocups in the asymmetric semishell. In contrast, complete cancellation of magnetic dipoles in the symmetric semishell leads to only a pronounced electric mode with near-zero magnetic dipole moment. These 3D asymmetric resonators provide new ways for engineering hybrid resonant modes and ultra-high near-field enhancement for the design of 3D metamaterials.

  17. A novel optical pressure sensor based on surface plasmon polariton resonator

    Science.gov (United States)

    Wu, Jing; Lang, Peilin; Chen, Xi; Zhang, Ru

    2016-02-01

    We propose a Metal-Insulator-Metal structure consists of two surface plasmon polaritons (SPPs) and an H-shaped resonator. The reflectance spectrum is numerically simulated by the two-dimensional finite-difference time-domain method. The results show that this structure can act as a pressure sensor. To our knowledge, this is the first proposal to utilize the SPP resonator to form a pressure sensor. The size of the SPP resonator can be as small as a few hundred nanometers. The nano-scale pressure sensor opens a wide field for potential applications in biological and biomedical engineering.

  18. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance.

    Science.gov (United States)

    Liu, C H; Hong, M H; Cheung, H W; Zhang, F; Huang, Z Q; Tan, L S; Hor, T S A

    2008-07-07

    Tuning of surface plasmon resonance by gold and silver bimetallic thin film and bimetallic dot array is investigated. Laser interference lithography is applied to fabricate the nanostructures. A bimetallic dot structure is obtained by a lift-off procedure after gold and silver thin film deposition by an electron beam evaporator. Surface plasmon behaviors of these films and nanostructures are studied using UV-Vis spectroscopy. It is observed that for gold thin film on quartz substrate, the optical spectral peak is blue shifted when a silver thin film is coated over it. Compared to the plasmon band in single metal gold dot array, the bimetallic nanodot array shows a similar blue shift in its spectral peak. These shifts are both attributed to the interaction between gold and silver atoms. Electromagnetic interaction between gold and silver nanostructures is discussed using a simplified spring model.

  19. Surface-Plasmon-Polariton Laser based on an Open-Cavity Fabry-Perot Resonator

    CERN Document Server

    Zhu, Wenqi; Agrawal, Amit; Lezec, Henri J

    2016-01-01

    Recent years have witnessed growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface-plasmons, electromagnetic modes evanescently confined to metal-dielectric interfaces, offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain-medium. Here, we achieve visible frequency ultra-narrow linewidth lasing at room-temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically-pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. Low perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high-figure-of-merit refractive-index sensing of analytes interacting with the open cavity.

  20. Surface-enhanced Raman spectroscopy on a surface plasmon resonance biosensor platform for gene diagnostics

    Science.gov (United States)

    Yuan, W.; Ho, H. P.; Suen, Y. K.; Kong, S. K.; Lin, Chinlon; Prasad, Paras N.; Li, J.; Ong, Daniel H. C.

    2008-02-01

    We propose to integrate the surface-enhanced Raman spectroscopy (SERS) detection capability with a surface plasmon resonance (SPR) biosensor platform. As a demonstration setup, the experimental scheme is built from a Total Internal Reflection Fluorescence (TIRF) microscope. The sample surface is a gold-coated plasmonic crystal substrate. Two oligonucleotide (ODN) probes that have been labeled with two different Raman active dyes are used to achieve a sandwich assay of target ODNs or polynucleotide. Upon complementary hybridizations between the target and probe ODNs, the target can be identified by detecting the narrow-band spectroscopic fingerprints of the Raman tags. This concept has high potential for achieving multiplexed detection of ODN targets because a very large number of probes can be incorporated to the plasmonic crystal substrate, which may find applications in gene based diseases diagnostics. We also explored the detection of single molecules and achieved some preliminary results.

  1. Surface plasmon resonance in nanocrystalline gold-copper alloy films.

    Science.gov (United States)

    Hussain, S; Datta, Subhadeep; Roy, R K; Pal, A K

    2007-12-01

    Nanocrystalline Au(x)Cu(1-x) films were synthesized by depositing Cu/Au/Cu multilayer in nanocrystalline thin film form with requisite thickness of individual layers onto fused silica substrates by high pressure sputtering technique. The absorbance spectra showed only one surface plasmon peak for all the compositions with the exception that the peak position did not indicate gradual shift as gold concentration was increased. Peak position for the two compositions corresponding to the two superlattice structures, AuCu3 and AuCu, deviated significantly from linear variation. The experimental results have been discussed in light of the existing Mie theory and the Core-shell model.

  2. The influence of edge and corner evolution on plasmon properties and resonant edge effect in gold nanoplatelets.

    Science.gov (United States)

    Xu, Xi-Bin; Luo, Jiang-Shan; Liu, Miao; Wang, Yu-Ying; Yi, Zao; Li, Xi-Bo; Yi, You-Gen; Tang, Yong-Jian

    2015-01-28

    In this paper a simulation of the properties of surface plasmons on gold nanoplatelets with various cross-sections inscribed in a circle and an investigation of their field distributions to assign multiple SPRs are described. The manipulated propagation can be obtained through the evolution of edges and corners. Furthermore, the particle morphology and the associated spectral positions alone do not uniquely reflect the important details of the local field distribution or the resonance modes. The plasmon modes were investigated and found to be mainly excited along the edges and in the side and sloped side surfaces. The strong field distributions can generally be found around the corners and how the plasmons transmit through the corners to adjacent edges was also investigated. Besides the plasmons excited along the edges as were found for the triangular nanoplatelets, plasmons were excited in the interior region of the triangular surfaces and were also investigated. Despite this in the infrared region, plasmon modes were found to be along the edges for the hexagonal nanoplatelets. Also, it can be seen that the change of nanoplatelet thickness can support different plasmon modes ranging from dipolar resonance mode to quadrupole resonance mode. The thickness far below the skin depth can display complex plasmon modes along the edges and on the side and sloping side surfaces as well as the strong coupling between the top and bottom surfaces. The observed plasmon resonance modes in this simulation reflect the interference of all these contributions including the plasmons along the edges and on the side surfaces. This is an essential step towards a thorough understanding of plasmon modes and the effect of edge and corner evolution in polygonous nanoplatelets.

  3. Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state.

    Science.gov (United States)

    Gerasimov, V S; Ershov, A E; Gavrilyuk, A P; Karpov, S V; Ågren, H; Polyutov, S P

    2016-11-14

    Significant suppression of resonant properties of single gold nanoparticles at the surface plasmon frequency during heating and subsequent transition to the liquid state has been demonstrated experimentally and explained for the first time. The results for plasmonic absorption of the nanoparticles have been analyzed by means of Mie theory using experimental values of the optical constants for the liquid and solid metal. The good qualitative agreement between calculated and experimental spectra support the idea that the process of melting is accompanied by an abrupt increase of the relaxation constants, which depends, beside electron-phonon coupling, on electron scattering at a rising number of lattice defects in a particle upon growth of its temperature, and subsequent melting as a major cause for the observed plasmonic suppression. It is emphasized that observed effect is fully reversible and may underlie nonlinear optical responses of nanocolloids and composite materials containing plasmonic nanoparticles and their aggregates in conditions of local heating and in general, manifest itself in a wide range of plasmonics phenomena associated with strong heating of nanoparticles.

  4. Underpotential deposition of a copper monolayer on a gold film sensed by integrated optical surface plasmon resonance

    OpenAIRE

    Abanulo, J.C.; Harris, R.D.; Bartlett, P.N.; Wilkinson, J.S.

    2000-01-01

    An integrated optical surface plasmon resonance sensor combined with electrochemical control is used to monitor the underpotential deposition of a copper monolayer onto a gold film from 1 mM Cu2+ in 0.1 M perchloric acid.

  5. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance

    Science.gov (United States)

    Shafiei, Farbod; Monticone, Francesco; Le, Khai Q.; Liu, Xing-Xiang; Hartsfield, Thomas; Alù, Andrea; Li, Xiaoqin

    2013-02-01

    The lack of symmetry between electric and magnetic charges, a fundamental consequence of the small value of the fine-structure constant, is directly related to the weakness of magnetic effects in optical materials. Properly tailored plasmonic nanoclusters have been proposed recently to induce artificial optical magnetism based on the principle that magnetic effects are indistinguishable from specific forms of spatial dispersion of permittivity at optical frequencies. In a different context, plasmonic Fano resonances have generated a great deal of interest, particularly for use in sensing applications that benefit from sharp spectral features and extreme field localization. In the absence of natural magnetism, optical Fano resonances have so far been based on purely electric effects. In this Letter, we demonstrate that a subwavelength plasmonic metamolecule consisting of four closely spaced gold nanoparticles supports a strong magnetic response coupled to a broad electric resonance. Small structural asymmetries in the assembled nanoring enable the interaction between electric and magnetic modes, leading to the first observation of a magnetic-based Fano scattering resonance at optical frequencies. Our findings are supported by excellent agreement with simulations and analytical calculations, and represent an important step towards the quest for artificial magnetism and negative refractive index metamaterials at optical frequencies.

  6. Absorption enhancement in amorphous silicon thin films via plasmonic resonances in nickel silicide nanoparticles

    Science.gov (United States)

    Hachtel, Jordan; Shen, Xiao; Pantelides, Sokrates; Sachan, Ritesh; Gonzalez, Carlos; Dyck, Ondrej; Fu, Shaofang; Kalnayaraman, Ramki; Rack, Phillip; Duscher, Gerd

    2013-03-01

    Silicon is a near ideal material for photovoltaics due to its low cost, abundance, and well documented optical properties. The sole detriment of Si in photovoltaics is poor absorption in the infrared. Nanoparticle surface plasmon resonances are predicted to increase absorption by scattering to angles greater than the critical angle for total internal reflection (16° for a Si/air interface), trapping the light in the film. Experiments confirm that nickel silicide nanoparticles embedded in amorphous silicon increases absorption significantly in the infrared. However, it remains to be seen if electron-hole pair generation is increased in the solar cell, or whether the light is absorbed by the nanoparticles themselves. The nature of the absorption is explored by a study of the surface plasmon resonances through electron energy loss spectrometry and scanning transmission electron microscopy experiments, as well as first principles density functional theory calculations. Initial experimental results do not show strong plasmon resonances on the nanoparticle surfaces. Calculations of the optical properties of the nickel silicide particles in amorphous silicon are performed to understand why this resonance is suppressed. Work supported by NSF EPS 1004083 (TN-SCORE).

  7. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots

    Science.gov (United States)

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-11-01

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.

  8. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots.

    Science.gov (United States)

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-11-22

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.

  9. Giant second harmonic generation by engineering of double plasmonic resonances at nanoscale

    CERN Document Server

    Ren, Ming-Liang; Wang, Ben-Li; Chen, Bao-Qin; Li, Jiafang; Li, Zhi-Yuan

    2014-01-01

    We have investigated second harmonic generation (SHG) from Ag-coated LiNbO3 (LN) core-shell nanocuboids and found that giant SHG can occur via deliberately designed double plasmonic resonances. By controlling the aspect ratio, we can tune fundamental wave (FW) and SHG signal to match the longitudinal and transverse plasmonic modes simultaneously, and achieve giant enhancement of SHG by more than five orders of magnitude in comparison to a bare LN nanocuboid and by about one order of magnitude to the case adopting only single plasmonic resonance. The underlying key physics is that the double-resonance nanoparticle enables greatly enhanced trapping and harvesting of incident FW energy, efficient internal transfer of optical energy from FW to SHW, and much improved power to transport the SHG energy from the nanoparticle to the far-field region. The proposed double-resonance nanostructure can serve as an efficient subwavelength coherent light source through SHG and enable flexible engineering of light-matter inte...

  10. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    Energy Technology Data Exchange (ETDEWEB)

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang; Lin, Jingquan, E-mail: linjingquan@cust.edu.cn [School of Science, Changchun University of Science and Technology, Changchun 130022 (China)

    2015-09-21

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.

  11. Surface plasmon resonance immunosensor for the detection of Salmonella typhi antibodies in buffer and patient serum.

    Science.gov (United States)

    Gupta, Garima; Sharma, P K; Sikarwar, B; Merwyn, S; Kaushik, S; Boopathi, M; Agarwal, G S; Singh, Beer

    2012-01-01

    Surface plasmon resonance (SPR) immunosensor using 4-mercaptobenzoic acid (4-MBA) modified gold SPR chip was developed first time for the detection of flagellin specific antibodies of Salmonella typhi (S. typhi). Flagellin protein of S. typhi was prepared by recombinant DNA technology. The modification of gold chip with 4-MBA was in-situ characterized by SPR and electrochemical impedance spectroscopy. By using kinetic evaluation software, K(D) and B(max) values were calculated and found to be 26.3 fM and 62.04 m°, respectively, for the immobilized monoclonal antibody (Moab) of recombinant flagellin (r-fla) protein of S. typhi (r-fla S. typhi). In addition, thermodynamic parameters such as ΔG, ΔH and ΔS were determined first time for r-fla S. typhi and Moab of r-fla S. typhi interactions and the values revealed the interaction between r-fla S. typhi and Moab of r-fla S. typhi as spontaneous, endothermic and entropy driven one. Moreover, healthy human serum samples and patient sera (Widal positive and Widal negative) were subjected to SPR analysis. The present SPR based approach provides an alternative way for S. typhi detection in less than 10 min.

  12. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics.

    Science.gov (United States)

    Choi, Minjung; Kang, Gumin; Shin, Dongheok; Barange, Nilesh; Lee, Chang-Won; Ko, Doo-Hyun; Kim, Kyoungsik

    2016-05-25

    Strategies to confine electromagnetic field within ultrathin film emerge as essential technologies for applications from thin-film solar cells to imaging and sensing devices. We demonstrate a lithography-free, low-cost, large-scale method to realize broadband ultrathi-film metal-dielectric-metal (MDM) absorbers, by exploiting gap-plasmon resonances for strongly confined electromagnetic field. A two-steps method, first organizing Au nanoparticles via thermal dewetting and then transferring the nanoparticles to a spacer-reflector substrate, is used to achieve broader absorption bandwidth by manipulating geometric shapes of the top metallic layer into hemiellipsoids. A fast-deposited nominal Au film, instead of a conventional slow one, is employed in the Ostwald ripening process to attain hemiellipsoidal nanoparticles. A polymer supported transferring step allows a wider range of dewetting temperature to manipulate the nanoparticles' shape. By incorporating circularity with ImageJ software, the geometries of hemiellipsoidal nanoparticles are quantitatively characterized. Controlling the top geometry of MDM structure from hemisphere to hemiellipsoid increases the average absorption at 500-900 nm from 23.1% to 43.5% in the ultrathin film and full width at half-maximum of 132-324 nm, which is consistently explained by finite-difference time-domain simulation. The structural advantages of our scheme are easily applicable to thin-film photovoltaic devices because metal electrodes can act as metal reflectors and semiconductor layers as dielectric spacers.

  13. Label-Enhanced Surface Plasmon Resonance: A New Concept for Improved Performance in Optical Biosensor Analysis

    Directory of Open Access Journals (Sweden)

    Niko Granqvist

    2013-11-01

    Full Text Available Surface plasmon resonance (SPR is a well-established optical biosensor technology with many proven applications in the study of molecular interactions as well as in surface and material science. SPR is usually applied in the label-free mode which may be advantageous in cases where the presence of a label may potentially interfere with the studied interactions per se. However, the fundamental challenges of label-free SPR in terms of limited sensitivity and specificity are well known. Here we present a new concept called label-enhanced SPR, which is based on utilizing strongly absorbing dye molecules in combination with the evaluation of the full shape of the SPR curve, whereby the sensitivity as well as the specificity of SPR is significantly improved. The performance of the new label-enhanced SPR method was demonstrated by two simple model assays: a small molecule assay and a DNA hybridization assay. The small molecule assay was used to demonstrate the sensitivity enhancement of the method, and how competitive assays can be used for relative affinity determination. The DNA assay was used to demonstrate the selectivity of the assay, and the capabilities in eliminating noise from bulk liquid composition variations.

  14. Aptamer-based surface plasmon resonance sensing of glycated human blood proteins

    Science.gov (United States)

    Reaver, Nathan G. F.; Zheng, Rui; Kim, Dong-Shik; Cameron, Brent D.

    2013-02-01

    The concentration ratio of glycated to non-glycated forms of various blood proteins can be used as a diagnostic measure in diabetes to determine a history of glycemic compliance. Depending on a protein's half-life in blood, compliance can be assessed from a few days to several months in the past, which can then be used to provide additional therapeutic guidance. Current glycated protein detection methods are limited in their ability to measure multiple proteins, and are susceptible to interference from other blood pathologies. In this study, we developed and characterized DNA aptamers for use in Surface Plasmon Resonance (SPR) sensors to assess the blood protein hemoglobin. The aptamers were developed by way of a modified Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process which selects DNA sequences that have a high binding affinity to a specific protein. DNA products resulting from this process are sequenced and identified aptamers are then synthesized. The SELEX process was performed to produce aptamers for a glycated form of hemoglobin. Equilibrium dissociation constants for the binding of the identified aptamer to glycated hemoglobin, hemoglobin, and fibrinogen were calculated from fitted Langmuir isotherms obtained through SPR. These constants were determined to be 94 nM, 147 nM, and 244 nM respectively. This aptamer can potentially be used to create a SPR aptamer based biosensor for detection of glycated hemoglobin, a technology that has the potential to deliver low-cost and immediate glycemic compliance assessment in either a clinical or home setting.

  15. Electron photoemission in plasmonic nanoparticle arrays: analysis of collective resonances and embedding effects

    Science.gov (United States)

    Zhukovsky, Sergei V.; Babicheva, Viktoriia E.; Uskov, Alexander V.; Protsenko, Igor E.; Lavrinenko, Andrei V.

    2014-09-01

    We theoretically study the characteristics of photoelectron emission in plasmonic nanoparticle arrays. Nanoparticles are partially embedded in a semiconductor, forming Schottky barriers at metal/semiconductor interfaces through which photoelectrons can tunnel from the nanoparticle into the semiconductor; photodetection in the infrared range, where photon energies are below the semiconductor band gap (insufficient for band-to-band absorption in semiconductor), is therefore possible. The nanoparticles are arranged in a sparse rectangular lattice so that the wavelength of the lattice-induced Rayleigh anomalies can overlap the wavelength of the localized surface plasmon resonance of the individual particles, bringing about collective effects from the nanoparticle array. Using full-wave numerical simulations, we analyze the effects of lattice constant, embedding depth, and refractive index step between the semiconductor layer and an adjacent transparent conductive oxide layer. We show that the presence of refractive index mismatch between media surrounding the nanoparticles disrupts the formation of a narrow absorption peak associated with the Rayleigh anomaly, so the role of collective lattice effects in the formation of plasmonic resonance is diminished. We also show that 5-20 times increase of photoemission can be achieved on embedding of nanoparticles without taking into account dynamics of ballistic electrons. The results obtained can be used to increase efficiency of plasmon-based photodetectors and photovoltaic devices. The results may provide clues to designing an experiment where the contributions of surface and volume photoelectric effects to the overall photocurrent would be defined.

  16. Three-dimensional cavity nanoantennas with resonant-enhanced surface plasmons as dynamic color-tuning reflectors.

    Science.gov (United States)

    Fan, J R; Wu, W G; Chen, Z J; Zhu, J; Li, J

    2017-03-09

    As plasmonic antennas for surface-plasmon-assisted control of optical fields at specific frequencies, metallic nanostructures have recently emerged as crucial optical components for fascinating plasmonic color engineering. Particularly, plasmonic resonant nanocavities can concentrate lightwave energy to strongly enhance light-matter interactions, making them ideal candidates as optical elements for fine-tuning color displays. Inspired by the color mixing effect found on butterfly wings, a new type of plasmonic, multiresonant, narrow-band (the minimum is about 45 nm), high-reflectance (the maximum is about 95%), and dynamic color-tuning reflector is developed. This is achieved from periodic patterns of plasmonic resonant nanocavities in free-standing capped-pillar nanostructure arrays. Such cavity-coupling structures exhibit multiple narrow-band selective and continuously tunable reflections via plasmon standing-wave resonances. Consequently, they can produce a variety of dark-field vibrant reflective colors with good quality, strong color signal and fine tonal variation at the optical diffraction limit. This proposed multicolor scheme provides an elegant strategy for realizing personalized and customized applications in ultracompact photonic data storage and steganography, colorimetric sensing, 3D holograms and other plasmon-assisted photonic devices.

  17. Long-range surface plasmon resonance and surface-enhanced Raman scattering on X-shaped gold plasmonic nanohole arrays.

    Science.gov (United States)

    Hou, Chao; Galvan, Daniel David; Meng, Guowen; Yu, Qiuming

    2017-09-13

    A multilayered architecture including a thin Au film supporting an X-shaped nanohole array and a thick continuous Au film separated by a Cytop dielectric layer is reported in this work. Long-range surface plasmon resonance (LR-SPR) was generated at the top Au/water interface, which also resulted in a long-range surface-enhanced Raman scattering (LR-SERS) effect. LR-SPR originates from the coupling of surface plasmons (SPs) propagating along the opposite sides of the thin Au film embedded in a symmetric refractive index environment with Cytop (n = 1.34) and water (n = 1.33). The finite-difference time-domain (FDTD) simulation method was used to investigate the optimal dimensions of the substrate by studying the reflectance spectra and electric field profiles. The calculated optimal structure was then fabricated via electron beam lithography, and its LR-SERS performance was demonstrated by detecting rhodamine 6G and 4-mercaptobenzoic acid in the refractive index-matched environment. We believe that this structure as a LR-SPR or LR-SERS substrate can have broad applications in biosensing.

  18. Surface plasmon resonance scattered by a dielectric sphere

    Science.gov (United States)

    Hong, Xin; Yin, Xuejie

    2016-11-01

    It is well known that when total internal reflection occurs at the interface between high to low refractive index, evanescent field will go into the media with low refractive index. This field can be scattered by a small dielectric particle on the surface. In this paper, with the aim to enhance the scattering field we introduced a thin gold film, the filed modified by the metallic film was theoretically calculated by FDTD solver. Further a polystyrene bead at the diameter of 200nm and 800nm was employed to test the model. Theoretical and experimental results agree well with each other that the locally excitated surface plasmon play a dominant role in the field enhancement scattered by the sphere.

  19. Graphene-protected copper and silver plasmonics

    Science.gov (United States)

    Kravets, V. G.; Jalil, R.; Kim, Y.-J.; Ansell, D.; Aznakayeva, D. E.; Thackray, B.; Britnell, L.; Belle, B. D.; Withers, F.; Radko, I. P.; Han, Z.; Bozhevolnyi, S. I.; Novoselov, K. S.; Geim, A. K.; Grigorenko, A. N.

    2014-01-01

    Plasmonics has established itself as a branch of physics which promises to revolutionize data processing, improve photovoltaics, and increase sensitivity of bio-detection. A widespread use of plasmonic devices is notably hindered by high losses and the absence of stable and inexpensive metal films suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate wide use of graphene-protected plasmonics. PMID:24980150

  20. Near-Field Resonance at Far-Field Anti-Resonance: Plasmonically Enhanced Light Emission with Minimum Scattering Nanoantennas

    CERN Document Server

    Rodriguez, S R K; Lozano, G; Omari, A; Hens, Z; Rivas, J Gomez

    2012-01-01

    We demonstrate that a periodic array of optical antennas sustains a resonant Near-Field (NF) and an anti-resonant Far-Field (FF) at the same energy and in-plane momentum. This phenomenon arises in the context of coupled plasmonic lattice resonances, whose bright and dark character is interchanged at a critical antenna length. The energies of these modes anti-cross in the FF, but cross in the NF. Hence, we observe an extremely narrow bandwidth emission enhancement from quantum dots in the proximity of the array, while the antennas scatter minimally into the FF. Simulations reveal that a standing wave with a quadrupolar field distribution is the origin of this dark collective resonance.

  1. Selective excitation of bright and dark plasmonic resonances of single gold nanorods

    CERN Document Server

    Demichel, O; Francs, G Colas des; Bouhelier, A; Hertz, E; Billard, F; de Fornel, F; Cluzel, B

    2015-01-01

    Plasmonic dark modes are pure near-field resonances since their dipole moments are vanishing in far field. These modes are particularly interesting to enhance nonlinear light-matter interaction at the nanometer scale because radiative losses are mitigated therefore increasing the intrinsic lifetime of the resonances. However, the excitation of dark modes by standard far field approaches is generally inefficient because the symmetry of the electromagnetic near-field distribution has a poor overlap with the excitation field. Here, we demonstrate the selective optical excitation of bright and dark plasmonic modes of single gold nanorods by spatial phase-shaping the excitation beam. Using two-photon luminescence measurements, we unambiguously identify the symmetry and the order of the emitting modes and analyze their angular distribution by Fourier-space imaging.

  2. A polarization-sensitive mid-infrared plasmonic absorber for multi-band resonance

    Science.gov (United States)

    Li, Yongqian; Wang, Binbin; Xu, Xiaolun; Su, Lei; Zhou, Zili

    2014-05-01

    The aim of this work is to present a multi-band absorption metamaterials. One dual cross-shape perfect absorber metamaterials (PAMs) was developed to obtain multi-band spectrum at mid-infrared. The PAMs possess three distinct resonant peaks standing independently, which are attributed to the polarization sensitive excitation of plasmonic resonance. The optical parameters retrieved by S-parameters method were investigated, which provides a satisfactory qualitative description of the multiple-band spectra responses. On the other hand, the near-field plasmonic behaviors and redistribution of the electromagnetic field were probed theoretically and numerically into the PAMs structure, which also explains the observed absorption behavior of the PAMs ensemble based upon the microscopic perspective. The multiplex spectrum enables the infrared perfect absorber metamaterials (PAMs) a powerful tool for direct access to vibrational fingerprints of single molecular structure.

  3. Electrically Controlled Plasmonic Lasing Resonances with Silver Nanoparticles Embedded in Amplifying Nematic Liquid Crystals

    CERN Document Server

    Wang, Chin

    2014-01-01

    We demonstrate an electrically controlled coherent random lasing with silver nano-particles dispersed in a dye-doped nematic liquid crystal (NLC), in which external electric field dependent emission intensity and frequency-splitting are recorded. A modified rate equation model is proposed to interpret the observed coherent lasing, which is a manifestation of double enhancements, caused by the plasmon-polariton near-fields of Ag particles, on the population inversion of laser dye molecules and the optical energy density of lasing modes. The noticeable quenching of lasing resonances in a weak applied field is due to the dynamic light scattering by irregular director fluctuations of the NLC host, which wash out the coherent interference among different particle palsmon-polariton fields. This provides a proof to support that the present lasing resonances are very sensitive to the dielectric perturbations in the host medium and thus are likely associated with some coupled plasmonic oscillations of metal nanopartic...

  4. A time-dependent density functional theory investigation of plasmon resonances of linear Au atomic chains

    Institute of Scientific and Technical Information of China (English)

    Liu Dan-Dan; Zhang Hong

    2011-01-01

    We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio timedependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases,the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition,the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics,different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing,optical spectroscopy,and so on.

  5. Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-04-30

    We report on chemical etching of ordered Au nanostructure arrays to continuously tune their localized surface plasmon resonances (LSPR). Real-time extinction spectra were recorded from both Au nanodisks and nanospheres immobilized on glass substrates when immersed in Au etchant. The time-dependent LSPR frequencies, intensities, and bandwidths were studied theoretically with discrete dipole approximations and the Mie solution, and they were correlated with the evolution of the etched Au nanostructures\\' morphology (as examined by atomic force microscopy). Since this chemical etching method can conveniently and accurately tune LSPR, it offers precise control of plasmonic properties and can be useful in applications such as surfaceenhanced Raman spectroscopy and molecular resonance spectroscopy. © 2009 American Chemical Society.

  6. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles.

    Science.gov (United States)

    Chen, Yeechi; Munechika, Keiko; Ginger, David S

    2007-03-01

    We investigate the fluorescence from dyes coupled to individual DNA-functionalized metal nanoparticles. We use single-particle darkfield scattering and fluorescence microscopy to correlate the fluorescence intensity of the dyes with the localized surface plasmon resonance (LSPR) spectra of the individual metal nanoparticles to which they are attached. For each of three different dyes, we observe a strong correlation between the fluorescence intensity of the dye and the degree of spectral overlap with the plasmon resonance of the nanoparticle. On average, we observe the brightest fluorescence from dyes attached to metal nanoparticles that have a LSPR scattering peak approximately 40-120 meV higher in energy than the emission peak of the fluorophore. These results should prove useful for understanding and optimizing metal-enhanced fluorescence.

  7. Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes

    Science.gov (United States)

    Shuba, M. V.; Paddubskaya, A. G.; Plyushch, A. O.; Kuzhir, P. P.; Slepyan, G. Ya.; Maksimenko, S. A.; Ksenevich, V. K.; Buka, P.; Seliuta, D.; Kasalynas, I.; Macutkevic, J.; Valusis, G.; Thomsen, C.; Lakhtakia, A.

    2012-04-01

    Experimental proof of localized plasmon resonance was found in thin films containing either single-walled carbon nanotubes (SWNT) or SWNT bundles of different length. All samples were prepared by a simple technique that permitted the selection of different SWNT lengths in different samples without significant differences in electronic properties. Fourier-transform infrared spectroscopy showed that an optical-density peak, the same as a terahertz conductivity peak, shifts to higher frequencies as the SWNT lengths are reduced—in agreement with a similar tendency predicted for the localized plasmon resonance in finite-length SWNTs [Slepyan , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.81.205423 81, 205423 (2010)].

  8. Surface plasmon resonance biosensor based on large size square-lattice photonic crystal fiber

    Science.gov (United States)

    Bing, Pibin; Li, Zhongyang; Yuan, Sheng; Yao, Jianquan; Lu, Ying

    2016-04-01

    A surface plasmon resonance biosensor based on large size square-lattice photonic crystal fiber has been designed and simulated by finite element method. The square-lattice airholes are first coated with a calcium fluoride layer to provide mode confinement, then a nanoscale gold layer is deposited to excite the plasmon mode, and finally, the sample is infiltrated into the holes. The numerical results reveal that the resonance properties are easily affected by many parameters. The refractive index resolution of corresponding sensor can reach 4.3 × 10-6 RIU when the optimum parameters are set as the radius of curvature of the airhole r = 2 μm, the thickness of the core struts c = 200 nm, the auxiliary dielectric layer s = 1 μm, and the gold film d = 40 nm. In addition, the effective area and nonlinear coefficient are calculated.

  9. Strong Modulation of Infrared Light using Graphene Integration with Plasmonic Fano-Resonant Metasurfaces

    CERN Document Server

    Dabidian, Nima; Khanikaev, Alexander B; Tatar, Kaya; Trendafilov, Simeon; Mousavi, S Hossein; Magnuson, Carl; Ruoff, Rodney S; Shvets, Gennady

    2014-01-01

    Plasmonic metasurfaces represent a promising platform for enhancing light-matter interaction. Active control of the optical response of metasurfaces is desirable for applications such as beam-steering, modulators and switches, biochemical sensors, and compact optoelectronic devices. Here we use a plasmonic metasurface with two Fano resonances to enhance the interaction of infrared light with electrically controllable single layer graphene. It is experimentally shown that the narrow spectral width of these resonances, combined with strong light/graphene coupling, enables reflectivity modulation by nearly an order of magnitude leading to a modulation depth as large as 90%. . Numerical simulations demonstrate the possibility of strong active modulation of the phase of the reflected light while keeping the reflectivity nearly constant, thereby paving the way to tunable infrared lensing and beam steering

  10. Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity.

    Science.gov (United States)

    Lin, Kaiqun; Lu, Yonghua; Chen, Junxue; Zheng, Rongsheng; Wang, Pei; Ming, Hai

    2008-11-10

    High sensitivity is obtained at larger resonant incident angle if negative diffraction order of metallic grating is used to excite the surface plasmon. A highly sensitive grating-based surface plasmon resonance (SPR) sensor is designed for the hydrogen detection. A thin palladium (Pd) film deposited on the grating surface is used as transducer. The influences of grating period and the thickness of Pd on the performance of sensor are investigated using rigorous coupled-wave analysis (RCWA) method. The sensitivity as well as the width of the SPR curves and reflective amplitude is considered simultaneously for designing the grating-based SPR hydrogen sensor, and a set of optimized structural parameters is presented. The performance of grating-based SPR sensor is also compared with that of conventional prism-based SPR sensor.

  11. Profile Prediction and Fabrication of Wet-Etched Gold Nanostructures for Localized Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Zhou Xiaodong

    2009-01-01

    Full Text Available Abstract Dispersed nanosphere lithography can be employed to fabricate gold nanostructures for localized surface plasmon resonance, in which the gold film evaporated on the nanospheres is anisotropically dry etched to obtain gold nanostructures. This paper reports that by wet etching of the gold film, various kinds of gold nanostructures can be fabricated in a cost-effective way. The shape of the nanostructures is predicted by profile simulation, and the localized surface plasmon resonance spectrum is observed to be shifting its extinction peak with the etching time. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9486-4 contains supplementary material, which is available to authorized users. Click here for file

  12. Design optimization of highly sensitive LSPR enhanced surface plasmon resonance biosensors with nanoholes

    Institute of Scientific and Technical Information of China (English)

    Bin Wu; Qingkang Wang

    2008-01-01

    For breaking through the sensitivity limitation of conventional surface plasmon resonance (SPR) biosensors, novel highly sensitive SPR biosensors with Au nanoparticles and nanogratings enhancement have been proposed recently.But in practice, these structures have obvious disadvantages.In this study, a nanohole based sensitivity enhancement SPR biosensor is proposed and the influence of different structural parameters on the performance is investigated by using rigorous coupled wave analysis (RCWA).Electromagnetic field distributions around the nanohole are also given out to directly explain the performance difference for various structural parameters.The results indicate that significant sensitivity increase is associated with localized surface plasmons (LSPs) excitation mediated by nanoholes.Except to outcome the weakness of other LSP based biosensors, larger resonance angle shift, reflectance amplitude, and sharper SPR curves' width are obtained simultaneously under optimized structural parameters.

  13. Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications.

    Science.gov (United States)

    Wang, Da-Shin; Fan, Shih-Kang

    2016-07-27

    Surface plasmon resonance (SPR) is a label-free, highly-sensitive, and real-time sensing technique. Conventional SPR sensors, which involve a planar thin gold film, have been widely exploited in biosensing; various miniaturized formats have been devised for portability purposes. Another type of SPR sensor which utilizes localized SPR (LSPR), is based on metal nanostructures with surface plasmon modes at the structural interface. The resonance condition is sensitive to the refractive index change of the local medium. The principles of these two types of SPR sensors are reviewed and their integration with microfluidic platforms is described. Further applications of microfluidic SPR sensors to point-of-care (POC) diagnostics are discussed.

  14. Anomalously strong plasmon resonances in aluminium bronze by modification of the electronic density-of-states

    Science.gov (United States)

    Shahcheraghi, N.; Keast, V. J.; Gentle, A. R.; Arnold, M. D.; Cortie, M. B.

    2016-10-01

    We use a combination of experimental measurements and density functional theory calculations to show that modification of the band structure of Cu by additions of Al causes an unexpected enhancement of the dielectric properties. The effect is optimized in alloys with Al contents between 10 and 15 at.% and would result in strong localized surface plasmon resonances at suitable wavelengths of light. This result is surprising as, in general, alloying of Cu increases its DC resistivity and would be expected to increase optical loss. The wavelengths for the plasmon resonances in the optimized alloy are significantly blue-shifted relative to those of pure Cu and provide a new material selection option for the range 2.2-2.8 eV.

  15. Compact on-Chip Temperature Sensors Based on Dielectric-Loaded Plasmonic Waveguide-Ring Resonators

    Directory of Open Access Journals (Sweden)

    Sergey I. Bozhevolnyi

    2011-02-01

    Full Text Available The application of a waveguide-ring resonator based on dielectric-loaded surface plasmon-polariton waveguides as a temperature sensor is demonstrated in this paper and the influence of temperature change to the transmission through the waveguide-ring resonator system is comprehensively analyzed. The results show that the roundtrip phase change in the ring resonator due to the temperature change is the major reason for the transmission variation. The performance of the temperature sensor is also discussed and it is shown that for a waveguide-ring resonator with the resonator radius around 5 mm and waveguide-ring gap of 500 nm which gives a footprint around 140 µm2, the temperature sensitivity at the order of 10−2 K can be achieved with the input power of 100 mW within the measurement sensitivity limit of a practical optical detector.

  16. Efficient suppression of radiation damping in individual plasmonic resonators: towards high-Q nano-volume sensing

    DEFF Research Database (Denmark)

    Della Valle, G.; Bozhevolnyi, S. I.

    2012-01-01

    Recent results on radiation damping suppression in individual plasmonic resonators using conformal bending of the structure, which suppresses the electric-dipole response in favor of magnetic dipole one, are overviewed. It is demonstrated that bending of linear plasmonic nano-antennas increases...... significantly their Q factors above the electrostatic limit while preserving the nature of resonance along with its exceptional features, such as linear size-dependent tunability and robust field enhancement. The approach, which makes use of strong lateral confinement exhibited by the slow plasmonic modes (slow...

  17. Multilayered core-satellite nanoassemblies with fine-tunable broadband plasmon resonances

    Science.gov (United States)

    Xiong, Wei; Sikdar, Debabrata; Yap, Lim Wei; Premaratne, Malin; Li, Xinyong; Cheng, Wenlong

    2015-02-01

    We report on a robust nanotemplating approach to synthesize plasmonic multilayered core-satellite (MCS) nanoassemblies. Templated with gold nanorods, ultrathin Au/Ag alloy cages and satellite gold nanoparticles can be constructed sequentially by galvanic replacement reactions and electrostatic self-assembly, respectively, forming structurally well-defined MCS. The MCS nanoassemblies exhibit strong broadband plasmon resonances from ~440 to ~1100 nm, and their resonant features can be fine-tuned by adjusting the size and number density of satellite nanoparticles and by adjusting the thickness of the silica spacer between cage and satellite particles. Such fine-engineered MCS nanoassemblies enable precise programming of the strength and distribution of ``hot spots'' to maximize the overall enhancement of surface enhanced Raman scattering.We report on a robust nanotemplating approach to synthesize plasmonic multilayered core-satellite (MCS) nanoassemblies. Templated with gold nanorods, ultrathin Au/Ag alloy cages and satellite gold nanoparticles can be constructed sequentially by galvanic replacement reactions and electrostatic self-assembly, respectively, forming structurally well-defined MCS. The MCS nanoassemblies exhibit strong broadband plasmon resonances from ~440 to ~1100 nm, and their resonant features can be fine-tuned by adjusting the size and number density of satellite nanoparticles and by adjusting the thickness of the silica spacer between cage and satellite particles. Such fine-engineered MCS nanoassemblies enable precise programming of the strength and distribution of ``hot spots'' to maximize the overall enhancement of surface enhanced Raman scattering. Electronic supplementary information (ESI) available: A method for preparing CGNRs and AuNPs. EDX mapping and UV-vis spectra for silica coated CGNR. A model for simulation and an additional E-field for MCS nanoassemblies. See DOI: 10.1039/c4nr06756h

  18. Increase in sensitivity of sensor units of environment refraction index change based on superficial plasmon resonance

    Directory of Open Access Journals (Sweden)

    Ushenin Yu. V.

    2011-04-01

    Full Text Available Results of computer modeling of an angular spectrum superficial plasmon resonance in metal films measurements with device PLAZMON-5 with infra-red radiator are analysed. It is shown that use of an infra-red source of radiation allows to improve sensitivity of sensor device in comparison with source of visible light. On an example of dielectric refraction indexes measurement with PLAZMON-5 device experimental check of theoretical calculations has been carried out.

  19. Quantum Rod Emission Coupled to Plasmonic Lattice Resonances: A Collective Directional Source of Polarized Light

    CERN Document Server

    Rodriguez, S R K; Verschuuren, M A; Gomes, R; Lambert, K; De Geyter, B; Hassinen, A; Van Thourhout, D; Hens, Z; Rivas, J Gomez

    2013-01-01

    We demonstrate that an array of optical antennas may render a thin layer of randomly oriented semiconductor nanocrystals into an enhanced and highly directional source of polarized light. The array sustains collective plasmonic lattice resonances which are in spectral overlap with the emission of the nanocrystals over narrow angular regions. Consequently, di?fferent photon energies of visible light are enhanced and beamed into def?nite directions.

  20. Long-wave approximation for hybridization modeling of local surface plasmonic resonance in nanoshells.

    Science.gov (United States)

    Li, Ben Q; Liu, Changhong

    2011-01-15

    A hybridization model for the localized surface plasmon resonance of a nanoshell is developed within the framework of long-wave approximation. Compared with the existing hybridization model derived from the hydrodynamic simulation of free electron gas, this approach is much simpler and gives identical results for a concentric nanoshell. Also, with this approach, the limitations associated with the original hybridization model are succinctly stated. Extension of this approach to hybridization modeling of more complicated structures such as multiplayered nanoshells is straightforward.

  1. Cavitands: Container Molecules for Surface Plasmon Resonance (SPR)-Based Chemical Vapor Detection

    Science.gov (United States)

    2005-01-01

    spin coated onto surface plasmon resonance substrates (50-nm thick gold-coated cover glass). Spin coating was performed at 4000 rpm for 60 s at...room temperature. Th e spin coating parameters gave a fi lm thickness (confi rmed using spectroscopic ellipsometry) of nearly 4 nm. For targets, a...fact that the polymer fi lms were about twice as thick as the cavitand fi lms obtained under identical spin - coating conditions. Th is clearly

  2. Polarization dependence of the metamagnetic resonance of cut-wire-pair structure by using plasmon hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Dung, Nguyen Van; Yoo, Young Joon; Lee, Young Pak [Hanyang University, Seoul (Korea, Republic of); Tung, Nguyen Thanh [KU Leuven, Leuven (Belgium); Tung, Bui Son; Lam, Vu Dinh [Vietnam Academy of Science and Technology, Hanoi (Viet Nam)

    2014-07-15

    The influence of lattice constants on the electromagnetic behavior of a cut-wire-pair (CWP) structure has been elucidated. In this report, we performed both simulations and experiments to determine the influence of polarization on the metamagnetic resonance of the CWP structure. The key finding is the result of an investigation on the plasmon hybridization between the two CWs, which showed that the polarization of the incident wave was affected. Good agreement between numerical simulation and measurement is achieved.

  3. Surface Functionalization for Enhanced Fluorescence Detection, Surface Plasmon Resonance Imaging and Microscopy

    OpenAIRE

    Fasoli, Jennifer Betsy

    2015-01-01

    This work presents several high throughput imaging and analysis techniques performed by fluorescence detection and surface plasmon resonance biosensing. The microarray fabrication methods introduced in this thesis, as well as the DNA functionalization on planar and nanoparticle surfaces, enable and facilitate the real-time study of adsorption events via DNA- DNA hybridization and protein-DNA interaction. Silica deposited on polyolefin film serves as the base for the development of DNA mic...

  4. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO{sub 2} were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO{sub 2}, large photoelectrocatalytic effect for the reduction of CO{sub 2} was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO{sub 2} in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  5. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO2 were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO2, large photoelectrocatalytic effect for the reduction of CO2 was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO2 in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  6. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications

    Science.gov (United States)

    Ignatyeva, Daria O.; Knyazev, Grigory A.; Kapralov, Pavel O.; Dietler, Giovanni; Sekatskii, Sergey K.; Belotelov, Vladimir I.

    2016-06-01

    Currently, sensors invade into our everyday life to bring higher life standards, excellent medical diagnostic and efficient security. Plasmonic biosensors demonstrate an outstanding performance ranking themselves among best candidates for different applications. However, their sensitivity is still limited that prevents further expansion. Here we present a novel concept of magnetoplasmonic sensor with ultranarrow resonances and high sensitivity. Our approach is based on the combination of a specially designed one-dimensional photonic crystal and a ferromagnetic layer to realize ultralong-range propagating magnetoplasmons and to detect alteration of the environment refractive index via observation of the modifications in the Transversal Magnetooptical Kerr Effect spectrum. The fabrication of such a structure is relatively easy in comparison with e.g. nanopatterned samples. The fabricated heterostructure shows extremely sharp (angular width of 0.06°) surface plasmon resonance and even sharper magnetoplasmonic resonance (angular width is 0.02°). It corresponds to the propagation length as large as 106 μm which is record for magnetoplasmons and promising for magneto-optical interferometry and plasmonic circuitry as well as magnetic field sensing. The magnitude of the Kerr effect of 11% is achieved which allows for detection limit of 1•10-6. The prospects of further increase of the sensitivity of this approach are discussed.

  7. Colorimetric determination of Timolol concentration based on localized surface plasmon resonance of silver nanoparticles

    Science.gov (United States)

    Amirjani, Amirmostafa; Bagheri, Mozhgan; Heydari, Mojgan; Hesaraki, Saeed

    2016-09-01

    In this work, a rapid and simple colorimetric method based on the surface plasmon resonance of silver nanoparticles (AgNPs) was developed for the detection of the drug Timolol. The method used is based on the interaction of Timolol with the surface of the as-synthesized AgNPs, which promotes aggregation of the nanoparticles. This aggregation exploits the surface plasmon resonance through the electric dipole-dipole interaction and coupling among the agglomerated particles, hence bringing forth distinctive changes in the spectra as well as the color of colloidal silver. UV-vis spectrophotometery was used to monitor the changes of the localized surface plasmon resonance of AgNPs at wavelengths of 400 and 550 nm. The developed colorimetric sensor has a wide dynamic range of 1.0 × 10-7 M-1.0 × 10-3 M for detection of Timolol with a low detection limit of 1.2 × 10-6 M. The proposed method was successfully applied for the determination of Timolol concentration in ophthalmic eye-drop solution with a response time lower than 40 s.

  8. Plasmon resonance in new AsSb–AlGaAs metal–semiconductor metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Ushanov, V. I., E-mail: ushanovvi@mail.ioffe.ru; Chaldyshev, V. V., E-mail: chald.gvg@mail.ioffe.ru; Bert, N. A.; Nevedomsky, V. N.; Il’inskaya, N. D.; Lebedeva, N. M. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Preobrazhenskii, V. V.; Putyato, M. A.; Semyagin, B. R. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-12-15

    Optical extinction in a metal–semiconductor metamaterial based on a AlGaAs matrix, which contains random arrays of AsSb plasmon nanoinclusions, is studied. The metamaterial is grown by molecular beam epitaxy at a low temperature. A system of nanoinclusions of various sizes is formed by annealing at temperatures 400, 500, and 600°C. Investigation of the sample’s microstructure by transmission electron microscopy shows that the average size of nanoinclusions at the used annealing temperatures is 4–7, 5–8, and 6–9 nm, respectively. It is shown experimentally that AsSb nanoparticle arrays in the AlGaAs matrix cause the resonant absorption of light. It is established that the plasmon-resonance parameters found in the metamaterial are almost independent of the sizes of the AsSb nanoinclusions. The plasmon-resonance energy is (1.47 ± 0.01) eV, while its full width at half maximum is (0.19 ± 0.01) eV.

  9. Gold Nanoplates for a Localized Surface Plasmon Resonance-Based Boric Acid Sensor.

    Science.gov (United States)

    Morsin, Marlia; Mat Salleh, Muhamad; Ali Umar, Akrajas; Sahdan, Mohd Zainizan

    2017-04-25

    Localized surface plasmon resonance (LSPR) properties of metallic nanostructures, such as gold, are very sensitive to the dielectric environment of the material, which can simply be adjusted by changing its shape and size through modification of the synthesizing process. Thus, these unique properties are very promising, particularly for the detection of various types of chemicals, for example boric acid which is a non-permitted preservative employed in food preparations. For the sensing material, gold (Au) nanoplates with a variety of shapes, i.e., triangular, hexagonal, truncated pentagon and flat rod, were prepared using a seed-mediated growth method. The yield of Au nanoplates was estimated to be ca. 63% over all areas of the sensing material. The nanoplates produced two absorption bands, i.e., the transverse surface plasmon resonance (t-SPR) and the longitudinal surface plasmon resonance (l-SPR) at 545 nm and 710 nm, respectively. In the sensing study, these two bands were used to examine the response of gold nanoplates to the presence of boric acid in an aqueous environment. In a typical process, when the sample is immersed into an aqueous solution containing boric acid, these two bands may change their intensity and peak centers as a result of the interaction between the boric acid and the gold nanoplates. The changes in the intensities and peak positions of t-SPR and l-SPR linearly correlated with the change in the boric acid concentration in the solution.

  10. [Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber].

    Science.gov (United States)

    Luo, Yun-Han; Chen, Xiao-Long; Xu, Meng-Yun; Ge, Jia; Zhang, Yi-Long; He, Yong-Hong; Tang, Jie-Yuan; Yu, Jian-Hui; Zhang, Jun; Chen, Zhe; Chen, Xing-Dan

    2014-03-01

    Surface plasmon resonance, which utilizes the resonance of optical evanescent wave with the metal surface plasmon wave, has been developed into a high sensitivity, rapid, label-less measurement method for chemical and biological analysis. In order to improve the spectral sensitivity in refractive index for a side polished fiber surface plasmon resonance sensor, the whole cladding layer and part of core of a multimode fiber was polished off. Additionally, an extra chrome layer with relatively high refractive index was coated on the polished zone before a gold film. The results showed that the sensor can measure the refractive index range from 1.333 to 1. 431 RIU, with the average spectral sensitivity of 4.11 x 10(3) nm RIU(-1), which is better than the reported results. Especially, in the refractive index range of 1. 417 1. 431 RIU, the sensitivity reaches to 1.09 x 10(4) nm RIU(-1). The minimum resolution of approximately 3.6 x 10(-5) RIU was estimated by a combination analysis with the sensor sensitivity and stability. The superiorities possessed by the proposed sensor in high sensitivity, wide detection range, small size and good stability and reproducibility, etc., make it a good candidate for food testing, environmental monitoring, biomedical testing and other related fields.

  11. Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Wu, Kaiyu; Larsen, Peter Emil

    2014-01-01

    We demonstrate the direct photothermal probing and mapping of single plasmonic nanostructures via the temperature-induced detuning of nanomechanical string resonators. Single Au nanoslits and nanorods are illuminated with a partially polarized focused laser beam (λ = 633 nm) with irradiances in t......). Our results show that nanomechanical resonators are a unique and robust analysis tool for the low-power investigation of thermoplasmonic effects in plasmonic hot spots.......We demonstrate the direct photothermal probing and mapping of single plasmonic nanostructures via the temperature-induced detuning of nanomechanical string resonators. Single Au nanoslits and nanorods are illuminated with a partially polarized focused laser beam (λ = 633 nm) with irradiances...... in the range of 0.26–38 μW/μm2. Photothermal heating maps with a resolution of ∼375 nm are obtained by scanning the laser over the nanostructures. Based on the string sensitivities, absorption efficiencies of 2.3 ± 0.3 and 1.1 ± 0.7 are extracted for a single nanoslit (53 nm × 1 μm) and nanorod (75 nm × 185 nm...

  12. Plasmon resonances in linear noble-metal chains

    Science.gov (United States)

    Gao, Bin; Ruud, Kenneth; Luo, Yi

    2012-11-01

    The electronic excitations of three noble-metall chains—copper, silver, and gold—have been investigated at the time-dependent density functional theory level. The reduced single-electron density matrix is propagated according to the Liouville-von Neumann equation in the real-time domain after an impulse excitation. The propagation in the real-time domain enables us to investigate the formation and size evolution of electronic excitations in these metallic chains with different number of atoms, up to a total of 26 atoms. The longitudinal oscillations at lower excitation energies are dominated by s → p transitions in these chains and have collective or central resonances, while the first peak involving d → p transitions in the longitudinal mode appears at a higher excitation energy and shows collective resonances. In the transverse oscillations, there are in most cases d → p transitions in each resonance, which can be attributed to either central or end resonances. Convergence of the oscillations, in particular those involving the collective and central resonances in the three noble-metal chains can only be observed for chains with 18 atoms or more. Different spectroscopic characteristics among these three metallic chains can be attributed to their different electronic structures, in particular the relativistic effects in the gold chains have a dramatic effect on their electronic structures and excitations.

  13. Molecular Plasmonics

    Science.gov (United States)

    Wilson, Andrew J.; Willets, Katherine A.

    2016-06-01

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics.

  14. Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications

    Science.gov (United States)

    Zheng, Gaige; Zou, Xiujuan; Chen, Yunyun; Xu, Linhua; Rao, Weifeng

    2017-04-01

    We propose a new configuration of surface plasmon resonance (SPR) sensor that is based on graphene-MoS2 hybrid structures for ultrasensitive detection of molecules. The present configuration is consisted of chalcogenide glass (2S2G) prism, Ag, coupling layer, guiding layer, graphene-MoS2 heterostructure and analyte. We perform numerical and analytical study of the impact of the thickness and refractive index (RI) of the coupling and guiding layer in a planar sensing structure within the Kretschmann configuration on the resonance properties of the excitation. Results of reflectivity calculations clearly demonstrate the sharp Fano-type resonance appears in the curve of SPR because of the coupling between surface plasmon polariton (SPP) and planar waveguide (PWG) modes. The properties of the Fano resonance (FR) strongly depend on the parameters of the structure. The calculated magnetic field profiles manifest that the hybrid nature of the electromagnetic (EM) modes excited in the present structure. The proposed system displays an enhancement factor of sensitivity by intensity more than 2 × 103-fold when compared to the SPR sensing scheme.

  15. Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects

    OpenAIRE

    Raza, Søren; Yan, Wei; Stenger, Nicolas; Wubs, Martijn; Mortensen, N. Asger

    2013-01-01

    We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS) [1]. As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.5 eV of the SP resonance energy is observed. In this paper, we base our theoretical interpretation of our experimental findings on the nonlocal hydrodynamic model, and compare the effect of the substrate ...

  16. Electrochemical surface plasmon resonance sensor based on two-electrode configuration

    Science.gov (United States)

    Zhang, Bing; Li, Yazhuo; Dong, Wei; Wen, Yizhang; Pang, Kai; Zhan, Shuyue; Wang, Xiaoping

    2016-10-01

    To obtain detailed information about electrochemistry reactions, a two-electrode electrochemical surface plasmon resonance (EC-SPR) sensor has been proposed. We describe the theory of potential modulation for this novel sensor and determine the factors that can change the SPR resonance angle. The reference electrode in three-electrode configuration was eliminated, and comparing with several other electrode materials, activated carbon (AC) is employed as the suitable counter electrode for its potential stability. Just like three-electrode configuration, the simpler AC two-electrode system can also obtain detailed information about the electrochemical reactions.

  17. Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography

    DEFF Research Database (Denmark)

    Wu, Kaiyu; Rindzevicius, Tomas; Schmidt, Michael Stenbæk;

    2015-01-01

    . The LSPR peak position of the particle mode can be tuned by changing the size of the Ag cap, and can be hybridized by leaning of pillars. The resonance position of the cavity resonance mode can be tuned primarily via the diameter of the Si pillar, and cannot be tuned via leaning of Ag NPs. The presence...... of a substrate dramatically changes the intensity of these two LSPR modes by introducing constructive and destructive interference patterns with incident and reflected fields. Experimental scattering spectra can be interpreted using theoretical simulations. The Ag NP substrate displays a broad plasmonic...

  18. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, Joshua R., E-mail: joshua.hendrickson.4@us.af.mil; Leedy, Kevin; Cleary, Justin W. [Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); Vangala, Shivashankar [Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); SURVICE Engineering, 4141 Colonel Glenn Highway, Dayton, Ohio 45431 (United States); Nader, Nima [Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); Solid State Scientific Corporation, 12 Simon St., Nashua, New Hampshire 03060 (United States); Guo, Junpeng [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899 (United States)

    2015-11-09

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  19. Molecular resonant dissociation of surface-adsorbed molecules by plasmonic nanoscissors

    Science.gov (United States)

    Zhang, Zhenglong; Sheng, Shaoxiang; Zheng, Hairong; Xu, Hongxing; Sun, Mengtao

    2014-04-01

    The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis, photosynthesis and the degradation of plastic, it is hard to break individual molecular bonds for those molecules adsorbed on the surface because of the weak light-absorption in molecules and the redistribution of the resulting vibrational energy both inside the molecule and to its surrounding environment. Here we show how to overcome these obstacles with a plasmonic hot-electron mediated process and demonstrate a new method that allows the sensitive control of resonant dissociation of surface-adsorbed molecules by `plasmonic' scissors. To that end, we used a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup to dissociate resonantly excited NC2H6 fragments from Malachite green. The surface plasmons (SPs) excited at the sharp metal tip not only enhance the local electric field to harvest the light incident from the laser, but crucially supply `hot electrons' whose energy can be transferred to individual bonds. These processes are resonant Raman, which result in some active chemical bonds and then weaken these bonds, followed by dumping in lots of indiscriminant energy and breaking the weakest bond. The method allows for sensitive control of both the rate and probability of dissociation through their dependence on the density of hot electrons, which can be manipulated by tuning the laser intensity or tunneling current/bias voltage in the HV-TERS setup, respectively. The concepts of plasmonic scissors open up new versatile avenues for the deep understanding of in situ surface-catalyzed chemistry.The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis

  20. Resonant-tunnelling-assisted crossing for subwavelenght plasmonic slot waveguides

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Niels Asger

    2008-01-01

    is practically eliminated and the throughput reaches the unity on resonance. Simulation results are in agreement with those from coupled-mode theory. Taking the material loss into account, the symmetry properties of the modes are preserved and the crosstalk remains suppressed, while the throughput is naturally...

  1. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.

    Science.gov (United States)

    Miller, Molly M; Lazarides, Anne A

    2005-11-24

    Electrodynamic simulations of gold nanoparticle spectra were used to investigate the sensitivity of localized surface plasmon band position to the refractive index, n, of the medium for nanoparticles of various shapes and nanoshells of various structures. Among single-component nanoparticles less than 130 nm in size, sensitivities of dipole resonance positions to bulk refractive index are found to depend only upon the wavelength of the resonance and the dielectric properties of the metal and the medium. Among particle plasmons that peak in the frequency range where the real part of the metal dielectric function varies linearly with wavelength and the imaginary part is small and slowly varying, the sensitivity of the peak wavelength, lambda, to refractive index, n, is found to be a linearly increasing function of lambda, regardless of the structural features of the particle that determine lambda. Quasistatic theory is used to derive an analytical expression for the refractive index sensitivity of small particle plasmon peaks. Through this analysis, the dependence of sensitivity on band position is found to be determined by the wavelength dependence of the real part, epsilon', of the particle dielectric function, and the sensitivity results are found to extend to all particles with resonance conditions of the form, epsilon' = -2chin(2), where chi is a function of geometric parameters and other constants. The sensitivity results observed using accurate computational methods for dipolar plasmon bands of gold nanodisks, nanorods, and hollow nanoshells extend, therefore, to particles of other shapes (such as hexagonal and chopped tetrahedral), composed of other metals, and to higher-order modes. The bulk refractive index sensitivity yielded by the theory serves as an upper bound to sensitivities of nanoparticles on dielectric substrates and sensitivities of nanoparticles to local refractive index changes, such as those associated with biomolecule sensing.

  2. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    Science.gov (United States)

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-09

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.

  3. Multicolor surface plasmon resonance imaging of ink jet-printed protein microarrays.

    Science.gov (United States)

    Singh, Bipin K; Hillier, Andrew C

    2007-07-15

    We report a technique that utilizes surface plasmon resonance dispersion as a mechanism to provide multicolor contrast for imaging thin molecular films. Illumination of gold surfaces with p-polarized white light in the Kretschmann configuration produces distinct reflected colors due to excitation of surface plasmons and the resulting absorption of specific wavelengths from the source light. In addition, these colors transform in response to the formation of thin molecular films. This process represents a simple detection method for distinguishing between films of varying thickness in sensor applications. As an example, we interrogated a protein microarray formed by a commercial drop-on-demand chemical ink jet printer. Submonolayer films of a test protein (bovine serum albumin) were readily detected by this method. Analysis of the dispersion relations and absorbance sensitivities illustrate the performance and characteristics of this system. Higher detection sensitivity was achieved at angles where red wavelengths coupled to surface plasmons. However, improved contrast and spatial resolution occurred when the angle of incidence was such that shorter wavelengths coupled to the surface plasmons. Simplified optics combined with the robust microarray printing platform are used to demonstrate the applicability of this technique as a rapid and versatile, high-throughput tool for label-free detection of adsorbed films and macromolecules.

  4. Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing.

    Science.gov (United States)

    Chen, Jing; Fan, Wenfang; Zhang, Tao; Tang, Chaojun; Chen, Xingyu; Wu, Jingjing; Li, Danyang; Yu, Ying

    2017-02-20

    We present a powerful method to enhance the magnetic plasmon (MP) resonances of metamaterials composed of periodic arrays of U-shaped metallic split-ring resonators (SRRs) for high-quality sensing. We show that by suspending the metamaterials to reduce the effect of the substrate, the strong diffraction coupling of MP resonances can be achieved, which leads to a narrow-band mixed MP mode with a large magnetic field enhancement. It is also shown that for such a diffraction coupling, the magnetic field component of the lattice resonance mode of periodic arrays must be parallel to the induced magnetic moment in the metallic SRRs. Importantly, the sensitivity and the figure of merit (FOM) of the suspended metamaterials can reach as high as 1300 nm/RIU and 40, respectively. These results suggest that the proposed metamaterials may find great potential applications in label-free biomedical sensing.

  5. Tunable plasmonic filter with circular metal–insulator– metal ring resonator containing double narrow gaps

    Indian Academy of Sciences (India)

    ZHENG GAIGE; XU LINHUA; LIU YUZHU

    2016-05-01

    Tunable filter based on two metal–insulator–metal (MIM) waveguides coupled to each other by a ring resonator with double narrow gaps is designed and numerically investigated by finitedifference time-domain (FDTD) simulations. The propagating modes of surface plasmon polaritons (SPPs) are studied. By introducing narrow gaps in ring resonators, the transmission in differentresonance modes can be effectively adjusted by changing the gap width (g), and the transmitted peak wavelength has a nonlinear relationship with g. Another structure consisting two cascading ring resonators and regular MIM waveguide have also been proposed. The mechanism based on circular ring resonators with narrow gaps may provide a novel method for designing all-opticalintegrated components in optical communication and computing.

  6. Angular characteristics of a multimode fiber surface plasmon resonance sensor

    CERN Document Server

    Tan, Zhixin; Li, Xuejin; Chen, Yuzhi; Hong, Xueming; Fan, Ping

    2015-01-01

    In this paper the angular characteristics of a multimode fiber SPR sensor are investigated theoretically. By separating the contributions of beams incident at different angles, a compact model is presented to predict the shift of the resonance wavelength with respect to the angle and the environmental refractive index. The result suggests that the performance of conventional fiber SPR sensors can be substantially improved by optimizing the incident angle.

  7. Observation of optical domino modes in arrays of non-resonant plasmonic nanoantennas

    Science.gov (United States)

    Sinev, Ivan S.; Samusev, Anton K.; Voroshilov, Pavel M.; Mukhin, Ivan S.; Denisyuk, Andrey I.; Guzhva, Mikhail E.; Belov, Pavel A.; Simovski, Constantin R.

    2014-09-01

    Domino modes are highly-confined collectivemodes that were first predicted for a periodic arrangement of metallic parallelepipeds in far-infrared region. The main feature of domino modes is the advantageous distribution of the local electric field, which is concentrated between metallic elements (hot spots), while its penetration depth in metal is much smaller than the skin-depth. Therefore, arrays of non-resonant plasmonic nanoantennas exhibiting domino modes can be employed as broadband light trapping coatings for thin-film solar cells. However, until now in the excitation of such modes was demonstrated only in numerical simulations. Here, we for the first time demonstrate experimentally the excitation of optical domino modes in arrays of non-resonant plasmonic nanoantennas. We characterize the nanoantenna arrays produced by means of electron beam lithography both experimentally using an aperture-type near-field scanning optical microscope and numerically. The proof of domino modes concept for plasmonic arrays of nanoantennas in the visible spectral region opens new pathways for development of low-absorptive structures for effective focusing of light at the nanoscale.

  8. Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Shubhendu [Electrical and Computer Engineering Department, The Ohio State University, Columbus, OH 43212 (United States); Sensale-Rodriguez, Berardi [Electrical and Computer Engineering Department, The University of Utah, Salt Lake City, UT 84112 (United States); Xing, Huili Grace [School of Electrical and Computer Engineering and Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Department of Electrical Engineering, University of Notre Dame, IN 46556 (United States); Rajan, Siddharth [Electrical and Computer Engineering Department and Materials Science Engineering Department, The Ohio State University, Columbus, OH 43212 (United States); Volakis, John L.

    2016-01-07

    A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. It is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures.

  9. Synthesis of gold nanorods with a longitudinal surface plasmon resonance peak of around 1250 nm

    Science.gov (United States)

    Nguyen, Thi Nhat Hang; Le Trinh Nguyen, Thi; Thanh Tuyen Luong, Thi; Thang Nguyen, Canh Minh; Nguyen, Thi Phuong Phong

    2016-03-01

    We prepared gold nanorods and joined them to chemicals such as tetrachloauric (III) acid trihydrate, silver nitrate, hydroquinone, hexadecyltrimethylammonium bromide, sodium hydroxide and sodium borohydride using the seed-mediated method. The combination of hydroquinone, with or without salicylic acid, influences the size of the gold nanorods, and this is demonstrated by the results of TEM images, UV-vis spectra and the value of the longitudinal surface plasmon resonance peak with respect to the UV-vis spectra. By changing the Ag+ ion and hydroquinone concentration and the combination of hydroquinone and salicylic acid, the size of the gold nanorods can be controlled and this is manifested by longitudinal surface plasmon resonance peaks forming between 875 and 1278 nm. In particular, sample E2 achieved a longitudinal surface plasmon peak at 1273 nm and an aspect ratio of more than 10 by modifying the hydroquinone to 2.5 mM and salicylic acid to 0.5 mM concentration in the growth solution.

  10. Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer.

    Science.gov (United States)

    Junesch, Juliane; Sannomiya, Takumi

    2014-05-14

    Suspended plasmonic nanopores in ultrathin film layers were fabricated through a simple and widely applicable method combining colloidal lithography and thin film transfer, which allows mass production of short-range ordered nanopore arrays on a large scale. By this combined method, mechanically stable and flexible free-standing nanopore membranes with a thickness down to 15-30 nm were produced. The plasmon resonances of the ultrathin plasmonic nanopores fabricated in AlN/Au/AlN trilayer and single layer Au membranes were tuned to lie in the vis-NIR wavelength range by properly designing their dimensions. The optical responses to the refractive index changes were tested and applied to adlayer sensing. The trilayer nanopore membrane showed a unique property to support water only on one side of the membrane, which was confirmed by the resonance shift and comparison with numerical simulation. Pore size reduction down to 10 nm can be achieved through additional material deposition. The filtering function of such pore-size-reduced conical shaped nanofunnels has also been demonstrated. The presented nanopore fabrication method offers new platforms for ultrathin nanopore sensing or filtering devices with controlled pore-size and optical properties. The film transfer technique employed in this work would enable the transformation of any substrate-based nanostructures to free-standing membrane based devices without complicated multiple etching processes.

  11. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach.

    Science.gov (United States)

    Ding, Wendu; Hsu, Liang-Yan; Schatz, George C

    2017-02-14

    This paper presents a new real-time electrodynamics approach for determining the rate of resonance energy transfer (RET) between two molecules in the presence of plasmonic or other nanostructures (inhomogeneous absorbing and dispersive media). In this approach to plasmon-coupled resonance energy transfer (PC-RET), we develop a classical electrodynamics expression for the energy transfer matrix element which is evaluated using the finite-difference time-domain (FDTD) method to solve Maxwell's equations for the electric field generated by the molecular donor and evaluated at the position of the molecular acceptor. We demonstrate that this approach yields RET rates in homogeneous media that are in precise agreement with analytical theory based on quantum electrodynamics (QED). In the presence of gold nanoparticles, our theory shows that the long-range decay of the RET rates can be significantly modified by plasmon excitation, with rates increased by as much as a factor of 10(6) leading to energy transfer rates over hundreds of nm that are comparable to that over tens of nm in the absence of the nanoparticles. These promising results suggest important future applications of the PC-RET in areas involving light harvesting or sensing, where energy transfer processes involving inhomogeneous absorbing and dispersive media are commonplace.

  12. Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold-Silver Nanoshells.

    Science.gov (United States)

    Li, Chien-Hung; Li, Min-Chih; Liu, Si-Ping; Jamison, Andrew C; Lee, Dahye; Lee, T Randall; Lee, Tai-Chou

    2016-04-13

    Gold-silver nanoshells (GS-NSs) having a tunable surface plasmon resonance (SPR) were employed to facilitate charge separation of photoexcited carriers in the photocalytic production of hydrogen from water. Zinc indium sulfide (ZnIn2S4; ZIS), a visible-light-active photocatalyst, where the band gap varies with the [Zn]/[In] ratio, was used as a model ZIS system (E(g) = 2.25 eV) to investigate the mechanisms of plasmonic enhancement associated with the nanoshells. Three types of GS-NS cores with intense absorptions centered roughly at 500, 700, and 900 nm were used as seeds for preparing GS-NS@ZIS core-shell structures via a microwave-assisted hydrothermal reaction, yielding core-shell particles with composite diameters of ∼200 nm. Notably, an interlayer of dielectric silica (SiO2) between the GS-NSs and the ZIS photocatalyst provided another parameter to enhance the production of hydrogen and to distinguish the charge-transfer mechanisms. In particular, the direct transfer of hot electrons from the GS-NSs to the ZIS photocatalyst was blocked by this layer. Of the 10 particle samples examined in this study, the greatest hydrogen gas evolution rate was observed for GS-NSs having a SiO2 interlayer thickness of ∼17 nm and an SPR absorption centered at ∼700 nm, yielding a rate 2.6 times higher than that of the ZIS without GS-NSs. The apparent quantum efficiencies for these core-shell particles were recorded and compared to the absorption spectra. Analyses of the charge-transfer mechanisms were evaluated and are discussed based on the experimental findings.

  13. Investigation of surface plasmon resonance in composite nanostructure of silver film and nanowire array

    Science.gov (United States)

    Li, Jun; Yang, Junyi; Wu, Xingzhi; Song, Yinglin

    2016-10-01

    We investigate the surface plasmon resonance in a new composite nanostructure (Nanowires array beneath metal film). Computational simulation results exhibit that, for both transverse electric(TE) and transverse magnetic (TM) polarization, the positions of resonance peaks is extremely sensitive to the change of center distance (Filling ratio of nanowires). When the diameter of Nanowires is 4nm and under TM polarization, the resonance angle increasing with the increase of center distance. In the case of TE polarization, the result is completely the opposite within limits. It is also shown that changes in thickness of Ag film(At the top of the Ag nanowire) has little direct effect on the resonance angle, But the characteritics of SPR intensity is influenced by the thickness of Ag film in the most degree. When the thickness of Ag film is 50 nm, In range of 10nm to 100nm, the minimum value of the reflectance is only 0.05, the result is consistent with the previous studies. Additionally, the nano composite structure material is very sensitive to the refractive index change of the lowest layer when under the TE- polarization. we have done mode analysis of the SPR structure for both simple and practical structures using comsol multiphysics, our approach is intend to show the feasibity and extend the applicability of the plasmonic nanowires, could lead to provide the basis for design the new structure of nanowires array.

  14. Plasmon resonance optical tuning based on photosensitive composite structures

    DEFF Research Database (Denmark)

    Gilardi, Giovanni; Xiao, Sanshui; Mortensen, N. Asger

    2014-01-01

    This paper reports a numerical investigation of a periodic metallic structure sandwiched between two quartz plates. The volume comprised between the quartz plates and the metallic structure is infiltrated by a mixture of azo-dye-doped liquid crystal. The exposure to a low power visible light beam...... modifies the azo dye molecular configuration, thus allowing the wavelength shift of the resonance of the system. The wavelength shift depends on the geometry of the periodic structure and it also depends on the intensity of the visible light beam....

  15. Passive Infrared Sensing Using Plasmonic Resonant Dust Particles

    Science.gov (United States)

    2012-01-01

    1 R efl ec ta n ce 8 9 10 11 12 13 14 Incidence wavelength (μm) Polarization parallel to gold strips Polarization perpendicular to gold strips...since the orientation of 4 International Journal of Optics 0 0.5 1 1.5 R efl ec ta n ce 8 9 10 11 12 13 14 Incidence wavelength (μm) Normally incident...strong. The bandwidth of the resonance also remains relatively fixed as the substrate thicknesses is varied. 0 0.5 1 1.5 R efl ec ta n ce 8 9 10 11 12 13

  16. Diffuse Surface Scattering in the Plasmonic Resonances of Ultra-Low Electron Density Nanospheres

    CERN Document Server

    Monreal, R Carmina; Apell, S Peter

    2015-01-01

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here we investigate the role that different surface effects, namely electronic spill-out and diffuse surface scattering, play in the optical properties of these ultra-low electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior both in position and width for large particles and a strong blueshift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultra-low electron density ...

  17. Development of a fiber optic sensor based on gold island plasmon resonance

    Science.gov (United States)

    Meriaudeau, Fabrice; Downey, Todd R.; Passian, A.; Wig, A. G.; Mangeant, S.; Crilly, P. B.; Ferrell, Trinidad L.

    1998-12-01

    We present an optical fiber chemical sensor based on gold- island surface plasmon excitation. The sensing part of the fiber is a one inch portion on which cladding has been removed and onto which a thin layer of gold (40 angstroms) has been deposited to form a particulate surface. Annealing the gold reshapes the particles and produces an absorbance near 535 nm when the only medium residing outside the surface is air. A range of wavelengths provided by a white light source and monochromator is launched through the optical fiber. The transmitted spectra display shifts in the resonance absorption due to any changes in the medium surrounding, or adsorbed onto the fiber. Experimental results for the sensitivity and dynamic range in the measurement of liquid solutions are in agreement with a basic theoretical model which characterizes the surface plasmon using nonretarded electrodynamics. Furthermore, the model assumes the particles are isolated oblate spheroids with a distribution of eccentricities.

  18. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors

    Directory of Open Access Journals (Sweden)

    Kunal Tiwari

    2016-04-01

    Full Text Available Hafnium dioxide has been recognized as an excellent dielectric for microelectronics. However, its usefulness for the surface plasmon based sensors has not yet been tested. Here we investigate its usefulness for waveguide-coupled bi-metallic surface plasmon resonance sensors. Several Ag/HfO2/Au multilayer structure sensors were fabricated and evaluated by optical measurements and computer simulations. The resulting data establish correlations between the growth parameters and sensor performance. The sensor sensitivity to refractive index of analytes is determined to be S n = ∂ θ SPR ∂ n ≥ 4 7 0 . The sensitivity data are supported by simulations, which also predict 314 nm for the evanescent field decay length in air.

  19. Electron Photoemission in Plasmonic Nanoparticle Arrays: Analysis of Collective Resonances and Embedding Effects

    CERN Document Server

    Zhukovsky, Sergei V; Uskov, Alexander V; Protsenko, Igor E; Lavrinenko, Andrei V

    2013-01-01

    We theoretically study the characteristics of photoelectron emission in plasmonic nanoparticle arrays. Nanoparticles are partially embedded in a semiconductor, forming Schottky barriers at metal/semiconductor interfaces through which photoelectrons can tunnel from the nanoparticle into the semiconductor; photodetection in the infrared range, where photon energies are below the semiconductor band gap (insufficient for band-to-band absorption in semiconductor), is therefore possible. The nanoparticles are arranged in a sparse rectangular lattice so that the wavelength of the lattice-induced Rayleigh anomalies can overlap the wavelength of the localized surface plasmon resonance of the individual particles, bringing about collective effects from the nanoparticle array. Using full-wave numerical simulations, we analyze the effects of lattice constant, embedding depth, and refractive index step between the semiconductor layer and an adjacent transparent conductive oxide layer. We show that the presence of refracti...

  20. A saccharides sensor developed by symmetrical optical waveguide-based surface plasmon resonance

    Directory of Open Access Journals (Sweden)

    Ang Li

    2015-03-01

    Full Text Available We proposed a new saccharides sensor developed by symmetrical optical waveguide (SOW-based surface plasmon resonance (SPR. This unique MgF2/Au/MgF2/Analyte film structure results in longer surface plasmon wave (SPW propagation lengths and depths, leading to an increment of resolution. In this paper, we managed to decorate the dielectric interface (MgF2 layer by depositing a thin polydopamine film as surface-adherent that provides a platform for secondary reactions with the probe molecule. 3-Aminophenylboronic acid (3-PBA is chosen to be the saccharides sense probe molecule in the present work. The aqueous humor of Diabetes and Cataract patient whose blood glucose level is normal are analyzed and the results demonstrated that this sensor shows great potential in monitoring the blood sugar and can be adapted in the field of biological monitoring in the future.

  1. Surface plasmon resonance sensors a materials guide to design and optimization

    CERN Document Server

    Oliveira, Leiva Casemiro; Thirstrup, Carsten; Neff, Helmut Franz

    2015-01-01

    This book addresses the important physical phenomenon of Surface Plasmon Resonance or Surface Plasmon Polaritons in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and outlined in detail. The text covers the selection of nanometer thin metal films, ranging from free-electron to the platinum type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Furthermore, as-yet hardly explored SPR features of selected metal–metal and metal–dielectric super lattices are included in this report. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.

  2. Surface plasmon resonance biosensing: Approaches for screening and characterising antibodies for food diagnostics.

    Science.gov (United States)

    Yakes, B J; Buijs, J; Elliott, C T; Campbell, K

    2016-08-15

    Research in biosensing approaches as alternative techniques for food diagnostics for the detection of chemical contaminants and foodborne pathogens has increased over the last twenty years. The key component of such tests is the biorecognition element whereby polyclonal or monoclonal antibodies still dominate the market. Traditionally the screening of sera or cell culture media for the selection of polyclonal or monoclonal candidate antibodies respectively has been performed by enzyme immunoassays. For niche toxin compounds, enzyme immunoassays can be expensive and/or prohibitive methodologies for antibody production due to limitations in toxin supply for conjugate production. Automated, self-regenerating, chip-based biosensors proven in food diagnostics may be utilised as rapid screening tools for antibody candidate selection. This work describes the use of both single channel and multi-channel surface plasmon resonance (SPR) biosensors for the selection and characterisation of antibodies, and their evaluation in shellfish tissue as standard techniques for the detection of domoic acid, as a model toxin compound. The key advantages in the use of these biosensor techniques for screening hybridomas in monoclonal antibody production were the real time observation of molecular interaction and rapid turnaround time in analysis compared to enzyme immunoassays. The multichannel prototype instrument was superior with 96 analyses completed in 2h compared to 12h for the single channel and over 24h for the ELISA immunoassay. Antibodies of high sensitivity, IC50's ranging from 4.8 to 6.9ng/mL for monoclonal and 2.3-6.0ng/mL for polyclonal, for the detection of domoic acid in a 1min analysis time were selected. Although there is a progression for biosensor technology towards low cost, multiplexed portable diagnostics for the food industry, there remains a place for laboratory-based SPR instrumentation for antibody development for food diagnostics as shown herein.

  3. Optical tweezers and surface plasmon resonance combination system based on the high numerical aperture lens

    Science.gov (United States)

    Shan, Xuchen; Zhang, Bei; Lan, Guoqiang; Wang, Yiqiao; Liu, Shugang

    2015-11-01

    Biology and medicine sample measurement takes an important role in the microscopic optical technology. Optical tweezer has the advantage of accurate capture and non-pollution of the sample. The SPR(surface plasmon resonance) sensor has so many advantages include high sensitivity, fast measurement, less consumption of sample and label-free detection of biological sample that the SPR sensing technique has been used for surface topography, analysis of biochemical and immune, drug screening and environmental monitoring. If they combine, they will play an important role in the biological, chemical and other subjects. The system we propose use the multi-axis cage system, by using the methods of reflection and transmiss ion to improve the space utilization. The SPR system and optical tweezer were builtup and combined in one system. The cage of multi-axis system gives full play to its accuracy, simplicity and flexibility. The size of the system is 20 * 15 * 40 cm3 and thus the sample can be replaced to switch between the optical tweezers system and the SPR system in the small space. It means that we get the refractive index of the sample and control the particle in the same system. In order to control the revolving stage, get the picture and achieve the data stored automatically, we write a LabVIEW procedure. Then according to the data from the back focal plane calculate the refractive index of the sample. By changing the slide we can trap the particle as optical tweezer, which makes us measurement and trap the sample at the same time.

  4. Synthesis of hydrophobic nanoparticles for real-time lysozyme detection using surface plasmon resonance sensor.

    Science.gov (United States)

    Saylan, Yeşeren; Yılmaz, Fatma; Derazshamshir, Ali; Yılmaz, Erkut; Denizli, Adil

    2017-03-21

    Diagnostic biomarkers such as proteins and enzymes are generally hard to detect because of the low abundance in biological fluids. To solve this problem, the advantages of surface plasmon resonance (SPR) and nanomaterial technologies have been combined. The SPR sensors are easy to prepare, no requirement of labelling and can be detected in real time. In addition, they have high specificity and sensitivity with low cost. The nanomaterials have also crucial functions such as efficiency improvement, selectivity, and sensitivity of the detection systems. In this report, an SPR-based sensor is developed to detect lysozyme with hydrophobic poly (N-methacryloyl-(L)-phenylalanine) (PMAPA) nanoparticles. The SPR sensor was first characterized by attenuated total reflection-Fourier transform infrared, atomic force microscope, and water contact angle measurements and performed with aqueous lysozyme solutions. Various concentrations of lysozyme solution were used to calculate kinetic and affinity coefficients. The equilibrium and adsorption isotherm models of interactions between lysozyme solutions and SPR sensor were determined and the maximum reflection, association, and dissociation constants were calculated by Langmuir model as 4.87, 0.019 nM(-1) , and 54 nM, respectively. The selectivity studies of SPR sensor were investigated with competitive agents, hemoglobin, and myoglobin. Also, the SPR sensor was used four times in adsorption/desorption/recovery cycles and results showed that, the combination of optical SPR sensor with hydrophobic ionizable PMAPA nanoparticles in one mode enabled the detection of lysozyme molecule with high accuracy, good sensivity, real-time, label-free, and a low-detection limit of 0.66 nM from lysozyme solutions. Lysozyme detection in a real sample was performed by using chicken egg white to evaluate interfering molecules present in the medium.

  5. Ultrasensitive detection of deltamethrin by immune magnetic nanoparticles separation coupled with surface plasmon resonance sensor.

    Science.gov (United States)

    Liu, Xia; Li, Lei; Liu, You-Qian; Shi, Xing-Bo; Li, Wen-Jin; Yang, Yang; Mao, Lu-Gang

    2014-09-15

    Small molecules or analytes present in trace level are difficult to be detected directly using conventional surface plasmon resonance (SPR) sensor, due to its small changes in the refractive index induced by the binding of these analytes on the sensor surface. In this paper, a new approach that combines SPR sensor technology with Fe3O4 magnetic nanoparticles (MNPs) assays is developed for directly detecting of deltamethrin in soybean. The Fe3O4 MNPs conjugated with antibodies specific to antigen serves as both labels for enhancing refractive index change due to the capture of target analyte, and "vehicles" for the rapid delivery of analyte from a sample solution to the sensor surface. Meanwhile, SPR direct detection format without Fe3O4 MNPs and gas chromatography (GC) analysis were conducted for detection of deltamethrin in soybean to demonstrate the amplification effect of Fe3O4 MNPs. A good linear relationship was obtained between SPR responses and deltamethrin concentrations over a range of 0.01-1 ng/mL with the lowest measurable concentration of 0.01 ng/mL. The results reveal that the detection sensitivity for deltamethrin was improved by 4 orders of magnitude compared with SPR direct detection format. The recovery of 95.5-119.8% was obtained in soybean. The excellent selectivity of the present biosensor is also confirmed by two kinds of pesticides (fenvalerate and atrazine) as controls. This magnetic separation and amplification strategy has great potential for detection of other small analytes in trace level concentration, with high selectivity and sensitivity by altering the target-analyte-capture agent labeled to the carboxyl-coated Fe3O4 MNPs.

  6. Optical characterization of polyethylene and cobalt phthalocyanine ultrathin films by means of the ATR technique at surface plasmon resonance

    Science.gov (United States)

    Rodríguez Juárez, M.; Muñoz Aguirre, N.; Martínez Pérez, L.; Garibay-Febles, V.; Lozada-Cassou, M.; Becerril, M.; Zelaya Angel, O.

    2006-08-01

    It is well known that the development and determination of optical properties of ultrathin films is an important issue in many technological areas. In this work organic polyethylene (PE) and cobalt phthalocyanines (CoPc) ultrathin films were deposited over metal films using the r.f. sputtering and thermal evaporation techniques, respectively. Attenuated total reflection (ATR) measurements for the system organic film/metal at the surface plasmon resonance (SPR) were used for determining the thicknesses and optical properties of the PE and CoPc thin films. Thicknesses of the order of some nanometers were found, fitting the theoretical multilayer ATR model, for p polarization monochromatic light, to the experimental reflection data. The dielectric function of CoPc ultrathin films was determined at a wavelength of 632.8 nm.

  7. Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis.

    Science.gov (United States)

    Xu, Juan; Yu, Han-Qing; Sheng, Guo-Ping

    2016-01-25

    The presence of sulfonamide antibiotics in the environments has been recognized as a crucial issue. Their migration and transformation in the environment is determined by natural organic matters that widely exist in natural water and soil. In this study, the kinetics and thermodynamics of interactions between humic acids (HA) and sulfamethazine (SMZ) were investigated by employing surface plasmon resonance (SPR) combined with isothermal titration microcalorimetry (ITC) technologies. Results show that SMZ could be effectively bound with HA. The binding strength could be enhanced by increasing ionic strength and decreasing temperature. High pH was not favorable for the interaction. Hydrogen bond and electrostatic interaction may play important roles in driving the binding process, with auxiliary contribution from hydrophobic interaction. The results implied that HA existed in the environment may have a significant influence on the migration and transformation of organic pollutants through the binding process.

  8. Detection of trinitrotoluene (TNT) extracted from soil using a surface plasmon resonance (SPR)-based sensor platform

    Science.gov (United States)

    Strong, Anita A.; Stimpson, Donald I.; Bartholomew, Dwight U.; Jenkins, Thomas F.; Elkind, Jerome L.

    1999-08-01

    An antibody-based competition assay has been developed using a surface plasmon resonance (SPR) sensor platform for the detection of trinitrotoluene (TNT) in soil extract solutions. The objective of this work is to develop a sensor-based assay technology to use in the field for real- time detection of land mines. This immunoassay combines very simple bio-film attachment procedures and a low-cost SPR sensor design to detect TNT in soil extracts. The active bio-surface is a coating of bovine serum albumin that has been decorated with trinitrobenzene groups. A blind study on extracts from a large soil matrix was recently performed and result from this study will be presented. Potential interferant studied included 2,4-dinitrophenol, 2,4- dinitrotoluene, ammonium nitrate, and 2,4- dichlorophenoxyacetic acid. Cross-reactivity with dinitrotoluene will be discussed. Also, plans to reach sensitivity levels of 1ppb TNT in soil will be described.

  9. Guiding light by plasmonic resonant solitons in metallic nanosuspensions (Presentation Recording)

    Science.gov (United States)

    Kelly, Trevor S.; Samadi, Akbar; Bezryadina, Anna; Chen, Zhigang

    2015-09-01

    In typical colloidal suspensions, the corresponding optical polarizability is positive, and thus enhanced scattering takes place as optical beams tend to catastrophically collapse during propagation. Recently, light penetration deep inside scattering suspensions has been realized by engineering dielectric or plasmonic nanoparticle polarizibilities. In particular, we have previously demonstrated two types of soft-matter systems with tunable optical nonlinearities - the dielectric and metallic colloidal suspensions, in which the effects of diffraction and scattering were overcome, hence achieving deep penetration of a light needle through the suspension. In this work, we show that waveguides can be established in soft matter systems such as metallic nanosuspensions through the formation of plasmonic resonant solitons. First, we show that, due to plasmonic resonance, a 1064nm laser beam (probe) would not experience appreciable nonlinear self-action while propagating through 4cm cuvette containing the metallic nanosuspension of gold spheres (40nm), whereas a 532nm laser beam (pump) can readily form a spatial soliton due to nonlinear self-trapping. Second, we demonstrate effective guidance of the probe beam, which would otherwise diffract significantly through the nanosuspensions, due to the soliton-induced waveguide from the pump beam. Such guidance was observed when the power of the probe beam was varied from 20mW to 500mW at constant pump beam power, with more pronounced guidance realized from lower to higher probe beam power. Interestingly, due to the presence of the probe beam, the pump beam undergoes self-trapping at an even lower power. These results may bring about the possibility of engineering plasmonic soliton-based waveguides for many applications.

  10. pH tunability and influence of alkali metal basicity on the plasmonic resonance of silver nanoparticles

    Science.gov (United States)

    Yadav, Vijay D.; Akhil Krishnan, R.; Borade, Lalit; Shirolikar, Seema; Jain, Ratnesh; Dandekar, Prajakta

    2017-07-01

    Localized surface plasmon resonance has been a unique and intriguing feature of silver nanoparticles (AgNPs) that has attracted immense attention. This has led to an array of applications for AgNPs in optics, sensors, plasmonic imaging etc. Although numerous applications have been reported consistently, the importance of buffer and reaction parameters during the synthesis of AgNPs, is still unclear. In the present study, we have demonstrated the influence of parameters like pH, temperature and buffer conditions (0.1 M citrate buffer) on the plasmonic resonance of AgNPs. We found that neutral and basic pH (from alkali metal) provide optimum interaction conditions for nucleation of plasmon resonant AgNPs. Interestingly, this was not observed in the non-alkali metal base (ammonia). Also, when the nanoparticles synthesized from alkali metal base were incorporated in different buffers, it was observed that the nanoparticles dissolved in the acidic buffer and had reduced plasmonic resonance intensity. This, however, was resolved in the basic buffer, increasing the plasmonic resonance intensity and confirming that nucleation of nanoparticles required basic conditions. The above inference has been supported by characterization of AgNPs using UV-Vis spectrophotometer, Fluorimetry analysis, Infrared spectrometer and TEM analysis. The study concluded that the plasmonic resonance of AgNPs occurs due to the interaction of alkali (Na) and transition metal (Ag) salt in basic/neutral conditions, at a specific temperature range, in presence of a capping agent (citric acid), providing a pH tune to the overall system.

  11. Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared.

    Science.gov (United States)

    Mousavi, S Hossein; Kholmanov, Iskandar; Alici, Kamil B; Purtseladze, David; Arju, Nihal; Tatar, Kaya; Fozdar, David Y; Suk, Ji Won; Hao, Yufeng; Khanikaev, Alexander B; Ruoff, Rodney S; Shvets, Gennady

    2013-03-13

    Graphene is widely known for its anomalously strong broadband optical absorptivity of 2.3% that enables seeing its single-atom layer with the naked eye. However, in the mid-infrared part of the spectrum graphene represents a quintessential lossless zero-volume plasmonic material. We experimentally demonstrate that, when integrated with Fano-resonant plasmonic metasurfaces, single-layer graphene (SLG) can be used to tune their mid-infrared optical response. SLG's plasmonic response is shown to induce large blue shifts of the metasurface's resonance without reducing its spectral sharpness. This effect is explained by a generalized perturbation theory of SLG-metamaterial interaction that accounts for two unique properties of the SLG that set it apart from all other plasmonic materials: its anisotropic response and zero volume. These results pave the way to using gated SLG as a platform for dynamical spectral tuning of infrared metamaterials and metasurfaces.

  12. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties.

    Science.gov (United States)

    Zhang, Xiao-Yang; Hu, Anming; Zhang, Tong; Lei, Wei; Xue, Xiao-Jun; Zhou, Yunhong; Duley, Walt W

    2011-11-22

    We describe a rapid, simple, room-temperature technique for the production of large-scale metallic thin films with tunable plasmonic properties assembled from size-selected silver nanoplates (SNPs). We outline the properties of a series of ultrathin monolayer metallic films (8-20 nm) self-assembled on glass substrates in which the localized surface plasmon resonance can be tuned over a range from 500 to 800 nm. It is found that the resonance peaks of the films are strongly dependent on the size of the nanoplates and the refractive index of the surrounding dielectric. It is also shown that the bandwidth and the resonance peak of the plasmon resonance spectrum of the metallic films can be engineered by simply controlling aggregation of the SNP. A three-dimensional finite element method was used to investigate the plasmon resonance properties for individual SNPs in different dielectrics and plasmon coupling in SNP aggregates. A 5-17 times enhancement of scattering from these SNP films has been observed experimentally. Our experimental results, together with numerical simulations, indicate that this self-assembly method shows great promise in the production of nanoscale metallic films with enormous electric-field enhancements at visible and near-infrared wavelengths. These may be utilized in biochemical sensing, solar photovoltaic, and optical processing applications.

  13. Spectral Tuning of Plasmon Resonance in a Core/Shell (Au)Ag Nanocomposite

    Science.gov (United States)

    Panarin, A. Yu.; Abakshonok, A. V.; Agabekov, V. E.; Eryomin, A. N.; Terekhov, S. N.

    2015-01-01

    A bimetallic (Au)Ag nanocomposite with a core/shell structure was synthesized in aqueous solution and a H2O/EtOH mixture (1:1) containing polymers (carboxymethylcellulose, sodium polystyrenesulfonate, polyvinylpyrrolidone, dextran). Its structure and optical properties were characterized. The shape and position of scattering bands of colloidal noble-metal nanoparticles with optical density <0.1 were undistorted by solvent absorption. Scattering spectra had to be corrected for solutions of greater optical density. A method for correcting the resonant lightscattering spectra of Au and (Au)Ag nanoparticles was proposed for a single-beam apparatus. The possibility of surface plasmon resonance tuning for (Au)Ag with a short-wavelength shift of ~150 nm for the absorption band maximum and of ~84 nm for the resonant scattering band was demonstrated by varying the AgNO3 concentration during formation of the silver shell on the gold core.

  14. Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis

    Science.gov (United States)

    Shushama, Kamrun Nahar; Rana, Md. Masud; Inum, Reefat; Hossain, Md. Biplob

    2017-01-01

    In this paper, a graphene coated optical fiber surface plasmon resonance (SPR) biosensor is presented for the detection of DNA Hybridization. For the proposed sensor, a four layer model (fiber core /metal /sensing layer /sample) where a sheet of graphene (biomolecular recognition elements (BRE)) acting as a sensing layer is coated around the gold film because graphene enhances the sensitivity of fiber optic SPR biosensor. Numerical analysis shows the variation of resonance wavelength and spectrum of transmitted power for mismatched DNA strands and for complementary DNA strands. For mismatched DNA strands variation is negligible whereas for complementary DNA strands is considerably countable. Proposed sensor successfully distinguishes hybridization and single nucleotide polymorphisms (SNP) by observing the variation level of resonance wavelength and spectrum of transmitted power.

  15. Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas.

    Science.gov (United States)

    Castro-Lopez, Marta; Brinks, Daan; Sapienza, Riccardo; van Hulst, Niek F

    2011-11-09

    Resonant optical antennas are ideal for nanoscale nonlinear optical interactions due to their inherent strong local field enhancement. Indeed second- and third-order nonlinear response of gold nanoparticles has been reported. Here we compare the on- and off-resonance properties of aluminum, silver, and gold nanoantennas, by measuring two-photon photoluminescence. Remarkably, aluminum shows 2 orders of magnitude higher luminescence efficiency than silver or gold. Moreover, in striking contrast to gold, the aluminum emission largely preserves the linear incident polarization. Finally, we show the systematic resonance control of two-photon excitation and luminescence polarization by tuning the antenna width and length independently. Our findings point to aluminum as a promising metal for nonlinear plasmonics.

  16. Coupled resonator induced transparency in surface plasmon polariton gap waveguide with two side-coupled cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengren, E-mail: zhrenzhang@126.com [School of Science, Chongqing Jiaotong University, Chongqing 400074 (China); Zhang, Liwei [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Yin, Pengfei; Han, Xiangyu [School of Science, Chongqing Jiaotong University, Chongqing 400074 (China)

    2014-08-01

    We investigate theoretically the generation process of coupled resonator-induced transparency (CRIT) in surface plasmon polariton gap waveguide system containing two side-coupled cavities, which locate at a symmetric position. The CRIT is original from the destructive interference of the two detuned cavities. In contrast with the existing electromagnetically induced transparency (EIT) schemes, the occurrence of the CRIT is caused by the two radiative cavities in waveguide, instead of interference between a dark cavity and radiative cavity. This behavior mimics the quantum interference between two direct excitation pathways in a three-level V-type atom. The transmission lineshape can be tuned between an EIT-like resonant peak and a Lorentzian-like resonant dip by tailoring the detuning of the two cavities. Moreover, we also find that the transparency peak moves to high frequency with a line shift and its Q factor decreases with the increase of coupling distance between the cavities and waveguide.

  17. Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects

    CERN Document Server

    Raza, Søren; Stenger, Nicolas; Wubs, Martijn; Mortensen, N Asger

    2013-01-01

    We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS). As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.5 eV of the SP resonance energy is observed. In this paper, we base our theoretical interpretation of our experimental findings on the nonlocal hydrodynamic model, and compare the effect of the substrate on the SP resonance energy to the approach of an effective homogeneous background permittivity. We derive the nonlocal polarizability of a small metal sphere embedded in a homogeneous dielectric environment, leading to the nonlocal generalization of the classical Clausius-Mossotti factor. We also present an exact formalism based on multipole expansions and scattering matrices to determine the optical response of a metal sphere on a dielectric substrate of finite thickness, taking into account retardation and nonlocal effects....

  18. Ultra-thin films for plasmonics: a technology overview

    DEFF Research Database (Denmark)

    Malureanu, Radu; Lavrinenko, Andrei

    2015-01-01

    Ultra-thin films with low surface roughness that support surface plasmon-polaritons in the infra-red and visible ranges are needed in order to improve the performance of devices based on the manipulation of plasmon propagation. Increasing amount of efforts is made in order not only to improve the...

  19. Surface plasmon resonance reveals a different pattern of proinsulin autoantibodies concentration and affinity in diabetic patients.

    Directory of Open Access Journals (Sweden)

    Aldana Trabucchi

    Full Text Available Type 1 diabetes mellitus (DM is characterized by autoimmune aggression against pancreatic beta cells resulting in absolute deficiency of insulin secretion. The first detectable sign of emerging autoimmunity during the preclinical asymptomatic period is the appearance of diabetes-related autoantibodies. In children at risk for type 1 DM, high-affinity Insulin autoantibodies reactive to proinsulin, are associated with diabetes risk. Autoantibodies are usually measured by radioligand binding assay (RBA that provides quasi-quantitative values reflecting potency (product between concentration and affinity of specific autoantibodies. Aiming to improve the characterization of the specific humoral immune response, we selected surface plasmon resonance (SPR as an alternative method to measure proinsulin autoantibodies (PAA. This novel technology has allowed real time detection of antibodies interaction and kinetic analysis. Herein, we have employed SPR to characterize the PAA present in sera from 28 childhood-onset (mean age 8.31±4.20 and 23 adult-onset diabetic patients (≥65 years old, BMI<30 in terms of concentration and affinity. When evaluating comparatively samples from both groups, childhood-onset diabetic patients presented lower PAA concentrations and higher affinities (median 67.12×10(-9 M and 3.50×10(7 M(-1, respectively than the adults (median 167.4×10(-9 M and 0.84×10(7 M(-1, respectively. These results are consistent with those from the reference method RBA (Standard Deviation score median 9.49 for childhood-onset group and 5.04 for adult-onset group where the binding can be directly related to the intrinsic affinity of the antibody, suggesting that there is a different etiopathogenic pathway between both types of clinical presentation of the disease. This technology has shown to be a useful tool for the characterization of PAAs parameters as an alternative to radioimmunoassay, with high versatility and reproducibility associated to

  20. Numerical analysis of surface plasmon resonance effects on a rotational silver nanorod/nanoshell dimer

    Science.gov (United States)

    Chou Chau, Yuan-Fong

    2013-06-01

    In this work, we numerically investigate the surface plasmon resonance (SPR) effects on a pair of rotational silver nanorod/nanoshell dimer with a finite height of 1000 nm by means of finite element method with three dimensional calculation. The rotational angles of the silver nanorod/nanoshell dimer are chosen θ=0°, θ=25°, θ=45° and θ=90°, respectively. The proposed structure exhibits a red-shifted localized SPR that can tuned over an extended wavelength range by varying the dielectric constant in metal nanoshell and the rotational angle of the silver nanorod/nanoshell dimer. The tunable optical properties on SPR phenomena are attributed to the rotational effect and a larger effective size of dielectric constant that is filled with a higher refractive medium of finite height of metal nanorod/nanoshell. This unique property of a pair of rotational nanorod/nanoshell dimer is highly attractive for serving as resonant center to hold and probe smaller nanostructures, such as biomolecules or quantum dots. Such structures also show significant promise for applications in nano-switch devices, sensing, and surface-enhanced spectroscopy, due to their strong and tunable plasmon resonances.

  1. Manipulated localized surface plasmon resonances in silver nanoshells coated with a spherical anisotropic layer

    Institute of Scientific and Technical Information of China (English)

    Jiang Shu-Min; Wu Da-Jian; Cheng Ying; Liu Xiao-Jun

    2012-01-01

    The influences of the anisotropy of the outer spherically anisotropic (SA) layer on the far-field spectra and near-field enhancements of the silver nanoshells are investigated by using a modified Mie scattering theory.It is found that with the increase of the anisotropic value of the SA layer,the dipole resonance wavelength of the silver nanoshell first increases and then decreases,while the local field factor (LFF) reduces.With the decrease of SA layer thickness,the dipole wavelength of the silver nanoshell shows a distinct blue-shift.When the SA layer becomes very thin,the modulations of the anisotropy of the SA layer on the plasmon resonance energy and the near-field enhancement are weakened.We further find that the smaller anisotropic value of the SA layer is helpful for obtaining the larger near-field enhancement in the Ag nanoshell.The geometric average of the dielectric components of the SA layer has a stronger effect on the plasmon resonance energy of the silver nanoshell than on the near-field enhancement.

  2. Improved Biomolecular Thin-Film Sensor based on Plasmon Waveguide Resonance

    Science.gov (United States)

    Byard, Courtney; Aslan, Mustafa; Mendes, Sergio

    2009-05-01

    The design, fabrication, and characterization of a plasmon waveguide resonance (PWR) sensor are presented. Glass substrates are coated with a 35 nm gold film using electron beam evaporation, and then covered with a 143 nm aluminum oxide waveguide using an atomic layer deposition process, creating a smooth, highly transparent dielectric film. When probed in the Kretschmann configuration, the structure allows for an efficient conversion of an incident optical beam into a surface wave, which is mainly confined in the dielectric layer and exhibits a deep and narrow angular resonance. The performance (reflectance vs. incidence angle in TE polarization) is modeled using a transfer-matrix approach implemented into a Mathematica code. Our simulations and experimental data are compared with that of surface plasmon resonance (SPR) sensor using the same criteria. We show that the resolution of PWR is approximately ten times better than SPR, opening opportunities for more sensitive studies in various applications including research in protein interactions, pharmaceutical drug development, and food analysis.

  3. Enhanced sensitivity of localized surface plasmon resonance biosensor by phase interrogation

    Science.gov (United States)

    Li, Chung-Tien; Chen, How-foo; Yen, Ta-Jen

    2011-05-01

    We proposed an innovative phase interrogation method for localized surface plasmon resonance (LSPR) detection. To our knowledge, this is the first demonstration of LSPR biosensor by phase interrogation. LSPR is realized as the plasmonic resonance within confined metal nanoparticle. Nanoparticle couples the light by means of a non-radiative inter-band absorption, and a scattering from surface plasmon oscillation, the total contribution is the optical extinction of nanoparticles. Due to the variety of resonance types, LSPR is extensively studied in the field of biological sensing, imaging, and medical therapeutics. Generally, LSPR is probed by optical intensity variation of continuous wavelength, in other words, wavelength interrogation. LSPR sensitivity probed by this method is ranged from several tens nm/RIU to less than 1000nm/RIU depending on the nanostructure and metal species, which at least an order of magnitude less than conventional SPR biosensor in wavelength interrogation. In this work, an innovative common-path phase interrogation system is applied for LSPR detection. Phase difference in our home-made system is simply extracted through the correlation of optical intensity under different polarization without any heterodyne optical modulator or piezoelectric transducer, and thus low down the cost and complexity in optical setup. In addition, signal-to-noise ratio is substantially reduced since the signal wave and reference wave share the common path. In our preliminary results, LSPR resolution of Au nanodisk array is 1.74 x 10-4 RIU by wavelength interrogation; on the other side, LSPR resolution of Au nanodisk array is 2.02x10-6 RIU in phase interrogation. LSPR sensitivity is around one order of magnitude enhanced. In conclusion, we demonstrated that LSPR sensitivity can be further enhanced by phase interrogation.

  4. A Surface Plasmon Resonance-Based Immunosensors for Sensitive Detection of Heroin

    Science.gov (United States)

    Wu, Zhong-cheng; Chen, Wen-ge; Wang, Lian-chao; Ge, Yu; Yu, Cheng-duan; Fang, Ting-jian

    2000-12-01

    A simple technique for sensitive detection of heroin based on surface-plasmon-resonance has been theoretically and experimentally investigated. The experiment was realized by using an anti-MO monoclonal antibody and a morphine (MO)-bovine serum albumin (MO-BSA) conjugate (antigen). The reason for using MO-BSA in the detection of heroine was also discussed. MO-BSA was immobilized on a gold thin film of SPR sensor chip by physical adsorption. The configuration of the device is allowed to be further miniaturized, which is required for the construction of a portable SPR device in the application of in-situ analysis.

  5. Research of measurement errors caused by salt solution temperature drift in surface plasmon resonance sensors

    Institute of Scientific and Technical Information of China (English)

    Yingcai Wu; Zhengtian Gu; YifangYuan

    2006-01-01

    @@ Influence of temperature on measurement of surface plasmon resonance (SPR) sensor was investigated.Samples with various concentrations of NaCI were tested at different temperatures. It was shown that if the affection of temperature could be neglected, measurement precision of salt solution was 0.028 wt.-%.But measurement error of salinity caused by temperature was 0.53 wt.-% in average when the temperature drift was 1 ℃. To reduce the error, a double-cell SPR sensor with salt solution and distilled water flowing respectively and at the same temperature was implemented.

  6. Plasmon resonances on gold nanowires directly drawn in a step-index fiber.

    Science.gov (United States)

    Tyagi, H K; Lee, H W; Uebel, P; Schmidt, M A; Joly, N; Scharrer, M; Russell, P St J

    2010-08-01

    We report the successful production of high-quality gold wires, with diameters down to 260nm, by direct fiber drawing from a gold-filled fused-silica cane. The stack-and-draw technique makes it straightforward to incorporate a conventional step-index core, adjacent to the gold wire, in the cane. In the drawn fiber, strong coupling of light from the glass core to SPP resonances on the gold wire is observed at specific well-defined wavelengths. Such embedded wires have many potential applications, for example, as nanoscale electrodes, in nonlinear optical plasmonics, and as near-field scanning optical microscope tips.

  7. Thiolene-based microfluidic flow cells for surface plasmon resonance imaging.

    Science.gov (United States)

    Sheppard, Gareth; Oseki, Takao; Baba, Akira; Patton, Derek; Kaneko, Futao; Mao, Leidong; Locklin, Jason

    2011-06-01

    Thiolene-based microfluidic devices have been coupled with surface plasmon resonance imaging (SPRI) to provide an integrated platform to study interfacial interactions in both aqueous and organic solutions. In this work, we develop a photolithographic method that interfaces commercially available thiolene resin to gold and glass substrates to generate microfluidic channels with excellent adhesion that leave the underlying sensor surface free from contamination and readily available for surface modification through self-assembly. These devices can sustain high flow rates and have excellent solvent compatibility even with several organic solvents. To demonstrate the versatility of these devices, we have conducted nanomolar detection of streptavidin-biotin interactions using in situ SPRI.

  8. Surface plasmon resonance based fibre optic chemical sensor for the detection of cocaine

    Science.gov (United States)

    Nguyen, T. Hien; Sun, Tong; Grattan, Kenneth T. V.

    2016-05-01

    A surface plasmon based fibre-optic chemical sensor for the detection of cocaine has been developed using a molecularly imprinted polymer (MIP) film with embedded gold nanoparticles as the recognition element. The MIP was formed on the layer of gold thin film which was deposited on the surface of a fibre core. The sensing was based on swelling of the MIP film induced by analyte binding that shifted the resonance spectrum toward a shorter wavelength. The sensor exhibited a response to cocaine in the concentration range of 0 - 400 μM in aqueous acetonitrile mixtures. Selectivity for cocaine over other drugs has also been demonstrated.

  9. Plasmonic Nanoparticle-based Protein Detection by Optical Shift of a Resonant Microcavity

    CERN Document Server

    Santiago-Cordoba, Miguel A; Vollmer, Frank; Demirel, Melik C

    2011-01-01

    We demonstrated a biosensing approach which, for the first time, combines the high-sensitivity of whispering gallery modes (WGM) with a metallic nanoparticle based assay. We provided a computational model based on generalized Mie theory to explain the higher sensitivity of protein detection through Plasmonic enhancement. We quantitatively analyzed the binding of a model protein (i.e., BSA) to gold nanoparticles from high-Q WGM resonance frequency shifts, and fit the results to an adsorption isotherm, which agrees with the theoretical predictions of a two-component adsorption model.

  10. Compact surface plasmon resonance biosensor utilizing an injection-molded prism

    Science.gov (United States)

    Chen, How-Foo; Chen, Chih-Han; Chang, Yun-Hsiang; Chuang, Hsin-Yuan

    2016-05-01

    Targeting at a low cost and accessible diagnostic device in clinical practice, a compact surface plasmon resonance (SPR) biosensor with a large dynamic range in high sensitivity is designed to satisfy commercial needs in food safety, environmental bio-pollution monitoring, and fast clinical diagnosis. The core component integrates an optical coupler, a sample-loading plate, and angle-tuning reflectors is injection-molded as a free-from prism made of plastic optics. This design makes a matching-oil-free operation during operation. The disposability of this low-cost component ensures testing or diagnosis without cross contamination in bio-samples.

  11. Angle modulated surface plasmon resonance spectrometer for refractive index sensing with enhanced detection resolution

    Science.gov (United States)

    Zhou, Xinlei; Chen, Ke; Li, Li; Peng, Wei; Yu, Qingxu

    2017-01-01

    We design and manufacture an angle modulated surface plasmon resonance (SPR) spectrometer with high detection resolution for refractive index sensing. The presented SPR spectrometer is based on a five-layer Kretchmann configuration. To enhance the sensitivity and resolution of the SPR spectrometer, we introduce a reference beam into the system, which has improved the stability of the system by nearly one order of magnitude. Numerical simulation and experimental study are presented and the results show that a sensitivity of 85 degrees/RIU (refractive index unit) and a good repeatability (standard deviation=3.7×10-6 RIU) have been achieved.

  12. An optical pressure sensor based on π-shaped surface plasmon polariton resonator

    Science.gov (United States)

    Duan, Gaoyan; Lang, Peilin; Wang, Lulu; Yu, Li; Xiao, Jinghua

    2016-07-01

    We propose a metal-insulator-metal (MIM) structure which consists of a π-shaped resonator and a surface plasmon polariton (SPP) waveguide. The finite element method (FEM) is employed in the simulation. The results show that this structure forms an optical pressure sensor. The transmission spectra have a redshift with increasing pressure, and the relation between the wavelength shift and the pressure is linear. The nanoscale pressure sensor shows a high sensitivity and may have potential applications in biological and biomedical engineering.

  13. Design of surface plasmon resonance biosensor with one dimensional photonic crystal for detection of cancer

    Directory of Open Access Journals (Sweden)

    M Sharifi

    2016-09-01

    Full Text Available In recent years, development of highly sensitive biosensors is the main purpose of researchers to diagnose and prevent diseases. Accordingly, in this paper, surface plasmon resonance (SPR biosensor has been designed based on one dimensional layered structures. With regard to the fact that the quality of SPR sensors strongly depends on the reflectance amplitude and full width at half maximum (FWHM of the SPR curves, a novel structure, , is presented using transfer matrix method (TMM, to satisfy these two condition. Besides, the sensitivity of this biosensor has been calculated and it has been employed to diagnose leukemia for Jurkat cells.

  14. Near-field polarization shaping by a near-resonant plasmonic cross antenna

    Science.gov (United States)

    Biagioni, Paolo; Savoini, Matteo; Huang, Jer-Shing; Duò, Lamberto; Finazzi, Marco; Hecht, Bert

    2009-10-01

    The optical phase in the feed gap of a plasmonic dipole antenna shows a transition from in-phase to counter-phase response, when its length is varied across the resonance length. We exploit this behavior in an asymmetric cross antenna structure, constituted of two perpendicular dipole antennas with different lengths, sharing the same feed gap, in order to shape the local polarization state. As an application of this concept, we propose a λ/4 nanowaveplate, able to shape and confine linearly polarized propagating waves into circularly polarized fields localized in the feed gap.

  15. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity

    Science.gov (United States)

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-01

    Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars

  16. Improving the sensitivity limit of surface plasmon resonance biosensors by detecting mixed interference signals

    Science.gov (United States)

    Yuan, W.; Ho, H. P.; Suen, Y. K.; Kong, S. K.; Lin, Chinlon

    2007-11-01

    We demonstrate that the sensitivity limit of intensity-based surface plasmon resonance (SPR) biosensors can be enhanced when we combine the effects of the phase and amplitude contributions instead of detecting the amplitude variation only. Experimental results indicate that an enhancement factor of as much as 20 times is achievable, yet with no compromise in measurement dynamic range. While existing SPR biosensor systems are predominantly based on the angular scheme, which relies on detecting intensity variations associated with amplitude changes only, the proposed scheme may serve as a direct system upgrade approach for these systems. The new measurement scheme may therefore lead to a strong impact in the design of SPR biosensors.

  17. Using surface plasmon resonances to test the durability of silver copper films

    Science.gov (United States)

    Bussjager, Rebecca J.; MacLeod, H. Angus

    1996-09-01

    Silver has high reflectivity in the visible and infrared but cannot be used fully because of its distressing lack of durability. A technique that uses the surface plasmon resonance phenomenon offers a sensitive method for studying the corrosion of silver and assessing improvements. It has been used in the investigation of the effects of flashing a thin layer, approximately 1 nm thick, of copper over silver in an attempt at cathodic protection. Tests include exposing silver and silver-copper films to air, 94% relative humidity, water, and hydrogen sulfide.

  18. Studies of surface plasmon resonance sensor using bi-beam differential measurement approach

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, a low-cost measurement approach with bi-beam was presented, which can be used for real-time detection and online analysis of solution refractive index, based on systematical analysis and experiments of conventional detection methods on surface plasmon resonance sensor. This novel method was analyzed theoretically and based on it a sensor system set was established. The factors that affect the sensor's sensitivity and working range were discussed. The angular adjustment setup was simplified, errors produced by movable components were avoided and the maneuverability was enhanced with this new method.The noiseproof feature and stability of the sensor system were greatly improved as well.

  19. Refractive index sensing characteristics of D-shape double core photonic crystal fiber based on surface plasmon resonance

    Science.gov (United States)

    Liu, Feng; Li, Shi-tao; Guo, Xuan

    2016-10-01

    A refractive index (RI) sensor and its sensing characteristics based on surface plasmon resonance (SPR) of D-shape double core photonic crystal fiber (DC-PCF) are researched theoretically in this letter. The basic sensor principle is the SPR light intensity modulation of polished D-shape DC-PCF. The influence of the polished angle and depth on the DC-PCF SPR characteristics is discussed extensively by using the finite element method (FEM). The effects of the coated metal type and its layer thickness on the resonant intensity are also analyzed. The relationship between the analyte RI and resonant wavelength is numerically simulated. The theoretical results show that the sensor's RI sensitivity exhibits about 2000 nm/RIU with the structure parameters of 60° polished angle, 58.5μm polished depth and 70nm thickness of the silver layer. Furthermore, if the single wavelength laser is chosen, the detection of the two core light intensity difference will improve the ability of resistance to environmental interference. The simple sensor structure and high sensitivity can make this technology for online refractive index measurement in widespread areas.

  20. Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites.

    Science.gov (United States)

    Frasconi, Marco; Tel-Vered, Ran; Riskin, Michael; Willner, Itamar

    2010-03-15

    Au nanoparticles (NPs) are functionalized with thioaniline electropolymerizable groups and (mercaptophenyl)boronic acid. The antibiotic substrates neomycin (NE), kanamycin (KA), and streptomycin (ST) include vicinal diol functionalities and, thus, bind to the boronic acid ligands. The electropolymerization of the functionalized Au NPs in the presence of NE, KA, or ST onto Au surfaces yields bisaniline-cross-linked Au NP composites that, after removal of the ligated antibiotics, provide molecularly imprinted matrixes which reveal high sensitivities toward the sensing of the imprinted antibiotic analytes (detection limits for analyzing NE, KA, and ST correspond to 2.00 +/- 0.21 pM, 1.00 +/- 0.10 pM, and 200 +/- 30 fM, respectively). The antibiotics are sensed by surface plasmon resonance (SPR) spectroscopy, where the coupling between the localized plasmon of the NPs and the surface plasmon wave associated with the Au surface is implemented to amplify the SPR responses. The imprinted Au NP composites are, then, used to analyze the antibiotics in milk samples.

  1. Active control of surface plasmon resonance in MoS2-Ag hybrid nanostructures

    CERN Document Server

    Zu, Shuai; Gong, Yongji; Ajayan, Pulickel M; Fang, Zheyu

    2016-01-01

    Molybdenum disulfide (MoS2) monolayers have attracted much attention for their novel optical properties and efficient light-matter interactions. When excited by incident laser, the optical response of MoS2 monolayers was effectively modified by elementary photo-excited excitons owing to their large exciton binding energy, which can be facilitated for the optical-controllable exciton-plasmon interactions. Inspired by this concept, we experimentally investigated active light control of surface plasmon resonance (SPR) in MoS2-Ag hybrid nanostructures. The white light spectra of SPR were gradually red-shifted by increasing laser power, which was distinctly different from the one of bare Ag nanostructure. This spectroscopic tunability can be further controlled by near-field coupling strength and polarization state of light, and selectively applied to the control of plasmonic dark mode. An analytical Lorentz model for photo-excited excitons induced modulation of MoS2 dielectric function was developed to explain the...

  2. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method.

    Science.gov (United States)

    Kaniber, M; Schraml, K; Regler, A; Bartl, J; Glashagen, G; Flassig, F; Wierzbowski, J; Finley, J J

    2016-03-23

    We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangle and gap size of = 4.5 nm = 2.6 nm and = 5.4 nm = 3.8 nm, respectively. The corresponding optical properties of individual nanoantennas studied by differential reflection spectroscopy show a strong reduction of the localised surface plasmon polariton resonance linewidth from 0.21 eV to 0.07 eV upon reducing the antenna size from 150 nm to 100 nm. This is attributed to the absence of inhomogeneous broadening as compared to optical measurements on nanoantenna ensembles. The inter-particle coupling of an individual bowtie nanoantenna, which gives rise to strongly localised and enhanced electromagnetic hotspots, is demonstrated using polarization-resolved spectroscopy, yielding a large degree of linear polarization of ρmax ~ 80%. The combination of highly reproducible nanofabrication and fast, non-destructive and non-contaminating optical spectroscopy paves the route towards future semiconductor-based nano-plasmonic circuits, consisting of multiple photonic and plasmonic entities.

  3. Mode Modification of Plasmonic Gap Resonances induced by Strong Coupling with Molecular Excitons

    CERN Document Server

    Chen, Xingxing; Qin, Jian; Zhao, Ding; Ding, Boyang; Blaikie, Richard J; Qiu, Min

    2016-01-01

    Plasmonic cavities can be used to control the atom-photon coupling process at the nanoscale, since they provide ultrahigh density of optical states in an exceptionally small mode volume. Here we demonstrate strong coupling between molecular excitons and plasmonic resonances (so-called plexcitonic coupling) in a film-coupled nanocube cavity, which can induce profound and significant spectral and spatial modifications to the plasmonic gap modes. Within the spectral span of a single gap mode in the nanotube-film cavity with a 3-nm wide gap, the introduction of narrow-band J-aggregate dye molecules not only enables an anti-crossing behavior in the spectral response, but also splits the single spatial mode into two distinct modes that are easily identified by their far-field scattering profiles. Simulation results confirm the experimental findings and the sensitivity of the plexcitonic coupling is explored using digital control of the gap spacing. Our work opens up a new perspective to study the strong coupling pr...

  4. Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods.

    Science.gov (United States)

    Tsutsui, Yushi; Hayakawa, Tomokatsu; Kawamura, Go; Nogami, Masayuki

    2011-07-08

    In order to elucidate the relationship for third-order nonlinear optical properties of anisotropic metal nanoparticles between the incident laser wavelength and surface plasmon resonance (SPR) wavelength, gold nanorods (GNRs) with a tuned longitudinal SPR mode in frequency were prepared by seed-mediated methods with two different surfactants, cetyltrimethylammonium bromide (CTAB) and benzyldimethylammonium chloride (BDAC). The real and imaginary parts of the third-order nonlinear optical susceptibilities χ(3) were examined by near-infrared (800 nm) femtosecond Z-scan and I-scan techniques for various gold sols with SPR wavelengths of 530 nm (spheres), 800 nm (nanorods) and 1000 nm (nanorods), named as 530GNSs, 800GNRs and 1000GNRs, respectively. All the samples showed intrinsically third-order nonlinear optical refractive responses. However, as for the real part of χ(3) for one particle, 800GNRs whose plasmon peak was tuned to the incident laser wavelength exhibited a Reχ(3) value 45 times stronger than 530GNSs. More interestingly, the imaginary part of χ(3) was more greatly influenced at the tuned SPR wavelength. Here we first demonstrate that 800GNRs showed plasmon-enhanced saturable absorption (SA) due to a longitudinal SPR tuned to the incident laser wavelength.

  5. Enhanced localized surface plasmon resonance dependence of silver nanoparticles on the stoichiometric ratio of citrate stabilizers

    Science.gov (United States)

    McClary, Felicia A.; Gaye-Campbell, Shauna; Hai Ting, Andy Yuen; Mitchell, James W.

    2013-02-01

    A stoichiometric approach to the synthesis of silver nanoparticles (AgNPs) with appreciable enhancements in the localized surface plasmon resonance is presented. Microwave irradiation afforded AgNPs, optimized to a thermodynamic equilibrium by varying the silver to trisodium citrate (Ag0/citrate3-) stoichiometric ratio from 1:1 to 1:10, and ranging in size from 32 to 65 nm (±1-9 nm, hydrodynamic diameter). The concentration-dependent plasmonic enhancements were monitored by UV-Vis absorption spectrophotometry, showing absorption maxima typical of AgNPs, at 440-450 nm. A linear accession in plasmon absorbance intensity, approaching 1:5 (Ag0/citrate3-), followed by a linear depletion, at larger stoichiometries (1:6-1:10), was observed. Size distribution measurements, using dynamic light scattering, showed the highest polydispersity index, 0.547, for 1:10 suspensions and the lowest, 0.305, for the thermodynamic maximum, determined to occur at 1:5. Surface charge measurements approaching 0 mV confirm the destabilizing effect of high concentrations of citrate, leading to greater instances of aggregation and large hydrodynamic diameters. Reaction kinetics data suggests an increased preference for Ag n + -citrate, metal/ligand complexation, at 1:10, diminishing nanoparticle production.

  6. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.

    Science.gov (United States)

    Muhammed, Madathumpady Abubaker Habeeb; Döblinger, Markus; Rodríguez-Fernández, Jessica

    2015-09-16

    Exerting control over the near-infrared (NIR) plasmonic response of nanosized metals and semiconductors can facilitate access to unexplored phenomena and applications. Here we combine electrostatic self-assembly and Cd(2+)/Cu(+) cation exchange to obtain an anisotropic core-shell nanoparticle cluster (NPC) whose optical properties stem from two dissimilar plasmonic materials: a gold nanorod (AuNR) core and a copper selenide (Cu(2-x)Se, x ≥ 0) supraparticle shell. The spectral response of the AuNR@Cu2Se NPCs is governed by the transverse and longitudinal plasmon bands (LPB) of the anisotropic metallic core, since the Cu2Se shell is nonplasmonic. Under aerobic conditions the shell undergoes vacancy doping (x > 0), leading to the plasmon-rich NIR spectrum of the AuNR@Cu(2-x)Se NPCs. For low vacancy doping levels the NIR optical properties of the dually plasmonic NPCs are determined by the LPBs of the semiconductor shell (along its major longitudinal axis) and of the metal core. Conversely, for high vacancy doping levels their NIR optical response is dominated by the two most intense plasmon modes from the shell: the transverse (along the shortest transversal axis) and longitudinal (along the major longitudinal axis) modes. The optical properties of the NPCs can be reversibly switched back to a purely metallic plasmonic character upon reversible conversion of AuNR@Cu(2-x)Se into AuNR@Cu2Se. Such well-defined nanosized colloidal assemblies feature the unique ability of holding an all-metallic, a metallic/semiconductor, or an all-semiconductor plasmonic response in the NIR. Therefore, they can serve as an ideal platform to evaluate the crosstalk between plasmonic metals and plasmonic semiconductors at the nanoscale. Furthermore, their versatility to display plasmon modes in the first, second, or both NIR windows is particularly advantageous for bioapplications, especially considering their strong absorbing and near-field enhancing properties.

  7. Phage-based surface plasmon resonance strategies for the detection of pathogens

    Science.gov (United States)

    Tawil, Nancy

    We start by reviewing the basic principles and recent advances in biosensing technologies using optical, electrochemical and acoustic platforms for phage-based diagnostics. Although much notable work has been done, a low cost, specific, sensitive optical method for detecting low concentrations of pathogens, in a few minutes, has not been established. We conclude from the limited body of work on the subject that improving immobilization strategies and finding more suitable phage recognition elements would allow for a more sensitive approach. Our aim was to better describe the attachment process of MRSA specific phages on gold surfaces, and the subsequent biodetection of their bacterial hosts by surface plasmon resonance (SPR). With the knowledge that the adsorption characteristics of thiol-containing molecules are necessary for applications involving the attachment of recognition elements to a functionalized surface, we start by providing comparative details on the kinetics of self-assembly of L-cysteine and 11-mercaptoundecanoic acid (MUA) monolayers on gold using SPR[1]. Our purpose, in carrying out these measurements was to establish each molecule's validity and applicability as a linker element for use in biosensing. We find that monolayer formation, for both L-cysteine and MUA, is described by the Langmuir isotherm at low concentrations only. For L-cysteine, both the amine and thiol groups contribute to the initial attachment of the molecule, followed by the replacement of the amine-gold complexes initially formed with more stable thiol-gold complexes. The reorganization of L-cysteine creates more space on the gold surface, and the zwitterionic form of the molecule permits the physisorption of a second layer through electrostatic interactions. On the other hand, MUA deposits randomly onto the surface of gold as a SAM and slowly reorganizes into a denser, vertical state. Surface plasmon resonance was then used for the real-time monitoring of the attachment of

  8. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first was a cat......Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first...

  9. Mueller matrix polarimetry of plasmon resonant silver nano-rods: biomedical prospects

    CERN Document Server

    Ghosh, Sayantan; Bera, Sudipta K; Banerjee, Ayan; Ghosh, Nirmalya

    2012-01-01

    Fundamental understanding of the light-matter interaction in the context of nano-particles is immensely bene- fited by the study of geometry dependent tunable Localized Surface Plasmon Resonance (LSPR) and has been demonstrated to have potential applications in various areas of science. The polarization characteristics of LSPR in addition to spectroscopic tuning can be suitably exploited in such systems as contrast enhancement mech- anisms and control parameters. Such polarization characteristics like diattenuation and retardance have been studied here using a novel combination of Muller-matrix polarimetry with the T-matrix matrix approach for silver nano-rods to show unprecedented control and sensitivity to local refractive index variations. The study carried out over various aspect ratios for a constant equal volume sphere radius shows the presence of longitu- dinal (dipolar and quadrupolar) and transverse (dipolar) resonances; arising due to differential contribution of polarizabilities in two directions. ...

  10. Analysis of surface plasmon resonance with Goos-Hanchen shift using FDTD method

    Science.gov (United States)

    Oh, Geum-Yoon; Kim, Doo-Gun; Kim, Hong-Seung; Choi, Young-Wan

    2009-02-01

    The Goos-Hanchen (GH) shift is observed from phase transition of the reflected light. However, the reported Artmann's equation is difficult to apply to drastic phase change of the critical and resonance angles because this equation is solved by differential of the phase shift. Therefore, the GH shift can be obtained from the structure optimized by the finite-difference time-domain method. In the surface plasmon resonance (SPR) phenomenon, positive and negative lateral shifts may result from the variation of incidence angle. The GH shift is very important to exactly detect the output power of the micro-size SPR sensor. The accurate positive and negative lateral shifts of -0.49 and +1.46 μm are obtained on the SPR with the incidence angles of 44.4° and 47°, respectively.

  11. Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator.

    Science.gov (United States)

    Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang

    2014-01-24

    Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10(-4) deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide.

  12. Detection of Salmonella enteritidis Using a Miniature Optical Surface Plasmon Resonance Biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Son, J R [National Institute of Agricultural Engineering, RDA, 249 Seodun-dong, Suwon, Republic of Korea 441-100 (Korea, Republic of); Kim, G [National Institute of Agricultural Engineering, RDA, 249 Seodun-dong, Suwon, Republic of Korea 441-100 (Korea, Republic of); Kothapalli, A [Department of Food Science, Purdue University, West Lafayette, IN, USA 47907 (United States); Morgan, M T [Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA 47907 (United States); Ess, D [Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA 47907 (United States)

    2007-04-15

    The frequent outbreaks of foodborne illness demand rapid detection of foodborne pathogens. Unfortunately, conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Surface plasmon resonance (SPR) sensors have been widely adapted as an analysis tool for the study of various biological binding reactions. SPR biosensors could detect antibody-antigen bindings on the sensor surface by measuring either a resonance angle or refractive index value. In this study, the feasibility of a miniature SPR sensor (Spreeta, TI, USA) for detection of Salmonella enteritidis has been evaluated. Anti-Salmonella antibodies were immobilized on the gold sensor surface by using neutravidin. Salmonella could be detected by the Spreeta biosensor at concentrations down to 10{sup 5} cfu/ml.

  13. Detection of Salmonella enteritidis Using a Miniature Optical Surface Plasmon Resonance Biosensor

    Science.gov (United States)

    Son, J. R.; Kim, G.; Kothapalli, A.; Morgan, M. T.; Ess, D.

    2007-04-01

    The frequent outbreaks of foodborne illness demand rapid detection of foodborne pathogens. Unfortunately, conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Surface plasmon resonance (SPR) sensors have been widely adapted as an analysis tool for the study of various biological binding reactions. SPR biosensors could detect antibody-antigen bindings on the sensor surface by measuring either a resonance angle or refractive index value. In this study, the feasibility of a miniature SPR sensor (Spreeta, TI, USA) for detection of Salmonella enteritidis has been evaluated. Anti-Salmonella antibodies were immobilized on the gold sensor surface by using neutravidin. Salmonella could be detected by the Spreeta biosensor at concentrations down to 105 cfu/ml.

  14. Polarization-tailored Fano interference in plasmonic crystals: A Mueller matrix model of anisotropic Fano resonance

    CERN Document Server

    Ray, S K; Singh, A K; Kumar, A; Misra, A Mandal S; Mitra, P; Ghosh, N

    2016-01-01

    We present a simple yet elegant Mueller matrix approach for controlling the Fano interference effect and engineering the resulting asymmetric spectral line shape in anisotropic optical system. The approach is founded on a generalized model of anisotropic Fano resonance, which relates the spectral asymmetry to two physically meaningful and experimentally accessible parameters of interference, namely, the Fano phase shift and the relative amplitudes of the interfering modes. The differences in these parameters between orthogonal linear polarizations in an anisotropic system are exploited to desirably tune the Fano spectral asymmetry using pre- and post-selection of optimized polarization states. Experimental control on the Fano phase and the relative amplitude parameters and resulting tuning of spectral asymmetry is demonstrated in waveguided plasmonic crystals using Mueller matrix-based polarization analysis. The approach enabled tailoring of several exotic regimes of Fano resonance including the complete reve...

  15. Tunable Plasmonic Band-Pass Filter with Dual Side-Coupled Circular Ring Resonators

    Directory of Open Access Journals (Sweden)

    Dongdong Liu

    2017-03-01

    Full Text Available A wavelength band-pass filter with asymmetric dual circular ring resonators in a metal-insulator-metal (MIM structure is proposed and numerically simulated. For the interaction of the local discrete state and the continuous spectrum caused by the side-coupled resonators and the baffle, respectively, the transmission spectrum exhibits a sharp and asymmetric profile. By adjusting the radius and material imbedded in one ring cavity, the off-to-on plasmon-induced absorption (PIA optical response can be tunable achieved. In addition, the structure can be easily extended to other similar compact structures to realize the filtering task. Our structures have important potential applications for filters and sensors at visible and near-infrared regions.

  16. Polymer-based surface plasmon resonance biochip: construction and experimental aspects

    Directory of Open Access Journals (Sweden)

    Cleumar da Silva Moreira

    Full Text Available Abstract Introduction: Surface plasmon resonance biosensors are high sensitive analytical instruments that normally employ glass materials at the optical substrate layer. However, the use of polymer-based substrates is increasing in the last years due to favorable features, like: disposability, ease to construction and low-cost design. Review Recently, a polymer-based SPR biochip was proposed by using monochromatic and polychromatic input sources. Its construction and experimental considerations are detailed here. Experimental considerations and results, aspects from performance characteristics (resonance parameters, sensitivity and full width at half maximum – FWHM – calculations are presented for hydrophilic and hydrophobic solutions. It is included also a brief description of the state of the art of polymer-based SPR biosensors.

  17. Phase modification and surface plasmon resonance of Au/WO{sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, R. Jolly; Kavitha, V.S. [Department of Optoelectronics, University of Kerala, Kariyavattom, Thiruvananthapuram 691574, Kerala (India); Sudarsanakumar, C. [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686560, Kerala (India); Pillai, V.P. Mahadevan, E-mail: vpmpillai9@gmail.com [Department of Optoelectronics, University of Kerala, Kariyavattom, Thiruvananthapuram 691574, Kerala (India)

    2016-08-30

    Highlights: • We have investigated the role of gold as catalyst and nucleation centers, for the crystallization and phase modification of tungsten oxide, in Au/WO{sub 3} matrix. • The phase change from triclinic WO{sub 3} to monoclinic W{sub 18}O{sub 49} is found to enhance with gold incorporation. • The surface plasmon resonance is observed in gold/tungsten oxide system with the appearance of an absorption band near the wavelength 604 nm. - Abstract: We report the action of gold as catalyst for the modification of phase from triclinic WO{sub 3} to monoclinic W{sub 18}O{sub 49} and nucleation centre for the formation of W{sub 18}O{sub 49} phase, in gold incorporated tungsten oxide films prepared by RF magnetron sputtering technique. A new band is observed near 925 cm{sup −1} in the Raman spectra of gold incorporated tungsten oxide films which is not observed in the pure tungsten oxide film. The intensity of this band enhances with gold content. A localized surface plasmon resonance (LSPR) band is observed near the wavelength 604 nm in gold incorporated tungsten oxide films. The integrated intensities of LSPR band and Raman band (∼925 cm{sup −1}) can be used for sensing the quantity of gold in the Au/WO{sub 3} matrix.

  18. Using a Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella Typhimurium in Chicken Carcass

    Institute of Scientific and Technical Information of China (English)

    Yu-bin Lan; Shi-zhou Wang; Yong-guang Yin; W.Clint Hoffmann; Xiao-zhe Zheng

    2008-01-01

    Chicken is one of the most popular meat products in the world. Salmonella Typhimurium is a common foodborne pathogens associated with the processing of poultry. An optical Surface Plasmon Resonance (SPR) biosensor was sensitive to the presence of Salmonella Typhimurium in chicken carcass. The Spreeta biosensor kits were used to detect Salmonella Typhimurium on chicken carcass successfully. A taste sensor like electronic tongue or biosensors was used to basically "taste" the object and differentiated one object from the other with different taste sensor signatures. The surface plasmon resonance biosensor has potential for use in rapid, real-time detection and identification of bacteria, and to study the interaction of organisms with different antisera or other molecular species. The selectivity of the SPR biosensor was assayed using a series of antibody concentrations and dilution series of the organism. The SPR biosensor showed promising to detect the existence of Salmonella Typhimurium at 1×106 CFU/ml. Initial results show that the SPR biosensor has the potential for its application in pathogenic bacteria monitoring. However, more tests need to be done to confirm the detection limitation.

  19. Design and analysis of a photonic crystal fiber based polarization filter using surface plasmon resonance

    Science.gov (United States)

    Yogalakshmi, S.; Selvendran, S.; Sivanantha Raja, A.

    2016-05-01

    A photonic crystal fiber with an active metal nanowire is proposed to act as a polarization filter based on the principle of plasmonic resonance. The light launched into the silica core gets coupled to gold wire inducing surface plasmon resonance, filtering one of the two orthogonally polarized light waves in the third optical communication window. This polarization filtering characteristic is analyzed using the finite element method. The change in the performance behaviour of the proposed filter is investigated by increasing the number of embedded gold wires, altering their positions and varying the diameter of gold wire. It is found that enhanced absorption of the core guided mode is achieved by replacing the filled metal nanowire with a metal coating around the air hole. Filtering of any or both polarizations can be attained by suitably positioning the metal wires. Confinement loss as high as 348.55 and 302 dB cm-1 for y-polarized and x-polarized lights respectively are attained at 1.52 and 1.56 μm respectively for single gold wire. The filter acts as a single polarization filter filtering x-polarized light with a confinement loss value of 187.67 dB cm-1 when two gold nanowires are placed adjacently. The same structure acts as the filter for y-polarized light by employing gold coating exhibiting an increased confinement loss of 406.34 dB cm-1 at 1.64 μm.

  20. Plasmon resonance-induced photoluminescence enhancement of CdTe/Cds quantum dots thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu, Ling, E-mail: xuling@nju.edu.cn [National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wu, Yangqing; Xu, Jun; Ma, Zhongyuan; Chen, Kunji [National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2016-11-30

    Highlights: • CdTe/CdS quantum dots/Au nano-rods nano-composite films were fabricated. • PL intensity of the quantum dots films was enhanced due to Au nanorods. • Internal quantum efficiency increased due to localized surface plasmon resonance. • The lifetimes of quantum dots films decreased after interaction with Au nano-rods. - Abstract: CdTe/CdS quantum dots/Au nano-rods nano-composite films were fabricated on planar Si substrates. The optical properties of all samples were investigated and the corresponding simulations were studied. It was found that the photoluminescence intensity of the CdTe/CdS quantum dots films was enhanced about 9-fold after the incorporation of Au nano-rods, the internal quantum efficiency increased from 24.3% to 35.2% due to the localized surface plasmon resonance. The time-resolved luminescence decay curves showed that the lifetimes of CdTe/CdS quantum dots films decreased to 2.8 ns after interaction with Au nano-rods. The results of finite-difference time-domain simulation indicated that Au nano-rods induced the localization of electric field, which enhanced the PL intensity of quantum dots films in the vicinity of Au nano-rods.

  1. Immobilization of human papillomavirus DNA probe for surface plasmon resonance imaging

    Science.gov (United States)

    Chong, Xinyuan; Ji, Yanhong; Ma, Suihua; Liu, Le; Liu, Zhiyi; Li, Yao; He, Yonghong; Guo, Jihua

    2009-08-01

    Human papillomavirus (HPV) is a kind of double-stranded DNA virus whose subspecies have diversity. Near 40 kinds of subspecies can invade reproductive organ and cause some high risk disease, such as cervical carcinoma. In order to detect the type of the subspecies of the HPV DNA, we used the parallel scan spectral surface plasmon resonance (SPR) imaging technique, which is a novel type of two- dimensional bio-sensing method based on surface plasmon resonance and is proposed in our previous work, to study the immobilization of the HPV DNA probes on the gold film. In the experiment, four kinds of the subspecies of the HPV DNA (HPV16, HPV18, HPV31, HPV58) probes are fixed on one gold film, and incubate in the constant temperature condition to get a HPV DNA probe microarray. We use the parallel scan spectral SPR imaging system to detect the reflective indices of the HPV DNA subspecies probes. The benefits of this new approach are high sensitive, label-free, strong specificity and high through-put.

  2. Plasmon resonance enhanced temperature-dependent photoluminescence of Si-V centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shaoheng [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Song, Jie; Wang, Qiliang; Liu, Junsong; Li, Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Zhang, Baolin [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2015-11-23

    Temperature dependent optical property of diamond has been considered as a very important factor for realizing high performance diamond-based optoelectronic devices. The photoluminescence feature of the zero phonon line of silicon-vacancy (Si-V) centers in Si-doped chemical vapor deposited single crystal diamond (SCD) with localized surface plasmon resonance (LSPR) induced by gold nanoparticles has been studied at temperatures ranging from liquid nitrogen temperature to 473 K, as compared with that of the SCD counterpart in absence of the LSPR. It is found that with LSPR the emission intensities of Si-V centers are significantly enhanced by factors of tens and the magnitudes of the redshift (width) of the emissions become smaller (narrower), in comparison with those of normal emissions without plasmon resonance. More interestingly, these strong Si-V emissions appear remarkably at temperatures up to 473 K, while the spectral feature was not reported in previous studies on the intrinsic Si-doped diamonds when temperatures are higher than room temperature. These findings would lead to reaching high performance diamond-based devices, such as single photon emitter, quantum cryptography, biomarker, and so forth, working under high temperature conditions.

  3. Detection of glycoprotein using fiber optic surface plasmon resonance sensors with boronic acid

    Science.gov (United States)

    Wang, Fang; Zhang, Yang; Liu, Zigeng; Qian, Siyu; Gu, Yiying; Jing, Zhenguo; Sun, Changsen; Peng, Wei

    2017-04-01

    In this paper, we present a tilted fiber Bragg gratings (TFBG) based surface Plasmon resonance (SPR) label-free sensors with boronic acid derivative (ABA-PBA) as receptor molecule to detect glycoprotein with high sensitivity and selectivity. Tilted fiber Bragg gratings (TFBG) as a near infrared wavelengths detecting element can be able to excite a number of cladding modes whose properties can be detected accurately by measuring the variation of transmitted spectra. A 10° TFBG coated by 50nm gold film was manufactured to stimulate surface plasmon resonance on the surface of the sensor. The sensor was loaded with boronic acid derivative as the recognition molecule which has been widely used in various areas for the recognition matrix of diol-containing biomolecules. The proposed TFBG-SPR sensors exhibit good selectivity and repeatability with the protein concentration sensitivity up to 2.867dB/ (mg/ml) and the limit of detection was 2*10-5g/ml.

  4. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Dielectric Nanostructures (Review)

    CERN Document Server

    Maksymov, Ivan S

    2015-01-01

    A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient exchange of results between the two research sectors. Consequently, the goal of this review paper is to bridge this gap by presenting an overview of recent progress in the field of magneto-plasmonics from two different points of view: magneto-plasmonics, and magnonics and magnetisation dynamics. It is expected that this presentation style will make this review paper of particular interest to both general physical audience and specialists conducting research on photonics, plasmonics, Brillouin light scattering spectroscopy of magnetic nanostructures and magneto-optical Kerr effect magnetometry, as well as ultrafast all-optica...

  5. Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals.

    Science.gov (United States)

    Schimpf, Alina M; Thakkar, Niket; Gunthardt, Carolyn E; Masiello, David J; Gamelin, Daniel R

    2014-01-28

    Nanomaterials exhibiting plasmonic optical responses are impacting sensing, information processing, catalysis, solar, and photonics technologies. Recent advances have expanded the portfolio of plasmonic nanostructures into doped semiconductor nanocrystals, which allow dynamic manipulation of carrier densities. Once interpreted as intraband single-electron transitions, the infrared absorption of doped semiconductor nanocrystals is now commonly attributed to localized surface plasmon resonances and analyzed using the classical Drude model to determine carrier densities. Here, we show that the experimental plasmon resonance energies of photodoped ZnO nanocrystals with controlled sizes and carrier densities diverge from classical Drude model predictions at small sizes, revealing quantum plasmons in these nanocrystals. A Lorentz oscillator model more adequately describes the data and illustrates a closer link between plasmon resonances and single-electron transitions in semiconductors than in metals, highlighting a fundamental contrast between these two classes of plasmonic materials.

  6. Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Nader, Nima, E-mail: nima.nader@nist.gov; Vangala, Shivashankar [Solid State Scientific Corporation, 12 Simon St., Nashua, New Hampshire 03060 (United States); Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); Hendrickson, Joshua R.; Leedy, Kevin D.; Cleary, Justin W. [Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); Look, David C. [Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); Wyle Laboratories, Inc., 2601 Mission Point Blvd., Suite 300, Dayton, Ohio 45435 (United States); Semiconductor Research Center, Wright State University, Dayton, Ohio 45435 (United States); Guo, Junpeng [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899 (United States)

    2015-11-07

    Experimental results pertaining to plasmon resonance tunneling through a highly conductive zinc oxide (ZnO) layer with subwavelength hole-arrays is investigated in the mid-infrared regime. Gallium-doped ZnO layers are pulsed-laser deposited on a silicon wafer. The ZnO has metallic optical properties with a bulk plasma frequency of 214 THz, which is equivalent to a free space wavelength of 1.4 μm. Hole arrays with different periods and hole shapes are fabricated via a standard photolithography process. Resonant mode tunneling characteristics are experimentally studied for different incident angles and compared with surface plasmon theoretical calculations and finite-difference time-domain simulations. Transmission peaks, higher than the baseline predicted by diffraction theory, are observed in each of the samples at wavelengths that correspond to the excitation of surface plasmon modes.

  7. Optical properties of local surface plasmon resonance in Ag/ITO sliced nanosphere by the discrete dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Haiwei, Mu; Jingwei, Lv; Zhaoting, Liu; Lin, Yang; Qiang, Liu; Chao, Liu [Northeast Petroleum University, School of Electronics Science, Daqing (China); Shijie, Zheng [Harbin Institute of Technology, School of Civil Engineering, Harbin (China); Tao, Sun [Agency for Science, Technology and Research (A-STAR), Institute of Microelectronics, Singapore (Singapore)

    2016-04-15

    Optical properties of localized surface plasmon resonances (LSPR) of Ag/ITO sliced nanosphere have been studied using discrete dipole approximation and plasmon hybridization theory. It is found that different morphologies of sliced nanosphere can induce distinctive features in the extinction spectra. In the meanwhile, gap distances and refractive index of the surrounding medium could modulate the plasmon hybridization and the LSPR shifting. At large separation, the shift of LSPR peaks for the nanosphere sliced in halves consisting of ITO and Ag is small and insensitive to the gap distance in the weak coupling, whereas smaller separation exhibits a distinct red shift. Additionally, multiple resonance peaks are excited for the nanosphere sliced in quarters consisting of ITO and Ag. In this situation, electric field is mainly distributed in the gap region of sliced nanosphere and the central point. These results indicate that different morphologies of sliced nanosphere could create abundant tunable LSPR modes, which provides potential for multiplex optical sensing. (orig.)

  8. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

    Science.gov (United States)

    Chen, Zhao-Quan; Yin, Zhi-Xiang; Xia, Guang-Qing; Hong, Ling-Li; Hu, Ye-Lin; Liu, Ming-Hai; Hu, Xi-Wei; A. Kudryavtsev, A.

    2015-02-01

    Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105002 and 61170172), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1408085QA16 and 1408085ME101), the China Postdoctoral Science Foundation (Grant No. 2014M551788), and the Open-end Fund of State Key Laboratory of Advanced Electromagnetic Engineering and Technology (HUST), China (Grant No. GZ1301).

  9. Optical method to differentiate tequilas based on angular modulation surface plasmon resonance

    Science.gov (United States)

    Martínez-López, G.; Luna-Moreno, D.; Monzón-Hernández, D.; Valdivia-Hernández, R.

    2011-06-01

    We report the use of the prism-based surface plasmon resonance (SPR) technique to differentiate between three types of tequilas white or silver, aged, and extra-aged. We used the angular interrogation method in which the structure is based on prism fabricated with BK7 glass coated with a gold layer as the SPR active layer. Our study was centered in the analysis of the resonant angle of the SPR generated by the three types of tequilas produced by the three major tequila-producing firms. We observed that each tequila sample produced a well-differentiated SPR curve. We found that resonant angle of the SPR curve produced by silver tequilas is larger than that produced by the aged and extra-aged tequilas of the same producer firm. We found that the position of the SPR curve is not exclusively determined by the alcohol contents; we believe that there are other parameters derived from the aging process that should be considered. The refractive index of the tequilas used in this study was estimated using the measured resonant angle.

  10. Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics.

    Science.gov (United States)

    Zhang, Yi; Tang, Yunfang; Hsieh, Yi-Heui; Hsu, Chuen-Yuan; Xi, Jianzhong; Lin, Kuan-Jiuh; Jiang, Xingyu

    2012-09-07

    This work reports an integrated platform combining localized-surface plasmon resonance (LSPR) and microfluidic chips to carry out multiplexed and label-free protein analysis. We fabricated an optical bench to enable detection using only a laboratory UV-Vis spectrophotometer. This assay not only improves throughput, but also allows quantitative analysis.

  11. A Generic Method for Fungal Spore Detection: The use of a monoclonal antibody and surface plasmon resonance

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Hearty, Stephen; Frøkiær, Hanne

    This study describes a biosensing principle for detection of fungal spores using surface plasmon resonance (SPR). The approach involves the use of a monoclonal antibody (mab) and a SPR sensor for label-free detection of the model organism Puccinia striiformis f.sp. tritici (Pst) a biotrophic fung...

  12. Development of an optical surface plasmon resonance biosensor assay for (fluoro) quinolones in egg, fish, and poultry meat

    NARCIS (Netherlands)

    Huet, A.C.; Charlier, C.; Singh, G.; Benrejeb Godefroy, S.; Leivo, J.; Vehniainen, M.; Nielen, M.W.F.; Weigel, S.; Delahaut, P.

    2008-01-01

    The aim of this study was to develop an optical biosensor inhibition immunoassay, based on the surface plasmon resonance (SPR) principle, for use as a screening test for 13 (fluoro)quinolones, including flumequine, used as veterinary drugs in food-producing animals. For this, we immobilised various

  13. Validation of an optical surface plasmon resonance biosensor assay for screening (fluoro)quinolones in egg, fish and poultry

    NARCIS (Netherlands)

    Huet, A.C.; Charlier, C.; Weigel, S.; Benrejeb Godefroy, S.; Delahaut, P.

    2009-01-01

    A surface plasmon resonance biosensor immunoassay has been developed for multi-residue determination of 13 (fluoro)quinolone antibiotics in poultry meat, eggs and fish. The following performance characteristics were determined according to the guidelines laid down for screening assay validation in E

  14. Validation of an optical surface plasmon resonance biosensor assay for screening (fluoro)quinolones in egg, fish and poultry

    NARCIS (Netherlands)

    Huet, A.C.; Charlier, C.; Weigel, S.; Benrejeb Godefroy, S.; Delahaut, P.

    2009-01-01

    A surface plasmon resonance biosensor immunoassay has been developed for multi-residue determination of 13 (fluoro)quinolone antibiotics in poultry meat, eggs and fish. The following performance characteristics were determined according to the guidelines laid down for screening assay validation in E

  15. Validation of an optical surface plasmon resonance biosensor assay for screening (fluoro)quinolones in egg, fish and poultry

    NARCIS (Netherlands)

    Huet, A.C.; Charlier, C.; Weigel, S.; Benrejeb Godefroy, S.; Delahaut, P.

    2009-01-01

    A surface plasmon resonance biosensor immunoassay has been developed for multi-residue determination of 13 (fluoro)quinolone antibiotics in poultry meat, eggs and fish. The following performance characteristics were determined according to the guidelines laid down for screening assay validation in

  16. Development of an optical surface plasmon resonance biosensor assay for (fluoro) quinolones in egg, fish, and poultry meat

    NARCIS (Netherlands)

    Huet, A.C.; Charlier, C.; Singh, G.; Benrejeb Godefroy, S.; Leivo, J.; Vehniainen, M.; Nielen, M.W.F.; Weigel, S.; Delahaut, P.

    2008-01-01

    The aim of this study was to develop an optical biosensor inhibition immunoassay, based on the surface plasmon resonance (SPR) principle, for use as a screening test for 13 (fluoro)quinolones, including flumequine, used as veterinary drugs in food-producing animals. For this, we immobilised various

  17. The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in two types of asymmetric dimer

    Science.gov (United States)

    Li, Quanshui; Hu, Jianling; Wang, Ziya; Wang, Fengping; Bao, Yongjun

    2014-07-01

    The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in asymmetric dimers are illustrated by two types of configuration, one formed by a gold nanoparticle and a TiO2-Ag core-shell nanoparticle and the other formed by two TiO2-Ag core-shell nanoparticles with suitable sizes. The redshift and blueshift behaviours of the coupled bonding modes with decreasing gap are found under longitudinal and transverse polarization of light for these dimers in the resonant situation, respectively. Under the near-resonant situation, the redshift behaviours of the coupled bonding modes still remain under longitudinal polarization, whereas the two separated modes of monomers after coupling under transverse polarization exhibit no obvious peak-shift behaviours, and the one on the lower frequency side shows an apparent attenuation in the strength. Under the off-resonant situation, the redshift behaviours not only occur in the coupled modes under longitudinal polarization, but also occur in two separated modes under transverse polarization.

  18. Formation and Evolution Mechanism of Plasmon Resonance from Single Ring-Shaped Nanotube to Dimer and Arrays

    Directory of Open Access Journals (Sweden)

    F. Q. Zhou

    2014-01-01

    Full Text Available The formation and evolution mechanisms of plasmon resonance from single Ring-shaped nanotube to dimer and arrays are studied; an attempt has been made to bridge the gap between single-tube, dimer, and array. Results show that resonant modes can be divided into three types: quadrupole, hexapole, and octupole resonance from visible to near infrared region, and each mode maintains relatively stable resonant characteristics, but the optical transmission properties including redshift and blueshift of the modes and band gap are highly tunable by adjusting the number of nanotube and intertube spacing values. The field-interference mechanism has been suggested to explain the physical origin.

  19. Tunable surface plasmon resonance and enhanced electrical conductivity of In doped ZnO colloidal nanocrystals

    Science.gov (United States)

    Ghosh, Sirshendu; Saha, Manas; de, S. K.

    2014-05-01

    We report a new synthesis process of colloidal indium (In) doped zinc oxide (ZIO) nanocrystals by a hot injection technique. By fine tuning the synthesis we reached the same nucleation temperature for indium oxide and zinc oxide which helped us to study a dopant precursor dependent In incorporation into the ZnO matrix by using different In sources. The dopant induced shape evolution changes the hexagonal pyramid structured ZnO to a platelet like structure upon 8% In doping. The introduction of trivalent In3+ into the ZnO lattice and consequent substitution of divalent Zn2+ generates free electrons in the conduction band which produces a plasmonic resonance in the infrared region. The electron concentration controls plasmon frequency as well as the band gap of host ZnO. The variation of the band gap and the modification of the conduction band have been explained by the Burstein-Moss effect and Mie's theory respectively. The In dopant changes the defect chemistry of pure ZnO nanocrystals which has been studied by photoluminescence and other spectroscopic measurements. The nanocrystals are highly stable in the organic medium and can be deposited as a crack free thin film on different substrates. Careful ligand exchange and thermal annealing of the spin cast film lead to a good conductive film (720 Ω per square to 120 Ω per square) with stable inherent plasmonic absorption in the infrared and 90% transmittance in the visible region. A temperature induced metal-semiconductor transition was found for doped ZnO nanocrystals. The transition temperature shifts to a lower temperature with increase of the doping concentration.We report a new synthesis process of colloidal indium (In) doped zinc oxide (ZIO) nanocrystals by a hot injection technique. By fine tuning the synthesis we reached the same nucleation temperature for indium oxide and zinc oxide which helped us to study a dopant precursor dependent In incorporation into the ZnO matrix by using different In sources. The

  20. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    Energy Technology Data Exchange (ETDEWEB)

    Chou Chau, Yuan-Fong, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming; Kumara, N. T. R. N.; Yoong, Voo Nyuk [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei (Brunei Darussalam); Lee, Chuanyo [Department of Electronic Engineering, Chien Hsin University of Science and Technology, No. 229, Jianxing Rd., Zhongli City, Taoyuan County 32097, Taiwan (China); Huang, Hung Ji; Lin, Chun-Ting [Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan (China); Chiang, Hai-Pang [Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2016-09-07

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.