WorldWideScience

Sample records for plasmon resonance light

  1. Controlling light with resonant plasmonic nanostructures

    NARCIS (Netherlands)

    Waele, R. de

    2009-01-01

    Plasmons are collective oscillations of free electrons in a metal. At optical frequencies plasmons enable nanoscale confinement of light in metal nanostructures. This ability has given rise to many applications in e.g. photothermal cancer treatment, light trapping in photovoltaic cells, and sensing.

  2. Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping.

    Science.gov (United States)

    Shoji, Tatsuya; Tsuboi, Yasuyuki

    2014-09-04

    This Perspective describes recent progress in optical trappings of nanoparticles based on localized surface plasmon. This plasmonic optical trapping has great advantages over the conventional optical tweezers, being potentially applicable for a molecular manipulation technique. We review this novel trapping technique from the viewpoints of (i) plasmonic nanostructure, (ii) the light source for plasmon excitation, and (iii) the polarizability of the trapping target. These findings give us future outlook for plasmonic optical trapping. In addition to a brief review, recent developments on plasmonic optical trapping of soft nanomaterials such as proteins, polymer chains, and DNA will be discussed to point out the important issue for further development on this trapping method. Finally, we explore new directions of plasmonic optical trapping.

  3. Localized surface plasmons selectively coupled to resonant light in tubular microcavities

    CERN Document Server

    Yin, Yin; Böttner, Stefan; Yuan, Feifei; Giudicatti, Silvia; Naz, Ehsan Saei Ghareh; Ma, Libo; Schmidt, Oliver G

    2016-01-01

    Vertical gold-nanogaps are created on microtubular cavities to explore the coupling between resonant light supported by the microcavities and surface plasmons localized at the nanogaps. Selective coupling of optical axial modes and localized surface plasmons critically depends on the exact location of the gold-nanogap on the microcavities which is conveniently achieved by rolling-up specially designed thin dielectric films into three dimensional microtube ring resonators. The coupling phenomenon is explained by a modified quasi-potential model based on perturbation theory. Our work reveals the coupling of surface plasmon resonances localized at the nanoscale to optical resonances confined in microtubular cavities at the microscale, implying a promising strategy for the investigation of light-matter interactions.

  4. Scattering and Extinction Torques: How Plasmon Resonances Affect the Orientation Behavior of a Nanorod in Linearly Polarized Light.

    Science.gov (United States)

    Xu, Xiaohao; Cheng, Chang; Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2016-01-21

    Linearly polarized light can exert an orienting torque on plasmonic nanorods. The torque direction has generally been considered to change when the light wavelength passes through a plasmon longitudinal resonance. Here, we use the Maxwell stress tensor to evaluate this torque in general terms. According to distinct light-matter interaction processes, the total torque is decomposed into scattering and extinction torques. The scattering torque tends to orient plasmonic nanorods parallel to the light polarization, independent of the choice of light wavelength. The direction of the extinction torque is not only closely tied to the excitation of plasmon resonance but also depends on the specific plasmon mode around which the light wavelength is tuned. Our findings show that the conventional wisdom that simply associates the total torque with the plasmon longitudinal resonances needs to be replaced with an understanding based on the different torque components and the details of spectral distribution.

  5. Strong Modulation of Infrared Light using Graphene Integration with Plasmonic Fano-Resonant Metasurfaces

    CERN Document Server

    Dabidian, Nima; Khanikaev, Alexander B; Tatar, Kaya; Trendafilov, Simeon; Mousavi, S Hossein; Magnuson, Carl; Ruoff, Rodney S; Shvets, Gennady

    2014-01-01

    Plasmonic metasurfaces represent a promising platform for enhancing light-matter interaction. Active control of the optical response of metasurfaces is desirable for applications such as beam-steering, modulators and switches, biochemical sensors, and compact optoelectronic devices. Here we use a plasmonic metasurface with two Fano resonances to enhance the interaction of infrared light with electrically controllable single layer graphene. It is experimentally shown that the narrow spectral width of these resonances, combined with strong light/graphene coupling, enables reflectivity modulation by nearly an order of magnitude leading to a modulation depth as large as 90%. . Numerical simulations demonstrate the possibility of strong active modulation of the phase of the reflected light while keeping the reflectivity nearly constant, thereby paving the way to tunable infrared lensing and beam steering

  6. Quantum Rod Emission Coupled to Plasmonic Lattice Resonances: A Collective Directional Source of Polarized Light

    CERN Document Server

    Rodriguez, S R K; Verschuuren, M A; Gomes, R; Lambert, K; De Geyter, B; Hassinen, A; Van Thourhout, D; Hens, Z; Rivas, J Gomez

    2013-01-01

    We demonstrate that an array of optical antennas may render a thin layer of randomly oriented semiconductor nanocrystals into an enhanced and highly directional source of polarized light. The array sustains collective plasmonic lattice resonances which are in spectral overlap with the emission of the nanocrystals over narrow angular regions. Consequently, di?fferent photon energies of visible light are enhanced and beamed into def?nite directions.

  7. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, Joshua R., E-mail: joshua.hendrickson.4@us.af.mil; Leedy, Kevin; Cleary, Justin W. [Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); Vangala, Shivashankar [Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); SURVICE Engineering, 4141 Colonel Glenn Highway, Dayton, Ohio 45431 (United States); Nader, Nima [Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); Solid State Scientific Corporation, 12 Simon St., Nashua, New Hampshire 03060 (United States); Guo, Junpeng [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899 (United States)

    2015-11-09

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  8. Guiding light by plasmonic resonant solitons in metallic nanosuspensions (Presentation Recording)

    Science.gov (United States)

    Kelly, Trevor S.; Samadi, Akbar; Bezryadina, Anna; Chen, Zhigang

    2015-09-01

    In typical colloidal suspensions, the corresponding optical polarizability is positive, and thus enhanced scattering takes place as optical beams tend to catastrophically collapse during propagation. Recently, light penetration deep inside scattering suspensions has been realized by engineering dielectric or plasmonic nanoparticle polarizibilities. In particular, we have previously demonstrated two types of soft-matter systems with tunable optical nonlinearities - the dielectric and metallic colloidal suspensions, in which the effects of diffraction and scattering were overcome, hence achieving deep penetration of a light needle through the suspension. In this work, we show that waveguides can be established in soft matter systems such as metallic nanosuspensions through the formation of plasmonic resonant solitons. First, we show that, due to plasmonic resonance, a 1064nm laser beam (probe) would not experience appreciable nonlinear self-action while propagating through 4cm cuvette containing the metallic nanosuspension of gold spheres (40nm), whereas a 532nm laser beam (pump) can readily form a spatial soliton due to nonlinear self-trapping. Second, we demonstrate effective guidance of the probe beam, which would otherwise diffract significantly through the nanosuspensions, due to the soliton-induced waveguide from the pump beam. Such guidance was observed when the power of the probe beam was varied from 20mW to 500mW at constant pump beam power, with more pronounced guidance realized from lower to higher probe beam power. Interestingly, due to the presence of the probe beam, the pump beam undergoes self-trapping at an even lower power. These results may bring about the possibility of engineering plasmonic soliton-based waveguides for many applications.

  9. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Dielectric Nanostructures (Review)

    CERN Document Server

    Maksymov, Ivan S

    2015-01-01

    A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient exchange of results between the two research sectors. Consequently, the goal of this review paper is to bridge this gap by presenting an overview of recent progress in the field of magneto-plasmonics from two different points of view: magneto-plasmonics, and magnonics and magnetisation dynamics. It is expected that this presentation style will make this review paper of particular interest to both general physical audience and specialists conducting research on photonics, plasmonics, Brillouin light scattering spectroscopy of magnetic nanostructures and magneto-optical Kerr effect magnetometry, as well as ultrafast all-optica...

  10. Multi-walled carbon nanotubes based catalyst plasmon resonance light scattering analysis of tetracycline hydrochloride

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It was found that multi-walled carbon nanotubes (MWNTs) could catalyze the redox reaction between chlorauric acid (HAuCl4) and reductive drugs such as tetracycline hydrochloride (TC), producing gold nanoparticles (Au NPs). By measuring the plasmon resonance light scattering (PRLS) signals of the resulting Au NPs, tetracycline hydrochloride can be detected simply and rapidly with a linear range of 4―26 μmol/L, a correlated coefficient (r ) of 0.9955, and a limit of detection (3σ) of 6.0 nmol/L. This method has been successfully applied to the detection of tetracycline hydrochloride tablets in clinic with the recovery of 101.9% and that of fresh urine samples with the recovery of 98.3%―102.0%.

  11. Light-Triggered Release of DNA from Plasmon-Resonant Nanoparticles

    Science.gov (United States)

    Huschka, Ryan

    Plasmon-resonant nanoparticle complexes show promising potential for lighttriggered, controllable delivery of deoxyribonucleic acids (DNA) for research and therapeutic purposes. For example, the approach of RNA interference (RNAi) . using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein . is very useful in dissecting genetic function and holds promise as a molecular therapeutic. Herein, we investigate the mechanism and probe the in vitro therapeutic potential of DNA light-triggered release from plasmonic nanoparticles. First, we investigate the mechanism of light-triggered release by dehybridizing double-stranded (dsDNA) via laser illumination from two types of nanoparticle substrates: gold (Au) nanoshells and Au nanorods. Both light-triggered and thermally induced releases are distinctly observable from nanoshell-based complexes. Surprisingly, no analogous measurable light-triggered release was observable from nanorod-based complexes below the DNA melting temperature. These results suggest that a nonthermal mechanism may play a role in light-triggered DNA release. Second, we demonstrate the in vitro light-triggered release of molecules noncovalently attached within dsDNA bound to the Au nanoshell surface. DAPI (4',6- diamidino-2-phenylindole), a bright blue fluorescent molecule that binds reversibly to double-stranded DNA, was chosen to visualize this intracellular light-induced release process. Illumination through the cell membrane of the nanoshell-dsDNA-DAPI complexes dehybridizes the DNA and releases the DAPI molecules within living cells. The DAPI molecules diffuse to the nucleus and associate with the cell's endogenous DNA. This work could have future applications towards drug delivery of molecules that associate with dsDNA. Finally, we demonstrate an engineered Au nanoshell (AuNS)-based therapeutic oligonucleotide delivery vehicle, designed to release its cargo on

  12. Spatial filtering with surface plasmon resonance systems

    Science.gov (United States)

    Ghosh, A. K.; Siddharth, V.; Bhagat, M.; Aggarwal, S.; Anurag, P.; Jain, M.

    2007-09-01

    Surface plasmon resonance based sensors are most useful in measuring the refractive indices of biochemicals. In such sensors a beam of light obliquely incident at an interface of glass and metallic thin film excites resonant plasmon waves in the metal if the angle of incidence or the wavelength is selected properly. The resonance conditions are changed by the refractive indices of any material in contact with the metal film. When resonance occurs the light beam is absorbed strongly. We can easily show that the phenomenon of surface plasmon resonance in such a system acts as a high quality spatial notch or band rejection filter.

  13. Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light

    Science.gov (United States)

    Lin, Hong-Yu; Tsai, Woo-Hu; Tsao, Yu-Chia; Sheu, Bor-Chiou

    2007-02-01

    A side-polished multimode fiber sensor based on surface plasmon resonance (SPR) as the transducing element with a halogen light source is proposed. The SPR fiber sensor is side polished until half the core is closed and coated with a 37 nm gold thin film by dc sputtering. The SPR curve on the optical spectrum is described by an optical spectrum analyzer and can sense a range of widths in wavelengths of SPR effects. The measurement system using the halogen light source is constructed for several real-time detections that are carried out for the measurement of the index liquid detections for the sensitivity analysis. The sensing fiber is demonstrated with a series of refractive index (RI) liquids and set for several experiments, including the stability, repeatability, and resolution calibration. The results for the halogen light source with the resolution of the measurement based on wavelength interrogation were 3×10-6 refractive index units (RIUs). The SPR dip shifted in wavelength is used as a measure of the RI change at a surface, and this RI change varies directly with the number of biomolecules at the surface. The SPR dip shift in wavelength, which was hybridized at 0.1 μM of the target DNA to the probe DNA, was 8.66 nm. The all-fiber multimode SPR sensor, which has the advantages of being low cost, being disposable, having high stability and linearity, being free of labeling, and having potential for real-time detection, permit the sensor and system to be used in biochemical sensing and environmental monitoring.

  14. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures

    Directory of Open Access Journals (Sweden)

    Ivan S. Maksymov

    2015-04-01

    Full Text Available A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient exchange of results between the two research sectors. Consequently, the goal of this review paper is to bridge this gap by presenting an overview of recent progress in the field of magneto-plasmonics from two different points of view: magneto-plasmonics, and magnonics and magnetisation dynamics. It is expected that this presentation style will make this review paper of particular interest to both general physical audience and specialists conducting research on photonics, plasmonics, Brillouin light scattering spectroscopy of magnetic nanostructures and magneto-optical Kerr effect magnetometry, as well as ultrafast all-optical and THz-wave excitation of spin waves. Moreover, readers interested in a new, rapidly emerging field of all-dielectric nanophotonics will find a section about all-magneto-dielectric nanostructures.

  15. Near-Field Resonance at Far-Field Anti-Resonance: Plasmonically Enhanced Light Emission with Minimum Scattering Nanoantennas

    CERN Document Server

    Rodriguez, S R K; Lozano, G; Omari, A; Hens, Z; Rivas, J Gomez

    2012-01-01

    We demonstrate that a periodic array of optical antennas sustains a resonant Near-Field (NF) and an anti-resonant Far-Field (FF) at the same energy and in-plane momentum. This phenomenon arises in the context of coupled plasmonic lattice resonances, whose bright and dark character is interchanged at a critical antenna length. The energies of these modes anti-cross in the FF, but cross in the NF. Hence, we observe an extremely narrow bandwidth emission enhancement from quantum dots in the proximity of the array, while the antennas scatter minimally into the FF. Simulations reveal that a standing wave with a quadrupolar field distribution is the origin of this dark collective resonance.

  16. Enhancement of Visible-Light Photocatalytic Activity of Mesoporous Au-TiO2 Nanocomposites by Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Minghua Zhou

    2012-01-01

    Full Text Available Mesoporous Au-TiO2 nanocomposite plasmonic photocatalyst with visible-light photoactivity was prepared by a simple spray hydrolytic method using photoreduction technique at 90∘C. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N2 adsorption-desorption isotherms. The formation of hydroxyl radicals (•OH on the surface of visible-light illuminated Au-TiO2 nanocomposites was detected by the luminescence technique using terephthalic acid as probe molecules. The photocatalytic activity was evaluated by photocatalytic decolorization of Rhodamine-B (RhB aqueous solution under visible-light irradiation (λ >  420 nm. The results revealed that the TiO2 could be crystallized via spray hydrolysis method, and the photoreduction technique was facilitated to prepare Au nanoparticles in the mesoporous TiO2 at 90∘C. The light absorption, the formation rate of hydroxyl radicals, and photocatalytic decolorization of Rhodamine-B aqueous solution were significantly enhanced by those embedded Au nanoparticles in the Au-TiO2 nanocomposites. The prepared Au-TiO2 nanocomposites exhibit a highly visible-light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of the pristine TiO2 nanoparticles due to the surface plasmon resonance.

  17. Light wavelength influence on surface plasmon resonance in citrate-gold nanosystems

    Science.gov (United States)

    Lupusoru, Raoul-Vasile; Pricop, Daniela A.; Andries, Maria; Creanga, Dorina

    2016-12-01

    Citrate-gold particles were yielded according to classical method of auric salt reduction in two different synthesis media aiming to use them further applications in biomedical and environmental domains. The analysis of citrate-gold interaction was done through UV-vis and IR spectroscopy as well as by Transmission Electron Microscopy (TEM) and Dark Field (DF) Microscopy. Average particle size was higher for citrate-gold NPs synthesized with NaOH (32.5 nm) than for NPs synthesized with NaCl (15 nm). Dimensional histograms of one year aged colloidal suspensions presented mean size of 29 nm and respectively 18 nm. The influence of 90 min light exposure, analyzed by UV-vis, evidenced that for both NaOH synthesis protocol and NaCl protocol, plasmon band maxima at 528 nm and respectively 538 nm didn't changed, neither for white nor for green light. For one year aged samples this band shifted to 540 nm for green light irradiation in the case of citrate-gold NPs synthesized with NaOH. Also, for these NPs, both green and white light exposures resulted in plasmon band intensity changes for native as well as for aged samples. FTIR investigation showed also different changes at the level of the intensity of main vibration bands of citrate-gold after exposure to light, suggesting stronger adsorption of citrate in the case of NaCl addition in the initial reaction medium than in the case of NaOH. Finally, the utilization of NaCl in the synthesis protocol seems to favor the synthesis of more stable and lower toxicity colloidal suspensions, both during time and under the light irradiation.

  18. Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber

    Science.gov (United States)

    Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin

    2017-03-01

    Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies.

  19. Nanometrology using localized surface plasmon resonance spectroscopy

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel N.; Laurberg, Asger V.;

    2013-01-01

    A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed in a tra......A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed...... in a transmission spectrum and it is very sensitive to the constituent materials as well as both lateral and vertical dimensions of the structures. This makes LSPR spectroscopy interesting for a number of applications including nanometrology. Like scatterometry, LSPR spectroscopy requires test structures...

  20. Plasmonics light modulators

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Malureanu, Radu; Lavrinenko, Andrei

    Surface plasmon polaritons (SPPs) are waves propagating at the interface between a metal and a dielectric and, due to their tight confinement, may be used for nanoscale control of the light propagation. Thus, photonic integrated circuits can benefit from devices using SPPs because of their highly...

  1. Triple plasmon resonance of bimetal nanoshell

    Energy Technology Data Exchange (ETDEWEB)

    Shirzaditabar, Farzad [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Saliminasab, Maryam, E-mail: m.saliminasab@yahoo.com [Young Researchers Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Arghavani Nia, Borhan [Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of)

    2014-07-15

    In this paper, light absorption spectra properties of a bimetal multilayer nanoshell based on quasi-static approach are investigated. Comparing with silver-dielectric-silver and silver-dielectric-gold nanoshells, gold-dielectric-silver nanoshells have three intense and separated plasmon peaks which are more suitable for multiplex biosensing. Calculations show that relatively small thickness of outer silver shell and large dielectric constant of middle dielectric layer of gold-dielectric-silver nanoshell are suitable to obtain the triple plasmon resonance.

  2. Triple plasmon resonance of bimetal nanoshell

    Science.gov (United States)

    Shirzaditabar, Farzad; Saliminasab, Maryam; Arghavani Nia, Borhan

    2014-07-01

    In this paper, light absorption spectra properties of a bimetal multilayer nanoshell based on quasi-static approach are investigated. Comparing with silver-dielectric-silver and silver-dielectric-gold nanoshells, gold-dielectric-silver nanoshells have three intense and separated plasmon peaks which are more suitable for multiplex biosensing. Calculations show that relatively small thickness of outer silver shell and large dielectric constant of middle dielectric layer of gold-dielectric-silver nanoshell are suitable to obtain the triple plasmon resonance.

  3. Dark Field Imaging of Plasmonic Resonator Arrays

    Science.gov (United States)

    Aydinli, Atilla; Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun

    2012-02-01

    We present critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moir'e surfaces. The critical coupling condition depends on the superperiod of Moir'e surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. We image the light scattered from SPPs in the plasmonic cavities excited by a tunable light source. Tuning the excitation wavelength, we measure the localization and dispersion of the plasmonic cavity mode. Dark field imaging has been achieved in the Kretschmann configuration using a supercontinuum white light laser equipped with an acoustooptic tunable filter. Polarization dependent spectroscopic reflection and dark field imaging measurements are correlated and found to be in agreement with FDTD simulations.

  4. Localized surface plasmon resonance light-scattering detection of Hg(II) with 3-aminopropyltriethoxysilane-assisted synthesis of highly stabilized Ag nanoclusters.

    Science.gov (United States)

    Zhu, Jingjing; Mao, Qinli; Gao, Lang; He, Yu; Song, Gongwu

    2013-03-21

    We employed 3-aminopropyltriethoxysilane to assist the synthesis of Ag NCs using polyethyleneimine as the template for detecting Hg(2+) by localized surface plasmon resonance light-scattering technology. The developed selective and sensitive method presaged more opportunities for application in environmental systems.

  5. Electrically Tunable Plasmonic Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Ni, Xingjie

    2012-01-01

    Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance.......Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance....

  6. Hybrid plasmonic-photonic resonators (Conference Presentation)

    Science.gov (United States)

    Koenderink, A. Femius; Doeleman, Hugo M.; Ruesink, Freek; Verhagen, Ewold; Osorio, Clara I.

    2016-09-01

    Hybrid nanophotonic structures are structures that integrate different nanoscale platforms to harness light-matter interaction. We propose that combinations of plasmonic antennas inside modest-Q dielectric cavities can lead to very high Purcell factors, yielding plasmonic mode volumes at essentially cavity quality factors. The underlying physics is subtle: for instance, how plasmon antennas with large cross sections spoil or improve cavities and vice versa, contains physics beyond perturbation theory, depending on interplays of back-action, and interferences. This is evident from the fact that the local density of states of hybrid systems shows the rich physics of Fano interferences. I will discuss recent scattering experiments performed on toroidal microcavities coupled to plasmon particle arrays that probe both cavity resonance shifts and particle polarizability changes illustrating these insights. Furthermore I will present our efforts to probe single plasmon antennas coupled to emitters and complex environments using scatterometry. An integral part of this approach is the recently developed measurement method of `k-space polarimetry', a microscopy technique to completely classify the intensity and polarization state of light radiated by a single nano-object into any emission direction that is based on back focal plane imaging and Stokes polarimetry. I show benchmarks of this technique for the cases of scattering, fluorescence, and cathodoluminescence applied to directional surface plasmon polariton antennas.

  7. Surface plasmon resonance in super-periodic metal nanostructures

    Science.gov (United States)

    Leong, Haisheng

    Surface plasmon resonances in periodic metal nanostructures have been investigated over the past decade. The periodic metal nanostructures have served as new technology platforms in fields such as biological and chemical sensing. An existing method to determine the surface plasmon resonance properties of these metal nanostructures is the measurement of the light transmission or reflection from these nanostructures. The measurement of surface plasmon resonances in either the transmission or reflection allows one to resolve the surface plasmon resonance in metal nanostructures. In this dissertation, surface plasmon resonances in a new type of metal nanostructures were investigated. The new nanostructures were created by patterning traditional periodic nanohole and nanoslit arrays into diffraction gratings. The patterned nanohole and 11anoslit arrays have two periods in the structures. The new nanostructures are called "super-periodic" nanostructures. With rigorous finite difference time domain (FDTD) numerical simulations, surface plasmon resonances in super-periodic nanoslit and nanohole arrays were investigated. It was found that by creating a super-period in periodic metal nanostructures, surface plasmon radiations can be observed in the non-zero order diffractions. This discovery presents a new method of characterizing the surface plasmon resonances in metal nanostructures. Super-periodic gold nanoslit and nanohole arrays were fabricated with the electron beam lithography technique. The surface plasmon resonances were measured in the first order diffraction by using a CCD. The experimental results confirm well with the FDTD numerical simulations.

  8. Fano resonance Rabi splitting of surface plasmons.

    Science.gov (United States)

    Liu, Zhiguang; Li, Jiafang; Liu, Zhe; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2017-08-14

    Rabi splitting and Fano resonance are well-known physical phenomena in conventional quantum systems as atoms and quantum dots, arising from strong interaction between two quantum states. In recent years similar features have been observed in various nanophotonic and nanoplasmonic systems. Yet, realization of strong interaction between two or more Fano resonance states has not been accomplished either in quantum or in optical systems. Here we report the observation of Rabi splitting of two strongly coupled surface plasmon Fano resonance states in a three-dimensional plasmonic nanostructure consisting of vertical asymmetric split-ring resonators. The plasmonic system stably supports triple Fano resonance states and double Rabi splittings can occur between lower and upper pairs of the Fano resonance states. The experimental discovery agrees excellently with rigorous numerical simulations, and is well explained by an analytical three-oscillator model. The discovery of Fano resonance Rabi splitting could provide a stimulating insight to explore new fundamental physics in analogous atomic systems and could be used to significantly enhance light-matter interaction for optical sensing and detecting applications.

  9. Arbitrary bending plasmonic light waves.

    Science.gov (United States)

    Epstein, Itai; Arie, Ady

    2014-01-17

    We demonstrate the generation of self-accelerating surface plasmon beams along arbitrary caustic curvatures. These plasmonic beams are excited by free-space beams through a two-dimensional binary plasmonic phase mask, which provides the missing momentum between the two beams in the direction of propagation and sets the required phase for the plasmonic beam in the transverse direction. We examine the cases of paraxial and nonparaxial curvatures and show that this highly versatile scheme can be designed to produce arbitrary plasmonic self-accelerating beams. Several different plasmonic beams, which accelerate along polynomial and exponential trajectories, are demonstrated both numerically and experimentally, with a direct measurement of the plasmonic light intensity using a near-field scanning optical microscope.

  10. Arbitrary Bending Plasmonic Light Waves

    CERN Document Server

    Epstein, Itai

    2013-01-01

    We demonstrate the generation of self-accelerating surface plasmon beams along arbitrary caustic curvatures. These plasmonic beams are excited by free-space beams through a two-dimensional binary plasmonic phase mask, which provides the missing momentum between the two beams in the direction of propagation, and sets the required phase for the plasmonic beam in the transverse direction. We examine the cases of paraxial and non-paraxial curvatures and show that this highly versatile scheme can be designed to produce arbitrary plasmonic self-accelerating beams. Several different plasmonic beams, which accelerate along polynomial and exponential trajectories, are demonstrated both numerically and experimentally, with a direct measurement of the plasmonic light intensity using a near-field-scanning-optical-microscope.

  11. Coupling of Surface Plasmon Polariton in Al-Doped ZnO with Fabry-Pérot Resonance for Total Light Absorption

    Directory of Open Access Journals (Sweden)

    David George

    2017-04-01

    Full Text Available Al-doped ZnO (AZO can be used as an electrically tunable plasmonic material in the near infrared range. This paper presents finite-difference time-domain (FDTD simulations on total light absorption (TLA resulting from the coupling of a surface plasmon polariton (SPP with Fabry-Pérot (F-P resonance in a three-layer structure consisting of an AZO square lattice hole array, a spacer, and a layer of silver. Firstly, we identified that the surface plasmon polariton (SPP that will couple to the F-P resonance because of an SPP standing wave in the (1,0 direction of the square lattice. Two types of coupling between SPP and F-P resonance are observed in the simulations. In order to achieve TLA, an increase in the refractive index of the spacer material leads to a decrease in the thickness of the spacer. Additionally, it is shown that the replacement of silver by other, more cost-effective metals has no significance influence on the TLA condition. It is observed in the simulations that post-fabrication tunability of the TLA wavelength is possible via the electrical tunability of the AZO. Finally, electric field intensity distributions at specific wavelengths are computed to further prove the coupling of SPP with F-P resonance. This work will contribute to the design principle for future device fabrication for TLA applications.

  12. Gold nanodisk array surface plasmon resonance sensor

    Science.gov (United States)

    Tian, Xueli

    Surface plasmon resonances in periodic metal nanostructures have been investigated for sensing applications over the last decade. The resonance wavelengths of the nanostructures are usually measured in the transmission or reflection spectrum for chemical and biological sensing. In this thesis, I introduce a nanoscale gap mediated surface plasmon resonance nanodisk array for displacement sensing and a super-period gold nanodisk grating enabled surface plasmon resonance spectrometer sensor. The super-period gold nanodisk grating has a small subwavelength period and a large diffraction grating period. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD). A surface plasmon resonance sensor for the bovine serum albumin (BSA) protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  13. Plasmon resonant liposomes for controlled drug delivery

    Science.gov (United States)

    Knights-Mitchell, Shellie S.; Romanowski, Marek

    2015-03-01

    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  14. Plasmonic Nanostructures: Tailoring Light-matter Interaction

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2012-01-01

    The flow of light can be molded by plasmonic structures within the nanoscale. In this talk, plasmonic nanostructures for suppressing light transmission, improving light absorption and enhancing photoemissions are to be presented....

  15. Plasmon resonance energy transfer and plexcitonic solar cell.

    Science.gov (United States)

    Nan, Fan; Ding, Si-Jing; Ma, Liang; Cheng, Zi-Qiang; Zhong, Yu-Ting; Zhang, Ya-Fang; Qiu, Yun-Hang; Li, Xiaoguang; Zhou, Li; Wang, Qu-Quan

    2016-08-11

    Plasmon-mediated energy transfer is highly desirable in photo-electronic nanodevices, but the direct injection efficiency of "hot electrons" in plasmonic photo-detectors and plasmon-sensitized solar cells (plasmon-SSCs) is poor. On another front, Fano resonance induced by strong plasmon-exciton coupling provides an efficient channel of coherent energy transfer from metallic plasmons to molecular excitons, and organic dye molecules have a much better injection efficiency in exciton-SSCs than "hot electrons". Here, we investigate enhanced light-harvesting of chlorophyll-a molecules strongly coupled to Au nanostructured films via Fano resonance. The enhanced local field and plasmon resonance energy transfer are experimentally revealed by monitoring the ultrafast dynamical processes of the plexcitons and the photocurrent flows of the assembled plexciton-SSCs. By tuning the Fano factor and anti-resonance wavelengths, we find that the local field is largely enhanced and the efficiency of plexciton-SSCs consisting of ultrathin TiO2 films is significantly improved. Most strikingly, the output power of the plexciton-SSCs is much larger than the sum of those of the individual plasmon- and exciton-SSCs. Our observations provide a practical approach to monitor energy and electron transfer in plasmon-exciton hybrids at a strong coupling regime and also offer a new strategy to design photovoltaic nanodevices.

  16. Controlling light with plasmonic multilayers

    DEFF Research Database (Denmark)

    Orlov, Alexey A.; Zhukovsky, Sergei; Iorsh, Ivan V.

    2014-01-01

    Recent years have seen a new wave of interest in layered media - namely, plasmonic multilayers - in several emerging applications ranging from transparent metals to hyperbolic metamaterials. In this paper, we review the optical properties of such subwavelength metal-dielectric multilayered...... metamaterials and describe their use for light manipulation at the nanoscale. While demonstrating the recently emphasized hallmark effect of hyperbolic dispersion, we put special emphasis to the comparison between multilayered hyperbolic metamaterials and more broadly defined plasmonic-multilayer metamaterials...

  17. All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator

    Science.gov (United States)

    Perron, David; Wu, Marcelo; Horvath, Cameron; Bachman, Daniel; van, Vien

    2011-07-01

    We experimentally investigated thermal nonlinear effects in a hybrid Au/SiO2/SU-8 plasmonic microring resonator for nonlinear switching. Large ohmic loss in the metal layer gave rise to a high rate of light-to-heat conversion in the plasmonic waveguide, causing an intensity-dependent thermo-optic shift in the microring resonance. We obtained 30 times larger resonance shift in the plasmonic microring than in a similar SU-8 dielectric microring. Using an in-plane pump-and-probe configuration, we also demonstrated all-plasmonic nonlinear switching in the plasmonic microring with an on--off switching contrast of 4dB over 50mW input power.

  18. Laser printing of resonant plasmonic nanovoids

    Science.gov (United States)

    Kuchmizhak, A.; Vitrik, O.; Kulchin, Yu.; Storozhenko, D.; Mayor, A.; Mirochnik, A.; Makarov, S.; Milichko, V.; Kudryashov, S.; Zhakhovsky, V.; Inogamov, N.

    2016-06-01

    Hollow reduced-symmetry resonant plasmonic nanostructures possess pronounced tunable optical resonances in the UV-vis-IR range, being a promising platform for advanced nanophotonic devices. However, the present fabrication approaches require several consecutive technological steps to produce such nanostructures, making their large-scale fabrication rather time-consuming and expensive. Here, we report on direct single-step fabrication of large-scale arrays of hollow parabolic- and cone-shaped nanovoids in silver and gold thin films, using single-pulse femtosecond nanoablation at high repetition rates. The lateral and vertical size of such nanovoids was found to be laser energy-tunable. Resonant light scattering from individual nanovoids was observed in the visible spectral range, using dark-field confocal microspectroscopy, with the size-dependent resonant peak positions. These colored geometric resonances in far-field scattering were related to excitation and interference of transverse surface plasmon modes in nanovoid shells. Plasmon-mediated electromagnetic field enhancement near the nanovoids was evaluated via finite-difference time-domain calculations for their model shapes simulated by three-dimensional molecular dynamics, and experimentally verified by means of photoluminescence microscopy and Raman spectroscopy.Hollow reduced-symmetry resonant plasmonic nanostructures possess pronounced tunable optical resonances in the UV-vis-IR range, being a promising platform for advanced nanophotonic devices. However, the present fabrication approaches require several consecutive technological steps to produce such nanostructures, making their large-scale fabrication rather time-consuming and expensive. Here, we report on direct single-step fabrication of large-scale arrays of hollow parabolic- and cone-shaped nanovoids in silver and gold thin films, using single-pulse femtosecond nanoablation at high repetition rates. The lateral and vertical size of such nanovoids was

  19. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing

    OpenAIRE

    Lepage Dominic; Carrier Dominic; Jiménez Alvaro; Beauvais Jacques; Dubowski Jan

    2011-01-01

    Abstract A surface plasmon resonance (SPR) scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral r...

  20. Aluminum Nanoarrays for Plasmon-Enhanced Light Harvesting.

    Science.gov (United States)

    Lee, Minah; Kim, Jong Uk; Lee, Ki Joong; Ahn, SooHoon; Shin, Yong-Beom; Shin, Jonghwa; Park, Chan Beum

    2015-06-23

    The practical limits of coinage-metal-based plasmonic materials demand sustainable, abundant alternatives with a wide plasmonic range of the solar energy spectrum. Aluminum (Al) is an emerging alternative, but its instability in aqueous environments critically limits its applicability to various light-harvesting systems. Here, we report a design strategy to achieve a robust platform for plasmon-enhanced light harvesting using Al nanostructures. The incorporation of mussel-inspired polydopamine nanolayers in the Al nanoarrays allowed for the reliable use of Al plasmonic resonances in a highly corrosive photocatalytic redox solution and provided nanoscale arrangement of organic photosensitizers on Al surfaces. The Al-photosensitizer core-shell assemblies exhibited plasmon-enhanced light absorption, which resulted in a 300% efficiency increase in photo-to-chemical conversion. Our strategy enables stable and advanced use of aluminum for plasmonic light harvesting.

  1. Nonlinear plasmonic amplification via dissipative soliton-plasmon resonances

    Science.gov (United States)

    Ferrando, Albert

    2017-01-01

    In this contribution we introduce a strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasiparticle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a mechanism of quasiresonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling, and gain give rise to a scenario for the excitation of long-range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.

  2. Coupling Bright and Dark Plasmonic Lattice Resonances

    CERN Document Server

    Rodriguez, S R K; Maes, B; Janssen, O T A; Vecchi, G; Rivas, J Gomez

    2011-01-01

    We demonstrate the coupling of bright and dark Surface Lattice Resonances (SLRs), which are collective Fano resonances in 2D plasmonic crystals. As a result of this coupling, a frequency stop-gap in the dispersion relation of SLRs is observed. The different field symmetries of the low and high frequency SLR bands lead to pronounced differences in their coupling to free space radiation. Standing waves of very narrow spectral width compared to localized surface plasmon resonances are formed at the high frequency band edge, while subradiant damping onsets at the low frequency band edge leading the resonance into darkness. We introduce a coupled oscillator analog to the plasmonic crystal, which serves to elucidate the physics of the coupled plasmonic resonances and to estimate very high quality factors (Q>700) for SLRs, which are the highest known for any 2D plasmonic crystal.

  3. Electron energy-loss spectroscopy of branched gap plasmon resonators

    Science.gov (United States)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen; Mortensen, N. Asger; Brongersma, Mark L.; Bozhevolnyi, Sergey I.

    2016-12-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons.

  4. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing

    Directory of Open Access Journals (Sweden)

    Lepage Dominic

    2011-01-01

    Full Text Available Abstract A surface plasmon resonance (SPR scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral regions. The surface roughness of the substrate layer is examined for different dielectrics and deposition methods. The Au layer, on which the plasmonic modes are propagating and the biosensing occurs, is also examined. The surface roughness and dielectric values for various deposition rates of very thin Au films are measured. We also investigate an interferometric SPR setup where, due to the power flux transfer between plasmon modes, the specific choice of grating coupler can either decrease or increase the plasmon propagation length.

  5. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing.

    Science.gov (United States)

    Lepage, Dominic; Carrier, Dominic; Jiménez, Alvaro; Beauvais, Jacques; Dubowski, Jan J

    2011-05-17

    A surface plasmon resonance (SPR) scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral regions. The surface roughness of the substrate layer is examined for different dielectrics and deposition methods. The Au layer, on which the plasmonic modes are propagating and the biosensing occurs, is also examined. The surface roughness and dielectric values for various deposition rates of very thin Au films are measured. We also investigate an interferometric SPR setup where, due to the power flux transfer between plasmon modes, the specific choice of grating coupler can either decrease or increase the plasmon propagation length.

  6. Tunable Omnidirectional Surface Plasmon Resonance in Cylindrical Plasmonic Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; WANG Bing; ZHOU Zhi-Ping

    2008-01-01

    @@ The tunable omnidirectional surface plasmon resonance in the optical range is theoretically demonstrated in a cylindrical plasmonic crystal by using rigorous coupled-wave analysis.The cylindrical plasmonic crystal consists of an infinite chain of two-dimensional cylindrical metal-dielectric-dielectric-metal structures.The dispersion relation of the cylindrical plasmonic crystal is obtained by calculating the absorptance as a function of a TM-polarized incident plane wave and its in-plane wave vector.The omnidirectional surface plasmon resonance can be tuned from UV region to visible region by adjusting the thickness of the cylindrical dielectric layers.The absorption spectrum of the infinite chain of nanocylinders is also investigated for comparison.

  7. Proximity Resonance and Localized Surface Plasmons

    Science.gov (United States)

    Liu, Bo; Heller, Eric

    2014-03-01

    The collective excitation of conduction electrons in subwavelength nanostructures is known as Localized Surface Plasmon(LSP)[1]. Such plasmon modes has been intensively studied using noble nanoparticles . More recently, the possibility of building terahertz metamaterials supporting such LSP modes has been explored in graphene microribbons and microdisks. Unlike Surface Plasmon Polaritons(SPPs) at metal-insulator interface, LSP can be directly excited by light illumination and holds promise for applications in ultrasensitive biosensing, nano-optical tweezers and improved photovoltaic devices. In this paper, we consider the interaction of two LSPs in the weak coupling regime and show how an effect similar to the proximity resonance in the quantum scattering theory) gives rise to an asymmetric(quadrupole) mode with increased damping rate. The existence of this asymmetric mode relies on a small phase retardation between the two LSPs. This phase retardation, though small, is key to both increased damping rate for the asymmetric mode and reduced damping rate for the symmetric mode. When this small phase retardation is removed by changing the polarization of the exciting light,we show that the asymmetric mode can not be excited and the symmetric mode shows increased damping.

  8. Culturing photosynthetic bacteria through surface plasmon resonance

    Science.gov (United States)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David

    2012-12-01

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 μm thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  9. Culturing photosynthetic bacteria through surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David [Department of Mechanical and Industrial Engineering and Centre for Sustainable Energy, University of Toronto, Toronto M5S 3G8 (Canada)

    2012-12-17

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 {mu}m thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  10. Flexible, fibre-addressable surface-plasmon-resonance chip

    Science.gov (United States)

    Chowdhury, Faqrul; Chau, Kenneth J.

    2012-02-01

    Surface plasmon resonance (SPR) sensors exploit optical coupling to surface plasmons, light waves bound to a metal surface. In the most common configuration, a SPR sensor is used with an external light source, optical components to polarize incident light and guide light to and from a metal surface, a coupling device to convert free-space light into surface plasmons and back into free-space light, and a light detector. The light source, the optical components, and the light detector are external to the SPR device, and the coupling structure is often integrated directly with the surface-plasmon-sustaining metal surface. The requirement of several external components restricts the miniaturization of SPR devices and prohibits low-cost implementation. To address these limitations, we design, fabricate, and test a new SPR device chip that is fibre-addressable, does not require a discrete coupling structure, and integrates light delivery, light polarization control, surface plasmon coupling onto a thin, flexible substrate. Our SPR chip is constructed from a thin gold layer deposited on top of a clear plastic sheet, which is then optically connected from the bottom surface onto a plastic linear polarizer sheet. Two cleaved fibres, one to input light and the other to collect reflected light, are then optically attached to SPR device. We experimentally characterize the SPR device and find good agreement between our measurements and a theoretical model based on transfer matrix formalism.

  11. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    CERN Document Server

    Guddala, Sriram; Ramakrishna, S Anantha

    2016-01-01

    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminium layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C-60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than from C60 on metamaterials with off-resonant absorption bands peaked at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by...

  12. Engineering photonic and plasmonic light emission enhancement

    Science.gov (United States)

    Lawrence, Nathaniel

    Semiconductor photonic devices are a rapidly maturing technology which currently occupy multi-billion dollar markets in the areas of LED lighting and optical data communication. LEDs currently demonstrate the highest luminous efficiency of any light source for general lighting. Long-haul optical data communication currently forms the backbone of the global communication network. Proper design of light management is required for photonic devices, which can increase the overall efficiency or add new device functionality. In this thesis, novel methods for the control of light propagation and confinement are developed for the use in integrated photonic devices. The first part of this work focuses on the engineering of field confinement within deep subwavelength plasmonic resonators for the enhancement of light-matter interaction. In this section, plasmonic ring nanocavities are shown to form gap plasmon modes confined to the dielectric region between two metal layers. The scattering properties, near-field enhancement and photonic density of states of nanocavity devices are studied using analytic theory and 3D finite difference time domain simulations. Plasmonic ring nanocavities are fabricated and characterized using photoluminescence intensity and decay rate measurements. A 25 times increase in the radiative decay rate of Er:Si02 is demonstrated in nanocavities where light is confined to volumes as small as 0.01( ln )3. The potential to achieve lasing, due to the enhancement of stimulated emission rate in ring nanocavities, is studied as a route to Si-compatible plasmon-enhanced nanolasers. The second part of this work focuses on the manipulation of light generated in planar semiconductor devices using arrays of dielectric nanopillars. In particular, aperiodic arrays of nanopillars are engineered for omnidirectional light extraction enhancement. Arrays of Er:SiNx, nanopillars are fabricated and a ten times increase in light extraction is experimentally demonstrated

  13. Quantum electrodynamics and plasmonic resonance of metallic nanostructures

    Science.gov (United States)

    Zhang, Mingliang; Xiang, Hongping; Zhang, Xu; Lu, Gang

    2016-04-01

    Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by incident light. At the resonance, the induced dipole in the nanostructure is proportional to the number of the conduction electrons, hence 107 times larger than that in an atom. The interaction energy between the induced dipole and fluctuating virtual field of the incident light can reach a few tenths of an eV. Therefore, the classical electromagnetism dominating the field may become inadequate. We propose that quantum electrodynamics (QED) may be used as a fundamental theory to describe the interaction between the virtual field and the oscillating electrons. Based on QED, we derive analytic expressions for the plasmon resonant frequency, which depends on three easily accessible material parameters. The analytic theory reproduces very well the experimental data, and can be used in rational design of materials for plasmonic applications.

  14. Quantum electrodynamics and plasmonic resonance of metallic nanostructures.

    Science.gov (United States)

    Zhang, Mingliang; Xiang, Hongping; Zhang, Xu; Lu, Gang

    2016-04-20

    Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by incident light. At the resonance, the induced dipole in the nanostructure is proportional to the number of the conduction electrons, hence 10(7) times larger than that in an atom. The interaction energy between the induced dipole and fluctuating virtual field of the incident light can reach a few tenths of an eV. Therefore, the classical electromagnetism dominating the field may become inadequate. We propose that quantum electrodynamics (QED) may be used as a fundamental theory to describe the interaction between the virtual field and the oscillating electrons. Based on QED, we derive analytic expressions for the plasmon resonant frequency, which depends on three easily accessible material parameters. The analytic theory reproduces very well the experimental data, and can be used in rational design of materials for plasmonic applications.

  15. Distributed optical fiber surface plasmon resonance sensors

    Institute of Scientific and Technical Information of China (English)

    Zhenxin Cao; Lenan Wu; Dayong Li

    2006-01-01

    @@ The relationships of the resonant wavelength of optical fiber surface plasmon resonance (SPR) sensors to the modulation layer refractive index, thickness and the refractive index of the bulk medium are obtained by using theoretical calculation model of optical fiber SPR sensors under certain conditions, which indicates that resonant wavelength of the sensors is approximately linear with modulation layer thickness. Based on the linear relationship, multiple SPR sensors with different resonant wavelengths can be fabricated in a single optical fiber named as distributed optical fiber surface plasmon resonance sensors (DOFSPRSs).Experimental results are presented, showing that it is practical to fabricate more than one SPR sensors in a single optical fiber.

  16. Plasmonics: Manipulating Light at the Subwavelength Scale

    Directory of Open Access Journals (Sweden)

    Yong-Yuan Zhu

    2007-12-01

    Full Text Available The coupling of light to collective oscillation of electrons on the metal surface allows the creation of surface plasmon-polariton wave. This surface wave is of central interest in the field of plasmonics. In this paper, we will present a brief review of this field, focusing on the plasmonic waveguide and plasmonic transmission. In the plasmonic waveguide, the light can be guided along the metal surface with subwavelength lateral dimensions, enabling the possibility of high-density integration of the optical elements. On the other hand, in the plasmonic transmission, the propagation of light through a metal surface can be tailored with the subwavelength holes, leading to the anomalous transmission behaviors which have received extensive investigations in recent years. In addition, as a supplement to plasmonics in the visible and near-infrared region, the study of THz plasmonics has also been discussed.

  17. Resonant plasmonic nanoparticles for multicolor second harmonic imaging

    Science.gov (United States)

    Accanto, Nicolò; Piatkowski, Lukasz; Hancu, Ion M.; Renger, Jan; van Hulst, Niek F.

    2016-02-01

    Nanoparticles capable of efficiently generating nonlinear optical signals, like second harmonic generation, are attracting a lot of attention as potential background-free and stable nano-probes for biological imaging. However, second harmonic nanoparticles of different species do not produce readily distinguishable optical signals, as the excitation laser mainly defines their second harmonic spectrum. This is in marked contrast to other fluorescent nano-probes like quantum dots that emit light at different colors depending on their sizes and materials. Here, we present the use of resonant plasmonic nanoparticles, combined with broadband phase-controlled laser pulses, as tunable sources of multicolor second harmonic generation. The resonant plasmonic nanoparticles strongly interact with the electromagnetic field of the incident light, enhancing the efficiency of nonlinear optical processes. Because the plasmon resonance in these structures is spectrally narrower than the laser bandwidth, the plasmonic nanoparticles imprint their fingerprints on the second harmonic spectrum. We show how nanoparticles of different sizes produce different colors in the second harmonic spectra even when excited with the same laser pulse. Using these resonant plasmonic nanoparticles as nano-probes is promising for multicolor second harmonic imaging while keeping all the advantages of nonlinear optical microscopy.

  18. Optimization of Pd Surface Plasmon Resonance sensors for hydrogen detection

    NARCIS (Netherlands)

    Perrotton, C.; Javahiraly, N.; Slaman, M.; Schreuders, H.; Dam, B.; Meyrueis, P.

    2011-01-01

    A design to optimize a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, the sensitive layer is deposited on the core of a multimode fiber, after removing the optical cladding. The light is injected in the f

  19. Optimization of Pd Surface Plasmon Resonance sensors for hydrogen detection

    NARCIS (Netherlands)

    Perrotton, C.; Javahiraly, N.; Slaman, M.; Schreuders, H.; Dam, B.; Meyrueis, P.

    2011-01-01

    A design to optimize a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, the sensitive layer is deposited on the core of a multimode fiber, after removing the optical cladding. The light is injected in the f

  20. Nanoscale Plasmonic Devices Based on Metal-Dielectric-Metal Stub Resonators

    Directory of Open Access Journals (Sweden)

    Yin Huang

    2012-01-01

    Full Text Available We review some of the recent research activities on plasmonic devices based on metal-dielectric-metal (MDM stub resonators for manipulating light at the nanoscale. We first introduce slow-light subwavelength plasmonic waveguides based on plasmonic analogues of periodically loaded transmission lines and electromagnetically induced transparency. In both cases, the structures consist of a MDM waveguide side-coupled to periodic arrays of MDM stub resonators. We then introduce absorption switches consisting of a MDM plasmonic waveguide side-coupled to a MDM stub resonator filled with an active material.

  1. On the role of localized surface plasmon resonance in UV-Vis light irradiated Au/TiO₂ photocatalysis systems: pros and cons.

    Science.gov (United States)

    Lin, Zhongjin; Wang, Xiaohong; Liu, Jun; Tian, Zunyi; Dai, Loucheng; He, Beibei; Han, Chao; Wu, Yigui; Zeng, Zhigang; Hu, Zhiyu

    2015-03-07

    The role of localized surface plasmon resonance (LSPR) in UV-Vis light irradiated Au/TiO2 photocatalysis systems has been investigated, and it is demonstrated experimentally for the first time that both pros and cons of LSPR exist simultaneously for this photocatalytic reaction. We have proved that when operating under mixed UV and green light irradiation, the LSPR injected hot electrons (from the Au nanoparticles to TiO2 under green light irradiation) may surmount the Schottky barrier (SB) formed between the Au nanoparticles and TiO2, and flow back into the TiO2. As a result, these electrons may compensate for and even surpass those transferred from TiO2 to the Au nanoparticles, thus accelerating the recombination of UV excited electron-hole pairs in TiO2. This is the negative effect of LSPR. On the other hand, more hot electrons existing on the surface of the Au nanoparticles due to LSPR would favor the photocatalytic reaction, which accompanied by the negative effect dominates the overall photocatalytic performance. The presented results reveal the multi-faceted essence of LSPR in Au/TiO2 structures, and is instructive for the application of metal-semiconductor composites in photocatalysis. Moreover, it is confirmed that the extent to which the above pros and cons of LSPR dominate the overall photocatalytic reaction depends on the intensity ratio of visible to UV light.

  2. Mathematical analysis of plasmonic resonances for nanoparticles: The full Maxwell equations

    Science.gov (United States)

    Ammari, Habib; Ruiz, Matias; Yu, Sanghyeon; Zhang, Hai

    2016-09-01

    In this paper we use the full Maxwell equations for light propagation in order to analyze plasmonic resonances for nanoparticles. We mathematically define the notion of plasmonic resonance and analyze its shift and broadening with respect to changes in size, shape, and arrangement of the nanoparticles, using the layer potential techniques associated with the full Maxwell equations. We present an effective medium theory for resonant plasmonic systems and derive a condition on the volume fraction under which the Maxwell-Garnett theory is valid at plasmonic resonances.

  3. The role of the plasmon resonance for enhanced optical forces

    Science.gov (United States)

    Ploschner, Martin

    Optical manipulation of nanoscale objects is studied with particular emphasis on the role of plasmon resonance for enhancement of optical forces. The thesis provides an introduction to plasmon resonance and its role in confinement of light to a sub-diffraction volume. The strong light confinement and related enhancement of optical forces is then theoretically studied for a special case of nanoantenna supporting plasmon resonances. The calculation of optical forces, based on the Maxwell stress tensor approach, reveals relatively weak optical forces for incident powers that are used in typical realisations of trapping with nanoantenna. The optical forces are so weak that other non-optical effects should be considered to explain the observed trapping. These effects include heating induced convection, thermoporesis and chemical binding. The thesis also studies the optical effects of plasmon resonances for a fundamentally different application - size-based optical sorting of gold nanoparticles. Here, the plasmon resonances are not utilised for sub-diffraction light confinement but rather for their ability to increase the apparent cross-section of the particles for their respective resonant sizes. Exploiting these resonances, we realise sorting in a system of two counter-propagating evanescent waves, each at different wavelength that selectively guide gold nanoparticles of different sizes in opposite directions. The method is experimentally demonstrated for bidirectional sorting of gold nanoparticles of either 150 or 130 nm in diameter from those of 100 nm in diameter within a mixture. We conclude the thesis with a numerical study of the optimal beam-shape for optical sorting applications. The developed theoretical framework, based on the force optical eigenmode method, is able to find an illumination of the back-focal plane of the objective such that the force difference between nanoparticles of various sizes in the sample plane is maximised.

  4. Critical coupling in plasmonic resonator arrays

    Science.gov (United States)

    Balci, Sinan; Kocabas, Coskun; Aydinli, Atilla

    2011-08-01

    We report critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moiré surfaces. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. The critical coupling conditions depend on the superperiod of the Moiré surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have a relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Analytical and finite difference time domain calculations support the experimental observations.

  5. Single cell targeting using plasmon resonant gold-coated liposomes

    Science.gov (United States)

    Leung, Sarah J.; Romanowski, Marek

    2012-03-01

    We have developed an experimental system with the potential for the delivery and localized release of an encapsulated agent with high spatial and temporal resolution. We previously introduced liposome-supported plasmon resonant gold nanoshells; in this composite structure, the liposome allows for the encapsulation of substances, such as therapeutic agents, neurotransmitters, or growth factors, and the plasmon resonant structure facilitates the rapid release of encapsulated contents upon laser light illumination. More recently, we demonstrated that these gold-coated liposomes are capable of releasing their contents in a spectrally-controlled manner, where plasmon resonant nanoparticles only release content upon illumination with a wavelength of light matching their plasmon resonance band. We now show that this release mechanism can be used in a biological setting to deliver a peptide derivative of cholecystokinin to HEK293 cells overexpressing the CCK2 receptor. Using directed laser light, we may enable localized release from gold-coated liposomes to enable accurate perturbation of cellular functions in response to released compounds; this system may have possible applications in signaling pathways and drug discovery.

  6. Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity

    Directory of Open Access Journals (Sweden)

    Kah Hon Leong

    2015-02-01

    Full Text Available Freely assembled palladium nanoparticles (Pd NPs on titania (TiO2 nano photocatalysts were successfully synthesized through a photodeposition method using natural sunlight. This synthesized heterogeneous photocatalyst (Pd/TiO2 was characterized through field emission scanning electron microscopy (FESEM, high resolution transmission electron microscopy (HRTEM, X-ray diffraction (XRD, BET surface area, UV–vis diffuse reflectance spectra (UV-DRS, Raman and photoluminescence (PL analyses. The simple and smart synthesis anchored well the deposition with controlled Pd NPs size ranging between 17 and 29 nm onto the surface of TiO2. Thus, it gives the characteristic for Pd NPs to absorb light in the visible region obtained through localized surface plasmon resonance (LSPRs. Apparently, the photocatalytic activity of the prepared photocatalysts was evaluated by degrading the endocrine disrupting compound (EDC amoxicillin (AMX excited under an artificial visible light source. In the preliminary run, almost complete degradation (97.5% was achieved in 5 h with 0.5 wt % Pd loading and the degradation followed pseudo-first-order kinetics. The reusability trend proved the photostability of the prepared photocatalysts. Hence, the study provides a new insight about the modification of TiO2 with noble metals in order to enhance the absorption in the visible-light region for superior photocatalytic performance.

  7. Surface plasmon resonance enhanced visible-light-driven photocatalytic activity in Cu nanoparticles covered Cu2O microspheres for degrading organic pollutants

    Science.gov (United States)

    Cheng, Yahui; Lin, Yuanjing; Xu, Jianping; He, Jie; Wang, Tianzhao; Yu, Guojun; Shao, Dawei; Wang, Wei-Hua; Lu, Feng; Li, Lan; Du, Xiwen; Wang, Weichao; Liu, Hui; Zheng, Rongkun

    2016-03-01

    Micron-sized Cu2O with different coverage of Cu nanoparticles (NPs) on the sphere has been synthesized by a redox procedure. The absorption spectra show that Cu NPs induce the surface plasmon resonance (SPR) at the wavelength of ∼565 nm. Methylene blue (MB) photodegrading experiments under visible-light display that the Cu2O-Cu-H2O2 system exhibits a superior photocatalytic activity to Cu2O-H2O2 or pure H2O2 with an evident dependency on Cu coverage. The maximum photodegradation rate is 88% after visible-light irradiating for 60 min. The role of the Cu NPs is clarified through photodegradation experiments under 420 nm light irradiation, which is different from the SPR wavelength of Cu NPs (∼565 nm). By excluding the SPR effect, it proves that Cu SPR plays a key role in the photodegradation. Besides, a dark catalytic activity is observed stemming from the Fenton-like reaction with the aid of H2O2. The radical quenching experiments indicate that both •O2- and •OH radicals contribute to the photocatalysis, while the dark catalysis is only governed by the •OH radicals, leading to a lower activity comparing with the photocatalysis. Therefore, with introducing Cu NPs and H2O2, the Cu2O-based photocatalytic activity could be significantly improved due to the SPR effect and dark catalysis.

  8. Fano Resonance in an Electrically Driven Plasmonic Device

    Science.gov (United States)

    Vardi, Yuval; Cohen-Hoshen, Eyal; Shalem, Guy; Bar-Joseph, Israel

    Electrically driven plasmonic devices offer unique opportunities as a research tool and for practical applications. In such devices, current that flows across a metallic tunnel junction excites a plasmon, which gives rise to light emission. This local nature of the excitation allows access into ''dark'' modes, which are not easily excited by far field illumination. We present an electrically driven plasmonic device, based on a gold nanoparticle single-electron-transistor, and investigate the light emission due to the tunneling current. The applied voltage determines the emitted spectral lineshape, enables an excellent control of the plasmonic spectrum. We show that the use of this structure allows us to characterize the electrical properties of the two tunnel barriers, and determine their role in the light emission process. Furthermore, we find a Fano resonance, resulting from interference between the nanoparticle and electrodes dipoles. This resonance is seen due to the local nature of the excitation, and is manifested as a sharp asymmetrical spectral dip. We show that the spectral position of this resonance can be conveniently controlled by the design of the structural parameters. Such devices may be a step toward the realization of an on-chip nano-optical emitters and sensors.

  9. Plasmon resonance in multilayer graphene nanoribbons

    DEFF Research Database (Denmark)

    Emani, Naresh Kumar; Wang, Di; Chung, Ting Fung

    2015-01-01

    Plasmon resonances in nanopatterned single-layer graphene nanoribbons (SL-GNRs), double-layer graphene nanoribbons (DL-GNRs) and triple-layer graphene nanoribbons (TL-GNRs) are studied experimentally using 'realistic' graphene samples. The existence of electrically tunable plasmons in stacked...... multilayer graphene nanoribbons was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL-GNRs when compared to SL-GNRs. However, further increase was not observed in TL-GNRs when compared to DL-GNRs. We carried out systematic full......-wave simulations using a finite-element technique to validate and fit experimental results, and extract the carrier-scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for an unpatterned SLG sheet, and a qualitative agreement for a patterned graphene sheet...

  10. Plasmon Resonance in Multilayer Graphene Nanoribbons

    CERN Document Server

    Emani, Naresh Kumar; Chung, Ting-Fung; Prokopeva, Ludmila J; Kildishev, Alexander V; Shalaev, Vladimir M; Chen, Yong P; Boltasseva, Alexandra

    2015-01-01

    Plasmon resonance in nanopatterned single layer graphene nanoribbon (SL-GNR), double layer graphene nanoribbon (DL-GNR) and triple layer graphene nanoribbon (TL-GNR) structures is studied both experimentally and by numerical simulations. We use 'realistic' graphene samples in our experiments to identify the key bottle necks in both experiments and theoretical models. The existence of electrical tunable plasmons in such stacked multilayer GNRs was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL-GNR when compared to SL-GNRs. However, we do not find a further such increase in TL-GNRs compared to DL-GNRs. We carried out systematic full wave simulations using finite element technique to validate and fit experimental results, and extract the carrier scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for unpatterned SLG sheet, and a qualitative agreement for patterned graphene sheet. W...

  11. Plasmon resonances in atomic-scale gaps

    CERN Document Server

    Kern, Johannes; Tarakina, Nadezda V; Häckel, Tim; Emmerling, Monika; Kamp, Martin; Huang, Jer-Shing; Biagioni, Paolo; Prangsma, Jord C; Hecht, Bert

    2011-01-01

    Gap modes in resonant plasmonic nanostructures exhibit optical fields whose spatial confinement and near-field enhancement strongly increases for smaller gaps[1]. In the context of augmented light-matter interaction, gap modes are of high interest for various applications such as single-emitter spectroscopy[2-4], quantum optics[5,6], extreme nonlinear optics[7,8], efficient optical switching[9], optical trapping10, and molecular opto-electronics[11]. By means of reproducible self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust gaps reaching well below 0.5 nm. For such atomic-scale gaps extreme splitting of the symmetric and anti-symmetric dimer eigenmodes of more than 800 meV is observed in white-light scattering experiments. Besides providing evidence for atomic-scale gap modes at visible wavelengths with correspondingly small mode volumes and strong field enhancement, our experimental results can serve as a benchmark for electromagnetic modeling beyond local Maxwell theory[12,...

  12. Molecular coupling of light with plasmonic waveguides

    CERN Document Server

    Kuzyk, Anton; Toppari, J Jussi; Hakala, Tommi K; Tikkanen, Hanna; Kunttu, Henrik; Torma, Paivi

    2007-01-01

    We use molecules to couple light into and out of microscale plasmonic waveguides. Energy transfer, mediated by surface plasmons, from donor molecules to acceptor molecules over ten micrometer distances is demonstrated. Also surface plasmon coupled emission from the donor molecules is observed at similar distances away from the excitation spot. The lithographic fabrication method we use for positioning the dye molecules allows scaling to nanometer dimensions. The use of molecules as couplers between far-field and near-field light offers the advantages that no special excitation geometry is needed, any light source can be used to excite plasmons and the excitation can be localized below the diffraction limit. Moreover, the use of molecules has the potential for integration with molecular electronics and for the use of molecular self-assembly in fabrication. Our results constitute a proof-of-principle demonstration of a plasmonic waveguide where signal in- and outcoupling is done by molecules.

  13. Surface Plasmon Resonance Studies on Molecular Imprinting

    Directory of Open Access Journals (Sweden)

    Baoping Lin

    2002-01-01

    Full Text Available The molecular imprinted polymer (MIP members were fabricated with the print molecule L-phenylalanine ethyl ester. The elution and adsorption procedures were investigated by surface plasmon resonance in situ. The changes of refractive angle during elution procedure suggest that the MIP is prepared on the base of the non-covalent interactions. This MIP member sensor can achieve enantioselective recognition.

  14. Nanostructured imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, Sweccha

    2017-01-01

    The testing and further development of a prototype nanostructured imaging surface plasmon resonance (iSPR) biosensor, with a focus on surface modification and detailed characterization of the biosensor chip and in-field and at-line applicability in the food industry is described. Furthermore, a simp

  15. Nanostructured imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, Sweccha

    2017-01-01

    The testing and further development of a prototype nanostructured imaging surface plasmon resonance (iSPR) biosensor, with a focus on surface modification and detailed characterization of the biosensor chip and in-field and at-line applicability in the food industry is described. Furthermore, a

  16. Integrated plasmonic refractometric sensor using Fano resonance

    Science.gov (United States)

    Sherif, S. M.; Zografopoulos, D. C.; Shahada, L. A.; Beccherelli, R.; Swillam, M.

    2017-02-01

    We propose a plasmonic refractometric sensor that is based on Fano resonances excited in a resonant rectangular cavity coupled to a metal-insulator-metal bus waveguide. The properties of the resonances are controlled by varying the dimensions of the rectangular resonator and the observed Fano profile stems from the multimode interference of resonant cavity modes. We theoretically investigate the device’s performance as a highly sensitive refractometric plasmonic sensor which operates on gases, water and organic solvent solutions with tens of femtoliters of analyte. The sensor is studied in a wide operational range (0.7-2.7 μm) covering the entire near infrared spectral range, and is characterized by large sensitivity, which reaches 1550 nm RIU-1, and sensitivity per unit volume higher than 107 nm (RIU · nl)-1 at the resonant wavelength of 1.55 μm. The proposed plasmonic structure is very promising for integrated sensing applications owing to its small footprint and surprisingly simple layout.

  17. Plasmonic harvesting of light energy for Suzuki coupling reactions.

    Science.gov (United States)

    Wang, Feng; Li, Chuanhao; Chen, Huanjun; Jiang, Ruibin; Sun, Ling-Dong; Li, Quan; Wang, Jianfang; Yu, Jimmy C; Yan, Chun-Hua

    2013-04-17

    The efficient use of solar energy has received wide interest due to increasing energy and environmental concerns. A potential means in chemistry is sunlight-driven catalytic reactions. We report here on the direct harvesting of visible-to-near-infrared light for chemical reactions by use of plasmonic Au-Pd nanostructures. The intimate integration of plasmonic Au nanorods with catalytic Pd nanoparticles through seeded growth enabled efficient light harvesting for catalytic reactions on the nanostructures. Upon plasmon excitation, catalytic reactions were induced and accelerated through both plasmonic photocatalysis and photothermal conversion. Under the illumination of an 809 nm laser at 1.68 W, the yield of the Suzuki coupling reaction was ~2 times that obtained when the reaction was thermally heated to the same temperature. Moreover, the yield was also ~2 times that obtained from Au-TiOx-Pd nanostructures under the same laser illumination, where a 25-nm-thick TiOx shell was introduced to prevent the photocatalysis process. This is a more direct comparison between the effect of joint plasmonic photocatalysis and photothermal conversion with that of sole photothermal conversion. The contribution of plasmonic photocatalysis became larger when the laser illumination was at the plasmon resonance wavelength. It increased when the power of the incident laser at the plasmon resonance was raised. Differently sized Au-Pd nanostructures were further designed and mixed together to make the mixture light-responsive over the visible to near-infrared region. In the presence of the mixture, the reactions were completed within 2 h under sunlight, while almost no reactions occurred in the dark.

  18. Quadrupole lattice resonances in plasmonic crystal excited by cylindrical vector beams

    Science.gov (United States)

    Sakai, Kyosuke; Nomura, Kensuke; Yamamoto, Takeaki; Omura, Tatsuya; Sasaki, Keiji

    2016-10-01

    We report a scheme to exploit low radiative loss plasmonic resonance by combining a dark (subradiant) mode and a lattice resonance. We theoretically demonstrate that such dark-mode lattice resonances in periodic arrays of nanodisks or plasmonic crystals can be excited by vertically incident light beams. We investigate the excitation of lattice resonances in a finite sized, square-lattice plasmonic crystal by two types of cylindrical vector beams and a linearly polarized Gaussian beam. Quadrupole lattice resonances are excited by all three beams, and the largest peak intensity is obtained by using a specific type of cylindrical vector beam. Because of their lower radiative losses with many hotspots, the quadrupole lattice resonances in plasmonic crystal may pave the way for photonic research and applications that require strong light-matter interactions.

  19. Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances

    Science.gov (United States)

    Zhu, Hai; Yi, Fei; Cubukcu, Ertugrul

    2016-11-01

    Metamaterials are artificial materials that exhibit unusual properties for electromagnetic and sound waves. The quanta, namely photons and phonons, of these waves interact resonantly with these exotic man-made materials enabling many applications. For instance, resonant light absorption in photonic metamaterials can efficiently convert optical energy into heat based on the photothermal effect. Here, we present a plasmonic metamaterial that simultaneously supports thermomechanically coupled optical and mechanical resonances for controlling mechanical damping with light. In this metamaterial absorber with voltage-tunable Fano resonances, we experimentally achieve optically pumped coherent mechanical oscillations based on a plasmomechanical parametric gain mechanism over an ∼4 THz bandwidth. Through the reverse effect, optical damping of mechanical resonance is also achieved. Our results provide a metamaterial-based approach for optical manipulation of the dynamics of mechanical oscillators.

  20. Nonlinear plasmonic resonances in graphene nanostructures

    Science.gov (United States)

    You, Jian Wei; Weismann, Martin; Panoiu, Nicolae C.

    2016-09-01

    Peculiar physical properties of graphene offer remarkable potential for advanced photonics, particularly in the area of nonlinear optics at deep-subwavelength scale. In this article, we use a theoretical and computational analysis to demonstrate an efficient mechanism for enhancing the third-harmonic generation in graphene diffraction gratings. By taking advantage of the relation between the resonance wavelength of localized surface-plasmon polaritons of graphene ribbons and disks their specific geometry, we can engineer the spectral response of graphene gratings so as strong plasmonic resonances exist at both the fundamental frequency and third-harmonic (TH). As a result of this dual resonance mechanism for optical near-field enhancement, the intensity of the TH can be increased greatly.

  1. Perfect coupling of light to surface plasmons by coherent absorption

    CERN Document Server

    Noh, Heeso; Stone, A Douglas; Cao, Hui

    2011-01-01

    We show theoretically that coherent light can be completely absorbed in a two-dimensional or three-dimensional metallic nanostructure by matching the frequency and field pattern of an incident wave to that of a localized surface plasmon resonance. This can be regarded as critical coupling to a nano-plasmonic cavity, or as an extension of the concept of time-reversed laser to the spaser. Light scattering is completely suppressed via impedance matching to the nano-objects, and the energy of incoming wave is fully transferred to surface plasmon oscillations and evanescent electromagnetic fields. Perfect coupling of light to nanostructures has potential applications to nanoscale probing as well as background-free spectroscopy and ultrasensitive detection of environmental changes.

  2. Surface plasmon resonance enhanced visible-light-driven photocatalytic activity in Cu nanoparticles covered Cu{sub 2}O microspheres for degrading organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yahui, E-mail: chengyahui@nankai.edu.cn [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Lin, Yuanjing [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Xu, Jianping [Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); He, Jie; Wang, Tianzhao; Yu, Guojun; Shao, Dawei; Wang, Wei-Hua; Lu, Feng [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Li, Lan [Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); Du, Xiwen [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Weichao [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Liu, Hui, E-mail: liuhui@nankai.edu.cn [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Zheng, Rongkun [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-03-15

    Graphical abstract: - Highlights: • Cu NPs introduce the SPR and result in an increase of visible light absorption. • The photocatalytic activity of Cu{sub 2}O/Cu improves greatly due to the SPR effect. • A dark catalytic activity is observed stemming from the Fenton-like reaction. • The • O{sub 2}{sup −} and • OH radicals contribute to the photocatalytic process. • The • OH radicals contribute to the dark catalytic process. - Abstract: Micron-sized Cu{sub 2}O with different coverage of Cu nanoparticles (NPs) on the sphere has been synthesized by a redox procedure. The absorption spectra show that Cu NPs induce the surface plasmon resonance (SPR) at the wavelength of ∼565 nm. Methylene blue (MB) photodegrading experiments under visible-light display that the Cu{sub 2}O–Cu–H{sub 2}O{sub 2} system exhibits a superior photocatalytic activity to Cu{sub 2}O–H{sub 2}O{sub 2} or pure H{sub 2}O{sub 2} with an evident dependency on Cu coverage. The maximum photodegradation rate is 88% after visible-light irradiating for 60 min. The role of the Cu NPs is clarified through photodegradation experiments under 420 nm light irradiation, which is different from the SPR wavelength of Cu NPs (∼565 nm). By excluding the SPR effect, it proves that Cu SPR plays a key role in the photodegradation. Besides, a dark catalytic activity is observed stemming from the Fenton-like reaction with the aid of H{sub 2}O{sub 2}. The radical quenching experiments indicate that both • O{sub 2}{sup −} and • OH radicals contribute to the photocatalysis, while the dark catalysis is only governed by the • OH radicals, leading to a lower activity comparing with the photocatalysis. Therefore, with introducing Cu NPs and H{sub 2}O{sub 2}, the Cu{sub 2}O-based photocatalytic activity could be significantly improved due to the SPR effect and dark catalysis.

  3. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    Science.gov (United States)

    Guddala, Sriram; Narayana Rao, D.; Ramakrishna, S. Anantha

    2016-06-01

    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminum layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than C60 on metamaterials with off-resonant absorption bands peaking at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance-matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by numerical simulations.

  4. Large-area nanogap plasmon resonator arrays for plasmonics applications

    Science.gov (United States)

    Jin, Mingliang; van Wolferen, Henk; Wormeester, Herbert; van den Berg, Albert; Carlen, Edwin T.

    2012-07-01

    Large-area (~8000 mm2) Au nanogap plasmon resonator array substrates manufactured using maskless laser interference lithography (LIL) with high uniformity are presented. The periodically spaced subwavelength nanogap arrays are formed between adjacent nanopyramid (NPy) structures with precisely defined pitch and high length density (~1 km cm-2), and are ideally suited as scattering sites for surface enhanced Raman scattering (SERS), as well as refractive index sensing. The two-dimensional grid arrangement of NPy structures renders the excitation of the plasmon resonators minimally dependent on the incident polarization. The SERS average enhancement factor (AEF) has been characterized using over 30 000 individual measurements of benzenethiol (BT) chemisorbed on the Au NPy surfaces. From the 1(a1), βCCC + νCS ring mode (1074 cm-1) of BT on surfaces with pitch λg = 200 nm, AEF = 0.8 × 106 and for surfaces with λg = 500 nm, AEF = 0.3 × 107 from over 99% of the imaged spots. Maximum AEFs > 108 have been measured in both cases.

  5. Plasmonic resonant solitons in metallic nanosuspensions.

    Science.gov (United States)

    Fardad, Shima; Salandrino, Alessandro; Heinrich, Matthias; Zhang, Peng; Chen, Zhigang; Christodoulides, Demetrios N

    2014-05-14

    Robust propagation of self-trapped light over distances exceeding 25 diffraction lengths has been demonstrated for the first time in plasmonic nanosuspensions. This phenomenon results from the interplay between optical forces and enhanced polarizability that would have been otherwise impossible in conventional dielectric dispersions. Plasmonic nanostructures such as core-shell particles, nanorods, and spheres are shown to display tunable polarizabilities depending on their size, shape, and composition, as well as the wavelength of illumination. Here we discuss nonlinear light-matter dynamics arising from an effective positive Kerr effect, which in turn allows for deep penetration of long needles of light through dissipative colloidal media. Our findings may open up new possibilities toward synthesizing soft-matter systems with customized optical nonlinearities.

  6. Nanobiosensors Based on Localized Surface Plasmon Resonance for Biomarker Detection

    Directory of Open Access Journals (Sweden)

    Yoochan Hong

    2012-01-01

    Full Text Available Localized surface plasmon resonance (LSPR is induced by incident light when it interacts with noble metal nanoparticles that have smaller sizes than the wavelength of the incident light. Recently, LSPR-based nanobiosensors were developed as tools for highly sensitive, label-free, and flexible sensing techniques for the detection of biomolecular interactions. In this paper, we describe the basic principles of LSPR-based nanobiosensing techniques and LSPR sensor system for biomolecule sensing. We also discuss the challenges using LSPR nanobiosensors for detection of biomolecules as a biomarker.

  7. Subwavelength light confinement with surface plasmon polaritons

    NARCIS (Netherlands)

    Verhagen, E.

    2009-01-01

    In free space, the diffraction limit sets a lower bound to the size to which light can be confined. Surface plasmon polaritons (SPPs), which are electromagnetic waves bound to the interface between a metal and a dielectric, allow the control of light on subwavelength length scales. This opens up a r

  8. Plasmonic colour generation

    DEFF Research Database (Denmark)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.

    2016-01-01

    Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic...

  9. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing

    Science.gov (United States)

    Ozhikandathil, J.; Badilescu, S.; Packirisamy, M.

    2015-01-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold–MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a “coffee ring” pattern that is found to contain gold–MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold–MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml. PMID:26282187

  10. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing

    Science.gov (United States)

    Ozhikandathil, J.; Badilescu, S.; Packirisamy, M.

    2015-08-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold-MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a “coffee ring” pattern that is found to contain gold-MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold-MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml.

  11. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    Science.gov (United States)

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  12. Scattering-Type Surface-Plasmon-Resonance Biosensors

    Science.gov (United States)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Seshadri, Suresh

    2005-01-01

    Biosensors of a proposed type would exploit scattering of light by surface plasmon resonance (SPR). Related prior biosensors exploit absorption of light by SPR. Relative to the prior SPR biosensors, the proposed SPR biosensors would offer greater sensitivity in some cases, enough sensitivity to detect bioparticles having dimensions as small as nanometers. A surface plasmon wave can be described as a light-induced collective oscillation in electron density at the interface between a metal and a dielectric. At SPR, most incident photons are either absorbed or scattered at the metal/dielectric interface and, consequently, reflected light is greatly attenuated. The resonance wavelength and angle of incidence depend upon the permittivities of the metal and dielectric. An SPR sensor of the type most widely used heretofore includes a gold film coated with a ligand a substance that binds analyte molecules. The gold film is thin enough to support evanescent-wave coupling through its thickness. The change in the effective index of refraction at the surface, and thus the change in the SPR response, increases with the number of bound analyte molecules. The device is illuminated at a fixed wavelength, and the intensity of light reflected from the gold surface opposite the ligand-coated surface is measured as a function of the angle of incidence. From these measurements, the angle of minimum reflection intensity is determined

  13. Collective resonances in plasmonic crystals: Size matters

    CERN Document Server

    Rodriguez, S R K; Berrier, A; Rivas, J Gomez

    2013-01-01

    Periodic arrays of metallic nanoparticles may sustain Surface Lattice Resonances (SLRs), which are collective resonances associated with the diffractive coupling of Localized Surface Plasmon Resonances (LSPRs). By investigating a series of arrays with varying number of particles, we traced the evolution of SLRs to its origins. Polarization resolved extinction spectra of arrays formed by a few nanoparticles were measured, and found to be in very good agreement with calculations based on a coupled dipole model. Finite size effects on the optical properties of the arrays are observed, and our results provide insight into the characteristic length scales for collective plasmonic effects: for arrays smaller than 5 x 5 particles, the Q-factors of SLRs are lower than those of LSPRs; for arrays larger than 20 x 20 particles, the Q-factors of SLRs saturate at a much larger value than those of LSPRs; in between, the Q-factors of SLRs are an increasing function of the number of particles in the array.

  14. Optical Twist Induced by Plasmonic Resonance

    Science.gov (United States)

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-06-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster.

  15. Grating-coupled surface plasmon resonance in conical mounting with polarization modulation.

    Science.gov (United States)

    Ruffato, G; Romanato, F

    2012-07-01

    A grating-coupled surface plasmon resonance (GCSPR) technique based on polarization modulation in conical mounting is presented. A metallic grating is azimuthally rotated to support double-surface plasmon polariton excitation and exploit the consequent sensitivity enhancement. Corresponding to the resonance polar angle, a polarization scan of incident light is performed, and reflectivity data are collected before and after functionalization with a dodecanethiol self-assembled monolayer. The output signal exhibits a harmonic dependence on polarization, and the phase term is used as a parameter for sensing. This technique offers the possibility of designing extremely compact, fast, and cheap high-resolution plasmonic sensors based on GCSPR.

  16. Mapping of plasmonic resonances in nanotriangles

    Directory of Open Access Journals (Sweden)

    Simon Dickreuter

    2013-09-01

    Full Text Available Plasmonic resonances in metallic nano-triangles have been investigated by irradiating these structures with short laser pulses and imaging the resulting ablation and melting patterns. The triangular gold structures were prepared on Si substrates and had a thickness of 40 nm and a side length of ca. 500 nm. Irradiation was carried out with single femtosecond and picosecond laser pulses at a wavelength of 800 nm, which excited higher order plasmon modes in these triangles. The ablation distribution as well as the local melting of small parts of the nanostructures reflect the regions of large near-field enhancement. The observed patterns are reproduced in great detail by FDTD simulations with a 3-dimensional model, provided that the calculations are not based on idealized, but on realistic structures. In this realistic model, details like the exact shape of the triangle edges and the dielectric environment of the structures are taken into account. The experimental numbers found for the field enhancement are typically somewhat smaller than the calculated ones. The results demonstrate the caveats for FDTD simulations and the potential and the limitations of “near field photography” by local ablation and melting for the mapping of complex plasmon fields and their applications.

  17. Direct photocatalysis for organic synthesis by using plasmonic-metal nanoparticles irradiated with visible light.

    Science.gov (United States)

    Xiao, Qi; Jaatinen, Esa; Zhu, Huaiyong

    2014-11-01

    Recent advances in direct-use plasmonic-metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible-light irradiation have attracted great interest. Plasmonic-metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic-metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light-excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic-metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Polarization switching from plasmonic lattice mode to multipolar localized surface plasmon resonances in arrays of large nanoantennas

    Science.gov (United States)

    Wing, Waylin J.; Sadeghi, Seyed M.; Gutha, Rithvik R.

    2016-12-01

    We experimentally investigate plasmonic lattice modes of gold nanoantenna arrays that occur in asymmetric structures containing a silica substrate and either air or a thin layer of a high-index dielectric. Very distinct polarization switching is observed in the nanoantenna arrays wherein by rotating the incident light polarization by ninety degrees, the array can exhibit either a plasmonic lattice mode or a multipolar localized surface plasmon resonance of varying nature. A large range of nanoantenna lengths are studied, and since the length of the nanoantennas dictates the multipolar localized surface plasmon resonance, we find that the characteristics of the polarization switching are affected accordingly. We also investigate how the thin layer of the high-index dielectric on top of the nanoantenna arrays, in conjunction with varying nanoantenna length, impacts the generation of plasmonic lattice modes and the polarization switching in the arrays. The high-index dielectric is found to assist in the generation and optical coupling of the plasmonic lattice modes. By altering the angle of incidence, the polarization switching can become very large, and the arrays can be made to selectively transmit light of certain wavelengths.

  19. Subwavelength light confinement with surface plasmon polaritons

    Science.gov (United States)

    Verhagen, E.

    2009-12-01

    In free space, the diffraction limit sets a lower bound to the size to which light can be confined. Surface plasmon polaritons (SPPs), which are electromagnetic waves bound to the interface between a metal and a dielectric, allow the control of light on subwavelength length scales. This opens up a rich world of opportunities in science and technology, ranging from lighting and photovoltaics to photonic circuits and quantum optics. This thesis explores new ways to tailor the properties of SPPs such that they enable the confinement of light at nanoscale dimensions. A variety of metallodielectric geometries are used that can serve as waveguides for SPPs. We show how the SPP propagation characteristics can be controlled, and how light can be concentrated in subwavelength volumes by tapering and truncating the waveguides. In Chapter 2 we use a near-field microscope to image the fields of SPPs that are squeezed into a 50~nm thick dielectric layer between two Ag surfaces, showing that the wavelength of SPPs is significantly shortened with respect to that of light. Chapter 3 focuses on specific waveguided SPP modes that can exhibit a negative effective index of refraction. This enables negative refraction of light into the waveguide at optical frequencies. Chapters 4 and 5 show that the concentration of infrared SPPs in laterally tapered Ag stripe waveguides enhances the upconversion of infrared to visible light in Er ions in the substrate. SPPs focus at the 65 nm large taper apex. Calculations show that the observed focusing effect can only occur for SPPs at the interface between the metal stripe and the high-index substrate. The focusing in tapered waveguides is explained in terms of an adiabatic transformation of a SPP mode guided by the waveguides in Chapter 6. Tapered waveguides are used to efficiently excite SPPs on metal nanowires with diameters as small as 60 nm. Phase- and polarization-sensitive near-field microscopy allows retrieval of the propagation speed and

  20. Electron energy-loss spectroscopy of branched gap plasmon resonators

    DEFF Research Database (Denmark)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen

    2016-01-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale...... microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons....

  1. Surface plasmon resonance-enabled antibacterial digital versatile discs

    Science.gov (United States)

    Dou, Xuan; Chung, Pei-Yu; Jiang, Peng; Dai, Jianli

    2012-02-01

    We report the achievement of effective sterilization of exemplary bacteria including Escherichia coli and Geobacillus stearothermophilus spores on a digital versatile disc (DVD). The spiral arrangement of aluminum-covered pits generates strong surface plasmon resonance (SPR) absorption of near-infrared light, leading to high surface temperature that could even damage the DVD plastics. Localized protein denaturation and high sterilization efficiency have been demonstrated by using a fluorescence microscope and cell cultures. Numerical simulations have also been conducted to model the SPR properties and the surface temperature distribution of DVDs under laser illumination. The theoretical predictions agree reasonably well with the experimental results.

  2. Plasmonic resonances in optomagnetic metamaterials based on double dot arrays.

    Science.gov (United States)

    Kravets, Vasyl G; Schedin, Fred; Taylor, Shaun; Viita, David; Grigorenko, Alexander N

    2010-05-10

    We study optical properties of optomagnetic metamaterials produced by regular arrays of double gold dots (nanopillars). Using combined data of spectroscopic ellipsometry, transmission and reflection measurements, we identify localized plasmon resonances of a nanopillar pair and measure their dependences on dot sizes. We formulate the necessary condition at which an effective field theory can be applied to describe optical properties of a composite medium and employ interferometry to measure phase shifts for our samples. A negative phase shift for transmitted green light coupled to an antisymmetric magnetic mode of a double-dot array is observed. (c) 2010 Optical Society of America.

  3. Photothermal probing of plasmonic hotspots with nanomechanical resonator

    DEFF Research Database (Denmark)

    Schmid, Silvan; Wu, Kaiyu; Rindzevicius, Tomas

    2014-01-01

    Plasmonic nanostructures (hotspots) are key components e.g. in plasmon-enhanced spectroscopy, plasmonic solar cells, or as nano heat sources. The characterization of single hotspots is still challenging due to a lack of experimental tools. We present the direct photothermal probing and mapping...... of single plasmonic nanoslits via the thermally induced detuning of nanomechanical string resonators. A maximum relative frequency detuning of 0.5 % was measured for a single plasmonic nanoslit for a perpendicularly polarized laser with a power of 1350 nW. Finally, we show the photothermal scan over...

  4. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    Science.gov (United States)

    Liu, Peter Q.; Luxmoore, Isaac J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.

    2015-11-01

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ~60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  5. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.

    Science.gov (United States)

    Liu, Peter Q; Luxmoore, Isaac J; Mikhailov, Sergey A; Savostianova, Nadja A; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R

    2015-11-20

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ∼60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  6. Molecular active plasmonics: controlling plasmon resonances with molecular machines

    KAUST Repository

    Zheng, Yue Bing

    2009-08-26

    The paper studies the molecular-level active control of localized surface plasmon resonances (LSPRs) of Au nanodisk arrays with molecular machines. Two types of molecular machines - azobenzene and rotaxane - have been demonstrated to enable the reversible tuning of the LSPRs via the controlled mechanical movements. Azobenzene molecules have the property of trans-cis photoisomerization and enable the photo-induced nematic (N)-isotropic (I) phase transition of the liquid crystals (LCs) that contain the molecules as dopant. The phase transition of the azobenzene-doped LCs causes the refractive-index difference of the LCs, resulting in the reversible peak shift of the LSPRs of the embedded Au nanodisks due to the sensitivity of the LSPRs to the disks\\' surroundings\\' refractive index. Au nanodisk array, coated with rotaxanes, switches its LSPRs reversibly when it is exposed to chemical oxidants and reductants alternatively. The correlation between the peak shift of the LSPRs and the chemically driven mechanical movement of rotaxanes is supported by control experiments and a time-dependent density functional theory (TDDFT)-based, microscopic model.

  7. Nanostructured surfaces for surface plasmon resonance spectroscopy and imaging

    Science.gov (United States)

    Petefish, Joseph W.

    Surface plasmon resonance (SPR) has achieved widespread recognition as a sensitive, label-free, and versatile optical method for monitoring changes in refractive index at a metal-dielectric interface. Refractive index deviations of 10-6 RIU are resolvable using SPR, and the method can be used in real-time or ex-situ. Instruments based on carboxymethyl dextran coated SPR chips have achieved commercial success in biological detection, while SPR sensors can also be found in other fields as varied as food safety and gas sensing. Chapter 1 provides a physical background of SPR sensing. A brief history of the technology is presented, and publication data are included that demonstrate the large and growing interest in surface plasmons. Numerous applications of SPR sensors are listed to illustrate the broad appeal of the method. Surface plasmons (SPs) and surface plasmon polaritions (SPPs) are formally defined, and important parameters governing their spatial behavior are derived from Maxwell's equations and appropriate boundary conditions. Physical requirements for exciting SPs with incident light are discussed, and SPR imaging is used to illustrate the operating principle of SPR-based detection. Angle-tunable surface enhanced infrared absorption (SEIRA) of polymer vibrational modes via grating-coupled SPR is demonstrated in Chapter 2. Over 10-fold enhancement of C-H stretching modes was found relative to the absorbance of the same film in the absence of plasmon excitation. Modeling results are used to support and explain experimental observations. Improvements to the grating coupler SEIRA platform in Chapter 2 are explored in Chapters 3 and 4. Chapter 3 displays data for two sets of multipitch gratings: one set with broadly distributed resonances with the potential for multiband IR enhancement and the other with finely spaced, overlapping resonances to form a broadband IR enhancement device. Diffraction gratings having multiple periods were fabricated using a Lloyd

  8. Surface plasmon resonance biosensors: advances and applications

    Science.gov (United States)

    Homola, Jirí

    2009-10-01

    Surface plasmon resonance (SPR) biosensors represent the most advanced label-free optical affinity biosensor technology. In the last decade numerous SPR sensor platforms have been developed and applied in the life sciences and bioanalytics. This contribution reviews the state of the art in the development of SPR (bio)sensor technology and presents selected results of research into SPR biosensors at the Institute of Photonics and Electronics, Prague. The developments discussed in detail include a miniature fiber optic SPR sensor for localized measurements, a compact SPR sensor for field use and a multichannel SPR sensor for high-throughput screening. Examples of applications for the detection of analytes related to medical diagnostics (biomarkers, hormones, antibodies), environmental monitoring (endocrine disrupting compounds), and food safety (pathogens and toxins) are given.

  9. Toxin Detection by Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available Significant efforts have been invested in the past years for the development of analytical methods for fast toxin detection in food and water. Immunochemical methods like ELISA, spectroscopy and chromatography are the most used in toxin detection. Different methods have been linked, e.g. liquid chromatography and mass spectrometry (LC-MS, in order to detect as low concentrations as possible. Surface plasmon resonance (SPR is one of the new biophysical methods which enables rapid toxin detection. Moreover, this method was already included in portable sensors for on-site determinations. In this paper we describe some of the most common methods for toxin detection, with an emphasis on SPR.

  10. Photocurrent Enhancement of Graphene Photodetectors by Photon Tunneling of Light into Surface Plasmons

    CERN Document Server

    Maleki, Alireza; Gu, Min; Downes, James E; Coutts, David W; Dawes, Judith M

    2016-01-01

    We demonstrate that surface plasmon resonances excited by photon tunneling through an adjacent dielectric medium enhance photocurrent detected by a graphene photodetector. The device is created by overlaying a graphene sheet over an etched gap in a gold film deposited on glass. The detected photocurrents are compared for five different excitation wavelengths, ranging from nm to nm. The photocurrent excited with incident p-polarized light (the case for resonant surface plasmon excitation) is significantly amplified in comparison with that for s-polarized light (without surface plasmon resonances). We observe that the photocurrent is greater for shorter wavelengths (for both s and p-polarizations) due to the increased photothermal current resulting from higher damping of surface plasmons at shorter wavelength excitation. Position-dependent Raman spectroscopic analysis of the optically-excited graphene photodetector indicates the presence of charge carriers near the metallic edge. In addition, we show that the p...

  11. Generalized Landau damping due to multi-plasmon resonances

    CERN Document Server

    Brodin, Gert; Zamanian, Jens

    2016-01-01

    We study wave-particle interaction of Langmuir waves in a fully degenerate plasma using the Wigner-Moyal equation. As is well known, in the short wavelength regime the resonant velocity is shifted from the phase velocity due to the finite energy and momentum of individual plasmon quanta. In the present work we focus on the case when the resonant velocity lies outside the background distribution, i.e. when it is larger than the Fermi velocity. Going beyond the linearized theory we show that we can still have nonlinear wave-particle damping associated with multi-plasmon resonances. Sets of evolution equations are derived for the case of two-plasmon resonance and for the case of three-plasmon resonance. The damping rates of the Langmuir waves are deduced for both cases, and the implications of the results are discussed.

  12. On the mechanism of electrochemical modulation of plasmonic resonances

    Science.gov (United States)

    Shao, L.-H.; Ruther, M.; Linden, S.; Wegener, M.; Weissmüller, J.

    2012-09-01

    Recent electrochemical experiments on gold-based photonic metamaterials have shown a sizable reversible tuning and modulation of plasmonic resonances. Here, we study the mechanism of the electrochemical modulation by measuring the change of the resonance transmittance and resonance frequency during underpotential deposition of Pb, Cu, and electrosorption of OH. The electric resistance change of the resonators is identified as decisive for the resonance transmittance change, while the space-charge layer at the metal surface shifts the resonance frequency.

  13. Plasmonic-Resonant Bowtie Antenna for Carbon Nanotube Photodetectors

    Directory of Open Access Journals (Sweden)

    Hongzhi Chen

    2012-01-01

    Full Text Available The design of bowtie antennas for carbon nanotube (CNT photodetectors has been investigated. CNT photodetectors have shown outstanding performance by using CNT as sensing element. However, detection wavelength is much larger than the diameter of the CNT, resulting in small fill factor. Bowtie antenna can confine light into a subwavelength volume based on plasmonic resonance, thus integrating a bowtie antenna to CNT photodetectors can highly improve photoresponse of the detectors. The electric field enhancement of bowtie antennas was calculated using the device geometry by considering fabrication difficulties and photodetector structure. It is shown that the electric field intensity enhancement increased exponentially with distance reduction between the CNT photodetector to the antenna. A redshift of the peak resonance wavelength is predicted due to the increase of tip angles of the bowtie antennas. Experimental results showed that photocurrent enhancement agreed well with theoretical calculations. Bowtie antennas may find wide applications in nanoscale photonic sensors.

  14. Versatile Micropatterning of Plasmonic Nanostructures by Visible Light Induced Electroless Silver Plating on Gold Nanoseeds.

    Science.gov (United States)

    Yoshikawa, Hiroyuki; Hironou, Asami; Shen, ZhengJun; Tamiya, Eiichi

    2016-09-14

    A versatile fabrication technique for plasmonic silver (Ag) nanostructures that uses visible light exposure for micropatterning and plasmon resonance tuning is presented. The surface of a glass substrate modified with gold (Au) nanoseeds by a thermal dewetting process was used as a Ag plating platform. When a solution containing silver nitrate and sodium citrate was dropped on the Au nanoseeds under visible light exposure, the plasmon-mediated reduction of Ag ions was induced on the Au nanoseeds to form Ag nanostructures. The plasmon resonance spectra of Ag nanostructures were examined by an absorption spectral measurement and a finite-difference time-domain (FDTD) simulation. Some examples of Ag nanostructure patterning were demonstrated by means of light exposure through a photomask, direct writing with a focused laser beam, and the interference between two laser beams. Surface enhanced Raman spectroscopy (SERS) of 4-aminothiophenol (4-ATP) was conducted with fabricated Ag nanostructures.

  15. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NARCIS (Netherlands)

    Vesseur, P.C.

    2011-01-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide r

  16. Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches

    KAUST Repository

    Zheng, Yue Bing

    2009-02-11

    A gold nanodisk array, coated with bistable, redox-controllable [2]rotaxane molecules, when exposed to chemical oxidants and reductants, undergoes switching of its plasmonic properties reversibly. By contrast, (i) bare gold nanodisks and (ii) disks coated with a redox-active, but mechanically inert, control compound do not display surface-plasmon-based switching. Along with calculations based on time-dependent density functional theory, these experimental observations suggest that the nanoscale movements within surface-bound “molecular machines” can be used as the active components in plasmonic devices.

  17. Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Byoungho Lee

    2011-01-01

    Full Text Available The performance of bio-chemical sensing devices has been greatly improved by the development of surface plasmon resonance (SPR based sensors. Advancements in micro- and nano-fabrication technologies have led to a variety of structures in SPR sensing systems being proposed. In this review, SPR sensors (from typical Kretschmann prism configurations to fiber sensor schemes with micro- or nano-structures for local light field enhancement, extraordinary optical transmission, interference of surface plasmon waves, plasmonic cavities, etc. are discussed. We summarize and compare their performances and present guidelines for the design of SPR sensors.

  18. Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.

    Science.gov (United States)

    Yang, Longkun; Wang, Hancong; Fang, Yan; Li, Zhipeng

    2016-01-26

    Plasmonic antennas are able to concentrate and re-emit light in a controllable manner through strong coupling between metallic nanostructures. Only recently has it found that quantum mechanical effects can drastically change the coupling strength as the feature size approaches atomic scales. Here, we present a comprehensive experimental and theoretical study of the evolution of the resonance peak and its polarization state as the dimer-antenna gap narrows to subnanometer scale. We clearly can identify the classical plasmonic regime, a crossover regime where nonlocal screening plays an important role, and the quantum regime where a charge transfer plasmon appears due to interparticle electron tunneling. Moreover, as the gap decreases from tens of to a few nanometers, the bonding dipole mode tends to emit photons with increasing polarizability. When the gap narrows to quantum regime, a significant depolarization of the mode emission is observed due to the reduction of the charge density of coupled quantum plasmons. These results would be beneficial for the understanding of quantum effects on emitting-polarization of nanoantennas and the development of quantum-based photonic nanodevices.

  19. Colloidal plasmonic back reflectors for light trapping in solar cells

    Science.gov (United States)

    Mendes, Manuel J.; Morawiec, Seweryn; Simone, Francesca; Priolo, Francesco; Crupi, Isodiana

    2014-04-01

    A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhibit high diffuse reflectance (up to 75%) in the red and near-infrared spectrum, which can pronouncedly enhance the near-bandgap photocurrent generated by the cells. Furthermore, the colloidal PBRs are fabricated by low-temperature (<120 °C) processes that allow their implementation, as a final step of the cell construction, in typical commercial thin film devices generally fabricated in a superstrate configuration.

  20. Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides

    CERN Document Server

    Han, Zhanghua

    2010-01-01

    Among various plasmonic waveguides, the metal-insulator-metal (MIM) type is the most promising for true subwavelength photonic integration. To date, many photonic devices based on MIM waveguides have been investigated, including resonators. However, most of the reported MIM ring resonators suffer from low extinction ratios. In this paper, we present a comprehensive analysis of the intrinsic reasons for the low performance of MIM ring resonators, and give the analytical transmission relation for a universal all-pass ring resonator which has coupling loss. Based on the analysis we propose the plasmonic racetrack resonators in MIM waveguides and show that the performance can be greatly improved.

  1. Combining surface plasmonic and light extraction enhancement on InGaN quantum-well light-emitters

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    Surface plasmon coupling with light-emitters and surface nano-patterning have widely been used separately to improve low efficiency InGaN light-emitting diodes. We demonstrate a method where dielectric nano-patterning and Ag nanoparticles (NPs) are combined to provide both light extraction...... and internal quantum efficiency enhancement for InGaN/GaN quantum-well light-emitters. By fabricating dielectric nano-rod pattern on the GaN surface, an optical coating that improves the light extraction is obtained, and furthermore has a low refractive index which blue-shifts the plasmonic resonance of Ag NPs...

  2. Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level.

    Science.gov (United States)

    Yan, Jiahao; Lin, Zhaoyong; Ma, Churong; Zheng, Zhaoqiang; Liu, Pu; Yang, Guowei

    2016-08-11

    Hot carriers, generated via the non-radiative decay of localized surface plasmon, can be utilized in photovoltaic and photocatalytic devices. In recent years, most studies have focused on conventional plasmon materials like Au and Ag. However, they suffer from several drawbacks like low energy of the generated hot carriers and a high charge-carrier recombination rate. To resolve these problems, here, we propose the plasmon resonances in heavily self-doped titanium oxide (TiO1.67) to realize effective hot carrier generation. Since the plasmon resonant energy of TiO1.67 nanoparticles (2.56 eV) is larger than the bandgap (2.15 eV), plasmon resonances through interband transition can realize both the generation and separation of hot carriers and bring a new strategy for visible-light photodegradation. The photodegradation rate for methyl orange was about 0.034 min(-1). More importantly, the combination of plasmonic and catalytic properties makes it feasible to investigate the degradation process of different materials and different structures at the single particle level in situ. By detecting the scattering shift, we demonstrated that the TiO1.67 dimer (Δλ/ΔλRIU = 0.16) possesses a higher photodegradation rate than an individual nanoparticle (Δλ/ΔλRIU = 0.09). We hope this finding may be a beginning, paving the way toward the development of semiconductor plasmonic materials for new applications beyond noble metals.

  3. Slow-plasmon resonant nano-strip antennas

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Beermann, Jonas; Boltasseva, Alexandra

    2008-01-01

    Resonant scattering by gold nanostrip antennas due to constructive interference of counterpropagating slow surface plasmon polaritons SPPs is analyzed, including the quasistatic limit of ultrasmall antennas, and experimentally demonstrated. The phase of slow SPP reflection by strip ends is found...

  4. Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Beermann, J.; Boltasseva, Alexandra;

    2008-01-01

    Resonant scattering by gold nanostrip antennas due to constructive interference of counterpropagating slow surface plasmon polaritons (SPPs) is analyzed, including the quasistatic limit of ultrasmall antennas, and experimentally demonstrated. The phase of slow SPP reflection by strip ends is found...

  5. Plasmon resonance in warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, R; Bornath, T; Fortmann, C; Holl, A; Redmer, R; Reinholz, H; Ropke, G; Wierling, A; Glenzer, S H; Gregori, G

    2008-02-21

    Collective Thomson scattering with extreme ultraviolet light or x-rays is shown to allow for a robust measurement of the free electron density in dense plasmas. Collective excitations like plasmons appear as maxima in the scattering signal. Their frequency position can directly be related to the free electron density. The range of applicability of the standard Gross-Bohm dispersion relation and of an improved dispersion relation in comparison to calculations based on the dielectric function in random phase approximation is investigated. More important, this well-established treatment of Thomson scattering on free electrons is generalized in the Born-Mermin approximation by including collisions. We show that, in the transition region from collective to non-collective scattering, the consideration of collisions is important.

  6. Nanostructure-enhanced surface plasmon resonance imaging (Conference Presentation)

    Science.gov (United States)

    Špašková, Barbora; Lynn, Nicholas S.; Slabý, Jiří Bocková, Markéta; Homola, Jiří

    2017-06-01

    There remains a need for the multiplexed detection of biomolecules at extremely low concentrations in fields of medical diagnostics, food safety, and security. Surface plasmon resonance imaging is an established biosensing approach in which the measurement of the intensity of light across a sensor chip is correlated with the amount of target biomolecules captured by the respective areas on the chip. In this work, we present a new approach for this method allowing for enhanced bioanalytical performance via the introduction of nanostructured sensing chip and polarization contrast measurement, which enable the exploitation of both amplitude and phase properties of plasmonic resonances on the nanostructures. Here we will discuss a complex theoretical analysis of the sensor performance, whereby we investigate aspects related to both the optical performance as well as the transport of the analyte molecules to the functionalized surfaces. This analysis accounts for the geometrical parameters of the nanostructured sensing surface, the properties of functional coatings, and parameters related to the detection assay. Based on the results of the theoretical analysis, we fabricated sensing chips comprised of arrays of gold nanoparticles (by electron-beam lithography), which were modified by a biofunctional coating to allow for the selective capturing of the target biomolecules in the regions with high sensitivity. In addition, we developed a compact optical reader with an integrated microfluidic cell, allowing for the measurement from 50 independent sensing channels. The performance of this biosensor is demonstrated through the sensitive detection of short oligonucleotides down to the low picomolar level.

  7. Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Kildishev, Alexander V.;

    2014-01-01

    Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant......-element simulations. Our approach can be used for development of next generation of tunable plasmonic and hybrid nanophotonic devices....

  8. Interacting Dark Resonances with Plasmonic Meta-Molecules

    Science.gov (United States)

    2014-09-17

    Interacting dark resonances with plasmonic meta-molecules Pankaj K. Jha,1 Michael Mrejen,1 Jeongmin Kim,1 Chihhui Wu,1 Xiaobo Yin,1 Yuan Wang,1 and...accepted 6 September 2014; published online 17 September 2014) Dark state physics has led to a variety of remarkable phenomena in atomic physics, quantum...optics, and information theory. Here, we investigate interacting dark resonance type physics in multi-layered plasmonic meta-molecules. We

  9. Broadband converging plasmon resonance at a conical nanotip

    OpenAIRE

    Wang, Yunshan; Plouraboué, Franck; Chang, Hsueh-Chia

    2013-01-01

    International audience; We propose an analytical theory which predicts that Converging Plasmon Resonance (CPR) at conical nanotips exhibits a red-shifted and continuous band of resonant frequencies and suggests potential application of conical nanotips in various fields, such as plasmonic solar cells, photothermal therapy, tip-enhanced Raman and other spectroscopies. The CPR modes exhibit superior confinement and ten times broader scattering bandwidth over the entire solar spectrum than smoot...

  10. Plasmon resonances in nanoparticles, their applications to magnetics and relation to the Riemann hypothesis

    Science.gov (United States)

    Mayergoyz, I. D.

    2012-05-01

    The review of the mathematical treatment of plasmon resonances as an eigenvalue problem for specific boundary integral equations is presented and general properties of plasmon spectrum are outlined. Promising applications of plasmon resonances to magnetics are described. Interesting relation of eigenvalue treatment of plasmon resonances to the Riemann hypothesis is discussed.

  11. Multi-hole Optical Fiber Surface Plasmon Resonance Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Guan Chunying; Wang Yang; Yuan Libo, E-mail: cyguan@163.com [College of Science, Harbin Engineering University, Harbin 150001 (China)

    2011-02-01

    A microstructured-fiber containing six large air holes is proposed to construct the surface plasmon resonance (SPR) sensor. The finite element method is used to analyze characteristics of the surface plasmon resonance sensor. The effects of the thickness of metal films, pitch between air holes, diameter of air hole, and refractive index of liquid on the resonance wavelength are elucidated. The results show that the resonance wavelength is sensitive to the thickness of metal film and refractive index of liquid, while the resonance wavelength doesn't change basically when the pitch between air holes and diameter of air holes vary. The proposed surface plasmon resonance sensor exhibits high sensitivity up to 10{sup -4}.

  12. Spectrometer sensor using patterned nano-structure plasmon resonance grating (Conference Presentation)

    Science.gov (United States)

    Guo, Hong; Tian, Xueli; Guo, Junpeng

    2016-03-01

    Localized surface plasmon resonance has been extensively investigated for biochemical sensor applications. In traditional localized surface plasmon resonance biosensors, resonance spectra were measured in the reflection or transmission from the nanostructure devices. In this work, we demonstrate a new surface plasmon resonance sensor platform with which the localized surface plasmon resonance and shift were measured by using a CCD imager instead of using an optical spectrometer. In additional to the metal nanostructures which support localized plasmon resonance, we pattern the nanostructures into diffraction gratings with super-wavelength grating periods. The nanostructure diffraction gratings support localized plasmon resonance and also diffract localized plasmon resonance radiations into non-zeroth order diffractions. Plasmon resonance spectrum and shift are measured with a CCD imager in one of the diffraction orders. The new plasmon resonance spectrometer sensor combines the functions of sensing and spectral analysis into one apparatus and is capable of real-time visualization of the biochemical bonding process with an imager.

  13. Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Shastri, Kunal Krishnaraj; Zhang, Baile

    2016-01-01

    Localized spoof surface plasmon polaritons (spoof-SPPs) in a graded spoof-plasmonic resonator chain with linearly increasing spacing are experimentally investigated at microwave frequencies. Transmission measurements and direct near-field mappings on this graded chain show that the propagation of localized spoof-SPPs can be cutoff at different positions along the graded chain under different frequencies due to the graded coupling between adjacent resonators. This mechanism can be used to guide localized spoof-SPPs in the graded chain to specific positions depending on the frequency and thereby implement a device that can work as a selective switch in integrated plasmonic circuits. PMID:27149656

  14. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles

    CERN Document Server

    Pennanen, Antti M; 10.1364/OE.21.000A23

    2012-01-01

    Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

  15. Radiation-Suppressed plasmonic open resonators designed by nonmagnetic transformation optics

    Science.gov (United States)

    Xu, Hongyi; Wang, Xingjue; Yu, Tianyuan; Sun, Handong; Zhang, Baile

    2012-01-01

    How to confine light energy associated with surface plasmon polaritons (SPPs) in a physical space with minimal radiation loss whereas creating maximum interacting section with surrounding environment is of particular interest in plasmonic optics. By virtue of transformation optics, we propose a design method of forming a polygonal surface-plasmonic resonator in fully open structures by applying the nonmagnetic affine transformation optics strategy. The radiation loss can be suppressed because SPPs that propagate in the designed open structures will be deceived as if they were propagating on a flat metal/dielectric interface without radiation. Because of the nonmagnetic nature of the transformation strategy, this design can be implemented with dielectric materials available in nature. An experimentally verifiable model is subsequently proposed for future experimental demonstration. Our design may find potential applications in omnidirectional sensing, light harvesting, energy storage and plasmonic lasing. PMID:23136641

  16. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-10

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  17. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  18. Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry-Pérot Resonator.

    Science.gov (United States)

    Konrad, Alexander; Kern, Andreas M; Brecht, Marc; Meixner, Alfred J

    2015-07-08

    A major aim in experimental nano- and quantum optics is observing and controlling the interaction between light and matter on a microscopic scale. Coupling molecules or atoms to optical microresonators is a prominent method to alter their optical properties such as luminescence spectra or lifetimes. Until today strong coupling of optical resonators to such objects has only been observed with atom-like systems in high quality resonators. We demonstrate first experiments revealing strong coupling between individual plasmonic gold nanorods (GNR) and a tunable low quality resonator by observing cavity-length-dependent nonlinear dephasing and spectral shifts indicating spectral anticrossing of the luminescent coupled system. These phenomena and experimental results can be described by a model of two coupled oscillators representing the plasmon resonance of the GNR and the optical fields of the resonator. The presented reproducible and accurately tunable resonator allows us to precisely control the optical properties of individual particles.

  19. Synthesis and characterization of plasmonic resonant guided wave networks.

    Science.gov (United States)

    Burgos, Stanley P; Lee, Ho W; Feigenbaum, Eyal; Briggs, Ryan M; Atwater, Harry A

    2014-06-11

    Composed of optical waveguides and power-splitting waveguide junctions in a network layout, resonant guided wave networks (RGWNs) split an incident wave into partial waves that resonantly interact within the network. Resonant guided wave networks have been proposed as nanoscale distributed optical networks (Feigenbaum and Atwater, Phys. Rev. Lett. 2010, 104, 147402) that can function as resonators and color routers (Feigenbaum et al. Opt. Express 2010, 18, 25584-25595). Here we experimentally characterize a plasmonic resonant guided wave network by demonstrating that a 90° waveguide junction of two v-groove channel plasmon polariton (CPP) waveguides operates as a compact power-splitting element. Combining these plasmonic power splitters with CPP waveguides in a network layout, we characterize a prototype plasmonic nanocircuit composed of four v-groove waveguides in an evenly spaced 2 × 2 configuration, which functions as a simple, compact optical logic device at telecommunication wavelengths, routing different wavelengths to separate transmission ports due to the resulting network resonances. The resonant guided wave network exhibits the full permutation of Boolean on/off values at two output ports and can be extended to an eight-port configuration, unlike other photonic crystal and plasmonic add/drop filters, in which only two on/off states are accessible.

  20. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots.

    Science.gov (United States)

    Ozel, Tuncay; Nizamoglu, Sedat; Sefunc, Mustafa A; Samarskaya, Olga; Ozel, Ilkem O; Mutlugun, Evren; Lesnyak, Vladimir; Gaponik, Nikolai; Eychmuller, Alexander; Gaponenko, Sergey V; Demir, Hilmi Volkan

    2011-02-22

    We propose and demonstrate a nanocomposite localized surface plasmon resonator embedded into an artificial three-dimensional construction. Colloidal semiconductor quantum dots are assembled between layers of metal nanoparticles to create a highly strong plasmon-exciton interaction in the plasmonic cavity. In such a multilayered plasmonic resonator architecture of isotropic CdTe quantum dots, we observed polarized light emission of 80% in the vertical polarization with an enhancement factor of 4.4, resulting in a steady-state anisotropy value of 0.26 and reaching the highest quantum efficiency level of 30% ever reported for such CdTe quantum dot solids. Our electromagnetic simulation results are in good agreement with the experimental characterization data showing a significant emission enhancement in the vertical polarization, for which their fluorescence decay lifetimes are substantially shortened by consecutive replication of our unit cell architecture design. Such strongly plasmon-exciton coupling nanocomposites hold great promise for future exploitation and development of quantum dot plasmonic biophotonics and quantum dot plasmonic optoelectronics.

  1. Far-Field Plasmonic Resonance Enhanced Nano-Particle Image Velocimetry within a Micro Channel

    CERN Document Server

    Zhang, Zhili; Haque, Sara S; Zhang, Mingjun

    2010-01-01

    In this paper, a novel far-field plasmonic resonance enhanced nanoparticle-seeded Particle Image Velocimetry (nPIV) has been demonstrated to measure the velocity profile in a micro channel. Chemically synthesized silver nanoparticles have been used to seed the flow in the micro channel. By using Discrete Dipole Approximation (DDA), plasmonic resonance enhanced light scattering has been calculated for spherical silver nanoparticles with diameters ranging from 15nm to 200nm. Optimum scattering wavelength is specified for the nanoparticles in two media: water and air. The diffraction-limited plasmonic resonance enhanced images of silver nanoparticles at different diameters have been recorded and analyzed. By using standard PIV techniques, the velocity profile within the micro channel has been determined from the images.

  2. Graphene plasmonics for light trapping and absorption engineering

    CERN Document Server

    Zhang, Jianfa; Liu, Wei; Yuan, Xiaodong; Qin, Shiqiao

    2015-01-01

    Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less losses compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical doping. Here we propose the usage of graphene plasmonics for light trapping in optoelectronic devices and show that the excitation of localized plasmons in doped, nanostructured graphene can enhance optical absorption in its surrounding media including both bulky and two-dimensional materials by tens of times, which may lead to a new generation of highly efficient, spectrally selective photodetectors in mid-infrared and THz ranges. The proposed concept could even revolutionize the field of plasmonic solar cells if graphene plasmons in the visible and near-infrared are realized.

  3. Structured light for focusing surface plasmon polaritons.

    Science.gov (United States)

    Hu, Z J; Tan, P S; Zhu, S W; Yuan, X-C

    2010-05-10

    We propose a structureless method for focusing surface plasmon polaritons (SPPs) on a flat metal film under illumination of radially polarized cogwheel-like structured light beams. Without metal structures, the locally induced SPPs can further be propagated following the predefined patterns to form symmetric focal spots with dimensions beyond diffraction limit. Benefiting from the radial polarization, this method can be employed to pattern various center-symmetric evanescent distributions for generating SPPs reconfigurably. The SPPs will be propagating and focusing in radial directions.

  4. Broadband converging plasmon resonance at a conical nanotip.

    Science.gov (United States)

    Wang, Yunshan; Plouraboue, Franck; Chang, Hsueh-Chia

    2013-03-11

    We propose an analytical theory which predicts that Converging Plasmon Resonance (CPR) at conical nanotips exhibits a red-shifted and continuous band of resonant frequencies and suggests potential application of conical nanotips in various fields, such as plasmonic solar cells, photothermal therapy, tip-enhanced Raman and other spectroscopies. The CPR modes exhibit superior confinement and ten times broader scattering bandwidth over the entire solar spectrum than smooth nano-structures. The theory also explicitly connects the optimal angles and resonant optical frequencies to the material permittivities, with a specific optimum half angle that depends only on the real permittivity for high-permittivity and low-loss materials.

  5. Plasmon resonant gold-coated liposomes for spectrally coded content release

    Science.gov (United States)

    Leung, Sarah J.; Troutman, Timothy S.; Romanowski, Marek

    2009-02-01

    We have recently introduced liposome-supported plasmon resonant gold nanoshells (Troutman et al., Adv. Mater. 2008, 20, 2604-2608). These plasmon resonant gold-coated liposomes are degradable into components of a size compatible with renal clearance, potentially enabling their use as multifunctional agents in applications in nanomedicine, including imaging, diagnostics, therapy, and drug delivery. The present research demonstrates that laser illumination at the wavelength matching the plasmon resonance band of a gold-coated liposome leads to the rapid release of encapsulated substances, which can include therapeutic and diagnostic agents. Leakage of encapsulated contents is monitored through the release of self-quenched fluorescein, which provides an increase in fluorescence emission upon release. Moreover, the resonant peak of these gold-coated liposomes is spectrally tunable in the near infrared range by varying the concentration of gold deposited on the surface of liposomes. Varying the plasmon resonant wavelengths of gold-coated liposomes can provide a method for spectrally-coding their light-mediated content release, so that the release event is initiated by the specific wavelength of light used to illuminate the liposomes. The development of spectrally-coded release can find applications in controlled delivery of multiple agents to support complex diagnostic tests and therapeutic interventions.

  6. Unconventional Fano effect and off-resonance field enhancement in plasmonic coated spheres

    CERN Document Server

    Arruda, Tiago J; Pinheiro, Felipe A

    2013-01-01

    We investigate light scattering by coated spheres composed of a dispersive plasmonic core and a dielectric shell. By writing the absorption cross-section in terms of the internal electromagnetic fields, we demonstrate it is an observable sensitive to interferences that ultimately lead to the Fano effect. Specially, we show that unconventional Fano resonances, recently discovered for homogeneous spheres with large dielectric permittivities, can also occur for metallic spheres coated with single dielectric layers. These resonances arise from the interference between two electromagnetic modes with the same multipole moment inside the shell and not from interactions between various plasmon modes of different layers of the particle. In contrast to the case of homogeneous spheres, unconventional Fano resonances in coated spheres exist even in the Rayleigh limit. These resonances can induce an off-resonance field enhancement, which is approximately one order of magnitude larger than the one achieved with conventiona...

  7. Plasmon ruler with gold nanorod dimers: utilizing the second-order resonance

    CERN Document Server

    Le, Anton T; Dubrovina, Natalia; Lupu, Anatole; Fedyanin, Andrey A

    2014-01-01

    The idea of utilizing the second-order plasmon resonance of the gold nanorod {\\pi}-dimers for plasmon rulers is introduced. We report on a qualitatively different dependence of the plasmon resonance shift on the interparticle distance for the first- and second-order longitudinal modes, extending the working range of plasmon rulers up to the distance values of 400 nm.

  8. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    KAUST Repository

    Xu, Quan

    2016-11-29

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  9. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    Science.gov (United States)

    Xu, Quan; Zhang, Xueqian; Xu, Yuehong; Li, Quan; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Wentao; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-11-01

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  10. Young's modulus measurement based on surface plasmon resonance

    Science.gov (United States)

    Lotfalian, Ali; Jandaghian, Ali; Saghafifar, Hossein; Mohajerani, Ezzedin

    2017-09-01

    In this paper, Young's modulus of polymers is experimentally measured using pressure sensors based on surface plasmon polariton. Theoretical relationships of changes in polymer reflective index due to applying pressure are investigated as well as the dependence of surface plasmon to the polymer reflective index. For the purpose of investigating the effects of the layers thicknesses, numerical simulation is performed using transfer matrix. Changes in resonance angle of surface plasmon due to applying pressure are experimentally studied as well. Practically, a sample of silicon rubber, as one of the most widely-used polymers, is checked and its Young's modulus is measured as 8.1 MPa.

  11. Interferometric Measurement of Far Infrared Plasmons via Resonant Homodyne Mixing

    CERN Document Server

    Dyer, Gregory C; Allen, S James; Grine, Albert D; Bethke, Don; Reno, John L; Shaner, Eric A

    2016-01-01

    We present an electrically tunable terahertz two dimensional plasmonic interferometer with an integrated detection element that down converts the terahertz fields to a DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field functioning as the local oscillator. Plasmonic interferometers with two independently tuned paths are studied. These devices demonstrate a means for developing a spectrometer-on-a-chip where the tuning of electrical length plays a role analogous to that of physical path length in macroscopic Fourier transform interferometers.

  12. Metal nanoparticles with sharp corners: Universal properties of plasmon resonances

    CERN Document Server

    Sturman, B; Gorkunov, M

    2012-01-01

    We predict the simultaneous occurrence of two fundamental phenomena for metal nanoparticles possessing sharp corners: First, the main plasmonic dipolar mode experiences strong red shift with decreasing corner curvature radius; its resonant frequency is controlled by the apex angle of the corner and the normalized (to the particle size) corner curvature. Second, the split-off plasmonic mode experiences strong localization at the corners. Altogether, this paves the way for tailoring of metal nano-structures providing wavelength-selective excitation of localized plasmons and a strong near-field enhancement of linear and nonlinear optical phenomena.

  13. Metal nanoparticles with sharp corners: Universal properties of plasmon resonances

    Science.gov (United States)

    Sturman, B.; Podivilov, E.; Gorkunov, M.

    2013-03-01

    We predict the simultaneous occurrence of two fundamental phenomena for metal nanoparticles possessing sharp corners with variable curvature: First, the main dipolar plasmonic mode experiences a strong red shift with increasing corner curvature; for large values of the curvature, the resonant frequency is controlled by the apex angle of the corner. Second, the split-off plasmonic mode experiences a strong localization at the corners. Altogether, this paves the way for the tailoring of metal nanostructures providing a wavelength-selective excitation of localized plasmons and a strong near-field enhancement of linear and nonlinear optical phenomena.

  14. Extracellular Electron Transfer from Aerobic Bacteria to Au-Loaded TiO2 Semiconductor without Light: A New Bacteria-Killing Mechanism Other than Localized Surface Plasmon Resonance or Microbial Fuel Cells.

    Science.gov (United States)

    Wang, Guomin; Feng, Hongqing; Gao, Ang; Hao, Qi; Jin, Weihong; Peng, Xiang; Li, Wan; Wu, Guosong; Chu, Paul K

    2016-09-21

    Titania loaded with noble metal nanoparticles exhibits enhanced photocatalytic killing of bacteria under light illumination due to the localized surface plasmon resonance (LSPR) property. It has been shown recently that loading with Au or Ag can also endow TiO2 with the antibacterial ability in the absence of light. In this work, the antibacterial mechanism of Au-loaded TiO2 nanotubes (Au@TiO2-NT) in the dark environment is studied, and a novel type of extracellular electron transfer (EET) between the bacteria and the surface of the materials is observed to cause bacteria death. Although the EET-induced bacteria current is similar to the LSPR-related photocurrent, the former takes place without light, and no reactive oxygen species (ROS) are produced during the process. The EET is also different from that commonly attributed to microbial fuel cells (MFC) because it is dominated mainly by the materials' surface, but not the bacteria, and the environment is aerobic. EET on the Au@TiO2-NT surface kills Staphylococcus aureus, but if it is combined with special MFC bacteria, the efficiency of MFC may be improved significantly.

  15. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    Science.gov (United States)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  16. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials

    Science.gov (United States)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S.; Zhang, Lin

    2016-10-01

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  17. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  18. Plasmonic resonances in nanostructured transparent conducting oxide films

    CERN Document Server

    Kim, Jongbum; Emani, Naresh K; Boltasseva, Alexandra

    2012-01-01

    Transparent conducting oxides (TCO) are emerging as possible alternative constituent materials to replace noble metals such as silver and gold for low-loss plasmonic and metamaterial (MMs) applications in the near infrared (NIR) regime. The optical characteristics of TCOs have been studied to evaluate the functionalities and potential of these materials as metal substitutes in plasmonic and MM devices, even apart from their usual use as electrode materials. However, patterning TCOs at the nanoscale, which is necessary for plasmonic and MM devices, is not well-studied. This paper investigates nanopatterning processes for TCOs, especially the lift-off technique with electron-beam lithography, and the realization of plasmonic nanostructures with TCOs. By employing the developed nanopatterning process, we fabricate 2D-periodic arrays of TCO nanodisks and characterize the material's plasmonic properties to evaluate the performance of TCOs as metal substitutes. Light-induced collective oscillations of the free elec...

  19. Noble metal nanostructures for double plasmon resonance with tunable properties

    Science.gov (United States)

    Petr, M.; Kylián, O.; Kuzminova, A.; Kratochvíl, J.; Khalakhan, I.; Hanuš, J.; Biederman, H.

    2017-02-01

    We report and compare two vacuum-based strategies to produce Ag/Au materials characterized by double plasmon resonance peaks: magnetron sputtering and method based on the use of gas aggregation sources (GAS) of nanoparticles. It was observed that the double plasmon resonance peaks may be achieved by both of these methods and that the intensities of individual localized surface plasmon resonance peaks may be tuned by deposition conditions. However, in the case of sputter deposition it was necessary to introduce a separation dielectric interlayer in between individual Ag and Au nanoparticle films which was not the case of films prepared by GAS systems. The differences in the optical properties of sputter deposited bimetallic Ag/Au films and coatings consisted of individual Ag and Au nanoparticles produced by GAS is ascribed to the divers mechanisms of nanoparticles formation.

  20. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  1. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    Surface plasmon resonance imaging has in the past been applied to the characterization of thin films. In this study we apply the surface plasmon technique not to determine macroscopic spatial variations but rather to determine average microscopic information. Specifically, we deduce the dielectric properties of the surrounding gel matrix and information concerning the dynamics of the gelation process from the visible absorption characteristics of colloidal metal nanoparticles contained in aerogel pores. We have fabricated aerogels containing gold and silver nanoparticles. Because the dielectric constant of the metal particles is linked to that of the host matrix at the surface plasmon resonance, any change 'in the dielectric constant of the material surrounding the metal nanoparticles results in a shift in the surface plasmon wavelength. During gelation the surface plasmon resonance shifts to the red as the average or effective dielectric constant of the matrix increases. Conversely, formation of an aerogel or xerogel through supercritical extraction or evaporation of the solvent produces a blue shift in the resonance indicating a decrease in the dielectric constant of the matrix. From the magnitude of this shift we deduce the average fraction of air and of silica in contact with the metal particles. The surface area of metal available for catalytic gas reaction may thus be determined.

  2. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Science.gov (United States)

    Mahmoodi, S.; Moradi, M.; Mohseni, S. M.

    2016-12-01

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism.

  3. Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism

    Science.gov (United States)

    Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang

    Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.

  4. Study of plasmon resonance in a gold nanorod with an LC circuit model

    CERN Document Server

    Huang, Cheng-ping; Huang, Huang; Zhu, Yong-yuan

    2009-01-01

    Gold nanorod has generated great research interest due to its tunable longitudinal plasmon resonance. However, little progress has been made in the understanding of the effect. A major reason is that, except for metallic spheres and ellipsoids, the interaction between light and nanoparticles is generally insoluble. In this paper, a new scheme has been proposed to study the plasmon resonance of gold nanorod, in which the nanorod is modeled as an LC circuit with an inductance and a capacitance. The obtained resonance wavelength is dependent on not only aspect ratio but also rod radius, suggesting the importance of self-inductance and the breakdown of linear scaling. Moreover, the cross sections for light scattering and absorption have been deduced analytically, giving rise to a Lorentzian line-shape for the extinction spectrum. The result provides us with new insight into the phenomenon.

  5. Control of Surface Plasmon Resonance of Au/SnO2 by Modification with Ag and Cu for Photoinduced Reactions under Visible-Light Irradiation over a Wide Range.

    Science.gov (United States)

    Tanaka, Atsuhiro; Hashimoto, Keiji; Kominami, Hiroshi

    2016-03-18

    Gold particles supported on tin(IV) oxide (0.2 wt% Au/SnO2) were modified with copper and silver by the multistep photodeposition method. Absorption around λ=550 nm, attributed to surface plasmon resonance (SPR) of Au, gradually shifted to longer wavelengths on modification with Cu and finally reached λ=620 nm at 0.8 wt% Cu. On the other hand, the absorption shifted to shorter wavelength with increasing amount of Ag and reached λ=450 nm at 0.8 wt% Ag. These Cu- and Ag-modified 0.2 wt% Au/SnO2 materials (Cu-Au/SnO2 and Ag-Au/SnO2) and 1.0 wt% Au/SnO2 were used for mineralization of formic acid to carbon dioxide in aqueous suspension under irradiation with visible light from a xenon lamp and three kinds of light-emitting diodes with different wavelengths. The reaction rates for the mineralization of formic acid over these materials depend on the wavelength of light. Apparent quantum efficiencies of Cu-Au/SnO2, Au/SnO2, and Ag-Au/SnO2 reached 5.5% at 625 nm, 5.8% at 525 nm, and 5.1% at 450 nm, respectively. These photocatalysts can also be used for selective oxidation of alcohols to corresponding carbonyl compounds in aqueous solution under visible-light irradiation. Broad responses to visible light in formic acid mineralization and selective alcohol oxidation were achieved when the three materials were used simultaneously. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Photocurrent enhancement of graphene photodetectors by photon tunneling of light into surface plasmons

    Science.gov (United States)

    Maleki, Alireza; Cumming, Benjamin P.; Gu, Min; Downes, James E.; Coutts, David W.; Dawes, Judith M.

    2017-10-01

    We demonstrate that surface plasmon resonances excited by photon tunneling through an adjacent dielectric medium enhance the photocurrent detected by a graphene photodetector. The device is created by overlaying a graphene sheet over an etched gap in a gold film deposited on glass. The detected photocurrents are compared for five different excitation wavelengths, ranging from {λ }0=570 {{nm}} to {λ }0=730 {{nm}}. Although the device is not optimized, the photocurrent excited with incident p-polarized light (which excites resonant surface plasmons) is significantly amplified in comparison with that for s-polarized light (without surface plasmon resonances). We observe that the photocurrent is greater for shorter wavelengths (for both s- and p-polarizations) with increased photothermal current. Position-dependent Raman spectroscopic analysis of the optically-excited graphene photodetector indicates the presence of charge carriers in the graphene near the metallic edge. In addition, we show that the polarity of the photocurrent reverses across the gap as the incident light spot moves across the gap. Graphene-based photodetectors offer a simple architecture which can be fabricated on dielectric waveguides to exploit the plasmonic photocurrent enhancement of the evanescent field. Applications for these devices include photodetection, optical sensing and direct plasmonic detection.

  7. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Novikov, Sergey M.; Stær, Tobias Holmgaard

    2012-01-01

    Excitation of localized and delocalized surface plasmon resonances can be used for turning excellent reflectors of visible light, such as gold and silver, into efficient absorbers, whose wavelength, polarization or angular bandwidths are however necessarily limited owing to the resonant nature......-defined geometry by using ultra-sharp convex metal grooves via adiabatic nanofocusing of gap surface plasmon modes excited by scattering off subwavelength-sized wedges. We demonstrate experimentally that two-dimensional arrays of sharp convex grooves in gold ensure efficient (>87%) broadband (450-850 nm...

  8. Non-resonant Nanoscale Extreme Light Confinement

    Energy Technology Data Exchange (ETDEWEB)

    Subramania, Ganapathi Subramanian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huber, Dale L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    A wide spectrum of photonics activities Sandia is engaged in such as solid state lighting, photovoltaics, infrared imaging and sensing, quantum sources, rely on nanoscale or ultrasubwavelength light-matter interactions (LMI). The fundamental understanding in confining electromagnetic power and enhancing electric fields into ever smaller volumes is key to creating next generation devices for these programs. The prevailing view is that a resonant interaction (e.g. in microcavities or surface-plasmon polaritions) is necessary to achieve the necessary light confinement for absorption or emission enhancement. Here we propose new paradigm that is non-resonant and therefore broadband and can achieve light confinement and field enhancement in extremely small areas [~(λ/500)^2 ]. The proposal is based on a theoretical work[1] performed at Sandia. The paradigm structure consists of a periodic arrangement of connected small and large rectangular slits etched into a metal film named double-groove (DG) structure. The degree of electric field enhancement and power confinement can be controlled by the geometry of the structure. The key operational principle is attributed to quasistatic response of the metal electrons to the incoming electromagnetic field that enables non-resonant broadband behavior. For this exploratory LDRD we have fabricated some test double groove structures to enable verification of quasistatic electronic response in the mid IR through IR optical spectroscopy. We have addressed some processing challenges in DG structure fabrication to enable future design of complex sensor and detector geometries that can utilize its non-resonant field enhancement capabilities.].

  9. Novel piezoelectric effect and surface plasmon resonance-based elements for MEMS applications.

    Science.gov (United States)

    Ponelyte, Sigita; Palevicius, Arvydas

    2014-04-17

    This paper covers research on novel thin films with periodical microstructure--optical elements, exhibiting a combination of piezoelectric and surface plasmon resonance effects. The research results showed that incorporation of Ag nanoparticles in novel piezoelectric--plasmonic elements shift a dominating peak in the visible light spectrum. This optical window is essential in the design of optical elements for sensing systems. Novel optical elements can be tunable under defined bias and change its main grating parameters (depth and width) influencing the response of diffraction efficiencies. These elements allow opening new avenues in the design of more sensitive and multifunctional microdevices.

  10. Switchable polarization rotation of visible light using a plasmonic metasurface

    Directory of Open Access Journals (Sweden)

    Stuart K. Earl

    2017-01-01

    Full Text Available A metasurface comprising an array of silver nanorods supported by a thin film of the phase change material vanadium dioxide is used to rotate the primary polarization axis of visible light at a pre-determined wavelength. The dimensions of the rods were selected such that, across the two phases of vanadium dioxide, the two lateral localized plasmon resonances (in the plane of the metasurface occur at the same wavelength. Illumination with linearly polarized light at 45° to the principal axes of the rod metasurface enables excitation of both of these resonances. Modulating the phase of the underlying substrate, we show that it is possible to reversibly switch which axis of the metasurface is resonant at the operating wavelength. Analysis of the resulting Stokes parameters indicates that the orientation of the principal linear polarization axis of the reflected signal is rotated by 90° around these wavelengths. Dynamic metasurfaces such as these have the potential to form the basis of an ultra-compact, low-energy multiplexer or router for an optical signal.

  11. Plasmonic Nanostructures for Enhanced Light-Matter Interactions

    DEFF Research Database (Denmark)

    Zhu, Xiaolong

    the spontaneous emission of emitters by exciting plasmonic modes. An enhancement of photoemission up to 30 times is observed, leading to a 4 times broader emission spectrum. Next, we mainly discuss the LMIs in metal-graphene hybrid plasmonic structures. We introduce two novel hybrid systems for studying light...

  12. Non-blinking quantum dot with a plasmonic nanoshell resonator

    Science.gov (United States)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  13. Plasmon coupling in vertical split-ring resonator metamolecules

    Science.gov (United States)

    Wu, Pin Chieh; Hsu, Wei-Lun; Chen, Wei Ting; Huang, Yao-Wei; Liao, Chun Yen; Liu, Ai Qun; Zheludev, Nikolay I.; Sun, Greg; Tsai, Din Ping

    2015-01-01

    The past decade has seen a number of interesting designs proposed and implemented to generate artificial magnetism at optical frequencies using plasmonic metamaterials, but owing to the planar configurations of typically fabricated metamolecules that make up the metamaterials, the magnetic response is mainly driven by the electric field of the incident electromagnetic wave. We recently fabricated vertical split-ring resonators (VSRRs) which behave as magnetic metamolecules sensitive to both incident electric and magnetic fields with stronger induced magnetic dipole moment upon excitation in comparison to planar SRRs. The fabrication technique enabled us to study the plasmon coupling between VSRRs that stand up side by side where the coupling strength can be precisely controlled by varying the gap in between. The resulting wide tuning range of these resonance modes offers the possibility of developing frequency selective functional devices such as sensors and filters based on plasmon coupling with high sensitivity. PMID:26043931

  14. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays

    CERN Document Server

    Guo, R; Törmä, P

    2016-01-01

    Plasmonic nanoarrays which support collective surface lattice resonances (SLRs) have become an exciting frontier in plasmonics. Compared with the localized surface plasmon resonance (LSPR) in individual particles, these collective modes have appealing advantages such as angle-dependent dispersions and much narrower linewidths. Here, we investigate systematically how the geometry of the lattice affects the SLRs supported by metallic nanoparticles. We present a general theoretical framework from which the various SLR modes of a given geometry can be straightforwardly obtained by a simple comparison of the diffractive order (DO) vectors and orientation of the nanoparticle dipole given by the polarization of the incident field. Our experimental measurements show that while square, hexagonal, rectangular, honeycomb and Lieb lattice arrays have similar spectra near the $\\Gamma$-point ($k=0$), they have remarkably different SLR dispersions. Furthermore, their dispersions are highly dependent on the polarization. Num...

  15. Tunable plasmon resonances in anisotropic metal nanostructures

    NARCIS (Netherlands)

    Penninkhof, J.J.

    2006-01-01

    Coherent oscillations of free electrons in a metal, localized in a small volume or at an interface between a metal and a dielectric medium, have attracted a lot of attention in the past decades. These so-called surface plasmons have special optical properties that can be used in many applications ra

  16. Tunable plasmon resonances in anisotropic metal nanostructures

    NARCIS (Netherlands)

    Penninkhof, J.J.

    2006-01-01

    Coherent oscillations of free electrons in a metal, localized in a small volume or at an interface between a metal and a dielectric medium, have attracted a lot of attention in the past decades. These so-called surface plasmons have special optical properties that can be used in many applications

  17. Three-dimensional cavity nanoantennas with resonant-enhanced surface plasmons as dynamic color-tuning reflectors.

    Science.gov (United States)

    Fan, J R; Wu, W G; Chen, Z J; Zhu, J; Li, J

    2017-03-09

    As plasmonic antennas for surface-plasmon-assisted control of optical fields at specific frequencies, metallic nanostructures have recently emerged as crucial optical components for fascinating plasmonic color engineering. Particularly, plasmonic resonant nanocavities can concentrate lightwave energy to strongly enhance light-matter interactions, making them ideal candidates as optical elements for fine-tuning color displays. Inspired by the color mixing effect found on butterfly wings, a new type of plasmonic, multiresonant, narrow-band (the minimum is about 45 nm), high-reflectance (the maximum is about 95%), and dynamic color-tuning reflector is developed. This is achieved from periodic patterns of plasmonic resonant nanocavities in free-standing capped-pillar nanostructure arrays. Such cavity-coupling structures exhibit multiple narrow-band selective and continuously tunable reflections via plasmon standing-wave resonances. Consequently, they can produce a variety of dark-field vibrant reflective colors with good quality, strong color signal and fine tonal variation at the optical diffraction limit. This proposed multicolor scheme provides an elegant strategy for realizing personalized and customized applications in ultracompact photonic data storage and steganography, colorimetric sensing, 3D holograms and other plasmon-assisted photonic devices.

  18. Immunosensor Based on Surface Plasmon Resonance for Antigen Recognition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel immunosensor based on surface plasmon resonance(SPR)has been developed for the recognition of antigen.The sensor was designed on the basis of the fixed angle of incidence and measuring the reflected intensities in a wavelength range of 430-750 nm in real-time. An ultra-bright white light-emitting diode(LED)was used as the light source. Molecular self-assembling in solution was used to form the sensing membrane on gold substrate. It has been seen that the sensitivity of the SPR sensor with 3-mercaptopropionic acid(MPA)/protein A(SPA) sensing membrane is considerably higher than that with MPA or SPA modified Sensing membrane. The kinetic processes on the sensing membrane were studied. The human B factor(Bf), an activator of complement 3(C3), was recognized among the other antigens. This sensor can also be used for other antigen/antibody or adaptor/receptor recognition. Under optimized experimental conditions, the sensor has good selectivity, repeatability, and reversibility.

  19. Surface plasmon resonance microscopy: Achieving a quantitative optical response

    Science.gov (United States)

    Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.

    2016-09-01

    Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based figuration. We carry out SPR imaging on a microscope by launching light into a sample and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy.

  20. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    Energy Technology Data Exchange (ETDEWEB)

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang; Lin, Jingquan, E-mail: linjingquan@cust.edu.cn [School of Science, Changchun University of Science and Technology, Changchun 130022 (China)

    2015-09-21

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.

  1. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, I.; Schasfoort, R.B.M.; Terstappen, L.W.M.M.

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  2. Manipulation of plasmonic resonances in graphene coated dielectric cylinders

    KAUST Repository

    Ge, Lixin

    2016-11-16

    Graphene sheets can support surface plasmon as the Dirac electrons oscillate collectively with electromagnetic waves. Compared with the surface plasmon in conventional metal (e.g., Ag and Au), graphene plasmonic owns many remarkable merits especially in Terahertz and far infrared frequencies, such as deep sub-wavelength, low loss, and high tunability. For graphene coated dielectric nano-scatters, localized surface plasmon (LSP)exist and can be excited under specific conditions. The LSPs are associated with the Mie resonance modes, leading to extraordinary large scattering and absorption cross section. In this work, we study systematically the optical scattering properties for graphene coated dielectric cylinders. It is found that the LSP can be manipulated by geometrical parameters and external electric gating. Generally, the resonance frequencies for different resonance modes are not the same. However, under proper design, we show that different resonance modes (e.g., dipole mode, quadruple mode etc.) can be excited at the same frequency. Thus, the scattering and absorption by graphene coated dielectric cylinders can indeed overcome the single channel limit. Our finding may open up new avenues in applications for the graphene-based THz optoelectronic devices.

  3. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, Ivan; Schasfoort, Richardus B.M.; Terstappen, Leonardus Wendelinus Mathias Marie

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  4. A Surface Plasmon Resonance Immunobiosensor for Detection of Phytophthora infestans

    DEFF Research Database (Denmark)

    Skottrup, Peter; Frøkiær, Hanne; Hejgaard, Jørn;

    In this study we focused on the development of a Surface Plasmon Resonance (SPR) immunosensor for Phytophthora infestans detection. The fungus-like organism is the cause of potato late blight and is a major problem in potato growing regions of the world. Efficient control is dependent on early...

  5. Surface Plasmon Resonance Spectroscopy: A Versatile Technique in a

    Science.gov (United States)

    Bakhtiar, Ray

    2013-01-01

    Surface plasmon resonance (SPR) spectroscopy is a powerful, label-free technique to monitor noncovalent molecular interactions in real time and in a noninvasive fashion. As a label-free assay, SPR does not require tags, dyes, or specialized reagents (e.g., enzymes-substrate complexes) to elicit a visible or a fluorescence signal. During the last…

  6. Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chuanbo [University of California, Riverside; Lu, Zhenda [University of California, Riverside; Chi, Miaofang [ORNL; Liu, ying [University of California, Riverside; Cheng, Quan [University of California, Riverside; Yin, Yadong [University of California, Riverside

    2012-01-01

    An SPR biosensor was developed by employing highly stable Au-protected Ag nanoplates (NP) as enhancers (see picture). Superior performance was achieved by depositing a thin and uniform coating of Au on the Ag surface while minimizing disruptive galvanic replacement and retaining the strong surface plasmon resonance (SPR) of the silver nanoplates.

  7. Passive Infrared Sensing Using Plasmonic Resonant Dust Particles

    Directory of Open Access Journals (Sweden)

    Mark Mirotznik

    2012-01-01

    Full Text Available We present computational and experimental results of dust particles that can be tuned to preferentially reflect or emit IR radiation within the 8–14 μm band. The particles consist of thin metallic subwavelength gratings patterned on the surface of a simple quarter wavelength cavity. This design creates distinct IR absorption resonances by combining the plasmonic resonance of the grating with the natural resonance of the cavity. We show that the resonance peaks are easily tuned by varying either the geometry of the grating or the thickness of the cavity. Here, we present a computational design algorithm along with experimental results that validate the design methodology.

  8. Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems.

    Science.gov (United States)

    Adato, Ronen; Artar, Alp; Erramilli, Shyamsunder; Altug, Hatice

    2013-06-12

    Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach's key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications.

  9. Detecting Plasmon Resonance Energy Transfer with Differential Interference Contrast Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Augspurger, Ashley E. [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Stender, Anthony S. [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Han, Rui [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Fang, Ning [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)

    2013-12-30

    Gold nanoparticles are ideal probes for studying intracellular environments and energy transfer mechanisms due to their plasmonic properties. Plasmon resonance energy transfer (PRET) relies on a plasmonic nanoparticle to donate energy to a nearby resonant acceptor molecule, a process which can be observed due to the plasmonic quenching of the donor nanoparticle. In this study, a gold nanosphere was used as the plasmonic donor, while the metalloprotein cytochrome c was used as the acceptor molecule. Differential interference contrast (DIC) microscopy allows for simultaneous monitoring of complex environments and noble metal nanoparticles in real time. Using DIC and specially designed microfluidic channels, we were able to monitor PRET at the single gold particle level and observe the reversibility of PRET upon the introduction of phosphate-buffered saline to the channel. In an additional experiment, single gold particles were internalized by HeLa cells and were subsequently observed undergoing PRET as the cell hosts underwent morphological changes brought about by ethanol-induced apoptosis.

  10. Localized Surface Plasmons Enhanced Light Transmission into c-Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Y. Premkumar Singh

    2013-01-01

    Full Text Available The paper investigates the light incoupling into c-Si solar cells due to the excitation of localized surface plasmon resonances in periodic metallic nanoparticles by finite-difference time-domain (FDTD technique. A significant enhancement of AM1.5G solar radiation transmission has been demonstrated by depositing nanoparticles of various metals on the upper surface of a semi-infinite Si substrate. Plasmonic nanostructures located close to the cell surface can scatter incident light efficiently into the cell. Al nanoparticles were found to be superior to Ag, Cu, and Au nanoparticles due to the improved transmission of light over almost the entire solar spectrum and, thus, can be a potential low-cost plasmonic metal for large-scale implementation of solar cells.

  11. Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xianping; Wei, Zhongchao, E-mail: wzc@scnu.edu.cn; Liu, Yuebo; Zhong, Nianfa; Tan, Xiaopei; Shi, Songsong; Liu, Hongzhan; Liang, Ruisheng

    2016-01-08

    We have demonstrated the analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator. A reasonable analysis of the transmission feature based on the temporal coupled-mode theory is given and shows good agreement with the Finit-Difference Time-Domain simulation. The transparency window can be easily tuned by changing the geometrical parameters and the insulator filled in the resonator. The transmission of the resonator system is close to 80% and the full width at half maximum is less than 46 nm. The sensitivity of the structure is about 812 nm/RIU. These characteristics make the new system with potential to apply for optical storage, ultrafast plasmonic switch and slow-light devices.

  12. Microfluidic transmission surface plasmon resonance enhancement for biosensor applications

    Science.gov (United States)

    Lertvachirapaiboon, Chutiparn; Baba, Akira; Ekgasit, Sanong; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2017-01-01

    The microfluidic transmission surface plasmon resonance (MTSPR) constructed by assembling a gold-coated grating substrate with a microchannel was employed for biosensor application. The transmission surface plasmon resonance spectrum obtained from the MTSPR sensor chip showed a strong and narrow surface plasmon resonance (SPR) peak located between 650 and 800 nm. The maximum SPR excitation was observed at an incident angle of 35°. The MTSPR sensor chip was employed for glucose sensor application. Gold-coated grating substrates were functionalized using 3-mercapto-1-propanesulfonic acid sodium salt and subsequently functionalized using a five-bilayer poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) to facilitate the coupling/decoupling of the surface plasmon and to prepare a uniform surface for sensing. The detection limit of our developed system for glucose was 2.31 mM. This practical platform represents a high possibility of further developing several biomolecules, multiplex systems, and a point-of-care assay for practical biosensor applications.

  13. Increase in sensitivity of sensor units of environment refraction index change based on superficial plasmon resonance

    Directory of Open Access Journals (Sweden)

    Ushenin Yu. V.

    2011-04-01

    Full Text Available Results of computer modeling of an angular spectrum superficial plasmon resonance in metal films measurements with device PLAZMON-5 with infra-red radiator are analysed. It is shown that use of an infra-red source of radiation allows to improve sensitivity of sensor device in comparison with source of visible light. On an example of dielectric refraction indexes measurement with PLAZMON-5 device experimental check of theoretical calculations has been carried out.

  14. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    CERN Document Server

    Lei, Zeyu

    2015-01-01

    We report the design and experimental realization of a kind of miniaturized devices for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two dimensional launching efficiency of about 51%, under the normal illumination of a 5-{\\mu}m waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel and Airy profiles are launched and imaged with leakage radiation microscopy.

  15. Plasmon resonance enhanced photocatalysis under visible light with Au/Cu-TiO2 nanoparticles: Removal Cr (VI) from water as a case of study

    KAUST Repository

    Gondal, M. A.

    2013-12-01

    Gold modified copper doped titania (Au/Cu:TiO2) nanoparticles were synthesized by a modified sol gel method and characterized using XRD, optical and TEM based techniques. The as-prepared material contained anatase phase particles with quasi-spherical morphology, showing enhanced absorption in the visible region and low photoluminescence emission intensity. Photocatalytic reduction of Cr (VI) in aqueous suspension with the Au/Cu:TiO2catalyst under 532 nm laser radiation and a visible broad band lamp source yielded 96% and 45% removal, respectively, without any additives. The enhanced photocatalytic activity can be attributed to the improved plasmonic effect due to gold modification and the expanded visible absorption due to copper doping. Moreover a comparative study of the material properties and catalytic activity of TiO2, Cu-TiO2and Au/Cu-TiO2 was carried out. © 2013 by American Scientific Publishers.

  16. Mid-infrared plasmonic resonances exploiting heavily-doped Ge on Si

    Science.gov (United States)

    Biagioni, P.; Sakat, E.; Baldassarre, L.; Calandrini, E.; Samarelli, A.; Gallacher, K.; Frigerio, J.; Isella, G.; Paul, D. J.; Ortolani, M.

    2015-03-01

    We address the behavior of mid-infrared localized plasmon resonances in elongated germanium antennas integrated on silicon substrates. Calculations based on Mie theory and on the experimentally retrieved dielectric constant allow us to study the tunability and the figures of merit of plasmon resonances in heavily-doped germanium and to preliminarily compare them with those of the most established plasmonic material, gold.

  17. Recent Development of Plasmonic Resonance-Based Photocatalysis and Photovoltaics for Solar Utilization

    Directory of Open Access Journals (Sweden)

    Wenguang Fan

    2016-02-01

    Full Text Available Increasing utilization of solar energy is an effective strategy to tackle our energy and energy-related environmental issues. Both solar photocatalysis (PC and solar photovoltaics (PV have high potential to develop technologies of many practical applications. Substantial research efforts are devoted to enhancing visible light activation of the photoelectrocatalytic reactions by various modifications of nanostructured semiconductors. This review paper emphasizes the recent advancement in material modifications by means of the promising localized surface plasmonic resonance (LSPR mechanisms. The principles of LSPR and its effects on the photonic efficiency of PV and PC are discussed here. Many research findings reveal the promise of Au and Ag plasmonic nanoparticles (NPs. Continual investigation for increasing the stability of the plasmonic NPs will be fruitful.

  18. Recent Development of Plasmonic Resonance-Based Photocatalysis and Photovoltaics for Solar Utilization.

    Science.gov (United States)

    Fan, Wenguang; Leung, Michael K H

    2016-02-02

    Increasing utilization of solar energy is an effective strategy to tackle our energy and energy-related environmental issues. Both solar photocatalysis (PC) and solar photovoltaics (PV) have high potential to develop technologies of many practical applications. Substantial research efforts are devoted to enhancing visible light activation of the photoelectrocatalytic reactions by various modifications of nanostructured semiconductors. This review paper emphasizes the recent advancement in material modifications by means of the promising localized surface plasmonic resonance (LSPR) mechanisms. The principles of LSPR and its effects on the photonic efficiency of PV and PC are discussed here. Many research findings reveal the promise of Au and Ag plasmonic nanoparticles (NPs). Continual investigation for increasing the stability of the plasmonic NPs will be fruitful.

  19. Absorption enhancement in amorphous silicon thin films via plasmonic resonances in nickel silicide nanoparticles

    Science.gov (United States)

    Hachtel, Jordan; Shen, Xiao; Pantelides, Sokrates; Sachan, Ritesh; Gonzalez, Carlos; Dyck, Ondrej; Fu, Shaofang; Kalnayaraman, Ramki; Rack, Phillip; Duscher, Gerd

    2013-03-01

    Silicon is a near ideal material for photovoltaics due to its low cost, abundance, and well documented optical properties. The sole detriment of Si in photovoltaics is poor absorption in the infrared. Nanoparticle surface plasmon resonances are predicted to increase absorption by scattering to angles greater than the critical angle for total internal reflection (16° for a Si/air interface), trapping the light in the film. Experiments confirm that nickel silicide nanoparticles embedded in amorphous silicon increases absorption significantly in the infrared. However, it remains to be seen if electron-hole pair generation is increased in the solar cell, or whether the light is absorbed by the nanoparticles themselves. The nature of the absorption is explored by a study of the surface plasmon resonances through electron energy loss spectrometry and scanning transmission electron microscopy experiments, as well as first principles density functional theory calculations. Initial experimental results do not show strong plasmon resonances on the nanoparticle surfaces. Calculations of the optical properties of the nickel silicide particles in amorphous silicon are performed to understand why this resonance is suppressed. Work supported by NSF EPS 1004083 (TN-SCORE).

  20. Giant second harmonic generation by engineering of double plasmonic resonances at nanoscale

    CERN Document Server

    Ren, Ming-Liang; Wang, Ben-Li; Chen, Bao-Qin; Li, Jiafang; Li, Zhi-Yuan

    2014-01-01

    We have investigated second harmonic generation (SHG) from Ag-coated LiNbO3 (LN) core-shell nanocuboids and found that giant SHG can occur via deliberately designed double plasmonic resonances. By controlling the aspect ratio, we can tune fundamental wave (FW) and SHG signal to match the longitudinal and transverse plasmonic modes simultaneously, and achieve giant enhancement of SHG by more than five orders of magnitude in comparison to a bare LN nanocuboid and by about one order of magnitude to the case adopting only single plasmonic resonance. The underlying key physics is that the double-resonance nanoparticle enables greatly enhanced trapping and harvesting of incident FW energy, efficient internal transfer of optical energy from FW to SHW, and much improved power to transport the SHG energy from the nanoparticle to the far-field region. The proposed double-resonance nanostructure can serve as an efficient subwavelength coherent light source through SHG and enable flexible engineering of light-matter inte...

  1. Gallium arsenide based surface plasmon resonance for glucose monitoring

    Science.gov (United States)

    Patil, Harshada; Sane, Vani; Sriram, G.; Indumathi, T. S; Sharan, Preeta

    2015-07-01

    The recent trends in the semiconductor and microwave industries has enabled the development of scalable microfabrication technology which produces a superior set of performance as against its counterparts. Surface Plasmon Resonance (SPR) based biosensors are a special class of optical sensors that become affected by electromagnetic waves. It is found that bio-molecular recognition element immobilized on the SPR sensor surface layer reveals a characteristic interaction with various sample solutions during the passage of light. The present work revolves around developing painless glucose monitoring systems using fluids containing glucose like saliva, urine, sweat or tears instead of blood samples. Non-invasive glucose monitoring has long been simulated using label free detection mechanisms and the same concept is adapted. In label-free detection, target molecules are not labeled or altered, and are detected in their natural forms. Label-free detection mechanisms involves the measurement of refractive index (RI) change induced by molecular interactions. These interactions relates the sample concentration or surface density, instead of total sample mass. After simulation it has been observed that the result obtained is highly accurate and sensitive. The structure used here is SPR sensor based on channel waveguide. The tools used for simulation are RSOFT FULLWAVE, MEEP and MATLAB etc.

  2. Counterintuitive dispersion effect near surface plasmon resonances in Otto structures

    Science.gov (United States)

    Wang, Lin; Wang, Li-Gang; Ye, Lin-Hua; Al-Amri, M.; Zhu, Shi-Yao; Zubairy, M. Suhail

    2016-07-01

    In this paper, we investigate the counterintuitive dispersion effect associated with the poles and zeros of reflection and transmission functions in an Otto configuration when a surface plasmon resonance is excited. We show that the zeros and/or poles in the reflection and transmission functions may move into the upper-half complex-frequency plane (CFP), and these locations of the zeros and poles determine the dispersion properties of the whole structures (i.e., the frequency-dependent change of both reflected and transmitted phases). Meanwhile, we demonstrate various dispersion effects (both normal and abnormal) related to the changes of the poles and zeros in both reflection and transmission functions when considering the properties of metal substrates. For a realistic metal substrate in an Otto structure, there are the optimal thickness and incident angle, which correspond to the transitions of the zeros in the reflection function from the upper-half to lower-half CFP. These properties may be helpful to manipulate light propagation in optical devices.

  3. Fibre optic surface plasmon resonance sensor system designed for smartphones.

    Science.gov (United States)

    Bremer, Kort; Roth, Bernhard

    2015-06-29

    A fibre optic surface plasmon resonance (SPR) sensor system for smartphones is reported, for the first time. The sensor was fabricated by using an easy-to-implement silver coating technique and by polishing both ends of a 400 µm optical fibre to obtain 45° end-faces. For excitation and interrogation of the SPR sensor system the flash-light and camera at the back side of the smartphone were employed, respectively. Consequently, no external electrical components are required for the operation of the sensor system developed. In a first application example a refractive index sensor was realised. The performance of the SPR sensor system was demonstrated by using different volume concentrations of glycerol solution. A sensitivity of 5.96·10(-4) refractive index units (RIU)/pixel was obtained for a refractive index (RI) range from 1.33 to 1.36. In future implementations the reported sensor system could be integrated in a cover of a smartphone or used as a low-cost, portable point-of-care diagnostic platform. Consequently it offers the potential of monitoring a large variety of environmental or point-of-care parameters in combination with smartphones.

  4. Localized spoof surface plasmon resonances at terahertz range

    Science.gov (United States)

    Chen, Lin; Xu, Mengjian; Zang, Xiaofei; Peng, Yan; Zhu, Yiming

    2016-11-01

    The influence of the inner disk radius r, the filling ratio α, numbers of sectors N, and the gap g on transmission response for corrugated metallic disk (CMD) with single C-shaped resonator(CSR) has been fully studied. The results indicate that varying parameters r can efficiently excite the higher order spoof localized surface plasmon modes in corrugated metallic disk. The relationship between the bright dipole and dark multipolar resonances presents the possibility of high Q dark resonances excitation. All results may be of great interest for diverse applications.

  5. Plasmonic light trapping in thin-film Si solar cells

    NARCIS (Netherlands)

    Spinelli, P.; Ferry, V.E.; van de Groep, J.; van Lare, M.; Verschuuren, M.A.; Schropp, R.E.I.; Atwater, H.A.; Polman, A.

    2011-01-01

    Plasmonic nanostructures have been recently investigated as a possible way to improve absorption of light in solar cells. The strong interaction of small metal nanostructures with light allows control over the propagation of light at the nanoscale and thus the design of ultrathin solar cells in whic

  6. Plasmonic light trapping in thin-film Si solar cells

    NARCIS (Netherlands)

    Spinelli, P.; Ferry, V.E.; van de Groep, J.; van Lare, M.; Verschuuren, M.A.; Schropp, R.E.I.|info:eu-repo/dai/nl/072502584; Atwater, H.A.; Polman, A.|info:eu-repo/dai/nl/07435325X

    2011-01-01

    Plasmonic nanostructures have been recently investigated as a possible way to improve absorption of light in solar cells. The strong interaction of small metal nanostructures with light allows control over the propagation of light at the nanoscale and thus the design of ultrathin solar cells in whic

  7. Highly efficient visible light plasmonic photocatalyst Ag@Ag(Br,I).

    Science.gov (United States)

    Wang, Peng; Huang, Baibiao; Zhang, Qianqian; Zhang, Xiaoyang; Qin, Xiaoyan; Dai, Ying; Zhan, Jie; Yu, Jiaoxian; Liu, Haixia; Lou, Zaizhu

    2010-09-03

    The new plasmonic photocatalyst Ag@Ag(Br,I) was synthesized by the ion-exchange process between the silver bromide and potassium iodide, then by reducing some Ag(+) ions in the surface region of Ag(Br,I) particles to Ag(0) species. Ag nanoparticles are formed from Ag(Br,I) by the light-induced chemical reduction reaction. The Ag@Ag(Br,I) particles have irregular shapes with their sizes varying from 83 nm to 1 mum. The as-grown plasmonic photocatalyst shows strong absorption in the visible light region because of the plasmon resonance of Ag nanoparticles. The ability of this compound to reduce Cr(VI) under visible light was compared with those of other reference photocatalyst. The plasmonic photocatalyst is shown to be highly efficient under visible light. The stability of the photocatalyst was examined by X-ray diffraction and X-ray photoelectron spectroscopy. The XRD pattern and XPS spectra prove the stability of the plasmonic photocatalyst Ag@Ag(Br,I).

  8. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2016-05-01

    Full Text Available Plasmonic metal nanoparticles supporting localized surface plasmon resonances have attracted a great deal of interest in boosting the light absorption in solar cells. Among the various plasmonic materials, the aluminium nanoparticles recently have become a rising star due to their unique ultraviolet plasmonic resonances, low cost, earth-abundance and high compatibility with the complementary metal-oxide semiconductor (CMOS manufacturing process. Here, we report some key factors that determine the light incoupling of aluminium nanoparticles located on the front side of silicon solar cells. We first numerically study the scattering and absorption properties of the aluminium nanoparticles and the influence of the nanoparticle shape, size, surface coverage and the spacing layer on the light incoupling using the finite difference time domain method. Then, we experimentally integrate 100-nm aluminium nanoparticles on the front side of silicon solar cells with varying silicon nitride thicknesses. This study provides the fundamental insights for designing aluminium nanoparticle-based light trapping on solar cells.

  9. HSI colour-coded analysis of scattered light of single plasmonic nanoparticles

    Science.gov (United States)

    Zhou, Jun; Lei, Gang; Zheng, Lin Ling; Gao, Peng Fei; Huang, Cheng Zhi

    2016-06-01

    Single plasmonic nanoparticles (PNPs) analysis with dark-field microscopic imaging (iDFM) has attracted much attention in recent years. The ability for quantitative analysis of iDFM is critical, but cumbersome, for characterizing and analyzing the scattered light of single PNPs. Here, a simple automatic HSI colour coding method is established for coding dark-field microscopic (DFM) images of single PNPs with localized surface plasmon resonance (LSPR) scattered light, showing that hue value in the HSI system can realize accurate quantitative analysis of iDFM and providing a novel approach for quantitative chemical and biochemical imaging at the single nanoparticle level.Single plasmonic nanoparticles (PNPs) analysis with dark-field microscopic imaging (iDFM) has attracted much attention in recent years. The ability for quantitative analysis of iDFM is critical, but cumbersome, for characterizing and analyzing the scattered light of single PNPs. Here, a simple automatic HSI colour coding method is established for coding dark-field microscopic (DFM) images of single PNPs with localized surface plasmon resonance (LSPR) scattered light, showing that hue value in the HSI system can realize accurate quantitative analysis of iDFM and providing a novel approach for quantitative chemical and biochemical imaging at the single nanoparticle level. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c6nr01089j

  10. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    Science.gov (United States)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2016-06-01

    Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as "nanomatryoshka" (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.

  11. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    Directory of Open Access Journals (Sweden)

    Arash Ahmadivand

    2016-06-01

    Full Text Available Here, we examine the electromagnetic (EM energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as “nanomatryoshka” (NM units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer, plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer, due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.

  12. Spin orbit interaction of light mediated by scattering from plasmonic nano-structures

    CERN Document Server

    Soni, Jalpa; Mansha, Shampy; Gupta, S Dutta; Banerjee, Ayan; Ghosh, Nirmalya

    2012-01-01

    The spin orbit interactions (SOI) of light mediated by single scattering from plasmon resonant metal nanoparticles (nanorods and nanospheres) are investigated using explicit theory based on Jones and Stokes-Mueller polarimetry formalism. The individual SOI effects are analyzed and interpreted via the Mueller matrix-derived, polarimetry characteristics, namely, diattenuation d and retardance {\\delta}. The results demonstrate that each of the contributing SOI effects can be controllably enhanced by exploiting the interference of two neighboring modes in plasmonic nanostructures (orthogonal electric dipolar modes in rods or electric dipolar and quadrupolar modes in spheres).

  13. Plasmonic nanoantennas: enhancing light-matter interactions at the nanoscale

    CERN Document Server

    Patel, Shobhit K

    2015-01-01

    The research area of plasmonics promises devices with ultrasmall footprint operating at ultrafast speeds and with lower energy consumption compared to conventional electronics. These devices will operate with light and bridge the gap between microscale dielectric photonic systems and nanoscale electronics. Recent research advancements in nanotechnology and optics have led to the creation of a plethora of new plasmonic designs. Among the most promising are nanoscale antennas operating at optical frequencies, called nanoantennas. Plasmonic nanoantennas can provide enhanced and controllable light-matter interactions and strong coupling between far-field radiation and localized sources at the nanoscale. After a brief introduction of several plasmonic nanoantenna designs and their well-established radio-frequency antenna counterparts, we review several linear and nonlinear applications of different nanoantenna configurations. In particular, the possibility to tune the scattering response of linear nanoantennas and...

  14. Detection of Penicillin via Surface Plasmon Resonance Biosensor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; MU Ying; JIN Wei; YANG Meng-chao; ZHANG Ti-qiang; ZHOU Chao; XIE Fei; SONG Qi; REN Hao; JIN Qin-han

    2012-01-01

    A method of using Au colloid to capture the decomposed product of penicillin,penicillamine,on a surface plasmon resonance(SPR) biosensor for the quantitative determination of penicillin was developed.Based on the decomposition of penicillin to generate penicillamine and penilloaldehyde,a high seositive biosensor for detecting penicillin was also developed.In our experiment,it was penicillamine rather than penicillin that has been measured.This is because penicillamine contains a functional group that makes it self-assembling on Au colloid to increase the molecular weight so as to improve the surface plasmon resonance signal.On a UV-Vis spectrophotometer,a high concentration of penicilliamine-Au complex was determined,indicating that penicillamine was already well combined with Au colloid.The method,using the combination of Au colloid with penicillamine,proved to detect penicillin.

  15. Optical Torque from Enhanced Scattering by Multipolar Plasmonic Resonance

    CERN Document Server

    Lee, Yoonkyung E; Jin, Dafei; Fang, Nicholas

    2014-01-01

    We present a theoretical study of the optical angular momentum transfer from a circularly polarized plane wave to thin metal nanoparticles of different rotational symmetries. While absorption has been regarded as the predominant mechanism of torque generation on the nanoscale, we demonstrate numerically how the contribution from scattering can be enhanced by using multipolar plasmon resonance. The multipolar modes in non-circular particles can convert the angular momentum carried by the scattered field, thereby producing scattering-dominant optical torque, while a circularly symmetric particle cannot. Our results show that the optical torque induced by resonant scattering can contribute to 80% of the total optical torque in gold particles. This scattering-dominant torque generation is extremely mode-specific, and deserves to be distinguished from the absorption-dominant mechanism. Our findings might have applications in optical manipulation on the nanoscale as well as new designs in plasmonics and metamateria...

  16. Selective excitation of bright and dark plasmonic resonances of single gold nanorods

    CERN Document Server

    Demichel, O; Francs, G Colas des; Bouhelier, A; Hertz, E; Billard, F; de Fornel, F; Cluzel, B

    2015-01-01

    Plasmonic dark modes are pure near-field resonances since their dipole moments are vanishing in far field. These modes are particularly interesting to enhance nonlinear light-matter interaction at the nanometer scale because radiative losses are mitigated therefore increasing the intrinsic lifetime of the resonances. However, the excitation of dark modes by standard far field approaches is generally inefficient because the symmetry of the electromagnetic near-field distribution has a poor overlap with the excitation field. Here, we demonstrate the selective optical excitation of bright and dark plasmonic modes of single gold nanorods by spatial phase-shaping the excitation beam. Using two-photon luminescence measurements, we unambiguously identify the symmetry and the order of the emitting modes and analyze their angular distribution by Fourier-space imaging.

  17. Electrically Controlled Plasmonic Lasing Resonances with Silver Nanoparticles Embedded in Amplifying Nematic Liquid Crystals

    CERN Document Server

    Wang, Chin

    2014-01-01

    We demonstrate an electrically controlled coherent random lasing with silver nano-particles dispersed in a dye-doped nematic liquid crystal (NLC), in which external electric field dependent emission intensity and frequency-splitting are recorded. A modified rate equation model is proposed to interpret the observed coherent lasing, which is a manifestation of double enhancements, caused by the plasmon-polariton near-fields of Ag particles, on the population inversion of laser dye molecules and the optical energy density of lasing modes. The noticeable quenching of lasing resonances in a weak applied field is due to the dynamic light scattering by irregular director fluctuations of the NLC host, which wash out the coherent interference among different particle palsmon-polariton fields. This provides a proof to support that the present lasing resonances are very sensitive to the dielectric perturbations in the host medium and thus are likely associated with some coupled plasmonic oscillations of metal nanopartic...

  18. Anomalously strong plasmon resonances in aluminium bronze by modification of the electronic density-of-states

    Science.gov (United States)

    Shahcheraghi, N.; Keast, V. J.; Gentle, A. R.; Arnold, M. D.; Cortie, M. B.

    2016-10-01

    We use a combination of experimental measurements and density functional theory calculations to show that modification of the band structure of Cu by additions of Al causes an unexpected enhancement of the dielectric properties. The effect is optimized in alloys with Al contents between 10 and 15 at.% and would result in strong localized surface plasmon resonances at suitable wavelengths of light. This result is surprising as, in general, alloying of Cu increases its DC resistivity and would be expected to increase optical loss. The wavelengths for the plasmon resonances in the optimized alloy are significantly blue-shifted relative to those of pure Cu and provide a new material selection option for the range 2.2-2.8 eV.

  19. Sub-micron surface plasmon resonance sensor systems

    Science.gov (United States)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2013-01-01

    Wearable or implantable devices combining microfluidic control of sample and reagent flow and micro-cavity surface plasmon resonance sensors functionalized with surface treatments or coatings capable of specifically binding to target analytes, ligands, or molecules in a bodily fluid are provided. The devices can be used to determine the presence and concentration of target analytes in the bodily fluids and thereby help diagnose, monitor or detect changes in disease conditions.

  20. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Asha; Jayabalan, J; Chari, Rama [Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Srivastava, Himanshu [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Oak, S M, E-mail: jjaya@rrcat.gov.i [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2010-08-25

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  1. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.

    Science.gov (United States)

    Lin, Linhan; Peng, Xiaolei; Wang, Mingsong; Scarabelli, Leonardo; Mao, Zhangming; Liz-Marzán, Luis M; Becker, Michael F; Zheng, Yuebing

    2016-09-21

    Reversible assembly of plasmonic nanoparticles can be used to modulate their structural, electrical, and optical properties. Common and versatile tools in nanoparticle manipulation and assembly are optical tweezers, but these require tightly focused and high-power (10-100 mW/μm(2)) laser beams with precise optical alignment, which significantly hinders their applications. Here we present light-directed reversible assembly of plasmonic nanoparticles with a power intensity below 0.1 mW/μm(2). Our experiments and simulations reveal that such a low-power assembly is enabled by thermophoretic migration of nanoparticles due to the plasmon-enhanced photothermal effect and the associated enhanced local electric field over a plasmonic substrate. With software-controlled laser beams, we demonstrate parallel and dynamic manipulation of multiple nanoparticle assemblies. Interestingly, the assemblies formed over plasmonic substrates can be subsequently transported to nonplasmonic substrates. As an example application, we selected surface-enhanced Raman scattering spectroscopy, with tunable sensitivity. The advantages provided by plasmonic assembly of nanoparticles are the following: (1) low-power, reversible nanoparticle assembly, (2) applicability to nanoparticles with arbitrary morphology, and (3) use of simple optics. Our plasmon-enhanced thermophoretic technique will facilitate further development and application of dynamic nanoparticle assemblies, including biomolecular analyses in their native environment and smart drug delivery.

  2. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots

    Science.gov (United States)

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-11-01

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.

  3. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots.

    Science.gov (United States)

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-11-22

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.

  4. In situ controllable synthesis of novel surface plasmon resonance-enhanced Ag2WO4/Ag/Bi2MoO6 composite for enhanced and stable visible light photocatalyst

    Science.gov (United States)

    Lv, Jiali; Dai, Kai; Zhang, Jinfeng; Lu, Luhua; Liang, Changhao; Geng, Lei; Wang, Zhongliao; Yuan, Guangyu; Zhu, Guangping

    2017-01-01

    A novel hierarchical Ag2WO4/Ag/Bi2MoO6 ternary visible-light-driven photocatalyst was successfully synthesized by in situ doping Ag2WO4 with Bi2MoO6 nanosheets through a facile hydrothermal and photochemical process. The morphology, structure, optical performance and crystallinity of the products were measured by field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS), UV-vis diffuse reflectance spectroscopy (DRS) and X-ray diffraction (XRD). The results showed that Ag2WO4/Ag was uniformly dispersed on the surface of Bi2MoO6 nanosheets. The photocatalytic performance of Ag2WO4/Ag/Bi2MoO6 heterostructures was evaluated by the degradation of methylene blue (MB) under 410 nm LED arrays. The ternary Ag2WO4/Ag/Bi2MoO6 nanocomposite exhibits higher photocatalytic activity than Bi2MoO6 and Ag2WO4. The synergistic effect of Ag2WO4 and Bi2MoO6 could generated more heterojunctions which promoted photoelectrons transfer from Ag2WO4 to Bi2MoO6, leading to the improvement of photocatalytic performance by photoelectrons-holes recombination suppression. At the same time, the surface plasmon resonance of Ag2WO4/Ag/Bi2MoO6 is another crucial reason for the high photocatalytic performance of organic pollutants degradation. And the 20 wt% Ag2WO4-loaded Bi2MoO6 shows the optimal photocatalytic performance in the degradation of MB. In addition, the ternary composites can be easily reclaimed by precipitation and exhibits high stability of photocatalytic degradation after five recycles.

  5. Plasmonic Nanostructure for Enhanced Light Absorption in Ultrathin Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Jinna He

    2012-01-01

    Full Text Available The performances of thin film solar cells are considerably limited by the low light absorption. Plasmonic nanostructures have been introduced in the thin film solar cells as a possible solution around this issue in recent years. Here, we propose a solar cell design, in which an ultrathin Si film covered by a periodic array of Ag strips is placed on a metallic nanograting substrate. The simulation results demonstrate that the designed structure gives rise to 170% light absorption enhancement over the full solar spectrum with respect to the bared Si thin film. The excited multiple resonant modes, including optical waveguide modes within the Si layer, localized surface plasmon resonance (LSPR of Ag stripes, and surface plasmon polaritons (SPP arising from the bottom grating, and the coupling effect between LSPR and SPP modes through an optimization of the array periods are considered to contribute to the significant absorption enhancement. This plasmonic solar cell design paves a promising way to increase light absorption for thin film solar cell applications.

  6. Super-Period Gold Nanodisc Grating-Enabled Surface Plasmon Resonance Spectrometer Sensor.

    Science.gov (United States)

    Tian, Xueli; Guo, Hong; Bhatt, Ketan H; Zhao, Song Q; Wang, Yi; Guo, Junpeng

    2015-10-01

    We experimentally demonstrate a surface plasmon resonance spectrometer sensor by using an e-beam-patterned super-period gold nanodisc grating on a glass substrate. The super-period gold nanodisc grating has a small subwavelength period and a large diffraction grating period. The small subwavelength period enhances localized surface plasmon resonance, and the large diffraction grating period diffracts surface plasmon resonance radiation into different directions corresponding to different wavelengths. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD) in addition to the traditional way of measurement using an external optical spectrometer in the zeroth order transmission. A surface plasmon resonance sensor for the bovine serum albumin protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  7. Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation.

    Science.gov (United States)

    Yanai, Avner; Grajower, Meir; Lerman, Gilad M; Hentschel, Mario; Giessen, Harald; Levy, Uriel

    2014-05-27

    We present a comprehensive experimental and theoretical study on the near- and far-field properties of plasmonic oligomers using radially and azimuthally polarized excitation. These unconventional polarization states are perfectly matched to the high spatial symmetry of the oligomers and thus allow for the excitation of some of the highly symmetric eigenmodes of the structures, which cannot be excited by linearly polarized light. In particular, we study hexamer and heptamer structures and strikingly find very similar optical responses, as well as the absence of a Fano resonance. Furthermore, we investigate the near-field distributions of the oligomers using near-field scanning optical microscopy (NSOM). We observe significantly enhanced near-fields, which arise from efficient excitation of the highly symmetric eigenmodes by the radially and azimuthally polarized light fields. Our study opens up possibilities for tailored light-matter interaction, combining the design freedom of complex plasmonic structures with the remarkable properties of radially and azimuthally polarized light fields.

  8. Resonant scattering of surface plasmon polaritons by dressed quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong; Cardimona, Dave [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Easter, Michelle [Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Maradudin, A. A. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lin, Shawn-Yu [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Zhang, Xiang [Department of Mechanical Engineering, 3112 Etcheverry Hall, University of California at Berkeley, Berkeley, California 94720 (United States)

    2014-06-23

    The resonant scattering of surface plasmon-polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In contrast to non-resonant scattering by a localized dielectric surface defect, a strong resonant peak in the spectrum of the scattered field is predicted that is accompanied by two side valleys. The peak height depends nonlinearly on the amplitude of SPP waves, reflecting the feedback dynamics from a photon-dressed electron-hole plasma inside the quantum dots. This unique behavior in the scattered field peak strength is correlated with the occurrence of a resonant dip in the absorption spectrum of SPP waves due to the interband photon-dressing effect. Our result on the scattering of SPP waves may be experimentally observable and applied to spatially selective illumination and imaging of individual molecules.

  9. Multicolor surface plasmon resonance imaging of ink jet-printed protein microarrays.

    Science.gov (United States)

    Singh, Bipin K; Hillier, Andrew C

    2007-07-15

    We report a technique that utilizes surface plasmon resonance dispersion as a mechanism to provide multicolor contrast for imaging thin molecular films. Illumination of gold surfaces with p-polarized white light in the Kretschmann configuration produces distinct reflected colors due to excitation of surface plasmons and the resulting absorption of specific wavelengths from the source light. In addition, these colors transform in response to the formation of thin molecular films. This process represents a simple detection method for distinguishing between films of varying thickness in sensor applications. As an example, we interrogated a protein microarray formed by a commercial drop-on-demand chemical ink jet printer. Submonolayer films of a test protein (bovine serum albumin) were readily detected by this method. Analysis of the dispersion relations and absorbance sensitivities illustrate the performance and characteristics of this system. Higher detection sensitivity was achieved at angles where red wavelengths coupled to surface plasmons. However, improved contrast and spatial resolution occurred when the angle of incidence was such that shorter wavelengths coupled to the surface plasmons. Simplified optics combined with the robust microarray printing platform are used to demonstrate the applicability of this technique as a rapid and versatile, high-throughput tool for label-free detection of adsorbed films and macromolecules.

  10. Nanoscale manipulation of light using topological plasmonic crystals

    Science.gov (United States)

    Liu, Chenxu; Dutt, M. V. Gurudev; Pekker, David

    2016-05-01

    Robust manipulation of light at the nanoscale is an outstanding problem in photonics and quantum optics. Here we propose a topologically inspired solution to this problem. We analyzed a plasmonic crystal composed of an array of parallel nanowires with unequal spacing. In the paraxial approximation, the Helmholtz equation that describes the propagation of light along the nanowires maps onto the Schrödinger equation of the Su-Schrieffer-Heeger (SSH) model. We designed a new type of plasmonic crystal structures which can be used to guide, focus and manipulate light using topological defect modes (i.e. domain walls in the plasmonic crystal). The proposed structures could be useful in coupling free-space optics to quantum emitters such as atoms or color centers.

  11. Molecular resonant dissociation of surface-adsorbed molecules by plasmonic nanoscissors

    Science.gov (United States)

    Zhang, Zhenglong; Sheng, Shaoxiang; Zheng, Hairong; Xu, Hongxing; Sun, Mengtao

    2014-04-01

    The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis, photosynthesis and the degradation of plastic, it is hard to break individual molecular bonds for those molecules adsorbed on the surface because of the weak light-absorption in molecules and the redistribution of the resulting vibrational energy both inside the molecule and to its surrounding environment. Here we show how to overcome these obstacles with a plasmonic hot-electron mediated process and demonstrate a new method that allows the sensitive control of resonant dissociation of surface-adsorbed molecules by `plasmonic' scissors. To that end, we used a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup to dissociate resonantly excited NC2H6 fragments from Malachite green. The surface plasmons (SPs) excited at the sharp metal tip not only enhance the local electric field to harvest the light incident from the laser, but crucially supply `hot electrons' whose energy can be transferred to individual bonds. These processes are resonant Raman, which result in some active chemical bonds and then weaken these bonds, followed by dumping in lots of indiscriminant energy and breaking the weakest bond. The method allows for sensitive control of both the rate and probability of dissociation through their dependence on the density of hot electrons, which can be manipulated by tuning the laser intensity or tunneling current/bias voltage in the HV-TERS setup, respectively. The concepts of plasmonic scissors open up new versatile avenues for the deep understanding of in situ surface-catalyzed chemistry.The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis

  12. Colorimetric plasmon resonance microfluidics on nanohole array sensors

    Directory of Open Access Journals (Sweden)

    Austin Hsiao

    2015-09-01

    Full Text Available We present the label-free colorimetric visualization in microfluidics using plasmon resonance on a large-area and over a wide field-of-view (>100 mm2 nanohole array device called nanoLycurgus Cup Array (nanoLCA. We demonstrate the spectral detection and colorimetric sensing of static solutions of different concentrations of glycerol–water confined in parallel microfluidic channels integrated with nanoLCA. Taking advantage of the large sensor area and the colorimetric sensing capability of nanoLCA, we visualize in real-time the modulation of two immiscible solutions (water and oil, generated with integrated flow-focus microfluidics, in a label-free manner. Finite Element Method (FEM based simulation tool (COMSOL was used to verify the droplet formation in the microfluidics. Finite Difference Time Domain (FDTD electromagnetic simulation was used to identify the resonance modes of the plasmonic sensor. Finally, we demonstrate the real-time monitoring of streptavidin–biotin biomolecular interaction with the plasmonic biosensor.

  13. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Guillermo Bazan; Alexander Mikhailovsky

    2008-08-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is

  14. Guided-mode-resonance coupled localized surface plasmons for dually resonance enhanced Raman scattering sensing

    Science.gov (United States)

    Wang, Zheng; Liu, Chao; Li, Erwen; Chakravarty, Swapnajit; Xu, Xiaochuan; Wang, Alan X.; Fan, D. L.; Chen, Ray T.

    2017-02-01

    Raman scattering spectroscopy is a unique tool to probe vibrational, rotational, and other low-frequency modes of a molecular system and therefore could be utilized to identify chemistry and quantity of molecules. However, the ultralow efficient Raman scattering, which is only 1/109 1/1014 of the excitation light due to the small Raman scattering cross-sections of molecules, have significantly hindered its development in practical sensing applications. The discovery of surface-enhanced Raman scattering (SERS) in the 1970s and the significant progress in nanofabrication technique, provide a promising solution to overcome the inherent issues of Raman spectroscopy. It is found that In the vicinity of nanoparticles and their junctions, the Raman signals of molecules can be significantly improved by an enhancement factor as high as 1010, due to the ultrahigh electric field generated by the localized surface plasmons resonance (LSPR), where the intensity of Raman scattering is proportional to the |E|4. In this work, we propose and demonstrate a new approach combining LSPR from nanocapsules with densely assembled silver nanoparticles (NC-AgNPs) and guidemode- resonance (GMR) from dielectric photonic crystal slabs (PCSs) for SERS substrates with robustly high performance.

  15. Enhanced optical second harmonic generation in hybrid polymer nanoassemblies based on coupled surface plasmon resonance of a gold nanoparticle array

    Science.gov (United States)

    Ishifuji, Miki; Mitsuishi, Masaya; Miyashita, Tokuji

    2006-07-01

    Effective utilization of coupled surface plasmon resonance from gold nanoparticles was demonstrated experimentally for optoelectronic applications based on second-order nonlinear optics. Hybrid polymer nanoassemblies were constructed by manipulating gold nanoparticle arrays with nonlinear optical active polymer nanosheets to investigate the second harmonic generation. The gold nanoparticle arrays were assembled on heterodeposited polymer nanosheets. The second harmonic light intensity was enhanced by a factor of 8. The observed enhancement was attributed to coupling of surface plasmons between two adjacent gold nanoparticles, thereby enhancing the surface electromagnetic field around the nanoparticles at the fundamental light wavelength (1064nm).

  16. Active control of surface plasmon resonance in MoS2-Ag hybrid nanostructures

    CERN Document Server

    Zu, Shuai; Gong, Yongji; Ajayan, Pulickel M; Fang, Zheyu

    2016-01-01

    Molybdenum disulfide (MoS2) monolayers have attracted much attention for their novel optical properties and efficient light-matter interactions. When excited by incident laser, the optical response of MoS2 monolayers was effectively modified by elementary photo-excited excitons owing to their large exciton binding energy, which can be facilitated for the optical-controllable exciton-plasmon interactions. Inspired by this concept, we experimentally investigated active light control of surface plasmon resonance (SPR) in MoS2-Ag hybrid nanostructures. The white light spectra of SPR were gradually red-shifted by increasing laser power, which was distinctly different from the one of bare Ag nanostructure. This spectroscopic tunability can be further controlled by near-field coupling strength and polarization state of light, and selectively applied to the control of plasmonic dark mode. An analytical Lorentz model for photo-excited excitons induced modulation of MoS2 dielectric function was developed to explain the...

  17. UV Nano Lights - Nonlinear Quantum Dot-Plasmon Coupling

    Science.gov (United States)

    2016-06-20

    AFRL-AFOSR-JP-TR-2016-0072 UV Nano-Lights - Nonlinear Quantum Dot-Plasmon Coupling Eric Waclawik QUEENSLAND UNIVERSITY OF TECHNOLOGY Final Report 06...Final 3.  DATES COVERED (From - To)  03 Feb 2014 to 02 Feb 2016 4.  TITLE AND SUBTITLE UV Nano-Lights - Nonlinear Quantum Dot-Plasmon Coupling 5a...CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4056 5c.   PROGRAM ELEMENT NUMBER 61102F 6.  AUTHOR(S) Eric Waclawik 5d.  PROJECT NUMBER 5e.  TASK NUMBER 5f

  18. Plasmon resonance in new AsSb–AlGaAs metal–semiconductor metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Ushanov, V. I., E-mail: ushanovvi@mail.ioffe.ru; Chaldyshev, V. V., E-mail: chald.gvg@mail.ioffe.ru; Bert, N. A.; Nevedomsky, V. N.; Il’inskaya, N. D.; Lebedeva, N. M. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Preobrazhenskii, V. V.; Putyato, M. A.; Semyagin, B. R. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-12-15

    Optical extinction in a metal–semiconductor metamaterial based on a AlGaAs matrix, which contains random arrays of AsSb plasmon nanoinclusions, is studied. The metamaterial is grown by molecular beam epitaxy at a low temperature. A system of nanoinclusions of various sizes is formed by annealing at temperatures 400, 500, and 600°C. Investigation of the sample’s microstructure by transmission electron microscopy shows that the average size of nanoinclusions at the used annealing temperatures is 4–7, 5–8, and 6–9 nm, respectively. It is shown experimentally that AsSb nanoparticle arrays in the AlGaAs matrix cause the resonant absorption of light. It is established that the plasmon-resonance parameters found in the metamaterial are almost independent of the sizes of the AsSb nanoinclusions. The plasmon-resonance energy is (1.47 ± 0.01) eV, while its full width at half maximum is (0.19 ± 0.01) eV.

  19. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    Science.gov (United States)

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-09

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.

  20. Application of Surface Plasmonics for Semiconductor Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed

    This thesis addresses the lack of an efficient semiconductor light source at green emission colours. Considering InGaN based quantum-well (QW) light-emitters and light-emitting diodes (LEDs), various ways of applying surface plasmonics and nano-patterning to improve the efficiency, are investigated....... By placing metallic thin films or nanoparticles (NPs) in the near-field of QW light-emitters, it is possible to improve their internal quantum efficiency (IQE) through the Purcell enhancement effect. It has been a general understanding that in order to achieve surface plasmon (SP) coupling with QWs...... is presented to obtain light extraction efficiency (LEE) improvement through nano-patterning, and IQE improvement through SP-QW coupling. Considering the fabrication process aspect, dry-etching damage on the semiconductor light-emitters from the nano-patterning is also addressed. Different ion-damage treatment...

  1. Observation of optical domino modes in arrays of non-resonant plasmonic nanoantennas

    Science.gov (United States)

    Sinev, Ivan S.; Samusev, Anton K.; Voroshilov, Pavel M.; Mukhin, Ivan S.; Denisyuk, Andrey I.; Guzhva, Mikhail E.; Belov, Pavel A.; Simovski, Constantin R.

    2014-09-01

    Domino modes are highly-confined collectivemodes that were first predicted for a periodic arrangement of metallic parallelepipeds in far-infrared region. The main feature of domino modes is the advantageous distribution of the local electric field, which is concentrated between metallic elements (hot spots), while its penetration depth in metal is much smaller than the skin-depth. Therefore, arrays of non-resonant plasmonic nanoantennas exhibiting domino modes can be employed as broadband light trapping coatings for thin-film solar cells. However, until now in the excitation of such modes was demonstrated only in numerical simulations. Here, we for the first time demonstrate experimentally the excitation of optical domino modes in arrays of non-resonant plasmonic nanoantennas. We characterize the nanoantenna arrays produced by means of electron beam lithography both experimentally using an aperture-type near-field scanning optical microscope and numerically. The proof of domino modes concept for plasmonic arrays of nanoantennas in the visible spectral region opens new pathways for development of low-absorptive structures for effective focusing of light at the nanoscale.

  2. Plasmonic resonators for enhanced diamond NV- center single photon sources

    OpenAIRE

    Bulu, Irfan; Babinec, Thomas; Hausmann, Birgit; Choy, Jennifer T.; Loncar, Marko

    2011-01-01

    We propose a novel source of non-classical light consisting of plasmonic aperture with single-crystal diamond containing a single Nitrogen-Vacancy (NV) color center. Theoretical calculations of optimal structures show that these devices can simultaneously enhance optical pumping by a factor of 7, spontaneous emission rates by Fp ~ 50 (Purcell factor), and offer collection efficiencies up to 40%. These excitation and collection enhancements occur over a broad range of wavelengths (~30nm), and ...

  3. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    Science.gov (United States)

    Serrano, A.; Rodríguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Monton, C.; Castro, G. R.; García, M. A.

    2012-08-01

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10-3 to 10-5, depending on the particular experiment.

  4. Simultaneous Surface Plasmon Resonance and X-ray Absorption Spectroscopy

    CERN Document Server

    Serrano, A; Collado, V; Rubio-Zuazo, J; Monton, C; Castro, G; García, M A

    2012-01-01

    We present here an experimental set-up to perform simultaneously measurements of surface plasmon resonance (SPR) and X-ray absorption spectroscopy (XAS) in a synchrotron beamline. The system allows measuring in situ and in real time the effect of X-ray irradiation on the SPR curves to explore the interaction of X-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to detect the changes in the electronic configuration of thin films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be carried out. The relative variations in the SPR and XAS spectra that can be detected with this set-up ranges from 10-3 to 10-5, depending on the particular experiment.

  5. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, A. [Instituto de Ceramica y Vidrio (ICV-CSIC), Cantoblanco, 28049 Madrid (Spain); Departamento de Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Rodriguez de la Fuente, O. [Departamento de Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Collado, V.; Rubio-Zuazo, J.; Castro, G. R. [SpLine, Spanish CRG Beamline at the ESRF, F-38043 Grenoble, Cedex 09, France and Instituto de Ciencia de Materiales de Madrid, (ICMM-CSIC), Cantoblanco, 28049 Madrid (Spain); Monton, C. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093 (United States); Garcia, M. A. [Instituto de Ceramica y Vidrio (ICV-CSIC), Cantoblanco, 28049 Madrid (Spain); IMDEA Nanociencia, Cantoblanco, 28049 Madrid (Spain)

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  6. Plasmonic nanoantennas: enhancing light-matter interactions at the nanoscale

    Directory of Open Access Journals (Sweden)

    Patel Shobhit K.

    2015-01-01

    Full Text Available The research area of plasmonics promises devices with ultrasmall footprint operating at ultrafast speeds and with lower energy consumption compared to conventional electronics. These devices will operate with light and bridge the gap between microscale dielectric photonic systems and nanoscale electronics. Recent research advancements in nanotechnology and optics have led to the creation of a plethora of new plasmonic designs. Among the most promising are nanoscale antennas operating at optical frequencies, called nanoantennas. Plasmonic nanoantennas can provide enhanced and controllable light-matter interactions and strong coupling between far-field radiation and localized sources at the nanoscale. After a brief introduction of several plasmonic nanoantenna designs and their well-established radio-frequency antenna counterparts, we review several linear and nonlinear applications of different nanoantenna configurations. In particular, the possibility to tune the scattering response of linear nanoantennas and create robust optical wireless links is presented. In addition, the nonlinear and photodynamic responses of different linear and nonlinear nanoantenna systems are reported. Several future optical devices are envisioned based on these plasmonic nanoantenna configurations, such as low-power nanoswitches, compact ultrafast light sources, nanosensors and efficient energy harvesting systems.

  7. Design and analysis of a photonic crystal fiber based polarization filter using surface plasmon resonance

    Science.gov (United States)

    Yogalakshmi, S.; Selvendran, S.; Sivanantha Raja, A.

    2016-05-01

    A photonic crystal fiber with an active metal nanowire is proposed to act as a polarization filter based on the principle of plasmonic resonance. The light launched into the silica core gets coupled to gold wire inducing surface plasmon resonance, filtering one of the two orthogonally polarized light waves in the third optical communication window. This polarization filtering characteristic is analyzed using the finite element method. The change in the performance behaviour of the proposed filter is investigated by increasing the number of embedded gold wires, altering their positions and varying the diameter of gold wire. It is found that enhanced absorption of the core guided mode is achieved by replacing the filled metal nanowire with a metal coating around the air hole. Filtering of any or both polarizations can be attained by suitably positioning the metal wires. Confinement loss as high as 348.55 and 302 dB cm-1 for y-polarized and x-polarized lights respectively are attained at 1.52 and 1.56 μm respectively for single gold wire. The filter acts as a single polarization filter filtering x-polarized light with a confinement loss value of 187.67 dB cm-1 when two gold nanowires are placed adjacently. The same structure acts as the filter for y-polarized light by employing gold coating exhibiting an increased confinement loss of 406.34 dB cm-1 at 1.64 μm.

  8. Unified theory of surface-plasmonic enhancement and extinction of light transmission through metallic nanoslit arrays.

    Science.gov (United States)

    Yoon, Jae Woong; Lee, Jun Hyung; Song, Seok Ho; Magnusson, Robert

    2014-07-14

    Metallic nanostructures are of immense scientific interest owing to unexpectedly strong interaction with light in deep subwavelength scales. Resonant excitations of surface and cavity plasmonic modes mediate strong light localization in nanoscale objects. Nevertheless, the role of surface plasmon-polaritons (SPP) in light transmission through a simple one-dimensional system with metallic nanoslits has been the subject of longstanding debates. Here, we propose a unified theory that consistently explains the controversial effects of SPPs in metallic nanoslit arrays. We show that the SPPs excited on the entrance and exit interfaces induce near-total internal reflection and abrupt phase change of the slit-guided mode. These fundamental effects quantitatively describe positive and negative effects of SPP excitation in a self-consistent manner. Importantly, the theory shows excellent agreement with rigorous numerical calculations while providing profound physical insight into the properties of nanoplasmonic systems.

  9. Linearly polarized light emission from quantum dots with plasmonic nanoantenna arrays.

    Science.gov (United States)

    Ren, Mengxin; Chen, Mo; Wu, Wei; Zhang, Lihui; Liu, Junku; Pi, Biao; Zhang, Xinzheng; Li, Qunqing; Fan, Shoushan; Xu, Jingjun

    2015-05-13

    Polarizers provide convenience in generating polarized light, meanwhile their adoption raises problems of extra weight, cost, and energy loss. Aiming to realize polarizer-free polarized light sources, herein, we present a plasmonic approach to achieve direct generation of linearly polarized optical waves at the nanometer scale. Periodic slot nanoantenna arrays are fabricated, which are driven by the transition dipole moments of luminescent semiconductor quantum dots. By harnessing interactions between quantum dots and scattered fields from the nanoantennas, spontaneous emission with a high degree of linear polarization is achieved from such hybrid antenna system with polarization perpendicular to antenna slot. We also demonstrate that the polarization is engineerable in aspects of both spectrum and magnitude by tailoring plasmonic resonance of the antenna arrays. Our findings will establish a basis for the development of innovative polarized light-emitting devices, which are useful in optical displays, spectroscopic techniques, optical telecommunications, and so forth.

  10. Spoof surface plasmon Fabry-Perot open resonators in a surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen; Xu, Hongyi; Zhang, Youming; Zhang, Baile

    2016-01-01

    We report on the proposal and experimental realization of a spoof surface plasmon Fabry-Perot (FP) open resonator in a surface-wave photonic crystal. This surface-wave FP open resonator is formed by introducing a finite line defect in a surface-wave photonic crystal. The resonance frequencies of the surface-wave FP open resonator lie exactly within the forbidden band gap of the surface-wave photonic crystal and the FP open resonator uses this complete forbidden band gap to concentrate surface waves within a subwavelength cavity. Due to the complete forbidden band gap of the surface-wave photonic crystal, a new FP plasmonic resonance mode that exhibits monopolar features which is missing in traditional FP resonators and plasmonic resonators is demonstrated. Near-field response spectra and mode profiles are presented in the microwave regime to characterize properties of the proposed FP open resonator for spoof surface plasmons.

  11. Magnetic Plasmon Sensing in Twisted Split-Ring Resonators

    Directory of Open Access Journals (Sweden)

    J. X. Cao

    2012-01-01

    Full Text Available We studied the sensing properties of stereo-SRRs metamaterials composed from two twisted split-ring resonators (SRRs. Due to the strong hybridization effect in the system, the polarization state of the transmitted wave is greatly changed at resonances. Since the stereo-SRRs structure is strongly coupled to the surrounding medium, the polarization change of the transmitted waves is quite sensitive to the refractive index change of the environment medium. The polarization ratio PRtran = Ty/Tx is used as sensing parameter and its figure of merit can reach 22.3 at the hybridized magnetic plasmon resonance. The results showed that the stereo-SRRs metamaterial can be applied to optical sensors an or other related field.

  12. Plasmonic Nanoparticle Networks for Light and Heat Concentration

    CERN Document Server

    Sanchot, Audrey; Marty, Renaud; Arbouet, Arnaud; Quidant, Romain; Girard, Christian; Dujardin, Erik

    2012-01-01

    Self-assembled Plasmonic Nanoparticle Networks (PNN) composed of chains of 12-nm diameter crystalline gold nanoparticles exhibit a longitudinally coupled plasmon mode cen- tered at 700 nm. We have exploited this longitudinal absorption band to efficiently confine light fields and concentrate heat sources in the close vicinity of these plasmonic chain net- works. The mapping of the two phenomena on the same superstructures was performed by combining two-photon luminescence (TPL) and fluorescence polarization anisotropy (FPA) imaging techniques. Besides the light and heat concentration, we show experimentally that the planar spatial distribution of optical field intensity can be simply modulated by controlling the linear polarization of the incident optical excitation. On the contrary, the heat production, which is obtained here by exciting the structures within the optically transparent window of biological tissues, is evenly spread over the entire PNN. This contrasts with the usual case of localized heating i...

  13. The nature of transmission resonances in plasmonic metallic gratings

    CERN Document Server

    D'Aguanno, G; Bloemer, M J; de Ceglia, D; Vincenti, M A; Alu', A

    2010-01-01

    Using the Fourier modal method (FMM) we report our analysis of the transmission resonances of a plasmonic grating with sub-wavelength period and extremely narrow slits for wavelengths of the incoming, transverse magnetic (TM)-polarized, radiation ranging from 240nm to 1500nm and incident angles from 0 degree to 90 degree. In particular, we study the case of a silver grating placed in vacuo. Consistent with previous studies on the topic, we highlight that the main mechanism for extraordinary transmission is a TM-Fabry-Perot (FP) branch supported by waveguide modes inside each slit. The TM-FP branch may also interact with surface plasmons (SPs) at the air/Ag interface through the reciprocal lattice vectors of the grating, for periods comparable with the incoming wavelength. When the TM-FP branch crosses a SP branch, a band gap is formed along the line of the SP dispersion. The gap has a Fano-Feshbach resonance at the low frequency band edge and a ridge resonance with extremely long lifetime at the high frequenc...

  14. Graphene plasmonics: multiple sharp Fano resonances in silver split concentric nanoring/disk resonator dimers on a metasurface

    Science.gov (United States)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2015-08-01

    We introduce a platform based on plasmonic metamaterials to design various optical devices. A simple structure brokenring with a nanodisk at the center is utilized to excite and hybridize the plasmon resonant modes. We show that the proposed nanoantenna is able to support strong sub- and superradiant plasmon resonances because of its unique geometrical features. Using the concentric ring/disk in a dimer orientation as a nanoantenna on a multilayer metasurface consisting of graphene monolayer, we induced double sharp plasmonic Fano resonant modes in the transmission window across the visible to the near-infrared region. Considering the strong polarization-dependency of the broken-ring/disk dimer antenna, it is shown that the proposed plasmonic metamaterial can be tailored as an optical router device for fast switching applications. This understanding opens new paths to employ plasmonic metamaterials with simple geometrical nanoscale blocks for sensing and switching applications.

  15. Plasmonic nanostructures to enhance catalytic performance of zeolites under visible light

    Science.gov (United States)

    Zhang, Xingguang; Ke, Xuebin; Du, Aijun; Zhu, Huaiyong

    2014-01-01

    Light absorption efficiency of heterogeneous catalysts has restricted their photocatalytic capability for commercially important organic synthesis. Here, we report a way of harvesting visible light efficiently to boost zeolite catalysis by means of plasmonic gold nanoparticles (Au-NPs) supported on zeolites. Zeolites possess strong Brønsted acids and polarized electric fields created by extra-framework cations. The polarized electric fields can be further intensified by the electric near-field enhancement of Au-NPs, which results from the localized surface plasmon resonance (LSPR) upon visible light irradiation. The acetalization reaction was selected as a showcase performed on MZSM-5 and Au/MZSM-5 (M = H+, Na+, Ca2+, or La3+). The density functional theory (DFT) calculations confirmed that the intensified polarized electric fields played a critical role in stretching the C = O bond of the reactants of benzaldehyde to enlarge their molecular polarities, thus allowing reactants to be activated more efficiently by catalytic centers so as to boost the reaction rates. This discovery should evoke intensive research interest on plasmonic metals and diverse zeolites with an aim to take advantage of sunlight for plasmonic devices, molecular electronics, energy storage, and catalysis.

  16. Plasmonic Tamm states: second enhancement of light inside the plasmonic waveguide

    CERN Document Server

    Xiang, Yinxiao; Cai, Wei; Zhang, Xinzheng; Ying, Cuifeng; Xu, Jingjun

    2014-01-01

    A type of Tamm states inside metal-insulator-metal (MIM) waveguides is proposed. An impedance based transfer matrix method is adopted to study and optimize it. With the participation of the plasmonic Tamm states, ?fields could be enhanced twice: the f?rst is due to the coupling between a normal waveguide and a nanoscaled plasmonic waveguide and the second is due to the strong localization and ?field enhancement of Tamm states. As shown in our 2D coupling con?guration, |E|^2 is enhanced up to 1050 times when 1550 nm light is coupled from an 300 nm Si slab waveguide into an 40 nm MIM waveguide.

  17. Formation of metal nanoparticles in silicon nanopores: Plasmon resonance studies

    Science.gov (United States)

    Polisski, S.; Goller, B.; Heck, S. C.; Maier, S. A.; Fujii, M.; Kovalev, D.

    2011-01-01

    We present a method for the formation of noble metal nanoparticle ensembles in nanostructured silicon. The key idea is based on the unique property of the large reduction potential of extended internal hydrogen-terminated porous silicon surfaces. The process of metal nanoparticle formation in porous silicon was experimentally traced using their optical plasmon resonance response. We also demonstrate that bimetallic compounds can be formed in porous silicon and that their composition can be controlled using this technique. Experimental results were found to contradict partially with considerations based on Mie theory.

  18. Encoded and multiplexed surface plasmon resonance sensor platform.

    Science.gov (United States)

    Kastl, Katja F; Lowe, Christopher R; Norman, Carl E

    2008-10-15

    We present a flexible new sensor system that combines the joint advantages of (i) discretely functionalized, code-bearing, microparticles and (ii) label-free detection using grating-coupled surface plasmon resonance. This system offers the possibility of simultaneously investigating the real-time binding kinetics of a variety of molecular interactions. One single multiplexed assay could employ a wide range of immobilization chemistries, surface preparation methods, and formats. Thus, the new system offers a very high level of assay conformability to the end user, particularly when compared to fixed microarrays.

  19. Surface plasmon resonance imaging for parallelized detection of protein biomarkers

    Science.gov (United States)

    Piliarik, Marek; Párová, Lucie; Vaisocherová, Hana; Homola, Jiří

    2009-05-01

    We report a novel high-throughput surface plasmon resonance (SPR) biosensor for rapid and parallelized detection of protein biomarkers. The biosensor is based on a high-performance SPR imaging sensor with polarization contrast and internal referencing which yields a considerably higher sensitivity and resolution than conventional SPR imaging systems (refractive index resolution 2 × 10-7 RIU). We combined the SPR imaging biosensor with microspotting to create an array of antibodies. DNA-directed protein immobilization was utilized for the spatially resolved attachment of antibodies. Using Human Chorionic Gonadotropin (hCG) as model protein biomarker, we demonstrated the potential for simultaneous detection of proteins in up to 100 channels.

  20. Surface Plasmon Resonance Sensors Based on Polymer Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    Rong-Sheng Zheng; Yong-Hua Lu; Zhi-Guo Xie; Jun Tao; Kai-Qun Lin; Hai Ming

    2008-01-01

    Surface Plasmon Resonance (SPR) is a powerful technique for directly sensing in biological studies, chemical detection and environmental pollution monitoring. In this paper, we present polymer optical fiber application in SPR sensors, including wavelength interrogation surface enhanced Raman scattering SPR sensor and surface enhanced Raman scattering (SERS) probe.Long-period fiber gratings are fabricated on single mode polymer optical fiber (POF) with 120 μm period and 50% duty cycle. The polarization characteristic of this kind of birefringent grating is studied. Theoretical analysis shows it will be advantageous in SPR sensing applications.

  1. Optical cavity coupled surface plasmon resonance sensing for enhanced sensitivity

    Institute of Scientific and Technical Information of China (English)

    Zheng Zheng; Xin Zhao; Jinsong Zhu; Jim Diamond

    2008-01-01

    A surface plasmon resonance (SPR) sensing system based on the optical cavity enhanced detection tech-nique is experimentally demonstrated. A fiber-optic laser cavity is built with a SPR sensor inside. By measuring the laser output power when the cavity is biased near the threshold point, the sensitivity, defined as the dependence of the output optical intensity on the sample variations, can be increased by about one order of magnitude compared to that of the SPR sensor alone under the intensity interrogation scheme. This could facilitate ultra-high sensitivity SPR biosensing applications. Further system miniaturization is possible by using integrated optical components and waveguide SPR sensors.

  2. Development of a fiber optic sensor based on gold island plasmon resonance

    Science.gov (United States)

    Meriaudeau, Fabrice; Downey, Todd R.; Passian, A.; Wig, A. G.; Mangeant, S.; Crilly, P. B.; Ferrell, Trinidad L.

    1998-12-01

    We present an optical fiber chemical sensor based on gold- island surface plasmon excitation. The sensing part of the fiber is a one inch portion on which cladding has been removed and onto which a thin layer of gold (40 angstroms) has been deposited to form a particulate surface. Annealing the gold reshapes the particles and produces an absorbance near 535 nm when the only medium residing outside the surface is air. A range of wavelengths provided by a white light source and monochromator is launched through the optical fiber. The transmitted spectra display shifts in the resonance absorption due to any changes in the medium surrounding, or adsorbed onto the fiber. Experimental results for the sensitivity and dynamic range in the measurement of liquid solutions are in agreement with a basic theoretical model which characterizes the surface plasmon using nonretarded electrodynamics. Furthermore, the model assumes the particles are isolated oblate spheroids with a distribution of eccentricities.

  3. Plasmon resonant gold-coated liposomes for spectrally coded content release

    OpenAIRE

    Leung, Sarah J.; Troutman, Timothy S.; Romanowski, Marek

    2009-01-01

    We have recently introduced liposome-supported plasmon resonant gold nanoshells (Troutman et al., Adv. Mater. 2008, 20, 2604–2608). These plasmon resonant gold-coated liposomes are degradable into components of a size compatible with renal clearance, potentially enabling their use as multifunctional agents in applications in nanomedicine, including imaging, diagnostics, therapy, and drug delivery. The present research demonstrates that laser illumination at the wavelength matching the plasmon...

  4. Transparency windows of the plasmonic nanostructure composed of C-shaped and U-shaped resonators

    Science.gov (United States)

    Zhou, Xin; Ouyang, Min; Tang, Bin; Wang, Zhibing; He, Jun

    2017-02-01

    We in this study investigated numerically the plasmon-induced transparency (PIT) effect on the plasmonic nanostructures composed of C-shaped and U-shaped resonators by using finite difference time domain (FDTD) method. The PIT effect in the nanosystem stemmed from the near field coupling between the bright and dark modes. The nanostructure composed of three resonators exhibited double PIT effect. And the PIT spectral response of the proposed nanostructures was demonstrated having a dependence on the parameters of the compound plasmonic system such as the widths of C-shaped resonator and U-shaped resonator, the resonators spatial arrangement and the edge-to-edge distance between the adjacent resonators. The electric and magnetic field distributions of certain resonance wavelengths were also given to discuss the underlying physics. The resonator design strategy opens up a rich pathway to develop the building block of systems for all optical switching, plasmonic sensing applications.

  5. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers.

    Science.gov (United States)

    Liu, Xiaotong; Li, Dabing; Sun, Xiaojuan; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren

    2015-07-28

    The tunability of surface plasmon resonance can enable the highest degree of localised surface plasmon enhancement to be achieved, based on the emitting or absorbing wavelength. In this article, tunable dipole surface plasmon resonances of Ag nanoparticles (NPs) are realized by modification of the SiO2 dielectric layer thicknesses. SiO2 layers both beneath and over the Ag NPs affected the resonance wavelengths of local surface plasmons (LSPs). By adjusting the SiO2 thickness beneath the Ag NPs from 5 nm to 20 nm, the dipole surface plasmon resonances shifted from 470 nm to 410 nm. Meanwhile, after sandwiching the Ag NPs by growing SiO2 before NPs fabrication and then overcoating the NPs with various SiO2 thicknesses from 5 nm to 20 nm, the dipole surface plasmon resonances changed from 450 nm to 490 nm. The SiO2 cladding dielectric layer can tune the Ag NP surface charge, leading to a change in the effective permittivity of the surrounding medium, and thus to a blueshift or redshift of the resonance wavelength. Also, the quadrupole plasmon resonances were suppressed by the SiO2 cladding layer because the dielectric SiO2 can suppress level splitting of surface plasmon resonances caused by the Ag NP coupling effect.

  6. Ultra-thin titanium nanolayers for plasmon-assisted enhancement of bioluminescence of chloroplast in biological light emitting devices

    Science.gov (United States)

    Hsun Su, Yen; Hsu, Chia-Yun; Chang, Chung-Chien; Tu, Sheng-Lung; Shen, Yun-Hwei

    2013-08-01

    Ultra-thin titanium films were deposited via ultra-high vacuum ion beam sputter deposition. Since the asymmetric electric field of the metal foil plane matches the B-band absorption of chlorophyll a, the ultra-thin titanium nanolayers were able to generate surface plasmon resonance, thus enhancing the photoluminescence of chlorophyll a. Because the density of the states of plasmon resonance increases, the enhancement of photoluminescence also rises. Due to the biocompatibility and inexpensiveness of titanium, it can be utilized to enhance the bioluminescence of chloroplast in biological light emitting devices, bio-laser, and biophotonics.

  7. Ultra-thin titanium nanolayers for plasmon-assisted enhancement of bioluminescence of chloroplast in biological light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Hsun Su, Yen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Hsu, Chia-Yun; Chang, Chung-Chien [Science and Technology of Accelerator Light Source, Hsinchu 300, Taiwan (China); Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China); Tu, Sheng-Lung; Shen, Yun-Hwei [Department of Resource Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2013-08-05

    Ultra-thin titanium films were deposited via ultra-high vacuum ion beam sputter deposition. Since the asymmetric electric field of the metal foil plane matches the B-band absorption of chlorophyll a, the ultra-thin titanium nanolayers were able to generate surface plasmon resonance, thus enhancing the photoluminescence of chlorophyll a. Because the density of the states of plasmon resonance increases, the enhancement of photoluminescence also rises. Due to the biocompatibility and inexpensiveness of titanium, it can be utilized to enhance the bioluminescence of chloroplast in biological light emitting devices, bio-laser, and biophotonics.

  8. Resonances in -light nucleus systems

    Indian Academy of Sciences (India)

    K P Khemchandani; N G Kelkar; M Nowakowski; B K Jain

    2006-04-01

    We locate resonances in -light nucleus elastic scattering using the time delay method. We solve few-body equations within the finite rank approximation in order to calculate the -matrices and hence the time delay for the - 3He and - 4He systems. We find a resonance very close to the threshold in - 3 He elastic scattering, at about 0.5 MeV above threshold with a width of ∼ 2 MeV. The calculations also hint at the presence of sub-threshold states in both the cases.

  9. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach.

    Science.gov (United States)

    Ding, Wendu; Hsu, Liang-Yan; Schatz, George C

    2017-02-14

    This paper presents a new real-time electrodynamics approach for determining the rate of resonance energy transfer (RET) between two molecules in the presence of plasmonic or other nanostructures (inhomogeneous absorbing and dispersive media). In this approach to plasmon-coupled resonance energy transfer (PC-RET), we develop a classical electrodynamics expression for the energy transfer matrix element which is evaluated using the finite-difference time-domain (FDTD) method to solve Maxwell's equations for the electric field generated by the molecular donor and evaluated at the position of the molecular acceptor. We demonstrate that this approach yields RET rates in homogeneous media that are in precise agreement with analytical theory based on quantum electrodynamics (QED). In the presence of gold nanoparticles, our theory shows that the long-range decay of the RET rates can be significantly modified by plasmon excitation, with rates increased by as much as a factor of 10(6) leading to energy transfer rates over hundreds of nm that are comparable to that over tens of nm in the absence of the nanoparticles. These promising results suggest important future applications of the PC-RET in areas involving light harvesting or sensing, where energy transfer processes involving inhomogeneous absorbing and dispersive media are commonplace.

  10. Plasmon resonances on gold nanowires directly drawn in a step-index fiber.

    Science.gov (United States)

    Tyagi, H K; Lee, H W; Uebel, P; Schmidt, M A; Joly, N; Scharrer, M; Russell, P St J

    2010-08-01

    We report the successful production of high-quality gold wires, with diameters down to 260nm, by direct fiber drawing from a gold-filled fused-silica cane. The stack-and-draw technique makes it straightforward to incorporate a conventional step-index core, adjacent to the gold wire, in the cane. In the drawn fiber, strong coupling of light from the glass core to SPP resonances on the gold wire is observed at specific well-defined wavelengths. Such embedded wires have many potential applications, for example, as nanoscale electrodes, in nonlinear optical plasmonics, and as near-field scanning optical microscope tips.

  11. Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing

    Science.gov (United States)

    Zhang, Yu; Wen, Fangfang; Zhen, Yu-Rong; Nordlander, Peter; Halas, Naomi J.

    2013-01-01

    Plasmonic nanoclusters, an ordered assembly of coupled metallic nanoparticles, support unique spectral features known as Fano resonances due to the coupling between their subradiant and superradiant plasmon modes. Within the Fano resonance, absorption is significantly enhanced, giving rise to highly localized, intense near fields with the potential to enhance nonlinear optical processes. Here, we report a structure supporting the coherent oscillation of two distinct Fano resonances within an individual plasmonic nanocluster. We show how this coherence enhances the optical four-wave mixing process in comparison with other double-resonant plasmonic clusters that lack this property. A model that explains the observed four-wave mixing features is proposed, which is generally applicable to any third-order process in plasmonic nanostructures. With a larger effective susceptibility χ(3) relative to existing nonlinear optical materials, this coherent double-resonant nanocluster offers a strategy for designing high-performance third-order nonlinear optical media. PMID:23690571

  12. 2D Plasmonics for Enabling Novel Light-Matter Interactions

    CERN Document Server

    Kaminer, Ido; Zhen, Bo; Joannopoulos, John D; Soljacic, Marin

    2015-01-01

    The physics of light-matter interactions is strongly constrained by both the small value of the fine-structure constant and the small size of the atom. Overcoming these limitations is a long-standing challenge. Recent theoretical and experimental breakthroughs have shown that two dimensional systems, such as graphene, can support strongly confined light in the form of plasmons. These 2D systems have a unique ability to squeeze the wavelength of light by over two orders of magnitude. Such high confinement requires a revisitation of the main assumptions of light-matter interactions. In this letter, we provide a general theory of light-matter interactions in 2D systems which support plasmons. This theory reveals that conventionally forbidden light-matter interactions, such as: high-order multipolar transitions, two-plasmon spontaneous emission, and spin-flip transitions can occur on very short time-scales - comparable to those of conventionally fast transitions. Our findings enable new platforms for spectroscopy...

  13. Controlling light emission performance with hybrid phase-change plasmonic crystals (Conference Presentation)

    Science.gov (United States)

    Kao, Tsung Sheng

    2016-09-01

    In this paper, we demonstrate a novel approach in which the lattice resonances are tunable in a hybrid plasmonic crystal incorporating the phase-change material Ge2Sb2Te5 (GST) as a 20-nm-thick layer sandwiched between a gold nanodisk array and a quartz substrate. Non-volatile tuning of lattice resonances over a range Δλ of about 500 nm is achieved experimentally via intermediate phase states of the GST layer. This work demonstrates the efficacy and ease of resonance tuning via GST in the near infrared, suggesting the possibility to design broadband non-volatile tunable devices for optical modulation, switching, sensing and nonlinear optical devices. Also, with different nanostructure designs, the constituent plasmonic resonators can be selectively excited, generating isolated near-field energy hot-spots with selective excitation under a monochromatic plane wave illumination. Unlike other proposed techniques, our method for energy hot-spot positioning is based on a quantitative control of the crystalline proportions of the phase-change thin film rather than the complicated manipulations of an incident light beam. This makes such a near-field energy controllable template much easier to be implemented. This near-field energy controllable system consists of gold nano-antennas with deep subwavelength spacing and an underlying GST thin layer. Such a hybrid plasmonic system is easy to be implemented and the nanoscale energy hot-spot can be positioned in a large field of view by extending the system with different plasmon resonators, suggesting a further step toward applications such as nano-imaging, bio-assay addressing and nano-circuitry.

  14. Surface plasmon resonance phenomenon of the insulating state polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Umiati, Ngurah Ayu Ketut, E-mail: ngurahayuketutumiati@gmail.com [Jurusan Fisika FMIPA UGM, Sekip Utara Yogyakarta, 55281 (Indonesia); Jurusan Fisika FMIPA Universitas Diponegoro, Jalan Prof. Soedarto, SH Tembalang Semarang 50275 (Indonesia); Triyana, Kuwat; Kamsul [Jurusan Fisika FMIPA UGM, Sekip Utara Yogyakarta, 55281 (Indonesia)

    2015-04-16

    Surface Plasmon Resonance (SPR) phenomenon of the insulating polyaniline (PANI) is has been observed. Surface Plasmon (SP) is the traveled electromagnetic wave that passes through the interface of dielectric metal and excited by attenuated total reflection (ATR) method in Kretschmannn configuration (Au-PANI prism). The resonance condition is observed through the angle of SPR in such condition that SP wave is coupled by the evanescent constant of laser beam. In this research, the laser beam was generated by He–Ne and its wavelength (λ) was 632,8 nm. SPR curve is obtained through observation of incidence angles of the laser beam in prism. SPR phenomenon at the boundary between Au – PANI layer has showed by reflection dip when the laser beam passes through the prism. In this early study, the observation was carried out through simulation Winspall 3.02 software and preliminary compared with some experimental data reported in other referred literatures. The results shows that the optimum layer of Au and polyaniline are 50 and 1,5 nm thick respectively. Our own near future experimental work would be further performed and reported elsewhere.

  15. Synthesis and tuning of gold nanorods with surface plasmon resonance

    Science.gov (United States)

    Shajari, Daryush; Bahari, Ali; Gill, Pooria; Mohseni, Mojtaba

    2017-02-01

    Gold nanostructures in general and gold nanorods in particular due to their plasmon resonance has been employed for many applications, such as biosensors. For the biosensors uses, gold nanorods remain popular and reproducibility of them is the most important and critical. In the present work we used six different CTAB (Hexadecyltrimethylammonium bromide) products and one BDAC (Benzyldimethylhexadecylammonium chloride) with varying silver nitrate concentration in the seed-mediated growth of gold nanostructures. We synthesized gold nanorods with varying aspect ratio up to 5.5 with a longitudinal surface plasmon resonance peak from 670 to 950 nm. We obtained excellent rod-shape gold nanostructures witch were reliable and reproducible with our method based on common seed-mediated growth. The synthesized nanostructures were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD). Here, we report our method in more detail as a user-friendly guide for the production of gold nanorods and tuning of their aspect ratios.

  16. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  17. Selective Two-Photon-Absorption-Induced Reactions of Anthracene-2-Carboxylic Acid on Tunable Plasmonic Substrate with Incoherent Light Source.

    Science.gov (United States)

    Pincella, Francesca; Isozaki, Katsuhiro; Taguchi, Tomoya; Song, Yeji; Miki, Kazushi

    2015-02-01

    In this research, we report the development, characterization and application of various plasmonic substrates (with localized surface plasmon resonance wavelength tunable by gold nanoparticle size) for two-photon absorption (TPA)-induced photodimerization of an anthracene derivative, anthracene carboxylic acid, in both surface and solution phase under incoherent visible light irradiation. Despite the efficient photoreaction property of anthracene derivatives and the huge number of publications about them, there has never been a report of a multiphoton photoreaction involving an anthracene derivative with the exception of a reverse photoconversion of anthracene photodimer to monomer with three-photon absorption. We examined the progress of the TPA-induced photoreaction by means of surface-enhanced Raman scattering, taking advantage of the ability of our plasmonic substrate to enhance and localize both incident light for photoreaction and Raman scattering signal for analysis of photoreaction products. The TPA-induced photoreaction in the case of anthracene carboxylic acid coated 2D array of gold nanoparticles gave different results according to the properties of the plasmonic substrate, such as the size of the gold nanoparticle and also its resultant optical properties. In particular, a stringent requirement to achieve TPA-induced photodimerization was found to be the matching between irradiation wavelength, localized surface plasmon resonance of the 2D array, and twice the wavelength of the molecular excitation of the target material (in this case, anthracene carboxylic acid). These results will be useful for the future development of efficient plasmonic substrates for TPA-induced photoreactions with various materials.

  18. Superradiant amplification of terahertz radiation by plasmons in inverted graphene with a planar distributed Bragg resonator

    Energy Technology Data Exchange (ETDEWEB)

    Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Popov, V. V., E-mail: popov-slava@yahoo.co.uk [Russian Academy of Sciences, Saratov Branch, Kotel’nikov Institute of Radioengineering and Electronics (Russian Federation); Otsuji, T. [Tohoku University, Research Institute for Electrical Communication (Japan)

    2015-11-15

    It is shown theoretically that stimulated generation of terahertz radiation by plasmons in graphene with a planar distributed Bragg resonator is possible at two different frequencies for each plasmon mode. This behavior may be attributed to the superradiance of the collective plasmon mode, which is associated with superlinear increase in the radiative damping of the plasmons with increase in pumping power. As a result, the curves of the radiative damping and the plasmon gain as a function of the pumping power intersect at two points corresponding to different generation conditions.

  19. Multi-bi- and tri-stability using nonlinear plasmonic Fano resonators

    KAUST Repository

    Amin, Muhammad

    2013-09-01

    A plasmonic Fano resonator embedding Kerr nonlinearity is used to achieve multi-bi- and tri-stability. Fano resonance is obtained by inducing higher-order plasmon modes on metallic surfaces via geometrical symmetry breaking. The presence of the multiple higher order plasmon modes provides the means for producing multi-bi- or tri-stability in the response of the resonator when it is loaded with a material with Kerr nonlinearity. The multi-stability in the response of the proposed resonator enables its use in three-state all optical memory and switching applications. © 2013 IEEE.

  20. Surface plasmon resonance in nanocrystalline gold-copper alloy films.

    Science.gov (United States)

    Hussain, S; Datta, Subhadeep; Roy, R K; Pal, A K

    2007-12-01

    Nanocrystalline Au(x)Cu(1-x) films were synthesized by depositing Cu/Au/Cu multilayer in nanocrystalline thin film form with requisite thickness of individual layers onto fused silica substrates by high pressure sputtering technique. The absorbance spectra showed only one surface plasmon peak for all the compositions with the exception that the peak position did not indicate gradual shift as gold concentration was increased. Peak position for the two compositions corresponding to the two superlattice structures, AuCu3 and AuCu, deviated significantly from linear variation. The experimental results have been discussed in light of the existing Mie theory and the Core-shell model.

  1. Coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system.

    Science.gov (United States)

    Zhang, Kaibiao; Zhang, Hong; Li, Chikang

    2015-05-14

    Noble metal nanoparticles can modify the optical properties of graphene. Here we present a detailed theoretical analysis of the coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system by using time dependent density functional theory (TDDFT). This plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the graphene and the gold cluster. As a result, the optical response of the hybrid system exhibits a remarkably strong, selectable tuning and polarization dependent plasmon resonance enhanced in wide frequency regions. This investigation provides an improved understanding of the plasmon enhancement effect in a graphene-based photoelectric device.

  2. Probing the Near-Field of Second-Harmonic Light around Plasmonic Nanoantennas.

    Science.gov (United States)

    Metzger, Bernd; Hentschel, Mario; Giessen, Harald

    2017-03-08

    We introduce a new concept that enables subwavelength polarization-resolved probing of the second-harmonic near-field distribution of plasmonic nanostructures. As a local sensor, this method utilizes aluminum nanoantennas, which are resonant to the second-harmonic wavelength and which allow to efficiently scatter the local second-harmonic light to the far-field. We place these sensors into the second-harmonic near-field generated by plasmonic nanostructures and carefully vary their position and orientation. Observing the second-harmonic light resonantly scattered by the aluminum nanoantennas provides polarization-resolved information about the local second-harmonic near-field distribution. We then investigate the polarization-resolved second-harmonic near-field of inversion symmetric gold dipole nanoantennas. Interestingly, we find strong evidence that the second-harmonic dipole is predominantly oriented perpendicular to the gold nanoantenna long axis, although the excitation laser is polarized parallel to the nanoantennas. We believe that our investigations will help to disentangle the highly debated origin of the second-harmonic response of inversion symmetric plasmonic structures. Furthermore, we believe that our new method, which enables the measurement of local nonlinear electric fields, will find widespread implementation and applications in nonlinear near-field optical microscopy.

  3. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  4. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity.

    Science.gov (United States)

    Miyazaki, Hideki T; Kurokawa, Yoichi

    2006-03-10

    We demonstrate controlled squeezing of visible light waves into nanometer-sized optical cavities. The light is perpendicularly confined in a few-nanometer-thick SiO2 film sandwiched between Au claddings in the form of surface plasmon polaritons and exhibits Fabry-Perot resonances in a longitudinal direction. As the thickness of the dielectric core is reduced, the plasmon wavelength becomes shorter; then a smaller cavity is realized. A dispersion relation down to a surface plasmon wavelength of 51 nm for a red light, which is less than 8% of the free-space wavelength, was experimentally observed. Any obvious breakdowns of the macroscopic electromagnetics based on continuous dielectric media were not disclosed for 3-nm-thick cores.

  5. Tunable plasmon resonance in the nanobars and split ring resonator(SRR) composite structure

    Science.gov (United States)

    Xu, Haiqing; Li, Hongjian; Xiao, Gang; Chen, Qiao

    2016-10-01

    We have proposed a multi-band metamaterials composed of bars and planer SRR. There are three sharp peaks in the transmission spectra in the visible and near-infrared region, we find that the transmission spectra are highly tunable as the coupling and geometric parameters modifying, especially the third peak in the near-infrared region. When the gap distance between the two nanobar g1<14 nm, the original first peak will split, a new dip and peak will exist, which is results from the high-order plasmon resonance. When introducing asymmetry to the planer SRR, a new sharp peak accompany with a new sharp dip exists in the original second peak, which is originated from the strong electric field resonance. We also find that the proposed structures with sensing sensitivity of ~467 nm/RIU, which can be used for plasmonic sensor.

  6. Coaxial plasmonic metamaterials for visible light

    NARCIS (Netherlands)

    van de Haar, M.A.

    2016-01-01

    Optical metamaterials are materials built from sub-wavelength building blocks, and can be designed to have effective optical properties that are not found in natural materials. A much-studied class of metamaterials uses small noble-metal resonant structures as building blocks, which have a magneto-e

  7. Coaxial plasmonic metamaterials for visible light

    NARCIS (Netherlands)

    van de Haar, M.A.

    2016-01-01

    Optical metamaterials are materials built from sub-wavelength building blocks, and can be designed to have effective optical properties that are not found in natural materials. A much-studied class of metamaterials uses small noble-metal resonant structures as building blocks, which have a

  8. Atomically precise gold nanocrystal molecules with surface plasmon resonance.

    Science.gov (United States)

    Qian, Huifeng; Zhu, Yan; Jin, Rongchao

    2012-01-17

    Since Faraday's pioneering work on gold colloids, tremendous scientific research on plasmonic gold nanoparticles has been carried out, but no atomically precise Au nanocrystals have been achieved. This work reports the first example of gold nanocrystal molecules. Mass spectrometry analysis has determined its formula to be Au(333)(SR)(79) (R = CH(2)CH(2)Ph). This magic sized nanocrystal molecule exhibits fcc-crystallinity and surface plasmon resonance at approximately 520 nm, hence, a metallic nanomolecule. Simulations have revealed that atomic shell closing largely contributes to the particular robustness of Au(333)(SR)(79), albeit the number of free electrons (i.e., 333 - 79 = 254) is also consistent with electron shell closing based on calculations using a confined free electron model. Guided by the atomic shell closing growth mode, we have also found the next larger size of extraordinarily stability to be Au(~530)(SR)(~100) after a size-focusing selection--which selects the robust size available in the starting polydisperse nanoparticles. This work clearly demonstrates that atomically precise nanocrystal molecules are achievable and that the factor of atomic shell closing contributes to their extraordinary stability compared to other sizes. Overall, this work opens up new opportunities for investigating many fundamental issues of nanocrystals, such as the formation of metallic state, and will have potential impact on condensed matter physics, nanochemistry, and catalysis as well.

  9. Enhancing Surface Plasmon Resonance Detection Using Nanostructured Au Chips

    Science.gov (United States)

    Indutnyi, Ivan; Ushenin, Yuriy; Hegemann, Dirk; Vandenbossche, Marianne; Myn'ko, Victor; Lukaniuk, Mariia; Shepeliavyi, Petro; Korchovyi, Andrii; Khrystosenko, Roman

    2016-12-01

    The increase of the sensitivity of surface plasmon resonance (SPR) refractometers was studied experimentally by forming a periodic relief in the form of a grating with submicron period on the surface of the Au-coated chip. Periodic reliefs of different depths and spatial frequency were formed on the Au film surface using interference lithography and vacuum chalcogenide photoresists. Spatial frequencies of the grating were selected close to the conditions of Bragg reflection of plasmons for the working wavelength of the SPR refractometer and the used environment (solution of glycerol in water). It was found that the degree of refractometer sensitivity enhancement and the value of the interval of environment refractive index variation, Δ n, in which this enhancement is observed, depend on the depth of the grating relief. By increasing the depth of relief from 13.5 ± 2 nm to 21.0 ± 2 nm, Δ n decreased from 0.009 to 0.0031, whereas sensitivity increased from 110 deg./RIU (refractive index unit) for a standard chip up to 264 and 484 deg./RIU for the nanostructured chips, respectively. Finally, it was shown that the working range of the sensor can be adjusted to the refractive index of the studied environment by changing the spatial frequency of the grating, by modification of the chip surface or by rotation of the chip.

  10. Hybridized plasmon resonant modes in molecular metallodielectric quad-triangles nanoantenna

    Science.gov (United States)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2015-11-01

    In this study, we examined the plasmon response for both metallic and metallodielectric nanoantennas composed of four gold (Au) triangles in a quadrumer orientation. Tailoring an artificial metallic quad-triangles nanoantenna, it is shown that the structure is able to support pronounced plasmon and Fano resonances in the visible spectrum. Using plasmon transmutation effect, we showed that the plasmonic response of the proposed cluster can be enhanced with the placement of carbon nanoparticles in the offset gaps between the proximal triangles. It is verified that this structural modification gives rise to formation of new collective magnetic antibonding (dark) plasmon modes. Excitation of these subradiant dark modes leads to formation of narrower and deeper Fano resonances in the spectral response of the metallodielectric nanoantenna. To investigate the practical applications of the metallodielectric structure, we immersed the nano-assembly in various liquids with different refractive indices to define its sensitivity to the environmental perturbation as a plasmonic biological sensor.

  11. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    OpenAIRE

    Liu, Peter Q.; Luxmoore, Isaac. J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.

    2015-01-01

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light–matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-co...

  12. Surface-plasmon holography with white-light illumination.

    Science.gov (United States)

    Ozaki, Miyu; Kato, Jun-ichi; Kawata, Satoshi

    2011-04-08

    The recently emerging three-dimensional (3D) displays in the electronic shops imitate depth illusion by overlapping two parallax 2D images through either polarized glasses that viewers are required to wear or lenticular lenses fixed directly on the display. Holography, on the other hand, provides real 3D imaging, although usually limiting colors to monochrome. The so-called rainbow holograms--mounted, for example, on credit cards--are also produced from parallax images that change color with viewing angle. We report on a holographic technique based on surface plasmons that can reconstruct true 3D color images, where the colors are reconstructed by satisfying resonance conditions of surface plasmon polaritons for individual wavelengths. Such real 3D color images can be viewed from any angle, just like the original object.

  13. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.

    Science.gov (United States)

    Varlamov, Sergey; Rao, Jing; Soderstrom, Thomas

    2012-07-02

    One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach. The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles. To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm(2), which can be increased up to 17-18 mA/cm(2) (~25% higher) after application of a simple diffuse back reflector made of a white paint. To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing

  14. Fiber-optic surface plasmon resonant sensor with low-index anti-oxidation coating

    Institute of Scientific and Technical Information of China (English)

    Yong Chen; Rongsheng Zheng; Yonghua Lu; Pei Wang; Hai Ming

    2011-01-01

    A multimode fiber-optic surface plasmon resonance (SPR) sensor with a MgF2 film as a modulated layer is studied. The fiber-optic SPR sensor is investigated theoretically, specifically the influence of the dielectric protecting layer, using a four-layer model. The sensor is then fabricated with the optimal parameters suggested by the theoretical simulation. The sensor has a high sensitivity in the analyte refractive index (RI) range of 1.33-1.40. The best sensitivity of 4464 nm/RIU is achieved in the experiment. The use of dielectric film (MgF2) can not only modulate the resonance wavelength of the sensor, but also protect the silver film from oxidation.%A multimode fiber-optic surface plasmon resonance (SPR) sensor with a MgF2 film as a modulated layer is studied.The fiber-optic SPR sensor is investigated theoretically,specifically the influence of the dielectric protecting layer,using a four-layer model.The sensor is then fabricated with the optimal parameters suggested by the theoretical simulation.The sensor has a high sensitivity in the analyte refractive index (RI) range of 1.33-1.40.The best sensitivity of 4 464 nm/RIU is achieved in the experiment.The use of dielectric film (MgF2) can not only modulate the resonance wavelength of the sensor,but also protect the silver film from oxidation.Surface plasmon resonance (SPR) is a kind of coherent oscillation between the free electrons at a metal/dielectric interface and the optical wave.The hybridized excitation,called surface plasmon polariton (SPP),is the electromagnetic excitation that propagates along the interface as a longitudinal wave.At a given wavelength and angle that satisfy the wave-vector matching condition,the incident light will be intensively absorbed.Due to its high sensitivity to the refractive index (RI) of the adjacent material,the SPR phenomenon was firstly applied to gas detection in 1983[1].The SPR sensing technology has been widely used in the detection of biological and chemical analytes

  15. Calibration of Surface Plasmon Resonance Imager for Biochemical Detection

    Directory of Open Access Journals (Sweden)

    T. Ktari

    2012-01-01

    Full Text Available We present a new Surface Plasmon Resonance imager (SPRi based on immobilized T4-phage for bacteria detection. First, we present the sensitivity of the SPR imager towards refractive index variation for biosensor application. The SPR imager can be calibrated versus different percentage of triethylene glycol mixture in ultrapure water. The system can be used as a refractometer with sensitivity below 5×10−5 in the range of 1.33300–1.34360. Second, bacteriophage (T4-phage can be physisorbed on gold microarray spots for bacteria detection. The kinetic physisorption of different concentrations of T4-phages can be observed in real time. Finally, two types of bacteria such as E. coli (gram negative and Lactobacillus (gram positive were used for positive and negative tests. The results show a selectivity of T4-phage toward E. coli with a detection limit below 104 CFU/mL and with good reproducibility.

  16. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis

    Directory of Open Access Journals (Sweden)

    Yuhki Yanase

    2014-03-01

    Full Text Available Non-invasive real-time observations and the evaluation of living cell conditions and functions are increasingly demanded in life sciences. Surface plasmon resonance (SPR sensors detect the refractive index (RI changes on the surface of sensor chips in label-free and on a real-time basis. Using SPR sensors, we and other groups have developed techniques to evaluate living cells’ reactions in response to stimuli without any labeling in a real-time manner. The SPR imaging (SPRI system for living cells may visualize single cell reactions and has the potential to expand application of SPR cell sensing for clinical diagnosis, such as multi-array cell diagnostic systems and detection of malignant cells among normal cells in combination with rapid cell isolation techniques.

  17. Optofluidic cellular immunofunctional analysis by localized surface plasmon resonance

    Science.gov (United States)

    Kurabayashi, Katsuo; Oh, Bo-Ram

    2014-08-01

    Cytokine secretion assays provide the means to quantify intercellular-signaling proteins secreted by blood immune cells. These assays allow researchers and clinicians to obtain valuable information on the immune status of the donor. Previous studies have demonstrated that localized surface plasmon resonance (LSPR) effects enable label-free, real-time biosensing on a nanostructured metallic surface with simple optics and sensing tunability. However, limited sensitivity coupled with a lack of sample handling capability makes it challenging to implement LSPR biosensing in cellular functional immunoanalysis based on cytokine secretion assay. This paper describes our recent progress towards full development of a label-free LSPR biosensing technique to detect cell-secreted tumor necrosis factor (TNF)-α cytokines in clinical blood samples. We integrate LSPR bionanosensors in an optofluidic platform capable of handling target immune cells in a microfluidic chamber while readily permitting optical access for cytokine detection.

  18. Noninvasive and Real-Time Plasmon Waveguide Resonance Thermometry

    Directory of Open Access Journals (Sweden)

    Pengfei Zhang

    2015-04-01

    Full Text Available In this paper, the noninvasive and real-time plasmon waveguide resonance (PWR thermometry is reported theoretically and demonstrated experimentally. Owing to the enhanced evanescent field and thermal shield effect of its dielectric layer, a PWR thermometer permits accurate temperature sensing and has a wide dynamic range. A temperature measurement sensitivity of 9.4 × 10−3 °C is achieved and the thermo optic coefficient nonlinearity is measured in the experiment. The measurement of water cooling processes distributed in one dimension reveals that a PWR thermometer allows real-time temperature sensing and has potential to be applied for thermal gradient analysis. Apart from this, the PWR thermometer has the advantages of low cost and simple structure, since our transduction scheme can be constructed with conventional optical components and commercial coating techniques.

  19. Enhanced localized surface plasmon resonance dependence of silver nanoparticles on the stoichiometric ratio of citrate stabilizers

    Science.gov (United States)

    McClary, Felicia A.; Gaye-Campbell, Shauna; Hai Ting, Andy Yuen; Mitchell, James W.

    2013-02-01

    A stoichiometric approach to the synthesis of silver nanoparticles (AgNPs) with appreciable enhancements in the localized surface plasmon resonance is presented. Microwave irradiation afforded AgNPs, optimized to a thermodynamic equilibrium by varying the silver to trisodium citrate (Ag0/citrate3-) stoichiometric ratio from 1:1 to 1:10, and ranging in size from 32 to 65 nm (±1-9 nm, hydrodynamic diameter). The concentration-dependent plasmonic enhancements were monitored by UV-Vis absorption spectrophotometry, showing absorption maxima typical of AgNPs, at 440-450 nm. A linear accession in plasmon absorbance intensity, approaching 1:5 (Ag0/citrate3-), followed by a linear depletion, at larger stoichiometries (1:6-1:10), was observed. Size distribution measurements, using dynamic light scattering, showed the highest polydispersity index, 0.547, for 1:10 suspensions and the lowest, 0.305, for the thermodynamic maximum, determined to occur at 1:5. Surface charge measurements approaching 0 mV confirm the destabilizing effect of high concentrations of citrate, leading to greater instances of aggregation and large hydrodynamic diameters. Reaction kinetics data suggests an increased preference for Ag n + -citrate, metal/ligand complexation, at 1:10, diminishing nanoparticle production.

  20. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Bilgen [Uludag University, Department of Chemistry, Bursa (Turkey); Uzun, Lokman [Hacettepe University, Department of Chemistry, Ankara (Turkey); Beşirli, Necati [Uludag University, Department of Chemistry, Bursa (Turkey); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, Ankara (Turkey)

    2013-10-15

    In this study, we prepared surface plasmon resonance (SPR) sensor using the molecular imprinting technique for myoglobin detection in human serum. For this purpose, we synthesized myoglobin imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tryptophan methyl ester) [poly(HEMA-MATrp)] nanofilm on the surface of SPR sensor. We also synthesized non-imprinted poly(HEMA-MATrp) nanofilm without myoglobin for the control experiments. The SPR sensor was characterized with contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, and ellipsometry. We investigated the effectiveness of the sensor using the SPR system. We evaluated the ability of SPR sensor to sense myoglobin with myoglobin solutions (pH 7.4, phosphate buffer) in different concentration range and in the serum taken from a patient with acute myocardial infarction. We found that the Langmuir adsorption model was the most suitable for the sensor system. The detection limit was 87.6 ng/mL. In order to show the selectivity of the SPR sensor, we investigated the competitive detection of myoglobin, lysozyme, cytochrome c and bovine serum albumin. The results showed that the SPR sensor has high selectivity and sensitivity for myoglobin. - Highlights: • Micro-contact imprinted surface plasmon resonance sensor. • Real-time myoglobin detection in the serum taken from a patient with acute myocardial infarction • Reproducible results for consecutive myoglobin solution supplement • LOD and LOQ values of the SPR sensor were determined to be 26.3 and 87.6 ng/mL. • The SPR sensor has potential for myoglobin sensing during acute MI cases.

  1. Enhanced sensitivity of localized surface plasmon resonance biosensor by phase interrogation

    Science.gov (United States)

    Li, Chung-Tien; Chen, How-foo; Yen, Ta-Jen

    2011-05-01

    We proposed an innovative phase interrogation method for localized surface plasmon resonance (LSPR) detection. To our knowledge, this is the first demonstration of LSPR biosensor by phase interrogation. LSPR is realized as the plasmonic resonance within confined metal nanoparticle. Nanoparticle couples the light by means of a non-radiative inter-band absorption, and a scattering from surface plasmon oscillation, the total contribution is the optical extinction of nanoparticles. Due to the variety of resonance types, LSPR is extensively studied in the field of biological sensing, imaging, and medical therapeutics. Generally, LSPR is probed by optical intensity variation of continuous wavelength, in other words, wavelength interrogation. LSPR sensitivity probed by this method is ranged from several tens nm/RIU to less than 1000nm/RIU depending on the nanostructure and metal species, which at least an order of magnitude less than conventional SPR biosensor in wavelength interrogation. In this work, an innovative common-path phase interrogation system is applied for LSPR detection. Phase difference in our home-made system is simply extracted through the correlation of optical intensity under different polarization without any heterodyne optical modulator or piezoelectric transducer, and thus low down the cost and complexity in optical setup. In addition, signal-to-noise ratio is substantially reduced since the signal wave and reference wave share the common path. In our preliminary results, LSPR resolution of Au nanodisk array is 1.74 x 10-4 RIU by wavelength interrogation; on the other side, LSPR resolution of Au nanodisk array is 2.02x10-6 RIU in phase interrogation. LSPR sensitivity is around one order of magnitude enhanced. In conclusion, we demonstrated that LSPR sensitivity can be further enhanced by phase interrogation.

  2. Mueller matrix polarimetry of plasmon resonant silver nano-rods: biomedical prospects

    CERN Document Server

    Ghosh, Sayantan; Bera, Sudipta K; Banerjee, Ayan; Ghosh, Nirmalya

    2012-01-01

    Fundamental understanding of the light-matter interaction in the context of nano-particles is immensely bene- fited by the study of geometry dependent tunable Localized Surface Plasmon Resonance (LSPR) and has been demonstrated to have potential applications in various areas of science. The polarization characteristics of LSPR in addition to spectroscopic tuning can be suitably exploited in such systems as contrast enhancement mech- anisms and control parameters. Such polarization characteristics like diattenuation and retardance have been studied here using a novel combination of Muller-matrix polarimetry with the T-matrix matrix approach for silver nano-rods to show unprecedented control and sensitivity to local refractive index variations. The study carried out over various aspect ratios for a constant equal volume sphere radius shows the presence of longitu- dinal (dipolar and quadrupolar) and transverse (dipolar) resonances; arising due to differential contribution of polarizabilities in two directions. ...

  3. Analysis of surface plasmon resonance with Goos-Hanchen shift using FDTD method

    Science.gov (United States)

    Oh, Geum-Yoon; Kim, Doo-Gun; Kim, Hong-Seung; Choi, Young-Wan

    2009-02-01

    The Goos-Hanchen (GH) shift is observed from phase transition of the reflected light. However, the reported Artmann's equation is difficult to apply to drastic phase change of the critical and resonance angles because this equation is solved by differential of the phase shift. Therefore, the GH shift can be obtained from the structure optimized by the finite-difference time-domain method. In the surface plasmon resonance (SPR) phenomenon, positive and negative lateral shifts may result from the variation of incidence angle. The GH shift is very important to exactly detect the output power of the micro-size SPR sensor. The accurate positive and negative lateral shifts of -0.49 and +1.46 μm are obtained on the SPR with the incidence angles of 44.4° and 47°, respectively.

  4. Plasmonic phototherapy using gold nanospheres and gold nanorods irradiated with light-emitting diodes

    Science.gov (United States)

    Poorani, Gananathan; Rao, Aruna Prakasa; Singaravelu, Ganesan; Manickam, Elanchezhiyan

    2016-04-01

    Gold nanoparticles (GNPs) provide different modes of therapeutic responses in cells depending on their size and shape. We have studied two modifications of GNPs exhibiting surface plasmon resonances (SPRs) with phototherapeutic effects in nonmalignant Vero and malignant HeLa cell lines. The cells were treated with 30-nm-size gold nanospheres (GNSs) (having SPR at a wavelength of 530 nm) and with gold nanorods (GNRs) (having SPR at 630 nm). The plasmonic phototherapy effect in cells was provided by irradiating them with green and red light-emitting diodes (LEDs). The cytotoxicities of GNPs were determined by MTT assay. Both the GNSs and GNRs were found to be biocompatible and have efficient phototherapeutic activity with LEDs.

  5. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    Science.gov (United States)

    Guddala, Sriram; Dwivedi, Vindesh K.; Vijaya Prakash, G.; Narayana Rao, D.

    2013-12-01

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm-1) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies.

  6. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Guddala, Sriram; Narayana Rao, D., E-mail: dnr.laserlab@gmail.com, E-mail: dnrsp@uohyd.ernet.in [School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Dwivedi, Vindesh K.; Vijaya Prakash, G. [Nanophotonics Laboratory, Department of Physics, IIT Delhi, New Delhi 110 016 (India)

    2013-12-14

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm{sup −1}) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies.

  7. Plasmon resonances in a stacked pair of graphene ribbon arrays with a lateral displacement.

    Science.gov (United States)

    He, Meng-Dong; Zhang, Gui; Liu, Jian-Qiang; Li, Jian-Bo; Wang, Xin-Jun; Huang, Zhen-Rong; Wang, Lingling; Chen, Xiaoshuang

    2014-03-24

    We find that a stacked pair of graphene ribbon arrays with a lateral displacement can excite plasmon waveguide mode in the gap between ribbons, as well as surface plasmon mode on graphene ribbon surface. When the resonance wavelengthes of plasmon waveguide mode and surface plasmon mode are close to each other, there is a strong electromagnetic interaction between the two modes, and then they contribute together to transmission dip. The plasmon waveguide mode resonance can be manipulated by the lateral displacement and longitudinal interval between arrays due to their influence on the manner and strength of electromagnetic coupling between two arrays. The findings expand our understanding of electromagnetic resonances in graphene-ribbon array structure and may affect further engineering of nanoplasmonic devices and metamaterials.

  8. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    Directory of Open Access Journals (Sweden)

    Billy W. Day

    2010-11-01

    Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.

  9. Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings

    Energy Technology Data Exchange (ETDEWEB)

    Nolde, Jill A., E-mail: jill.nolde@nrl.navy.mil; Kim, Chul Soo; Jackson, Eric M.; Ellis, Chase T.; Abell, Joshua; Glembocki, Orest J.; Canedy, Chadwick L.; Tischler, Joseph G.; Vurgaftman, Igor; Meyer, Jerry R.; Aifer, Edward H. [Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States); Kim, Mijin [Sotera Defense Solutions, Inc., 7230 Lee Deforest Dr. Suite 100, Columbia, Maryland 21046 (United States)

    2015-06-29

    We demonstrate up to 39% resonant enhancement of the quantum efficiency (QE) of a low dark current nBn midwave infrared photodetector with a 0.5 μm InAsSb absorber layer. The enhancement was achieved by using a 1D plasmonic grating to couple incident light into plasmon modes propagating in the plane of the device. The plasmonic grating is composed of stripes of deposited amorphous germanium overlaid with gold. Devices with and without gratings were processed side-by-side for comparison of their QEs and dark currents. The peak external QE for a grating device was 29% compared to 22% for a mirror device when the illumination was polarized perpendicularly to the grating lines. Additional experiments determined the grating coupling efficiency by measuring the reflectance of analogous gratings deposited on bare GaSb substrates.

  10. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    DEFF Research Database (Denmark)

    Yu, X; Zhang, Y.; Pan, S.S.

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensi...

  11. Electron photoemission in plasmonic nanoparticle arrays: analysis of collective resonances and embedding effects

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei V.; Babicheva, Viktoriia; Uskov, Alexander

    2014-01-01

    effects in the formation of plasmonic resonance is diminished. We also show that 5-20 times increase of photoemission can be achieved on embedding of nanoparticles without taking into account dynamics of ballistic electrons. The results obtained can be used to increase efficiency of plasmon...

  12. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shi-Qiang; Bruce Buchholz, D. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); Zhou, Wei [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138 (United States); Ketterson, John B. [Department of Physics, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113 (United States); NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); Ocola, Leonidas E. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Ave., Lemont, Illinois 60439 (United States); Sakoda, Kazuaki [NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Chang, Robert P. H., E-mail: r-chang@northwestern.edu [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States)

    2014-06-09

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retained the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.

  13. Light-Triggered Control of Plasmonic Refraction and Group Delay by Photochromic Molecular Switches

    DEFF Research Database (Denmark)

    Großmann, Malte; Klick, Alwin; Lemke, Christoph

    2015-01-01

    An interface supporting plasmonic switching is prepared from a gold substrate coated with a polymerfilm doped with photochromic molecular switches. A reversible light-induced change in the surface plasmon polariton dispersion curve of the interface is experimentally demonstrated, evidencing rever...... complex functionalities based on surface plasmon refraction and group delay....

  14. Study on Technique of Surface Plasmon Resonance Imaging Sensing for Biomolecular Interaction

    Institute of Scientific and Technical Information of China (English)

    Ding Xiang; Rong Xiaofeng; Deng Yan; Yu Xinglong

    2006-01-01

    High resolution of surface plasmon resonance (SPR) detection is of vital importance. SPR biosensing system resolution is determined by intrinsic sensitivity of biochip and light signal acquisition system. In this article, different signal acquisition system resolutions on photodetector were analyzed based on light intensity and phase detection. Result shows that charge coupled device (CCD) with larger numbers of pixels is potential to achieve higher detection resolution. A 64 pixel line array CCD and a 12 bit ADC can achieve resolution of 10-7 refractive index unit (RIU). In array detection mode, increasing of detection throughput is at the cost of decreasing system resolution. Simulation analysis indicates that, if noise is taken into account, phase modulation methods are capable of providing better noise reduction performance than intensity methods.

  15. Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer

    Science.gov (United States)

    Arasu, P. T.; Noor, A. S. M.; Shabaneh, A. A.; Yaacob, M. H.; Lim, H. N.; Mahdi, M. A.

    2016-12-01

    A single mode fiber Bragg grating (FBG) is used to generate Surface Plasmon Resonance (SPR). The uniform gratings of the FBG are used to scatter light from the fiber optic core into the cladding thus enabling the interaction between the light and a thin gold film in order to generate SPR. Applying this technique, the cladding around the FBG is left intact, making this sensor very robust and easy to handle. A thin film of graphene oxide (GO) is deposited over a 45 nm gold film to enhance the sensitivity of the SPR sensor. The gold coated sensor demonstrated high sensitivity of approximately 200 nm/RIU when tested with different concentrations of ethanol in an aqueous medium. A 2.5 times improvement in sensitivity is observed with the GO enhancement compared to the gold coated sensor.

  16. Enhancement and control of surface plasmon resonance sensitivity using grating in conical mounting configuration.

    Science.gov (United States)

    Perino, M; Pasqualotto, E; Scaramuzza, M; De Toni, A; Paccagnella, A

    2015-01-15

    In this work we propose a method to enhance and control the angular sensitivity of a grating coupled surface plasmon resonance (GCSPR) sensor. We lighted a silver grating, mounted in conical configuration, with a laser source and we measured the transmittance of the grating as a function of the azimuthal angle. To evaluate the sensitivity, grating surface was functionalized with four different alkanethiol self assembled monolayers (SAM) and the correspondent azimuthal transmittance peak shifts were measured. The sensitivity control was performed by simply change the light incident angle. This method offers the possibility to design dynamic GCSPR sensor benches that can be used to amplify the SPR angle shift at any step of a biological detection process.

  17. Tailoring the interaction between matter and polarized light with plasmonic optical antennas

    Science.gov (United States)

    Biagioni, P.; Wu, X.; Savoini, M.; Ziegler, J.; Huang, J.-S.; Duò, L.; Finazzi, M.; Hecht, B.

    2011-03-01

    We explore the possibility to control the polarization state of light confined into sub-diffraction volumes by means of plasmonic optical antennas. To this aim, we describe a resonant cross antenna, constituted of two perpendicular two-wire antennas sharing the same gap, which is able to maintain the polarization state in the plane of the antenna. We also discuss how, by proper tuning of the arm length in a slightly off-resonance cross antenna, it is possible to effectively realize a nanoscale quarter-waveplate antenna. We present experimental results for the preparation of individual cross antennas by means of focused ion beam milling starting from single-crystalline Au microflakes, and finally show preliminary characterization results based on two-photon photoluminescence confocal imaging with linearly-polarized light.

  18. Coil-type Fano Resonances: a Plasmonic Approach to Magnetic Sub-diffraction Confinement

    KAUST Repository

    Panaro, Simone

    2015-05-10

    Matrices of nanodisk trimers are introduced as plasmonic platforms for the generation of localized magnetic hot-spots. In Fano resonance condition, the optical magnetic fields can be squeezed in sub-wavelength regions, opening promising scenarios for spintronics.

  19. Influence of nanoparticle-graphene separation on the localized surface plasmon resonances of metal nanoparticles

    CERN Document Server

    Saadabad, Reza Masoudian; Shirdel-Havar, Amir Hushang; Havar, Majid Shirdel

    2015-01-01

    We develop a theory to model the interaction of graphene substrate with localized plasmon resonances in metallic nanoparticles. The influence of a graphene substrate on the surface plasmon resonances is described using an effective background permittivity that is derived from a pseudoparticle concept using the electrostatic method. For this purpose, the interaction of metal nanoparticle with graphene sheet is studied to obtain the optical spectrum of gold nanoparticles deposited on a graphene substrate. Then, we introduce a factor based on dipole approximation to predict the influence of the separation of nanoparticles and graphene on the spectral position of the localized plasmon resonance of the nanoparticles. We applied the theory for a 4 nm radius gold nanosphere placed near 1.5 nm graphene layer. It is shown that a blue shift is emerged in the position of plasmon resonance when the nanoparticle moves away from graphene.

  20. Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold-Silver Nanoshells.

    Science.gov (United States)

    Li, Chien-Hung; Li, Min-Chih; Liu, Si-Ping; Jamison, Andrew C; Lee, Dahye; Lee, T Randall; Lee, Tai-Chou

    2016-04-13

    Gold-silver nanoshells (GS-NSs) having a tunable surface plasmon resonance (SPR) were employed to facilitate charge separation of photoexcited carriers in the photocalytic production of hydrogen from water. Zinc indium sulfide (ZnIn2S4; ZIS), a visible-light-active photocatalyst, where the band gap varies with the [Zn]/[In] ratio, was used as a model ZIS system (E(g) = 2.25 eV) to investigate the mechanisms of plasmonic enhancement associated with the nanoshells. Three types of GS-NS cores with intense absorptions centered roughly at 500, 700, and 900 nm were used as seeds for preparing GS-NS@ZIS core-shell structures via a microwave-assisted hydrothermal reaction, yielding core-shell particles with composite diameters of ∼200 nm. Notably, an interlayer of dielectric silica (SiO2) between the GS-NSs and the ZIS photocatalyst provided another parameter to enhance the production of hydrogen and to distinguish the charge-transfer mechanisms. In particular, the direct transfer of hot electrons from the GS-NSs to the ZIS photocatalyst was blocked by this layer. Of the 10 particle samples examined in this study, the greatest hydrogen gas evolution rate was observed for GS-NSs having a SiO2 interlayer thickness of ∼17 nm and an SPR absorption centered at ∼700 nm, yielding a rate 2.6 times higher than that of the ZIS without GS-NSs. The apparent quantum efficiencies for these core-shell particles were recorded and compared to the absorption spectra. Analyses of the charge-transfer mechanisms were evaluated and are discussed based on the experimental findings.

  1. Collective electric and magnetic plasmonic resonances in spherical nanoclusters.

    Science.gov (United States)

    Vallecchi, Andrea; Albani, Matteo; Capolino, Filippo

    2011-01-31

    We report an investigation on the optical properties of three-dimensional nanoclusters (NCs) made by spherical constellations of metallic nanospheres arranged around a central dielectric sphere, which can be realized and assembled by current state-of-the-art nanochemistry techniques. This type of NCs supports collective plasmon modes among which the most relevant are those associated with the induced electric and magnetic resonances. Combining a single dipole approximation for each nanoparticle and the multipole spherical-wave expansion of the scattered field, we achieve an effective characterization of the optical response of individual NCs in terms of their scattering, absorption, and extinction efficiencies. By this approximate model we analyze a few sample NCs identifying the electric and magnetic resonance frequencies and their dependence on the size and number of the constituent nanoparticles. Furthermore, we discuss the effective electric and magnetic polarizabilities of the NCs, and their isotropic properties. A homogenization method based on an extension of the Maxwell Garnett model to account for interaction effects due to higher order multipoles in dense packed arrays is applied to a distribution of NCs showing the possibility of obtaining metamaterials with very large, small, and negative values of permittivity and permeability, and even negative index.

  2. Highly sensitive surface plasmon resonance chemical sensor based on Goos-Hanchen effects

    Science.gov (United States)

    Yin, Xiaobo; Hesselink, Lambertus

    2006-08-01

    The resonance enhanced Goos-Hanchen shifts at attenuated total internal reflection enables the possibility for highly sensitive surface plasmon resonance sensor. The observed giant displacements result from the singular phase retardation at the resonance where the phase is continuous but changes dramatically. The phenomenon is proposed for chemical sensing and the superior sensitivity is demonstrated.

  3. Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches

    DEFF Research Database (Denmark)

    Dowd, Annette; Geisler, Mathias; Zhu, Shaoli;

    2016-01-01

    The enhancement of a Raman signal by multipolar plasmon resonances – as opposed to the more common practice of using dipolar resonances – is investigated. A wide range of gold stars, triangles, circles and squares with multipolar resonances in the visible region were designed and then produced...

  4. Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides

    DEFF Research Database (Denmark)

    Han, Zhanghua; García Ortíz, César Eduardo; Radko, Ilya P.;

    2013-01-01

    We report on the experimental demonstration of detuned-resonator induced transparency in the near-infrared (∼800  nm) using two detuned racetrack resonators side-coupled to a bus waveguide. Both resonators and the bus waveguide are in the form of dielectric-loaded surface plasmon polariton...

  5. Features of electromagnetic waves in a complex plasma due to surface plasmon resonances on macroparticles

    CERN Document Server

    Vladimirov, S V

    2015-01-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations significantly modifies plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The results are discussed in the context of dusty plasma experiments.

  6. Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide

    Science.gov (United States)

    Chen, Fang; Yao, Duanzheng

    2016-06-01

    A larger number of complicated plasmonic nanostructures have been realized to exhibit Fano interference. In this paper, we demonstrate a simple nanostructure, side coupled waveguide resonator system with a metal nanowall located in the metal-insulator-metal waveguide (MIM), which can also achieve multiple plasmonic Fano resonance. In the proposed nanostructure, the asymmetric line shape originates from the interference between the slot resonator and the new resonator. Therefore, the Fano line shape can be actively controlled by the phase difference of the two resonators and the thickness of the metal nanowall. A scattering matrix method is used to calculate the transmission spectra. Results obtained by the scattering matrix theory are consistent with those from the finite-difference time-domain simulations (FDTD). Moreover, Fano resonances in the proposed structure show high sensitivity, which may have important application in plasmonic nanosensor and modulator.

  7. Light-driven transport of plasmonic nanoparticles on demand

    Science.gov (United States)

    Rodrigo, José A.; Alieva, Tatiana

    2016-01-01

    Laser traps provide contactless manipulation of plasmonic nanoparticles (NPs) boosting the development of numerous applications in science and technology. The known trapping configurations allow immobilizing and moving single NPs or assembling them, but they are not suitable for massive optical transport of NPs along arbitrary trajectories. Here, we address this challenging problem and demonstrate that it can be handled by exploiting phase gradients forces to both confine and propel the NPs. The developed optical manipulation tool allows for programmable transport routing of NPs to around, surround or impact on objects in the host environment. An additional advantage is that the proposed confinement mechanism works for off-resonant but also resonant NPs paving the way for transport with simultaneous heating, which is of interest for targeted drug delivery and nanolithography. These findings are highly relevant to many technological applications including micro/nano-fabrication, micro-robotics and biomedicine. PMID:27645257

  8. Light-driven transport of plasmonic nanoparticles on demand

    Science.gov (United States)

    Rodrigo, José A.; Alieva, Tatiana

    2016-09-01

    Laser traps provide contactless manipulation of plasmonic nanoparticles (NPs) boosting the development of numerous applications in science and technology. The known trapping configurations allow immobilizing and moving single NPs or assembling them, but they are not suitable for massive optical transport of NPs along arbitrary trajectories. Here, we address this challenging problem and demonstrate that it can be handled by exploiting phase gradients forces to both confine and propel the NPs. The developed optical manipulation tool allows for programmable transport routing of NPs to around, surround or impact on objects in the host environment. An additional advantage is that the proposed confinement mechanism works for off-resonant but also resonant NPs paving the way for transport with simultaneous heating, which is of interest for targeted drug delivery and nanolithography. These findings are highly relevant to many technological applications including micro/nano-fabrication, micro-robotics and biomedicine.

  9. Development of a localized surface plasmon resonance-based gold nanobiosensor for the determination of prolactin hormone in human serum.

    Science.gov (United States)

    Faridli, Zahra; Mahani, Mohamad; Torkzadeh-Mahani, Masoud; Fasihi, Javad

    2016-02-15

    A localized surface plasmon resonance immunoassay has been developed to determine prolactin hormone in human serum samples. Gold nanoparticles were synthesized, and the probe was prepared by electrostatic adsorption of antibody on the surfaces of gold nanoparticles. The pH and the antibody-to-gold nanoparticle ratio, as the factors affecting the probe functions, were optimized. The constructed nanobiosensor was characterized by dynamic light scattering. The sensor was applied for the determination of prolactin antigen concentration based on the amount of localized surface plasmon resonance peak shift. A linear dynamic range of 1-40 ng ml(-1), a detection limit of 0.8 ng ml(-1), and sensitivity of 10 pg ml(-1) were obtained. Finally, the nanobiosensor was applied for the determination of prolactin in human control serum sample.

  10. The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in two types of asymmetric dimer

    Science.gov (United States)

    Li, Quanshui; Hu, Jianling; Wang, Ziya; Wang, Fengping; Bao, Yongjun

    2014-07-01

    The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in asymmetric dimers are illustrated by two types of configuration, one formed by a gold nanoparticle and a TiO2-Ag core-shell nanoparticle and the other formed by two TiO2-Ag core-shell nanoparticles with suitable sizes. The redshift and blueshift behaviours of the coupled bonding modes with decreasing gap are found under longitudinal and transverse polarization of light for these dimers in the resonant situation, respectively. Under the near-resonant situation, the redshift behaviours of the coupled bonding modes still remain under longitudinal polarization, whereas the two separated modes of monomers after coupling under transverse polarization exhibit no obvious peak-shift behaviours, and the one on the lower frequency side shows an apparent attenuation in the strength. Under the off-resonant situation, the redshift behaviours not only occur in the coupled modes under longitudinal polarization, but also occur in two separated modes under transverse polarization.

  11. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Wu, Chenyun; Yang, Hong [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-11-03

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures.

  12. Probing the symmetry and phase of localised surface plasmon resonances with modified electron probes

    CERN Document Server

    Guzzinati, Giulio; Lourenço--Martins, Hugo; Martin, Jerôme; Kociak, Mathieu; Verbeeck, Jo

    2016-01-01

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light at the nanoscale. While the field is progressing swiftly thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the symmetries of the plasmonic excitations cannot be accessed by direct measurements, leading to a partial and sometimes incorrect understanding of their properties. Here we overcome this limitation by deliberately shaping the wave--function of a free electron beam to match the symmetry of the plasmonic excitations in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles while filtering out modes with other symmetries. This method shows some resemblance to the widespread use of polarised light for the selective excitation of plasmon modes but adds the advanta...

  13. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators

    Science.gov (United States)

    Gu, Ping; Wan, Mingjie; Wu, Wenyang; Chen, Zhuo; Wang, Zhenlin

    2016-05-01

    Fano resonances have been realized in plasmonic systems and have found intriguing applications, in which, however, precisely controlled symmetry breaking or particular arrangement of multiple constituents is usually involved. Although simple core-shell type architectures composed of a spherical dielectric core and a concentric metallic shell layer have been proposed as good candidates that support inherent Fano resonances, these theoretical predictions have rarely seen any detailed experimental investigation. Here, we report on the experimental investigation of the magnetic and electric-based multipolar plasmonic Fano resonances in the dielectric-metal core-shell resonators that are formed by wrapping a nearly perfect metal shell layer around a dielectric sphere. We demonstrate that these Fano resonances originate from the interference between the Mie cavity and sphere plasmon resonances. Moreover, we present that the variation on either the dielectric core size or core refractive index allows for easily tuning the observed Fano resonances over a wide spectral range. Our findings are supported by excellent agreement with analytical calculations, and offer unprecedented opportunities for realizing ultrasensitive bio-sensors, lasing and nonlinear optical devices.Fano resonances have been realized in plasmonic systems and have found intriguing applications, in which, however, precisely controlled symmetry breaking or particular arrangement of multiple constituents is usually involved. Although simple core-shell type architectures composed of a spherical dielectric core and a concentric metallic shell layer have been proposed as good candidates that support inherent Fano resonances, these theoretical predictions have rarely seen any detailed experimental investigation. Here, we report on the experimental investigation of the magnetic and electric-based multipolar plasmonic Fano resonances in the dielectric-metal core-shell resonators that are formed by wrapping a

  14. Plasmon enhanced light harvesting: multiscale modeling of the FMO protein coupled with gold nanoparticles.

    Science.gov (United States)

    Andreussi, Oliviero; Caprasecca, Stefano; Cupellini, Lorenzo; Guarnetti-Prandi, Ingrid; Guido, Ciro A; Jurinovich, Sandro; Viani, Lucas; Mennucci, Benedetta

    2015-05-28

    Plasmonic systems, such as metal nanoparticles, are becoming increasingly important in spectroscopies and devices because of their ability to enhance, even by several orders of magnitude, the photophysical properties of neighboring systems. In particular, it has been shown both theoretically and experimentally that combining nanoplasmonic devices with natural light-harvesting proteins substantially increases the fluorescence and absorption properties of the system. This kind of biohybrid device can have important applications in the characterization and design of efficient light-harvesting systems. In the present work, the FMO light-harvesting protein was combined with gold nanoparticles of different sizes, and its photophysical properties were characterized using a multiscale quantum-mechanical classical-polarizable and continuum model (QM/MMPol/PCM). By optimal tuning of the plasmon resonance of the metal nanoparticles, fluorescence enhancements of up to 2 orders of magnitude were observed. Orientation effects were found to be crucial: amplifications by factors of up to 300 were observed for the absorption process, while the radiative decay of the emitting state increased at most by a factor of 10, mostly as a result of poor alignment of the emitting state with the considered metal aggregates. Despite being a limiting factor for high-fluorescence-enhancement devices, the strong orientation dependence may represent an important feature of the natural light-harvesting system that could allow selective enhancement of a specific excited state of the complex.

  15. Near-Infrared Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K.; Luther, Joey; Ewers, Trevor; Alivisatos, A. Paul

    2010-10-12

    Quantum confinement of electronic wavefunctions in semiconductor quantum dots (QDs) yields discrete atom-like and tunable electronic levels, thereby allowing the engineering of excitation and emission spectra. Metal nanoparticles, on the other hand, display strong resonant interactions with light from localized surface plasmon resonance (LSPR) oscillations of free carriers, resulting in enhanced and geometrically tunable absorption and scattering resonances. The complementary attributes of these nanostructures lends strong interest toward integration into hybrid nanostructures to explore enhanced properties or the emergence of unique attributes arising from their interaction. However, the physicochemical interface between the two components can be limiting for energy transfer and synergistic coupling within such a hybrid nanostructure. Therefore, it is advantageous to realize both attributes, i.e., LSPRs and quantum confinement within the same nanostructure. Here, we describe well-defined LSPRs arising from p-type carriers in vacancy-doped semiconductor quantum dots. This opens up possibilities for light harvesting, non-linear optics, optical sensing and manipulation of solid-state processes in single nanocrystals.

  16. Guidelines for designing 2D and 3D plasmonic stub resonators

    CERN Document Server

    Naghizadeh, Solmaz

    2016-01-01

    In this work we compare the performance of plasmonic waveguide integrated stub resonators based on 2D metal-dielectric-metal (MDM) and 3D slot-waveguide (SWG) geometries. We show that scattering matrix theory can be extended to 3D devices, and by employing scattering matrix theory we provide the guidelines for designing plasmonic 2D and 3D single-stub and double-stub resonators with a desired spectral response at the design wavelength. We provide transmission maps of 2D and 3D double-stub resonators versus stub lengths, and we specify the different regions on these maps that result in a minimum, a maximum or a plasmonically induced transparency (PIT) shape in the transmission spectrum. Radiation loss from waveguide terminations leads to a degradation of the 3D slot-waveguide based resonators. We illustrate improved waveguide terminations that boost resonator properties. We verify our results with 3D FDTD simulations.

  17. Plasmon resonance optical tuning based on photosensitive composite structures

    DEFF Research Database (Denmark)

    Gilardi, Giovanni; Xiao, Sanshui; Mortensen, N. Asger

    2014-01-01

    This paper reports a numerical investigation of a periodic metallic structure sandwiched between two quartz plates. The volume comprised between the quartz plates and the metallic structure is infiltrated by a mixture of azo-dye-doped liquid crystal. The exposure to a low power visible light beam...... modifies the azo dye molecular configuration, thus allowing the wavelength shift of the resonance of the system. The wavelength shift depends on the geometry of the periodic structure and it also depends on the intensity of the visible light beam....

  18. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance

    Science.gov (United States)

    Rajender, Gone; Choudhury, Biswajit; Giri, P. K.

    2017-09-01

    This work spotlights the development of a plasmonic photocatalyst showing surface plasmon induced enhanced visible light photocatalytic (PC) performance. Plasmonic Au nanoparticles (NPs) are decorated over the hybrid nanosystem of graphitic carbon nitride (GCN) and graphene quantum dots (GQD) by citrate reduction method. Surface plasmon resonance (SPR) induced enhancement of Raman G and 2D band intensity is encountered on excitation of the Plasmonic hybrid at 514.5 nm, which is near to the 532 nm absorption band of Au NPs. Time-resolved photoluminescence and XPS studies show charge transfer interaction between GQD-GCN and Au NPs. Plasmonic hybrid exhibits an enhanced PC activity over the other catalysts in the photodegradation of methylene blue (MB) under visible light illumination. Plasmonic photocatalyst displays more than 6 fold enhancement in the photodecomposition rate of MB over GQD and nearly 2 fold improvement over GCN and GQD-GCN. GQD-GCN absorbs mostly in the near visible region and can be photoexcited by visible light of wavelength (λ ) UV–visible light for photocatalysis. Furthermore, plasmonic Au act as antennas for accumulation and enhancement of localized electromagnetic field at the interface with GQD-GCN, and thereby promotes photogeneration of large numbers of carriers on GQD-GCN. The carriers are separated by charge transfer migration from hybrid to Au NPs. Finally, the carriers on the plasmonic Au nanostructures initiate MB degradation under visible light. Our results have shown that plasmon decoration is a suitable strategy to design a carbon based hybrid photocatalyst for solar energy conversion.

  19. Surface plasmon resonance immunosensor for cortisol and cortisone determination.

    Science.gov (United States)

    Frasconi, Marco; Mazzarino, Monica; Botrè, Francesco; Mazzei, Franco

    2009-08-01

    In this paper, we present a surface-plasmon-resonance-based immunosensor for the real-time detection of cortisol and cortisone levels in urine and saliva samples. The method proposed here is simple, rapid, economic, sensitive, robust, and reproducible thanks also to the special features of the polycarboxylate-hydrogel-based coatings used for the antibody immobilization. The sensor surface displays a high level of stability during repeated regeneration and affinity reaction cycles. The immunosensor shows high specificity for cortisol and cortisone; furthermore, no significant interferences from other steroids with a similar chemical structure have been observed. The suitability of the hydrogel coating for the prevention of nonspecific binding is also investigated. A good correlation is noticed between the results obtained by the proposed method and the reference liquid chromatography/tandem mass spectrometry method for the analysis of cortisol and cortisone in urine and saliva samples. Standard curves for the detection of cortisol and cortisone in saliva and urine are characterized by a detection limit less than 10 microg l(-1), sufficiently sensitive for both clinical and forensic use.

  20. Surface plasmon resonance characterization of calspermin-calmodulin binding kinetics.

    Science.gov (United States)

    Murphy, Andrew J; Kemp, Fred; Love, John

    2008-05-01

    We cloned, expressed, and purified a chimeric fusion between a soluble green fluorescent protein (smGFP) and the calmodulin binding protein calspermin. We have shown that the fusion protein, labeled smGN, has a K(i) in the calmodulin-dependent cyclic nucleotide phosphodiesterase activity assay of 1.97 nM, i.e., 3800 times smaller than that of the commonly used calmodulin inhibitor W7. Association and dissociation rate constants (k(a) and k(d)) and the dissociation equilibrium constant (K(D)) of smGN for calmodulin were determined using surface plasmon resonance (SPR). The k(a)=1.24 x 10(6)M(-1)s(-1), the k(d)=5.49 x 10(-3)s(-1), and the K(D)=4.42 x 10(-9)M. We also found that the GFP moiety was important for successfully binding calspermin to the surface of the CM5 flow cell at a sufficiently high concentration for SPR, and that this procedure may be used for SPR analysis of other acidic polypeptides, whose pIliquid chromatography-tandem mass spectrometry, indicating a high level of specificity. We conclude that the high affinity and specific binding between smGN and calmodulin make it an easily localized recombinant alternative to chemical calmodulin inhibitors.

  1. Polymer-based chips for surface plasmon resonance sensors

    Science.gov (United States)

    Obreja, Paula; Cristea, Dana; Kusko, Mihai; Dinescu, Adrian

    2008-06-01

    This paper presents a design and low-cost techniques for polymer-based chips for surface plasmon resonance (SPR) sensors. To obtain a polymer chip with a prism, microchannels and a chamber at microscale dimensions, replication techniques in polymers with controlled refractive index have been developed. Photoresist, polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA) and epoxy resin were used. Silicon dioxide/silicon-based molds have been obtained by anisotropic etching of silicon, and glass prisms were used as masters for replication. The photoresist molds were obtained by optical lithography and were used to obtain the microchannels and the chamber. A liquid prepolymer (PDMS, Sylgard 184) with curing agent at a ratio of 10:1 was used, and a special technique was developed in order to fabricate the components of the structure at the same time. For the deposition and direct patterning of the metallic layers onto the polymer surface, different methods were experimented with, including sputtering. The materials and techniques used to achieve SPR sensors are presented, and the possibilities and limitations of the technology are discussed.

  2. Surface plasmon resonance biosensor for enzymatic detection of small analytes

    Science.gov (United States)

    Massumi Miyazaki, Celina; Makoto Shimizu, Flávio; Mejía-Salazar, J. R.; Oliveira, Osvaldo N., Jr.; Ferreira, Marystela

    2017-04-01

    Surface plasmon resonance (SPR) biosensing is based on the detection of small changes in the refractive index on a gold surface modified with molecular recognition materials, thus being mostly limited to detecting large molecules. In this paper, we report on a SPR biosensing platform suitable to detect small molecules by making use of the mediator-type enzyme microperoxidase-11 (MP11) in layer-by-layer films. By depositing a top layer of glucose oxidase or uricase, we were able to detect glucose or uric acid with limits of detection of 3.4 and 0.27 μmol l‑1, respectively. Measurable SPR signals could be achieved because of the changes in polarizability of MP11, as it is oxidized upon interaction with the analyte. Confirmation of this hypothesis was obtained with finite difference time domain simulations, which also allowed us to discard the possible effects from film roughness changes observed in atomic force microscopy images. The main advantage of this mediator-type enzyme approach is in the simplicity of the experimental method that does not require an external potential, unlike similar approaches for SPR biosensing of small molecules. The detection limits reported here were achieved without optimizing the film architecture, and therefore the performance can in principle be further enhanced, while the proposed SPR platform may be extended to any system where hydrogen peroxide is generated in enzymatic reactions.

  3. Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells.

    Science.gov (United States)

    Zhang, Y; Jia, B; Gu, M

    2016-03-21

    Designing effective light-trapping structures for the insufficiently absorbed long-wavelength light in ultrathin silicon solar cells represents a key challenge to achieve low cost and highly efficient solar cells. We propose a hybrid structure based on the biomimetic silicon moth-eye structure combined with Ag nanoparticles to achieve advanced light trapping in 2 μm thick crystalline silicon solar cells approaching the Yablonovitch limit. By synergistically using the Mie resonances of the silicon moth-eye structure and the plasmonic resonances of the Ag nanoparticles, the integrated absorption enhancement achieved across the usable solar spectrum is 69% compared with the cells with the conventional light trapping design. This is significantly larger than both the silicon moth-eye structure (58%) and Ag nanoparticle (41%) individual light trapping. The generated photocurrent in the 2 μm thick silicon layer is as large as 33.4 mA/cm2, which is equivalent to that generated by a 30 μm single-pass absorption in the silicon. The research paves the way for designing highly efficient light trapping structures in ultrathin silicon solar cells.

  4. Performance enhancement of organic photovoltaic devices enabled by Au nanoarrows inducing surface plasmonic resonance effect.

    Science.gov (United States)

    Li, Shujun; Li, Zhiqi; Zhang, Xinyuan; Zhang, Zhihui; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-09-21

    The surface plasmon resonance (SPR) effect of metal nanoparticles is widely employed in organic solar cells to enhance device performance. However, the light-harvesting improvement is highly dependent on the shape of the metal nanoparticles. In this study, the significantly enhanced performance upon incorporation of Au nanoarrows in solution-processed organic photovoltaic devices is demonstrated. Incorporating Au nanoarrows into the ZnO cathode buffer layer results in superior broadband optical absorption improvement and a power conversion efficiency of 7.82% is realized with a 27.3% enhancement compared with the control device. The experimental and theoretical results indicate that the introduction of Au nanoarrows not only increases optical trapping by the SPR effect but also facilitates exciton generation, dissociation, and charge transport inside the thin film device.

  5. Coupling between Surface Plasmon Resonance and electric current in Au stripes

    Science.gov (United States)

    Garcia, Miguel Angel; Serrano, Aida; de La Venta, Jose

    2009-03-01

    Surface Plasmon Resonance (SPR) is the most outstanding feature of noble metal films. SPR consists on a collective oscillation of the conduction electrons when excited optically in the appropriate geometrical and energy conditions. The electrical current passing trough the metal film involves also the movement of conduction electrons. Thus, coupling effects are expected between SPR and electrical resistivity. A modification of the SPR when a electrical current passes through the film, could allow the modulation of an optical signal by a electrical one. Similarly, when the film is illuminated at the SPR conditions, the oscillation of the conduction electrons and local heating can induce an enhancement of the electric resistivity that can be used to translate an optical signal into a electric one. Those effects could be useful in the development of new fast optoelectronic transducers. We present here results on Au stripes illuminated to induce the SPR while electric currents flow with different orientation with respect to the light polarization

  6. Broadband tunability of surface plasmon resonance in graphene-coating silica nanoparticles

    Science.gov (United States)

    Zhe, Shi; Yang, Yang; Lin, Gan; Zhi-Yuan, Li

    2016-05-01

    Graphene decorated nanomaterials and nanostructures can potentially be used in military and medical science applications. In this article, we study the optical properties of a graphene wrapping silica core-shell spherical nanoparticle under illumination of external light by using the Mie theory. We find that the nanoparticle can exhibit surface plasmon resonance (SPR) that can be broadly tuned from mid infrared to near infrared via simply changing the geometric parameters. A simplified equivalent dielectric permittivity model is developed to better understand the physics of SPR, and the calculation results agree well qualitatively with the rigorous Mie theory. Both calculations suggest that a small radius of graphene wrapping nanoparticle with high Fermi level could move the SPR wavelength of graphene into the near infrared regime. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204365 and 11434017) and the National Basic Research Program of China (Grant No. 2013CB632704).

  7. Solar Cells from Earth-Abundant Semiconductors with Plasmon-Enhanced Light Absorption

    Energy Technology Data Exchange (ETDEWEB)

    Atwater, Harry

    2012-04-30

    Progress is reported in these areas: Plasmonic Light Trapping in Thin Film a-Si Solar Cells; Plasmonic Light Trapping in Thin InGaN Quantum Well Solar Cells; and Earth Abundant Cu{sub 2}O and Zn{sub 3}P{sub 2} Solar Cells.

  8. Gas detection by means of surface plasmon resonance enhanced ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Nooke, Alida

    2012-11-01

    This thesis investigated gas sensing by means of surface plasmon resonance enhanced ellipsometry. Surface plasmons were excited in a 40 - 50 nm gold layer by a He-Ne-laser using the Kretschmann configuration, which was arranged on a self-made copper measuring cell. A fixed angle of incidence and the ellipsometric parameter {Delta} as the measured value were used to monitor changes in the gas phase. Different types of gases were investigated: flammable (hydrocarbons and hydrogen), oxidising (oxygen and ozone), toxic (carbon monoxide) and inert (helium and nitrogen). The gas types can be distinguished by their refractive indices, whereas the sensor responds instantly relative to the reference gas with an increase or a decrease in {Delta}. Diluting the analyte gas with a reference gas (nitrogen or air) allowed the detection limits to be determined, these lay in the low % range. The sensor stability was also enhanced as well as the sensitivity by modifying the gold layers with a 3-10 nm additional layer. These additional layers consisted of the inorganic materials TiO{sub 2}, ZrO{sub 2}, MgF{sub 2} and Fe: SnO{sub 2} which were deposited by different coating processes. Surface investigations were made of every utilised layer: scanning electron microscope and atomic force microscope measurements for surface topology and spectroscopic ellipsometry mapping to determine the optical constants and the layer thicknesses. All applied materials protected the gold layer from contaminations and thus prolonged the life span of the sensor. Furthermore, the detection limits were reduced significantly, to the low ppm range. The material Fe: SnO{sub 2} demonstrates a special behaviour in reaction with the toxic gas carbon monoxide: Due to the iron doping, the response to carbon monoxide is extraordinary and concentrations below 1 ppm were detected. In order to approach a future application in industry, the sensor system was adapted to a stainless steel tube. With this measuring

  9. 不同密度银纳米粒子对氧化锌基发光二极管发光的增强%Localized Surface Plasmon Resonance Enhanced Electroluminescence from ZnO-based Light-emitting Diodes via Optimizing The Density of Sliver Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    乔倩; 单崇新; 刘娟意; 陶丽芳; 王瑞; 张存喜; 李炳辉; 申德振

    2015-01-01

    Localized surface plasmon resonance enhanced n-ZnO/i-ZnO/MgO/p-GaN heterostruc-ture light-emitting diodes ( LEDs) with different sliver nanoparticles ( Ag NPs) density were fabrica-ted using molecular-beam epitaxy technique. It is found that the introduction of Ag NPs with suitable density is favorable for the effective resonant coupling between excitons in ZnO and the localized sur-face plasmons of Ag NPs, and thereby significantly improves the electroluminescence ( EL) perform-ance of the device. Note that the enhancement ratio increases firstly with the Ag NPs density and then decreases, and the variation is believed to be resulted from balance between the enhancement caused by the resonant coupling between the excitons in ZnO and the localized surface plasmons of Ag NPs and the extinction of the emitted photons by the Ag NPs.%采用分子束外延法制备不同密度的银纳米粒子( Ag NPs)修饰的局域表面等离子体共振增强n-ZnO/i-ZnO/MgO/p-GaN 异质结发光二极管( LEDs),并对其电学及光学性质进行表征。结果显示:LEDs中引入适当浓度的Ag NPs有利于Ag NPs局域表面等离子体激元与ZnO激子相耦合,可以显著提高器件的电致发光性能;随着Ag NPs浓度的增加,LEDs发光增强倍数先增大后减小,分析认为这是Ag NPs局域表面等离子体共振耦合增强过程和Ag NPs的消光过程两者之间相互博弈而导致的结果。

  10. Plasmonic Au/CdMoO{sub 4} photocatalyst: Influence of surface plasmon resonance for selective photocatalytic oxidation of benzylic alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Jinhong, E-mail: bijinhong@fzu.edu.cn [Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108 (China); Research Institute of Photocatalysis, State Key Laboratory Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002 (China); Zhou, Zhiyong; Chen, Mengying [Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108 (China); Liang, Shijing [Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108 (China); Research Institute of Photocatalysis, State Key Laboratory Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002 (China); He, Yunhui; Zhang, Zizhong [Research Institute of Photocatalysis, State Key Laboratory Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002 (China); Wu, Ling, E-mail: wuling@fzu.edu.cn [Research Institute of Photocatalysis, State Key Laboratory Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002 (China)

    2015-09-15

    Graphical abstract: - Highlights: • Au/CdMoO{sub 4} composites were constructed for the first time. • Au/CdMoO{sub 4} showed superior activity for selective oxidation of benzylic alcohol. • The visible light photocatalytic activity is ascribed to the SPR effect of Au. - Abstract: Novel visible-light-driven plasmonic Au/CdMoO{sub 4} photocatalysts were synthesized by hydrothermal process following chemical reduction process. The catalysts were characterized by X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The results show the catalysts exhibited strong visible light absorption due to the surface plasmon resonance effect of Au nanoparticles. Compared to CdMoO{sub 4}, Au/CdMoO{sub 4} composites displayed superior photocatalytic activities for the selective oxidation of benzylic alcohol to benzaldehyde under visible light. The highest conversion was obtain by the 1.6% Au loaded CdMoO{sub 4}. The mechanism for the selective oxidation of benzylic alcohol in the Au/CdMoO{sub 4} system is proposed.

  11. A voltage-controlled silver nanograting device for dynamic modulation of transmitted light based on the surface plasmon polariton effect

    Science.gov (United States)

    Wang, Hailong; Li, Haibo; Wang, Yi; Xu, Shuping; Xu, Weiqing

    2016-02-01

    An active-controlled plasmonic device is designed and fabricated based on the index-sensitive properties of surface plasmon polaritons (SPPs). We utilize a one-dimensional silver nanograting with a period of 320 nm overlayered with a liquid crystal (LC) layer (50 μm in thickness), to transmit selectively the surface plasmon resonance (SPR) wavelength. This device realizes the active, reversible and continuous control of the transmitted light wavelength by modulating the external voltage signal applied to the LC layer. This voltage-controlled plasmonic filter has a dynamic wavelength modulation range of 17 nm, a fast respond speed of 4.24 ms and a low driving voltage of 1.06 V μm-1. This study opens up a unique way for the design of tunable nanophotonic devices, such as a micro light sources and switches.An active-controlled plasmonic device is designed and fabricated based on the index-sensitive properties of surface plasmon polaritons (SPPs). We utilize a one-dimensional silver nanograting with a period of 320 nm overlayered with a liquid crystal (LC) layer (50 μm in thickness), to transmit selectively the surface plasmon resonance (SPR) wavelength. This device realizes the active, reversible and continuous control of the transmitted light wavelength by modulating the external voltage signal applied to the LC layer. This voltage-controlled plasmonic filter has a dynamic wavelength modulation range of 17 nm, a fast respond speed of 4.24 ms and a low driving voltage of 1.06 V μm-1. This study opens up a unique way for the design of tunable nanophotonic devices, such as a micro light sources and switches. Electronic supplementary information (ESI) available: (1) The general theory of the VCP filter; (2) RI sensitivity; (3) the thickness optimization of the Ag grating sandwiched by photoresist layers; (4) image system; (5) detection systems for transmission and reflection spectra; (6) detection system for the response time of the VCP filter. See DOI: 10.1039/c5nr

  12. Low-cost, high performance surface plasmon resonance-compatible films characterized by the surface plasmon resonance technique

    Institute of Scientific and Technical Information of China (English)

    Li Song-Quan; Ye Hong-An; Liu Chun-Yu; Dou Yin-Feng; Huang Yan

    2013-01-01

    A new analytical method based on the surface plasmon resonance (SPR) technique is presented,with which SPR curves for both wavelength and angular modulations can be obtained simultaneously via only a single scan of the incident angle.Using this method,the SPR responses of TiO2-coated Cu films are characterized in the wavelength range from 600 nm to 900 nm.For the first time,we determine the effective optical constants and the thicknesses of TiO2-coated Cu films using the SPR curves of wavelength modulation.The sensitivities of prism-based SPR refractive index sensors using TiO2-coated Cu films are investigated theoretically for both wavelength and angular modulations,the results show that in the case of sensitivity with wavelength modulation,TiO2-coated Cu films are not as good as the Au film,however,they are more suitable than the Au film for SPR refractive index sensors with angular modulation because a higher sensitivity can be achieved.

  13. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas.

    Science.gov (United States)

    Yu, Renwen; Pruneri, Valerio; García de Abajo, F Javier

    2016-08-26

    Electro-optical modulation of visible and near-infrared light is important for a wide variety of applications, ranging from communications to sensing and smart windows. However, currently available approaches result in rather bulky devices, suffer from low integrability, and can hardly operate at the low power consumption levels and fast switching rates required by microelectronic drivers. Here we show that planar nanostructures patterned in ultrathin metal-graphene hybrid films sustain highly tunable plasmons in the visible and near-infrared spectral regions. Strong variations in the reflection and absorption of incident light take place when the plasmons are tuned on- and off-resonance with respect to externally incident light. As a result, a remarkable modulation depth (i.e., the maximum relative variation with/without graphene doping) exceeding 90% in transmission and even more dramatic in reflection (>600%) is predicted for graphene-loaded silver films of 1-5 nm thickness and currently attainable lateral dimensions. These new structures hold great potential for fast low-power electro-optical modulation.

  14. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas

    Science.gov (United States)

    Yu, Renwen; Pruneri, Valerio; García de Abajo, F. Javier

    2016-08-01

    Electro-optical modulation of visible and near-infrared light is important for a wide variety of applications, ranging from communications to sensing and smart windows. However, currently available approaches result in rather bulky devices, suffer from low integrability, and can hardly operate at the low power consumption levels and fast switching rates required by microelectronic drivers. Here we show that planar nanostructures patterned in ultrathin metal-graphene hybrid films sustain highly tunable plasmons in the visible and near-infrared spectral regions. Strong variations in the reflection and absorption of incident light take place when the plasmons are tuned on- and off-resonance with respect to externally incident light. As a result, a remarkable modulation depth (i.e., the maximum relative variation with/without graphene doping) exceeding 90% in transmission and even more dramatic in reflection (>600%) is predicted for graphene-loaded silver films of 1-5 nm thickness and currently attainable lateral dimensions. These new structures hold great potential for fast low-power electro-optical modulation.

  15. Near-infrared linewidth narrowing in plasmonic Fano-resonant metamaterials via tuning of multipole contributions

    Science.gov (United States)

    Lim, Wen Xiang; Han, Song; Gupta, Manoj; MacDonald, Kevin F.; Singh, Ranjan

    2017-08-01

    We report on an experimental and computational (multipole decomposition) study of Fano resonance modes in complementary near-IR plasmonic metamaterials. Resonance wavelengths and linewidths can be controlled by changing the symmetry of the unit cell so as to manipulate the balance among multipole contributions. In the present case, geometrically inverting one half of a four-slot (paired asymmetric double bar) unit cell design changes the relative magnitude of magnetic quadrupole and toroidal dipole contributions leading to the enhanced quality factor, figure of merit, and spectral tuning of the plasmonic Fano resonance.

  16. Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells

    CERN Document Server

    Zhukovsky, Sergei V; Uskov, Alexander V; Protsenko, Igor E; Lavrinenko, Andrei V

    2013-01-01

    We propose to use collective lattice resonances in plasmonic nanoparticle arrays to enhance photoelectron emission in Schottky-barrier photodetectors and solar cells. We show that the interaction of lattice resonances (the Rayleigh anomaly) and individual particle excitations (localized surface plasmon resonances) leads to stronger local field enhancement and significant increase of the photocurrent compared to the case when only individual particle excitations are present. The results can be used to design new photodetectors with highly selective, tunable spectral response, able to detect photons with the energy below the semiconductor bandgap, and to develop solar cells with increased efficiency.

  17. Resonant terahertz absorption by plasmons in grating-gate GaN HEMT structures

    Science.gov (United States)

    Muravjov, A. V.; Veksler, D. B.; Hu, X.; Gaska, R.; Pala, N.; Saxena, H.; Peale, R. E.; Shur, M. S.

    2009-05-01

    Pronounced resonant absorption and frequency dispersion associated with an excitation of collective 2D plasmons have been observed in terahertz (0.5-4THz) transmission spectra of grating-gate 2D electron gas AlGaN/GaN HEMT (high electron mobility transistor) structures at cryogenic temperatures. The resonance frequencies correspond to plasmons with wavevectors equal to the reciprocal-lattice vectors of the metal grating, which serves both as a gate electrode for the HEMT and a coupler between plasmons and incident terahertz radiation. The resonances are tunable by changing the applied gate voltage, which controls 2D electron gas concentration in the channel. The effect can be used for resonant detection of terahertz radiation and for "on-chip" terahertz spectroscopy.

  18. Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Kadkhodazadeh, Shima

    2013-01-01

    We study the surface plasmon (SP) resonance energy of isolated spherical Ag nanoparticles dispersed on a silicon nitride substrate in the diameter range 3.5–26 nm with monochromated electron energy-loss spectroscopy. A significant blueshift of the SP resonance energy of 0.5 eV is measured when...

  19. Terahertz Nonlinearity in Graphene Plasmons

    CERN Document Server

    Jadidi, Mohammad M; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin

    2015-01-01

    Sub-wavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, sub-wavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a THz pump-THz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by two orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results.

  20. Investigations of thin p-GaN light-emitting diodes with surface plasmon compatible metallization

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  1. Enhancement of light emission from nanostructured In(2)O(3) via surface plasmons.

    Science.gov (United States)

    Qiu, Dongjiang; Wan, Zhengfen; Cai, Xikun; Yuan, Zijian; Hu, Lian; Zhang, Bingpo; Cai, Chunfeng; Wu, Huizhen

    2010-10-25

    We report the construction of In(2)O(3)/Ag/In(2)O(3) sandwich nanostructures and realization of effective coupling with surface plasmon (SP) modes. An enhancement of photoluminescence as large as 278-fold is achieved for the new nanostructures, while only eightfold is obtained from bilayer structures. The advancement of the nanostructures is that both the frequency of incidence photons and the in-plane wavevector of the excited SP modes along each side of the sandwiched nanometer metal layer are identical, thus the momenta mismatch between two SP modes which inevitably occurs in commonly used metal/dielectric bilayer structures is no longer a problem. The fulfillment of the cross coupling and resonance conditions of the two SP modes leads to the tremendous amplification of light emission. Such sandwich nanostructures can be readily extended to other dielectric/metal/dielectric nanomaterial combinations and identified as technologically useful for SP mediated light emitting devices.

  2. High resolution grating-assisted surface plasmon resonance fiber optic aptasensor.

    Science.gov (United States)

    Albert, Jacques; Lepinay, Sandrine; Caucheteur, Christophe; Derosa, Maria C

    2013-10-01

    A surface plasmon resonance biochemical sensor based on a tilted fiber Bragg grating imprinted in a single mode fiber core is demonstrated. A 30-50 nm thick gold coating on the cladding of the fiber provides the support for surface plasmon waves whose interaction with attached biomolecules is monitored at near infrared wavelengths near 1,550 nm. The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with the broader absorption of the surface plasmon and thus provide a unique tool to measure small shifts of the plasmon with high accuracy. The attachment on the gold surfaces of aptamers with specific affinities for proteins provides the required target-analyte system and is shown to be functional in the framework of our sensing device. The implementation of the sensor either as a stand-alone device or as part of a multi-sensor platform is also described. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Utilization of surface plasmon resonance of Au/Pt nanoparticles for highly photosensitive ZnO nanorods network based plasmon field effect transistor

    Science.gov (United States)

    Kumar, Ashish; Dixit, Tejendra; Palani, I. A.; Nakamura, D.; Higashihata, M.; Singh, Vipul

    2017-09-01

    Hydrothermally processed highly photosensitive ZnO nanorods based plasmon field effect transistors (PFETs) have been demonstrated utilizing the surface plasmon resonance coupling of Au and Pt nanoparticles at Au/Pt and ZnO interface. A significantly enhanced photocurrent was observed due to the plasmonic effect of the metal nanoparticles (NPs). The Pt coated PFETs showed Ion/Ioff ratio more than 3 × 104 under the dark condition, with field-effect mobility of 26 cm2 V-1 s-1 and threshold voltage of -2.7 V. Moreover, under the illumination of UV light (λ = 350 nm) the PFET revealed photocurrent gain of 105 under off-state (-5 V) of operation. Additionally, the electrical performance of PFETs was investigated in detail on the basis of charge transfer at metal/ZnO interface. The ZnO nanorods growth temperature was preserved at 110 °C which allowed a low temperature, economical and simple method to develop highly photosensitive ZnO nanorods network based PFETs for large scale production.

  4. Sensitivity Dependence of Surface Plasmon Resonance Based Sensors on Prism Refractive Index

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We theoretically and experimentally demonstrate that refractive index of the prism used toload metal film has significant influence on sensitivity of surface plasmon resonance based sensors. Theprism with lower refractive index gives the sensors a higher sensitivity in detecting refractive index varia-tions of a sample. We attribute this effect to the fact that a prism with low refractive index will increasecoupling distance between surface plasmons and the medium under investigation.

  5. Surface Plasmon Resonance Immunosensor for the Detection of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Noor Azlina Masdor

    2017-05-01

    Full Text Available Campylobacteriosis is an internationally important foodborne disease caused by Campylobacter jejuni. The bacterium is prevalent in chicken meat and it is estimated that as much as 90% of chicken meat on the market may be contaminated with the bacterium. The current gold standard for the detection of C. jejuni is the culturing method, which takes at least 48 h to confirm the presence of the bacterium. Hence, the aim of this work was to investigate the development of a Surface Plasmon Resonance (SPR sensor platform for C. jejuni detection. Bacterial strains were cultivated in-house and used in the development of the sensor. SPR sensor chips were first functionalized with polyclonal antibodies raised against C. jejuni using covalent attachment. The gold chips were then applied for the direct detection of C. jejuni. The assay conditions were then optimized and the sensor used for C. jejuni detection, achieving a detection limit of 8 × 106 CFU·mL−1. The sensitivity of the assay was further enhanced to 4 × 104 CFU·mL−1 through the deployment of a sandwich assay format using the same polyclonal antibody. The LOD obtained in the sandwich assay was higher than that achieved using commercial enzyme-linked immunosorbent assay (ELISA (106–107 CFU·mL−1. This indicate that the SPR-based sandwich sensor method has an excellent potential to replace ELISA tests for C. jejuni detection. Specificity studies performed with Gram-positive and Gram-negative bacteria, demonstrated the high specific of the sensor for C. jejuni.

  6. Spiky TiO2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity.

    Science.gov (United States)

    Sun, Hang; Zeng, Shan; He, Qinrong; She, Ping; Xu, Kongliang; Liu, Zhenning

    2017-03-21

    A facile approach for the preparation of spiky TiO2/Au nanorod (NR) plasmonic photocatalysts has been demonstrated, which is through in situ nucleation and growth of spiky TiO2 onto AuNRs. Different aspect ratios of AuNRs in 2.5, 2.7, 4.1 and 4.5 have been applied to prepare spiky TiO2/AuNR nanohybrids to achieve tunable and broad localized surface plasmon resonance (LSPR) bands. All spiky TiO2/AuNR nanohybrids exhibit enhanced light harvesting by extending visible light absorption range by both transverse and longitudinal LSPR bands and decreasing light reflectance by their unique spiky structures. Compared to the bare AuNRs, commercial TiO2 (P25) and spiky TiO2/Au nanosphere photocatalysts, the spiky TiO2/AuNR photocatalysts exhibit significantly enhanced visible light photocatalytic activity in Rhodamine B (RhB) degradation due to their simultaneous enhancement in the light harvesting, charge utilization efficiency, and substrate accessibility. In particular, the spiky TiO2/AuNR-685 photocatalysts show the best photocatalytic activity with ∼98.9% of the RhB degraded within 90 min under the irradiation of 420-780 nm, which could be ascribed to the most extended visible light absorption range and sufficient photon energy of TiO2/AuNR-685 photocatalysts within this irradiation region. The bio-inspired nanostructure, as well as the facile and scalable fabrication approach, will open a new avenue for the rational design and preparation of high-performance photocatalysts for pollutant removal and water splitting.

  7. Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna

    OpenAIRE

    López-Tejeira, F.; Paniagua-Domínguez, R.; Rodríguez-Oliveros, R.; Sánchez-Gil, J. A.

    2011-01-01

    Single metallic nanorods acting as half-wave antennas in the optical range exhibit an asymmetric, multi-resonant scattering spectrum that strongly depends on both their length and dielectric properties. Here we show that such spectral features can be easily understood in terms of Fano-like interference between adjacent plasmon resonances. On the basis of analytical and numerical results for different geometries, we demonstrate that Fano resonances may appear for such single-particle nanoanten...

  8. Resolution Enhancement in Surface Plasmon Resonance Sensor Based on Waveguide Coupled Mode by Combining a Bimetallic Approach

    Directory of Open Access Journals (Sweden)

    Won Mok Kim

    2010-12-01

    Full Text Available In this study, we present and demonstrate a new route to a great enhancement in resolution of surface plasmon resonance sensors. Basically, our approach combines a waveguide coupled plasmonic mode and a kind of Au/Ag bimetallic enhancement concept. Theoretical modeling was carried out by solving Fresnel equations for the multilayer stack of prism/Ag inner-metal layer/dielectric waveguide/Au outer-metal layer. The inner Ag layer couples incident light to a guided wave and makes more fields effectively concentrated on the outer Au surface. A substantial enhancement in resolution was experimentally verified for the model stack using a ZnS-SiO2 waveguide layer.

  9. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating

    Science.gov (United States)

    Yan, Haitao; Han, Daofu; Li, Ming; Lin, Bo

    2017-01-01

    This paper presents the design, fabrication, and characterization of a D-shaped fiber coated with polyvinyl alcohol (PVA) embedding an Au grating-based relative humidity (RH) sensor. The Au grating is fabricated on a D-shaped fiber to match the wave-vector and excite the surface plasmon, and the PVA is embedded in the Au grating as a sensitive cladding film. The refractive index of PVA changes with the ambient humidity. Measurements in a controlled environment show that the RH sensor can achieve a sensitivity of 5.4 nm per relative humidity unit in the RH range from 0% to 70% RH. Moreover, the surface plasmon resonance can be realized and used for RH sensing at the C band of optical fiber communication instead of the visible light band due to the metallic grating microstructure on the D-shaped fiber.

  10. Influence of sodium hydroxide in enhancing the surface plasmon resonance of silver nanoparticles

    Science.gov (United States)

    Yadav, Vijay D.; Jain, Ratnesh; Dandekar, Prajakta

    2017-08-01

    Herein, we report green synthesis of silver nanoparticles, by confluence graph described previously using acetate as the stabilizer as well as a reducing agent. The process involves use of ‘green’ chemicals and benign synthesis conditions. The synthesized nanoparticles were tuned for their surface plasmon resonance by sodium hydroxide addition and scanned between 400 to 800 nm to study the hyperchromic effect. As the concentration of sodium hydroxide increased, the surface plasmon resonance of the silver nanoparticles at 420 nm increased (hyperchromic effect). The synthesized silver nanoparticles were further characterized by TEM, for morphology analysis and laser scattering for the electromagnetic properties of nanoparticles. Our method may provide a gateway for intensive exploration of innovative approaches in synthesizing silver nanoparticles and tuning (hyperchromic effect) their localized surface plasmon resonance by using sodium hydroxide, which has tremendous utility in diverse application sectors.

  11. Scattering properties of vein induced localized surface plasmon resonances on a gold disk

    KAUST Repository

    Amin, Muhammad

    2011-12-01

    It is demonstrated via simulations that a gold nano-disk with a non-concentric cavity supports localized surface plasmon resonances over a frequency band that includes the visible and the near-infrared parts of the spectrum. The charge distribution on the disk indicates that the two distinct peaks in the scattering cross section are due to the (hybridized) higher-order plasmon modes; plasmon hybridization that involves the dipole modes of the disk and the cavity enforces the "coupling" of the plane-wave excitation to the originally-dark higher-order modes. It is further demonstrated that the resonance frequencies can be tuned by varying the radius of the embedded non-concentric cavity. The near-field enhancement observed at these two tunable resonance frequencies suggests that the proposed structure can be used as a substrate in surface enhanced spectroscopy applications. © 2011 IEEE.

  12. Design of Highly Sensitive Surface Plasmon Resonance Sensors Using Planar Metallic Films Closely Coupled to Nanogratings

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Yan; XIE Wen-Chong; LIU De-Ming

    2008-01-01

    We investigate the sensitivity enhancement of surface plasmon resonance(SPR)sensors using planar metallic films closely coupled to nanogratings.The strong coupling between localized surface plasmon resonances(LSPRs)presenting in metallic nanostructures and surface plasmon polaritons(SPPs)propagating at the metallic film surface leads to changes of resonance reflection properties,resulting in enhanced sensitivity of SPR sensors.The effects of thickness of the metallic films,grating period and metal materials on the refractive index sensitivity of the device are investigated.The refractive index sensitivity of nanograting-based SPR sensors is predicted to be about 543 nm/RIU(refractive index unit)using optimized structure parameters.Our study on SPR sensors using planar metallic films closely coupled to nanogratings demonstrates the potential for significant improvement in refractive index sensitivity.

  13. A BIOSENSOR USING COUPLED PLASMON WAVEGUIDE RESONANCE COMBINED WITH HYPERSPECTRAL FLUORESCENCE ANALYSIS

    Directory of Open Access Journals (Sweden)

    CHAN DU

    2014-01-01

    Full Text Available We developed a biosensor that is capable for simultaneous surface plasmon resonance (SPR sensing and hyperspectral fluorescence analysis in this paper. A symmetrical metal-dielectric slab scheme is employed for the excitation of coupled plasmon waveguide resonance (CPWR in the present work. Resonance between surface plasmon mode and the guided waveguide mode generates narrower full width half-maximum of the reflective curves which leads to increased precision for the determination of refractive index over conventional SPR sensors. In addition, CPWR also offers longer surface propagation depths and higher surface electric field strengths that enable the excitation of fluorescence with hyperspectral technique to maintain an appreciable signal-to-noise ratio. The refractive index information obtained from SPR sensing and the chemical properties obtained through hyperspectral fluorescence analysis confirm each other to exclude false-positive or false-negative cases. The sensor provides a comprehensive understanding of the biological events on the sensor chips.

  14. Toward an Enhancement of the Photoactivity of Multiphotochromic Dimers Using Plasmon Resonance: A Theoretical Study.

    Science.gov (United States)

    Fihey, Arnaud; Le Guennic, Boris; Jacquemin, Denis

    2015-08-06

    Building dimers of organic photochromic compounds paves the way to multifunctional switches, but such architectures often undergo partial photoreactivity only. Combining photochromism of molecules and plasmon resonance of gold nanoparticles (NPs) is known to affect the photochromism of monomers, yet the impact on multimers remains unknown. Here we propose a theoretical study of dimers of dithienylethenes by the mean of a hybrid calculation scheme (discrete-interaction model/quantum mechanics). We aim to assess how the optical properties of multiphotochromes are tuned by the influence of the plasmon resonances. We show that, for a typical chemisorption orientation on the NP, the absorption bands responsible for the photochromism are significantly enhanced for both the doubly open and mixed closed-open isomers of the dyad, hinting that plasmon resonance could be used to boost the generally poor photoactivity of dithienylethene dyads.

  15. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperaturas

    Science.gov (United States)

    Catalán-Gómez, S.; Redondo-Cubero, A.; Palomares, F. J.; Nucciarelli, F.; Pau, J. L.

    2017-10-01

    The effect of the oxidation of gallium nanoparticles (Ga NPs) on their plasmonic properties is investigated. Discrete dipole approximation has been used to study the wavelength of the out-of-plane localized surface plasmon resonance in hemispherical Ga NPs, deposited on silicon substrates, with oxide shell (Ga2O3) of different thickness. Thermal oxidation treatments, varying temperature and time, were carried out in order to increase experimentally the Ga2O3 shell thickness in the NPs. The optical, structural and chemical properties of the oxidized NPs have been studied by spectroscopic ellipsometry, scanning electron microscopy, grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy. A clear redshift of the peak wavelength is observed, barely affecting the intensity of the plasmon resonance. A controllable increase of the Ga2O3 thickness as a consequence of the thermal annealing is achieved. In addition, simulations together with ellipsometry results have been used to determine the oxidation rate, whose kinetics is governed by a logarithmic dependence. These results support the tunable properties of the plasmon resonance wavelength in Ga NPs by thermal oxidation at low temperatures without significant reduction of the plasmon resonance intensity.

  16. Fano coil-type resonances: a plasmonic tool for magnetic field enhancement (Conference Presentation)

    Science.gov (United States)

    Panaro, Simone; Proietti Zaccaria, Remo; Toma, Andrea

    2016-09-01

    Spintronics and spin-based technology rely on the ultra-fast unbalance of the electronic spin population in quite localized spatial regions. However, as a matter of fact, the low susceptibility of conventional materials at high frequencies strongly limits these phenomena, rendering the efficiency of magnetically active devices insufficient for application purposes. Among the possible strategies which can be envisaged, plasmonics offers a direct approach to increase the effect of local electronic unbalancing processes. By confining and enhancing free radiation in nm-size spatial regions, plasmonic nano-assemblies have demonstrated to support very intense electric and magnetic hot-spots. In particular, very recent studies have proven the fine control of magnetic fields in Fano resonance condition. The near-field-induced out-of-phase oscillation of localized surface plasmons has manifested itself with the arising of magnetic sub-diffractive hot-spots. Here, we show how this effect can be further boosted in the mid-infrared regime via the introduction of higher order plasmonic modes. The investigated system, namely Moon Trimer Resonator, combines the high efficiency of a strongly coupled nano-assembly in Fano interferential condition with the elevated tunability of the quadrupolar resonance supported by a moon-like geometry. The fine control of the apical gap in this unique nanostructure, characterizes a plasmonic device able to tune its resonance without any consequence on the magnetic hot-spot size, thus enabling an efficient squeezing in the infrared.

  17. Fano coil-type resonances: a plasmonic tool for the magnetic field manipulation (Conference Presentation)

    Science.gov (United States)

    Panaro, Simone; Proietti Zaccaria, Remo; Toma, Andrea

    2017-02-01

    Spintronics and spin-based technology rely on the ultra-fast unbalance of the electronic spin population in quite localized spatial regions. However, as a matter of fact, the low susceptibility of conventional materials at high frequencies strongly limits these phenomena, rendering the efficiency of magnetically active devices insufficient for application purposes. Among the possible strategies which can be envisaged, plasmonics offers a direct approach to increase the effect of local electronic unbalancing processes. By confining and enhancing free radiation in nm-size spatial regions, plasmonic nano-assemblies have demonstrated to support very intense electric and magnetic hot-spots. In particular, very recent studies have proven the fine control of magnetic fields in Fano resonance condition. The near-field-induced out-of-phase oscillation of localized surface plasmons has manifested itself with the arising of magnetic sub-diffractive hot-spots. Here, we show how this effect can be further boosted in the mid-infrared regime via the introduction of higher order plasmonic modes. The investigated system, namely Moon Trimer Resonator (MTR), combines the high efficiency of a strongly coupled nano-assembly in Fano interferential condition with the elevated tunability of the quadrupolar resonance supported by a moon-like geometry. The fine control of the apical gap in this unique nanostructure, characterizes a plasmonic device able to tune its resonance without any consequence on the magnetic hot-spot size, thus enabling an efficient squeezing in the infrared.

  18. Controlling Metamaterial Resonances with Light

    CERN Document Server

    Chakrabarti, Sangeeta; Wanare, Harshawardhan

    2010-01-01

    We investigate the use of coherent optical fields as a means of dynamically controlling the resonant behaviour of a variety of composite metamaterials, wherein the metamaterial structures are embedded in a dispersive dielectric medium. Control and switching is implemented by coherently driving the resonant permittivity of the embedding medium by applied optical radiation. The effect of embedding Split ring resonators (SRR) in a frequency- dispersive medium with Lorentz-like dispersion or with dispersion engineered by electromagnetic induced transparency (EIT), is manifested in the splitting of the negative permeability band, the modified (frequency-dependent) filling fractions and dissipation factors. The modified material parameters are strongly linked to the resonant frequencies of the medium, while for an embedding medium exhibiting EIT, also to the strength and detuning of the control field. The robustness of control against the deleterious influence of dissipation associated with the metallic structures ...

  19. Handheld Chem/Biosensor Using Extreme Conformational Changes in Designed Binding Proteins to Enhance Surface Plasmon Resonance (SPR)

    Science.gov (United States)

    2016-04-01

    detection system for chemical and biological toxins . Surface Plasmon Resonance (SPR), protein design, protein engineering, supercharged protein ...chemical and biological toxins . Keywords: Surface Plasmon Resonance (SPR), protein design, protein engineering, supercharged protein , metamaterials...even this small index change, should be capable of detecting larger target molecules, such as proteins or even viral or bacterial pathogens, which

  20. Third-order gap plasmon based metasurfaces for visible light

    DEFF Research Database (Denmark)

    Deshpande, Rucha Anil; Pors, Anders; Bozhevolnyi, Sergey I.

    2017-01-01

    -order GSP resonance and thereby involve relatively large nanobricks, can successfully be used for efficient polarization-controlled steering of visible light. The reflection amplitude and phase maps for a 450 nm period array of 50 nm thick nanobricks placed atop a 40 nm thick silica layer supported...... with different dimensions, to operate as a polarization beam splitter for linearly polarized light. The fabricated polarization beam splitter is characterized using a super-continuum light source at normal light incidence and found to exhibit a polarization contrast ratio of up to 40 dB near the design...... (electric field perpendicular to the plane of diffraction) being significantly better (experimentally > 20 % and theoretically > 40 %) than for the TM polarization. This difference becomes even more pronounced for the light incidence deviating from normal. Finally, we discuss possible improvements...

  1. A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide

    DEFF Research Database (Denmark)

    Soh, N; Tokuda, T.; Watanabe, T.

    2003-01-01

    A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2,4-dichloroph......A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2...

  2. Plasmonic resonance scattering from silver nanowire illuminated by tightly focused singular beam.

    Science.gov (United States)

    Normatov, Alexander; Spektor, Boris; Leviatan, Yehuda; Shamir, Joseph

    2010-08-15

    We investigate scattering features of tightly focused singular beams by placing a cylindrical nanowire in the vicinity of a line phase singularity. Applying an illumination wavelength corresponding to silver cylinder plasmonic resonance, we compare the scattering response with that of a perfect conductor. The rigorous modeling employs a 2D version of the Richards-Wolf focusing method and the source model technique. It is found that a cylinder with a plasmonic resonance produces a strong scattering response by deflecting the power flow toward the optical singularity region, where otherwise the power approaches zero.

  3. Optical bistability effect in plasmonic racetrack resonator with high extinction ratio.

    Science.gov (United States)

    Wang, Xiaolei; Jiang, Houqiang; Chen, Junxue; Wang, Pei; Lu, Yonghua; Ming, Hai

    2011-09-26

    In this paper, optical bistability effect in an ultracompact plasmonic racetrack resonator with nonlinear optical Kerr medium is investigated both analytically and numerically. The properties of optical bistability and pump threshold are studied at 1.55 µm with various detuning parameters by an analytical model. The transmission switch from the upper branch to the lower branch with a pulse is also demonstrated by a finite-difference time-domain method. An extinction ratio of 97.8% and a switching time of 0.38 ps can be achieved with proper detuning parameter. Such a plasmonic resonator design provides a promising realization for highly effective optical modulators and switch.

  4. Investigation of Real-Time Photorepair Activity on DNA via Surface Plasmon Resonance

    OpenAIRE

    2012-01-01

    4/24/2014 PLOS ONE: Investigation of Real-Time Photorepair Activity on DNA via Surface Plasmon Resonance http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0044392 1/9 Published: August 29, 2012 DOI: 10.1371/journal.pone.0044392 Investigation of Real-Time Photorepair Activity on DNA via Surface Plasmon Resonance Rıza Kizilel , Enis Demir, Selimcan Azizoglu, Hande Asımgi, Ibrahim Halil Kavakli , Seda Kizilel Corrections 25 Oct 2012: Kizilel R, Demir E, Aziz...

  5. Brightening gold nanoparticles: new sensing approach based on plasmon resonance energy transfer.

    Science.gov (United States)

    Shi, Lei; Jing, Chao; Gu, Zhen; Long, Yi-Tao

    2015-05-11

    Scattering recovered plasmonic resonance energy transfer (SR-PRET) was reported by blocking the plasmon resonance energy transfer (PRET) from gold nanoparticle (GNP) to the adsorbed molecules (RdBS). Due to the selective cleavage of the Si-O bond by F- ions, the quenching is switched off causing an increase in the brightness of the GNPs,detected using dark-field microscopy (DFM) were brightened. This method was successfully applied to the determination of fluoride ions in water. The SR-PRET provides a potential approach for a vitro/vivo sensing with high sensitivity and selectivity.

  6. Phase effects in guided mode resonances II: measuring the angular phase of a surface plasmon polariton

    Science.gov (United States)

    Theisen, M. J.; Brown, T. G.

    2015-02-01

    We show how the phase of a resonant interaction between a focused beam and a guided mode can be directly observed in a pupil imaging experiment, in which the irradiance leaving the pupil of a standard microscope is relayed to an image sensor through a combination Wollaston prism, calcite beam splitter and polarizer. We apply the method to the observation of a surface plasmon polariton resonance excited in a corrugated silver film fabricated using electron beam lithography. We discuss how this particular imaging configuration could be adapted for applications in plasmonic optical sensing.

  7. A single particle plasmon resonance study of 3D conical nanoantennas.

    Science.gov (United States)

    Schäfer, Christian; Gollmer, Dominik A; Horrer, Andreas; Fulmes, Julia; Weber-Bargioni, Alexander; Cabrini, Stefano; Schuck, P James; Kern, Dieter P; Fleischer, Monika

    2013-09-07

    Metallic nanocones are well-suited optical antennas for near-field microscopy and spectroscopy, exhibiting a number of different plasmonic modes. A major challenge in using nanocones for many applications is maximizing the signal at the tip while minimizing the background from the base. It is shown that nanocone plasmon resonance properties can be shifted over a wide range of wavelengths by variation of the substrate, material, size and shape, enabling potential control over specific modes and field distributions. The individual resonances are identified and studied by correlated single particle dark field scattering and scanning electron microscopy in combination with numerical simulations.

  8. Forty-Four Pass Fibre Optic Loop for Improving the Sensitivity of Surface Plasmon Resonance Sensors

    CERN Document Server

    Su, Chin B

    2007-01-01

    A forty-four pass fibre optic surface plasmon resonance sensor that enhances detection sensitivity according to the number of passes is demonstrated for the first time. The technique employs a fibre optic recirculation loop that passes the detection spot forty- four times, thus enhancing sensitivity by a factor of forty-four. Presently, the total number of passes is limited by the onset of lasing action of the recirculation loop. This technique offers a significant sensitivity improvement for various types of plasmon resonance sensors that may be used in chemical and biomolecule detections.

  9. Tailoring the plasmonic whispering gallery modes of a metal-coated resonator for potential application as a refractometric sensor.

    Science.gov (United States)

    Guo, Chang-Lei; Che, Kai-Jun; Gu, Guo-Qiang; Cai, Guo-Xiong; Cai, Zhi-Ping; Xu, Hui-Ying

    2015-02-20

    Plasmonic whispering gallery (WG) modes confined in metal-coated resonators are theoretically investigated by electromagnetic analyses. The resonance can be tuned from internal surface plasmonic WG modes to the hybrid state of the plasmonic mode by an introduced isolation layer. As the coated metal is reduced in size, the optical resonance is shifted out by the mode coupling of the internal and external surface plasmonic WG modes. Based on the optical leak of the plasmonic WG mode, the optical influences led by the surroundings with a variable refractive index are considered. Device performance criteria such as optical power leak, resonant wavelength shift, and threshold gain are studied. Full wave simulations are also employed and the results present good consistency with analytic solutions. The metal-coated resonator assisted by an active material is expected to provide promising performance as a refractometric sensor.

  10. Demonstrating the angular, wavelength and polarization dependence of surface plasmon resonance on thin gold films—An undergraduate experiment

    Science.gov (United States)

    Connolly, Peter W. R.; Kaplan, Andrey

    2016-10-01

    This paper describes the design of a simple and compact optical system capable of examining fundamental properties of light coupling to surface plasmon resonance (SPR) on a thin gold film. The setup, involving a rotatable Attenuated Total Reflection device, from which the reflected light is focused by means of a parabolic mirror, allows for the investigation of the dependence of the reflected intensity on the angle of incidence without moving the detector. It additionally makes provision for a convenient exchange of light sources or the possibility to incorporate a broadband source suitable to investigate SPR at different wavelengths. Theoretical simulation of the experimental data is provided, as well as straightforward calculations for exploring the physics of light excited waves propagating on a surface.

  11. Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light.

    Science.gov (United States)

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Han, Shuo; Yang, Haifang; Xu, Xiangang; Wang, Zhengping; Petrov, V; Wang, Jiyang

    2013-11-12

    We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angular momentum of light beams and PVLs. The angular momentum of twisting SP electromagnetic field is tunable by the twisted metal/dielectric interfaces of PVLs and angular momentum of illuminating singular light. This work may open the door for several possible applications of SP vortices in subwavelength region.

  12. Active Multiple Plasmon-Induced Transparency with Graphene Sheets Resonators in Mid-Infrared Frequencies

    Directory of Open Access Journals (Sweden)

    Jicheng Wang

    2016-01-01

    Full Text Available A multiple plasmon-induced transparency (PIT device operated in the mid-infrared region has been proposed. The designed model is comprised of one graphene ribbon as main waveguide and two narrow graphene sheets resonators. The phase coupling between two graphene resonators has been investigated. The multimode PIT resonances have been found in both cases and can be dynamically tuned via varying the chemical potential of graphene resonators without optimizing its geometric parameters. In addition, this structure can get multiple PIT effect by equipping extra two sheets on the symmetric positions of graphene waveguide. The simulation results based on finite element method (FEM are in good agreement with the resonance theory. This work may pave new way for graphene-based thermal plasmonic devices applications.

  13. Surface plasmon-polariton resonance at diffraction of THz radiation on semiconductor gratings

    CERN Document Server

    Spevak, I S; Gavrikov, V K; Shulga, V M; Feng, J; Sun, H B; Kamenev, Yu E; Kats, A V

    2013-01-01

    Resonance diffraction of THz HCN laser radiation on a semiconductor (InSb) grating is studied both experimentally and theoretically. The specular reflectivity suppression due to the resonance excitation of the THz surface plasmon-polariton is observed on a pure semiconductor grating and on semiconductor gratings covered with a thin striped layer of the residual photoresist. Presence of a thin dielectric layer on the grating surface leads to the shift and widening of the plasmon-polariton resonance. A simple analytical theory of the resonance diffraction on a shallow grating covered with a dielectric layer is presented. Its results are in a good accordance with the experimental data. Analytical expressions for the resonance shift and broadening can be useful for sensing data interpretation.

  14. Double-Slot Hybrid Plasmonic Ring Resonator Used for Optical Sensors and Modulators

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2015-11-01

    Full Text Available An ultra-high sensitivity double-slot hybrid plasmonic (DSHP ring resonator, used for optical sensors and modulators, is developed. Due to high index contrast, as well as plasmonic enhancement, a considerable part of the optical energy is concentrated in the narrow slots between Si and plasmonic materials (silver is used in this paper, which leads to high sensitivity to the infiltrating materials. By partial opening of the outer plasmonic circular sheet of the DSHP ring, a conventional side-coupled silicon on insulator (SOI bus waveguide can be used. Experimental results demonstrate ultra-high sensitivity (687.5 nm/RIU of the developed DSHP ring resonator, which is about five-times higher than for the conventional Si ring with the same geometry. Further discussions show that a very low detection limit (5.37 × 10−6 RIU can be achieved after loaded Q factor modifications. In addition, the plasmonic metal structures offer also the way to process optical and electronic signals along the same hybrid plasmonic circuits with small capacitance (~0.275 fF and large electric field, which leads to possible applications in compact high-efficiency electro-optic modulators, where no extra electrodes for electronic signals are required.

  15. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    Science.gov (United States)

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-03

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy.

  16. Plasmonic photocatalysis.

    Science.gov (United States)

    Zhang, Xuming; Chen, Yu Lim; Liu, Ru-Shi; Tsai, Din Ping

    2013-04-01

    Plasmonic photocatalysis has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible light irradiation, increasing the prospect of using sunlight for environmental and energy applications such as wastewater treatment, water splitting and carbon dioxide reduction. Plasmonic photocatalysis makes use of noble metal nanoparticles dispersed into semiconductor photocatalysts and possesses two prominent features-a Schottky junction and localized surface plasmonic resonance (LSPR). The former is of benefit to charge separation and transfer whereas the latter contributes to the strong absorption of visible light and the excitation of active charge carriers. This article aims to provide a systematic study of the fundamental physical mechanisms of plasmonic photocatalysis and to rationalize many experimental observations. In particular, we show that LSPR could boost the generation of electrons and holes in semiconductor photocatalysts through two different effects-the LSPR sensitization effect and the LSPR-powered bandgap breaking effect. By classifying the plasmonic photocatalytic systems in terms of their contact form and irradiation state, we show that the enhancement effects on different properties of photocatalysis can be well-explained and systematized. Moreover, we identify popular material systems of plasmonic photocatalysis that have shown excellent performance and elucidate their key features in the context of our proposed mechanisms and classifications.

  17. Subwavelength propagation and localization of light using surface plasmons: A brief perspective

    Indian Academy of Sciences (India)

    G V Pavan Kumar; Danveer Singh; Partha Pratim Patra; Arindam Dasgupta

    2014-01-01

    Surface plasmons at the metal–dielectric interface have emerged as an important candidate to propagate and localize light at subwavelength scales. By tailoring the geometry and arrangement of metallic nanoarchitectures, propagating and localized surface plasmons can be obtained. In this brief perspective, we discuss: (1) how surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) can be optically excited in metallic nanoarchitectures by employing a variety of optical microscopy methods; (2) how SPPs and LSPs in plasmonic nanowires can be utilized for subwavelength polarization optics and single-molecule surface-enhanced Raman scattering (SERS) on a photonic chip; and (3) how individual plasmonic nanowire can be optically manipulated using optical trapping methods.

  18. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods

    Science.gov (United States)

    Bora, Tanujjal; Zoepfl, David; Dutta, Joydeep

    2016-05-01

    Herein we explore the role of localized plasmonic heat generated by resonantly excited gold (Au) NPs on visible light driven photocatalysis process. Au NPs are deposited on the surface of vertically aligned zinc oxide nanorods (ZnO NRs). The localized heat generated by Au NPs under 532 nm continuous laser excitation (SPR excitation) was experimentally probed using Raman spectroscopy by following the phonon modes of ZnO. Under the resonant excitation the temperature at the surface of the Au-ZnO NRs reaches up to about 300 °C, resulting in almost 6 times higher apparent quantum yield (AQY) for photocatalytic degradation of methylene blue (MB) compared to the bare ZnO NRs. Under solar light irradiation the Au-ZnO NRs demonstrated visible light photocatalytic activity twice that of what was achieved with bare ZnO NRs, while significantly reduced the activation energy required for the photocatalytic reactions allowing the reactions to occur at a faster rate.

  19. Few-body resonances in light nuclei

    CERN Document Server

    Csoto, A

    2000-01-01

    We have localized several few-body resonances in light nuclei, using methods which can properly handle two- or three-body resonant states. Among other results, we predict the existence of a three-neutron resonance, small spin-orbit splittings between the low-lying states in He-5 and Li-5, the nonexistence of the soft dipole resonance in He-6, new 1+ states in Li-8 and B-8, and the presence of a nonlinear amplification phenomenon in the 0+_2 state of C-12.

  20. Tuneable and robust long range surface plasmon resonance for biosensing applications

    Science.gov (United States)

    Méjard, Régis; Dostálek, Jakub; Huang, Chun-Jen; Griesser, Hans; Thierry, Benjamin

    2013-10-01

    A multilayered biosensing architecture based on long range surface plasmons (LRSPs) is reported. LRSPs originate from the coupling of surface plasmons on the opposite sides of a thin metal film embedded in a symmetrical refractive index environment. With respect to regular SPs, LRSPs are characterized by extended electromagnetic field profiles and lower losses, making them of high interest in biosensing, especially for large biological entities. LRSPs-supporting layer structures are typically prepared by using fluoropolymers with refractive indices close to that of water. Unfortunately, fluoropolymers have low surface energies which can translate into poor adhesion to substrates and sub-optimal properties of coatings with surface plasmon resonance-active metal layers such as gold. In this work, a multilayered fluoropolymer structure with tuneable average refractive index is described and used to adjust the penetration depth of LRSP from the sensor surface. The proposed methodology also provides a simple solution to increase the adhesion of LRSP-supporting structures to glass substrates. Towards taking full advantage of long range surface plasmon resonance sensors, a novel approach based on the plasma-polymerization of allylamine is also described to improve the quality of gold layers on fluoropolymers such as Teflon AF. Through these advancements, long range surface plasmon resonance sensors were fabricated with figures of merit as high as 466 RIU-1. The remarkable performance of these sensors combined with their high stability is expected to foster applications of LRSPR in biosensing.

  1. Rational design of on-chip refractive index sensors based on lattice plasmon resonances (Presentation Recording)

    Science.gov (United States)

    Lin, Linhan; Zheng, Yuebing

    2015-08-01

    Lattice plasmon resonances (LPRs), which originate from the plasmonic-photonic coupling in gold or silver nanoparticle arrays, possess ultra-narrow linewidth by suppressing the radiative damping and provide the possibility to develop the plasmonic sensors with high figure of merit (FOM). However, the plasmonic-photonic coupling is greatly suppressed when the nanoparticles are immobilized on substrates because the diffraction orders are cut off at the nanoparticle-substrate interfaces. Here, we develop the rational design of LPR structures for the high-performance, on-chip plasmonic sensors based on both orthogonal and parallel coupling. Our finite-difference time-domain simulations in the core/shell SiO2/Au nanocylinder arrays (NCAs) reveal that new modes of localized surface plasmon resonances (LSPRs) show up when the aspect ratio of the NCAs is increased. The height-induced LSPRs couple with the superstrate diffraction orders to generate the robust LPRs in asymmetric environment. The high wavelength sensitivity and narrow linewidth in these LPRs lead to the plasmonic sensors with high FOM and high signal-to-noise ratio (SNR). Wide working wavelengths from visible to near-infrared are also achieved by tuning the parameters of the NCAs. Moreover, the wide detection range of refractive index is obtained in the parallel LPR structure. The electromagnetic field distributions in the NCAs demonstrate the height-enabled tunability of the plasmonic "hot spots" at the sub-nanoparticles resolution and the coupling between these "hot spots" with the superstrate diffraction waves, which are responsible for the high performance LPRs-based on-chip refractive index sensors.

  2. Tridirectional Polarization Routing of Light by a Single Triangular Plasmonic Nanoparticle.

    Science.gov (United States)

    Tanaka, Yoshito Y; Shimura, Tsutomu

    2017-05-10

    Achieving high directionality of scattered light in combination with high flexibility of the direction using plasmonic nanoparticles is desirable for future optical nanocircuits and on-chip optical links. The plasmonic characteristics of nanoparticles strongly depend on their geometry. Here, we studied directional light scattering by a single-element triangular plasmonic nanoparticle. Our experimental and simulation results demonstrated that the triangular nanoparticle spatially sorted the incoming photons into three different scattering directions according to their polarization direction, including circular polarization, despite its compact overall volume of ∼λ(3)/300. The broken mirror symmetry and rotational symmetry of the triangular nanoparticle enabled such passive tridirectional polarization routing through the constructive and destructive interference of different plasmon modes. Our findings should markedly broaden the versatility of triangular plasmonic nanodevices, extending their possible practical applications in photon couplers and sorters and chemo-/biosensors.

  3. Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers.

    Science.gov (United States)

    Verre, R; Yang, Z J; Shegai, T; Käll, M

    2015-03-11

    The possibility of achieving optical magnetism at visible frequencies using plasmonic nanostructures has recently been a subject of great interest. The concept is based on designing structures that support plasmon modes with electron oscillation patterns that imitate current loops, that is, magnetic dipoles. However, the magnetic resonances are typically spectrally narrow, thereby limiting their applicability in, for example, metamaterial designs. We show that a significantly broader magnetic response can be realized in plasmonic pentamers constructed from metal-insulator-metal (MIM) sandwich particles. Each MIM unit acts as a magnetic meta-atom and the optical magnetism is rendered quasi-broadband through hybridization of the in-plane modes. We demonstrate that scattering spectra of individual MIM pentamers exhibit multiple Fano resonances and a broad subradiant spectral window that signals the magnetic interaction and a hierarchy of coupling effects in these intricate three-dimensional nanoparticle oligomers.

  4. Reflectors and resonators for high-k bulk Bloch plasmonic waves in multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei

    2012-01-01

    We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength-scale struc......We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength......-scale structuring. This multiscale approach is shown to be a promising platform for using bulk plasmonic waves in complex multilayer metamaterials as a new kind of information carriers....

  5. Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance

    DEFF Research Database (Denmark)

    Emani, Naresh Kumar; Kildishev, Alexander V.; Shalaev, Vladimir M.

    2015-01-01

    Graphene has recently emerged as a viable platform for integrated optoelectronic and hybrid photonic devices because of its unique properties. The optical properties of graphene can be dynamically controlled by electrical voltage and have been used to modulate the plasmons in noble metal nanostru...

  6. Cross-point analysis for a multimode fiber sensor based on surface plasmon resonance

    Science.gov (United States)

    Tsai, Woo-Hu; Tsao, Yu-Chia; Lin, Hong-Yu; Sheu, Bor-Chiou

    2005-09-01

    A novel analysis based on surface plasmon resonance (SPR) with a side-polished multimode fiber and a white-light (halogen light) source is presented. The sensing system is a multimode optical fiber in which half of the core has been polished away and a 40 nm gold layer is deposited on to the polished surface by dc sputter. The SPR dip in the optical spectrum is investigated with an optical spectrum analyzer (OSA). In our SPR fiber sensor, the use of liquids with different refractive indices leads to a shift in the spectral dip in the SPR curve. The cross point (CP) of the two SPR spectra obtained from the refractive-index liquid and the deionized water measurements was observed with the OSA. The CP is shifted sensitively in wavelength from 630to1300 nm relative to a change in the refractive index of the liquid from 1.34 to 1.46. High sensitivities of 1.9×10^-6 refractive-index units (RIUs) in the range of the refractive index of the liquid from 1.40 to 1.44 of 5.7×10^-7 RIUs above the value of 1.44 are proposed and demonstrated in our novel SPR analysis.

  7. Sensing (un)binding events via surface plasmons: effects of resonator geometry

    Science.gov (United States)

    Antosiewicz, Tomasz J.; Claudio, Virginia; Käll, Mikael

    2016-04-01

    The resonance conditions of localized surface plasmon resonances (LSPRs) can be perturbed in any number ways making plasmon nanoresonators viable tools in detection of e.g. phase changes, pH, gasses, and single molecules. Precise measurement via LSPR of molecular concentrations hinge on the ability to confidently count the number of molecules attached to a metal resonator and ideally to track binding and unbinding events in real-time. These two requirements make it necessary to rigorously quantify relations between the number of bound molecules and response of plasmonic sensors. This endeavor is hindered on the one hand by a spatially varying response of a given plasmonic nanosensor. On the other hand movement of molecules is determined by stochastic effects (Brownian motion) as well as deterministic flow, if present, in microfluidic channels. The combination of molecular dynamics and the electromagnetic response of the LSPR yield an uncertainty which is little understood and whose effect is often disregarded in quantitative sensing experiments. Using a combination of electromagnetic finite-difference time-domain (FDTD) calculations of the plasmon resonance peak shift of various metal nanosensors (disk, cone, rod, dimer) and stochastic diffusion-reaction simulations of biomolecular interactions on a sensor surface we clarify the interplay between position dependent binding probability and inhomogeneous sensitivity distribution. We show, how the statistical characteristics of the total signal upon molecular binding are determined. The proposed methodology is, in general, applicable to any sensor and any transduction mechanism, although the specifics of implementation will vary depending on circumstances. In this work we focus on elucidating how the interplay between electromagnetic and stochastic effects impacts the feasibility of employing particular shapes of plasmonic sensors for real-time monitoring of individual binding reactions or sensing low concentrations

  8. A reconfigurable subwavelength plasmonic fano nano-antenna based on split ring resonator

    Science.gov (United States)

    Hosseinbeig, Ahmad; Pirooj, Azadeh; Zarrabi, Ferdows B.

    2017-02-01

    In this article, a reconfigurable subwavelength plasmonic nano-antenna with Fano resonance effect is presented based on the dual ring structure. In order to achieve reconfigurable characteristics, the interaction of gold with graphene is studied. SiN substrate with refractive index of 1.98 and gold with Palik optical characteristic modified for metal layer are utilized in the design of the proposed nano-antenna. Simulations are performed by using CST Microwave Studio. The biasing effect on extinction cross section is studied for 0 to 0.8 eV. It is shown that the gap method is useful for exciting the Fano resonance in the dual ring nano-antenna and there is only a plasmonic resonance in the simple dual ring antenna. The proposed nano-antenna is useful for THz medical spectroscopy due to its simple design and the ability to control the second resonance frequency by changing the bias of the graphene.

  9. Linear and nonlinear optics of hybrid plasmon-exciton nanomaterials in the presence of overlapping resonances

    CERN Document Server

    Sukharev, Maxim; Pachter, Ruth

    2015-01-01

    We consider a hybrid plasmon-exciton system comprised of a resonant molecular subsystem and three Au wires supporting a dipole mode which can be coupled to a dark mode in controllable fashion by variation of a symmetry parameter. The physics of such a system under strong coupling conditions is examined in detail. It is shown that if two wires supporting the dark mode are covered with molecular layers the system exhibits four resonant modes for a strong coupling regime due to asymmetry and lifted degeneracy of the molecular state in this case, while upon having molecular aggregates covering the top wire with dipolar mode, three resonant modes appear. Pump-probe simulations are performed to scrutinize the quantum dynamics and find possible ways to control plasmon-exciton materials. It is demonstrated that one can design hybrid nanomaterials with highly pronounced Fano-type resonances when excited by femtosecond lasers.

  10. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light

    Science.gov (United States)

    Sohrabnezhad, Sh.; Zanjanchi, M. A.; Razavi, M.

    2014-09-01

    Metal-semiconductor compounds, such as Ag/AgX (X = Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that rad O2- and rad OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed.

  11. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light.

    Science.gov (United States)

    Sohrabnezhad, Sh; Zanjanchi, M A; Razavi, M

    2014-09-15

    Metal-semiconductor compounds, such as Ag/AgX (X=Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that O2- and OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed.

  12. Enhanced Sensitivity of Surface Plasmon Resonance Sensor Based on Bilayers of Silver-Barium Titanate

    Directory of Open Access Journals (Sweden)

    S. Fouad

    2016-12-01

    Full Text Available Surface plasmon resonance (SPR sensors have been widely adopted with various fields such as physics, chemistry, biology and biochemistry. SPR sensor has many advantages like the less number of sensing samples required, freedom of electromagnetic interference and higher sensitivity. This research investigates the phase interrogation technique of a surface plasmon resonance sensor based on silver and thin film dielectric material of Barium titanate layers. Barium titanate (BaTiO3 layer is adopted due to its excellent dielectric properties such as high dielectric constant and low dielectric loss. The numerical results demonstrate that the fusion of the proposed material BaTiO3 layer into surface plasmon resonance sensor yields a higher sensitivity of 280 degree/RIU in comparison with surface plasmon resonance sensor without BaTiO3 layer which shows only a sensitivity of 120 degree/RIU. As the thickness of this layer increases from 5 nm to 10 nm, the sensitivity is enhanced from 160 degree/RIU to 280 degree/RIU for a fixed metal layer of silver with a thickness of (70 nm.

  13. Studies on Interactions of Antibiotics with Serum Albumin by Surface Plasmon Resonance Biosensor

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Characterizing how chemical compounds binding to serum albumin is essential in evaluating drug candidates and is the focus of this study. A surface plasmon resonance biosensor developed in this laboratory was used to determine the binding constants of antibiotics with serum albumin. The binding constants of five antibiotics(azithromycin, spectinomycin, gentamycin, metacycline and kanamycin) with serum albumins were obtained.

  14. Surface plasmon resonance (SPR) detection of Staphylococcal Enterotoxin A in food samples

    Science.gov (United States)

    An automated and rapid method for detection of staphylococcal enterotoxins (SE) is needed. A sandwich assay was developed using a surface plasmon resonance (SPR) biosensor for detection of staphylococcal enterotoxin A (SEA) at subpicomolar concentration. Assay conditions were optimized for capturing...

  15. Thermal energy transfer by plasmon-resonant composite nanoparticles at pulse laser irradiation.

    Science.gov (United States)

    Avetisyan, Yuri A; Yakunin, Alexander N; Tuchin, Valery V

    2012-04-01

    Heating of composite plasmon-resonant nanoparticles (spherical gold nanoshells) under pulse laser illumination is considered. The numerical solution of the time-dependent heat conduction equation accounting for spatial inhomogeneities of absorbed laser radiation is performed. Important features of temperature kinetics and thermal flux inside nanoparticles are analyzed. Possible applications of the observed effects in nanotechnology and medicine are discussed.

  16. Improvement of the Specificity of Surface Plasmon Resonance with BSA-modified Chip

    Institute of Scientific and Technical Information of China (English)

    Li Hua CHEN

    2006-01-01

    A chip was modified with bovine serum albumin (BSA), then interaction between glutathione (GSH) immobilized on the top of BSA and glutathione-S-transferase (GST) was examined, using surface plasmon resonance (SPR). The SPR results showed that BSA-modified chip was effective not only in binding the target proteins but also in suppressing the nonspecific binding (NSB) of proteins.

  17. Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators

    CERN Document Server

    Kristensen, Philip Trøst; Hughes, Stephen

    2015-01-01

    We discuss three formally different formulas for normalization of quasinormal modes currently in use for modeling optical cavities and plasmonic resonators and show that they are complementary and provide the same result. Regardless of the formula used for normalization, one can use the norm to define an effective mode volume for use in Purcell factor calculations.

  18. Rapid Determination of Phytophthora infestans sporangia Using a Surface Plasmon Resonance Immunosensor

    DEFF Research Database (Denmark)

    Skottrup, Peter; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2007-01-01

    Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangia...

  19. Development of a biosensor microarray towards food screening using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Rebe, S.; Bremer, M.G.E.G.; Giesbers, M.; Norde, W.

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration c

  20. Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass

    Science.gov (United States)

    Chicken is one of the most popular meat products in the world. Salmonella Typhimurium is a common foodborne pathogens associated with the processing of poultry. An optical Surface Plasmon Resonance (SPR) biosensor was sensitive to the presence of Salmonella Typhimurium in chicken carcass. The Spr...

  1. Detection of benzimidazole carbamates and amino metabolites in liver by surface plasmon resonance-biosensor

    Science.gov (United States)

    Two surface plasmon resonance (SPR) biosensor screening assays were developed and validated to detect 11 benzimidazole carbamate (BZT) and four amino-benzimidazole veterinary drug residues in liver tissue. The assays used polyclonal antibodies, raised in sheep, to detect BZTs and amino-benzimidazole...

  2. Rapid Determination of Phytophthora infestans sporangia Using a Surface Plasmon Resonance Immunosensor

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2007-01-01

    Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangi...

  3. Detection of Fungal Spores Using a Generic Surface Plasmon Resonance Immunoassay

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Hearty, Stephen; Frøkiær, Hanne

    2007-01-01

    This paper describes a biosensor-based method for detection of fungal spores using Surface Plasmon Resonance (SPR). The approach involves the use of a mouse monoclonal antibody (Pst mAb8) and a SPR sensor for label-free detection of urediniospores from the model organism Puccinia striiformis f.sp...

  4. Detection of mycotoxins using imaging surface plasmon resonance (iSPR)

    Science.gov (United States)

    Significant progress has been made in the development of biosensors that can be used to detect mycotoxins. One technology that has been extensively tested is surface plasmon resonance (SPR). In 2003 a multi-toxin method was reported that detected aflatoxin B1 (AFB1), zearalenone (ZEA), fumonisin B1 ...

  5. The application of neoglycopeptides in the development of sensitive surface plasmon resonance-based biosensors

    NARCIS (Netherlands)

    Maljaars, C.E.P.; de Souza, A.C.; Halkes, K.M.; Upton, P.J.; Reeman, S.M.; André, S.; Gabius, H.-J.; McDonnell, M.B.; Kamerling, J.P.

    2008-01-01

    The development of a biosensor based on surface plasmon resonance is described for the detection of carbohydrate-binding proteins in solution on a Biacore 2000 instrument, using immobilized glycopeptides as ligands. Their selection was based on previous screenings of solid-phase glycopeptide

  6. The application of neoglycopeptides in the development of sensitive surface plasmon resonance-based biosensors

    NARCIS (Netherlands)

    Maljaars, C.E.P.; de Souza, A.C.; Halkes, K.M.; Upton, P.J.; Reeman, S.M.; André, S.; Gabius, H.-J.; McDonnell, M.B.; Kamerling, J.P.

    2008-01-01

    The development of a biosensor based on surface plasmon resonance is described for the detection of carbohydrate-binding proteins in solution on a Biacore 2000 instrument, using immobilized glycopeptides as ligands. Their selection was based on previous screenings of solid-phase glycopeptide librari

  7. A Surface Plasmon Resonance Immunosensor for Detection of urediniospores from Puccinia striiformis f. sp. tritici

    DEFF Research Database (Denmark)

    Skottrup, Peter; Hearty, Stephen; Frøkiær, Hanne;

    2006-01-01

    This study describes a generic biosensing principle for detection of fungal spores using surface plasmon resonance (SPR). The approach involves the use of a mouse monoclonal antibody (mAb) and a SPR sensor for label-free detection of the model organism Puccinia striiformis f.sp. tritici (Pst). We...

  8. Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens

    Science.gov (United States)

    Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...

  9. Detection of egg yolk antibodies reflecting Salmonella enteritidis infections using a surface plasmon resonance biosensor

    NARCIS (Netherlands)

    Thomas, M.E.; Bouma, A.; Eerden, van E.; Landman, W.J.M.; Knapen, van F.; Stegeman, J.A.; Bergwerff, A.A.

    2006-01-01

    A surface plasmon resonance (SPR) biosensor assay was developed on the basis of a lipopolysaccharide antigen of Salmonella enterica serovar enteritidis (S. enterica serovar enteritidis) to detect egg yolk antibodies against S. enterica serovar enteritidis. This biosensor assay was compared to two co

  10. Nanopatterned submicron pores as a shield for nonspecific binding in surface plasmon resonance-based sensing

    NARCIS (Netherlands)

    Raz, Sabina Rebe; Marchesini, Gerardo R.; Bremer, Maria G. E. G.; Colpo, Pascal; Garcia, Cesar Pascual; Guidetti, Guido; Norde, Willem; Rossi, Francois

    2012-01-01

    We present a novel approach to tackle the most common drawback of using surface plasmon resonance for analyte screening in complex biological matrices - the nonspecific binding to the sensor chip surface. By using a perforated membrane supported by a polymeric gel structure at the evanescent wave pe

  11. Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Raz, Sabina Rebe; Bremer, Maria G. E. G.; Giesbers, Marcel; Norde, Willem

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration c

  12. Quantifying protein-protein interactions in the ubiquitin pathway by surface plasmon resonance

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2005-01-01

    The commercial availability of instruments, such as Biacore, that are capable of monitoring surface plasmon resonance (SPR) has greatly simplified the quantification of protein-protein interactions. Already, this technique has been used for some studies of the ubiquitin-proteasome system. Here we...

  13. Enhancing the gas sensitivity of surface plasmon resonance with a nanoporous silica matrix

    NARCIS (Netherlands)

    Berrier, A.; Offermans, P.; Cools, R.; Megen, B. van; Knoben, W.; Vecchi, G.; Rivas, J.G.; Crego-Calama, M.; Brongersma, S.H.

    2011-01-01

    The development of sensing schemes for the detection of health-threatening gases is an attractive subject for research towards novel integrated autonomous sensor systems. We report here on a novel way of sensing NO\\2 by surface plasmon resonance (SPR) using a gas-sensitive layer composed of

  14. Surface characterization and antifouling properties of nanostructured gold chips for imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, S.; Pellacani, P.; Beek, van T.A.; Zuilhof, H.; Nielen, M.W.F.

    2015-01-01

    Surface Plasmon Resonance (SPR) optical sensing is a label-free technique for real-time monitoring of biomolecular interactions. Recently, a portable imaging SPR (iSPR) prototype instrument, featuring a nanostructured gold chip, has been developed. In the present work, we investigated the crucial

  15. Broadening of Plasmonic Resonance Due to Electron Collisions with Nanoparticle Boundary: а Quantum Mechanical Consideration

    DEFF Research Database (Denmark)

    Uskov, Alexander; Protsenko, Igor E.; Mortensen, N. Asger

    2014-01-01

    We present a quantum mechanical approach to calculate broadening of plasmonic resonances in metallic nanostructures due to collisions of electrons with the surface of the structure. The approach is applicable if the characteristic size of the structure is much larger than the de Broglie electron ...

  16. Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths

    DEFF Research Database (Denmark)

    Garcia, Cesar; Coello, Victor; Han, Zhanghua

    2012-01-01

    Dielectric-loaded plasmonic waveguide-racetrack resonators (WRTRs) were designed and fabricated for operating at near-infrared wavelengths (750–850 nm) and characterized using leakage-radiation microscopy. The transmission spectra of the WRTRs are found experimentally and compared to the calculat...

  17. Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Babicheva, Viktoriia; Uskov, Alexander

    2014-01-01

    -particle excitations (localized surface plasmon resonances) leads to stronger local field enhancement. In turn, this causes a significant increase of the photocurrent compared to the case when only individual-particle excitations are present. The results can be used to design new photodetectors with highly selective...

  18. Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna

    CERN Document Server

    López-Tejeira, F; Rodríguez-Oliveros, R; Sánchez-Gil, J A

    2011-01-01

    Single metallic nanorods acting as half-wave antennas in the optical range exhibit an asymmetric, multi-resonant scattering spectrum that strongly depends on both their length and dielectric properties. Here we show that such spectral features can be easily understood in terms of Fano-like interference between adjacent plasmon resonances. On the basis of analytical and numerical results for different geometries, we demonstrate that Fano resonances may appear for such single-particle nanoantennas provided that interacting resonances overlap in both spatial and frequency domains.

  19. Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors

    Science.gov (United States)

    Rosenberg, Jessie; Shenoi, Rajeev V.; Krishna, Sanjay; Painter, Oskar

    2010-02-01

    We design a polarization-sensitive resonator for use in midinfrared photodetectors, utilizing a photonic crystal cavity and a single or double-metal plasmonic waveguide to achieve enhanced detector efficiency due to superior optical confinement within the active region. As the cavity is highly frequency and polarization-sensitive, this resonator structure could be used in chip-based infrared spectrometers and cameras that can distinguish among different materials and temperatures to a high degree of precision.

  20. Control of the plasmonic resonance of a graphene coated plasmonic nanoparticle array combined with a nematic liquid crystal

    Science.gov (United States)

    De Sio, Luciano; Cataldi, Ugo; Bürgi, Thomas; Tabiryan, Nelson; Bunning, Timothy J.

    2016-07-01

    We report on the fabrication and characterization of a switchable plasmonic device based on a conductive graphene oxide (cGO) coated plasmonic nanoparticle (NP) array, layered with nematic liquid crystal (NLC) as an active medium. A monolayer of NPs has been immobilized on a glass substrate through electrostatic interaction, and then grown in place using nanochemistry. This monolayer is then coated with a thin (less then 100nm) cGO film which acts simultaneously as both an electro-conductive and active medium. The combination of the conductive NP array with a separate top cover substrate having both cGO and a standard LC alignment layer is used for aligning a NLC film in a hybrid configuration. The system is analysed in terms of morphological and electro-optical properties. The spectral response of the sample characterized after each element is added (air, cGO, NLC) reveals a red-shift of the localized plasmonic resonance (LPR) frequency of approximately 62nm with respect to the NP array surrounded by air. The application of an external voltage (8Vpp) is suitable to modulate (blue shift) the LPR frequency by approximately 22nm.

  1. Nonlocal response in plasmonic waveguiding with extreme light confinement

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Yan, Wei;

    2013-01-01

    We present a novel wave equation for linearized plasmonic response, obtained by combining the coupled real-space differential equations for the electric field and current density. Nonlocal dynamics are fully accounted for, and the formulation is very well suited for numerical implementation, allo...... Purcell factors, and thus has important implications for quantum plasmonics....

  2. Resonant Effects of FPL and SPP for Light Transmitting through Subwavelength Metallic Gratings

    Institute of Scientific and Technical Information of China (English)

    马佑桥; 周骏; 何苗; P. Mormile

    2011-01-01

    A new model is proposed to explain the physical mechanism of the extraordinary transmission enhancement in subwavelength metallic grating. The extraordinary transmission enhancement is described by the co-operation of Fabry Perot-like (FPL) resonance and the surface plasmon polariton (SPP) resonance. The rigorous coupled-wave analysis (RCWA) and the finite difference time domain (FDTD) method are employed to illustrate the model by calcu- lating the transmission and the field distributions in the subwavelength metallic grating, respectively. And the numerical calculations show that transmission enhancement is achieved when the coupling resonance of the incident light, the surface plasmon polariton mode and the Fabry-Perot-Like mode is happened, which are in good agreement with the proposed model.

  3. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.

    Science.gov (United States)

    Petefish, Joseph W; Hillier, Andrew C

    2014-03-04

    Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating surface plasmons as a method for SEIRA excitation. In this report, we demonstrate angle-tunable enhancement of vibrational stretching modes associated with a thin poly(methyl methacrylate) (PMMA) film that is coupled to a silver-coated diffraction grating. Gratings are fabricated using laser interference lithography to achieve precise surface periodicities, which can be used to generate surface plasmons that overlap with specific vibrational modes in the polymer film. Infrared reflection absorption spectra are presented for both bare silver and PMMA-coated silver gratings at a range of angles and polarization states. In addition, spectra were obtained with the grating direction oriented perpendicular and parallel to the infrared source in order to isolate plasmon enhancement effects. Optical simulations using the rigorous coupled-wave analysis method were used to identify the origin of the plasmon-induced enhancement. Angle-dependent absorption measurements achieved signal enhancements of more than 10-times the signal in the absence of the plasmon.

  4. Standing-wave resonances in plasmonic nanoumbrella cavities for color generation and colorimetric refractive index sensor

    Science.gov (United States)

    Fan, Jiaorong; Li, Zhongyuan; Chen, Zhuojie; Wu, Wengang

    2016-10-01

    We theoretically investigate the hybridization of the elemental surface plasmons in umbrella-shape plasmonic nanostructures and experimentally demonstrate the implementation of plasmonic multicolor metasurfaces as well as their application in colorimetric sensing. The three-dimension metallic umbrella arrays consist of a periodic canopy-capped-nanopillars with metal-coated sidewall and a backplane metal-film to form vertical nanocavity of canopy and film. Plasmonic coupling and energy confinement in nanocavity induce a noticeably resonance narrowing of multispectral reflection. The metasurfaced nanostructures appeared in vibrant and tunable colors with broad gamut derived from color blending mechanism due to multiple, narrow-band resonances. Vivid colors varied from red, yellow, green, blue to violet are easily achieved. It is also shown that such plasmonic metasurfaces can work as the feasible and real-time colorimetric refractive index sensor by measuring the distinct color variation to glucose concentration changes. Our sensor scheme shows its spectral sensitivity in the periodic umbrella array with respect to the refractive index change to be 242.5 nm/RIU with a figure of merit of 7.3. Furthermore, a refractive index resolution of colorimetric sensing up to 0.025 RIU has been accomplished.

  5. Improved Coupling to Plasmonic Slot Waveguide via a Resonant Nanoantenna

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Zenin, Vladimir A.; Malureanu, Radu;

    -limited optical waves into deep-subwavelength plasmonic waveguides. In this contribution we provide a systematic approach to design, fabricate and characterize an efficient, broadband, and compact dipole antenna nanocoupler for the telecom wavelength range around 1.55 µm. We consider the vertical coupling...... configuration with a realistic excitation directly from an optical fiber. The scattering-type scanning near-field optical microscope (s-SNOM) characterization allows us not only to make relative comparison of the efficiencies (in terms of the effective area) of different couplers, but also to measure......Plasmonic waveguides are considered as a future generation of optical interconnects in integrated circuits for datacom technologies due to their extreme field confinement performance. Inevitably, when using nanoscale waveguides, a new challenge emerges: how to effectively couple the diffraction...

  6. Optical properties of surface plasmon resonances of coupled metallic nanorods.

    Science.gov (United States)

    Smythe, Elizabeth J; Cubukcu, Ertugrul; Capasso, Federico

    2007-06-11

    We present a systematic study of optical antenna arrays, in which the effects of coupling between the antennas, as well as of the antenna length, on the reflection spectra are investigated and compared. Such arrays can be fabricated on the facet of a fiber, and we propose a photonic device, a plasmonic optical antenna fiber probe, that can potentially be used for in-situ chemical and biological detection and surface-enhanced Raman scattering.

  7. Resonance Coupling in Plasmonic Nanomatryoshka Homo- and Heterodimers

    Science.gov (United States)

    2016-08-16

    breaking and conductive contact on the plasmon coupling in gold nanorod dimers,” ACS Nano 4, 4657-4666 (2010). 19 B. Luk’yanchuk, N. I. Zheludev, S. A...gold nanorods,” ACS Nano 5, 5976-5986 (2011). 21 Y, -I. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573-4588 (1995). 22

  8. Study on Dielectric Function Models for Surface Plasmon Resonance Structure

    Directory of Open Access Journals (Sweden)

    Peyman Jahanshahi

    2014-01-01

    Full Text Available The most common permittivity function models are compared and identifying the best model for further studies is desired. For this study, simulations using several different models and an analytical analysis on a practical surface Plasmon structure were done with an accuracy of ∼94.4% with respect to experimental data. Finite element method, combined with dielectric properties extracted from the Brendel-Bormann function model, was utilized, the latter being chosen from a comparative study on four available models.

  9. Visual Identification of Light-Driven Breakage of the Silver-Dithiocarbamate Bond by Single Plasmonic Nanoprobes

    Science.gov (United States)

    Gao, Peng Fei; Yuan, Bin Fang; Gao, Ming Xuan; Li, Rong Sheng; Ma, Jun; Zou, Hong Yan; Li, Yuan Fang; Li, Ming; Huang, Cheng Zhi

    2015-10-01

    Insight into the nature of metal-sulfur bond, a meaningful one in life science, interface chemistry and organometallic chemistry, is interesting but challenging. By utilizing the localized surface plasmon resonance properties of silver nanoparticles, herein we visually identified the photosensitivity of silver-dithiocarbamate (Ag-DTC) bond by using dark field microscopic imaging (iDFM) technique at single nanoparticle level. It was found that the breakage of Ag-DTC bond could be accelerated effectively by light irradiation, followed by a pH-dependent horizontal or vertical degradation of the DTC molecules, in which an indispensable preoxidation process of the silver was at first disclosed. These findings suggest a visualization strategy at single plasmonic nanoparticle level which can be excellently applied to explore new stimulus-triggered reactions, and might also open a new way to understand traditional organic reaction mechanisms.

  10. Analysis of plasmon resonances in metallic nanostructures in proximity to dielectric objects with application to heat-assisted magnetic recording

    Science.gov (United States)

    Hung, L.; McAvoy, P.; Bowen, D.; Krafft, C.; Mayergoyz, I.

    2014-05-01

    A novel approach to the calculation of plasmon resonance in metallic nanoparticle located nearby a dielectric object is presented. The plasmon resonance problem for such structure is formulated as a constrained eigenvalue problem for specific coupled boundary integral equations. By solving this eigenvalue problem, the resonance frequencies (wavelengths) of the metallic nanoparticle as well as the corresponding plasmon modes are computed. In this paper, two examples of application are considered and a good agreement between the computational results and analytical solution as well as with available experimental and numerical data is demonstrated.

  11. Interplay between out-of-plane magnetic plasmon and lattice resonance for modified resonance lineshape and near-field enhancement in double nanoparticles array

    CERN Document Server

    Ding, Pei; He, Jinna; Fan, Chunzhen; Cai, Genwang; Liang, Erjun

    2013-01-01

    Two-dimensional double nanoparticles (DNPs) arrays are demonstrated theoretically supporting the interaction of out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay of the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement of magnetic field enhancement. Simultaneous electric field and magnetic field enhancements can be obtained in the gap regions between neighboring particles at two resonance frequencies as the interplay occurs, which present open cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmons interactions in periodic nanostructure or metamaterials comprising multiple element...

  12. Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2014-03-01

    Silver nanoparticles were prepared using aqueous fruit extract of Ananas comosus as reducing agent. These silver nanoparticles showed surface plasmon peak at 439 nm. They were monodispersed and spherical in shape with an average particle size of 10 nm. The crystallinity of these nanoparticles was evident from clear lattice fringes in the HRTEM images and bright circular spots in the SAED pattern. The antibacterial activities of prepared nanoparticles were found to be size-dependent, the smaller nanoparticles showing more bactericidal effect. Aqueous Zn2+ and Cu4+ selectivity and sensitivity study of this green synthesized nanoparticle was performed by optical sensor based surface plasmon resonance (SPR) at room temperature.

  13. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  14. A saccharides sensor developed by symmetrical optical waveguide-based surface plasmon resonance

    OpenAIRE

    Ang Li; Zhouyi Guo; Qing Peng; Chan Du; Xida Han; Le Liu; Jun Guo; Yonghong He; Yanhong Ji

    2015-01-01

    We proposed a new saccharides sensor developed by symmetrical optical waveguide (SOW)-based surface plasmon resonance (SPR). This unique MgF2/Au/MgF2/Analyte film structure results in longer surface plasmon wave (SPW) propagation lengths and depths, leading to an increment of resolution. In this paper, we managed to decorate the dielectric interface (MgF2 layer) by depositing a thin polydopamine film as surface-adherent that provides a platform for secondary reactions with the probe molecule....

  15. Coherent resonance of quantum plasmons in Stone-Wales defected graphene-silver nanowire hybrid system

    Science.gov (United States)

    Liu, Tong; Zhang, Hong; Cheng, Xin-Lu; Xu, Yang

    2017-10-01

    Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone-Wales (SW) defected graphene-silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone-Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene.

  16. EIT-like transmission by interaction between multiple Bragg scattering and local plasmonic resonances

    CERN Document Server

    Liu, Z Z; Xiao, J J

    2015-01-01

    We study the optical properties associated to both the polariton gap and the Bragg gap in periodic resonator-waveguide coupled system, based on the temporal coupled mode theory and the transfer matrix method. By the complex band and the transmission spectrum, it is feasible to tune the interaction between multiple Bragg scattering and the local resonance, which may give rise to analogous phenomena of electromagnetically induced transparency (EIT). We further design a plasmonic slot waveguide side-coupled with local plasmonic resonator to demonstrate the EIT-like effects in the near-infared band. Numerical calculations show that realistic amount of metal Joule loss may destroy the interference and the total absorption is enhanced in the transparency windwo due to the near zero group velocity of the guiding wave.

  17. Detection of biomolecules and bioconjugates by monitoring rotated grating-coupled surface plasmon resonance

    CERN Document Server

    Szalai, Aniko; Somogyi, Aniko; Szenes, Andras; Banhelyi, Balazs; Csapo, Edit; Dekany, Imre; Csendes, Tibor; Csete, Maria

    2016-01-01

    Plasmonic biosensing chips were prepared by fabricating wavelength-scaled dielectric-metal interfacial gratings on thin polycarbonate films covered bimetal layers via two-beam interference laser lithography. Lysozyme (LYZ) biomolecules and gold nanoparticle (AuNP-LYZ) bioconjugates with 1:5 mass ratio were seeded onto the biochip surfaces. Surface plasmon resonance spectroscopy was performed before and after biomolecule seeding in a modified Kretschmann-arrangement by varying the azimuthal and polar angles to optimize the conditions for rotated grating-coupling. The shift of secondary and primary resonance peaks originating from rotated grating-coupling phenomenon was monitored to detect the biomolecule and bioconjugate adherence. Numerical calculations were performed to reproduce the measured reflectance spectra and the resonance peak shifts caused by different biocoverings. Comparison of measurements and calculations proved that monitoring the narrower secondary peaks under optimal rotated-grating coupling ...

  18. Modulating light with light via giant nano-opto-mechanical nonlinearity of plasmonic metamaterial

    CERN Document Server

    Ou, Jun-Yu; Zhang, Jianfa; Zheludev, Nikolay I

    2015-01-01

    From the demonstration of saturable absorption by Vavilow and Levshin in 1926, and with invention of the laser, unavailability of strongly nonlinear materials was a key obstacle for developing optical signal processing, in particular in transparent telecommunication networks. Today, most advanced photonic switching materials exploit gain dynamics and near-band and excitonic effects in semiconductors, nonlinearities in organic media with weakly-localized electrons and nonlinearities enhanced by hybridization with metamaterials. Here we report on a new type of artificial nonlinearity that is nano-opto-mechanical in nature. It was observed in an artificial metamaterial array of plasmonic meta-molecules supported by a flexible nano-membrane. Here nonlinearity is underpinned by the reversible reconfiguration of its structure induced by light. In a film of only 100 nanometres thickness we demonstrated modulation of light with light using milliwatt power telecom diode lasers.

  19. Effect of surface plasmon resonance on the photocatalytic activity of Au/TiO2 under UV/visible illumination.

    Science.gov (United States)

    Tseng, Yao-Hsuan; Chang, I-Guo; Tai, Yian; Wu, Kung-Wei

    2012-01-01

    In this study, gold-loaded titanium dioxide was prepared by an impregnation method to investigate the effect of surface plasmon resonance (SPR) on photoactivity. The deposited gold nanoparticles (NPs) absorb visible light because of SPR. The effects of both the gold content and the TiO2 size of Au/TiO2 on SPR and the photocatalytic efficiency were investigated. The morphology, crystal structure, light absorption, emission from the recombination of a photoexcited electron and hole, and the degree of aggregation were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible-diffuse reflectance spectra (UV-VIS-DRS), photoluminescence (PL) spectroscopy, and turbidimetry, respectively. Photocatalytic activity was evaluated by the decolorization of methyl orange solution over modified titania under UV and UV/GLED (green light emitting diode) illumination. Au/TiO2 NPs exhibited an absorption peak (530-570 nm) because of SPR. The results of our photocatalytic experiments indicated that the UV-inducedly photocatalytic reaction rate was improved by simultaneously using UV and green light illumination; this corresponds to the adsorption region of SPR. Au/TiO2 could use the enhanced electric field amplitude on the surface of the Au particle in the spectral vicinity of its plasmon resonance and thus improve the photoactivity. Experimental results show that the synergistic effect between UV and green light for the improvement of photoactivity increases with increasing the SPR absorption, which in turn is affected by the Au content and TiO2 size.

  20. Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Danveer; Raghuwanshi, Mohit; Pavan Kumar, G. V. [Photonics and Optical Nanoscopy Laboratory, Department of Physics and Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008 (India)

    2012-09-10

    We experimentally studied plasmon-polariton-assisted light propagation in serially coupled silver nanowire (Ag-NW) dimers and probed their dependence on bending-angle between the nanowires and polarization of incident light. From the angle-dependence study, we observed that obtuse angles between the nanowires resulted in better transmission than acute angles. From the polarization studies, we inferred that light emission from junction and distal ends of Ag-NW dimers can be systematically controlled. Further, we applied this property to show light routing and polarization beam splitting in obtuse-angled Ag-NW dimer. The studied geometry can be an excellent test-bed for plasmonic circuitry.

  1. Amplification of resonant field enhancement by plasmonic lattice coupling in metallic slit arrays

    Science.gov (United States)

    Klarskov, Pernille; Tarekegne, Abebe T.; Iwaszczuk, Krzysztof; Zhang, X.-C.; Jepsen, Peter Uhd

    2016-11-01

    Nonlinear spectroscopic investigation in the terahertz (THz) range requires significant field strength of the light fields. It is still a challenge to obtain the required field strengths in free space from table-top laser systems at sufficiently high repetition rates to enable quantitative nonlinear spectroscopy. It is well known that local enhancement of the THz field can be obtained for instance in narrow apertures in metallic films. Here we show by simulation, analytical modelling and experiment that the achievable field enhancement in a two-dimensional array of slits with micrometer dimensions in a metallic film can be increased by at least 60% compared to the enhancement in an isolated slit. The additional enhancement is obtained by optimized plasmonic coupling between the lattice modes and the resonance of the individual slits. Our results indicate a viable route to sensitive schemes for THz spectroscopy with slit arrays manufactured by standard UV photolithography, with local field strengths in the multi-ten-MV/cm range at kHz repetition rates, and tens of kV/cm at oscillator repetition rates.

  2. An innovative application of time-domain spectroscopy on localized surface plasmon resonance sensing

    Science.gov (United States)

    Li, Meng-Chi; Chang, Ying-Feng; Wang, Huai-Yi; Lin, Yu-Xen; Kuo, Chien-Cheng; Annie Ho, Ja-An; Lee, Cheng-Chung; Su, Li-Chen

    2017-03-01

    White-light scanning interferometry (WLSI) is often used to study the surface profiles and properties of thin films because the strength of the technique lies in its ability to provide fast and high resolution measurements. An innovative attempt is made in this paper to apply WLSI as a time-domain spectroscopic system for localized surface plasmon resonance (LSPR) sensing. A WLSI-based spectrometer is constructed with a breadboard of WLSI in combination with a spectral centroid algorithm for noise reduction and performance improvement. Experimentally, the WLSI-based spectrometer exhibits a limit of detection (LOD) of 1.2 × 10-3 refractive index units (RIU), which is better than that obtained with a conventional UV-Vis spectrometer, by resolving the LSPR peak shift. Finally, the bio-applicability of the proposed spectrometer was investigated using the rs242557 tau gene, an Alzheimer’s and Parkinson’s disease biomarker. The LOD was calculated as 15 pM. These results demonstrate that the proposed WLSI-based spectrometer could become a sensitive time-domain spectroscopic biosensing platform.

  3. Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging

    Science.gov (United States)

    Wong, C. L.; Ho, H. P.; Yu, T. T.; Suen, Y. K.; Chow, Winnie W. Y.; Wu, S. Y.; Law, W. C.; Yuan, W.; Li, W. J.; Kong, S. K.; Lin, Chinlon

    2007-04-01

    We present a biosensor design based on capturing the two-dimenstional (2D) phase image of surface plasmon resonance (SPR). This 2D SPR imaging technique may enable parallel label-free detection of multiple analytes and is compatible with the microarray chip platform. This system uses our previously reported differential phase measurement approach, in which 2D phase maps obtained from the signal (P) and reference (S) polarizations are compared pixel by pixel. This technique greatly improves detection resolution as the subtraction step can eliminate measurement fluctuations caused by external disturbances as they essentially appear in both channels. Unlike conventional angular SPR systems, in which illumination from a range of angles must be used, phase measurement requires illumination from only one angle, thus making it well suited for 2D measurement. Also, phase-stepping introduced from a moving mirror provides the necessary modulation for accurate detection of the phase. In light of the rapidly increasing need for fast real-time detection, quantification, and identification of a range of proteins for various biomedical applications, our 2D SPR phase imaging technique should hold a promising future in the medical device market.

  4. Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif

    2014-08-01

    Full Text Available Surface plasmon resonance (SPR is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.

  5. High sensitivity detection of bacteria by surface plasmon resonance enhanced common path interferometry

    Science.gov (United States)

    Greef, Charles; Petropavlovskikh, Viatcheslav; Nilsen, Oyvind; Hacioglu, Bilge; Khattatov, Boris; Hall, John

    2007-04-01

    Real time monitoring of biowarfare agents (BWA) for military and civilian protection remains a high priority for homeland security and battlefield readiness. Available devices have adequate sensitivity, but the detection modules have limited periods of deployment, require frequent maintenance, employ single-use disposable components, and have limited multiplexing capability. Surface Plasmon Resonance enhanced Common Path Interferometry (SPR-CPI) is a label-free, high sensitivity biomolecular interaction measurement technology that allows multiplexed real-time measurement of biowarfare agents, including small molecules, proteins, and microbes. The technology permits continuous operation in a field-deployable detection module of an integrated BWA monitoring system. SPR-CPI measures difference in phase shift of polarized light reflected from the transducer interface caused by changes in refractive index induced by biomolecular interactions. The measurement is performed on a discrete 2-dimensional area functionalized with biomolecule capture reagents in a microarray format, allowing simultaneous measurement of up to 100 separate analytes. Output consists of simultaneous voltage measurements proportional to the phase differences resulting from the refractive index changes and is automatically processed and displayed graphically or delivered to a decision making algorithm. This enables a fully automatic field-deployable detection system capable of integration into existing modular BWA detection systems. Proof-of-concept experiments on surrogate models of anticipated BWA threats have demonstrated utility. Efforts are in progress for full development and deployment of the device.

  6. Plasmon coupling of magnetic resonances in an asymmetric gold semishell

    Science.gov (United States)

    Ye, Jian; Kong, Yan; Liu, Cheng

    2016-05-01

    The generation of magnetic dipole resonances in metallic nanostructures is of great importance for constructing near-zero or even negative refractive index metamaterials. Commonly, planar two-dimensional (2D) split-ring resonators or relevant structures are basic elements of metamaterials. In this work, we introduce a three-dimensional (3D) asymmetric Au semishell composed of two nanocups with a face-to-face geometry and demonstrate two distinct magnetic resonances spontaneously in the visible-near infrared optical wavelength regime. These two magnetic resonances are from constructive and destructive hybridization of magnetic dipoles of individual nanocups in the asymmetric semishell. In contrast, complete cancellation of magnetic dipoles in the symmetric semishell leads to only a pronounced electric mode with near-zero magnetic dipole moment. These 3D asymmetric resonators provide new ways for engineering hybrid resonant modes and ultra-high near-field enhancement for the design of 3D metamaterials.

  7. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Science.gov (United States)

    George, David; Li, Li; Jiang, Yan; Lowell, David; Mao, Michelle; Hassan, Safaa; Ding, Jun; Cui, Jingbiao; Zhang, Hualiang; Philipose, Usha; Lin, Yuankun

    2016-07-01

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  8. A novel optical pressure sensor based on surface plasmon polariton resonator

    Science.gov (United States)

    Wu, Jing; Lang, Peilin; Chen, Xi; Zhang, Ru

    2016-02-01

    We propose a Metal-Insulator-Metal structure consists of two surface plasmon polaritons (SPPs) and an H-shaped resonator. The reflectance spectrum is numerically simulated by the two-dimensional finite-difference time-domain method. The results show that this structure can act as a pressure sensor. To our knowledge, this is the first proposal to utilize the SPP resonator to form a pressure sensor. The size of the SPP resonator can be as small as a few hundred nanometers. The nano-scale pressure sensor opens a wide field for potential applications in biological and biomedical engineering.

  9. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    George, David; Lowell, David; Mao, Michelle; Hassan, Safaa; Philipose, Usha [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Li, Li; Jiang, Yan; Cui, Jingbiao [Department of Physics and Materials Science, University of Memphis, Memphis, Tennessee 38152 (United States); Ding, Jun; Zhang, Hualiang [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lin, Yuankun [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  10. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance.

    Science.gov (United States)

    Liu, C H; Hong, M H; Cheung, H W; Zhang, F; Huang, Z Q; Tan, L S; Hor, T S A

    2008-07-07

    Tuning of surface plasmon resonance by gold and silver bimetallic thin film and bimetallic dot array is investigated. Laser interference lithography is applied to fabricate the nanostructures. A bimetallic dot structure is obtained by a lift-off procedure after gold and silver thin film deposition by an electron beam evaporator. Surface plasmon behaviors of these films and nanostructures are studied using UV-Vis spectroscopy. It is observed that for gold thin film on quartz substrate, the optical spectral peak is blue shifted when a silver thin film is coated over it. Compared to the plasmon band in single metal gold dot array, the bimetallic nanodot array shows a similar blue shift in its spectral peak. These shifts are both attributed to the interaction between gold and silver atoms. Electromagnetic interaction between gold and silver nanostructures is discussed using a simplified spring model.

  11. Surface-Plasmon-Polariton Laser based on an Open-Cavity Fabry-Perot Resonator

    CERN Document Server

    Zhu, Wenqi; Agrawal, Amit; Lezec, Henri J

    2016-01-01

    Recent years have witnessed growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface-plasmons, electromagnetic modes evanescently confined to metal-dielectric interfaces, offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain-medium. Here, we achieve visible frequency ultra-narrow linewidth lasing at room-temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically-pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. Low perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high-figure-of-merit refractive-index sensing of analytes interacting with the open cavity.

  12. Surface-enhanced Raman spectroscopy on a surface plasmon resonance biosensor platform for gene diagnostics

    Science.gov (United States)

    Yuan, W.; Ho, H. P.; Suen, Y. K.; Kong, S. K.; Lin, Chinlon; Prasad, Paras N.; Li, J.; Ong, Daniel H. C.

    2008-02-01

    We propose to integrate the surface-enhanced Raman spectroscopy (SERS) detection capability with a surface plasmon resonance (SPR) biosensor platform. As a demonstration setup, the experimental scheme is built from a Total Internal Reflection Fluorescence (TIRF) microscope. The sample surface is a gold-coated plasmonic crystal substrate. Two oligonucleotide (ODN) probes that have been labeled with two different Raman active dyes are used to achieve a sandwich assay of target ODNs or polynucleotide. Upon complementary hybridizations between the target and probe ODNs, the target can be identified by detecting the narrow-band spectroscopic fingerprints of the Raman tags. This concept has high potential for achieving multiplexed detection of ODN targets because a very large number of probes can be incorporated to the plasmonic crystal substrate, which may find applications in gene based diseases diagnostics. We also explored the detection of single molecules and achieved some preliminary results.

  13. Resonance Light Scattering Imaging Determination of Heparin

    Institute of Scientific and Technical Information of China (English)

    Hong Ping GUO; Cheng Zhi HUANG; Jian LING

    2006-01-01

    A laser-induced resonance light scattering (RLS) imaging method to determine heparin is described based on the high light scattering emission power of the aggregation species of heparin with α, β, γ, δtetra(4-trimethylaminoniumphenyl)prophyrin (TAPP) in solution. By imaging the light scattering signals of the aggregation species, we proposed the method to determine the heparin with a detection range of 0.02 - 0.6 μg/mL and the detection limit (3 σ) of 1.3 ng/mL.

  14. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Science.gov (United States)

    Ortega-Mendoza, J. Gabriel; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Zaca-Morán, Placido; Villegas-Hernández, David; Chávez, Fernando

    2014-01-01

    This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented. PMID:25302813

  15. Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Verma, R K; Gupta, B D [Physics Department, Indian Institute of Technology Delhi, New Delhi-110016 (India)], E-mail: bdgupta@physics.iitd.ernet.in

    2008-05-07

    Theoretical analysis of a surface plasmon resonance based fibre optic sensor with a uniform semi-metal coated U-shaped probe is carried out using a bi-dimensional model. All the rays of the p-polarized light launched in the fibre and their electric vectors are assumed to be confined in the plane of bending of the U-shaped probe. The effect of the bending radius of the probe on the sensitivity of the sensor is studied. The study shows that as the bending radius of the probe decreases the sensitivity of the sensor increases. For the light launching conditions used, the maximum sensitivity achieved is several times more than that reported for a fibre optic tapered probe. In addition to high sensitivity, the most advantageous feature of a U-shaped probe is that it can be used as a point sensor.

  16. Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells.

    Science.gov (United States)

    Jeong, Nak Cheon; Prasittichai, Chaiya; Hupp, Joseph T

    2011-12-06

    Localized surface plasmon resonance (LSPR) by silver nanoparticles that are photochemically incorporated into an electrode-supported TiO(2) nanoparticulate framework enhances the extinction of a subsequently adsorbed dye (the ruthenium-containing molecule, N719). The enhancement arises from both an increase in the dye's effective absorption cross section and a modest increase in the framework surface area. Deployment of the silver-modified assembly as a photoanode in dye-sensitized solar cells leads to light-to-electrical energy conversion with an overall efficiency of 8.9%. This represents a 25% improvement over the performance of otherwise identical solar cells lacking corrosion-protected silver nanoparticles. As one would expect based on increased dye loading and electromagnetic field enhanced (LSPR-enhanced) absorption, the improvement is manifested chiefly as an increase in photocurrent density ascribable to improved light harvesting.

  17. Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end.

    Science.gov (United States)

    Ortega-Mendoza, J Gabriel; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Zaca-Morán, Placido; Villegas-Hernández, David; Chávez, Fernando

    2014-10-09

    This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  18. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Directory of Open Access Journals (Sweden)

    J. Gabriel Ortega-Mendoza

    2014-10-01

    Full Text Available This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR. We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  19. Rotational Diffusion of Plasmon-Resonant Gold Nanorods for Depth-Resolved Microrheology Using Optical Coherence Tomography

    Science.gov (United States)

    Oldenburg, Amy; Chhetri, Raghav; Kozek, Krystian; Johnston-Peck, Aaron; Tracy, Joseph

    2011-03-01

    The ability to perform microrheology in optically thick samples would enable analysis of bulk tissues. Optical coherence tomography (OCT) provides imaging several mean free scattering path lengths into tissue. In this study we report the use of plasmon-resonant gold nanorods as microrheological sensors in OCT. Nanorods exhibit a longitudinal mode that is excited when they are oriented parallel to the polarization of the incident light, which is favorable for passive microrheology using polarized light to monitor their rotational diffusion. We demonstrate measurements of the rotational diffusion of unconfined, colloidal gold nanorods using polarization-sensitive OCT, and validate the Stokes-Einstein relationship for the nanorods in simple fluids of varying viscosity. We then show that OCT provides depth-resolved imaging of fluid viscosity through measurements of the rotational diffusion rate of the nanorods. We acknowledge support from the Carolina Cancer Center for Nanotechnology Excellence (C-CCNE NIH (NCI) #U54CA119343).

  20. The influence of edge and corner evolution on plasmon properties and resonant edge effect in gold nanoplatelets.

    Science.gov (United States)

    Xu, Xi-Bin; Luo, Jiang-Shan; Liu, Miao; Wang, Yu-Ying; Yi, Zao; Li, Xi-Bo; Yi, You-Gen; Tang, Yong-Jian

    2015-01-28

    In this paper a simulation of the properties of surface plasmons on gold nanoplatelets with various cross-sections inscribed in a circle and an investigation of their field distributions to assign multiple SPRs are described. The manipulated propagation can be obtained through the evolution of edges and corners. Furthermore, the particle morphology and the associated spectral positions alone do not uniquely reflect the important details of the local field distribution or the resonance modes. The plasmon modes were investigated and found to be mainly excited along the edges and in the side and sloped side surfaces. The strong field distributions can generally be found around the corners and how the plasmons transmit through the corners to adjacent edges was also investigated. Besides the plasmons excited along the edges as were found for the triangular nanoplatelets, plasmons were excited in the interior region of the triangular surfaces and were also investigated. Despite this in the infrared region, plasmon modes were found to be along the edges for the hexagonal nanoplatelets. Also, it can be seen that the change of nanoplatelet thickness can support different plasmon modes ranging from dipolar resonance mode to quadrupole resonance mode. The thickness far below the skin depth can display complex plasmon modes along the edges and on the side and sloping side surfaces as well as the strong coupling between the top and bottom surfaces. The observed plasmon resonance modes in this simulation reflect the interference of all these contributions including the plasmons along the edges and on the side surfaces. This is an essential step towards a thorough understanding of plasmon modes and the effect of edge and corner evolution in polygonous nanoplatelets.

  1. Directional out-coupling of light from a plasmonic nanowire-nanoparticle junction

    CERN Document Server

    Singh, Danveer; G., Aswathy V; Tripathi, Ravi; Kumar, G V Pavan

    2015-01-01

    We experimentally show how a single Ag nanoparticle (NP) coupled to an Ag nanowire (NW) can convert propagating surface plasmon polaritons to directional photons. By employing dual-excitation Fourier microscopy with spatially filtered collection-optics, we show single- and dual-directional out-coupling of light from NW-NP junction for plasmons excited through glass-substrate and air-superstrate. Furthermore, we show NW-NP junction can influence the directionality of molecular-fluorescence emission, thus functioning as an optical antenna. The results discussed herein may have implications in realizing directional single-photon sources and quantum plasmon circuitry.

  2. Directional out-coupling of light from a plasmonic nanowire-nanoparticle junction.

    Science.gov (United States)

    Singh, Danveer; Dasgupta, Arindam; Aswathy, V G; Tripathi, Ravi P N; Pavan Kumar, G V

    2015-03-15

    We experimentally show how a single Ag nanoparticle (NP) coupled to an Ag nanowire (NW) can convert propagating surface plasmon polaritons to directional photons. By employing dual-excitation Fourier microscopy with spatially filtered collection-optics, we show single- and dual-directional out-coupling of light from NW-NP junction for plasmons excited through glass-substrate and air-superstrate. Furthermore, we show NW-NP junction can influence the directionality of molecular-fluorescence emission, thus functioning as an optical antenna. The results discussed herein may have implications in realizing directional single-photon sources and quantum plasmon circuitry.

  3. Plasmonic Mode Converter for Controlling Optical Impedance and Nanoscale Light-matter Interaction

    CERN Document Server

    Hung, Yun-Ting; Huang, Jer-Shing

    2012-01-01

    Nanoantennas and plasmonic waveguides can concentrate and manipulate light in a sub-wavelength area. To ensure strong interaction between light and nanomatter, it is of key importance to control the spatial distribution and polarization of the guided modes such that the optical impedance matches to that of nearby quantum systems. Nanosized plasmonic two-wire transmission lines consisting of two parallel plasmonic nanowires separated by a nanogap provide unique opportunity to achieve the required control. According to the symmetry of the charge distribution, the guided transverse electric and transverse magnetic modes on a two-wire transmission line exhibit distinct propagation properties and optical impedance that are suitable for various different circuit functions. In this work, we present efficient mode converters for the control of guided modes in a plasmonic nanocircuit. The mode conversion is achieved through varying the path length, wire cross section and the surrounding index of refraction. We demonst...

  4. Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state.

    Science.gov (United States)

    Gerasimov, V S; Ershov, A E; Gavrilyuk, A P; Karpov, S V; Ågren, H; Polyutov, S P

    2016-11-14

    Significant suppression of resonant properties of single gold nanoparticles at the surface plasmon frequency during heating and subsequent transition to the liquid state has been demonstrated experimentally and explained for the first time. The results for plasmonic absorption of the nanoparticles have been analyzed by means of Mie theory using experimental values of the optical constants for the liquid and solid metal. The good qualitative agreement between calculated and experimental spectra support the idea that the process of melting is accompanied by an abrupt increase of the relaxation constants, which depends, beside electron-phonon coupling, on electron scattering at a rising number of lattice defects in a particle upon growth of its temperature, and subsequent melting as a major cause for the observed plasmonic suppression. It is emphasized that observed effect is fully reversible and may underlie nonlinear optical responses of nanocolloids and composite materials containing plasmonic nanoparticles and their aggregates in conditions of local heating and in general, manifest itself in a wide range of plasmonics phenomena associated with strong heating of nanoparticles.

  5. Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis.

    Science.gov (United States)

    Lu, Ying; Yu, Hongtao; Chen, Shuo; Quan, Xie; Zhao, Huimin

    2012-02-07

    Aimed at enhancing photocatalysis through intensifying light harvesting, a new photocatalyst was fabricated by infiltrating Au nanoparticles into TiO(2) photonic crystals (TiO(2) PC/Au NPs). Scanning electron microscopy (SEM) and transmission electron microscope (TEM) images showed that the Au NPs with average diameter around 15 nm were dispersed uniformly into the porous TiO(2) material. The results of the transmittance spectra demonstrated that the light absorption by Au NPs was amplified after they were infiltrated into TiO(2) 240, which was fabricated from 240 nm polystyrene spheres. In the photocatalytic experiments of 2,4-dichlorophenol degradation under visible light (λ > 420 nm) irradiation, the kinetic constant using TiO(2) 240/Au NPs was 2.3 fold larger than that using TiO(2) nanocrystalline/Au NPs (TiO(2) NC/Au NPs). The excellent photocatalysis benefited from the cooperatively enhanced light harvesting owing to the localized surface plasmon resonance of Au NPs, which extended the light response spectra and the photonic effect of the TiO(2) 240 which intensified the plasmonic absorption by Au NPs. The hydroxyl radicals originated from the electroreduction of dissolved oxygen with photogenerated electrons via chain reactions were the main reactive oxygen species responsible for the pollutant degradation.

  6. Underpotential deposition of a copper monolayer on a gold film sensed by integrated optical surface plasmon resonance

    OpenAIRE

    Abanulo, J.C.; Harris, R.D.; Bartlett, P.N.; Wilkinson, J.S.

    2000-01-01

    An integrated optical surface plasmon resonance sensor combined with electrochemical control is used to monitor the underpotential deposition of a copper monolayer onto a gold film from 1 mM Cu2+ in 0.1 M perchloric acid.

  7. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance

    Science.gov (United States)

    Shafiei, Farbod; Monticone, Francesco; Le, Khai Q.; Liu, Xing-Xiang; Hartsfield, Thomas; Alù, Andrea; Li, Xiaoqin

    2013-02-01

    The lack of symmetry between electric and magnetic charges, a fundamental consequence of the small value of the fine-structure constant, is directly related to the weakness of magnetic effects in optical materials. Properly tailored plasmonic nanoclusters have been proposed recently to induce artificial optical magnetism based on the principle that magnetic effects are indistinguishable from specific forms of spatial dispersion of permittivity at optical frequencies. In a different context, plasmonic Fano resonances have generated a great deal of interest, particularly for use in sensing applications that benefit from sharp spectral features and extreme field localization. In the absence of natural magnetism, optical Fano resonances have so far been based on purely electric effects. In this Letter, we demonstrate that a subwavelength plasmonic metamolecule consisting of four closely spaced gold nanoparticles supports a strong magnetic response coupled to a broad electric resonance. Small structural asymmetries in the assembled nanoring enable the interaction between electric and magnetic modes, leading to the first observation of a magnetic-based Fano scattering resonance at optical frequencies. Our findings are supported by excellent agreement with simulations and analytical calculations, and represent an important step towards the quest for artificial magnetism and negative refractive index metamaterials at optical frequencies.

  8. Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale Invited Paper

    Institute of Scientific and Technical Information of China (English)

    Georgios Veronis; Zongfu Yu; Sukru Ekin Kocabas; David A. B. Miller; Mark L. Brongersma; Shanhui Fan

    2009-01-01

    We review some of the recent advances in the development of subwavelength plasmonic devices for ma- nipulating light at the nanoscale, drawing examples from our own work in metal-dielectric-metal (MDM) plasmonic waveguide devices. We introduce bends, splitters, and mode converters for MDM waveguides with no additional loss. We also demonstrate that optical gain provides a mechanism for on/off switch- ing in MDM plasmonie waveguides. Highly efficient compact couplers between dielectric waveguides and MDM waveguides are also introduced.

  9. Electron photoemission in plasmonic nanoparticle arrays: analysis of collective resonances and embedding effects

    Science.gov (United States)

    Zhukovsky, Sergei V.; Babicheva, Viktoriia E.; Uskov, Alexander V.; Protsenko, Igor E.; Lavrinenko, Andrei V.

    2014-09-01

    We theoretically study the characteristics of photoelectron emission in plasmonic nanoparticle arrays. Nanoparticles are partially embedded in a semiconductor, forming Schottky barriers at metal/semiconductor interfaces through which photoelectrons can tunnel from the nanoparticle into the semiconductor; photodetection in the infrared range, where photon energies are below the semiconductor band gap (insufficient for band-to-band absorption in semiconductor), is therefore possible. The nanoparticles are arranged in a sparse rectangular lattice so that the wavelength of the lattice-induced Rayleigh anomalies can overlap the wavelength of the localized surface plasmon resonance of the individual particles, bringing about collective effects from the nanoparticle array. Using full-wave numerical simulations, we analyze the effects of lattice constant, embedding depth, and refractive index step between the semiconductor layer and an adjacent transparent conductive oxide layer. We show that the presence of refractive index mismatch between media surrounding the nanoparticles disrupts the formation of a narrow absorption peak associated with the Rayleigh anomaly, so the role of collective lattice effects in the formation of plasmonic resonance is diminished. We also show that 5-20 times increase of photoemission can be achieved on embedding of nanoparticles without taking into account dynamics of ballistic electrons. The results obtained can be used to increase efficiency of plasmon-based photodetectors and photovoltaic devices. The results may provide clues to designing an experiment where the contributions of surface and volume photoelectric effects to the overall photocurrent would be defined.

  10. Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials.

    Science.gov (United States)

    Chen, Jing; Mao, Peng; Xu, Rongqing; Tang, Chaojun; Liu, Yuanjian; Wang, Qiugu; Zhang, Labao

    2015-06-15

    We have demonstrated a straightforward strategy to realize magnetic field enhancement through diffraction coupling of magnetic plasmon (MP) resonances by embedding the metamaterials consisting of a planar rectangular array of U-shaped metallic split-ring resonators (SRRs) into the substrate. Our method provides a more homogeneous dielectric background allowing stronger diffraction coupling of MP resonances among SRRs leading to strong suppression of the radiative damping. We observe that compared to the on-substrate metamaterials, the embedded ones lead to a narrow-band hybridized MP mode, which results from the interference between MP resonances in individual SRRs and an in-plane propagating collective surface mode arising from light diffraction. Associated with the excitation of this hybridized MP mode, a twenty-seven times enhancement of magnetic fields within the inner area of the SRRs is achieved as compared with the pure MP resonance. Moreover, we also found that besides the above requirement of homogeneous dielectric background, only a collective surface mode with its magnetic field of the same direction as the induced magnetic moment in the SRRs could mediate the excitation of such a hybridized MP mode.

  11. Plasmonic Biosensors

    OpenAIRE

    Hill, Ryan T.

    2014-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and ...

  12. Surface plasmon resonance: concept and applications for nano-sensors and optical active devices

    Science.gov (United States)

    Popescu, A. A.

    2015-02-01

    In report is made the synthesis of the surface plasmon polariton propagation phenomenon. Methods such as Maxwell equations, Drude model used to describe the light confinement at the interface between two media are analyzed. Simulation techniques such as the transfer matrix formalism and the dispersion equation are examined. Finally are presented the results of our own investigations aiming plasmonic structure containing a film of amorphous chalcogenide material. It is shown the structure is very sensitive to the modifications of the refractive index that may be used for the design of the optical memory.

  13. Long-range surface plasmon resonance and surface-enhanced Raman scattering on X-shaped gold plasmonic nanohole arrays.

    Science.gov (United States)

    Hou, Chao; Galvan, Daniel David; Meng, Guowen; Yu, Qiuming

    2017-09-13

    A multilayered architecture including a thin Au film supporting an X-shaped nanohole array and a thick continuous Au film separated by a Cytop dielectric layer is reported in this work. Long-range surface plasmon resonance (LR-SPR) was generated at the top Au/water interface, which also resulted in a long-range surface-enhanced Raman scattering (LR-SERS) effect. LR-SPR originates from the coupling of surface plasmons (SPs) propagating along the opposite sides of the thin Au film embedded in a symmetric refractive index environment with Cytop (n = 1.34) and water (n = 1.33). The finite-difference time-domain (FDTD) simulation method was used to investigate the optimal dimensions of the substrate by studying the reflectance spectra and electric field profiles. The calculated optimal structure was then fabricated via electron beam lithography, and its LR-SERS performance was demonstrated by detecting rhodamine 6G and 4-mercaptobenzoic acid in the refractive index-matched environment. We believe that this structure as a LR-SPR or LR-SERS substrate can have broad applications in biosensing.

  14. Surface plasmon resonance scattered by a dielectric sphere

    Science.gov (United States)

    Hong, Xin; Yin, Xuejie

    2016-11-01

    It is well known that when total internal reflection occurs at the interface between high to low refractive index, evanescent field will go into the media with low refractive index. This field can be scattered by a small dielectric particle on the surface. In this paper, with the aim to enhance the scattering field we introduced a thin gold film, the filed modified by the metallic film was theoretically calculated by FDTD solver. Further a polystyrene bead at the diameter of 200nm and 800nm was employed to test the model. Theoretical and experimental results agree well with each other that the locally excitated surface plasmon play a dominant role in the field enhancement scattered by the sphere.

  15. A polarization-sensitive mid-infrared plasmonic absorber for multi-band resonance

    Science.gov (United States)

    Li, Yongqian; Wang, Binbin; Xu, Xiaolun; Su, Lei; Zhou, Zili

    2014-05-01

    The aim of this work is to present a multi-band absorption metamaterials. One dual cross-shape perfect absorber metamaterials (PAMs) was developed to obtain multi-band spectrum at mid-infrared. The PAMs possess three distinct resonant peaks standing independently, which are attributed to the polarization sensitive excitation of plasmonic resonance. The optical parameters retrieved by S-parameters method were investigated, which provides a satisfactory qualitative description of the multiple-band spectra responses. On the other hand, the near-field plasmonic behaviors and redistribution of the electromagnetic field were probed theoretically and numerically into the PAMs structure, which also explains the observed absorption behavior of the PAMs ensemble based upon the microscopic perspective. The multiplex spectrum enables the infrared perfect absorber metamaterials (PAMs) a powerful tool for direct access to vibrational fingerprints of single molecular structure.

  16. A time-dependent density functional theory investigation of plasmon resonances of linear Au atomic chains

    Institute of Scientific and Technical Information of China (English)

    Liu Dan-Dan; Zhang Hong

    2011-01-01

    We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio timedependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases,the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition,the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics,different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing,optical spectroscopy,and so on.

  17. Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-04-30

    We report on chemical etching of ordered Au nanostructure arrays to continuously tune their localized surface plasmon resonances (LSPR). Real-time extinction spectra were recorded from both Au nanodisks and nanospheres immobilized on glass substrates when immersed in Au etchant. The time-dependent LSPR frequencies, intensities, and bandwidths were studied theoretically with discrete dipole approximations and the Mie solution, and they were correlated with the evolution of the etched Au nanostructures\\' morphology (as examined by atomic force microscopy). Since this chemical etching method can conveniently and accurately tune LSPR, it offers precise control of plasmonic properties and can be useful in applications such as surfaceenhanced Raman spectroscopy and molecular resonance spectroscopy. © 2009 American Chemical Society.

  18. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles.

    Science.gov (United States)

    Chen, Yeechi; Munechika, Keiko; Ginger, David S

    2007-03-01

    We investigate the fluorescence from dyes coupled to individual DNA-functionalized metal nanoparticles. We use single-particle darkfield scattering and fluorescence microscopy to correlate the fluorescence intensity of the dyes with the localized surface plasmon resonance (LSPR) spectra of the individual metal nanoparticles to which they are attached. For each of three different dyes, we observe a strong correlation between the fluorescence intensity of the dye and the degree of spectral overlap with the plasmon resonance of the nanoparticle. On average, we observe the brightest fluorescence from dyes attached to metal nanoparticles that have a LSPR scattering peak approximately 40-120 meV higher in energy than the emission peak of the fluorophore. These results should prove useful for understanding and optimizing metal-enhanced fluorescence.

  19. Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes

    Science.gov (United States)

    Shuba, M. V.; Paddubskaya, A. G.; Plyushch, A. O.; Kuzhir, P. P.; Slepyan, G. Ya.; Maksimenko, S. A.; Ksenevich, V. K.; Buka, P.; Seliuta, D.; Kasalynas, I.; Macutkevic, J.; Valusis, G.; Thomsen, C.; Lakhtakia, A.

    2012-04-01

    Experimental proof of localized plasmon resonance was found in thin films containing either single-walled carbon nanotubes (SWNT) or SWNT bundles of different length. All samples were prepared by a simple technique that permitted the selection of different SWNT lengths in different samples without significant differences in electronic properties. Fourier-transform infrared spectroscopy showed that an optical-density peak, the same as a terahertz conductivity peak, shifts to higher frequencies as the SWNT lengths are reduced—in agreement with a similar tendency predicted for the localized plasmon resonance in finite-length SWNTs [Slepyan , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.81.205423 81, 205423 (2010)].

  20. Surface plasmon resonance biosensor based on large size square-lattice photonic crystal fiber

    Science.gov (United States)

    Bing, Pibin; Li, Zhongyang; Yuan, Sheng; Yao, Jianquan; Lu, Ying

    2016-04-01

    A surface plasmon resonance biosensor based on large size square-lattice photonic crystal fiber has been designed and simulated by finite element method. The square-lattice airholes are first coated with a calcium fluoride layer to provide mode confinement, then a nanoscale gold layer is deposited to excite the plasmon mode, and finally, the sample is infiltrated into the holes. The numerical results reveal that the resonance properties are easily affected by many parameters. The refractive index resolution of corresponding sensor can reach 4.3 × 10-6 RIU when the optimum parameters are set as the radius of curvature of the airhole r = 2 μm, the thickness of the core struts c = 200 nm, the auxiliary dielectric layer s = 1 μm, and the gold film d = 40 nm. In addition, the effective area and nonlinear coefficient are calculated.